Science.gov

Sample records for prenyldiphosphate converting enzymes

  1. Angiotensin converting enzyme inhibitor induced hyperkalaemic paralysis

    PubMed Central

    Dutta, D; Fischler, M; McClung, A

    2001-01-01

    Secondary hyperkalaemic paralysis is a rare condition often mimicking the Guillain-Barré syndrome. There have been a few case reports of hyperkalaemia caused by renal failure, trauma, and drugs where the presentation has been with muscle weakness. A case of hyperkalaemic paralysis caused by an angiotensin converting enzyme inhibitor is reported.


Keywords: hyperkalaemia; paralysis; ACE inhibitors PMID:11161080

  2. Assay for Angiotensin-Converting Enzyme.

    ERIC Educational Resources Information Center

    Russo, Salvatore F.

    1983-01-01

    Describes a three-hour experiment designed to introduce students to chemistry of the angiotensis-converting enzyme, illustrate design of a quenched fluorescence substrate, and examine considerations necessary in designing a clinical assay. Includes background information on the biochemistry of hypertension, reagents/materials needed, procedures…

  3. Assay for Angiotensin-Converting Enzyme.

    ERIC Educational Resources Information Center

    Russo, Salvatore F.

    1983-01-01

    Describes a three-hour experiment designed to introduce students to chemistry of the angiotensis-converting enzyme, illustrate design of a quenched fluorescence substrate, and examine considerations necessary in designing a clinical assay. Includes background information on the biochemistry of hypertension, reagents/materials needed, procedures…

  4. Angiotensin converting enzymes in fish venom.

    PubMed

    Dos Santos, Dávida Maria Ribeiro Cardoso; de Souza, Cledson Barros; Pereira, Hugo Juarez Vieira

    2017-06-01

    Animal venoms are multifaceted mixtures, including proteins, peptides and enzymes produced by animals in defense, predation and digestion. These molecules have been investigated concerning their molecular mechanisms associated and possible pharmacological applications. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, nausea, vomiting, and syncope. Recently, the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri and Scorpaena plumieri, endemic fishes in northeastern coast of Brazil, has been described. The ACE converts angiotensin I (Ang I) into angiotensin II (Ang II) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis, however, their function in these venoms remains an unknown. This article provides an overview of the current knowledge on ACE in the venoms of Thalassophryne nattereri and Scorpaena plumier.

  5. Angiotensin converting enzyme 2 and atherosclerosis.

    PubMed

    Wang, Yutang; Tikellis, Chris; Thomas, Merlin C; Golledge, Jonathan

    2013-01-01

    Angiotensin converting enzyme 2 (ACE2) is a homolog of angiotensin converting enzyme (ACE) which generates angiotensin II from angiotensin I. ACE, its product angiotensin II and the downstream angiotensin type I receptor are important components of the renin-angiotensin system (RAS). Angiotensin II, the most important component of the RAS, promotes the development of atherosclerosis. The identification of ACE2 in 2000 opened a new chapter of research on the regulation of the RAS. ACE2 degrades pro-atherosclerotic angiotensin II and generates anti-atherosclerotic angiotensin 1-7. In this review, we explored the importance of ACE2 in protecting experimental animals from developing atherosclerosis and its involvement in human atherosclerosis. We also examined the published evidence assessing the importance of ACE2 in different cell types relevant to atherosclerosis and putative underlying cellular and molecular mechanisms linking ACE2 with protection from atherosclerosis. ACE2 shifts the balance from angiotensin II to angiotensin 1-7 inhibiting the progression of atherosclerosis in animal models. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Angiotensin converting enzyme inhibition and the kidney

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1988-01-01

    Angiotensin II (Ang II) induces a marked reduction in renal blood flow at doses well below those required to induce a pressor response, and as blood flow falls there is a decline in glomerular filtration rate and sodium excretion. This striking sensitivity of the renal blood supply led many workers to consider the possibility that angiotensin functions as a local renal hormone. As angiotensin converting enzyme (ACE) was found in particular abundance in the lung, it seemed reasonable to suspect that most of the conversion occurred there, and that the function of Ang II would be primarily systemic, rather than intrarenal. In this review, I will explore the evidence that has accumulated on these two possibilities, since they have important implications for our current understanding of normal kidney function and derangements of kidney function in disease.

  7. [Oxidative inactivation of angiotensin-converting enzyme].

    PubMed

    Sakharov, I Iu; Dukhanina, E A; Puchnina, E A; Danilov, S M; Muzykantov, V R

    1991-01-01

    Hydrogen peroxide inactivates the purified human angiotensin-converting enzyme (ACE) in vitro; the inactivating effect of H2O2 is eliminated by an addition of catalase. The lung and kidney ACE are equally sensitive to the effect of hydrogen peroxide. After addition of oxidants (H2O2 alone or H2O2 + ascorbate or H2O2 + Fe2+ mixtures) to the membranes or homogenates of the lung, the inactivation of membrane-bound ACE is far less pronounced despite the large-scale accumulation of lipid peroxidation products. The marked inactivation of ACE in the membrane fraction (up to 55% of original activity) was observed during ACE incubation with a glucose:glucose oxidase:Fe2+ mixture. Presumably the oxidative potential of H2O2 in tissues in consumed, predominantly, for the oxidation of other components of the membrane (e.g., lipids) rather than for ACE inactivation.

  8. Angiotensin Converting Enzyme Activity in Alopecia Areata

    PubMed Central

    Namazi, Mohammad Reza; Handjani, Farhad; Eftekhar, Ebrahim; Kalafi, Amir

    2014-01-01

    Background. Alopecia areata (AA) is a chronic inflammatory disease of the hair follicle. The exact pathogenesis of AA remains unknown, although recent studies support a T-cell mediated autoimmune process. On the other hand, some studies have proposed that the renin-angiotensin-aldosterone system (RAAS) may play a role in autoimmunity. Therefore, we assessed serum activity of angiotensin converting enzyme (ACE), a component of this system, in AA. Methods. ACE activity was measured in the sera of 19 patients with AA and 16 healthy control subjects. In addition, the relationship between severity and duration of the disease and ACE activity was evaluated. Results. Serum ACE activity was higher in the patient group (55.81 U/L) compared to the control group (46.41 U/L), but the difference was not statistically significant (P = 0.085). Also, there was no correlation between ACE activity and severity (P = 0.13) and duration of disease (P = 0.25) in the patient group. Conclusion. The increased serum ACE activity found in this study may demonstrate local involvement of the RAAS in the pathogenesis of AA. Assessment of ACE in a study with a larger sample size as well as in tissue samples is recommended in order to further evaluate the possible role of RAAS in AA. PMID:25349723

  9. Angiotensin-Converting Enzymes Play a Dominant Role in Fertility

    PubMed Central

    Pan, Pei-Pei; Zhan, Qi-Tao; Le, Fang; Zheng, Ying-Ming; Jin, Fan

    2013-01-01

    According to the World Health Organization, infertility, associated with metabolic syndrome, has become a global issue with a 10%–20% incidence worldwide. An accumulating body of evidence has shown that the renin–angiotensin system is involved in the fertility problems observed in some populations. Moreover, alterations in the expression of angiotensin-converting enzyme-1, angiotensin-converting enzyme-2, and angiotensin-converting enzyme-3 might be one of the most important mechanisms underlying both female and male infertility. However, as a pseudogene in humans, further studies are needed to explore whether the abnormal angiotensin-converting enzyme-3 gene could result in the problems of human reproduction. In this review, the relationship between angiotensin-converting enzymes and fertile ability is summarized, and a new procedure for the treatment of infertility is discussed. PMID:24152441

  10. Angiotensin converting enzyme genotype in cardiovascular disease

    SciTech Connect

    Summers, K.M.; Huggard, P.R.; West, M.J.

    1994-09-01

    Angiotensin converting enzyme (ACE) catalyses formation of angiotensin II and degradation of bradykinin, vasoactive peptides with opposing properties. The result of ACE action is to promote vasoconstriction and cell growth. PCR is used to detect a common polymorphism due to the insertion of an Alu repeat element of 287 bp into intron 16. ACE genotype has been implicated in risk for myocardial infarction (MI) and hypertension in humans. We have studied a group of 640 patients (61% male aged 64 {plus_minus} 11 years) with myocardial ischaemic syndromes, followed for 12 months after initial hospital admission. In this group, the frequency of the insertion (I) allele was 0.47 (N=1170 chromosomes), not significantly higher than the frequency of 0.46 in 112 local blood donors (50% male aged 59 {plus_minus}5 years). In the 300 patients with diagnosed MI, I allele frequency was 0.48. This is significantly higher ({chi}{sup 2}=5.78, P=0.015) than the frequency of 0.42 reported in a multi-centre study of ACE genotype in 600 male European patients with MI . There was a non-significant increase in the frequency of a cardiac event within 6 months of hospital admission in those of II genotype (N=464, 47 events to date). These results suggest that in our population, the I allele and/or II genotype may be associated with risk of MI. This contrasts with the study cited above, where the D (deletion) allele and DD genotype frequency were raised in patients compared with controls. Hypertension is associated with the ACE D allele, and does not explain the heart disease risk, which may be associated with the I allele, in this group of survivors of myocardial ischaemic disease. The difference between our results and the previous study may be due to ascertainment or ethnic differences or to problems amplifying the I allele in some heterozygotes. Clearly, the role of ACE genotype in these diseases is complex.

  11. Isolation of human liver angiotensin-converting enzyme by chromatofocusing.

    PubMed

    Sakharov IYu; Danilov, S M; Sukhova, N V

    1987-10-01

    Angiotensin-converting enzyme (EC 3.4.15.1) has been isolated from human liver by chromatofocusing. The isolation procedure permitted us to obtain a 9000-fold purified enzyme with a 22% yield. Specific activity of the angiotensin-converting enzyme was 10 units/mg of protein. The molecular mass of enzyme determined by polyacrylamide gel electrophoresis under denaturing conditions was 150,000. The isoelectric point (4.2-4.3) was also determined by chromatofocusing. The Km values of the enzyme for hippuryl-L-histidyl-L-leucine and N-benzyloxycarbonyl-L-phenylalanyl-L-histidyl-L-leucine are 5000 and 125 microM, respectively. The human liver angiotensin-converting enzyme is inhibited by bradykinin-potentiating factor SQ 20881 (IC50 = 18 nM).

  12. Carbohydrates regulate the dimerization of angiotensin-converting enzyme.

    PubMed

    Kost, O A; Orth, T A; Nikolskaya, I I; Nametkin, S N; Levashov, A V

    1998-03-01

    Regulation of the catalytic activity and supramolecular structure of angiotensin-converting enzyme was studied in reverse micelles of Aerosol OT in octane as biomembrane model. The kinetic experiments and the sedimentation analysis demonstrated that the enzyme can function both in monomeric and dimeric form. The degree of dimerization was strongly dependent on the concentration and structure of mono- and disaccharides added to the media, indicating the specific role of carbohydrates in forming the supramolecular structure of angiotensin-converting enzyme. The existence of carbohydrate-binding center on the enzyme molecule is proposed.

  13. [Angiotensin-converting enzyme inhibitors as neutralizers of hydroxyl radical].

    PubMed

    Mira, M L; Silva, M M; Queirós, M J; Manso, C

    1992-05-01

    Angiotensin converting enzyme inhibitors are utilized in the treatment of essential hypertension and of chronic cardiac failure. They are also employed in the treatment of the myocardial lesion of ischemia-reperfusion, which involves oxygen free radicals. In the present study we investigated the possibility of three angiotensin converting enzyme inhibitors (captopril, enalapril, lisinopril) to act as hydroxyl radical scavengers. The rate constants for reactions of those compounds with .OH were determined using the deoxyribose method. All there compounds proved to be good scavengers of .OH with rate constants of about 10(10)M-1s-1 and are iron chelators specially enalapril. The fact that captopril possesses a thiol group does not confer an higher antioxidative capacity. These results suggest that scavenging of oxygen free radicals may be a possible mechanism contributing to the therapeutic effect of angiotensin converting enzyme inhibitors.

  14. Angiotensin converting enzyme in the testis and epididymis of mammals.

    PubMed

    Jaiswal, A; Joshi, P; Kumar, M V; Panda, J N; Singh, L N

    1984-01-01

    Angiotensin converting enzyme (ACE) activity has been reported in testis and epididymis of seven different animal species. Among all the species, the mouse testis and epididymis showed the highest converting enzyme activity followed by rat testis and epididymis. The lowest activity was detected in buffalo testis and rabbit epididymis. Most of the testicular enzyme was found concentrated in the 107,00 X g sediment while the epididymal enzyme was equally distributed between sediment and supernatant. ACE levels of different regions of the rat testis and epididymis was analyzed. The gradient of ACE was found increasing from caput to cauda. A major fraction of testicular and epididymal ACE activity was found in their respective fluid. ACE appeared only in mature rats, rabbits and mice testis and epididymis. Sexually stimulated rabbits showed significant ACE increase in the testis. In vitro characterization studies were conducted.

  15. Identification of interleukin-8 converting enzyme as cathepsin L.

    PubMed

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  16. The history of inhibitors of angiotensin converting enzyme.

    PubMed

    Vane, J R

    1999-12-01

    This review paper by Sir John Vane, The Nobel Prize Laureate for the first time reveals the insides of discovery of inhibitors of angiotensin converting enzyme (ACE-1), presently known as important drugs for the treatment of hypertension, congestive heart failure and coronary artery disease.

  17. Inhibition of converting enzyme activity by acute hypoxia in dogs.

    PubMed

    Stalcup, S A; Lipset, J S; Legant, P M; Leuenberger, P J; Mellins, R B

    1979-02-01

    We studied the effect of a change in oxygen tension on converting enzyme activity in anesthetized, paralyzed, catheterized dogs ventilated with room air, 100% O2, and hypoxic gas mixtures. Bradykinin was continuously infused into the femoral vein and simultaneous samples drawn from the pulmonary artery and left atrium; bradykinin was extracted into ethanol and measured by radioimmunoassay. Clearance of bradykinin by lung converting enzyme decreased from 96% at PaO2 levels above 95 Torr to 0% below 26 Torr. Inhibition of enzyme activity was rapid in onset (less than 2 min), closely correlated with PaO2 (r = 0.92, P less than 0.001), and reversible within 2 min after return to room air breathing. Converting enzyme activity of the systemic vascular bed was also inhibited by hypoxia; kininase I activity was unaffected by oxygen tension. Although arterial bradykinin concentrations in the range of 0.5 ng/ml produced hypotension in normoxic animals, elevations to 30 ng/ml had no hypotensive effect in hypoxic dogs. During acute hypoxia, venous bradykinin will pass through the lung unmetabolized, and local levels of angiotensin II and bradykinin will vary in vascular beds with different oxygen tensions, providing a finely-graded mechanism for blood flow regulation.

  18. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    USDA-ARS?s Scientific Manuscript database

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  19. Angiotensin converting enzyme from sheep mammary, lingual and other tissues.

    PubMed

    Rao, N Mallikarjuna; Udupa, E G Padmanabha

    2007-11-01

    Occurrence of angiotensin converting enzyme (ACE) in mammary gland and tongue taste epithelium was demonstrated for the first time. Six times higher ACE activity in lactating mammary gland, than non-lactating mammary gland, suggested pregnancy and lactation hormonal dependent expression of ACE in female mammals. ACE activity was highest in choroid plexus, less in spinal cord and moderate in cerebrum, medulla, cerebellum and pons. Distribution of ACE in different regions of skin, kidney and among other tissues was different. Presence of ACE in adrenal glands, pancreas, bone marrow and thyroid gland indicated functions other than blood pressure homeostasis for this enzyme.

  20. Endothelin-converting enzyme inhibitors: their application in cardiovascular diseases.

    PubMed

    Cerdeira, Ana Sofia; Brás-Silva, Carmen; Leite-Moreira, Adelino F

    2008-03-01

    Endothelin, a potent vasoconstrictor first described in 1988 by Yanagisawa, is an important regulator of cardiovascular function. Hyperactivation of the endothelin system has been implicated in the pathogenesis of various cardiovascular disorders including myocardial infarction, restenosis, hypertension, heart failure and Chagas cardiopathy. Various attempts have been made to suppress this axis. Although promising, the results of clinical trials on endothelin receptor antagonists have been disappointing. There is growing interest in blockade of endothelin formation. Several selective and non-selective endothelin-converting enzyme (ECE) inhibitors have been developed, the latter with the possibility of simultaneously blocking angiotensin-converting enzyme and neutral endopeptidase, combining inhibition more than one axis. This article reviews the different ECE inhibitors, with particular emphasis on their potential clinical application in cardiovascular diseases.

  1. Small Bowel Angioedema Secondary to Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Hurairah, Abu

    2016-01-01

    Small bowel angioedema induced by angiotensin-converting enzyme (ACE) inhibitors is a rare clinicopathologic entity. It frequently poses a diagnostic challenge and is often not recognized before surgical exploration. The present study illustrates that clinical awareness for this condition and adequate use of radiologic investigations can help make the correct diagnosis of ACE inhibitor-associated angioedema, thus avoiding the cost and morbidity associated with unnecessary interventions. PMID:28133581

  2. Angiotensin-converting enzyme inhibition by Brazilian plants.

    PubMed

    Braga, Fernão C; Serra, Carla P; Viana, Nilton S; Oliveira, Alaíde B; Côrtes, Steyner F; Lombardi, Júlio A

    2007-07-01

    The potential antihypertensive activity of Brazilian plants was evaluated in vitro by its ability to inhibit the angiotensin-converting enzyme (ACE). Forty-four plants belonging to 30 families were investigated. Plants were selected based on their popular use as antihypertensive and/or diuretics. The following plants presented significant ACE inhibition rates: Calophyllum brasiliense, Combretum fruticosum, Leea rubra, Phoenix roebelinii and Terminalia catappa.

  3. Endothelin-converting enzymes and related metalloproteases in Alzheimer's disease.

    PubMed

    Pacheco-Quinto, Javier; Herdt, Aimee; Eckman, Christopher B; Eckman, Elizabeth A

    2013-01-01

    The efficient clearance of amyloid-β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of Alzheimer's disease (AD) pathology.We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of AD. Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology. The following review presents a historical perspective of the parallel discovery of three vasopeptidases (neprilysin and endothelin-converting enzymes-1 and -2) as important Aβ degrading enzymes. The recognition of the role of these vasopeptidases in Aβ degradation, beyond bringing to light a possible explanation of how cardiovascular risk factors may influence AD risk, highlights a possible risk of the use of inhibitors of these enzymes for other clinical indications such as hypertension. We will discuss in detail the experiments conducted to assess the impact of vasopeptidase deficiency (through pharmacological inhibition or genetic mutation) on Aβ accumulation, as well as the cooperative effect of multiple Aβ degrading enzymes to regulate the concentration of the peptide at multiple sites, both intracellular and extracellular, throughout the brain.

  4. Angiotensin-converting enzyme is required for normal myelopoiesis

    PubMed Central

    Lin, Chentao; Datta, Vivekanand; Okwan-Duodu, Derick; Chen, Xu; Fuchs, Sebastien; Alsabeh, Randa; Billet, Sandrine; Bernstein, Kenneth E.; Shen, Xiao Z.

    2011-01-01

    Inhibition of angiotensin-converting enzyme (ACE) induces anemia in humans and mice, but it is unclear whether ACE is involved in other aspects of hematopoiesis. Here, we systemically evaluated ACE-knockout (KO) mice and found myelopoietic abnormalities characterized by increased bone marrow myeloblasts and myelocytes, as well as extramedullary myelopoiesis. Peritoneal macrophages from ACE-KO mice were deficient in the production of effector molecules, such as tumor necrosis factor-α, interleukin-12p40, and CD86 when stimulated with lipopolysaccharide and interferon-γ. ACE-KO mice were more susceptible to Staphylococcus aureus infection. Further studies using total or fractionated bone marrows revealed that ACE regulates myeloid proliferation, differentiation, and functional maturation via angiotensin II and substance P and through the angiotensin II receptor type 1 and substance P neurokinin 1 receptors. Angiotensin II was correlated with CCAAT-enhancer-binding protein-α up-regulation during myelopoiesis. Angiotensin II supplementation of ACE-KO mice rescued macrophage functional maturation. These results demonstrate a previous unrecognized significant role for ACE in myelopoiesis and imply new perspectives for manipulating myeloid cell expansion and maturation.—Lin, C., Datta, V., Okwan-Duodu, D., Chen, X., Fuchs, S., Alsabeh, R., Billet, S., Bernstein, K. E., Shen, X. Z. Angiotensin-converting enzyme is required for normal myelopoiesis. PMID:21148418

  5. [Serum angiotensin converting enzyme in patients with primary liver carcinoma].

    PubMed

    Huskić, J; Kulenović, H; Kardum, D; Babić, N; Knezević, Z

    1999-01-01

    Recent studies have shown that serum activity of angiotensin-converting enzyme (ACE; EC 3.4.15.1) significantly decreases in patients with carcinoma of different localizations. There is no information in literature about measuring this enzyme in primary liver carcinoma patients. The serum activity of ACE has been examined on 15 primary liver carcinoma patients, 10 patients with cirrhosis, and 26 healthy subjects. Serum activity has been determined by spectrophotometric method using synthetic substrate Hip-His-Leu. The results were given in units which correspond to one nmol of hippuric acid released by enzymatic hydrolyze of Hip-His-Leu substrate in one minute on serum milliliter. The results have shown that serum activity of ACE increased in patients with cirrhosis (37.06 +/- 2.9; X +/- SEM; p < 0.05), and decreased in primary liver carcinoma patients (23.44 +/- 1.87; p < 0.01), what was statistically significant in comparison with the activity of the same enzyme in healthy subjects (29.90 +/- 2.72). These results point out the possibility of clinical application of measuring serum ACE activity as one of primary liver carcinoma marker in differential diagnosis of the disease.

  6. Renal angiotensin-converting enzyme and blood pressure control

    PubMed Central

    Bernstein, Kenneth E.; Giani, Jorge F.; Shen, Xiao Z.; Gonzalez-Villalobos, Romer A.

    2014-01-01

    Purpose of review This review presents novel findings regarding the renal angiotensin-converting enzyme (ACE) and its role in blood pressure (BP) control. Recent findings The textbook flow diagram of the renin–angiotensin system (RAS) shows the pulmonary endothelium as the main source of the ACE that converts angiotensin I to angiotensin II. However, ACE is made in large quantities by the kidneys, which raises the important question of what precisely is the function of renal ACE? Recent studies in gene-targeted mice indicates that renal ACE plays a dominant role in regulating the response of the kidney to experimental hypertension. In particular, renal ACE and locally generated angiotensin II affect the activity of several key sodium transporters and the induction of sodium and water retention resulting in the elevation of BP. Summary New experimental data link the renal ACE/angiotensin II pathway and the local regulation of sodium transport as key elements in the development of hypertension. PMID:24378774

  7. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    PubMed Central

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  8. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-01-01

    Abstract The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack. A prospective, multicenter, observational study (April 2012–December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission. Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5–1.0] versus 3.9 [2.5–7.0] hours; P < 0.0001). Even though icatibant was injected more promptly than plasma-derived C1-INH, there, however, was no significant difference in median time to onset of symptom relief between the 2 drugs (0.5 [0.5–1.3] versus 0.5 [0.4–1.0] hours for C1-INH and icatibant, respectively, P = 0.49). Of the 62 patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3–28.2] and 5.9 [1.3–26

  9. Angiotensin-Converting-Enzyme Inhibition in Stable Coronary Artery Disease

    PubMed Central

    2008-01-01

    BACKGROUND Angiotensin-converting-enzyme (ACE) inhibitors are effective in reducing the risk of heart failure, myocardial infarction, and death from cardiovascular causes in patients with left ventricular systolic dysfunction or heart failure. ACE inhibitors have also been shown to reduce atherosclerotic complications in patients who have vascular disease without heart failure. METHODS In the Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial, we tested the hypothesis that patients with stable coronary artery disease and normal or slightly reduced left ventricular function derive therapeutic benefit from the addition of ACE inhibitors to modern conventional therapy. The trial was a double-blind, placebo-controlled study in which 8290 patients were randomly assigned to receive either trandolapril at a target dose of 4 mg per day (4158 patients) or matching placebo (4132 patients). RESULTS The mean (±SD) age of the patients was 64±8 years, the mean blood pressure 133±17/78±10 mm Hg, and the mean left ventricular ejection fraction 58±9 percent. The patients received intensive treatment, with 72 percent having previously undergone coronary revascularization and 70 percent receiving lipid-lowering drugs. The incidence of the primary end point — death from cardiovascular causes, myocardial infarction, or coronary revascularization — was 21.9 percent in the trandolapril group, as compared with 22.5 percent in the placebo group (hazard ratio in the trandolapril group, 0.96; 95 percent confidence interval, 0.88 to 1.06; P=0.43) over a median follow-up period of 4.8 years. CONCLUSIONS In patients with stable coronary heart disease and preserved left ventricular function who are receiving “current standard” therapy and in whom the rate of cardiovascular events is lower than in previous trials of ACE inhibitors in patients with vascular disease, there is no evidence that the addition of an ACE inhibitor provides further benefit in

  10. Endothelin-converting enzyme 2 differentially regulates opioid receptor activity

    PubMed Central

    Gupta, A; Fujita, W; Gomes, I; Bobeck, E; Devi, L A

    2015-01-01

    BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24990314

  11. Angiotensin-Converting Enzyme 2: The First Decade

    PubMed Central

    Clarke, Nicola E.; Turner, Anthony J.

    2012-01-01

    The renin-angiotensin system (RAS) is a critical regulator of hypertension, primarily through the actions of the vasoactive peptide Ang II, which is generated by the action of angiotensin-converting enzyme (ACE) mediating an increase in blood pressure. The discovery of ACE2, which primarily metabolises Ang II into the vasodilatory Ang-(1-7), has added a new dimension to the traditional RAS. As a result there has been huge interest in ACE2 over the past decade as a potential therapeutic for lowering blood pressure, especially elevation resulting from excess Ang II. Studies focusing on ACE2 have helped to reveal other actions of Ang-(1-7), outside vasodilation, such as antifibrotic and antiproliferative effects. Moreover, investigations focusing on ACE2 have revealed a variety of roles not just catalytic but also as a viral receptor and amino acid transporter. This paper focuses on what is known about ACE2 and its biological roles, paying particular attention to the regulation of ACE2 expression. In light of the entrance of human recombinant ACE2 into clinical trials, we discuss the potential use of ACE2 as a therapeutic and highlight some pertinent questions that still remain unanswered about ACE2. PMID:22121476

  12. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese.

    PubMed

    Torres-Llanez, M J; González-Córdova, A F; Hernandez-Mendoza, A; Garcia, H S; Vallejo-Cordoba, B

    2011-08-01

    The objective of this study was to evaluate if Mexican Fresco cheese manufactured with specific lactic acid bacteria (LAB) presented angiotensin I-converting enzyme inhibitory (ACEI) activity. Water-soluble extracts (3 kDa) obtained from Mexican Fresco cheese prepared with specific LAB (Lactococcus, Lactobacillus, Enterococcus, and mixtures: Lactococcus-Lactobacillus and Lactococcus-Enterococcus) were evaluated for ACEI activity. Specific peptide fractions with high ACEI were analyzed using reverse phase-HPLC coupled to mass spectrometry for determination of amino acid sequence. Cheese containing Enterococcus faecium or a Lactococcus lactis ssp. lactis-Enterococcus faecium mixture showed the largest number of fractions with ACEI activity and the lowest half-maximal inhibitory concentration (IC(50); <10 μg/mL). Various ACEI peptides derived from β-casein [(f(193-205), f(193-207), and f(193-209)] and α(S1)-casein [f(1-15), f(1-22), f(14-23), and f(24-34)] were found. The Mexican Fresco cheese manufactured with specific LAB strains produced peptides with potential antihypertensive activity.

  13. Angiotensin converting enzyme I/D polymorphism and sarcoidosis risk.

    PubMed

    Yang, H; Mo, T; Nie, W; Li, B

    2016-01-15

    This meta-analysis investigates the associations of angiotensin-converting enzyme (ACE) polymorphism and risk of sarcoidosis. Two reviewers independently searched three databases including PubMed, EMBASE, and Cochrane database to identify published studies. Full texts of the selected studies were accessed and related data was extracted using a standardized data extraction form. A total of 18 studies contained a total of 1626 patients with sarcoidosis in case group and 2465 healthy controls in control group. Results of the current meta-analysis revealed that ACE DD genotype was associated with a significantly increased risk of sarcoidosis (OR=1.21; 95% CI, 1.06-1.38; I2=48%). In the race subgroup analysis, Asians with ACE DD genotype showed no significant increased risk of sarcoidosis (OR=1.37; 95% CI, 0.94-1.99; I2=78%). Caucasians with ACE DD genotype had an increased sarcoidosis risk (OR=1.16; 95% CI, 1.01-1.36; I2=24%). Our meta-analysis indicated that the ACE DD genotype correlated with an increased risk of sarcoidosis.

  14. Angiotensin-converting enzyme 2 in lung diseases.

    PubMed

    Kuba, Keiji; Imai, Yumiko; Penninger, Josef M

    2006-06-01

    The renin-angiotensin system (RAS) plays a key role in maintaining blood pressure homeostasis, as well as fluid and salt balance. Angiotensin II, a key effector peptide of the system, causes vasoconstriction and exerts multiple biological functions. Angiotensin-converting enzyme (ACE) plays a central role in generating angiotensin II from angiotensin I, and capillary blood vessels in the lung are one of the major sites of ACE expression and angiotensin II production in the human body. The RAS has been implicated in the pathogenesis of pulmonary hypertension and pulmonary fibrosis, both commonly seen in chronic lung diseases such as chronic obstructive lung disease. Recent studies indicate that the RAS also plays a critical role in acute lung diseases, especially acute respiratory distress syndrome (ARDS). ACE2, a close homologue of ACE, functions as a negative regulator of the angiotensin system and was identified as a key receptor for SARS (severe acute respiratory syndrome) coronavirus infections. In the lung, ACE2 protects against acute lung injury in several animal models of ARDS. Thus, the RAS appears to play a critical role in the pathogenesis of acute lung injury. Indeed, increasing ACE2 activity might be a novel approach for the treatment of acute lung failure in several diseases.

  15. Angiotensin-converting enzyme inhibitor-induced angioedema.

    PubMed

    Bezalel, Shira; Mahlab-Guri, Keren; Asher, Ilan; Werner, Ben; Sthoeger, Zev Moshe

    2015-02-01

    Angiotensin-converting enzyme inhibitors (ACE-I) are widely used, effective, and well-tolerated antihypertensive agents. The mechanisms by which those agents act can cause side effects such as decreased blood pressure, hyperkalemia, and impaired renal function. ACE-I can induce cough in 5%-35% and angioedema in up to 0.7% of treated patients. Because cough and angioedema are considered class adverse effects, switching treatment to other ACE-I agents is not recommended. Angioedema due to ACE-I has a low fatality rate, although deaths have been reported when the angioedema involves the airways. Here, we review the role of bradykinin in the development of angioedema in patients treated with ACE-I, as well as the incidence, risk factors, clinical presentation, and available treatments for ACE-I-induced angioedema. We also discuss the risk for recurrence of angioedema after switching from ACE-I to angiotensin receptor blockers treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography

    SciTech Connect

    Sakaguchi, K.; Chai, S.Y.; Jackson, B.; Johnston, C.I.; Mendelsohn, F.A.

    1988-03-01

    Inhibition of angiotensin converting enzyme (ACE) in serum and tissues of rats was studied after administration of lisinopril, an ACE inhibitor. Tissue ACE was assessed by quantitative in vitro autoradiography using the ACE inhibitor (/sup 125/I)351A, as a ligand, and serum ACE was measured by a fluorimetric method. Following oral administration of lisinopril (10 mg/kg), serum ACE activity was acutely reduced but recovered gradually over 24 hours. Four hours after lisinopril administration, ACE activity was markedly inhibited in kidney (11% of control level), adrenal (8%), duodenum (8%), and lung (33%; p less than 0.05). In contrast, ACE in testis was little altered by lisinopril (96%). In brain, ACE activity was markedly reduced 4 hours after lisinopril administration in the circumventricular organs, including the subfornical organ (16-22%) and organum vasculosum of the lamina terminalis (7%; p less than 0.05). In other areas of the brain, including the choroid plexus and caudate putamen, ACE activity was unchanged. Twenty-four hours after administration, ACE activity in peripheral tissues and the circumventricular organs of the brain had only partially recovered toward control levels, as it was still below 50% of control activity levels. These results establish that lisinopril has differential effects on inhibiting ACE in different tissues and suggest that the prolonged tissue ACE inhibition after a single oral dose of lisinopril may reflect targets involved in the hypotensive action of ACE inhibitors.

  17. Modulation of angiotensin-converting enzyme by nitric oxide

    PubMed Central

    Ackermann, A; Fernández-Alfonso, M S; Sánchez de Rojas, R; Ortega, T; Paul, M; González, C

    1998-01-01

    The aim of the present study was to determine the effect of nitric oxide (NO) on angiotensin-converting enzyme (ACE) activity.A biochemical study was performed in order to analyse the effect of the NO-donors, SIN-1 and diethylamine/NO (DEA/NO), and of an aqueous solution of nitric oxide on the ACE activity in plasma from 3-month old male Sprague-Dawley rats and on ACE purified from rabbit lung. SIN-1 significantly inhibited the activity of both enzymes in a concentration-dependent way between 1 and 100 μM. DEA/NO inhibited the activity of purified ACE from 0.1 μM to 10 μM and plasma ACE, with a lower potency, between 1 and 100 μM. An aqueous solution of NO (100 and 150 μM) also inhibited significantly the activity of both enzymes. Lineweaver-Burk plots indicated an apparent competitive inhibition of Hip-His-Leu hydrolysis by NO-donors.Modulation of ACE activity by NO was also assessed in the rat carotid artery by comparing contractions elicited by angiotensin I (AI) and AII. Concentration-response curves to both peptides were performed in arteries with endothelium in the presence of the guanylyl cyclase inhibitor, ODQ (10 μM), and the inhibitor of NO formation, L-NAME (0.1 mM). NO, which is still released from endothelium in the presence of 10 μM ODQ, elicited a significant inhibition of AI contractions at low concentrations (1 and 5 nM). In the absence of endothelium, 1 μM SIN-1 plus 10 μM ODQ, as well as 10 μM DEA/NO plus 10 μM ODQ induced a significant inhibition on AI-induced contractions at 1 and 5 nM and at 1–100 nM, respectively.In conclusion, we demonstrated that (i) NO and NO-releasing compounds inhibit ACE activity in a concentration-dependent and competitive way and that (ii) NO release from endothelium physiologically reduces conversion of AI to AII. PMID:9641545

  18. Properties of soluble and particulate angiotensin-converting enzymes of rabbit lung, induced macrophage and serum.

    PubMed

    Friedland, J; Silverstein, E

    1983-01-01

    Rabbit serum, lung and corticosteroid-induced macrophage angiotensin-converting enzymes were compared with respect to migration on polyacrylamide-gel electrophoresis, sucrose gradient centrifugation and Km. Cellular particulate enzymes solubilized by nonidet P40 had approximately half the electrophoretic mobility of soluble enzymes and a similar Km (1.2 mM). Trypsin treatment of nonidet P40 solubilized particulate enzyme converted its electrophoretic mobility to that of soluble enzyme, and rendered it non-aggregating in sucrose gradients lacking detergent, similar to soluble enzyme. Approximate molecular weights by sucrose gradient centrifugation were similar for all enzymes (135,000-158,000). The data suggest that lung and macrophage enzymes are similar and that cellular particulate enzyme may be convertible to soluble enzyme.

  19. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia.

    PubMed Central

    Stalcup, S A; Lipset, J S; Woan, J M; Leuenberger, P; Mellins, R B

    1979-01-01

    Endothelial cells in tissue culture degrade bradykinin and convert angiotensin I to angiotensin II. These are both functions of a single dipeptidyl hydrolase, angiotensin converting enzyme. Monolayer cultures were prepared from human, rabbit, pig, and calf vessels. Angiotensin converting enzyme activity was assessed by adding either bradykinin or angiotensin I to the cells in culture flasks, and measuring residual peptide over time by radioimmunoassay. Peptide degradation was inhibited by the specific converting enzyme inhibitor, SQ 20881. The flasks were equilibrated with varying hypoxic gas mixtures: hypoxia rapidly (less than 2 min) decreased enzyme activity and room air restored it as rapidly. The extent to which activity was reduced was a direct function of PO2 (r = 0.93, P less than 0.001), and there was no enzyme activity below a PO2 of 30 mm Hg. Four preparations were studied with respect to decrease in enzyme activity by hypoxia: (a) intact cells in monolayer, (b) sonicated cells, (c) sonicated cells from which converting enzyme was partially dissolved by a detergent, and (d) purified converting enzyme. Hypoxia had progressively less of an inhibiting effect on the enzyme activity of the preparations as the degree of cell integrity decreased. Hypoxia inhibits angiotensin converting enzyme activity in cultured endothelial cells, but the effect of hypoxia is not on the enzyme per se, but appears to be a unique characteristic of the endothelial cell. Images PMID:221532

  20. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia.

    PubMed

    Stalcup, S A; Lipset, J S; Woan, J M; Leuenberger, P; Mellins, R B

    1979-05-01

    Endothelial cells in tissue culture degrade bradykinin and convert angiotensin I to angiotensin II. These are both functions of a single dipeptidyl hydrolase, angiotensin converting enzyme. Monolayer cultures were prepared from human, rabbit, pig, and calf vessels. Angiotensin converting enzyme activity was assessed by adding either bradykinin or angiotensin I to the cells in culture flasks, and measuring residual peptide over time by radioimmunoassay. Peptide degradation was inhibited by the specific converting enzyme inhibitor, SQ 20881. The flasks were equilibrated with varying hypoxic gas mixtures: hypoxia rapidly (less than 2 min) decreased enzyme activity and room air restored it as rapidly. The extent to which activity was reduced was a direct function of PO2 (r = 0.93, P less than 0.001), and there was no enzyme activity below a PO2 of 30 mm Hg. Four preparations were studied with respect to decrease in enzyme activity by hypoxia: (a) intact cells in monolayer, (b) sonicated cells, (c) sonicated cells from which converting enzyme was partially dissolved by a detergent, and (d) purified converting enzyme. Hypoxia had progressively less of an inhibiting effect on the enzyme activity of the preparations as the degree of cell integrity decreased. Hypoxia inhibits angiotensin converting enzyme activity in cultured endothelial cells, but the effect of hypoxia is not on the enzyme per se, but appears to be a unique characteristic of the endothelial cell.

  1. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme.

    PubMed

    Eckman, Elizabeth A; Adams, Stephanie K; Troendle, Frederick J; Stodola, Becky A; Kahn, Murad A; Fauq, Abdul H; Xiao, Hong D; Bernstein, Kenneth E; Eckman, Christopher B

    2006-10-13

    The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.

  2. Antihypertensive efficacy of angiotensin converting enzyme inhibition and aspirin counteraction.

    PubMed

    Guazzi, M D; Campodonico, J; Celeste, F; Guazzi, M; Santambrogio, G; Rossi, M; Trabattoni, D; Alimento, M

    1998-01-01

    Blockade of bradykinin breakdown and enhancement of prostaglandin release probably participate in the antihypertensive activity of angiotensin converting enzyme (ACE) inhibitors. Cyclooxygenase blockers may attenuate the efficacy of ACE inhibitors by interfering with prostaglandin synthesis, and patients taking aspirin may not benefit from ACE inhibition. This study was designed to evaluate the incidence of the counteractive phenomenon and to define minimal aspirin dosage that causes an antagonistic effect. These were 26 patients with mild to moderate hypertension (group 1) and 26 patients with severe untreated primary hypertension (group 2). Enalapril (20 mg twice a day) was used as a single drug in group 1 and was added to the combination of long-acting nifedipine (30 mg/day) and atenolol (50 mg/day) in group 2. Aspirin was tested at doses of 100 and 300 mg/day, and an attenuation of more than 20% of the mean blood pressure decrease produced by enalapril was the criteria that defined antagonism. The 100 mg dose was ineffective. However, 300 mg aspirin had an antagonistic effect in 57% of patients in group 1 and 50% of patients in group 2: mean arterial pressure was lowered by 63% and 91% less, respectively. Results were independent of the drug administration order. In "responders," aspirin significantly attenuated the renin rise associated with ACE inhibition. These findings suggest that a number of ACE-inhibited patients are susceptible to 300 mg/day aspirin, regardless of hypertension severity. Antagonism may be mediated through prostaglandin inhibition according to predominance, in an individual patient, of prostaglandin activation (also as a renin secretory stimulus) or angiotensin blockade by enalapril.

  3. Hepatocyte Growth Factor Regulates Angiotensin Converting Enzyme Expression*

    PubMed Central

    Day, Regina M.; Thiel, Gerald; Lum, Julie; Chévere, Rubén D.; Yang, Yongzhen; Stevens, Joanne; Sibert, Laura; Fanburg, Barry L.

    2008-01-01

    Hepatocyte growth factor (HGF) is a mitogen, morphogen, and motogen that functions in tissue healing and acts as an anti-fibrotic factor. The mechanism for this is not well understood. Recent studies implicate somatic angiotensin-converting enzyme (ACE) in fibrosis. We examined the effects of HGF on ACE expression in bovine pulmonary artery endothelial cells (BPAEC). Short term treatment of BPAEC with HGF transiently increased both ACE mRNA (3 h) and activity (24 h), as determined by ACE protease assays and reverse transcription-PCR. Incubation of BPAEC with HGF for longer periods suppressed ACE mRNA (6 h) and activity (72 h). In contrast, phorbol ester (PMA) treatment produced sustained increase in ACE mRNA and activity. We examined the short term molecular effects of HGF on ACE using PMA for comparison. HGF and PMA increased transcription from a luciferase reporter with the core ACE promoter, which contains a composite binding site for SP1/3 and Egr-1. Immunocytochemistry and electrophoretic mobility shift assay showed that both HGF and PMA increased Egr-1 binding. HGF also increased SP3 binding, as measured by EMSA. However, HGF and PMA increased the cellular activity of only Egr-1, not SP3, as measured by luciferase reporter assays. Deletion of the Egr-1 site in the reporter construct completely abrogated HGF-induced transcription but only ~50% of PMA-induced activity. Expression of dominant negative Egr-1 and SP3 blocked up-regulation of the ACE promoter by HGF but only reduced up-regulation by PMA. These results show that HGF transiently increases gene transcription of ACE via activation of Egr-1, whereas PMA regulation involves Egr-1 and additional factor(s). PMID:14679188

  4. Angiotensin converting enzyme gene polymorphism in familial hypertrophic cardiomyopathy patients

    SciTech Connect

    Yu, B; Peric, S.; Ross, D.

    1994-09-01

    An insertion/deletion (I/D) polymorphism of the angiotensin I converting enzyme (ACE) gene is a useful predictor of human plasma ACE levels. ACE levels tend to be lowest in subjects with ACE genotype DD and intermediate in subjects with ACE genotype ID. Angiotensin II (Ang II) as a product of ACE is a cardiac growth factor and produces a marked hypertrophy of the chick myocyte in cell culture. Rat experiments also suggest that a small dose of ACE inhibitor that does not affect the afterload results in prevention or regression of cardiac hypertrophy. In order to study the relationship of ACE and the severity of hypertrophy, the ACE genotype has been determined in 28 patients with a clinical diagnosis of familial hypertrophic cardiomyopathy (FHC) and 51 normal subjects. The respective frequencies of I and D alleles were: 0.52 and 0.48 (in FHC patients) and 0.44 and 0.56 (in the normal controls). There was no significant difference in the allele frequencies between FHC and normal subjects ({chi}{sup 2}=0.023, p>0.05). The II, ID, and DD genotypes were present in 7, 15, and 6 FHC patients, respectively. The averages of maximal thickness of the interventricular septum measured by echocardiography or at autopsy were 18 {plus_minus}3, 19{plus_minus}4, and 19{plus_minus}3 mm in II, ID and DD genotypes, respectively. The ACE gene polymorphism did not correlate with the severity of left ventricular hypertrophy in FHC patients (r{sub s}=0.231, p>0.05). These results do not necessarily exclude the possible effect of Ang II on the hypertrophy since the latter may be produced through the action of chymase in the human ventricles. However, ACE gene polymorphism is not a useful predictor of the severity of myocardial hypertrophy in FHC patients.

  5. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  6. Angiotensin-Converting Enzyme Inhibitors and Active Tuberculosis

    PubMed Central

    Wu, Jiunn-Yih; Lee, Meng-Tse Gabriel; Lee, Si-Huei; Lee, Shih-Hao; Tsai, Yi-Wen; Hsu, Shou-Chien; Chang, Shy-Shin; Lee, Chien-Chang

    2016-01-01

    Abstract Numerous epidemiological data suggest that the use of angiotensin-converting enzyme inhibitors (ACEis) can improve the clinical outcomes of pneumonia. Tuberculosis (TB) is an airborne bacteria like pneumonia, and we aimed to find out whether the use of ACEis can decrease the risk of active TB. We conducted a nested case–control analysis by using a 1 million longitudinally followed cohort, from Taiwan national health insurance research database. The rate ratios (RRs) for TB were estimated by conditional logistic regression, and adjusted using a TB-specific disease risk score (DRS) with 71 TB-related covariates. From January, 1997 to December, 2011, a total of 75,536 users of ACEis, and 7720 cases of new active TB were identified. Current use (DRS adjusted RR, 0.87 [95% CI, 0.78–0.97]), but not recent and past use of ACEis, was associated with a decrease in risk of active TB. Interestingly, it was found that chronic use (>90 days) of ACEis was associated with a further decrease in the risk of TB (aRR, 0.74, [95% CI, 0.66–0.83]). There was also a duration response effect, correlating decrease in TB risk with longer duration of ACEis use. The decrease in TB risk was also consistent across all patient subgroups (age, sex, heart failure, cerebrovascular diseases, myocardial infraction, renal diseases, and diabetes) and patients receiving other cardiovascular medicine. In this large population-based study, we found that subjects with recent and chronic use of ACEis were associated with decrease in TB risk. PMID:27175655

  7. Modulation of cutaneous inflammation by angiotensin-converting enzyme.

    PubMed

    Scholzen, Thomas E; Ständer, Sonja; Riemann, Helge; Brzoska, Thomas; Luger, Thomas A

    2003-04-01

    Cutaneous neurogenic inflammation is a complex biological response of the host immune system to noxious stimuli. Present evidence suggests that zinc metalloproteases may play an important role in the regulation of neurogenic inflammation by controlling the local availability of neuropeptides, such as substance P (SP), that are capable of initiating or amplifying cutaneous inflammation after release from sensory nerves. To address the hypothesis that the dipeptidyl carboxypeptidase angiotensin-converting enzyme (ACE) is capable of modulating skin inflammation, we have analyzed murine allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD) using wild-type C57BL/6J (ACE(+/+)) or genetically engineered mice with a heterozygous deletion of somatic ACE (ACE(+/-)). In 2,4-dinitro-1-fluorobenzene-sensitized ACE(+/-) mice, ACD was significantly augmented in comparison to ACE(+/+) controls as determined by the degree of ear swelling after exposure to hapten. Likewise, systemic treatment of ACE(+/+) mice with the ACE inhibitor captopril before sensitization or elicitation of ACD significantly augmented the ACD response. In contrast, local damage and neuropeptide depletion of sensory nerves following capsaicin, injection of a bradykinin B(2), or a SP receptor antagonist before sensitization significantly inhibited the augmented effector phase of ACD in mice with functionally absent ACE. However, in contrast to ACD, the response to the irritant croton oil was not significantly altered in ACE(+/-) compared with ACE(+/+) mice. Thus, ACE by degrading bradykinin and SP significantly controls cutaneous inflammatory responses to allergens but not to irritants, which may explain the frequently observed exacerbation of inflammatory skin disease in patients under medication with ACE inhibitors.

  8. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury.

    PubMed

    Rey-Parra, G J; Vadivel, A; Coltan, L; Hall, A; Eaton, F; Schuster, M; Loibner, H; Penninger, J M; Kassiri, Z; Oudit, G Y; Thébaud, B

    2012-06-01

    Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin-angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-generated Angiotensin II contributes to lung injury. ACE2, a recently discovered ACE homologue, acts as a negative regulator of the RAS and counterbalances the function of ACE. We hypothesized that ACE2 prevents Bleomycin (BLM)-induced lung injury. Fourteen to 16-week-old ACE2 knockout mice-male (ACE2(-/y)) and female (ACE2(-/-))-and age-matched wild-type (WT) male mice received intratracheal BLM (1.5U/kg). Male ACE2(-/y) BLM injured mice exhibited poorer exercise capacity, worse lung function and exacerbated lung fibrosis and collagen deposition compared with WT. These changes were associated with increased expression of the profibrotic genes α-smooth muscle actin (α-SMA) and Transforming Growth Factor ß1. Compared with ACE2(-/y) exposed to BLM, ACE2(-/-) exhibited better lung function and architecture and decreased collagen deposition. Treatment with intraperitoneal recombinant human (rh) ACE2 (2 mg/kg) for 21 days improved survival, exercise capacity, and lung function and decreased lung inflammation and fibrosis in male BLM-WT mice. Female BLM WT mice had mild fibrosis and displayed a possible compensatory upregulation of the AT2 receptor. We conclude that ACE2 gene deletion worsens BLM-induced lung injury and more so in males than females. Conversely, ACE2 protects against BLM-induced fibrosis. rhACE2 may have therapeutic potential to attenuate respiratory morbidity in ALI/ARDS.

  9. Enthalpy of captopril-angiotensin I-converting enzyme binding.

    PubMed

    Ortiz-Salmerón, E; Barón, C; García-Fuentes, L

    1998-09-18

    High-sensitivity titration calorimetry is used to measure changes in enthalpy, heat capacity and protonation for the binding of captopril to the angiotensin I-converting enzyme (ACE; EC 3.4.15.1). The affinity of ACE to captopril is high and changes slightly with the pH, because the number of protons linked to binding is low. The determination of the enthalpy change at different pH values suggests that the protonated group in the captopril-ACE complex exhibits a heat protonation of approximately -30 kJ/mol. This value agrees with the protonation of an imidazole group. The residues which may become protonated in the complex could be two histidines existing in two active sites, which are joined to the amino acids coordinated to Zn2+. Calorimetric measurements indicate that captopril binds to two sites in the monomer of ACE, this binding being enthalpically unfavorable and being dominated by a large positive entropy change. Thus, binding is favored by both electrostatic and hydrophobic interactions. The temperature dependence of the free energy of binding deltaG degrees is weak because of the enthalpy-entropy compensation caused by a large heat capacity change, deltaCp =-4.3+/-0.1 kJ/K/mol of monomeric ACE. The strong favorable binding entropy and the negative deltaCp indicate both a large contribution to binding due to hydrophobic effects, which seem to originate from dehydration of the ligand-protein interface, and slight conformational changes in the vicinity of the active sites.

  10. Bradykinin and angiotensin-converting enzyme inhibition in cardioprotection

    PubMed Central

    Jancso, G; Jaberansari, MT; Gasz, B; Szanto, Z; Cserepes, B; Röth, E

    2004-01-01

    OBJECTIVES: To show that angiotensin-converting enzyme (ACE) inhibition potentiates subthreshold ischemic preconditioning (IPC) via the elevation of bradykinin activity, leading to a fully delayed cardioprotective response. METHODS: On day 1 of the experiment, pigs were subjected to sham (group 1, controls) or IPC protocols. In groups 2 and 3, 4×5 min and 2×2 min of IPC, respectively, were elicited by occluding the left anterior descending coronary artery with percutaneous transluminal coronary angioplasty inflatable balloon catheter. Group 4 was subjected to the ACE inhibitor perindoprilate only. In group 5, the pigs were pretreated with perindoprilate (0.06 mg/kg) and then subjected to 2×2 min IPC. In group 6, intracoronary HOE 140 (a selective bradykinin B2 receptor antagonist) was added before the perindoprilateaugmented subthreshold (2×2 min) PC stimulus. On the second day, all animals underwent 40 min left anterior descending coronary artery ligation and 3 h reperfusion, followed by infarct size analysis using triphenyl tetrazolium chloride staining. RESULTS: The rates of infarct size and risk zone were the following in the experimental groups: group 1, 42.8%; group 2,19.5% (P<0.05); group 3, ischemia/reperfusion (I/R) 33.4%; group 4, I/R 18.4% (P<0.05); group 5, I/R 31.2%; and group 6, I/R 36.3%. A significant increase of nuclear factor kappa B activation in groups 2 and 4 was seen. CONCLUSIONS: Results confirm that ACE inhibitors do not give total pharmacological IPC, but they enhance the induction effect of small ischemic insults, which raises the ischemic tolerance of myocardium. It was determined that enhanced bradykinin activity leads to downstream nuclear factor kappa B activation in this model. PMID:19641692

  11. Molecular characterization of human and bovine endothelin converting enzyme (ECE-1).

    PubMed

    Schmidt, M; Kröger, B; Jacob, E; Seulberger, H; Subkowski, T; Otter, R; Meyer, T; Schmalzing, G; Hillen, H

    1994-12-19

    A membrane-bound protease activity that specifically converts Big endothelin-1 has been purified from bovine endothelial cells (FBHE). The enzyme was cleaved with trypsin and the peptide sequencing analysis confirmed it to be a zinc chelating metalloprotease containing the typical HEXXH (HELTH) motif. RT-PCR and cDNA screens were employed to isolate the complete cDNAs of the bovine and human enzymes. This human metalloprotease was expressed heterologously in cell culture and oocytes. The catalytic activity of the recombinant enzyme is the same as that determined for the natural enzyme. The data suggest that the characterized enzyme represents the functional human endothelin converting enzyme ECE-1.

  12. Alterations in Circulatory and Renal Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 in Fetal Programmed Hypertension

    PubMed Central

    Shaltout, Hossam A.; Figueroa, Jorge P.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.

    2009-01-01

    Antenatal betamethasone treatment is a widely accepted therapy to accelerate lung development and improve survival in preterm infants. However, there are reports that infants who receive antenatal glucocorticoids exhibit higher systolic blood pressure in their early adolescent years. We have developed an experimental model of programming whereby the offspring of pregnant sheep administered clinically relevant doses of betamethasone exhibit elevated blood pressure. We tested the hypothesis as to whether alterations in angiotensin-converting enzyme (ACE), ACE2, and neprilysin in serum, urine, and proximal tubules are associated with this increase in mean arterial pressure. Male sheep were administered betamethasone (2 doses of 0.17 mg/kg, 24 hours apart) or vehicle at the 80th day of gestation and delivered at term. Sheep were instrumented at adulthood (1.8 years) for direct conscious recording of mean arterial pressure. Serum and urine were collected and proximal tubules isolated from the renal cortex. Betamethasone-treated animals had elevated mean arterial pressure (97±3 versus 83±2 mm Hg; P<0.05) and a 25% increase in serum ACE activity (48.4±7.0 versus 36.0±2.7 fmol/mL per minute) but a 40% reduction in serum ACE2 activity (18.8±1.2 versus 31.4±4.4 fmol/mL per minute). In isolated proximal tubules, ACE2 activity and expression were 50% lower in the treated sheep with no significant change in ACE or neprilysin activities. We conclude that antenatal steroid treatment results in the chronic alteration of ACE and ACE2 in the circulatory and tubular compartments, which may contribute to the higher blood pressure in this model of fetal programming-induced hypertension. PMID:19047579

  13. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span

    PubMed Central

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-01-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabdtitis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  14. Serum angiotensin-converting enzyme activity in patients with endemic nephropathy.

    PubMed

    Huskić, J; Kulenović, H; Culo, F

    1996-01-01

    Serum angiotensin-converting enzyme was measured in 60 patients with endemic nephropathy and in 30 healthy individuals. According to the arterial blood pressure, the patients with endemic nephropathy were further divided into groups with arterial hypertension (n = 30) and without arterial hypertension (n = 30). The activity of angiotensin-converting enzyme was determined by a spectrophotometric method using hippuryl-l-histidyl-l-leucine as a substrate. The serum activity of angiotensin-converting enzyme was significantly increased in the patients with endemic nephropathy (28.51 +/- 1.64 U/l) as compared with healthy individuals (20.83 +/- 1.33 U/l). The level of the enzyme was further increased if the endemic nephropathy was accompanied by arterial hypertension (37.09 +/- 1.45 U/l). The possible mechanisms of the increase in the angiotensin-converting enzyme activity are discussed.

  15. ACTIVATION OF THE NEUROPROTECTIVE ANGIOTENSIN CONVERTING ENZYME 2 IN RAT ISCHEMIC STROKE

    PubMed Central

    Bennion, Douglas M.; Haltigan, Emily; Irwin, Alexander J.; Donnangelo, Lauren L.; Regenhardt, Robert W.; Pioquinto, David; Purich, Daniel L.; Sumners, Colin

    2015-01-01

    The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas axis represents a promising target for inducing stroke neuroprotection. Here, explored stroke-induced changes in expression and activity of endogenous angiotensin converting enzyme 2 and other system components in Sprague Dawley rats. To evaluate the clinical feasibility of treatments that target this axis and that may act in synergy with stroke-induced changes, we also tested the neuroprotective effects of diminazene aceturate, an angiotensin converting enzyme 2 activator, administered systemically post-stroke. Amongst rats that underwent experimental endothelin-1-induced ischemic stroke, angiotensin converting enzyme 2 activity in the cerebral cortex and striatum increased in the 24 hours after stroke. Serum angiotensin converting enzyme 2 activity was decreased within 4h post stroke, but rebounded to reach higher than baseline levels 3d post-stroke. Treatment following stroke with systemically-applied diminazene resulted in decreased infarct volume and improved neurological function without apparent increases in cerebral blood flow. Central infusion of A-779, a Mas receptor antagonist, resulted in larger infarct volumes in diminazene-treated rats, and central infusion of the angiotensin converting enzyme 2 inhibitor MLN-4760 alone worsened neurological function. The dynamic alterations of the protective angiotensin converting enzyme 2 pathway following stroke suggest that it may be a favorable therapeutic target. Indeed, significant neuroprotection resulted from post-stroke angiotensin converting enzyme 2 activation, likely via Mas signaling in a blood flow-independent manner. Our findings suggest that stroke therapeutics that target the angiotensin converting enzyme 2/angiotensin-(1-7)/Mas axis may interact cooperatively with endogenous stroke-induced changes, lending promise to their further study as neuroprotective agents. PMID:25941346

  16. [Effects of hydroxyl radicals on purified angiotensin I converting enzyme].

    PubMed

    Michel, B; Nirina, L B; Grima, M; Ingert, C; Coquard, C; Barthelmebs, M; Imbs, J L

    1998-08-01

    Somatic angiotensin-converting enzyme (ACE) is a protein which contains two similar domains (N and C), each possessing a functional active site. The relationship between ACE, its natural substrates and oxygen free radicals is starting to be explored. On one hand, superoxide anions production is induced by angiotensin II and on the other hand, activated polynuclear neutrophils, through free radicals generation, alter endothelial ACE activity. In this study, we examined the impact of hydroxyl radicals (.OH) on purified ACE. .OH were produced using a generator: 2,2'-azo-bis 2-amidinopropane (GRH) provided by Lara-Spiral (Fr). GRH (3 mM), in a time-dependent fashion, inhibited ACE activity. When ACE was co-incubated for 4 h with GRH, its activity decreased by 70%. Addition of dimethylthiourea (DMTU: 0.03 to 1 mM) or mannitol + methionine (20/10 mM), two sets of .OH scavengers, produced a dose-dependent protection on ACE activity. To examine whether oxidation of thiol groups in the ACE molecule could be involved in the action of GRH, the effects of thiol reducing agents: mercaptoethanol and dithiotreitol (DTT) were investigated. These compounds produced a dose-dependent and significant protection; with 100% protection at 0.2 and 0.3 mM for mercaptoethanol and at 0.1 mM for DTT. The hydrolysis of two natural and domain-specific substrates were also explored. The hydrolysis of angiotensin I preferentially cleaved by the C domain was significantly (p < 0.01) inhibited by 57, 58 and 69% in contact with 0.3, 1 and 3 mM GRH [in nmol angio II formed/min/nmol of ACE, n = 4; 35.9 +/- 0.6 (control), 15.5 +/- 2.8 (GRH : 0.3 mM), 15.1 +/- 0.5 (1), 10.9 +/- 0.6 (3)]. The hydrolysis of the hemoregulatory peptide (hp), preferential substrate for the N domain was not affected by GRH at 0.3 mM and inhibited by 28% (not significant) by 1 mM GRH [in nmol ph hydrolized/min/nmol ACE, n = 4; 12.6 +/- 1.9 (control), 14.9 (GRH : 0.3 mM), 8.3 +/- 4.0 (1). These results demonstrated that .OH

  17. Role of angiotensin-converting enzyme inhibitor, lisinopril, on spermatozoal functions in rats.

    PubMed

    Saha, L; Garg, S K; Bhargava, V K; Mazumdar, S

    2000-04-01

    Angiotensin-converting enzyme is present in the male reproductive system but its role in the physiology of reproduction is not known. To see the effect of angiotensin-converting enzyme on spermatozoal functions, lisinopril, an angiotensin-converting enzyme inhibitor, was administered orally using two different doses (10 and 20 mg/kg/day) to rats. Both short-term (2 weeks) and long-term (6 weeks) effects of the drug were observed. Lisinopril treatment resulted in a marked decrease in sperm density, sperm motility and zona pellucida penetration. Acrosome reaction by spermatozoa obtained from drug-treated animals was significantly lower when compared with spermatozoa from normal animals.

  18. Local inhibition of converting enzyme and vascular responses to angiotensin and bradykinin in the human forearm.

    PubMed Central

    Benjamin, N; Cockcroft, J R; Collier, J G; Dollery, C T; Ritter, J M; Webb, D J

    1989-01-01

    1. The function of angiotensin converting enzyme was investigated in twenty-four healthy men. Forearm blood flow was measured under basal conditions and during administration of enalaprilat (a converting enzyme inhibitor) and/or peptide substrates of converting enzyme into the left brachial artery. Blood flow was compared in the two arms. 2. Enalaprilat had no effect on basal blood flow. The concentration of enalaprilat in venous blood from the control arm was low, and plasma renin activity was not increased, indicating that systemic inhibition of converting enzyme did not occur. 3. Effects of angiotensin and of bradykinin, administered intra-arterially, were limited to the infused arm. Enalaprilat (13 nmol min-1) inhibited converting enzyme in the infused arm, in which it caused approximately a 100-fold reduction in sensitivity to angiotensin I, while having no effect on the vasoconstriction caused by angiotensin II. Enalaprilat increased vasodilatation caused by bradykinin. 4. Aspirin, an inhibitor of cyclo-oxygenase, did not inhibit vasodilatation caused by bradykinin whether infused alone or with enalaprilat, indicating that these responses are not mediated by prostaglandins. 5. We conclude that under basal conditions neither conversion of angiotensin I to angiotensin II nor degradation of bradykinin determines resistance vessel tone in the human forearm. Converting enzyme may affect vascular tone in situations in which intravascular concentrations of peptides are increased over those present under basal conditions. PMID:2557432

  19. Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes.

    PubMed

    Macours, Nathalie; Poels, Jeroen; Hens, Korneel; Francis, Carmen; Huybrechts, Roger

    2004-01-01

    Angiotensin-converting enzyme, a member of the M2 metalloprotease family, and endothelin-converting enzyme, a member of the M13 family, are key components in the regulation of blood pressure and electrolyte balance in mammals. From this point of view, they serve as important drug targets. Recently, the involvement of these enzymes in the development of Alzheimer's disease was discovered. The existence of homologs of these enzymes in invertebrates indicates that these enzyme systems are highly conserved during evolution. Most invertebrates lack a closed circulatory system, which excludes the need for blood pressure regulators. Therefore, these organisms represent excellent targets for gaining new insights and revealing additional physiological roles of these important enzymes. This chapter reviews the structural and functional aspects of ACE and ECE and will particularly focus on these enzyme homologues in invertebrates.

  20. Outcomes with Angiotensin-converting Enzyme Inhibitors vs Other Antihypertensive Agents in Hypertensive Blacks.

    PubMed

    Bangalore, Sripal; Ogedegbe, Gbenga; Gyamfi, Joyce; Guo, Yu; Roy, Jason; Goldfeld, Keith; Torgersen, Christopher; Capponi, Louis; Phillips, Christopher; Shah, Nirav R

    2015-11-01

    Angiotensin-converting enzyme inhibitors are used widely in the treatment of patients with hypertension. However, their efficacy in hypertensive blacks when compared with other antihypertensive agents is not well established. We performed a cohort study of patients using data from a clinical data warehouse of 434,646 patients from New York City's Health and Hospitals Corporation from January 2004 to December 2009. Patients were divided into the following comparison groups: angiotensin-converting enzyme inhibitors vs calcium channel blockers, angiotensin-converting enzyme inhibitors vs thiazide diuretics, and angiotensin-converting enzyme inhibitors vs β-blockers. The primary outcome was a composite of death, myocardial infarction, and stroke. Secondary outcomes included the individual components and heart failure. In the propensity score-matched angiotensin-converting enzyme inhibitors vs calcium channel blocker comparison cohort (4506 blacks in each group), angiotensin-converting enzyme inhibitors were associated with a higher risk of primary outcome (hazard ratio [HR], 1.45; 95% confidence interval [CI], 1.19-1.77; P = .0003), myocardial infarction (HR, 3.40; 95% CI, 1.25-9.22; P = .02), stroke (HR, 1.82; 95% CI, 1.29-2.57; P = .001), and heart failure (HR, 1.77; 95% CI, 1.30-2.42; P = .0003) when compared with calcium channel blockers. For the angiotensin-converting enzyme inhibitors vs thiazide diuretics comparison (5337 blacks in each group), angiotensin-converting enzyme inhibitors were associated with a higher risk of primary outcome (HR, 1.65; 95% CI, 1.33-2.05; P < .0001), death (HR, 1.35; 95% CI, 1.03-1.76; P = .03), myocardial infarction (HR, 4.00; 95% CI, 1.34-11.96; P = .01), stroke (HR, 1.97; 95% CI, 1.34-2.92; P = .001), and heart failure (HR, 3.00; 95% CI, 1.99-4.54; P < .0001). For the angiotensin-converting enzyme inhibitors vs β-blocker comparison, the outcomes between the groups were not significantly different. In a real-world cohort of

  1. Carbamazepine inhibits angiotensin I-converting enzyme, linking it to the pathogenesis of temporal lobe epilepsy

    PubMed Central

    Almeida, S S; Naffah-Mazzacoratti, M G; Guimarães, P B; Wasinski, F; Pereira, F E G; Canzian, M; Centeno, R S; Carrete, H; Yacubian, E M; Carmona, A K; Vieira, R F F; Nakaie, C R; Sabatini, R A; Perosa, S R; Bacurau, R F P; Gouveia, T L F; Gallo, G; Würtele, M; Cavalheiro, E A; Silva, J A; Pesquero, J B; Araujo, R C

    2012-01-01

    We find that a common mutation that increases angiotensin I-converting enzyme activity occurs with higher frequency in male patients suffering from refractory temporal lobe epilepsy. However, in their brains, the activity of the enzyme is downregulated. As an explanation, we surprisingly find that carbamazepine, commonly used to treat epilepsy, is an inhibitor of the enzyme, thus providing a direct link between epilepsy and the renin–angiotensin and kallikrein–kinin systems. PMID:22832858

  2. Angiotensin-converting enzyme in acute myocardial infarction and angina pectoris.

    PubMed

    Rømer, F K; Kornerup, H J

    1981-06-01

    Serum activity of angiotensin-converting enzyme was measured by serial analysis in 19 patients with acute myocardial infarction and in eight patients with angina pectoris. As a rule no changes in enzyme activity occurred during 6 days observations. However, two patients with infarction exhibited a pronounced fall of enzyme activity which could not be related to clinical events. The analysis seems to have no place in the diagnosis and management of patients with myocardial infarction.

  3. [Arteriosclerosis obliterans. Treatment with angiotensin-converting enzyme inhibitors].

    PubMed

    Orea, A; Valdés, R; Niebla, L; Rivas, R; Camacho, B

    1990-01-01

    We compare the effects of two of the main angiotensin convertase enzyme inhibitors, captopril and enalapril, aiming to evaluate their effects in the arterial circulation performance, micro-circulation, and changes in regional blood flow, assuming their property of lowering the angiotensin II blood levels, a very strong peripheral vasoconstrictor. We studied 22 patients: all of them with hypertension and/or skin ulcerations, dropping out those who had venous. They were evaluated periodically, clinically and with photoelectric plethysmography of lower extremities. To interpret the traces we designed an ideogram which gathered the plethysmographic behavior before and after the treatment. Nearly 80% showed considerable improvement in pain, functional capacity and plethysmographic traces patterns. healing of the ulcerations was achieved in all case. We propose some hypothesis to explain the good effect that we have observed.

  4. Is there any difference between angiotensin converting enzyme inhibitors and angiotensin receptor blockers for heart failure?

    PubMed

    Rain, Carmen; Rada, Gabriel

    2015-07-06

    Angiotensin receptor blockers are usually considered as equivalent to angiotensin converting enzyme inhibitors for patients with heart failure and low-ejection fraction. Some guidelines even recommend the former as first line treatment given their better adverse effects profile. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified four systematic reviews including eight pertinent randomized controlled trials. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded angiotensin receptor blockers and angiotensin converting enzyme inhibitors probably have a similar effect on mortality, and they might be equivalent in reducing hospitalization risk too. Treatment withdrawal due to adverse effects is probably lower with angiotensin receptor blockers than with angiotensin converting enzyme inhibitors.

  5. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point.

    PubMed

    Sica, Domenic A

    2010-04-01

    The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.

  6. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain.

    PubMed

    Lambert, Daniel W; Clarke, Nicola E; Hooper, Nigel M; Turner, Anthony J

    2008-01-23

    Angiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin-angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-alpha converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors.

  7. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders.

    PubMed

    Bahia, Malkeet S; Silakari, Om

    2010-05-01

    Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.

  8. Modulation of converting enzyme activity by hypoxia and its physiological effects.

    PubMed

    Stalcup, S A; Lipset, J S; Mellins, R B

    1980-01-01

    To explore the haemodynamic consequences of the reduction in converting enzyme activity by acute alveolar hypoxia we made sequential haemodynamic observations in seven saline-infused and 12 bradykinin-infused anaesthetized, catheterized dogs. They were ventilated initially with room air and then for 50 minutes with hypoxic gas mixtures. Within two minutes after starting hypoxic ventilation, converting enzyme activity decreased, arterial angiotensin II concentrations dropped, and, in the bradykinin-infused dogs, arterial bradykinin concentrations rose. Both groups of dogs experienced a rise in systemic and pulmonary arterial blood pressure in response to hypoxia, but by different mechanisms. In the saline-infused (control) dogs there was increased systemic (+40%) and pulmonary (+90%) vascular resistance while cardiac output was unchanged or slightly reduced. Bradykinin-infused dogs demonstrated reduced systemic vascular resistance (-40%), no increase in pulmonary vascular resistance and a 100% increase in cardiac output. Return to room air breathing restored converting enzyme activity, releasing high concentrations of angiotensin II. Oxygen tension thus regulates converting enzyme activity and hence the circulating levels of angiotensin II and bradykinin.

  9. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  10. Assessment of 105 Patients with Angiotensin Converting Enzyme-Inhibitor Induced Angioedema

    PubMed Central

    von Buchwald, Christian; Prasad, Sumangali Chandra; Kamaleswaran, Shailajah; Ajgeiy, Kawa Khaled; Authried, Georg; Pallesen, Kristine Appel U.

    2017-01-01

    Objective. To asses a cohort of 105 consecutive patients with angiotensin converting enzyme-inhibitor induced angioedema with regard to demographics, risk factors, family history of angioedema, hospitalization, airway management, outcome, and use of diagnostic codes used for the condition. Study Design. Cohort study. Methods. This was a retrospective cohort study of 105 patients with angiotensin converting enzyme-inhibitor induced angioedema in the period 1995–2014. Results. The cohort consisted of 67 females and 38 males (F : M ratio 1.8), with a mean age of 63 [range 26–86] years. Female gender was associated with a significantly higher risk of angiotensin converting enzyme-inhibitor induced angioedema. 6.7% had a positive family history of angioedema. Diabetes seemed to be a protective factor with regard to angioedema. 95% experienced angioedema of the head and neck. 4.7% needed intubation or tracheostomy. 74 admissions took place during the study period with a total of 143 days spent in the hospital. The diagnosis codes most often used for this condition were “DT783 Quincke's oedema” and “DT78.4 Allergy unspecified”. Complement C1 inhibitor was normal in all tested patients. Conclusion. Female gender predisposes to angiotensin converting enzyme-inhibitor induced angioedema, whereas diabetes seems to be a protective factor. PMID:28286522

  11. Perindopril and ramipril phosphonate analogues as a new class of angiotensin converting enzyme inhibitors.

    PubMed

    Gomez, Catherine; Berteina-Raboin, Sabine; De Nanteuil, Guillaume; Guillaumet, Gérald

    2013-11-15

    A series of phosphonate analogues related to perindopril and ramipril were prepared and tested to estimate their ability to inhibit angiotensin converting enzyme. These new synthesized compounds were active ACE inhibitors with a promising activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  13. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  14. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  16. Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling

    PubMed Central

    de Albuquerque, Felipe Neves; Brandão, Andréa Araujo; da Silva, Dayse Aparecida; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; de Albuquerque, Denilson Campos

    2014-01-01

    Background The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. Objective To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Methods Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). Results The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0

  17. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    PubMed

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  18. Gestational changes in pulmonary converting enzyme activity in the fetal rabbit.

    PubMed

    Stalcup, S A; Pang, L M; Lipset, J S; Odya, C E; Goodfriend, T L; Mellins, R B

    1978-11-01

    Changes in angiotensin-converting enzyme were measured in the lungs of fetal rabbits isolated and perfused in situ at varying ages from 22 days gestation to 7 days of age under controlled conditions of flow, pH, and temperature. Enzyme activity was assessed by infusing bradykinin or angiotensin I in Krebs-Henseleit solution and measuring residual peptide in the effluent by radioimmunoassay. The levels of substrate studied were below those required for enzyme saturation. Lungs of 22 day gestation fetuses removed only one-third of either peptide. The activity at term and in neonatal life resulted in more than 80% peptide removal. The time of the greatest rise in the percent substrate cleared occurs earlier than the time of the greatest increase in lung and body weight. The lower percentage of substrate cleared in early gestation appears to result in part from a limited surface area for enzyme activity in the primitive fetal pulmonary microvascular bed, since morphological studies with fluorescein-tagged anticonverting enzyme antibody demonstrated the presence of enzyme in the lung as early as 17 days of gestation. Electron micrographs of the pulmonary endothelial cell surface reveal that the degree of surface infolding and hence surface area increases with gestation. The higher percentage of substrate cleared in later gestation closely parallels the structural and ultrastructural development of the vascular bed. The presence of converting enzyme in the placenta by the second third of gestation and the large size of the placenta suggest that this organ may be a major locus of converting enzyme activity in the fetus.

  19. [Applications of nitrile converting enzymes in the production of fine chemicals].

    PubMed

    Zheng, Yuguo; Xue, Yaping; Liu, Zhiqiang; Zheng, Renchao; Shen, Yinchu

    2009-12-01

    Nitriles are an important type of synthetic intermediates in the production of fine chemicals because of their easy preparations and versatile transformations. The traditional chemical conversion of nitriles to carboxylic acids and amides is feasible but it requires relatively harsh conditions of heat, acid or alkali. Nitrile converting enzymes (nitrilase, nitrile hydratase and amidase) which are used as biocatalyst for the production of fine chemicals have attracted substantial interest because of their ability to convert readily available nitriles into the corresponding higher value amides or acids under mild conditions with excellent chemo-, regio- and stereo-selectivities. Many nitrile converting enzymes have been explored and widely used for the production of fine chemicals. In this paper, various examples of biocatalytic synthesis of pharmaceuticals and their intermediates, agrochemicals and their intermediates, food and feed additives, and other fine chemicals are presented. In the near future, an increasing number of novel nitrile converting enzymes will be screened and their potential in the production of useful fine chemicals will be further exploited.

  20. Properties and applications of starch-converting enzymes of the alpha-amylase family.

    PubMed

    van der Maarel, Marc J E C; van der Veen, Bart; Uitdehaag, Joost C M; Leemhuis, Hans; Dijkhuizen, L

    2002-03-28

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.

  1. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response

    PubMed Central

    Bernstein, Kenneth E.; Khan, Zakir; Giani, Jorge F.; Zhao, Tuantuan; Eriguchi, Masahiro; Bernstein, Ellen A.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.

    2016-01-01

    Angiotensin-converting enzyme (ACE) converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA). Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response. PMID:27018193

  2. Rediscovering ACE: Novel insights into the many roles of the angiotensin-converting enzyme

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Bernstein, Ellen A.; Janjulia, Tea; Taylor, Brian; Giani, Jorge F.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shi, Peng D.; Fuchs, Sebastien; Bernstein, Kenneth E.

    2013-01-01

    Angiotensin converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation and immunity. PMID:23686164

  3. Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis.

    PubMed

    Ramteke, Pramod W; Maurice, Navodita G; Joseph, Babu; Wadher, Bharat J

    2013-01-01

    Nitriles are organic compounds bearing a − C ≡ N group; they are frequently known to occur naturally in both fauna and flora and are also synthesized chemically. They have wide applicability in the fields of medicine, industry, and environmental monitoring. However, the majority of nitrile compounds are considered to be lethal, mutagenic, and carcinogenic in nature and are known to cause potential health problems such as nausea, bronchial irritation, respiratory distress, convulsions, coma, and skeletal deformities in humans. Nitrile-converting enzymes, which are extracted from microorganisms, are commonly termed nitrilases and have drawn the attention of researchers all over the world to combat the toxicity of nitrile compounds. The present review focuses on the utility of nitrile-converting enzymes, sources, classification, structure, properties, and applications, as well as the future perspective on nitrilases.

  4. LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs.

    PubMed

    Heeb, Norbert V; Wyss, Simon A; Geueke, Birgit; Fleischmann, Thomas; Kohler, Hans-Peter E; Lienemann, Peter

    2014-07-01

    Hexabromocyclododecanes (HBCDs) and hexachlorocyclohexanes (HCHs) are lipophilic, polyhalogenated hydrocarbons with comparable stereochemistry. Bacterial evolution in HCH-contaminated soils resulted in the development of several Spingomonadaceae which express a series of HCH-converting enzymes. We showed that LinB, a haloalkane dehalogenase from Sphingobium indicum B90A, also transforms various HBCDs besides HCHs. Here we present evidence that LinA2, another dehalogenase from S. indicum also converts certain HBCDs to pentabromocyclododecenes (PBCDEs). Racemic mixtures of α-, β-, γ-HBCDs, a mixture of them, and δ-HBCD, a meso form, were exposed to LinA2. Substantial conversion of (-)β-HBCD was observed, but all other stereoisomers were not transformed significantly. The enantiomeric excess (EE) of β-HBCDs increased up to 60% in 32 h, whereas EE values of α- and γ-HBCDs were not affected. Substrate conversion and product formation were described with second-order kinetic models. One major (P1β) and possibly two minor (P2β, P3β) metabolites were detected. Respective mass spectra showed the characteristic isotope pattern of PBCDEs, the HBr elimination products of HBCDs. Michaelis-Menten parameters KM=0.47 ± 0.07 μM and vmax=0.17 ± 0.01 μmoll(-1)h(-1) were deduced from exposure data with varying enzyme/substrate ratios. LinA2 is more substrate specific than LinB, the latter converted all tested HBCDs, LinA2 only one. The widespread HCH pollution favored the selection and evolution of bacteria converting these compounds. We found that LinA2 and LinB, two of these HCH-converting enzymes expressed in S. indicum B90A, also dehalogenate HBCDs to lower brominated compounds, indicating that structural similarities of both classes of compounds are recognized at the level of substrate-protein interactions.

  5. Angiotensin-I converting enzyme inhibitory and antioxidant activities of egg protein hydrolysates produced with gastrointestinal and nongastrointestinal enzymes.

    PubMed

    You, Sun-Jong; Wu, Jianping

    2011-08-01

    Egg is a well-known rich source of bioactive peptides. In this study, egg protein (egg white and egg yolk proteins) hydrolysates were produced with gastrointestinal enzymes (pepsin and pancreatin) or nongastrointestinal enzymes (thermolysin and alcalase), and fractionated by ultrafiltration and cation exchange chromatography. Angiotensin-I converting enzyme (ACE) inhibitory and antioxidant activities, amino acid composition and molecular weight distribution were studied, and the physicochemical properties were related with the bioactivities. Our results showed that egg protein hydrolysates produced with non-GI enzymes (thermolysin and alcalase) showed significantly higher ACE inhibitory activity, whereas similar or even lower antioxidative activities, than those of hydrolysates produced with GI enzymes. ACE-inhibitory activity significantly correlated with the amino acid composition, especially the proportion of positively charged amino acid, whereas antioxidant activities correlated with the proportion of low molecular weight peptides under 500 Da. Understanding the relationship between the bioactivities and physicochemical properties of the hydrolysates/fractions is important to facilitate the development technologies for preparing fractions with improved bioactivities. © 2011 Institute of Food Technologists®

  6. Renal protection in essential hypertension: how do angiotensin-converting enzyme inhibitors compare with calcium antagonists?

    PubMed

    Bauer, J H; Reams, G P

    1990-11-01

    By interrupting the integrity of the systemic and renal renin-angiotensin system, angiotensin-converting enzyme inhibitors have been shown, experimentally, to preferentially reduce postglomerular capillary arteriolar resistance, to reduce glomerular capillary pressure, and to increase the ultrafiltration coefficient. Under normal physiological conditions, angiotensin-converting enzyme inhibitors have little effect on glomerular filtration rate; however, they increase effective renal plasma flow at renal perfusion pressures within the normal autoregulatory range and renal vascular resistance is decreased. In contrast, calcium antagonists have been shown, experimentally, to preferentially reduce preglomerular capillary arteriolar resistance. Their effects on angiotensin II and postglomerular capillary arteriolar resistance (hence, glomerular capillary pressure and the ultrafiltration coefficient) are controversial. Under normal physiological conditions, calcium antagonists increase both glomerular filtration rate and effective renal plasma flow at renal perfusion pressures within the normal autoregulatory range and renal vascular resistance is decreased. In patients with essential hypertension, studies have demonstrated that angiotensin-converting enzyme inhibitors (as predicted) sustain glomerular filtration rate, increase effective renal plasma flow, and decrease renal vascular resistance. However, essential hypertensive patients with impaired glomerular filtration rate may demonstrate marked improvement in both glomerular filtration rate and effective renal plasma flow. Calcium antagonists (as predicted) may increase both glomerular filtration rate and effective renal plasma flow (at high renal perfusion pressures) and may decrease renal vascular resistance. Calcium antagonists may also improve both glomerular filtration rate and effective renal plasma flow in patients with impaired glomerular filtration rate. Long-term clinical trials comparing the renal effects

  7. SALT SENSITIVITY IN RESPONSE TO RENAL INJURY REQUIRES RENAL ANGIOTENSIN-CONVERTING ENZYME

    PubMed Central

    Giani, Jorge F.; Bernstein, Kenneth E.; Janjulia, Tea; Han, Jiyang; Toblli, Jorge E.; Shen, Xiao Z.; Rodriguez-Iturbe, Bernardo; McDonough, Alicia A.; Gonzalez-Villalobos, Romer A.

    2015-01-01

    Recent evidence indicates that salt-sensitive hypertension can result from a subclinical injury that impairs the kidneys’ capacity to properly respond to a high salt diet. However, how this occurs is not well understood. Here, we showed that while previously salt resistant wild-type mice became salt-sensitive after the induction of renal injury with the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); mice lacking renal angiotensin-converting enzyme, exposed to the same insult, did not become hypertensive when faced with a sodium load. This is because the activity of renal angiotensin-converting enzyme plays a critical role in: 1) augmenting the local pool of angiotensin II and, 2) the establishment of the anti-natriuretic state via modulation of glomerular filtration rate and sodium tubular transport. Thus, this study demonstrates that the presence of renal angiotensin-converting enzyme plays a pivotal role in the development of salt sensitivity in response to renal injury. PMID:26150439

  8. Responses to converting-enzyme inhibition and hemorrhage in newborn lambs and adult sheep

    SciTech Connect

    Rose, J.C.; Block, S.M.; Flowe, K.; Morris, M.; South, S.; Sundberg, D.K.; Zimmerman, C.

    1987-02-01

    The authors compared the cardiovascular and hormonal responses to angiotensin converting enzyme inhibition and hemorrhage of 20% of blood volume in chronically instrumented unanesthetized newborn lambs and adult sheep. Administration of the nonsulfhydryl-containing converting-enzyme inhibitor enalapril reduced mean arterial pressure in the newborn but not in the adult animals. Blood pressure fell in both age groups after hemorrhage, and the hemorrhage-induced fall in blood pressure, integrated over the period of hypovolemia, was more pronounced when converting-enzyme inhibition was present in the lambs. This was not observed in the adults. Cardiac output fell following hemorrhage in both age groups, and the fall was greater when enalapril was present in the lambs, but this was not the case in the adults. Hemorrhage increased plasma renin activity in both groups, and enalapril augmented this increase. Plasma concentrations of vasopressin, measured by radioimmunoassay, and catecholamines measured by radio enzymatic assay, increased following hemorrhage within and between groups. Taken together these data suggest that the renin-angiotensin systems plays a more important role in the maintenance of cardiovascular homeostasis in newborn lambs than it does in adult sheep, and catecholamine and vasopressin responses to volume loss can occur in the presence of blockade of the renin-angiotensin system.

  9. Not just angiotensinases: new roles for the angiotensin-converting enzymes.

    PubMed

    Lambert, Daniel W; Clarke, Nicola E; Turner, Anthony J

    2010-01-01

    The renin-angiotensin system (RAS) is a critical regulator of blood pressure and fluid homeostasis. Angiotensin II, the primary bioactive peptide of the RAS, is generated from angiotensin I by angiotensin-converting enzyme (ACE). A homologue of ACE, ACE2, is able to convert angiotensin II to a peptide with opposing effects, angiotensin-(1-7). It is proposed that disturbance of the balance of ACE and ACE2 expression and/or function is important in pathologies in which angiotensin II plays a role. These include cardiovascular and renal disease, lung injury and liver fibrosis. The critical roles of ACE and ACE2 in regulating angiotensin II levels have traditionally focussed attention on their activities as angiotensinases. Recent discoveries, however, have illuminated the roles of these enzymes and of the ACE2 homologue, collectrin, in intracellular trafficking and signalling. This paper reviews the key literature regarding both the catalytic and non-catalytic roles of the angiotensin-converting enzyme gene family.

  10. Meta-analytical association between angiotensin-converting enzyme gene polymorphisms and sarcoidosis risk.

    PubMed

    Zhu, R; Bi, L Q; Kong, H; Tilley, S L; Wang, H; Xie, W P

    2015-04-17

    Previous reports identified an association between sarcoidosis and an insertion/deletion (I/D) polymorphism in angiotensin-converting enzyme. Our meta-analysis of articles published between March 1996 and June 2013 identified studies in the PubMed, EMBASE, and the China National Knowledge Infrastructure databases. We examined whether angiotensin-converting enzyme polymorphisms influence sarcoidosis susceptibility. The strength of the association between I/D polymorphisms and sarcoidosis risk was measured based on the odds ratio and 95% confidence interval. Analysis was based on recessive and dominant models. Ethnic subgroup analysis from 18 articles (1882 cases and 3066 controls) showed that DD homozygote carriers were at a slightly increased risk of sarcoidosis compared with II homozygotes and DI heterozygotes (P = 0.03). Comparison of DD plus DI vs II revealed no significant association with sarcoidosis in group and ethnic subgroup analysis. We found that the I/D polymorphism in the angiotensin-converting enzyme gene was not associated with a major risk of sarcoidosis.

  11. Association between angiotensin-converting enzyme gene polymorphisms and regression of left ventricular hypertrophy in patients treated with angiotensin-converting enzyme inhibitors.

    PubMed

    Kohno, M; Yokokawa, K; Minami, M; Kano, H; Yasunari, K; Hanehira, T; Yoshikawa, J

    1999-05-01

    An insertion/deletion (ID) polymorphism of the angiotensin-converting enzyme (ACE) gene is associated with left ventricular hypertrophy. The present study examined polymorphisms of the ACE gene in patients with essential hypertension and left ventricular hypertrophy who were participants in a long-term trial of therapy with an ACE inhibitor. ACE inhibitor therapy was administered for >2 years to 54 patients with hypertension who had moderate or severe left ventricular hypertrophy. Cardiac dimensions were monitored by echocardiography before the initiation of therapy and after 1 and 2 years of treatment. Serum ACE activity and plasma concentrations of brain natriuretic peptide, a marker for left ventricular hypertrophy, were also monitored. Eighteen patients had the II genotype for the angiotensin-converting enzyme gene, 19 had the ID genotype, and 17 had the DD genotype. Baseline (mean +/- SD) serum ACE activity was significantly greater (P <0.05) in the DD (18 +/- 7 IU/L) group than in the II (7 +/- 4 IU/L) or ID (12 +/- 6 IU/L) groups. ACE inhibitor therapy was effective in controlling blood pressure, and it reduced posterior and septal wall thickness, left ventricular mass index, and plasma brain natriuretic peptide concentration in all three groups. Despite similar blood pressure reductions, after 2 years, mean (+/- SD) regression in posterior wall thickness was significantly less (P <0.05) in the DD group (-9% +/- 5%) than in the ID (-21% +/- 7%) and II (-21% +/- 9%) groups. Similar results were seen for the reductions in brain natriuretic peptide levels. The magnitudes of regression of septal wall thickness and left ventricular mass index during therapy were less in the DD group than the II group (P <0.05). Hypertensive patients with the DD genotype are less likely to have regression of left ventricular hypertrophy when treated with ACE inhibitors than are patients with other ACE genotypes.

  12. Sex-Specific Changes in Renal Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression and Enzyme Activity at Birth and Over the First Year of Life.

    PubMed

    Chen, Kai; Bi, Jianli; Su, Yixin; Chappell, Mark C; Rose, James C

    2016-02-01

    Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) are key enzymes of the renin-angiotensin system. We investigated developmental changes in renal ACE and ACE2 gene expression and activity in both male and female sheep. Three groups of sheep (fetus, newborn, and adult) were used. Renal ACE and ACE2 activities, messenger RNA (mRNA), and protein expression were studied. Renal ACE and ACE2 activities increased at 1 year in males, while there were no changes throughout development in females. Renal ACE and ACE2 mRNA and protein showed no sex differences but increased by 1 year of age. There are sex-related differences in the development of renal-converting enzyme activities that may have functional implications in terms of the regulation of blood pressure and renal function in men and women. The difference in the patterns of gene expression and enzyme activity indicates that changes in gene expression may not accurately reflect changes in activity. © The Author(s) 2015.

  13. Unusual behavior of membrane somatic angiotensin-converting enzyme in a reversed micelle system.

    PubMed

    Grinshtein, S V; Levashov, A V; Kost, O A

    2001-01-01

    Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.

  14. Updated survey of the steroid-converting enzymes in human adipose tissues.

    PubMed

    Tchernof, André; Mansour, Mohamed Fouad; Pelletier, Mélissa; Boulet, Marie-Michèle; Nadeau, Mélanie; Luu-The, Van

    2015-03-01

    Over the past decade, adipose tissues have been increasingly known for their endocrine properties, that is, their ability to secrete a number of adipocytokines that may exert local and/or systemic effects. In addition, adipose tissues have long been recognized as significant sites for steroid hormone transformation and action. We hereby provide an updated survey of the many steroid-converting enzymes that may be detected in human adipose tissues, their activities and potential roles. In addition to the now well-established role of aromatase and 11β-hydroxysteroid dehydrogenase (HSD) type 1, many enzymes have been reported in adipocyte cell lines, isolated mature cells and/or preadipocytes. These include 11β-HSD type 2, 17β-HSDs, 3β-HSD, 5α-reductases, sulfatases and glucuronosyltransferases. Some of these enzymes are postulated to bear relevance for adipose tissue physiology and perhaps for the pathophysiology of obesity. This elaborate set of steroid-converting enzymes in the cell types of adipose tissue deserves further scientific attention. Our work on 20α-HSD (AKR1C1), 3α-HSD type 3 (AKR1C2) and 17β-HSD type 5 (AKR1C3) allowed us to clarify the relevance of these enzymes for some aspects of adipose tissue function. For example, down-regulation of AKR1C2 expression in preadipocytes seems to potentiate the inhibitory action of dihydrotestosterone on adipogenesis in this model. Many additional studies are warranted to assess the impact of intra-adipose steroid hormone conversions on adipose tissue functions and chronic conditions such as obesity, diabetes and cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme

    PubMed Central

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P.-Y.; Wang, Steven S.-S.

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer’s disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12–16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12–16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12–16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1–7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1–7)C and qf-Aβ(12–16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells. PMID:27096746

  16. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme.

    PubMed

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P-Y; Wang, Steven S-S

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7)C and qf-Aβ(12-16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.

  17. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry

    PubMed Central

    Wijesekara, Isuru; Kim, Se-Kwon

    2010-01-01

    Hypertension or high blood pressure is one of the major independent risk factors for cardiovascular diseases. Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE) plays an important physiological role in regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, the inhibition of ACE activity is a major target in the prevention of hypertension. Recently, the search for natural ACE inhibitors as alternatives to synthetic drugs is of great interest to prevent several side effects and a number of novel compounds such as bioactive peptides, chitooligosaccharide derivatives (COS) and phlorotannins have been derived from marine organisms as potential ACE inhibitors. These inhibitory derivatives can be developed as nutraceuticals and pharmaceuticals with potential to prevent hypertension. Hence, the aim of this review is to discuss the marine-derived ACE inhibitors and their future prospects as novel therapeutic drug candidates for treat hypertension. PMID:20479968

  18. Endothelin-Converting Enzymes and Related Metalloproteases in Alzheimer’s Disease

    PubMed Central

    Pacheco-Quinto, Javier; Herdt, Aimee; Eckman, Christopher B.; Eckman, Elizabeth A.

    2013-01-01

    The efficient clearance of amyloid β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of AD pathology. We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of Alzheimer’s disease (AD). Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology. The following review presents a historical perspective of the parallel discovery of three vasopeptidases, neprilysin (NEP) and endothelin-converting enzymes-1 and -2 (ECE-1 and ECE-2), as important Aβ degrading enzymes. The recognition of the role of these vasopeptidases in Aβ degradation, beyond bringing to light a possible explanation of how cardiovascular risk factors may influence AD risk, highlights a possible risk of the use of inhibitors of these enzymes for other clinical indications such as hypertension. We will discuss in detail the experiments conducted to assess the impact of vasopeptidase deficiency (through pharmacological inhibition or genetic mutation) on Aβ accumulation, as well as the cooperative effect of multiple Aβ degrading enzymes to regulate concentration of the peptide at multiple sites, both intracellular and extracellular, throughout the brain. PMID:22903130

  19. Crystal Structures of Protein Glutaminase and Its Pro Forms Converted into Enzyme-Substrate Complex*

    PubMed Central

    Hashizume, Ryota; Maki, Yukiko; Mizutani, Kimihiko; Takahashi, Nobuyuki; Matsubara, Hiroyuki; Sugita, Akiko; Sato, Kimihiko; Yamaguchi, Shotaro; Mikami, Bunzo

    2011-01-01

    Protein glutaminase, which converts a protein glutamine residue to a glutamate residue, is expected to be useful as a new food-processing enzyme. The crystal structures of the mature and pro forms of the enzyme were refined at 1.15 and 1.73 Å resolution, respectively. The overall structure of the mature enzyme has a weak homology to the core domain of human transglutaminase-2. The catalytic triad (Cys-His-Asp) common to transglutaminases and cysteine proteases is located in the bottom of the active site pocket. The structure of the recombinant pro form shows that a short loop between S2 and S3 in the proregion covers and interacts with the active site of the mature region, mimicking the protein substrate of the enzyme. Ala-47 is located just above the pocket of the active site. Two mutant structures (A47Q-1 and A47Q-2) refined at 1.5 Å resolution were found to correspond to the enzyme-substrate complex and an S-acyl intermediate. Based on these structures, the catalytic mechanism of protein glutaminase is proposed. PMID:21926168

  20. Structural organization of membrane and soluble forms of somatic angiotensin-converting enzyme.

    PubMed

    Grinshtein, S V; Nikolskaya, I I; Klyachko, N L; Levashov, A V; Kost, O A

    1999-05-01

    The catalytic activity and quaternary structure of soluble (s) and membrane (m) forms of angiotensin-converting enzyme (ACE) were studied in reversed micelles of ternary system Aerosol OT--water--octane. The profile of the dependence of the catalytic activity of the two enzyme forms on the degree of surfactant hydration (micellar size) had several optima corresponding to the function of various active oligomeric enzyme forms; the curves for the s- and m-forms of ACE were different. Data of sedimentation analysis prove that in reversed micelles, s-ACE can exist as monomers, dimers, or tetramers depending on the hydration degree, and the m-form is present as dimers and tetramers only. The values of the kinetic parameters for the hydrolysis of the substrate furylacryloyl-Phe-Gly-Gly by all the enzyme forms were determined, and the data indicate that the activity of the m-form is enhanced by oligomerization. The ACE activity strongly depends on the medium; it is higher when ACE is in contact with matrix or other enzyme molecules.

  1. Electronic spectroscopy of cobalt angiotensin converting enzyme and its inhibitor complexes.

    PubMed

    Bicknell, R; Holmquist, B; Lee, F S; Martin, M T; Riordan, J F

    1987-11-17

    Zinc, the catalytically essential metal of angiotensin converting enzyme (ACE), has been replaced by cobalt(II) to give an active, chromophoric enzyme that is spectroscopically responsive to inhibitor binding. Visible absorption spectroscopy and magnetic circular dichroic spectropolarimetry have been used to characterize the catalytic metal binding site in both the cobalt enzyme and in several enzyme-inhibitor complexes. The visible absorption spectrum of cobalt ACE exhibits a single broad maximum (525 nm) of relatively low absorptivity (epsilon = 75 M-1 cm-1). In contrast, the spectra of enzyme-inhibitor complexes display more clearly defined maxima at longer wavelengths (525-637 nm) and of markedly higher absorptivities (130-560 M-1 cm-1). The large spectral response indicates that changes in the cobalt ion coordination sphere occur on inhibitor binding. Magnetic circular dichroic spectropolarimetry has shown that the metal coordination geometry in the inhibitor complexes is tetrahedral and of higher symmetry than in cobalt ACE alone. The presence of sulfur----cobalt charge-transfer bands in both the visible absorption and magnetic circular dichroic spectra of the cobalt ACE-Captopril complex confirm direct ligation of the thiol group of the inhibitor to the active-site metal.

  2. Angiotensin converting enzyme insertion or deletion polymorphism and coronary restenosis: meta-analysis of 16 studies

    PubMed Central

    Bonnici, François; Keavney, Bernard; Collins, Rory; Danesh, John

    2002-01-01

    Objective To assess the association between genotype at the insertion or deletion polymorphism of the angiotensin converting enzyme gene and risk of coronary restenosis after percutaneous coronary intervention. Design Meta-analysis of studies before July 2001 that reported on these genotypes and risk of coronary restenosis after a percutaneous coronary intervention, with or without coronary stenting. Results 16 studies, involving 4631 patients undergoing a percutaneous coronary intervention, yielded 1683 patients with restenosis after a mean weighted follow up of 5.5 months. The combined odds ratio for restenosis in people with the DD genotype was 1.23 (99% confidence interval 1.03 to 1.46). When studies were grouped by size, however, the combined odds ratios for restenosis in people with the DD genotype were 1.94 (1.39 to 2.71) for studies with less than 100 cases, 1.33 (0.92 to 1.93) for studies with 100-200 cases, and 0.92 (0.72 to 1.18) for studies with more than 200 cases (trend P=0.02). Similarly, when studies were grouped by genotyping procedures, significantly larger odds ratios were found in the studies that did not conceal disease status from laboratory staff and in the studies that did not use a second polymerase chain reaction amplification to reduce genetic mistyping. Conclusion Compared with other studies, larger and more rigorous studies show a weaker association between the angiotensin converting enzyme gene DD genotype and restenosis. Publication bias or detection biases can produce artefactual associations at least as large as those that might be expected for common polymorphisms in complex diseases, suggesting the need for larger and more rigorous genetic epidemiological investigations than are now customary. What is already known on this topicRestenosis after a percutaneous coronary intervention is one of the principal limitations of the techniqueGenotype at the angiotensin converting enzyme insertion or deletion polymorphism is proposed to be

  3. Cyclophosphamide-induced changes of serum angiotensin converting enzyme activity and pulmonary microvessels ultrastructure.

    PubMed

    Musiatowicz, B; Terlikowski, S; Sulik, M; Famulski, W; Giedrojć, J; Jakubowski, A; Sobaniec-Lotowska, M; Pasztaleniec, L; Baltaziak, M; Jabłońska, E

    1997-01-01

    The effect of cyclophosphamide (CP) on the ultrastructure of the lung tissue and the activity of angiotensin converting enzyme (ACE) in serum was evaluated in rats. The animals were given cyclophosphamide (CP) in a single intraperitoneal dose of 150 mg/kg b.w. ACE activity was evaluated in the blood serum collected from the left ventricle of the heart using the spectrophometric method. In all time subgroups, the CP-receiving animals showed a decrease in ACE activity. Ultrastructural examinations of CP-treated animals revealed increased adhesion of neutrophiles and monocytes to the damage endothelium of the alveolar septa vessels and focally accumulation of the platelets.

  4. The linkage disequilibrium pattern of the angiotensin converting enzyme gene in Arabic and Asian population groups.

    PubMed

    Kharrat, Najla; Abdelmouleh, Wafa; Abdelhedi, Rania; Alfadhli, Suad; Rebai, Ahmed

    2012-01-01

    DNA variations within the Angiotensin-Converting Enzyme (ACE) gene have been shown to be involved in the aetiology of several common diseases and the therapeutic response. This study reports a comparison of haplotype analysis of five SNPs in the ACE gene region using a sample of 100 healthy subjects derived from five different populations (Tunisian, Iranian, Kuwaiti, Bahraini and Indian). Strong linkage disequilibrium was found among all SNPs studied for all populations. Two SNPs (rs1800764 and rs4340) were identified as key SNPs for all populations. These SNPs will be valuable for future effective association studies of the ACE gene polymorphisms in Arab and Asian populations.

  5. Renal scintigraphy following angiotensin converting enzyme inhibition in the diagnosis of renovascular hypertension (captopril scintigraphy)

    SciTech Connect

    Sfakianakis, G.N. )

    1989-09-01

    This article describes the pathophysiology and primary causes of renovascular hypertension (RVH). No historical or physical finding is specific in the diagnosis of RVH, although onset of hypertension before the age of 30 years may suggest the possible presence of RVH. The physiology of the kidney is described along with the biochemistry of angiotensin converting enzyme inhibitors. The main thrust of the article is nuclear medicine techniques useful in the diagnosis of this disease. Several diagnositic methods are described but captopril scintigraphy is presented as a method that may give more optimal results in the diagnosis of RVH.

  6. Angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) and lactation: an update.

    PubMed

    Shannon, M E; Malecha, S E; Cha, A J

    2000-05-01

    Angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are commonly used for the treatment of hypertension. ACEIs have been promoted as first-line therapy for selected patients with chronic hypertension and for the prevention of diabetic nephropathy, thus creating the potential for frequent ACEI exposure among women of childbearing age. ARBs are the most recent addition to the available options for antihypertensive agents. This review specifically focuses on the most up-to-date information regarding these newer antihypertensives with regard to lactation.

  7. Proteinuria, a modifiable risk factor: angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs).

    PubMed

    Dykeman-Sharpe, Jennifer

    2003-01-01

    Microalbuminuria and proteinuria have been determined to be modifiable risk factors for the progression of chronic kidney disease as well as risk factors for cardiovascular events. Angiotensin converting enzyme inhibitors and angiotensin II receptor blockers have been demonstrated to decrease proteinuria at all stages and slow the progression of renal disease. Proteinuria can be used as a marker of successful treatment in patients with chronic kidney disease in combination with other established targets. This article discusses the various diagnostic tests used for the detection of microalbuminuria and proteinuria and appropriate pharmaceutical treatment.

  8. Primary Systemic Amyloidosis and High Levels of Angiotensin-Converting Enzyme: Two Case Reports

    PubMed Central

    Praena-Segovia, J.; Sanchez-Gastaldo, A.; Bernabeu-Wittel, M.; Ocete-Pérez, R.; Ávila-Polo, R.; Martino, M. L.

    2013-01-01

    Infiltrative heart diseases are caused by a heterogeneous group of disorders; amyloidosis and sarcoidosis are two frequent causes of myocardial infiltration, which differ in clinical and biological outcome and treatment issues. The presence of high levels of angiotensin-converting enzyme (ACE) in a patient with infiltrative heart disease may increase suspicion of sarcoidosis. Nevertheless, no mention about increased ACE levels in extracerebral primary systemic amyloidosis is available. We present two cases of primary systemic amyloidosis, which are cardiac involvement and elevated ACE levels. PMID:24826302

  9. Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response.

    PubMed

    Bernstein, Kenneth E; Gonzalez-Villalobos, Romer A; Giani, Jorge F; Shah, Kandarp; Bernstein, Ellen; Janjulia, Tea; Koronyo, Yosef; Shi, Peng D; Koronyo-Hamaoui, Maya; Fuchs, Sebastien; Shen, Xiao Z

    2014-10-01

    Angiotensin-converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis, and several aspects of the immune response. ACE 10/10 mice overexpress ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization toward a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with melanoma, bacterial infection, or Alzheimer disease. As shown in ACE 10/10 mice, enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges.

  10. Changes in serum angiotensin I converting enzyme activity due to carbon disulfide exposure.

    PubMed

    Filipović, N; Bilalbegović, Z; Sefić, M; Djurić, D

    1984-01-01

    The activity of serum angiotensin I converting enzyme (ACE) was determined in 50 workers from a viscose factory in Banja Luka, Yugoslavia, and in 50 control subjects. Activity of serum ACE was significantly lower in workers exposed to carbon disulfide than in the control group. No correlation was found between a decrease of serum ACE in exposed workers and duration of exposure. These findings indicate that the serum ACE may be influenced by carbon disulfide, but the mechanism of these changes remains to be elucidated in this case.

  11. Changes in brain and lung angiotensin converting enzyme activity in various shocks.

    PubMed

    Koyuncuoğlu, H; Güngör, M; Hatipoğlu, I; Enginar, N; Sağduyu, H; Sabuncu, H

    1984-05-01

    The brain and lung angiotensin converting enzyme (ACE) activities of the rats subjected to haemorrhagic, hypovolemic or endotoxic shock and of the mice immunized and then intravenously challenged with bovine serum albumin were determined by means of a spectrophotometric method. The lung ACE activities of all the shock groups were found significantly higher than those of their Control groups whereas only the brain ACE activities of the rats in endotoxic shock and the mice in anaphylactic shock showed a significant increase compared to their own control values. The results were interpreted as supporting evidence for the idea that peripheral and central renin-angiotensin systems may play a deleterious role in shock.

  12. Cellular expression of isoforms of endothelin-converting enzyme-1 (ECE-1c, ECE-1b and ECE-1a) and endothelin-converting enzyme-2.

    PubMed

    Davenport, A P; Kuc, R E

    2000-11-01

    Our aim was to compare the cellular expression of endothelin-converting enzyme-1 (ECE-1) isoforms and ECE-2 using immunocytochemistry in normal and diseased human tissue. Intense ECE-1b immunoreactivity was present within renal and pulmonary epithelial cells with lower levels of staining displayed by ECE-1c, ECE-1a and ECE-2 antisera. Staining was detected with all antisera (except ECE-1a) within the endothelium of renal and pulmonary vessels having a range of lumen diameters as well as pial arteries and intracerebral vessels penetrating brain. ECE-1b, ECE-1c and ECE-2 immunoreactivity was localized to perivascular astrocytes and neuronal processes in the cerebral cortex. In diseased vessels, ECE-1c, ECE-1b and ECE-2 antisera stained macrophages infiltrating atherosclerotic plaques within coronary arteries. These results suggest ECE-1b and ECE-2 may be widely expressed in normal tissue from humans and inhibition of ECE-1 isoforms and ECE-2 expressed by cells such as macrophages in pathophysiological tissue may be an additional therapeutic target in cardiovascular disease.

  13. Role of angiotensin converting enzyme and angiotensinogen gene polymorphisms in angiotensin converting enzyme inhibitor-mediated antiproteinuric action in type 2 diabetic nephropathy patients

    PubMed Central

    Aggarwal, Neerja; Kare, Pawan Kumar; Varshney, Parul; Kalra, Om Prakash; Madhu, Sri Venkata; Banerjee, Basu Dev; Yadav, Anil; Raizada, Alpana; Tripathi, Ashok Kumar

    2017-01-01

    AIM To investigate the role of genetic variants of angiotensin converting enzyme (ACE) and angiotensinogen (AGT) genes in the antiproteinuric efficacy of ACE inhibitor therapy in diabetic nephropathy (DN) patients. METHODS In the present study, 270 type 2 diabetes mellitus patients with nephropathy were enrolled and treated with ACE inhibitor (ramipril) and followed at 6 mo for renal function and albumin excretion by estimating serum creatinine, end stage renal disease, and albumin/creatinine ratio (ACR) in urine. Genotyping of ACE I/D and AGT M235T polymorphisms were performed by using primer specific polymerase chain reaction (PCR) and PCR-RFLP techniques, respectively. RESULTS Forty-eight percent of DN patients (responders) benefited with respect to proteinuria from ACE inhibitor therapy at 6 mo follow-up. A significant reduction in ACR was observed after 6 mo treatment with ACE inhibitor irrespective of whether DN patients were micro-albuminuric (≥ 30 and < 300 mg/g creatinine) or macro-albuminuric (≥ 300 mg/g creatinine) at the time of enrollment. However, macro-albuminuric patients (55%) showed better response to therapy. A reduction in urinary ACR was found independent of genotypes of ACE I/D and AGT M235T polymorphisms although macro-albuminuric patients having TT genotype showed statistically insignificant increased response (72%). CONCLUSION ACE inhibitor therapy reduced urinary ACR by ≥ 30% in 50% of DN patients and the response is independent of ACE I/D and AGT M235T polymorphisms. PMID:28344754

  14. Docking Studies of Methylthiomorpholin Phenols (LQM300 Series) with Angiotensin-Converting Enzyme (ACE)

    PubMed Central

    Vázquez-Valadez, Víctor H.; Abrego, V.H.; Martínez, Pablo A.; Torres, Gabriela; Zúñiga, Oscar; Escutia, Daniel; Vilchis, Rebeca; Velázquez, Ana Ma.; Martínez, Luisa; Ruiz, Mónica; Camacho, Brígida; López-Castañares, Rafael; Angeles, Enrique

    2013-01-01

    A main target in the treatment of hypertension is the angiotensin-converting enzyme (ACE). This enzyme is responsible for producing angiotensin II, a potent vasoconstrictor. Therefore, one of the targets in the treatment of hypertension is to inhibit ACE activity. Hence, this study’s aim is to use computational studies to demonstrate that the proposed heterocyclic compounds have a molecular affinity for ACE and that, furthermore, these heterocyclic compounds are capable of inhibiting ACE activity, thus avoiding the production of the vasopressor Angiotensin II. All this using computer-aided drug design, and studying the systems, with the proposed compounds, through molecular recognition process and compared with the compounds already on the market for hypertension. PMID:24319502

  15. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells

    PubMed Central

    Joshi, Shrinidh; Balasubramanian, Narayanaganesh; Vasam, Goutham; Jarajapu, Yagna PR

    2016-01-01

    Angiotensin-converting enzymes, ACE and ACE2, are key members of renin angiotensin system. Activation of ACE2/Ang-(1-7) pathway enhances cardiovascular protective functions of bone marrow-derived stem/progenitor cells. The current study evaluated the selectivity of ACE2 inhibitors, MLN-4760 and DX-600, and ACE and ACE2 activities in human (hu) and murine (mu) bone marrow cells. Assays were carried out in hu and mu mononuclear cells (MNCs) and huCD34+ cells or mu-lineage-depleted (muLin-) cells, human-recombinant (rh) enzymes, and mu-heart with enzyme-specific substrates. ACE or ACE2 inhibition by racemic MLN-4760, its isomers MLN-4760-A and MLN-4760-B, DX600 and captopril were characterized. MLN-4760-B is relatively less efficacious and less-selective than the racemate or MLN-4760-A at hu-rhACE2, and all three of them inhibited 43% rhACE. In huMNCs, MLN-4760-B detected 63% ACE2 with 28-fold selectivity over ACE. In huCD34+ cells, MLN-4760-B detected 38% of ACE2 activity with 63-fold selectivity. In mu-heart and muMNCs, isomer B was 100- and 228-fold selective for ACE2, respectively. In muLin- cells, MLN-4760-B detected 25% ACE2 activity with a pIC50 of 6.3. The racemic mixture and MLN-4760-A showed lower efficacy and poor selectivity for ACE2 in MNCs and mu-heart. ACE activity detected by captopril was 32 and 19%, respectively, in huCD34+ and muLin- cells. DX600 was less efficacious, and more selective for ACE2 compared to MLN-4760-B in all samples tested. These results suggest that MLN-4760-B is a better antagonist of ACE2 than DX600 at 10μM concentration in human and murine bone marrow cells, and that these cells express more functional ACE2 than ACE. PMID:26851370

  16. Producing enzymes from molds to convert cellulose into glucose and alcohol. Final report

    SciTech Connect

    Bassi, S.; Curran, P.

    1982-11-29

    The following significant results were obtained: (1) extracts of various tree barks were made and used to determine if any of the chemicals had growth stimulating effects on the molds. The extracts from the oak and elm tree bark were very active in inducing and stimulating the mycelial growth of the molds Trichoderma reesei, Pleurotus ostreatus and Aspergillus awamori. Efforts to determine what specific chemical caused the increase in growth were unsuccessful but are being continued. This information will be very useful because it was discovered that by speeding and increasing the growth of the mold cells, it was also possible to speed and increase the production of the enzymes; (2) efforts to cultivate the mold Pleurotus ostreatus in the same culture with Trichoderma reesei were successful. When the two molds were cultured on an enriched cellulose media, it was discovered that the reesei produced large amounts of the beta glucosidase. Reesei produces very small amounts of this enzyme under normal conditions but this high production under coculture conditions may be due to the fact that Pleurotus ostreatus removes the glucose formed from the cellulose breakdown. Trichoderma reesei produces cellulases which convert cellulose into cellobiose and cellobiose is converted to glucose by the enzyme beta-glucosidase. In the presence of glucose the gene producing beta-glucosidase is repressed by the feedback mechanism. These surplus enzymes can then be used for saccharifying cellulose from wastepaper, wood pulp, cornstalks, wheat straw and other cellulosic materials and eventually produce alcohol; (3) efforts to produce mutants of the Trichoderma reesei by using the uv irradiation were unsuccessful; and (4) Zymomonas mobilis is capable of faster fermentation. The only drawback is that only low concentrations of glucose can be used. Mutants of Zymomonas resistant to higher alcohol levels would help in this process and are being looked into.

  17. Metabolism of vasoactive peptides by human endothelial cells in culture. Angiotensin I converting enzyme (kininase II) and angiotensinase.

    PubMed

    Johnson, A R; Erdös, E G

    1977-04-01

    Cultured endothelial cells provide a model for the study of interactions of vasoactive peptides with endothelium. Endothelial cell cultured from veins of human umbilical cords contain both angiotensin I converting enzyme (kininase II) and angiotensinase activities. Intact monolayers of cells can both activate angiotensin I and inactivate bradykinin when the peptides are added to culture flasks in protein-free medium. Intact suspended cells or lysed cells convert angiotensin I to angiotensin II, inactivate bradykinin, and hydrolyze hippuryldiglycine to hippuric acid and diglycine. These actions are inhibited by SQ 20881, the specific inhibitor of converting enzyme. The kininase activity of endothelial cells was partially inhibited by antibody to human lung converting enzyme. Endothelial cells also inactivate longer analogs of bradykinin, such as kallidin, methionyl-lysyl bradykinin, and bradykinin coupled covalently to 500,000 mol wt dextran. The endothelial cells retained converting enzyme activity through four successive subcultures, indicating that the enzyme is synthesized by the cells surface, and it is apparently a marker for endothelial cells, since cultured human fibroblasts, smooth muscle cells, and baby hamster kidney cells do not have it. Endothelial cells also contain an aminopheptidase which hydrolyzes both angiotensin II and the synthetic substrate, alpha-L-aspartyl beta-naphthylamide. The angiotensinase activity increased when the cells were lysed, which suggests that the enzyme is localized within the cells, Hydrolysis of both alpha-L-aspartyl beta-naphthylamide and angiotensin II was inhibited by omicron-phenanthroline, indicating that the enzyme is an A-tipe anigotensinase.

  18. A quantitative peptidomics approach to unravel immunological functions of angiotensin converting enzyme in Locusta migratoria.

    PubMed

    Duressa, Tewodros Firdissa; Boonen, Kurt; Huybrechts, Roger

    2016-09-01

    Locusta migratoria angiotensin converting enzyme (LmACE) is encoded by multiple exons displaying variable number of genomic duplications. Treatments of lipopolysaccharide (LPS) as well as peptidoglycan but not β-1-3 glucan resulted in enhanced expression of angiotensin converting enzyme in hemocytes of Locusta migratoria. No such effect was observed in fat body cells. Differential peptidomics using locust plasma samples post infection with LPS in combination with both an LmACE transcript knockdown by RNAi and a functional knockdown using captopril allowed the identification of 5 circulating LPS induced peptides which only appear in the hemolymph of locust having full LmACE functionality. As these peptides originate from larger precursor proteins such as locust hemocyanin-like protein, having known antimicrobial properties, the obtained results suggest a possible direct or indirect role of LmACE in the release of these peptides from their precursors. Additionally, this experimental setup confirmed the role of LmACE in the clearance of multiple peptides from the hemolymph.

  19. Converting enzyme inhibitor temocaprilat prevents high glucose-mediated suppression of human aortic endothelial cell proliferation.

    PubMed

    Yasunari, Kenichi; Maeda, Kensaku; Watanabe, Takanori; Nakamura, Munehiro; Asada, Akira; Yoshikawa, Junichi

    2003-12-01

    We examined the involvement of the oxidative stress in high glucose-induced suppression of human aortic endothelial cell proliferation. Chronic glucose treatment for 72 h concentration-dependently (5.6-22.2 mol/l) inhibited human coronary endothelial cell proliferation. Temocaprilat, an angiotensin-converting enzyme inhibitor, at 10 nmol/l to 1 micromol/l inhibited high glucose (22.2 mmol/l)-mediated suppression of human aortic endothelial cell proliferation. Temocaprilat at 1 micromol/l inhibited high glucose-induced membrane-bound protein kinase C activity in human aortic endothelial cells. The protein kinase C inhibitors calphostin C 100 nmol/l or chelerythrine 1 micromol/l inhibited high glucose-mediated suppression of human aortic endothelial cell proliferation. Chronic high glucose treatment for 72 h increased intracellular oxidative stress, directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by temocaprilat 10 nmol/l to 1 micromol/l. Bradykinin B2 receptor antagonist icatibant 100 nmol/l significantly reduced the action of temocaprilat; whereas bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin 100 nmol/l had no effect. These findings suggest that high glucose inhibits human aortic endothelial cell proliferation and that the angiotensin-converting enzyme inhibitor temocaprilat inhibits high glucose-mediated suppression of human aortic endothelial cell proliferation, possibly through suppression of protein kinase C, bradykinin B2 receptors and oxidative stress.

  20. Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.

    PubMed

    Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C

    2010-01-12

    We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.

  1. The endothelin system and endothelin-converting enzyme in the brain: molecular and cellular studies.

    PubMed

    Barnes, K; Turner, A J

    1997-08-01

    The biologically active vasoactive peptides, the endothelins (ETs), are generated from inactive intermediates, the big endothelins, by a unique processing event catalysed by the zinc metalloprotease, endothelin converting enzyme (ECE). In this overview we examine the actions of endothelins in the brain, and focus on the structure and cellular locations of ECE. The heterogeneous distribution in the brain of ET-1, ET-2, and ET-3 is discussed in relation to their hemodynamic, mitogenic and proliferative properties as well as their possible roles as neurotransmitters. The cellular and subcellular localization of ECE in neuronal and in glial cells is compared with that of other brain membrane metalloproteases, neutral endopeptidase-24.11 (neprilysin), angiotensin converting enzyme and aminopeptidase N, which all function in neuropeptide processing and metabolism Unlike these ectoenzymes, ECE exhibits a dual localisation in the cell, being present on the plasma membrane and also, in some instances, being concentrated in a perinuclear region. This differential localization may reflect distinct targeting of different ECE isoforms, ECE-1 alpha, ECE-1 beta, and ECE-2.

  2. Effect of inhibition of converting enzyme on renal hemodynamics and sodium management in polycystic kidney disease.

    PubMed

    Torres, V E; Wilson, D M; Burnett, J C; Johnson, C M; Offord, K P

    1991-10-01

    We compared the tubular transport of sodium and the erythrocyte sodium-lithium countertransport activity in hypertensive patients with autosomal dominant polycystic kidney disease (ADPKD) and in normotensive control subjects. In addition, we assessed the effects of inhibition of converting enzyme on renal hemodynamics and sodium excretion in hypertensive patients with ADPKD to provide information on mechanisms responsible for the increased renal vascular resistance and filtration fraction and the adjustment of the pressure-natriuresis relationship during saline expansion, observed in patients with ADPKD, hypertension, and preserved renal function. In comparison with normotensive control subjects, the hypertensive patients with ADPKD had lower renal plasma flows, higher renal vascular resistances and filtration fractions, and similar proximal and distal fractional reabsorptions of sodium. The administration of enalapril resulted in significant increases in the renal plasma flow and significant reductions in mean arterial pressure, renal vascular resistance, and filtration fraction, but the glomerular filtration rate remained unchanged. Despite the significant reduction in mean arterial pressure during inhibition of converting enzyme, the distal fractional reabsorption of sodium decreased while the total fractional excretion of sodium remained unchanged or increased slightly. No significant differences were detected between the normotensive control subjects and the hypertensive patients with ADPKD in erythrocyte sodium-lithium countertransport activity, plasma renin activity, plasma aldosterone concentration, or atrial natriuretic factor. These results suggest that the renal renin-angiotensin system plays a central role in the alterations in renal hemodynamics and sodium management associated with the development of hypertension in ADPKD.

  3. The effect of angiotensin-converting enzyme inhibition throughout a superovulation protocol in ewes.

    PubMed

    Pereira, Alécio Matos; de Souza Júnior, Antônio; Machado, Fernanda Brandão; Gonçalves, Gleisy Kelly Neves; Feitosa, Lauro César Soares; Reis, Adelina Martha; Santos, Robson Augusto Souza; Honorato-Sampaio, Kinulpe; Costa, Amilton Raposo

    2015-12-01

    Many studies identified new components of the renin–angiotensin system (RAS), such as Angiotensin-(1-7) [Ang-(1–7)] and Angiotensin-converting enzyme type 2 (ACE2), in mammalian ovaries.We previously showed Angiotensin-Converting Enzyme (ACE) inhibition, which increases the level of Ang-(1–7), stimulated ovarian estradiol output in ewe after estrous synchronization. Considering that Ang-(1–7) stimulates ovarian function and elevated estradiol before ovulation is associated with increased chance of achieving pregnancy, the present study investigated whether ACE inhibition throughout a superovulation protocol in ewe might improve ovulation outcome. At first, immunohistochemistry in ovaries of nonpregnant ewes revealed localization of Angiotensin II (Ang II), Ang-(1–7) and ACE2 in theca cells of antral follicles and in corpus luteum. Ang II and Ang-(1–7)were also detected in follicular fluid (FF) by Radioimmunoassay (RIA). Enalapril treatment throughout the superovulation protocol decreased 17β-estradiol (E2) output and raised progesterone:estradiol (P4:E2) ratio without a direct influence on ovulation and quality of embryos.

  4. A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme

    PubMed Central

    Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien

    2013-01-01

    Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181

  5. Inhibition of angiotensin-converting enzyme increases oestradiol production in ewes submitted to oestrous synchronization protocol.

    PubMed

    Costa, A s; Junior, A S; Viana, G E N; Muratori, M C S; Reis, A M; Costa, A P R

    2014-10-01

    This study aimed at evaluating the effects of angiotensin-converting enzyme inhibitor (enalapril) and angiotensin II antagonist (valsartan) on the oestradiol and progesterone production in ewes submitted to oestrous synchronization protocol. The animals were weighed and randomly divided into three groups (n = 7). A pre-experiment conducted to verify the effectiveness and toxicity of enalapril (0.5 mg/kg LW) and valsartan (2.2 mg/kg LW) showed that, in the doses used, these drugs were effective in reducing blood pressure without producing toxic effects. In the experiment, all animals were subjected to oestrous synchronization protocol during 12 days. On D10, D11 and D12, animals received saline, enalapril or valsartan (same doses of the pre-experiment), according to the group randomly divided. The hormonal analysis showed an increase in oestradiol on the last day of the protocol (D12) in animals that received enalapril (p < 0.05), but not in other groups, without changing the concentration of progesterone in any of the treatments. It is concluded that valsartan and enalapril are safe and effective subcutaneously for use in sheep and that the angiotensin-converting enzyme (ACE) inhibition with enalapril leads to an increase in oestradiol production near ovulation without changing the concentration of progesterone. This shows that ACE inhibition may be a useful tool in reproductive biotechnologies involving induction and synchronization of oestrus and ovulation in sheep.

  6. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism

    PubMed Central

    Sonsalla, Patricia K.; Coleman, Christal; Wong, Lai-Yoong; Harris, Suzan L.; Richardson, Jason R.; Gadad, Bharathi S.; Li, Wenhao; German, Dwight C.

    2013-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by a prominent loss of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. The peptide angiotensin II (AngII) plays a role in oxidative-stress induced disorders and is thought to mediate its detrimental actions via activation of AngII AT1 receptors. The brain renin-angiotensin system is implicated in neurodegenerative disorders including PD. Blockade of the angiotensin converting enzyme or AT1 receptors provides protection in acute animal models of parkinsonism. We demonstrate here that treatment of mice with the angiotensin converting enzyme inhibitor captopril protects the striatum from acutely administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP), and that chronic captopril protects the nigral DA cell bodies from degeneration in a progressive rat model of parkinsonism created by the chronic intracerebral infusion of 1-methyl-4-phenylpyridinium (MPP+). The accompanying activation of microglia in the substantia nigra of MPP+-treated rats was reduced by the chronic captopril treatment. These findings indicate that captopril is neuroprotective for nigrostriatal DA neurons in both acute and chronic rodent PD models. Targeting the brain AngII pathway may be a feasible approach to slowing neurodegeneration in PD. PMID:24184050

  7. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism.

    PubMed

    Sonsalla, Patricia K; Coleman, Christal; Wong, Lai-Yoong; Harris, Suzan L; Richardson, Jason R; Gadad, Bharathi S; Li, Wenhao; German, Dwight C

    2013-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by a prominent loss of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. The peptide angiotensin II (AngII) plays a role in oxidative-stress induced disorders and is thought to mediate its detrimental actions via activation of AngII AT1 receptors. The brain renin-angiotensin system is implicated in neurodegenerative disorders including PD. Blockade of the angiotensin converting enzyme or AT1 receptors provides protection in acute animal models of parkinsonism. We demonstrate here that treatment of mice with the angiotensin converting enzyme inhibitor captopril protects the striatum from acutely administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP), and that chronic captopril protects the nigral DA cell bodies from degeneration in a progressive rat model of parkinsonism created by the chronic intracerebral infusion of 1-methyl-4-phenylpyridinium (MPP+). The accompanying activation of microglia in the substantia nigra of MPP+-treated rats was reduced by the chronic captopril treatment. These findings indicate that captopril is neuroprotective for nigrostriatal DA neurons in both acute and chronic rodent PD models. Targeting the brain AngII pathway may be a feasible approach to slowing neurodegeneration in PD. © 2013.

  8. Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines

    PubMed Central

    BOBOIA, ANAMARIA; GRIGORESCU, MARIUS RAREŞ; TURCU - ŞTIOLICĂ, ADINA

    2017-01-01

    Background and aims The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. Methods The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. Results The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. Conclusion This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans. PMID:28246502

  9. Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines.

    PubMed

    Boboia, Anamaria; Grigorescu, Marius Rareş; Turcu-Ştiolică, Adina

    2017-01-01

    The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans.

  10. Association between Angiotensin-Converting Enzyme Inhibitors and Troponin in Acute Coronary Syndrome

    PubMed Central

    Minuzzo, Luiz; dos Santos, Elizabete Silva; Timerman, Ari

    2014-01-01

    Background Cardiovascular disease is the leading cause of mortality in the western world and its treatment should be optimized to decrease severe adverse events. Objective To determine the effect of previous use of angiotensin-converting enzyme inhibitors on cardiac troponin I measurement in patients with acute coronary syndrome without ST-segment elevation and evaluate clinical outcomes at 180 days. Methods Prospective, observational study, carried out in a tertiary center, in patients with acute coronary syndrome without ST-segment elevation. Clinical, electrocardiographic and laboratory variables were analyzed, with emphasis on previous use of angiotensin-converting enzyme inhibitors and cardiac troponin I. The Pearson chi-square tests (Pereira) or Fisher's exact test (Armitage) were used, as well as the non-parametric Mann-Whitney's test. Variables with significance levels of <10% were submitted to multiple logistic regression model. Results A total of 457 patients with a mean age of 62.1 years, of whom 63.7% were males, were included. Risk factors such as hypertension (85.3%) and dyslipidemia (75.9%) were the most prevalent, with 35% of diabetics. In the evaluation of events at 180 days, there were 28 deaths (6.2%). The statistical analysis showed that the variables that interfered with troponin elevation (> 0.5 ng / mL) were high blood glucose at admission (p = 0.0034) and ST-segment depression ≥ 0.5 mm in one or more leads (p = 0.0016). The use of angiotensin-converting inhibitors prior to hospitalization was associated with troponin ≤ 0.5 ng / mL (p = 0.0482). The C-statistics for this model was 0.77. Conclusion This study showed a correlation between prior use of angiotensin-converting enzyme inhibitors and reduction in the myocardial necrosis marker troponin I in patients admitted for acute coronary syndrome without ST-segment elevation. However, there are no data available yet to state that this reduction could lead to fewer severe clinical events

  11. The pharmacological mechanism of angiotensin-converting enzyme inhibition by green tea, Rooibos and enalaprilat - a study on enzyme kinetics.

    PubMed

    Persson, Ingrid A-L

    2012-04-01

    Green tea (Camellia sinensis L.) and Rooibos (Aspalathus linearis Dahlg.) inhibit angiotensin-converting enzyme (ACE) in vitro and in vivo. The ACE inhibitor enalaprilat has been described previously as a competitive inhibitor and sometimes as a non-competitive inhibitor. The aim of this study was to investigate the pharmacological mechanism of ACE inhibition of green tea and Rooibos by enzyme kinetics, and to compare this with enalaprilat. A Michaelis-Menten kinetics and Lineweaver-Burk graph showed mean values of V(max)  = 3.73 µM and K(m)  = 0.71 µM for green tea, of V(max)  = 6.76 µM and K(m)  = 0.78 µM for Rooibos, of V(max)  = 12.54 µM and K(m)  = 2.77 µM for enalaprilat, and of V(max)  = 51.33 µM and K(m)  = 9.22 µM for the PBS control. Incubating serum with green tea or Rooibos saturated with zinc chloride did not change the inhibitory effect. Enalaprilat preincubated with zinc chloride showed a decrease in the inhibitory effect. In conclusion, green tea, Rooibos and enalaprilat seem to inhibit ACE activity using a mixed inhibitor mechanism.

  12. Prevalence of the angiotensin I converting enzyme insertion/deletion polymorphism, plasma angiotensin converting enzyme activity, and left ventricular mass in a normotensive Chilean population.

    PubMed

    Jalil, J E; Piddo, A M; Cordova, S; Chamorro, G; Braun, S; Jalil, R; Vega, J; Jadue'P, L; Lavandero, S; Lastra, P

    1999-07-01

    The aim of this study was to estimate the prevalence of the different alleles of the angiotensin converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and associated plasma ACE activity, as well as cardiac echocardiographic structure, in a healthy Chilean population. We selected 117 healthy normotensive subjects (aged 45 to 60 years, middle socioeconomic status, nonobese, and nondiabetic) from a population-based study concerning the prevalence of risk factors for chronic diseases (Conjunto de Acciones Para la Reducción Multifactorial de las Enfermedades no Transmisibles [CARMEN]). The frequencies of the I and D alleles were 0.57 and 0.43, respectively. Mean plasma ACE activity was 15.3 +/- 3.9 U/mL. Compared with subjects with the II genotype, plasma ACE activity was significantly higher in subjects with the ID and DD genotypes with no difference between them. No correlation was observed between blood pressure and plasma ACE activity. Among the three different genotypes there was no difference in left ventricular (LV) dimensions or in LV mass. No correlation between plasma ACE activity and LV mass was observed for either gender or different genotypes. Multivariate linear regression analysis using LV mass and LV mass index as dependent variables showed independent effects (P < .05) for gender (higher LV mass in men) and diastolic blood pressure, but not for the DD genotype. In conclusion, in this population, the presence of the D allele on the ACE gene determined higher circulating ACE activity. However, in this normotensive healthy population, male gender and diastolic blood pressure, but not the presence of the D allele, were associated with increased LV mass.

  13. Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial

    PubMed Central

    Bhatnagar, Vibha; O’Connor, Daniel T.; Schork, Nicholas J.; Salem, Rany M.; Nievergelt, Caroline M.; Rana, Brinda K.; Smith, Douglas W.; Bakris, George L.; Middleton, John P.; Norris, Keith C.; Wright, Jackson T.; Cheek, Deanna; Hiremath, Leena; Contreras, Gabriel; Appel, Lawrence J.; Lipkowitz, Michael S.

    2009-01-01

    Objective It has yet to be determined whether genotyping at the angiotensin-converting enzyme (ACE) locus is predictive of blood pressure response to an ACE inhibitor. Methods Participants from the African American Study of Kidney Disease and Hypertension trial randomized to the ACE inhibitor ramipril (n = 347) were genotyped at three polymorphisms on ACE, just downstream from the ACE insertion/deletion polymorphism (Ins/Del): G12269A, C17888T, and G20037A. Time to reach target mean arterial pressure (≤ 107 mmHg) was analyzed by genotype and ACE haplotype using Kaplan–Meier survival curves and Cox proportional hazard models. Results Individuals with a homozygous genotype at G12269A responded significantly faster than those with a heterozygous genotype; the adjusted (average number of medications and baseline mean arterial pressure) hazard ratio (homozygous compared to heterozygous genotype) was 1.86 (95% confidence limits 1.32–3.23; P < 0.001 for G12269A genotype). The adjusted hazard ratio for participants with homozygous ACE haplotypes compared to those heterozygous ACE haplotypes was 1.40 (1.13–1.75; P = 0.003 for haplotype). The ACE genotype effects were specific for ACE inhibition (i.e., not seen among those randomized to a calcium channel blocker), and were independent of population stratification. Conclusions African-Americans with a homozygous genotype at G12269A or homozygous ACE haplotypes responded to ramipril significantly faster than those with a heterozygous genotype or heterozygous haplotypes, suggesting that heterosis may be an important determinant of responsiveness to an ACE inhibitor. These associations may be a result of biological activity of this polymorphism, or of linkage disequilibrium with nearby variants such as the ACE Ins/Del, perhaps in the regulation of ACE splicing. PMID:17885551

  14. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment.

    PubMed

    Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N

    2016-04-01

    There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment.

  15. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice.

    PubMed Central

    Esther, C R; Marino, E M; Howard, T E; Machaud, A; Corvol, P; Capecchi, M R; Bernstein, K E

    1997-01-01

    Angiotensin-converting enzyme (ACE) generates the vasoconstrictor angiotensin II, which plays a critical role in maintenance of blood pressure in mammals. Although significant ACE activity is found in plasma, the majority of the enzyme is bound to tissues such as the vascular endothelium. We used targeted homologous recombination to create mice expressing a form of ACE that lacks the COOH-terminal half of the molecule. This modified ACE protein is catalytically active but entirely secreted from cells. Mice that express only this modified ACE have significant plasma ACE activity but no tissue-bound enzyme. These animals have low blood pressure, renal vascular thickening, and a urine concentrating defect. The phenotype is very similar to that of completely ACE-deficient mice previously reported, except that the renal pathology is less severe. These studies strongly support the concept that the tissue-bound ACE is essential to the control of blood pressure and the structure and function of the kidney. PMID:9153279

  16. Angiotensin converting enzyme in the brain, testis, epididymis, pituitary gland and adrenal gland

    SciTech Connect

    Strittmatter, S.M.

    1986-01-01

    (/sup 3/H)Captopril binds to angiotensin converting enzyme (ACE) in rat tissue homogenates. The pharmacology, regional distribution and copurification of (/sup 3/H)captopril binding with enzymatic activity demonstrate the selectivity of (/sup 3/H)captopril labeling of ACE. (/sup 3/H)Captopril binding to purified ACE reveals differences in cationic dependence and anionic regulation between substrate catalysis and inhibitor recognition. (/sup 3/H)Captopril association with ACE is entropically driven. The selectivity of (/sup 3/H)captopril binding permits autoradiographic localization of the ACE in the brain, male reproductive system, pituitary gland and adrenal gland. In the brain, ACE is visualized in a striatonigral neuronal pathway which develops between 1 and 7 d after birth. In the male reproductive system, (/sup 3/H)captopril associated silver grains are found over spermatid heads and in the lumen of seminiferous tubules in stages I-VIII and XII-XIV. In the pituitary gland, ACE is localized to the posterior lobe and patches of the anterior lobe. The adrenal medulla contains moderate ACE levels while low levels are found in the adrenal cortex. Adrenal medullary ACE is increased after hypophysectomy and after reserpine treatment. The general of ligand binding techniques for the study of enzymes is demonstrated by the specific labeling of another enzyme, enkephaline convertase, in crude tissue homogenates by the inhibitor (/sup 3/H)GEMSA.

  17. Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme.

    PubMed

    Eckman, Elizabeth A; Watson, Mona; Marlow, Laura; Sambamurti, Kumar; Eckman, Christopher B

    2003-01-24

    The abnormal accumulation of beta-amyloid (Abeta) in the brain is an early and invariant feature in Alzheimer's disease (AD) and is believed to play a pivotal role in the etiology and pathogenesis of the disease. As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Abeta. As with any peptide, however, the degree of Abeta accumulation is dependent not only on its production but also on its removal. In cell-based and in vitro models we have previously characterized endothelin-converting enzyme-1 (ECE-1) as an Abeta-degrading enzyme that appears to act intracellularly, thus limiting the amount of Abeta available for secretion. To determine the physiological significance of this activity, we analyzed Abeta levels in the brains of mice deficient for ECE-1 and a closely related enzyme, ECE-2. Significant increases in the levels of both Abeta40 and Abeta42 were found in the brains of these animals when compared with age-matched littermate controls. The increase in Abeta levels in the ECE-deficient mice provides the first direct evidence for a physiological role for both ECE-1 and ECE-2 in limiting Abeta accumulation in the brain and also provides further insight into the factors involved in Abeta clearance in vivo.

  18. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme.

    PubMed

    Rioli, Vanessa; Gozzo, Fabio C; Heimann, Andrea S; Linardi, Alessandra; Krieger, José E; Shida, Cláudio S; Almeida, Paulo C; Hyslop, Stephen; Eberlin, Marcos N; Ferro, Emer S

    2003-03-07

    Endopeptidase 24.15 (EC; ep24.15), neurolysin (EC; ep24.16), and angiotensin-converting enzyme (EC; ACE) are metallopeptidases involved in neuropeptide metabolism in vertebrates. Using catalytically inactive forms of ep24.15 and ep24.16, we have identified new peptide substrates for these enzymes. The enzymatic activity of ep24.15 and ep24.16 was inactivated by site-directed mutagenesis of amino acid residues within their conserved HEXXH motifs, without disturbing their secondary structure or peptide binding ability, as shown by circular dichroism and binding assays. Fifteen of the peptides isolated were sequenced by electrospray ionization tandem mass spectrometry and shared homology with fragments of intracellular proteins such as hemoglobin. Three of these peptides (PVNFKFLSH, VVYPWTQRY, and LVVYPWTQRY) were synthesized and shown to interact with ep24.15, ep24.16, and ACE, with K(i) values ranging from 1.86 to 27.76 microm. The hemoglobin alpha-chain fragment PVNFKFLSH, which we have named hemopressin, produced dose-dependent hypotension in anesthetized rats, starting at 0.001 microg/kg. The hypotensive effect of the peptide was potentiated by enalapril only at the lowest peptide dose. These results suggest a role for hemopressin as a vasoactive substance in vivo. The identification of these putative intracellular substrates for ep24.15 and ep24.16 is an important step toward the elucidation of the role of these enzymes within cells.

  19. Monocyte Tumor Necrosis Factor-α–Converting Enzyme Catalytic Activity and Substrate Shedding in Sepsis and Noninfectious Systemic Inflammation*

    PubMed Central

    O’Callaghan, David J. P.; O’Dea, Kieran P.; Scott, Alasdair J.; Takata, Masao

    2015-01-01

    Objectives: To determine the effect of severe sepsis on monocyte tumor necrosis factor-α–converting enzyme baseline and inducible activity profiles. Design: Observational clinical study. Setting: Mixed surgical/medical teaching hospital ICU. Patients: Sixteen patients with severe sepsis, 15 healthy volunteers, and eight critically ill patients with noninfectious systemic inflammatory response syndrome. Interventions: None. Measurements and Main Results: Monocyte expression of human leukocyte antigen-D-related peptide, sol-tumor necrosis factor production, tumor necrosis factor-α–converting enzyme expression and catalytic activity, tumor necrosis factor receptor 1 and 2 expression, and shedding at 48-hour intervals from day 0 to day 4, as well as p38-mitogen activated protein kinase expression. Compared with healthy volunteers, both sepsis and systemic inflammatory response syndrome patients’ monocytes expressed reduced levels of human leukocyte antigen-D-related peptide and released less sol-tumor necrosis factor on in vitro lipopolysaccharide stimulation, consistent with the term monocyte deactivation. However, patients with sepsis had substantially elevated levels of basal tumor necrosis factor-α–converting enzyme activity that were refractory to lipopolysaccharide stimulation and this was accompanied by similar changes in p38-mitogen activated protein kinase signaling. In patients with systemic inflammatory response syndrome, monocyte basal tumor necrosis factor-α–converting enzyme, and its induction by lipopolysaccharide, appeared similar to healthy controls. Changes in basal tumor necrosis factor-α–converting enzyme activity at day 0 for sepsis patients correlated with Acute Physiology and Chronic Health Evaluation II score and the attenuated tumor necrosis factor-α–converting enzyme response to lipopolysaccharide was associated with increased mortality. Similar changes in monocyte tumor necrosis factor-α–converting enzyme activity could

  20. Characterization of angiotensin I-converting enzyme from anterior gills of the mangrove crab Ucides cordatus.

    PubMed

    Bersanetti, Patrícia A; Nogueira, Regina F; Marcondes, Marcelo F; Paiva, Paulo B; Juliano, Maria A; Juliano, Luiz; Carmona, Adriana K; Zanotto, Flavia P

    2015-03-01

    Angiotensin I-converting enzyme (ACE) is a well-known metallopeptidase that is found in vertebrates, invertebrates and bacteria. We isolated from the anterior gill of the crab Ucides cordatus an isoform of ACE, here named crab-ACE, which presented catalytic properties closely resembling to those of mammalian ACE. The enzyme was purified on Sepharose-lisinopril affinity chromatography to apparent homogeneity and a band of about 72 kDa could be visualized after silver staining and Western blotting. Assays performed with fluorescence resonance energy transfer (FRET) selective ACE substrates Abz-FRK(Dnp)P-OH, Abz-SDK(Dnp)P-OH and Abz-LFK(Dnp)-OH, allowed us to verify that crab-ACE has hydrolytic profile very similar to that of the ACE C-domain. In addition, we observed that crab-ACE can hydrolyze the ACE substrates, angiotensin I and bradykinin. The enzyme was strongly inhibited by the specific ACE inhibitor lisinopril (Ki of 1.26 nM). However, in contrast to other ACE isoforms, crab-ACE presented a very particular optimum pH, being the substrate Abz-FRK(Dnp)-P-OH hydrolyzed efficiently at pH 9.5. Other interesting characteristic of crab-ACE was that the maximum hydrolytic activity was reached at around 45°C. The description of an ACE isoform in Ucides cordatus is challenging and may contribute to a better understanding of the biochemical function of this enzyme in invertebrates. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Naturally occurring active N-domain of human angiotensin I-converting enzyme.

    PubMed Central

    Deddish, P A; Wang, J; Michel, B; Morris, P W; Davidson, N O; Skidgel, R A; Erdös, E G

    1994-01-01

    Angiotensin I-converting enzyme (ACE, kininase II) is a single-chain protein containing two active site domains (named N- and C-domains according to position in the chain). ACE is bound to plasma membranes by its C-terminal hydrophobic transmembrane anchor. Ileal fluid, rich in ACE activity, obtained from patients after surgical colectomy was used as the source. Column chromatography, including modified affinity chromatography on lisinopril-Sepharose, yielded homogeneous ACE after only a 45-fold purification. N-terminal sequencing of ileal ACE and partial sequencing of CNBr fragments revealed the presence of an intact N terminus but only a single N-domain active site, ending between residues 443 and 559. Thus, ileal-fluid ACE is a unique enzyme differing from the widely distributed two-domain somatic enzyme or the single C-domain testicular (germinal) ACE. The molecular mass of ileal ACE is 108 kDa and when deglycosylated, the molecular mass is 68 kDa, indicating extensive glycosylation (37% by weight). In agreement with the results reported with recombinant variants of ACE, the ileal enzyme is less Cl(-)-dependent than somatic ACE; release of the C-terminal dipeptide from a peptide substrate was optimal in only 10 mM Cl-. In addition to hydrolyzing at the C-terminal end of peptides, ileal ACE efficiently cleaved the protected N-terminal tripeptide from the luteinizing hormone-releasing hormone and its congener 6-31 times faster, depending on the Cl- concentration, than the C-domain in recombinant testicular ACE. Thus we have isolated an active human ACE consisting of a single N-domain. We suggest that there is a bridge section of about 100 amino acids between the active N- and C-domains of somatic ACE where it may be proteolytically cleaved to liberate the active N-domain. These findings have potential relevance and importance in the therapeutic application of ACE inhibitors. PMID:8052664

  2. Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo.

    PubMed

    Gu, Y; Wu, J; Faucheu, C; Lalanne, J L; Diu, A; Livingston, D J; Su, M S

    1995-05-01

    Interleukin-1 beta converting enzyme (ICE) is composed of 10' (p10) and 20 kDa (p20) subunits, which are derived from a common 45 kDa precursor. Recent crystallographic studies have shown that ICE exists as a tetramer (p20/p10)2 in the crystal lattice. We provide evidence that the p10 and p20 subunits of ICE associate as oligomers in transfected COS cells. Using intragenic complementation, we show that the activity of a p10/p10 interface mutant defective in autoprocessing can be restored by co-expression with active site ICE mutants. Different active site mutants can also complement each other by oligomerization to form active ICE. These studies indicate that ICE precursor polypeptides may associate in different quaternary structures and that oligomerization is required for autoprocessing. Furthermore, integenic complementation of active site mutants of ICE and an ICE homolog restores autoprocessing activity, suggesting that hetero-oligomerization occurs between ICE homologs.

  3. [Serum angiotensin converting enzyme activity in patients with untreated essential arterial hypertension].

    PubMed

    Huskić, J; Kulenović, H

    1996-01-01

    The serum angiotensin converting enzyme (ACE) in 30 patients with untreated essential arterial hypertension, 30 patients with chronic renal failure accompanied with arterial hypertension and 30 healthy individuals was measured. The subjects of both sexes have been old 35-60 years. The serum ACE activity was determined by the spectrophotometric method, using Hip-Gly-Gly as a substrate. The serum ACE activity significantly increased in patients with arterial hypertension (32.48 +/- 2.02; X +/- SEM) and patients with chronical renal failure accompanied with arterial hypertension (37.10 +/- 1.45) when compared to the healthy individuals (20.83 +/- 1.33). Possible mechanisms of increasing ACE activity with the patients suffering of arterial hypertension are discussed.

  4. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants

    PubMed Central

    Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat

    2017-01-01

    Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109

  5. Angiotensin converting enzyme over expression in myelocytes enhances the immune response

    PubMed Central

    Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.; Giani, Jorge F.; Shah, Kandarp; Bernstein, Ellen; Janjulia, Tea; Koronyo, Yosef; Shi, Peng D.; Koronyo-Hamaoui, Maya; Fuchs, Sebastien; Shen, Xiao Z.

    2015-01-01

    Angiotensin converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis and several aspects of the immune response. ACE 10/10 mice over express ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization towards a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with either melanoma, bacterial infection or Alzheimer’s disease. The ACE 10/10 mice suggest that enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges. PMID:24633750

  6. Purification and characterization of angiotensin I converting enzyme inhibition peptides from sandworm Sipunculus nudus

    NASA Astrophysics Data System (ADS)

    Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang

    2017-10-01

    Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.

  7. Angiotensin-converting enzyme inhibitors side effects--physiologic and non-physiologic considerations.

    PubMed

    Sica, Domenic A

    2004-07-01

    Angiotensin-converting enzyme (ACE) inhibitors are increasingly recognized as having an important role in the treatment of hypertension and/or end-organ disease. The sheer number of ACE inhibitors in the United States--now numbering 10 different chemical entities--has created a sense of comfort with these compounds, which is particularly evident when these compounds are used in the patient with essential hypertension; conversely, when comorbid conditions are present in the ACE inhibitor-treated patient, circumstances change and physician vigilance becomes more of a necessity. ACE inhibitor therapy in patients with either cardiac and/or renal disease is as much an art as it is a science, and even in the most skilled hands can prove a challenging undertaking. This review discusses the physiologic and non-physiologic basis for side effects with ACE inhibition.

  8. Medicinal Chemistry and Therapeutic Relevance of Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    2007-01-01

    Chemical Basis of Drug Action (PHA337 and PHA447) is a required 2-semester course sequence taught to second-professional year pharmacy students at Creighton University in both the campus and distance-education pathways. The course emphasizes integration of previous content, critical thinking, and therapeutic relevance. The content and learning experiences are organized to transition the students' thinking through a constructive process that provides ample opportunities to recall and integrate previous knowledge, learn and apply new knowledge, establish a logical connection between the science and its therapeutic relevance, and finally to apply the science knowledge to predict clinical activity and clinical outcomes as can be expected in a patient. This manuscript is based on the angiotensin converting enzyme inhibitors as an illustration of how our course objectives are accomplished. PMID:19503707

  9. Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine

    2009-05-01

    Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).

  10. Advances in angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs).

    PubMed

    Swamy, K M K; Lin, Mei-Jung; Sun, Chung-Ming

    2003-09-01

    Hypertension remains one of the most unmet medical needs of this century. While many drugs are available for treating hypertension, efforts are still insufficient to find potent therapeutic agents since cause for hypertension in all patients is not the same. Angiotensin-converting enzyme inhibitors (ACEIs) have emerged as an important class of drugs in the treatment of hypertension, congestive heart failure (CHF), protenuric renal disease, myocardial infarction and stroke. This class of drugs blocks the conversion of angiotensin I to angiotensin II and prevents bradykinin breakdown. However, the lack of specificity of ACEIs leads to the frequent side effects like cough and angio-oedema. Recently developed, specific non-peptide and orally active angiotensin receptor blockers (ARBs) have become the prime therapeutics as they alone or co-administration with ACE inhibitors can control the renin angiotensin disorders. This review explores recent developments in the design, synthesis, and structural modifications of ACE inhibitors as well as angiotensin receptor blockers.

  11. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco.

    PubMed

    Yang, Yanjun; Marczak, Ewa D; Yokoo, Megumi; Usui, Hachiro; Yoshikawa, Masaaki

    2003-08-13

    Four new inhibitory peptides for angiotensin I-converting enzyme (ACE), that is, MRWRD, MRW, LRIPVA, and IAYKPAG, were isolated from the pepsin-pancreatin digest of spinach Rubisco with the use of HPLC. IC(50) values of individual peptides were 2.1, 0.6, 0.38, and 4.2 microM, respectively. MRW and MRWRD had an antihypertensive effect after oral administration to spontaneously hypertensive rats. Maximal reduction occurred 2 h after oral administration of MRW, whereas MRWRD showed maximal decrease 4 h after oral administration at doses of 20 and 30 mg/kg, respectively. IAYKPAG also exerted antihypertensive activity after oral administration at the dose of 100 mg/kg, giving a maximum decrease 4 h after oral administration. IAYKP, IAY, and KP, the fragment peptides of IAYKPAG, also exerted antihypertensive activity. LRIPVA [corrected] did not show any antihypertensive effect at a dose of 100 mg/kg despite its potent ACE-inhibitory activity.

  12. Angiotensin-converting enzyme inhibition in myocardial infarction--Part 1: Clinical data.

    PubMed

    Huckell, V F; Bernstein, V; Cairns, J A; Crowell, R; Dagenais, G R; Higginson, L A; Isserow, S; Laramée, P; Liu, P; McCans, J L; Orchard, R C; Prewitt, R; Quinn, B P; Samson, M; Turazza, F; Warnica, J W; Wielgosz, A

    1997-02-01

    There is an increasing body of clinical trial evidence to support the use of angiotensin-converting enzyme (ACE) inhibitors in the management of patients following myocardial infarction (MI). Enthusiasm for the use of ACE inhibitors in the acute phase of MI had previously been tempered by the adverse results of an early trial. However, exciting new information is available from several large, randomized studies that has not only quelled those initial concerns but also attests to the efficacy of using this class of medication in the first 24 h after an acute MI. A Canadian National Opinion Leader Symposium was held in November 1995 to review the results of the major ACE inhibitor clinical trials and to discuss key issues and controversies surrounding their use in acute MI. The focus of this paper, the first of two parts, is on the results of the major ACE inhibitor clinical trials.

  13. Syndrome of inappropriate secretion of antidiuretic hormone associated with angiotensin-converting enzyme inhibitor administration.

    PubMed

    Murakami, Tomoaki; Horibata, Yoko; Morimoto, Yasuko; Tateno, Shigeru; Kawasoe, Yasutaka; Niwa, Koichiro

    2013-06-01

    Angiotensin-converting enzyme inhibitors (ACEI's) are an important medication in the treatment of congestive heart failure. However, ACEIs may cause harmful side effects, such as the syndrome of inappropriate secretion of antidiuretic hormone (SIADH), which is a rare but important side effect. We describe here a case of SIADH associated with ACEI administration in a 6-year-old boy with restrictive cardiomyopathy. After recovery from acute exacerbation of congestive heart failure by tolvaptan administration, an ACEI (cilazapril) was started to decrease the production of angiotensin II, which upregulates serum antidiuretic hormone secretion. The patient's heart failure symptoms worsened, including accumulation of right pleural effusion and ascites, after the initiation of ACEI administration. Cessation of ACEI administration dramatically improved his symptoms. Because it is difficult to distinguish SIADH associated with ACEI from worsening congestive heart failure, the possibility of fluid retention due to ACEI administration should always be considered when this agent is administered to patients with heart failure.

  14. Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors.

    PubMed

    Duncan, A C; Jäger, A K; van Staden, J

    1999-12-15

    Twenty plants used by traditional healers in South Africa for the treatment of high blood pressure were investigated for their anti-hypertensive properties, utilizing the angiotensin converting enzyme assay. A hit rate of 65% was achieved, with the highest inhibition (97%) obtained by Adenopodia spicata leaves. A further seven plants exhibited an inhibition greater than 70% and five more over 50%. The leaves of the plants showed the greatest levels of inhibition. There was little difference in the overall hit rate between ethanolic and aqueous extracts, although in most cases there was a marked difference in activity between aqueous and ethanolic extracts from the same species. Plants exhibiting inhibition levels greater than 50% were further tested for the presence of tannins in order to eliminate possible false positives. Active plants that did not contain tannins were Agapanthus africanus, Agave americana, Clausena anisata, Dietes iridioides, Mesembruanthemum spp., Stangeria eriopus and Tulbaghia violacea.

  15. Effect of bilirubin on the spectrophotometric and radionuclide assay for serum angiotensin-converting enzyme

    SciTech Connect

    Saxe, A.W.; Hollinger, M.A.; Essam, T.

    1986-01-01

    The effect of bilirubin on serum angiotensin-converting enzyme (ACE) activity was studied with spectrophotometric and radionuclide assays. In the spectrophotometric assay addition of bilirubin to normal serum from dog, mouse, and human produced a dose-related inhibition of ACE activity. A 50% decrease in human ACE activity was produced by the addition of approximately 250 mg/L in vitro. Serum from icteric patients with elevated bilirubin was also associated with a reduction in ACE activity in the spectrophotometric assay. A 50% decrease in ACE activity in these samples was associated with a serum bilirubin of approximately 220 mg/L. In the radionuclide assay, however, addition of bilirubin to normal human serum failed to reduce measured ACE activity. The use of a radionuclide assay for serum ACE in clinical samples offers the advantage of less interference from serum bilirubin.

  16. Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir.

    PubMed

    Quirós, A; Hernández-Ledesma, B; Ramos, M; Amigo, L; Recio, I

    2005-10-01

    In this study, a potent angiotensin-converting enzyme (ACE)-inhibitory activity was found in a commercial kefir made from caprine milk. The low molecular mass peptides released from caseins during fermentation were mainly responsible for this activity. Sixteen peptides were identified by HPLC-tandem mass spectrometry. Two of these peptides, with sequences PYVRYL and LVYPFTGPIPN, showed potent ACE-inhibitory properties. The impact of gastrointestinal digestion on ACE-inhibitory activity of kefir peptides was also evaluated. Some of these peptides were resistant to the incubation with pepsin followed by hydrolysis with Corolase PP. The ACE-inhibitory activity after simulated digestion was similar to or slightly lower than unhydrolyzed peptides, except for peptide beta-casein f(47-52) (DKIHPF), which exhibited an activity 8 times greater after hydrolysis.

  17. Distribution of angiotensin converting enzyme in sheep hypothalamus and medulla oblongata visualized by in vitro autoradiography

    SciTech Connect

    Chai, S.Y.; McKinley, M.J.; Mendelsohn, F.A.

    1987-01-01

    In vitro autoradiographic mapping of angiotensin converting enzyme (ACE) in sheep brain using the specific ACE inhibitor, /sup 125/I-351A, revealed very high densities of binding in large blood vessels and choroid plexus. In the a very high density of labelling occurred in the organum vasculosum of the lamina terminalis and median eminence and a high density in the subfornical organ and moderate density in supraoptic, suprachiasmatic, arcuate and paraventricular nuclei. All fiber tracts were unlabelled. In the medulla oblongata, a very high density of binding was detected in the area postrema and a high density in the nucleus of the solitary tract and dorsal motor nucleus of the vagus; a moderate density was found in the substantia gelatinosa of the spinal tract and the inferior olivary nucleus.

  18. Structure based drug design of angiotensin-I converting enzyme inhibitors.

    PubMed

    Anthony, C S; Masuyer, G; Sturrock, E D; Acharya, K R

    2012-01-01

    Cardiovascular disease (CVD) is responsible for ∼27% of deaths worldwide, with 80% of these occuring in developing countries. Hypertension is one of the most important treatable factors in the prevention of CVD. Angiotensin-I converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase that is a key regulator of blood pressure as a result of its critical role in the reninangiotensin- aldosterone and kallikrien-kinin systems. Consequently, ACE is an important drug target in the treatment of CVD. ACE is primarily known for its ability to cleave angiotensin-I to the vasoactive octapeptide angiotensin-II, but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-seryl-aspartyl-lysyl-proline (acetyl-SDKP), a physiological modulator of hematopoiesis. Numerous ACE inhibiors are available clinically, and these are generally effective in treating hypertension. However some adverse effects are associated with ACE inhibition, such as the persistent dry cough and the potentially fatal angioedema. The solution of ACE crystal structures over the last decade has facilitated rational drug design which has contributed to the development of domain-selective ACE inhibitors, the most notable of which include RXP407 (N-domain) and RXPA380 (C-domain), which in principle may herald new therapeutic approaches for ACE inhibition. Additionally, dual inhibitors to ACE and other targets such as neprilysin, endothelin converting enzyme and chymase have been developed. The success of ACE inhibitors has also led to the search for novel inhibitors in food and natural products and the structure guided screening of such libraries may well reveal a number of new ACE inhibitors.

  19. Endothelin-converting enzymes degrade α-synuclein and are reduced in dementia with Lewy bodies.

    PubMed

    Miners, J Scott; Love, Seth

    2017-02-07

    We have examined the roles of the endothelin-converting enzyme-1 and -2 (ECE-1 and ECE-2) in the homeostasis of α-synuclein (α-syn) and pathogenesis of Lewy body disease. The ECEs are named for their ability to convert inactive big endothelin to the vasoactive peptide endothelin-1 (EDN1). We have found that ECE-1 and ECE-2 cleave and degrade α-syn in vitro and siRNA-mediated knockdown of ECE-1 and ECE-2 in SH-SY5Y neuroblastoma cells significantly increased α-syn both intracellularly (within the cell lysate) (P < 0.05 for both ECE-1 and -2) and extracellularly (in the surrounding medium) (P < 0.05 for ECE-1 and P = 0.07 for ECE-2). Double immunofluorescent labelling showed co-localisation of ECE-1 and ECE-2 with α-syn within the endolysosomal system (confirmed by a proximity ligation assay). To assess the possible relevance of these findings to human Lewy body disease, we measured ECE-1 and ECE-2 levels by sandwich ELISA in post-mortem samples of cingulate cortex (a region with a predilection for Lewy body pathology) in dementia with Lewy bodies (DLB) and age-matched controls. ECE-1 (P < 0.001) and ECE-2 (P < 0.01) levels were significantly reduced in DLB and both enzymes correlated inversely with the severity of Lewy body pathology as indicated by the level of α-syn phosphorylated at Ser129 (r = -0.54, P < 0.01 for ECE-1 and r = -0.49, P < 0.05 for ECE-2). Our novel findings suggest a role for ECEs in the metabolism of α-syn that could contribute to the development and progression of DLB. This article is protected by copyright. All rights reserved.

  20. Serum Angiotensin Converting Enzyme and the Obstructive Sleep Apnea Hypopnea Syndrome

    PubMed Central

    Benjamin, John Amit; Moller, Maria; Ebden, Philip; Bartle, Ionah; Lewis, Keir E.

    2008-01-01

    Study Objectives: We wanted to see if the obstructive sleep apnea hypopnea syndrome (OSAHS) causes hypertension and endothelial dysfunction through activation of the angiotensin-converting enzyme (ACE). Methods: A cross-sectional followed by a prospective, interventional study in a sleep disordered breathing clinic in a UK Hospital. We measured baseline serum ACE activity and ACE allele frequencies in 26 consecutive (untreated) OSAHS patients, 26 consecutive Sleepy Snorers, and 26 healthy (non-sleepy) controls. The OSAHS and Sleepy Snorers had serum ACE repeated after 6 months, with the OSAHS group receiving CPAP in the interim. Results: There was no difference in baseline mean serum ACE among OSAHS (33 IU/L), sleepy snorers (36 IU/L), and healthy controls (32 IU/L), p = 0.63. There was no difference in serum ACE activity between OSAHS and sleepy snorers after 6 months (p = 0.9) and no change in serum ACE from baseline in either group. In particular, there was no change in ACE activity in the OSAHS group on an intention to treat basis or when limiting analysis was limited to only “good” CPAP users (n = 16, p = 0.68), despite significant improvements in their Epworth scores and blood pressure and normalization of the 4% dip-rate. Conclusions: Changes in serum ACE activity do not occur in OSAHS; therefore it is unlikely to be associated with the hypertension and other cardiovascular dysfunction often reported in OSAHS. Citation: Benjamin JA; Moller M; Ebden P; Bartle I; Lewis KE. Serum angiotensin converting enzyme and the obstructive sleep apnea hypopnea syndrome. J Clin Sleep Med 2008;4(4):325–331. PMID:18763423

  1. Angiotensin-converting enzyme 2 ectodomain shedding cleavage-site identification: determinants and constraints.

    PubMed

    Lai, Zon W; Hanchapola, Iresha; Steer, David L; Smith, A Ian

    2011-06-14

    ADAM17, also known as tumor necrosis factor α-converting enzyme, is involved in the ectodomain shedding of many integral membrane proteins. We have previously reported that ADAM17 is able to mediate the cleavage secretion of the ectodomain of human angiotensin-converting enzyme 2 (ACE2), a functional receptor for the severe acute respiratory syndrome coronavirus. In this study, we demonstrate that purified recombinant human ADAM17 is able to cleave a 20-amino acid peptide mimetic corresponding to the extracellular juxtamembrane region of human ACE2 between Arg(708) and Ser(709). A series of peptide analogues were also synthesized, showing that glutamate subtitution at Arg(708) and/or Arg(710) attenuated the cleavage process, while alanine substitution at Arg(708) and/or Ser(709) did not inhibit peptide cleavage by recombinant ADAM17. Analysis of CD spectra showed a minimal difference in the secondary structure of the peptide analogues in the buffer system used for the ADAM17 cleavage assay. The observation of the shedding profiles of ACE2 mutants expressing CHO-K1 and CHO-P cells indicates that the Arg(708) → Glu(708) mutation and the Arg(708)Arg(710) → Glu(708)Glu(710) double mutation produced increases in the amount of ACE2 shed when stimulated by phorbol ester PMA. In summary, we have demonstrated that ADAM17 is able to cleave ACE2 peptide sequence analogues between Arg(708) and Ser(709). These findings also indicate that Arg(708) and Arg(710) play a role in site recognition in the regulation of ACE2 ectodomain shedding mediated by ADAM17.

  2. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean.

    PubMed

    Takahashi, Saori; Yoshiya, Taku; Yoshizawa-Kumagaye, Kumiko; Sugiyama, Toshihiro

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase which is highly homologous to angiotensin-converting enzyme (ACE). ACE2 produces vasodilator peptides angiotensin 1-7 from angiotensin II. In the present study, we synthesized various internally quenched fluorogenic (IQF) substrates (fluorophore-Xaa-Pro-quencher) based on the cleavage site of angiotensin II introducing N-terminal fluorophore N-methylanthranilic acid (Nma) and C-terminal quencher N(ε)-2,4- dinitrophenyl-lysine [Lys(Dnp)]. The synthesized mixed substrates "Nma-Xaa-Pro-Lys(Dnp)" were hydrolyzed by recombinant human (rh) ACE2. The amount of each product was determined by liquid chromatography mass spectrometry (LC-MS) with fluorescence detection and it was found that Nma-His-Pro-Lys(Dnp) is the most suitable substrate for rhACE2. The K(m), k(cat), and k(cat)/K(m) values of Nma-His-Pro-Lys(Dnp) on rhACE2 were determined to be 23.3 μM, 167 s(-1), and 7.17 μM(-1) s(-1), respectively. Using the rhACE2 and the newly developed IQF substrate, we found rhACE2 inhibitory activity in soybean and isolated the active compound soybean ACE2 inhibitor (ACE2iSB). The physicochemical data on the isolated ACE2iSB were identical to those of nicotianamine. ACE2iSB strongly inhibited rhACE2 activity with an IC50 value of 84 nM. This is the first demonstration of an ACE2 inhibitor from foodstuffs.

  3. Prophylactic treatment of migraine with angiotensin converting enzyme inhibitor (lisinopril): randomised, placebo controlled, crossover study

    PubMed Central

    Schrader, Harald; Stovner, Lars Jacob; Helde, Grethe; Sand, Trond; Bovim, Gunnar

    2001-01-01

    Objective To determine the efficacy of an angiotensin converting enzyme inhibitor in the prophylaxis of migraine. Design Double blind, placebo controlled, crossover study. Setting Neurological outpatient clinic. Participants Sixty patients aged 19-59 years with migraine with two to six episodes a month. Interventions Treatment period of 12 weeks with one 10 mg lisinopril tablet once daily for one week then two 10 mg lisinopril tablets once daily for 11 weeks, followed by a two week wash out period. Second treatment period of one placebo tablet once daily for one week and then two placebo tablets for 11 weeks. Thirty participants followed this schedule, and 30 received placebo followed by lisinopril. Main outcome measures Primary end points: number of hours with headache, number of days with headache, number of days with migraine. Secondary end points: headache severity index, use of drugs for symptomatic relief, quality of life and number of days taken as sick leave, acceptability of treatment. Results In the 47 participants with complete data, hours with headache, days with headache, days with migraine, and headache severity index were significantly reduced by 20% (95% confidence interval 5% to 36%), 17% (5% to 30%), 21% (9% to 34%), and 20% (3% to 37%), respectively, with lisinopril compared with placebo. Days with migraine were reduced by at least 50% in 14 participants for active treatment versus placebo and 17 patients for active treatment versus run-in period. Days with migraine were fewer by at least 50% in 14 participants for active treatment versus placebo. Intention to treat analysis of data from 55 patients supported the differences in favour of lisinopril for the primary end points. Conclusion The angiotensin converting enzyme inhibitor, lisinopril, has a clinically important prophylactic effect in migraine. PMID:11141144

  4. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing.

    PubMed

    de Almeida, Fernando G; Vanzolini, Kenia L; Cass, Quezia B

    2017-01-05

    Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC50) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening.

  5. Targeting angiotensin-converting enzyme 2 as a new therapeutic target for cardiovascular diseases.

    PubMed

    Parajuli, Nirmal; Ramprasath, Tharmarajan; Patel, Vaibhav B; Wang, Wang; Putko, Brendan; Mori, Jun; Oudit, Gavin Y

    2014-07-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes several vasoactive peptides, including angiotensin II (Ang-II; a vasoconstrictive/proliferative peptide), which it converts to Ang-(1-7). Ang-(1-7) acts through the Mas receptor to mediate vasodilatory/antiproliferative actions. The renin-angiotensin system involving the ACE-Ang-II-Ang-II type-1 receptor (AT1R) axis is antagonized by the ACE2-Ang-(1-7)-Mas receptor axis. Loss of ACE2 enhances adverse remodeling and susceptibility to pressure and volume overload. Human recombinant ACE2 may act to suppress myocardial hypertrophy, fibrosis, inflammation, and diastolic dysfunction in heart failure patients. The ACE2-Ang-(1-7)-Mas axis may present a new therapeutic target for the treatment of heart failure patients. This review is mainly focused on the analysis of ACE2, including its influence and potentially positive effects, as well as the potential use of human recombinant ACE2 as a novel therapy for the treatment cardiovascular diseases, such as hypertension and heart failure.

  6. The presence of two types of prorenin converting enzymes in the mouse submandibular gland.

    PubMed

    Kim, W S; Nakayama, K; Murakami, K

    1991-11-18

    We have recently demonstrated, by protein and cDNA sequence analyses, that prorenin converting enzyme (PRECE) in the ICR mouse submandibular gland is identical to the epidermal growth factor-binding protein (EGF-BP) type B, the mGK-13 gene product identified in Balb/c mouse. However, in the course of cDNA cloning, we noticed the presence of the other cDNA type highly homologous but not identical to the PRECE cDNA. The sequence of the newly identified cDNA was identical to that of the pSGP-2 cDNA cloned from NMRI mice, which also encodes EGF-BP type B different at 9 out of 261 amino acids from the mGK-13 product. Although this difference has been explained by strain polymorphism, our results indicate that these two proteins are distinct gene products. The product of the newly identified cDNA also had a prorenin converting activity. Thus, the products of both cDNAs identified in previous and present studies are involved in maturation of two bioactive polypeptides, renin and EGF.

  7. The role of angiotensin-converting enzyme polymorphism in congestive heart failure.

    PubMed

    Pilati, Mara; Cicoira, Mariantonietta; Zanolla, Luisa; Nicoletti, Ilaria; Muraglia, Simone; Zardini, Piero

    2004-01-01

    Angiotensin-converting enzyme (ACE) is a zinc metallopeptidase, with primary known functions of converting angiotensin I into the vasoactive and aldosterone-stimulating peptide angiotensin II and inactivating bradykinin. There is high variability among individuals in ACE concentrations, mainly due to the presence of a genetic polymorphism. The ACE gene has, in fact, insertion/deletion polymorphism in intron 16, consisting of a 287-base pair Alu repeat sequence, with three genotypes: insertion polymorphism, insertion/deletion polymorphism, and deletion polymorphism. The genetic effect accounts for 47% of the total variance of serum ACE. The determination of this polymorphism has allowed researchers to study the implications of the ACE gene in many case-control studies of cardiovascular disease, including myocardial infarction and hypertrophic and dilated cardiomyopathy. We review the current knowledge about the ACE gene polymorphism and its implications in heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Interpretation of the results of studies about the role of this polymorphism are controversial. The repetition of epidemio-genetic studies and the creation of adequate experimental studies will help to definitively establish the pathogenetic role of the permanent increase in ACE expression associated with the deletion polymorphism genotype.

  8. The Dynamic Nonprime Binding of Sampatrilat to the C-Domain of Angiotensin-Converting Enzyme.

    PubMed

    Sharma, Rajni K; Espinoza-Moraga, Marlene; Poblete, Horacio; Douglas, Ross G; Sturrock, Edward D; Caballero, Julio; Chibale, Kelly

    2016-12-27

    Sampatrilat is a vasopeptidase inhibitor that inhibits both angiotensin I-converting enzyme (ACE) and neutral endopeptidase. ACE is a zinc dipeptidyl carboxypeptidase that contains two extracellular domains (nACE and cACE). In this study the molecular basis for the selectivity of sampatrilat for nACE and cACE was investigated. Enzyme inhibition assays were performed to evaluate the in vitro ACE domain selectivity of sampatrilat. The inhibition of the C-domain (Ki = 13.8 nM) by sampatrilat was 12.4-fold more potent than that for the N-domain (171.9 nM), indicating differences in affinities for the respective ACE domain binding sites. Interestingly, replacement of the P2 group of sampatrilat with an aspartate abrogated its C-selectivity and lowered the potency of the inhibitor to activities in the micromolar range. The molecular basis for this selective profile was evaluated using molecular modeling methods. We found that the C-domain selectivity of sampatrilat is due to occupation of the lysine side chain in the S1 and S2 subsites and interactions with Glu748 and Glu1008, respectively. This study provides new insights into ligand interactions with the nonprime binding site that can be exploited for the design of domain-selective ACE inhibitors.

  9. [The effect of duration of endemic nephropathy on serum angiotensin converting enzyme activity].

    PubMed

    Huskić, J; Kulenović, H

    1995-01-01

    The effects of duration of disease on serum angiotensin converting enzyme (ACE) was measured in 60 patients with endemic nephropathy (30 men and 30 women) of age between 30 and 60 years. There were formed three groups: patients with endemic nephropathy and duration of disease less than 5 years (n = 23), patients with endemic nephropathy and duration of disease between 5-10 years (n = 17); and patients with endemic nephropathy and duration of disease 10 years and more (n = 20). The serum ACE activity was determined by the spectrophotometric method using Hip-Gly-Gly as a substrate. The activity of enzyme were expressed in units corresponding to 1 nmol of the hippuric acid that was released by the hydrolysis of Hip-Gly-Gly per minute and ml of serum. The results showed that serum ACE activity decreased in group of patients with endemic nephropathy and duration of disease 10 years and more (29.21 +/- 2.25; X +/- SEM) in comparison with group of patients with endemic nephropathy and the duration of disease less than 5 years (35.57 +/- 1.75), which was statistically significant (p < 0.03).

  10. Endothelin-converting enzyme-1 (ECE-1) is post-transcriptionally regulated by alternative polyadenylation.

    PubMed

    Whyteside, Alison R; Turner, Anthony J; Lambert, Daniel W

    2014-01-01

    Endothelin-converting enzyme-1 (ECE-1) is the enzyme predominantly responsible for producing active endothelin-1 (ET-1), a mitogenic peptide implicated in the aetiology of a number of diseases, including cancer. Elevated levels of ECE-1 have been observed in a range of malignancies, with high expression conferring poor prognosis and aiding the acquisition of androgen independence in prostate cancer. The mechanisms regulating the expression of ECE-1 in cancer cells are poorly understood, hampering the development of novel therapies targeting the endothelin axis. Here we provide evidence that the expression of ECE-1 is markedly inhibited by its 3'UTR, and that alternative polyadenylation (APA) results in the production of ECE-1 transcripts with truncated 3'UTRs which promote elevated protein expression. Abolition of the ECE-1 APA sites reduced protein expression from a reporter vector in prostate cancer cells, suggesting these sites are functional. This is the first study to identify ECE-1 as a target for APA, a regulatory mechanism aberrantly activated in cancer cells, and provides novel information about the mechanisms leading to ECE-1 overexpression in malignant cells.

  11. Joseph Rudinger memorial lecture: Unexpected functions of angiotensin converting enzyme, beyond its enzymatic activity.

    PubMed

    Martinez, Jean

    2017-10-01

    Angiotensin converting enzyme (ACE) is a well-known enzyme, largely studied for its action on hypertension, as it produces angiotensin II from angiotensin I. This paper describes two original behaviours of ACE. We showed that ACE could hydrolyse gastrin, a neuropeptide from the gastrointestinal tract, releasing the C-terminal amidated dipeptide H-Asp-Phe-NH2 . This dipeptide is believed to be involved in the gastrin-induced acid secretion in the stomach. This hypothetic mechanism of action of gastrin resulted in a strategy to rationally design gastrin receptor antagonists. Beyond, we showed that the brain renin angiotensin system (RAS) could be activated by a new characterized peptide named acein, resulting in stimulation of dopamine release within the striatum. This new and original 'receptor-like' activity for brain membrane-bound ACE is quite significant taking into account the role of dopamine in the brain, particularly in neurodegenerative diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  12. Heterodimerization of endothelin-converting enzyme-1 isoforms regulates the subcellular distribution of this metalloprotease.

    PubMed

    Muller, Laurent; Barret, Alain; Etienne, Eric; Meidan, Rina; Valdenaire, Olivier; Corvol, Pierre; Tougard, Claude

    2003-01-03

    Endothelin-converting enzyme (ECE) is a membrane metalloprotease that generates endothelin from its direct precursor big endothelin. Four isoforms of ECE-1 are produced from a single gene through the use of alternate promoters. These isoforms share the same extracellular catalytic domain and contain unique cytosolic tails, which results in their specific subcellular targeting. We investigated the distribution of ECE-1 isoforms in transfected AtT-20 neuroendocrine cells. Whereas ECE-1a and 1c were present at the plasma membrane, ECE-1b and ECE-1d were retained inside the cells. We found that both intracellular isoforms were concentrated in the endosomal system: ECE-1d in recycling endosomes, and ECE-1b in late endosomes/multivesicular bodies. Leucine-based motifs were involved in the intracellular retention of these isoforms, and the targeting of ECE-1b to the degradation pathway required an additional signal in the N terminus. The concentration of ECE-1 isoforms in the endosomal system suggested new functions for these enzymes. Potential novel functions include redistribution of other isoforms through direct interaction. We have showed that ECE-1 isoforms could heterodimerize, and that in such heterodimers the ECE-1b targeting signal was dominant. Interaction of a plasma membrane isoform with ECE-1b resulted in its intracellular localization and decreased its extracellular activity. These data demonstrated that the targeting signals specific for ECE-1b constitute a regulatory domain per se that could modulate the localization and the activity of other isoforms.

  13. Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme

    PubMed Central

    Masuyer, Geoffrey; Douglas, Ross G.; Sturrock, Edward D.; Acharya, K. Ravi

    2015-01-01

    Angiotensin-I converting enzyme (ACE) is a zinc dipeptidylcarboxypeptidase with two active domains and plays a key role in the regulation of blood pressure and electrolyte homeostasis, making it the principal target in the treatment of cardiovascular disease. More recently, the tetrapetide N-acetyl-Ser–Asp–Lys–Pro (Ac-SDKP) has emerged as a potent antifibrotic agent and negative regulator of haematopoietic stem cell differentiation which is processed exclusively by ACE. Here we provide a detailed biochemical and structural basis for the domain preference of Ac-SDKP. The high resolution crystal structures of N-domain ACE in complex with the dipeptide products of Ac-SDKP cleavage were obtained and offered a template to model the mechanism of substrate recognition of the enzyme. A comprehensive kinetic study of Ac-SDKP and domain co-operation was performed and indicated domain interactions affecting processing of the tetrapeptide substrate. Our results further illustrate the molecular basis for N-domain selectivity and should help design novel ACE inhibitors and Ac-SDKP analogues that could be used in the treatment of fibrosis disorders. PMID:26403559

  14. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    PubMed

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  15. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  16. Effects of biological drug adalimumab on tumour necrosis factor-alpha-converting enzyme activation.

    PubMed

    Lisi, Sabrina; Sisto, Margherita

    2010-01-01

    Tumour necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE) is a membrane-bound metalloprotease and disintegrin. It is produced by a number of host cells and is known to shed and release cell-bound cytokines, particularly members of the TNF family. No investigations into the regulation of this enzyme by autoantibodies have been reported. In this study, we tested the hypothesis that anti-Ro/SSA autoantibodies, purified from IgG fractions of patients with primary Sjögren's syndrome, are capable to regulate TACE expression and activation in human salivary gland epithelial cells (SGEC). We also evaluated the potential physiological and therapeutic consequences of TNF-alpha blocking by the biological agent adalimumab, the first fully human (100% human peptide sequences) therapeutic anti-TNF-alpha antibody, on post-translational regulation of TACE. Taken together, our results show a dose-dependent increase in TACE expression in anti-Ro/SSA Abs-treated SGEC, followed by internalization, pro-domain shedding and activation of TACE protein. Adalimumab treatment brought TACE expression to levels than those observed in untreated SGEC. These findings, showing the presence of autoantibodies-dependent mechanisms by which TACE levels are regulated in human SGECs, may have implications in the context of current investigations on the pathological role of autoantibodies.

  17. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility.

    PubMed

    Esther, C R; Howard, T E; Marino, E M; Goddard, J M; Capecchi, M R; Bernstein, K E

    1996-05-01

    Mammals produce two isozymes of angiotensin-converting enzyme (ACE). Somatic ACE plays an important role in the control of blood pressure. The function of testis ACE, produced by male and germ cells, is not known. To examine the roles of these isozymes, we used targeted homologous recombination to introduce a modified ACE allele into a mouse line. Mice homozygous for this mutant allele lack both ACE isozymes and have markedly reduced blood pressures. Contrary to a previous report, we found heterozygous male mice to have normal blood pressures. Homozygous mutant mice also have severe renal disease. The renal papilla is markedly reduced, and the intrarenal arteries exhibit vascular hyperplasia associated with a perivascular inflammatory infiltrate. These animals cannot effectively concentrate urine. They also have an abnormally low urinary sodium to potassium ratio despite reduced levels of aldosterone. Homozygous mutant male mice sire significantly smaller litters than wild-type male mice; however, no defect in sperm number, morphology, or motility was detected. ACE-deficient animals demonstrate the role of this enzyme in systemic blood pressure, renal development and function, and male fertility.

  18. Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke.

    PubMed

    Bennion, Douglas M; Rosado, Christian A; Haltigan, Emily A; Regenhardt, Robert W; Sumners, Colin; Waters, Michael F

    2016-07-01

    Levels of angiotensin converting enzyme 2 (ACE2), a cardio and neuro-protective carboxypeptidase, are dynamically altered after stroke in preclinical models. We sought to characterize the previously unexplored changes in serum ACE2 activity of stroke patients and the mechanism of these changes. Serum samples were obtained from patients during acute ischemic stroke (n=39), conditions mimicking stroke (stroke-alert, n=23), or from control participants (n=20). Enzyme activity levels were analyzed by fluorometric assay and correlated with clinical variables by regression analyses. Serum ACE2 activity was significantly lower in acute ischemic stroke as compared to both control and stroke-alert patients, followed by an increase to control levels at three days. Serum ACE2 activity significantly correlated with the presence of ischemic stroke after controlling for other factors (P=0.01). Additional associations with ACE2 activity included a positive correlation with systolic blood pressure at presentation in stroke-alert (R(2)=0.24, P=0.03), while stroke levels showed no correlation (R(2)=0.01, P=0.50). ACE2 sheddase activity was unchanged between groups. These dynamic changes in serum ACE2 activity in stroke, which concur with preclinical studies, are not likely to be driven primarily by acute changes in blood pressure or sheddase activity. These findings provide new insight for developing therapies targeting this protective system in ischemic stroke. © The Author(s) 2016.

  19. Molecular diversity of tuliposide A-converting enzyme in the tulip.

    PubMed

    Nomura, Taiji; Tsuchigami, Aya; Ogita, Shinjiro; Kato, Yasuo

    2013-01-01

    Tuliposide A-converting enzyme (TCEA) catalyzes the conversion of 6-tuliposide A to its lactonized aglycon, tulipalin A, in the tulip (Tulipa gesneriana). The TgTCEA gene, isolated previously from petals, was transcribed in all tulip tissues but not in the bulbs despite the presence of TCEA activity, which allowed prediction of the presence of a TgTCEA isozyme gene preferentially expressed in the bulbs. Here, the TgTCEA-b gene, the TgTCEA homolog, was identified in bulbs. TgTCEA-b polypeptides showed approximately 77% identity to the petal TgTCEA. Functional characterization of the recombinant enzyme verified that TgTCEA-b encoded the TCEA. Moreover, the TgTCEA-b was found to be localized to plastids, as found for the petal TgTCEA. Transcript analysis revealed that TgTCEA-b was functionally transcribed in the bulb scales, unlike the TgTCEA gene, whose transcripts were absent there. In contrast, TgTCEA-b transcripts were in the minority in other tissues where TgTCEA transcripts were dominant, indicating a tissue preference for the transcription of those isozyme genes.

  20. Radiation damage to the lung: mitigation by angiotensin converting enzyme (ACE) inhibitors

    PubMed Central

    Medhora, Meetha; Gao, Feng; Jacobs, Elizabeth R.; Moulder, John E.

    2011-01-01

    Concern regarding accidental overexposure to radiation has been raised after the devastating Tohuku earthquake and tsunami which initiated the Fukushima Daiichi nuclear disaster in Japan, in March 2011. Radiation exposure is toxic and can be fatal depending on the dose received. Injury to the lung is often reported as part of multi-organ failure in victims of accidental exposures. Doses of radiation >8 Gray to the chest can induce pneumonitis with right ventricular hypertrophy starting after ~2 months. Higher doses may be followed by pulmonary fibrosis that presents months to years after exposure. Though the exact mechanisms of radiation lung damage are not known, experimental animal models have been widely used to study this injury. Rodent models for pneumonitis and fibrosis exhibit vascular, parenchymal and pleural injuries to the lung. Inflammation is a part of the injuries suggesting involvement of the immune system. Researchers world-wide have tested a number of interventions to prevent or mitigate radiation lung injury. One of the first and most successful class of mitigators are inhibitors of angiotensin converting enzyme (ACE), an enzyme that is abundant in the lung. These results offer hope that lung injury from radiation accidents may be mitigated, since the ACE inhibitor captopril was effective when started up to one week after irradiation. PMID:22023053

  1. Association of angiotensin-converting enzyme, CYP46A1 genes polymorphism with senile cataract

    PubMed Central

    Raza, Syed Tasleem; Abbas, Shania; Chandra, Anu; Singh, Luxmi; Rizvi, Saliha; Mahdi, Farzana

    2017-01-01

    Background: Senile cataract is the most common type of cataract characterized by gradual progressive thickening of the lens of the eye. Previously, many studies investigated the association between genetic polymorphism and senile cataract. Angiotensin-converting enzyme (ACE) I/D polymorphism is the potential risk factor for many eye-related diseases such as retinopathy and glaucoma. CYP46A1 enzyme converts cholesterol to 24S-hydroxycholesterol; human lens' membranes contain the highest cholesterol content. Defects in enzymes of cholesterol metabolism can be associated with cataracts. Hence, the present study was carried out to investigate the association of ACE and CYP46A1 genes polymorphism with senile cataract cases and controls. Materials and Methods: ACE (rs 4646994) and CYP46A1 (rs 754203) genes polymorphism in cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism. Results: This study included 103 senile cataract cases (55 were males and 48 were females) and 102 controls (53 were males and 49 were females). Mean age of cases in this study was 52.02 ± 12.11 years while in control group 53.74 ± 11.87 years. Frequencies of ACE ID, DD, and II genotypes in senile cataract cases were 64.07%, 4.85%, and 31.06% and controls were 61.76%, 26.47%, and 11.76%, respectively. The CYP46A1 gene CT, CC, and TT genotype frequencies were 48.54%, 8.73%, and 42.71% in senile cataract cases and 28.43%, 3.92%, and 67.64% in healthy controls, respectively. ACE DD and II genotypes (P < 0.001,P = 0.0008) and CYP46A1 CT and TT genotypes (P = 0.003,P = 0.0003) were significantly associated with senile cataract cases compared to the controls. Conclusion: Findings of this study suggest that ACE and CYP46A1 genes polymorphism may be a predictive marker for early identification of population at risk of senile cataract. This potential role of ACE and CYP46A1 genes polymorphism as a marker of susceptibility to senile cataract needs

  2. Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer's Disease.

    PubMed

    Torika, Nofar; Asraf, Keren; Roasso, Ella; Danon, Abraham; Fleisher-Berkovich, Sigal

    2016-12-01

    Angiotensin converting enzyme (ACE) converts Angiotensin I to a potent vasoconstrictor angiotensin II (ANG II). ACE inhibitors (ACEIs) are widely used for the management of hypertension. All components of the renin-angiotensin system (RAS) have also been identified in the brain. In addition to cytokines, neuromodulators such as ANG II can induce neuroinflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs and is thought to contribute to the propagation of the disease, increased levels of ANG II and ACE have been detected. However, the specific effect of ACEIs on neuroinflammation and AD remains obscure. The present study suggests that captopril and perindopril, centrally active ACEIs, may serve as modulators for microglial activation associated with AD. Our in vitro study investigated the effect of both ACEIs on nitric oxide (NO), tumor necrosis factor- α (TNF-α) release and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-induced BV2 microglia. Exposure of BV2 microglia to ACEIs significantly attenuated the LPS-induced NO and TNF-α release. In vivo, short term intranasal administration of perindopril or captopril to 5 Familial AD (5XFAD) mice significantly reduced amyloid burden and CD11b expression (a microglial marker) or only CD11b expression respectively, in the cortex of 5XFAD. Long-term intranasal administration of captopril to mice reduced amyloid burden with no effect on CD11b expression. We provide evidence that intranasal delivery of ACEI may serve as an efficient alternative for their systemic administration, as it results in the attenuation of microglial accumulation and even the reduction of Amyloid β (Aβ) plaques.

  3. Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications.

    PubMed

    Patel, Vaibhav B; Parajuli, Nirmal; Oudit, Gavin Y

    2014-04-01

    Diabetes mellitus results in severe cardiovascular complications, and heart disease and failure remain the major causes of death in patients with diabetes. Given the increasing global tide of obesity and diabetes, the clinical burden of diabetes-induced cardiovascular disease is reaching epidemic proportions. Therefore urgent actions are needed to stem the tide of diabetes which entails new prevention and treatment tools. Clinical and pharmacological studies have demonstrated that AngII (angiotensin II), the major effector peptide of the RAS (renin-angiotensin system), is a critical promoter of insulin resistance and diabetes mellitus. The role of RAS and AngII has been implicated in the progression of diabetic cardiovascular complications and AT1R (AngII type 1 receptor) blockers and ACE (angiotensin-converting enzyme) inhibitors have shown clinical benefits. ACE2, the recently discovered homologue of ACE, is a monocarboxypeptidase which converts AngII into Ang-(1-7) [angiotensin-(1-7)] which, by virtue of its actions on the MasR (Mas receptor), opposes the effects of AngII. In animal models of diabetes, an early increase in ACE2 expression and activity occurs, whereas ACE2 mRNA and protein levels have been found to decrease in older STZ (streptozotocin)-induced diabetic rats. Using the Akita mouse model of Type 1 diabetes, we have recently shown that loss of ACE2 disrupts the balance of the RAS in a diabetic state and leads to AngII/AT1R-dependent systolic dysfunction and impaired vascular function. In the present review, we will discuss the role of the RAS in the pathophysiology and treatment of diabetes and its complications with particular emphasis on potential benefits of the ACE2/Ang-(1-7)/MasR axis activation.

  4. Effects of Inactivating Ras-Converting Enzyme or Isoprenylcysteine Carboxyl Methyltransferases in the Pathogenesis of Chronic Myelogenous Leukemia

    DTIC Science & Technology

    2007-02-01

    Enzyme or Isoprenylcysteine Carboxyl Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia PRINCIPAL INVESTIGATOR: Ruibao Ren...Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia 5b. GRANT NUMBER W81XWH-06-1-0238 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...commonly activated in human cancers , are critical mediators of BCR-ABL in leukemogenesis. Ras-converting enzyme (Rce1) and isoprenylcysteine carboxyl

  5. Tubuloglomerular Feedback and Single Nephron Function after Converting Enzyme Inhibition in the Rat

    PubMed Central

    Ploth, David W.; Rudulph, James; Lagrange, Ronald; Navar, L. Gabriel

    1979-01-01

    Experiments were done in normal rats to assess kidney, single nephron, and tubuloglomerular feedback responses during renin-angiotensin blockade with the converting enzyme inhibitor (CEI) SQ 20881 (E. R. Squibb & Sons, Princeton, N. Y.) (3 mg/kg, per h). Converting enzyme inhibition was documented by complete blockade of vascular responses to infusions of angiotensin I (600 ng/kg). Control plasma renin activity was 12.5±2.7 ng angiotensin I/ml per h (mean±SEM) and increased sevenfold with CEI (n = 7). There were parallel increases in glomerular filtration rate from 1.08±0.05 to 1.26±0.05 ml/min and renal blood flow from 6.7±0.4 to 7.5±0.5 ml/min. During CEI infusion absolute and fractional sodium excretion were increased 10-fold. Proximal tubule and peritubular capillary pressures were unchanged. Single nephron glomerular filtration rate (SNGFR) was measured from both proximal and distal tubule collections; SNGFR based only on distal collections was significantly increased by CEI. A significant difference was observed between SNGFR values measured from proximal and distal tubule sites (6.0±1.6 nl/min) and this difference remained unchanged after CEI administration. Slight decreases in fractional absorption were suggested at micropuncture sites beyond the late proximal tubule, whereas early distal tubule flow rate was augmented by CEI. Tubuloglomerular feedback activity was assessed by measuring changes in proximal tubule stop-flow pressure (SFP) or SNGFR in response to alterations in orthograde microperfusion rate from late proximal tubule sites. During control periods, SFP was decreased 11.2±0.4 mm Hg when the perfusion rate was increased to 40 nl/min; during infusion of CEI, the same increase in perfusion rate resulted in a SFP decrement of 6.7±0.5 mm Hg (P<.001). When late proximal tubule perfusion rate was increased from 0 to 30 nl/min, SNGFR was decreased by 15.0±1.2 nl/min during control conditions, and by 11.3±1.3 nl/min during CEI infusion

  6. The Effect of Angiotensin-Converting Enzyme Inhibition Using Captopril on Energy Balance and Glucose Homeostasis

    PubMed Central

    de Kloet, Annette D.; Krause, Eric G.; Kim, Dong-Hoon; Sakai, Randall R.; Seeley, Randy J.; Woods, Stephen C.

    2009-01-01

    Increasing evidence suggests that the renin-angiotensin-system contributes to the etiology of obesity. To evaluate the role of the renin-angiotensin-system in energy and glucose homeostasis, we examined body weight and composition, food intake, and glucose tolerance in rats given the angiotensin-converting enzyme inhibitor, captopril (∼40 mg/kg · d). Rats given captopril weighed less than controls when fed a high-fat diet (369.3 ± 8.0 vs. 441.7 ± 8.5 g after 35 d; P < 0.001) or low-fat chow (320.1 ± 4.9 vs. 339.8 ± 5.1 g after 21 d; P < 0.0001). This difference was attributable to reductions in adipose mass gained on high-fat (23.8 ± 2.0 vs. 65.12 ± 8.4 g after 35 d; P < 0.0001) and low-fat diets (12.2 ± 0.7 vs. 17.3 ± 1.3 g after 21 d; P < 0.001). Rats given captopril ate significantly less [3110.3 ± 57.8 vs. 3592.4 ± 88.8 kcal (cumulative 35 d high fat diet intake); P < 0.001] despite increased in neuropeptide-Y mRNA expression in the arcuate nucleus of the hypothalamus and had improved glucose tolerance compared with free-fed controls. Comparisons with pair-fed controls indicated that decreases in diet-induced weight gain and adiposity and improved glucose tolerance were due, primarily, to decreased food intake. To determine whether captopril caused animals to defend a lower body weight, animals in both groups were fasted for 24 h and subsequently restricted to 20% of their intake for 2 d. When free food was returned, captopril and control rats returned to their respective body weights and elicited comparable hyperphagic responses. These results suggest that angiotensin-converting enzyme inhibition protects against the development of diet-induced obesity and glucose intolerance. PMID:19497971

  7. Regulation of endothelin-converting enzyme-1 (ECE-1) by the calcimimetic R-568.

    PubMed

    Martínez-Miguel, Patricia; Medrano-Andrés, Diana; Lopes-Martín, Vanessa; Arribas-Gómez, Ignacio; Rodríguez-Puyol, Manuel; Rodríguez-Puyol, Diego; López-Ongil, Susana

    2013-10-01

    Although calcimimetics were developed to block parathyroid hormone synthesis, some reports suggest that they may also reduce blood pressure by unknown mechanisms. Calcimimetic-induced changes in the synthesis of endothelial vasoactive factors could be involved. Wistar rats were treated with the calcimimetic R-568, and systolic blood pressure (SBP) was registered with a tail-cuff sphygmomanometer, the content of endothelial nitric oxide synthase (eNOS) and endothelin-converting enzyme (ECE-1) in tissue was evaluated by immunohistochemistry and Western blot, circulating levels of endothelin-1 (ET-1) were measured by ELISA. R-568 reduced SBP and circulating levels of ET-1, without changes in eNOS expression. In contrast, R-568 increased the lung and vascular content of ECE-1. In order to analyze the mechanisms involved, we studied the effect of R-568 on human endothelial cells. R-568 did not modify neither eNOS protein content nor pre-pro-ET-1 mRNA expression, but increased ECE-1 protein content, and decreased ET-1 synthesis and ECE-1 activity. The inhibition of ECE-1 activity was very strong, similar to the classic ECE inhibitor phosphoramidon, the addition of exogenous zinc restored enzymatic activity. Moreover, the amount of zinc in immunoprecipitated ECE from R-568 treated cells was 3-fold less than in control cells. In conclusion, R-568 inhibits ECE by expelling zinc from the enzyme, with the subsequent decrease in enzymatic activity and reducing circulating levels of ET-1, which may be responsible for the lower SBP observed in R-568-treated rats. This descent would be partially compensated by the increased synthesis of the ECE-1 itself, and by other homeostatic mechanisms that regulate SBP.

  8. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter.

    PubMed

    Testut, P; Soubrier, F; Corvol, P; Hubert, C

    1993-08-01

    Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional.

  9. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter.

    PubMed Central

    Testut, P; Soubrier, F; Corvol, P; Hubert, C

    1993-01-01

    Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional. Images Figure 1 Figure 3 PMID:8394696

  10. Applicability of green fluorescence protein in the study of endothelin converting enzyme-1c trafficking.

    PubMed

    Kuruppu, Sanjaya; Tochon-Danguy, Nathalie; Smith, A Ian

    2013-03-01

    Endothelin-1 (ET-1) is one of the most potent peptide vasoconstrictors known. It is produced upon the cleavage of its precursor big endothelin-1 by endothelin converting enzyme-1 (ECE-1). Production of ET-1 is thought to be dependent upon the expression of ECE-1 at the cell surface. Therefore, mechanisms inducing the trafficking of ECE-1 to the cell surface have been the focus of recent research. This research has identified phosphorylation of the cytoplasmic region of ECE-1 as a main cellular signal inducing its trafficking to the cell surface. Previous studies have used green fluorescent protein (GFP) tagged ECE-1 to monitor phosphorylation induced trafficking of ECE-1 to the cell surface. However, it has been speculated that the addition of the GFP tag can itself alter enzyme activity and phosphorylation of ECE-1, and hence the suitability of GFP or any other protein tag in studying ECE-1 distribution and trafficking. ECE-1c is the most widely expressed isoform in endothelial cells. We therefore expressed ECE-1c with a GFP tag either at the N or C-terminus of ECE-1c. Catalytic activity and effect on protein kinase C (PKC) induced phosphorylation was compared between the two chimeras and wild-type ECE-1c. Our results indicate that positioning of the GFP tag on the C-terminus abrogates activity without effecting PKC-induced phosphorylation. However, GFP tag on the N-terminus has the opposite effect. Results of this study shed light on the applicability of GFP or perhaps other protein tags in studying ECE-1c distribution and trafficking.

  11. Novel internally quenched fluorogenic substrates for angiotensin I-converting enzyme and carboxypeptidase Y.

    PubMed

    Takahashi, Saori; Ono, Hiroki; Gotoh, Takeshi; Yoshizawa-Kumagaye, Kumiko; Sugiyama, Toshihiro

    2011-12-01

    Angiotensin I-converting enzyme (ACE, EC 3.4.15.1) is one of the most important enzymes in the renin-angiotensin system, a major blood pressure control system in mammals. We synthesized novel internally quenched fluorogenic (IQF) substrates for ACE based on the cleavage site of an angiotensin I, introducing N-methyl anthranic acid (Nma) and N(ε)-2,4-dinitrophenyl-lysine (Lys(Dnp))at the N- and C-terminal regions. Kinetic parameters of the synthesized IQF substrates Nma-Phe-His-Lys(Dnp) and Nma-His-Pro-Phe-Lys(Dnp)-Pro were compared with those of a common peptide substrate for ACE, hippuryl (Hip)-His-Leu. The k(cat)/K(m) values of Nma-Phe-His-Lys(Dnp), Nma-His-Pro-Phe-Lys(Dnp)-Pro, and Hip-His-Leu were 5.12, 1.90, and 0.80 µM(-1) s(-1) for rabbit lung ACE, and 16.0, 7.36, and 0.30 µM(-1) s(-1) for recombinant human (rh)-ACE, respectively. These results indicate that Nma-Phe-His-Lys(Dnp) is an excellent substrate for rh-ACE. Carboxypeptidase Y also hydrolyzed Nma-Phe-His-Lys(Dnp) efficiently with K(m), k(cat), and k(cat)/K(m) values of 60.2 µM, 105 s(-1), and 1.74 µM(-1) s(-1), respectively. On the other hand, carboxypeptidase B did not hydrolyze IQF substrates. The newly developed IQF substrate, Nma-Phe-His-Lys(Dnp), is a valuable tool for ACE and carboxypeptidase studies.

  12. Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage

    PubMed Central

    Hara, Hideaki; Friedlander, Robert M.; Gagliardini, Valeria; Ayata, Cenk; Fink, Klaus; Huang, Zhihong; Shimizu-Sasamata, Masao; Yuan, Junying; Moskowitz, Michael A.

    1997-01-01

    The interleukin 1β converting enzyme (ICE) family plays a pivotal role in programmed cell death and has been implicated in stroke and neurodegenerative diseases. During reperfusion after filamentous middle cerebral artery occlusion, ICE-like cleavage products and tissue immunoreactive interleukin 1β (IL-1β) levels increased in ischemic mouse brain. Ischemic injury decreased after intracerebroventricular injections of ICE-like protease inhibitors, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.FMK), acetyl-Tyr-Val-Ala-Asp-chloromethylketone, or a relatively selective inhibitor of CPP32-like caspases, N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone, but not a cathepsin B inhibitor, N-benzyloxycarbonyl-Phe-Ala-fluoromethylketone. z-VAD.FMK decreased ICE-like cleavage products and tissue immunoreactive IL-1β levels in ischemic mouse brain and reduced tissue damage when administered to rats as well. Only z-VAD.FMK and acetyl-Tyr-Val-Ala-Asp-chloromethylketone reduced brain swelling, and N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone did not attenuate the ischemia-induced increase in tissue IL-1β levels. The three cysteine protease inhibitors significantly improved behavioral deficits, thereby showing that functional recovery of ischemic neuronal tissue can follow blockade of enzymes associated with apoptotic cell death. Finally, we examined the effect of z-VAD.FMK on excitotoxicity and found that it protected against α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-induced or to a lesser extent N-methyl-d-aspartate-induced excitotoxic brain damage. Thus, ICE-like and CPP32-like caspases contribute to mechanisms of cell death in ischemic and excitotoxic brain injury and provide therapeutic targets for stroke and neurodegenerative brain damage. PMID:9050895

  13. A novel aggregation-induced emission based fluorescent probe for an angiotensin converting enzyme (ACE) assay and inhibitor screening.

    PubMed

    Wang, Haibo; Huang, Yi; Zhao, Xiaoping; Gong, Wan; Wang, Yi; Cheng, Yiyu

    2014-12-11

    A 'turn-on' fluorescent probe based on aggregation-induced emission (AIE) has been developed. It exhibits excellent selectivity and sensitivity for monitoring angiotensin converting enzyme (ACE) activity both in solutions and in living cells as well as for screening ACE inhibitors in vitro.

  14. Design, synthesis and biological activity of novel non-peptidyl endothelin converting enzyme inhibitors, 1-phenyl-tetrazole-formazan analogues.

    PubMed

    Yamazaki, Kazuto; Hasegawa, Hirohiko; Umekawa, Kayo; Ueki, Yasuyuki; Ohashi, Naohito; Kanaoka, Masaharu

    2002-05-06

    A novel non-peptidyl endothelin converting enzyme inhibitor was obtained through a pharmacophore analysis of known inhibitors and three-dimensional structure database search. Analogues of the new inhibitor were designed using the structure-activity relationship of known inhibitors and synthesized. In anesthetized rats, intraperitoneal administration of the analogues suppressed the pressor responses induced by big endothelin-1.

  15. Identification of a cysteine protease closely related to interleukin-1 beta-converting enzyme.

    PubMed

    Faucheu, C; Blanchet, A M; Collard-Dutilleul, V; Lalanne, J L; Diu-Hercend, A

    1996-02-15

    The present study describes the identification and molecular cloning of a new member of the interleukin-1 beta-converting enzyme (ICE) family denoted transcript Y (TY). TY is very closely related to both ICE (51% amino acid identity) and a protein named transcript X (TX) (75% amino acid identity) that we recently identified [Faucheu, C., Diu, A., Chan, A.W.E., Blanchet, A.-M., Miossec, C., Hervé, F.,Collard-Dutilleul, V., Gu, Y., Aldape, R., Lippke, J., Rocher, C., Su, M.S.-S., Livingston, D.J., Hercend, T. & Lalanne, J.-L. (1995) EMBO J. 14, 1914-1922]. The amino acids that are implicated in both the ICE catalytic site and in the PI aspartate-binding pocket are conserved in TY. Within the ICE gene family, TY belongs to a subfamily of proteins closely related to the prototype ICE protein. Using transfection experiments into mammalian cells, we demonstrate that TY has protease activity on its own precursor and that this activity is dependent on the presence of a cysteine residue at position 245. However, despite the close similarity between TY and ICE active sites, TY fails to process the interleukin-1 beta precursor. In addition, as already observed for ICE and TX, TY is able to induce apoptosis when overexpressed in COS cells. TY therefore represents a new member of the growing family of apoptosis-inducing ICE-related cysteine proteases.

  16. Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo.

    PubMed Central

    Gu, Y; Wu, J; Faucheu, C; Lalanne, J L; Diu, A; Livingston, D J; Su, M S

    1995-01-01

    Interleukin-1 beta converting enzyme (ICE) is composed of 10' (p10) and 20 kDa (p20) subunits, which are derived from a common 45 kDa precursor. Recent crystallographic studies have shown that ICE exists as a tetramer (p20/p10)2 in the crystal lattice. We provide evidence that the p10 and p20 subunits of ICE associate as oligomers in transfected COS cells. Using intragenic complementation, we show that the activity of a p10/p10 interface mutant defective in autoprocessing can be restored by co-expression with active site ICE mutants. Different active site mutants can also complement each other by oligomerization to form active ICE. These studies indicate that ICE precursor polypeptides may associate in different quaternary structures and that oligomerization is required for autoprocessing. Furthermore, integenic complementation of active site mutants of ICE and an ICE homolog restores autoprocessing activity, suggesting that hetero-oligomerization occurs between ICE homologs. Images PMID:7743999

  17. A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.

    PubMed

    Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin

    2014-09-01

    Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®

  18. Endothelin-1 inhibits endothelin-converting enzyme-1 expression in cultured rat pulmonary endothelial cells.

    PubMed

    Naomi, S; Iwaoka, T; Disashi, T; Inoue, J; Kanesaka, Y; Tokunaga, H; Tomita, K

    1998-01-27

    The lung expresses large amounts of endothelin-converting enzyme-1 (ECE-1), which catalyzes a step in the biosynthesis of potent vasoactive endothelin-1 (ET-1) from the inactive intermediate big ET-1. Because there has been no report concerning a possible relationship between ET-1 and ECE-1, we investigated the effects of ET-1 on ECE-1 expression in cultured rat pulmonary endothelial cells. ECE-1 messenger RNA (mRNA) and protein expression in cultured endothelial cells were assayed by Northern and Western blotting, respectively. Incubation with ET-1 for 6 hours caused a significant decrease in ECE-1 mRNA expression. The action of ET-1 on ECE-1 mRNA expression was antagonized by pretreatment with BQ788, a specific ETB receptor antagonist, but not by pretreatment with BQ123, a specific ETA receptor antagonist. The expression of ECE-1 protein was also inhibited at 6 hours after incubation with ET-1. The effects of ET-1 on ECE-1 mRNA and protein expression were shown to be mimicked by ionomycin, a calcium ionophore, but not by 12-O-tetradecanoylphorbol 13-acetate, a protein kinase C activator. The present results demonstrate that ET-1 suppressed ECE-1 protein levels by inhibiting ECE-1 mRNA expression through the ETB receptor, suggesting the existence of a feedback action of ET-1 on ECE-1 in pulmonary endothelial cells.

  19. Converting enzyme inhibition and the glomerular hemodynamic response to glycine in diabetic rats.

    PubMed

    Slomowitz, L A; Peterson, O W; Thomson, S C

    1999-07-01

    GFR normally increases during glycine infusion. This response is absent in humans and rats with established diabetes mellitus. In diabetic patients, angiotensin-converting enzyme inhibition (ACEI) restores the effect of glycine on GFR. To ascertain the glomerular hemodynamic basis for this effect of ACEI, micropuncture studies were performed in male Wistar-Froemter rats after 5 to 6 wk of insulin-treated streptozotocin diabetes. The determinants of single-nephron GFR (SNGFR) were assessed in each rat before and during glycine infusion. Studies were performed in diabetics, diabetics after 5 d of ACEI (enalapril in the drinking water), and weight-matched controls. Diabetic rats manifest renal hypertrophy and glomerular hyperfiltration but not glomerular capillary hypertension. ACEI reduced glomerular capillary pressure, increased glomerular ultrafiltration coefficient, and did not mitigate hyperfiltration. In controls, glycine increased SNGFR by 30% due to increased nephron plasma flow. In diabetics, glycine had no effect on any determinant of SNGFR. In ACEI-treated diabetics, the SNGFR response to glycine was indistinguishable from nondiabetics, but the effect of glycine was mediated by greater ultrafiltration pressure rather than by greater plasma flow. These findings demonstrate that: (1) The absent response to glycine in established diabetes does not indicate that renal functional reserve is exhausted by hyperfiltration; and (2) ACEI restores the GFR response to glycine in established diabetes, but this response is mediated by increased ultrafiltration pressure rather than by increased nephron plasma flow.

  20. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice.

    PubMed

    Nadarajah, Renisha; Milagres, Rosangela; Dilauro, Marc; Gutsol, Alex; Xiao, Fengxia; Zimpelmann, Joseph; Kennedy, Chris; Wysocki, Jan; Batlle, Daniel; Burns, Kevin D

    2012-08-01

    Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.

  1. Angiotensin-converting enzyme affects the presentation of MHC class II antigens.

    PubMed

    Zhao, Tuantuan; Bernstein, Kenneth E; Fang, Jianmin; Shen, Xiao Z

    2017-07-01

    Antigen processing and presentation through the MHC class II pathway is critical for activating T helper cells. Angiotensin-converting enzyme (ACE) is a carboxyl peptidase expressed by antigen-presenting cells. By analysis of ACE null (knockout), wild-type, and ACE-overexpressing (ACE10) mice and the antigen-presenting cells derived from these mice, we found that ACE has a physiological role in the processing of peptides for MHC class II presentation. The efficiency of presenting MHC class II epitopes from ovalbumin (OVA) and hen egg lysosome is markedly affected by cellular ACE levels. Mice overexpressing ACE in myeloid cells have a much more vigorous CD4(+) T-cell and antibody response when immunized with OVA. ACE is present in the endosomal pathway where MHC class II peptide processing and loading occur. The efficiency of MHC class II antigen presentation can be altered by ACE overexpression or ACE pharmacological inhibition. Thus, ACE is a dynamic participant in processing MHC class II peptides. Manipulation of ACE expression by antigen-presenting cells may prove to be a novel strategy to alter the immune response.

  2. Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme

    SciTech Connect

    Muzykantov, V.R.; Puchnina, E.A.; Atochina, E.N.; Hiemish, H.; Slinkin, M.A.; Meertsuk, F.E.; Danilov, S.M. )

    1991-03-01

    The biodistribution of radiolabeled monoclonal antibody (Mab) to angiotensin-converting enzyme (ACE) was examined in normal and endotoxin-treated rats. Endotoxin administration at a dose of 4 mg/kg induced mild or middle pulmonary edema. The ACE activity in lung homogenate remained virtually unchanged, while the activity of serum ACE increased 15 hr after endotoxin infusion. In normal rats, anti-ACE Mab accumulates specifically in the lung after i.v. injection. Endotoxin injection induces reduction of specific pulmonary uptake of this antibody. Even in non-edematous endotoxemia, the accumulation of anti-ACE Mab antibody (Mab 9B9) decreased from 19.02 to 11.91% of ID/g of tissue without any change in accumulation of control nonspecific IgG. The antibody distribution in other organs and its blood level were almost the same as in the control. In a case of endotoxemia accompanied by increased microvascular permeability, the lung accumulation of Mab 9B9 was reduced to 9.17% of ID/g of tissue, while the accumulation of nonspecific IgG increased to 1.44% versus 0.89% in the control.

  3. Cardiac expression patterns of endothelin-converting enzyme (ECE): implications for conduction system development.

    PubMed

    Sedmera, David; Harris, Brett S; Grant, Elizabeth; Zhang, Ning; Jourdan, Jane; Kurkova, Dana; Gourdie, Robert G

    2008-06-01

    The spatiotemporal distribution of the endothelin-converting enzyme (ECE) protein in the embryonic chick heart and the association of this polypeptide with the developing cardiac conduction system is described here for the first time. Further, we show how cardiac hemodynamic load directly affects ECE level and distribution. Endothelin (ET) is a cytokine involved in the inductive recruitment of Purkinje fibers. ET is produced by proteolytic cleavage of Big-ET by ECE. We generated an antibody against chick ECE recognizing a single band at approximately 70 kD to correlate the cardiac expression of this protein with that reported previously for its mRNA. ECE protein expression was more widespread compared to its mRNA, being present in endothelial cells, mesenchymal cells, and myocytes, and particularly enriched in the trabeculae and nascent ventricular conduction system. The myocardial expression was significantly modified under experimentally altered hemodynamic loading. In vivo, ET receptor blockade with bosentan delayed activation sequence maturation. These data support a role for ECE in avian cardiac conduction system differentiation and maturation.

  4. Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms.

    PubMed

    Dworkin, L D; Benstein, J A; Parker, M; Tolbert, E; Feiner, H D

    1993-04-01

    Both glomerular hypertension and hypertrophy have been associated with the development of glomerular injury in models of hypertension and reduced renal mass. The purpose of this study was to examine the effects of antihypertensive therapy on these parameters in the remnant kidney model of progressive glomerular sclerosis. Rats underwent 5/6 nephrectomy and were randomly assigned to receive either no therapy, the calcium entry blocker (CEB), nifedipine, or the angiotensin converting enzyme inhibitor (CEI), enalapril. Administration of either drug was associated with a reduction in systemic blood pressure and in the severity of glomerular injury assessed eight weeks after renal ablation. Micropuncture studies four weeks after ablation revealed that systemic and glomerular capillary pressure were high in untreated remnant kidney rats and reduced by enalapril. Administration of nifedipine was associated with a decline in systemic pressure, however, plasma renin levels increased, causing efferent arteriolar vasoconstriction and persistence of glomerular hypertension. Morphometric analysis showed that kidney weight, glomerular volume and glomerular capillary radius were lower in nifedipine treated rats than in the other two groups, indicating that the CEB, but not enalapril, inhibited the hypertrophic response to ablation of renal mass. Therefore, both CEIs and CEBs reduce glomerular injury in rats with remnant kidneys but they may act by different mechanisms. CEI reduce glomerular capillary pressure while CEBs inhibit compensatory kidney growth.

  5. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections.

    PubMed

    Zou, Zhen; Yan, Yiwu; Shu, Yuelong; Gao, Rongbao; Sun, Yang; Li, Xiao; Ju, Xiangwu; Liang, Zhu; Liu, Qiang; Zhao, Yan; Guo, Feng; Bai, Tian; Han, Zongsheng; Zhu, Jindong; Zhou, Huandi; Huang, Fengming; Li, Chang; Lu, Huijun; Li, Ning; Li, Dangsheng; Jin, Ningyi; Penninger, Josef M; Jiang, Chengyu

    2014-05-06

    The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics.

  6. [Psychotropic effects of angiotensin-converting enzyme inhibitors: what are the arguments?].

    PubMed

    Mesure, G; Fallet, A; Chevalier, J F

    1995-01-01

    The authors report a case of acute mania induced by perindopril (Coversyl) in a 57 year old man with no prior history of mental illness. This Angiotensin-Converting Enzyme Inhibitor (ACEI) had been introduced eight days prior to the first signs of excitation, in order to treat recently diagnosed arterial hypertension. Without proof of reintroduction, and on the basis of clinical observations, the attribution appears plausible. Similar observations have been made for other molecules in this class of medication, such as captopril (Lopril). A review of literature regroups recent data concerning psychotropic effects of ACEIs. Several reports claim that captopril clearly acts as an antidepressant. Studies on the mood or the quality of life of treated hypertensive patients show ACEIs to have an euphoric-type positive effect compared to other anti-hypertensive treatments. Captopril and perindopril also act like potential antidepressants in experimental models of antidepression. Furthermore, pharmacologic data confirm that the most lipophilic ACEIs penetrate the central nervous system and argue in favor of the role of these molecules in activating central opioides. As these data provide evidence of mood swing in some patients, but also of an overall benefit in hypertensive populations, the clinical importance of the antidepressant effect of ACEIs needs further investigations.

  7. Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril.

    PubMed

    Akif, Mohd; Masuyer, Geoffrey; Schwager, Sylva L U; Bhuyan, Bhaskar J; Mugesh, Govindasamy; Isaac, R Elwyn; Sturrock, Edward D; Acharya, K Ravi

    2011-10-01

    Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 Å resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.

  8. Molecular characterization of the gene for human interleukin-1[beta] converting enzyme (IL1BC)

    SciTech Connect

    Cerretti, D.P.; Hollingsworth, L.T.; Kozlosky, C.J.; Nelson, N. ); Valentine, M.B. ); Shapiro, D.N.; Morris, S.W. Univ. of Tennessee College of Medicine, Memphis, TN )

    1994-04-01

    Interleukin-1[beta] (IL-1[beta]) mediates a wide range of immune and inflammatory responses. The active cytokine is generated by proteolytic cleavage of an inactive precursor by a protease called the IL-1[beta] converting enzyme (ICE). A cDNA encoding this protease was recently isolated. A human genomic clone containing the ICE gene (IL1BC) was isolated using the cDNA as a probe. The gene consists of 10 exons spanning at least 10.6 kb. 5[prime]-anchored polymerase chain reaction indicated a single transcription start site [approximately]33 bp upstream of the initiator Met codon. The 5[prime]-flanking region does not have an apparent TATA box but may contain an initiator (Inr) promotor element. However, transcriptional activity could not be detected with a fusion gene containing the 5[prime]-flanking region linked to the bacterial chloramphenicol acetyltransferase gene (CAT) when transfected into the human acute monocytic leukemia cell line THP-1. Using the genomic IL1BC clone, the authors have confirmed the localization of the gene to chromosome 11 band q22.2-q22.3 by fluorescence in situ hybridization. 34 refs., 2 figs., 1 tab.

  9. Activation of interleukin-1beta-converting enzyme by nigericin is independent of apoptosis.

    PubMed

    Watanabe, N; Kawaguchi, M; Kobayashi, Y

    1998-09-01

    Interleukin-1beta-converting enzyme (ICE) is believed to be one of the key proteases involved in apoptosis. Since the precursor form of interleukin-1beta (pre-IL-1beta) is one of the well known substrates for ICE, and a potassium/proton ionophore, nigericin, enhances IL-1beta processing, the authors hypothesized that nigericin induces apoptosis through the activation of ICE. In a lipopolysaccharide (LPS)-stimulated and nigericin-treated human monocytic cell line, THP-1, apoptosis was induced, as assessed as to a decrease in cell size, chromatin condensation, exposure of phosphatidylserine and DNA fragmentation. Under exactly the same conditions, nigericin also induced IL-1beta processing in these cells, which was significantly inhibited by an ICE inhibitor, acetyl-Tyr-Val-Ala-Asp-CHO. On the contrary, treatment with this inhibitor at the same concentration did not inhibit nigericin-induced apoptosis, assessed as to the decrease in cell size, chromatin condensation and DNA fragmentation. Although apoptosis induced by nigericin was also observed for LPS-stimulated human peripheral blood mononuclear cells and a mouse T lymphoma cell line, EL-4, the ICE inhibitor did not inhibit the apoptosis in the cells. These results suggest that activated ICE is not involved in the apoptosis induced by nigericin. Since apopain activity was not augmented under the same conditions, neither ICE nor apopain may play any role in the nigericin-induced apoptosis. Copyright 1998 Academic Press.

  10. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity

    PubMed Central

    Wijesinghe, W.A.J.P.; Ko, Seok-Chun

    2011-01-01

    Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an IC50 value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotannins with ACE inhibitory activity for utilization in production of functional foods. PMID:21556221

  11. Age and the pharmacokinetics of angiotensin converting enzyme inhibitors enalapril and enalaprilat.

    PubMed Central

    Hockings, N; Ajayi, A A; Reid, J L

    1986-01-01

    The pharmacokinetics of angiotension converting enzyme (ACE) inhibitors enalapril (10 mg orally) and its active metabolite, enalaprilat (10 mg intravenously) were studied in nine young healthy volunteers aged 22-30 years and nine sex matched elderly subjects aged 65-73 years. After both drugs, a biexponential curve was fitted to the decline in plasma enalaprilat concentration. Area under the plasma concentration-time curve (AUC) was greater in the elderly for both drugs. Clearance (CL) and clearance/bioavailability (CL/F) were less in the elderly for enalaprilat and enalapril, respectively. There was no difference in F between young (0.62 +/- 0.16) and elderly subjects (0.61 +/- 0.15). Enalaprilat CL and enalapril CL/F were significantly and positively correlated to endogenous creatinine clearance. There was a significant difference in the weight corrected volume of distribution at steady state after enalaprilat between the young and elderly (P less than 0.02). The relationship between plasma enalaprilat concentrations and percentage ACE inhibition, using the Hill equation, showed no difference in the sensitivity to ACE inhibition between the young and the elderly group. The pharmacokinetic differences observed are likely to be related to an age dependent decline in renal function as well as changes in body composition. Kinetic differences partly explain the greater pharmacodynamic response in the elderly. PMID:3011046

  12. [Corticosteroid hormones and angiotensin-converting enzyme in the dynamics of chronic granulomatous inflammation].

    PubMed

    Cherkasova, A P; Selyatitskaya, V G

    2013-01-01

    It was studied the contents of corticosteroid hormones in the adrenal gland, plasma and 11beta-hydroxysteroid dehydrogenase activity (11betaHSD) in the liver and kidneys, as well as the activity of angiotensin-converting enzyme (ACE) in blood plasma, lung, renal cortex and liver of male rats in the dynamics of SiO2-induced inflammation. The study showed that chronic granulomatous inflammation in rats was accompanied by an initial short-term reaction to the activation of synthesis of the main glucocorticoid hormone, followed by specific inhibition of synthesis of this hormone as well as 11betaHSD activity in the adrenal gland. Inflammation caused less pronounced changes in the functional state of the renin-angiotensin system, however, inhibition of ACE activity observed in plasma, liver and kidneys during the initial period of inflammation. Factor analysis revealed a violation of intersystem relations of hypothalamic-pituitary-adrenocortical and renin-angiotensin systems in inflammation due, probably, to the modulating influence of cytokines.

  13. Angiotensin-converting enzyme gene insertion/deletion polymorphism in Saudi patients with rheumatic heart disease

    PubMed Central

    Al-Harbi, Khalid M.; Almuzaini, Ibrahim S.; Morsy, Mohamed M.; Abdelaziz, Nada A.; Al-Balawi, Alia M.; Abdallah, Atiyeh M.

    2015-01-01

    Objectives: To investigate the association between angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism and rheumatic heart disease (RHD) in Saudi patients. Methods: A case-control study was conducted in Saudi RHD patients. Genomic DNA was isolated from 99 RHD patients attending the Pediatric Cardiology Clinic at the Maternity and Children Hospital, Al-Madinah, Saudi Arabia from March 2013 to June 2014, and from 145 age- and gender-matched controls. Patient clinical records were reviewed to report major and minor modified Jones’ criteria for diagnosis. The diagnosis was confirmed by echocardiography. The ACE I/D polymorphism was identified by polymerase chain reaction. Results: A significant difference in ACE D allele carriage (DD+ID) distribution between RHD cases and controls was identified (p=0.02, odds ratio = 3.6, 95% confidence interval: 1.2-10.8). The D allele carriage was significantly associated with development of mitral valve lesions alone (p=0.03). Conclusion: The ACE I/D polymorphism is associated with an increased risk of RHD in the Saudi population. Further studies are needed to confirm our findings and to understand the molecular mechanisms underlying this association. PMID:25719581

  14. Effect of converting enzyme inhibition on the renal haemodynamic responses to noradrenaline infusion in the rat.

    PubMed Central

    Arundell, L. A.; Johns, E. J.

    1982-01-01

    1 The renal haemodynamic responses to a close arterial infusion of noradrenaline (29.7-177.9 nmol kg-1 h-1) were measured in rats anaesthetized with pentobarbitone. Systemic blood pressure was unaffected by noradrenaline infusion at this dose level. Renal blood flow was significantly reduced by 16% while glomerular filtration rate remained unchanged. These responses resulted in a rise in filtration fraction of some 10%. 2 In a separate group of animals, noradrenaline infusion in this manner and at similar dose rate increased plasma renin activity approximately 3 fold. 3 Continuous infusion of the angiotensin converting enzyme inhibitor, teprotide (3.36 mumol kg-1 h-1), had no measurable effect on systemic blood pressure, renal blood flow, glomerular filtration rate or filtration fraction. 4 Infusion of noradrenaline into these animals receiving teprotide caused a significant fall in renal blood flow of 16%. There was a fall in glomerular filtration rate of some 17% which was significantly different from the response observed in the animals not receiving teprotide. There was a consequent small but insignificant fall in filtration fraction. 5 These data show that the regulation of glomerular filtration rate in response to the vasoconstrictor drug, noradrenaline, is partly mediated via the renin-angiotensin system. They provide evidence for a role of intrarenal angiotensin II in regulating glomerular filtration by causing efferent arteriolar vasoconstriction. PMID:6175369

  15. Harnessing the natural inhibitory domain to control TNFα Converting Enzyme (TACE) activity in vivo

    PubMed Central

    Wong, Eitan; Cohen, Tal; Romi, Erez; Levin, Maxim; Peleg, Yoav; Arad, Uri; Yaron, Avraham; Milla, Marcos E.; Sagi, Irit

    2016-01-01

    Dysregulated activity of A Disintegrin And Metalloproteinase 17 (ADAM17)/TNFα Converting Enzyme (TACE) is associated with inflammatory disorders and cancer progression by releasing regulatory membrane-tethered proteins like TNFα, IL6R and EGFR ligands. Although specific inhibition of TACE is thought to be a viable strategy for inflammatory disorders and for malignancies treatment, the generation of effective inhibitors in vivo has been proven to be challenging. Here we report on the development of a protein inhibitor that leverages the endogenous modulator of TACE. We have generated a stable form of the auto-inhibitory TACE prodomain (TPD), which specifically inhibits in vitro and cell-surface TACE, but not the related ADAM10, and effectively modulated TNFα secretion in cells. TPD significantly attenuated TACE-mediated disease models of sepsis, rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), and reduced TNFα in synovial fluids from RA patients. Our results demonstrate that intervening with endogenous ADAM sheddase modulatory mechanisms holds potential as a general strategy for the design of ADAM inhibitors. PMID:27982031

  16. Unknown face of known drugs - what else can we expect from angiotensin converting enzyme inhibitors?

    PubMed

    Wzgarda, Anna; Kleszcz, Robert; Prokop, Monika; Regulska, Katarzyna; Regulski, Milosz; Paluszczak, Jaroslaw; Stanisz, Beata J

    2017-02-15

    The renin-angiotensin system (RAS) is one of important systems among homeostatic mechanisms that control the function of cardiovascular, renal and adrenal systems. As RAS has a very complex nature, it has been also found as related to the control of cell migration and apoptosis. Angiotensin-converting enzyme inhibitors (ACEI) are drugs most commonly used in the modulation of RAS activity. ACEI have been extensively described as effective in the treatment of hypertension among adults, but also as drugs delaying progression in diabetic nephropathy and reducing mortality in left ventricular dysfunction and congestive heart failure. What is less obvious, ACEI are also widely used in pediatric nephrology and cardiology. Moreover, there are more and more reports showing evidence that ACEI can be beneficial in the treatment of many other diseases and the pleiotropic activity of ACEI is mainly based on their antioxidant properties. In this paper we focus on the less obvious possibilities of the clinical use of ACEI in neurological or oncological patients, discuss the role of ACE gene polymorphism and show the perspectives of potentially new applications of ACEI in contemporary pharmacotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preconception and pregnancy management of women with diabetic nephropathy on angiotensin converting enzyme inhibitors.

    PubMed

    Podymow, Tiina; Joseph, Geena

    2015-02-01

    Angiotensin converting enzyme (ACE) inhibitors are the mainstay of treatment for diabetic nephropathy to slow progression of disease. Diabetic women of childbearing age with nephropathy should be treated with ACE inhibitors as per guidelines in the pre-pregnancy period. ACE inhibitor use and exposure in the first trimester is controversial and requires counselling pre-pregnancy regarding the risks and benefits of use up to the first trimester, as well as the need to stop ACE inhibitors prior to the second trimester. Current evidence does not suggest that ACE inhibitors in the first trimester are associated with a greater risk of fetal malformations when compared to other antihypertensives. This topic is reviewed in depth, along with blood pressure targets in pregnant women with diabetic proteinuric disease, evidence for prevention of pre-eclampsia, self-monitoring of blood pressures at home in the latter half of pregnancy and the signs and symptoms of pre-eclampsia, proteinuria evolution in pregnancy, renal function prognosis, and restarting ACE inhibitors when breast feeding in the post-partum period.

  18. Serum Levels of Copper, Ceruloplasmin and Angiotensin Converting Enzyme among Silicotic and Non-Silicotic Workers

    PubMed Central

    Beshir, Safia; Aziz, Hisham; Shaheen, Weam; Eltahlawy, Eman

    2015-01-01

    BACKGROUND: Silicosis is the most frequently occurring pneumoconiosis. AIM: Measurement of serum levels of Angiotensin converting enzyme (ACE), Copper (Cu) and Ceruloplasmin (Cp) in cement workers occupationally exposed to silica dust as biomarkers of exposure rather than biomarkers of effect for silicosis. METHODS: Plain chest X-ray & pulmonary functions were done for 30 silicotic and 42 non-silicotic workers and 42 controls. CT scan was done for the exposed groups. Serum levels of Cu, Cp and ACE were estimated. RESULTS: The results showed a higher significant difference between the exposed groups and controls, and between the two exposed groups regarding the mean levels of all measured biochemical parameters. The pulmonary functions were significantly lower among silicotic workers than controls and non-silicotic groups. There was a significant positive correlation between duration of employment and serum ACE and Cu. CONCLUSION: Since respirable dust exposure-linked lung fibrosis disease is non-curable, the biochemical parameters (Cu, ACE and Cp) can be used as exposure biomarkers to silica dust, providing a better way for early diagnosis of this deadly disease. Down regulating the inflammatory responses could potentially reduce the adverse clinical pulmonary effects of air pollution. PMID:27275272

  19. Accumulation and identification of angiotensin-converting enzyme inhibitory peptides from wheat germ.

    PubMed

    Yang, Runqiang; Zou, Yu; Yu, Nanjing; Gu, Zhenxin

    2011-04-27

    The incubation conditions of wheat germ for angiotensin I-converting enzyme inhibitory activity (ACEI) elevation and peptide accumulation were investigated, and five ACE inhibitory peptides were obtained. The effect of individual factors such as incubation time, temperature, initial pH, and liquid to solid ratio on ACEI and peptide concentration of incubation medium was evaluated, respectively. The combinations of four factors were further optimized using a Box-Behnken design. Under the best incubation condition (pH 4.4 with a liquid to solid ratio 8.14 mL/g at temperature 47 °C, for 7 h), maximum ACEI (92.16%) and peptide concentration (88.12 mg/g) were obtained, which were 6.2- and 2.4-fold, respectively, as compared to the unincubated wheat germ. After they were purified, five ACE inhibitory peptides, VEV, W, NPPSV, QV, and AMY, were identified by liquid chromatography/tandem mass spectrometry. The IC(50) were 115.20, 94.87, 40.56, 26.82, and 5.86 μM, respectively.

  20. Endothelin-converting enzyme is a plausible target gene for hypoxia-inducible factor.

    PubMed

    Khamaisi, Mogher; Toukan, Hala; Axelrod, Jonathan H; Rosenberger, Christian; Skarzinski, Galia; Shina, Ahuva; Meidan, Rina; Koesters, Robert; Rosen, Seymour; Walkinshaw, Gail; Mimura, Imari; Nangaku, Masaomi; Heyman, Samuel N

    2015-04-01

    Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.

  1. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity.

    PubMed

    Wijesinghe, W A J P; Ko, Seok-Chun; Jeon, You-Jin

    2011-04-01

    Inhibition of angiotensin I-converting enzyme (ACE) activity is the most common mechanism underlying the lowering of blood pressure. In the present study, five organic extracts of a marine brown seaweed Ecklonia cava were prepared by using ethanol, ethyl acetate, chloroform, hexane, and diethyl ether as solvents, which were then tested for their potential ACE inhibitory activities. Ethanol extract showed the strongest ACE inhibitory activity with an IC(50) value of 0.96 mg/ml. Five kinds of phlorotannins, phloroglucinol, triphlorethol-A, eckol, dieckol, and eckstolonol, were isolated from ethanol extract of E. cava, which exhibited potential ACE inhibition. Dieckol was the most potent ACE inhibitor and was found to be a non-competitive inhibitor against ACE according to Lineweaver-Burk plots. Dieckol had an inducible effect on the production of NO in EAhy926 cells without having cytotoxic effect. The results of this study indicate that E. cava could be a potential source of phlorotannins with ACE inhibitory activity for utilization in production of functional foods.

  2. Not all angiotensin-converting enzyme inhibitors are equal: focus on ramipril and perindopril.

    PubMed

    Dinicolantonio, James J; Lavie, Carl J; O'Keefe, James H

    2013-07-01

    Angiotensin-converting enzyme (ACE) inhibitors are a heterogeneous class, varying in pharmacologic properties, which have different therapeutic impacts on patient profiles, including lipophilicity, tissue-ACE binding, duration of action, half-life, and increased bradykinin availability. Among the ACE inhibitor class, the agent perindopril, in particular, has pleiotropic effects that are not equally shared by other ACE inhibitors, including bradykinin site selectivity and subsequent enhancement of nitric oxide and inhibition of endothelial cell apoptosis. Moreover, there is a large amount of evidence to suggest that perindopril therapy may reduce cardiovascular event rates in patients, yet perindopril is rarely prescribed in the United States. Ramipril is another ACE inhibitor with both a favorable clinical profile and impressive outcomes data. Our review compares the pharmacologic and trial data among perindopril, ramipril, and other ACE inhibitors. In patients with or at high risk for coronary heart disease who do not have heart failure, or in patients with heart failure with preserved ejection fraction, perindopril should be among the preferred treatment agents in the ACE inhibitor class. Ramipril has an impressive track record of improving cardiovascular outcomes, too, and should be considered a preferred agent among the ACE inhibitor class.

  3. Angiotensin I-converting enzyme inhibitor derived from cross-linked oyster protein.

    PubMed

    Xie, Cheng-Liang; Kim, Jin-Soo; Ha, Jong-Myung; Choung, Se-Young; Choi, Yeung-Joon

    2014-01-01

    Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50) of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR). The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  4. Effects of the angiotensin converting enzyme inhibitor captopril on experimental autoimmune encephalomyelitis.

    PubMed

    Constantinescu, C S; Ventura, E; Hilliard, B; Rostami, A

    1995-08-01

    Angiotensin converting enzyme (ACE)1 mediates inflammation, participates in T cell stimulation by certain antigenic peptides, and influences the permeability of the blood brain barrier (BBB). ACE is elevated in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), characterized by increased BBB permeability. ACE inhibitor captopril suppresses certain immune functions and inhibits inflammatory or autoimmune diseases. We studied the effect of captopril on Lewis rat EAE, an animal model of MS. Fourteen rats with EAE were treated with captopril 30 mg/kg daily from immunization to day 21 post-immunization, and compared with 14 untreated rats. Severity scores and lymphocyte reactivity to myelin basic protein and mitogen were measured. There was a statistically significant (p < 0.05) difference between the mean and cumulative clinical scores of captopril-treated and untreated animals. Lymphocytes from captopril treated EAE rats at the peak of disease severity had diminished responses to MBP and concanavalin A. The data suggest a significant beneficial effect of captopril in Lewis rat EAE. Further studies including other inhibitors of ACE or of other peptidases with immune, inflammatory or BBB role, may identify potentially valuable immunopharmacologic agents.

  5. Attenuation of angiotensin converting enzyme inhibitor induced cough by iron supplementation: role of nitric oxide.

    PubMed

    Bhalla, Payal; Singh, Narinder Pal; Ravi, Krishnan

    2011-12-01

    The present study examined whether (1) the cough associated with angiotensin converting enzyme inhibitor therapy is attenuated by oral intake of iron and anti-oxidants, and (2) nitric oxide (NO) has any role in this attenuation. Of the 100 patients under investigation, cough occurred in 28 of them with preponderance in females. All the 28 patients were followed up for six weeks: the first two weeks were the observation period and the remaining four weeks the experimentation period. After the observation period, 11 patients received a single oral dose of ferrous sulphate (200 mg), eight received vitamin E (200 mg, o.d.) and vitamin C (150 mg, o.d.) and nine were given placebo during the experimentation period. Cough scoring, serum NO and malondialdehyde (MDA) levels were determined during both the periods. While there were significant decreases in cough scores, NO and MDA levels between these two periods in the iron group, cough scores and MDA level decreased significantly in the anti-oxidant group. None of these parameters changed in the control group. NO level was found to be increased significantly in patients who developed cough (n = 28) compared with those who did not cough (n = 72). These results suggest that iron supplementation suppresses cough in patients on ACE-I therapy through its effect on NO generation.

  6. Angiotensin-converting enzyme activity and cognitive impairment during hypoglycaemia in healthy humans.

    PubMed

    Pedersen-Bjergaard, Ulrik; Thomsen, Carsten E; Høgenhaven, Hans; Smed, Annelise; Kjaer, Troels W; Holst, Jens J; Dela, Flemming; Hilsted, Linda; Frandsen, Erik; Pramming, Stig; Thorsteinsson, Birger

    2008-03-01

    In type 1 diabetes increased risk of severe hypoglycaemia is associated with high angiotensin-converting enzyme (ACE) activity. We tested in healthy humans the hypothesis that this association is explained by the reduced ability of subjects with high ACE activity to maintain normal cognitive function during hypoglycaemia. Sixteen healthy volunteers selected by either particularly high or low serum ACE activity were subjected to hypoglycaemia (plasma glucose 2.7 mmol/L). Cognitive function was assessed by choice reaction tests. Despite a similar hypoglycaemic stimulus in the two groups, only the group with high ACE activity showed significant deterioration in cognitive performance during hypoglycaemia. In the high ACE group mean reaction time (MRT) in the most complex choice reaction task was prolonged and error rate (ER) was increased in contrast to the low ACE group. The total hypoglycaemic symptom response was greater in the high ACE group than in the low ACE group (p=0.031). There were no differences in responses of counterregulatory hormones or in concentrations of substrates between the groups. Healthy humans with high ACE activity are more susceptible to cognitive dysfunction and report higher symptom scores during mild hypoglycaemia than subjects with low ACE activity.

  7. Profibrosing effect of angiotensin converting enzyme inhibitors in human lung fibroblasts.

    PubMed

    Díaz-Piña, Gabriela; Montes, Eduardo; Checa, Marco; Becerril, Carina; García de Alba, Carolina; Vega, Anita; Páramo, Ignacio; Ordoñez-Razo, Rosa; Ruiz, Victor

    2015-04-01

    The objective of this study is to determine the effect of two angiotensin-converting enzyme inhibitors (ACEi) (Enalapril and Captopril), an angiotensin-II receptor inhibitor (Losartan) and a renin inhibitor (Aliskiren) on renin, TGF-β1 and collagen expressions in human lung fibroblast cultures through real-time PCR and ELISA. Normal commercial fibroblasts (CCD25) were exposed to 10(-6) M of enalapril, captopril, losartan, or aliskiren for 6 h. Subsequently, media were recovered and proteins were concentrated; RNA was extracted from the cells. Real time-PCR and ELISA were performed. ACEi and losartan-stimulated fibroblasts showed an increase in the expression of TGF-β1, Collagen-Iα1 (Col-Iα1), and renin (except losartan) vs PolR2A (p < 0.05), and upregulation of TGF-β1 protein (p < 0.01), except with aliskiren. Results show that ACEis and losartan could play a profibrosing role by inducing the overexpression of molecules such TGF-β1 and Collagen.

  8. Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma.

    PubMed

    Yamaguchi, Miki; Hirai, Sachie; Sumi, Toshiyuki; Tanaka, Yusuke; Tada, Makoto; Nishii, Yukari; Hasegawa, Tadashi; Uchida, Hiroaki; Yamada, Gen; Watanabe, Atsushi; Takahashi, Hiroki; Sakuma, Yuji

    2017-06-03

    EGFR-mutant lung adenocarcinomas contain a subpopulation of cells that have undergone epithelial-to-mesenchymal transition and can grow independently of EGFR. To kill these cancer cells, we need a novel therapeutic approach other than EGFR inhibitors. If a molecule is specifically expressed on the cell surface of such EGFR-independent EGFR-mutant cancer cells, it can be a therapeutic target. We found that a mesenchymal EGFR-independent subline derived from HCC827 cells, an EGFR-mutant lung adenocarcinoma cell line, expressed angiotensin-converting enzyme 2 (ACE2) to a greater extent than its parental cells. ACE2 was also expressed at least partially in most of the primary EGFR-mutant lung adenocarcinomas examined, and the ACE2 expression level in the cancer cells was much higher than that in normal lung epithelial cells. In addition, we developed an anti-ACE2 mouse monoclonal antibody (mAb), termed H8R64, that was internalized by ACE2-expressing cells. If an antibody-drug conjugate consisting of a humanized mAb based on H8R64 and a potent anticancer drug were produced, it could be effective for the treatment of EGFR-mutant lung adenocarcinomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood

    PubMed Central

    de Picoli Souza, Kely; da Silva, Elton D.; Batista, Elice C.; Reis, Felipe C. G.; Silva, Sylvia M. A.; Castro, Charlles H. M.; Luz, Jaqueline; Pesquero, Jorge L.; dos Santos, Edson L.; Pesquero, João B.

    2015-01-01

    We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system (RAS) is expressed and functional in the white adipose tissue (WAT) and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass) or saline, starting at the first day of life until the age of 16 days. Between days ninetieth and hundred and eightieth, a group of these animals received high fat diet (HFD). Molecular, biochemical, histological, and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight, and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) gene expression in hypothalamus, fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) gene expression in retroperitoneal WAT, and decreases peroxixome proliferators-activated receptor (PPAR)γ, PPARα, uncoupling protein (UCP)2, and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood. PMID:25926796

  10. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex.

    PubMed

    Natesh, Ramanathan; Schwager, Sylva L U; Sturrock, Edward D; Acharya, K Ravi

    2003-01-30

    Angiotensin-converting enzyme (ACE) has a critical role in cardiovascular function by cleaving the carboxy terminal His-Leu dipeptide from angiotensin I to produce a potent vasopressor octapeptide, angiotensin II. Inhibitors of ACE are a first line of therapy for hypertension, heart failure, myocardial infarction and diabetic nephropathy. Notably, these inhibitors were developed without knowledge of the structure of human ACE, but were instead designed on the basis of an assumed mechanistic homology with carboxypeptidase A. Here we present the X-ray structure of human testicular ACE and its complex with one of the most widely used inhibitors, lisinopril (N2-[(S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline; also known as Prinivil or Zestril), at 2.0 A resolution. Analysis of the three-dimensional structure of ACE shows that it bears little similarity to that of carboxypeptidase A, but instead resembles neurolysin and Pyrococcus furiosus carboxypeptidase--zinc metallopeptidases with no detectable sequence similarity to ACE. The structure provides an opportunity to design domain-selective ACE inhibitors that may exhibit new pharmacological profiles.

  11. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants.

    PubMed

    Simaratanamongkol, Arunee; Umehara, Kaoru; Noguchi, Hiroshi; Panichayupakaranant, Pharkphoom

    2014-12-15

    Eight Thai edible plants were tested for their inhibitory activity against an angiotensin-converting enzyme (ACE) using an in vitro assay. The methanol extract of Apium graveolens exhibited significant ACE inhibitory activity with an IC50 value of 1.7 mg/ml, and was then subjected to an isolation procedure that resulted in identification of a pure active constituent, junipediol A 8-O-β-d-glucoside (1-β-d-glucosyloxy-2-(3-methoxy-4-hydroxyphenyl)-propane-1,3-diol) (1), which had good ACE inhibitory activity with an IC50 value of 76 μg/ml. Another eight known compounds, isofraxidin-β-d-glucoside (2), roseoside (3), apigenin-7-O-β-d-glucoside (4), luteolin-7-O-β-d-glucoside (5), icariside D2 (6), apiin (7), chrysoeriol-7-O-β-d-apiosylglucoside (8), and 11,21-dioxo-3 β,15 α,24-trihydroxyurs-12-ene-24-O-β-d-glucopyranoside (9) were also identified. Although each of these five constituents (2-6) isolated from the same fraction as 1 showed no activity at concentrations of 500 μM, together, when each was present at 300 μg/ml, they enhanced the inhibitory activity of 500 μM of 1 from 64% to 81%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Angiotensin Converting Enzyme Inhibitor-related Angioedema: A Case of an Unexpected Death.

    PubMed

    Atalay, Eray; Özdemir, Mehmet Tamer; Çiğsar, Gülşen; Omurca, Ferhat; Aslan, Nurullah; Yildiz, Mehmet; Gey, Zehra Bahar

    2015-12-01

    Angioedema is an asymmetric non-pitting oedema on face, lips, tongue and mucous membranes; any delay in diagnosis and treatment can be fatal. Treatment with lisinopril as an angiotensin converting enzyme (ACE) inhibitor, can be a reason of angioedema. Here we report a case who developed oral-facial edema four years after using lisinopril/hydrochlorothiazide. Laryngeal oedema is a main cause of death in angioedema. The treatment of choice in angioedema including fresh frozen plasma, C1 inhibitor concentrations and BRK-2 antagonists (bradykinin B2 receptor antagonists) were used. In this case; a 77 years old female patient suffering from hypertension was considered. This patient was suffering two days from swelling on her face and neck. Non- allergic angioedema was distinguished in five major forms; acquired (AAO), hereditary (HAE), renin-angiotensin-aldosterone system (RAAS) blocker-dependent, pseudoallergic angioedema (PAS) and an idiopathic angioedema (IAO). She was admitted to our clinic with the diagnosis of hereditary angioedema. Patient had skin edema and life threatening laryngeal edema. In emergency department treatment was started using intravenous methylprednisolone, diphenydramine as well as inhaled and subcutaneous epinephrine simultaneously. Despite the initial treatment, the patient died due to the insufficient respiration and cardiac arrest. The patient has no history of kidney disease.

  13. Angiotensin-converting enzyme inhibitors in the therapy of renal diseases.

    PubMed

    Lefebvre, H P; Toutain, P L

    2004-10-01

    Renal diseases, especially chronic renal failure (CRF), are common in canine and feline medicine. The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in these conditions in the development of renal lesions and the progression of kidney dysfunction. Angiotensin-converting enzyme inhibitors (ACEI) are currently considered as the most efficient agents in therapeutic strategies. The benefit of an ACEI treatment can be explained by at least three mechanisms: ACEI limit systemic and glomerular capillary hypertension, have an antiproteinuric effect, and retard the development of glomerulosclerosis and tubulointerstitial lesions. These effects have been studied in dogs and cats, and there is now some evidence to support the recommendation of ACEI therapy in dogs and cats with CRF. Nevertheless the prescription of ACEI in such patients should take into account the potential influence of renal impairment on ACEI disposition, and adverse effects on the renal function itself (especially hypotension and acute reductions in glomerular filtration rate). The risk of drug interaction with diuretics, nonsteroidal anti-inflammatory drugs and anesthetics, should not be overestimated. Furthermore, hypotension may occur in patients on a low sodium diet.

  14. Chebulin: Terminalia chebula Retz. fruit-derived peptide with angiotensin-I-converting enzyme inhibitory activity.

    PubMed

    Sornwatana, Thakorn; Bangphoomi, Kunan; Roytrakul, Sittiruk; Wetprasit, Nuanchawee; Choowongkomon, Kiattawee; Ratanapo, Sunanta

    2015-01-01

    Angiotensin-I-converting enzyme (ACE) plays an important role in blood pressure regulation. In this study, an ACE-hexapeptide inhibitor (Asp-Glu-Asn-Ser-Lys-Phe) designated as chebulin was produced from the fruit protein of Terminalia chebula Retz. by pepsin digestion, ultrafiltrated through a 3 KDa cut-off membrane, a reverse-phase high-performance liquid chromatography, and nano-liquid chromatography tandem mass spectrometry analysis. Chebulin was found to inhibit ACE in a noncompetitive manner, as supported by the structural model. It bounds to ACE by the hydrogen bond, hydrophobic and ionic interactions via the interactions of C-terminal Phe (Phe-6), and N-terminal residues (Asp-1 and Glu-2) with the amino acid residues on noncatalytic sites of the ACE. The results showed that chebulin derived from fruits of T. chebula Retz. is a potential ACE-peptide inhibitor that could be used as a functional food additive for the prevention of hypertension and as an alternative to ACE inhibitor drug.

  15. Cardiovascular adaptation, functional capacity and Angiotensin-converting enzyme I/D polymorphism in elite athletes.

    PubMed

    Boraita, Araceli; de la Rosa, Alejandro; Heras, María E; de la Torre, Ana I; Canda, Alicia; Rabadán, Manuel; Díaz, Angel E; González, César; López, Marta; Hernández, Mariano

    2010-07-01

    Angiotensin-converting enzyme (ACE) is associated with the development of cardiac hypertrophy and improved physical fitness. The objective of this study was to investigate the relationship between the ACE gene insertion/deletion (I/D) polymorphism and adaptation to sports training. The study included 299 elite Spanish athletes (193 men and 106 women) from 32 different sports disciplines, which were grouped according to their static and dynamic components. All participants underwent body composition analysis, Doppler echocardiography at rest, and ergospirometry. Their ACE genotype was determined using the polymerase chain reaction. The most common genotype in both males and females was the deletion-insertion (DI) heterozygote (57.5% and 54.7%, respectively), followed by the DD homozygote (30.6% and 34.9%), and the II homozygote (11.9% and 10.4%). Differences in morphometric and functional cardiac adaptation were observed between the different sports disciplines, but there was no statistically significant relationship with the ACE I/D polymorphism. Moreover, when athletes with different genotypes were compared, the only differences observed were between the DD and DI groups in female athletes, who differed in body mass index and longitudinal right atrial dimension. The ACE I/D polymorphism did not appear to influence cardiovascular adaptation in response to training. However, the DI genotype was the most common, probably because the sample was biased by being made up of elite athletes.

  16. Angiotensin-converting enzyme gene polymorphisms and risk for sporadic Alzheimer's disease: a meta-analysis.

    PubMed

    Wang, Xue-Bin; Cui, Ning-Hua; Gao, Jia-Jia; Qiu, Xue-Ping; Yang, Na; Zheng, Fang

    2015-02-01

    Numerous studies have tested for associations between common polymorphisms of the angiotensin-converting enzyme gene and sporadic Alzheimer disease (SAD), but results have been inconclusive. Using meta-analysis, our study aimed to clarify the nature of the genetic risks contributed by the three polymorphisms (rs4291, rs4343, rs1800764) for developing SAD. Through searching of Pubmed, Embase, Alzgene and manually searching relevant references, a total of 14 articles with 26 independent studies were included. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association studies. The heterogeneity across the studies was tested, as was publication bias. We observed significant association between SNP rs4291 and SAD using allelic comparison (OR = 1.08, 95% CI 1.03-1.14), homozygote comparison (OR = 1.16, 95% CI 1.04-1.30) and the recessive model (OR = 1.10, 95% CI 1.02-1.18). Association with SNP rs1800764 was revealed but it was not sufficiently robust to withstand the Benjamini-Hochberg method and stepdown Bonferroni correction. Significant association was not identified in the analysis for SNP rs4343. In subgroup analyses, the risk of SAD associated with SNP rs4291 appeared to be significant among Caucasians and in older cases (mean age ≥75 years). Our results confirmed a significant but modest association between SNP rs4291 and SAD susceptibility. Further study of the pathogenetic characteristics of this polymorphism and independent confirmation of the association in larger studies are warranted.

  17. Diagnostic use of angiotensin converting enzyme inhibitors in radioisotope evaluation of unilateral renal artery stenosis

    SciTech Connect

    Kremer Hovinga, T.K.; de Jong, P.E.; Piers, D.A.; Beekhuis, H.; van der Hem, G.K.; de Zeeuw, D.

    1989-05-01

    Iodine-123 hippurate renography, (/sup 99m/Tc)diethylenetriaminepentaacetic acid (DTPA) renography, and (/sup 99m/Tc)dimercapto succinic acid (DMSA) renal scintigraphy were performed before and during angiotensin converting enzyme (ACE) inhibition in a group of 15 hypertensive patients with angiographically ''significant'' unilateral renal artery stenosis. Visual and quantitative evaluation of the three radioisotope methods before ACE inhibition already disclosed abnormalities suggestive of renal artery stenosis in a high percentage (87%, 60%, and 60%, respectively) in this group of patients, but ACE inhibition further improved the diagnostic yield in all three methods (93%, 86%, and 80%). Iodine-123 hippurate renography was at least as useful as (/sup 99m/Tc)DTPA renography in this respect, while (/sup 99m/Tc)DMSA scintigraphy can be used particularly in segmental stenosis. Despite a large drop in blood pressure after ACE inhibition little adverse reactions were seen and overall renal function was fairly well maintained, the exceptions noted in patients with initially a more impaired renal function.

  18. Therapeutic trials comparing angiotensin converting enzyme inhibitors and angiotensin II receptor blockers.

    PubMed

    Elliott, W J

    2000-08-01

    Two independent pharmacologic methods of specifically interfering with the renin-angiotensin-aldosterone system have been brought to the marketplace: angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). These agents have the potential not only to be very widely used for a broad variety of clinical indications but also to compete against each other as treatments for hypertension, heart failure, renal impairment, and other conditions. Many short-term comparative studies of these two classes of drugs have now been completed. Most have focused on surrogate endpoints, such as blood pressure, renal function, or cough. These studies have generally concluded that ARBs are better tolerated but that the two drug classes otherwise have similar efficacy. The largest clinical trial comparing ARBs and ACE inhibitors thus far completed, Evaluation of Losartan in the Elderly (ELITE 2), failed to confirm the results of a smaller study; it did not demonstrate a significant improvement in outcomes (death or hospitalization for heart failure) with an ARB used alone, despite better tolerability. Many longer-term outcome studies with survival endpoints are under way, but most will compare the combination against an ACE inhibitor alone. These studies will define the optimal use of these agents in medicine for decades to come.

  19. Angiotensin receptors and angiotensin I-converting enzyme in rat intestine

    SciTech Connect

    Duggan, K.A.; Mendelsohn, F.A.; Levens, N.R. )

    1989-10-01

    The purpose of this study was to map the distribution of angiotensin II (ANG II) receptors and ANG I-converting enzyme (ACE) in rat intestine. ANG II binding sites were visualized by in vitro autoradiography using iodinated (Sar1, Ile8)ANG II. The distribution of ACE was mapped using an iodinated derivative of lisinopril. Male Sprague-Dawley rats were killed and the interior of the whole intestine washed with ice-cold saline. Segments of duodenum, jejunum, ileum, and colon were quickly frozen in a mixture of isopentane and dry ice. Twenty-micron frozen sections were thaw-mounted onto gelatin-coated slides, incubated with either ligand, and exposed to X-ray film. After exposure and subsequent development, the films were quantitated by computerized densitometry. ANG II receptors were most dense in the colon, followed by the ileum, duodenum, and jejunum. Within each segment of intestine, specific ANG II binding sites were localized exclusively to the muscularis. In contrast, ACE was present in both the mucosa and the muscularis. The colocalization of ANG II receptors and ACE may suggest a role for locally generated ANG II in the control of intestinal function. The luminal orientation of ACE in the mucosa of the small intestine may suggest that at this site ACE serves primarily to hydrolyze dietary peptides.

  20. Does lipophilicity of angiotensin converting enzyme inhibitors selectively influence autonomic neural function in human hypertension?

    PubMed

    Wu, R A; Kailasam, M T; Cervenka, J H; Parmer, R J; Kennedy, B P; Ziegler, M G; O'Connor, D T

    1994-11-01

    Angiotensin II has both central nervous system and peripheral effects on autonomic function. Ramipril is among the more lipophilic angiotensin converting enzyme (ACE) inhibitors, and hence can penetrate the central nervous system readily. We investigated whether rampiril has selective effects on autonomic control of the circulation in human hypertension, compared with the more hydrophilic ACE inhibitor enalapril. Blood pressure, hemodynamics and measurements of autonomic function were obtained in 13 essential hypertensive subjects after 10 days on placebo, and after crossover monotherapy with 10 days on enalapril versus 10 days on ramipril. Both enalapril and ramipril lowered systolic, diastolic and mean arterial blood pressures significantly, with no reflex increase in heart rate. Plasma renin activity increased substantially on each of the ACE inhibitors. There were no significant effects of either agent on plasma catecholamines (norepinephrine or epinephrine) or chromogranin A, biochemical indices of efferent sympatho-adrenal outflow. There were also no significant changes after either agent in baroreflex sensitivity (to high- and low-pressure stimuli), the response to cold stress or sympathetic (alpha-adrenergic) participation in blood pressure maintenance. There was a marginal effect of ACE inhibition on alpha 1-adrenergic pressor sensitivity, but the two compounds did not differ significantly in this respect. Autonomic control of circulatory function was maintained well after either lipophilic (ramipril) or hydrophilic (enalapril) ACE inhibitors, and the lipophilic compound ramipril had no additional effects on autonomic function beyond those shown by the hydrophilic agent enalapril.

  1. Effects of Angiotensin Converting Enzyme Inhibitors on Liver Fibrosis in HIV and Hepatitis C Coinfection.

    PubMed

    Reese, Lindsey J; Tider, Diane S; Stivala, Alicia C; Fishbein, Dawn A

    2012-01-01

    Background. Liver fibrosis is accelerated in HIV and hepatitis C coinfection, mediated by profibrotic effects of angiotensin. The objective of this study was to determine if angiotensin converting enzyme inhibitors (ACE-Is) attenuate liver fibrosis in coinfection. Methods. A retrospective review of 156 coinfected subjects was conducted to analyze the association between exposure to ACE-Is and liver fibrosis. Noninvasive indices of liver fibrosis (APRI, FIB-4, Forns indices) were compared between subjects who had taken ACE-Is and controls who had not taken them. Linear regression was used to evaluate ACE-I use as an independent predictor of fibrosis. Results. Subjects taking ACE-Is for three years were no different than controls on the APRI and the FIB-4 but had significantly higher scores than controls on the Forns index, indicating more advanced fibrosis. The use of ACE-Is for three years remained independently associated with an elevated Forns score when adjusted for age, race, and HIV viral load (P < 0.001). There were significant associations between all of the indices and significant fibrosis, as determined clinically and radiologically. Conclusions. There was not a protective association between angiotensin inhibition and liver fibrosis in coinfection. These noninvasive indices may be useful for ruling out significant fibrosis in coinfection.

  2. The angiotensin-converting enzyme inhibitor captopril rescues mice from endotoxin-induced lethal hepatitis.

    PubMed

    Ge, Pu; Jiang, Rong; Yao, Xin; Li, Jing; Dai, Jie; Zhang, Li; Ye, Bin

    2017-02-01

    The renin-angiotensin system is classically regarded as a crucial regulator of circulatory homeostasis, but recent studies also revealed its pro-inflammatory roles. The beneficial effects of the angiotensin-converting enzyme inhibitor (ACEI) in severe inflammatory injury in the lung and heart have been previously reported, but its potential effects on lethal hepatitis were unknown. In this study, a mouse model with LPS/d-galactosamine (GalN)-induced fulminant hepatitis were used to test the protective potential of captopril, a representative ACEI. The results indicated that treatment with captopril significantly decreased the plasma level of alanine aminotransferase and aspartate aminotransferase, alleviated the histopathological damage of the liver tissue and improve the survival rate of LPS/GalN-challenged mice. These effects were accompanied by reduced mRNA levels of TNF-α and IL-6 in the liver, and decreased protein level of TNF-α and IL-6 in the plasma. In addition, the activation of caspases 3, 8 and 9, and the presence of TUNEL-positive apoptotic cells, were also suppressed by captopril treatment. The above evidence suggested that the renin-angiotensin system might be involved in the development of LPS/GalN-induced fulminant hepatitis and ACEI might have potential value in lethal hepatitis.

  3. Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril

    PubMed Central

    Akif, Mohd; Masuyer, Geoffrey; Schwager, Sylva L U; Bhuyan, Bhaskar J; Mugesh, Govindasamy; Isaac, R Elwyn; Sturrock, Edward D; Acharya, K Ravi

    2011-01-01

    Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin–angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356–1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 Å resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein–selenolate interaction. These new structures of tACE–SeCap and AnCE–SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity. Database Structural data for the two SeCap complexes with ACE and AnCE have been deposited with the RCSB Protein Data Bank under the codes 2YDM and 3ZQZ, respectively. PMID:21810173

  4. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    PubMed Central

    Xie, Cheng-Liang; Kim, Jin-Soo; Ha, Jong-Myung; Choung, Se-Young

    2014-01-01

    Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50) of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR). The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension. PMID:25140307

  5. Increased risk of pneumonia associated with angiotensin-converting enzyme (CD143) rs4340 polymorphism.

    PubMed

    Zhang, Xiaofang; Liu, Fangzhu

    2016-08-01

    The study aims to investigate the genetic association between rs4340 polymorphism at intron 16 of the angiotensin-converting enzyme (CD143) gene and pneumonia predisposition. Electronic database of PubMed, Embase, and CNKI (China National Knowledge Infrastructure) was searched for the studies addressing the association between CD143 rs4340 genotypes and pneumonia risk. The odds ratio (OR) with its 95 % confidence interval (CI) was employed to estimate the association. In total, ten case-control studies, including 1239 pneumonia cases and 2400 healthy controls, met the inclusion criteria. Our results showed a significant association between rs4340 SNP and pneumonia risk using the recessive model (OR 1.43, 95 % CI 1.20-1.70). A significantly increased risk was also indicated under the recessive model in Asian populations (OR 1.63, 95 % CI 1.16-2.30), Caucasian populations (OR 1.34, 95 % CI 1.09-1.65), community-acquired pneumonia (OR 1.42, 95 % CI 1.16-1.75) rather than nosocomial pneumonia (OR 1.47, 95 % CI 0.97-2.23). However, further studies with gene-gene and gene-environmental interactions should be considered to confirm this association.

  6. Stability and cytotoxicity of angiotensin-I-converting enzyme inhibitory peptides derived from bovine casein*

    PubMed Central

    Wu, Wei; Yu, Pan-pan; Zhang, Feng-yang; Che, Hong-xia; Jiang, Zhan-mei

    2014-01-01

    This study investigated the effect of heat treatment combined with acid and alkali on the angiotensin-I-converting enzyme (ACE) inhibitory activity of peptides derived from bovine casein. The free amino group content, color, and cytotoxicity of the peptides were measured under different conditions. When heated at 100 °C in the pH range from 9.0 to 12.0, ACE inhibitory activity was reduced and the appearance of the peptides was significantly darkened. After thermal treatment in the presence of acid and alkali, the free amino group content of ACE inhibitory peptides decreased markedly. High temperature and prolonged heating also resulted in the loss of ACE inhibitory activity, the loss of free amino groups, and the darker coloration of bovine casein-derived peptides. However, ACE inhibitory peptides, within a concentration range of from 0.01 to 0.2 mg/ml, showed no cytotoxicity to Caco-2 and ECV-304 cell lines after heat treatment. This indicated that high temperature and alkaline heat treatment impaired the stability of bovine casein-derived ACE inhibitory peptides. PMID:24510707

  7. [Association between visual improvement after photocoagulation and the use of angiotensin converting enzyme inhibitors in diabetic macular oedema].

    PubMed

    Somilleda-Ventura, Selma Alin; García-Rubio, Yatzul Zuhaila; Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio

    2016-01-01

    Angiotensin converting enzyme inhibitors are effective in delaying the progression of diabetic retinopathy. It is unknown if their use is associated with a better visual outcome in patients with diabetic macular oedema. A non-experimental, comparative, longitudinal and retrospective study was performed on patients with diabetic macular oedema treated by focal photocoagulation, and with systemic arterial hypertension treated with angiotensin converting enzyme inhibitors (Group 1), and without hypertension (Group 2). The dependent variable was the proportion with visual improvement, operatively defined as the gain of one or more lines of vision three weeks after photocoagulation. The independent variable was the use of angiotensin converting enzyme inhibitors. The proportion of eyes with visual improvement after treatment was compared between groups using the Chi squared (χ(2)) test. A total of 33 eyes (51.6%) were assigned to group 1, and 31 (48.2%), to group 2. The mean of visual acuity improved after three weeks, compared with baseline (p=0.002). The proportion of eyes with visual improvement did not differ between patients treated with angiotensin converting enzyme inhibitors (45.5%) and those that did not use them (51.6%, p=0.4). There was no statistical difference in the proportion of eyes with visual improvement between patients treated with angiotensin converting enzyme inhibitors and in those where they were not used. There is no support for the inhibition of angiotensin II in addition to photocoagulation for improving the outcome in patients with diabetic macular oedema. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  8. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises.

    PubMed

    Gong, Jin-Song; Shi, Jin-Song; Lu, Zhen-Ming; Li, Heng; Zhou, Zhe-Min; Xu, Zheng-Hong

    2017-02-01

    Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.

  9. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip.

    PubMed

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-06-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.

  10. A Novel Lactone-Forming Carboxylesterase: Molecular Identification of a Tuliposide A-Converting Enzyme in Tulip1[W

    PubMed Central

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-01-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185

  11. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor

    PubMed Central

    Waterfall, J. F.

    1989-01-01

    1 Cilazapril is the monoethyl ester prodrug form of the di-acid cilazaprilat, a new angiotensin converting enzyme (ACE) inhibitor. Cilazaprilat has an IC50 of 1.9 nM as an inhibitor of rabbit lung ACE in vitro making it one of the most potent ACE inhibitors currently available. Studies on a wide range of other enzymes show that the inhibition is highly specific. 2 An oral dose of 0.1 mg kg-1 cilazapril evoked the same maximum degree of plasma ACE inhibition (∼76%) in the rat as 0.25 mg kg-1 enalapril. Cilazapril (0.25 mg kg-1 p.o.) inhibited plasma ACE by > 95%. The rate of recovery of ACE activity was slower with cilazapril (5-6% h-1) than with enalapril (10% h-1). 3 In anaesthetised rats cilazaprilat was equipotent with ramiprilat and slightly more potent (1.5×) than enalaprilat as an inhibitor of the angiotensin I pressor response. 4 Following oral administration to conscious rats and intravenous administration to anaesthetised dogs, cilazapril was 2-4.5× more potent than enalapril as an ACE inhibitor. 5 In cats cilazapril (0.1 and 0.3 mg kg-1 p.o.) dose dependently decreased plasma ACE activity and the angiotensin pressor response. Peak effects occurred at 2 h after dosing and plasma ACE inhibition was maintained at ≥ 50% for up to 18 h. Mean arterial pressure was also decreased dose dependently with a peak effect at 3-4 h. 6 Daily oral dosing of cilazapril (30 mg kg-1 p.o.) to spontaneously hypertensive rats evoked a progressive and prolonged (24 h) antihypertensive response with a maximum decrease in systolic blood pressure of 110 mm Hg. 7 Cilazapril (10 mg kg-1 p.o. twice daily for 3.5 days) progressively decreased blood pressure in volume depleted renal hypertensive dogs. The maximum fall in systolic pressure was 39 ± 6 mm Hg. 8 Haemodynamic studies in open chest anaesthetised dogs showed that the hypotensive response to intravenous cilazapril was accompanied by a reduction in total peripheral resistance. Small decreases in cardiac output and

  12. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway.

    PubMed Central

    Zisman, L S; Abraham, W T; Meixell, G E; Vamvakias, B N; Quaife, R A; Lowes, B D; Roden, R L; Peacock, S J; Groves, B M; Raynolds, M V

    1995-01-01

    It has been proposed that the contribution of myocardial tissue angiotensin converting enzyme (ACE) to angiotensin II (Ang II) formation in the human heart is low compared with non-ACE pathways. However, little is known about the actual in vivo contribution of these pathways to Ang II formation in the human heart. To examine angiotensin II formation in the intact human heart, we administered intracoronary 123I-labeled angiotensin I (Ang I) with and without intracoronary enalaprilat to orthotopic heart transplant recipients. The fractional conversion of Ang I to Ang II, calculated after separation of angiotensin peptides by HPLC, was 0.415 +/- 0.104 (n = 5, mean +/- SD). Enalaprilat reduced fractional conversion by 89%, to a value of 0.044 +/- 0.053 (n = 4, P = 0.002). In a separate study of explanted hearts, a newly developed in vitro Ang II-forming assay was used to examine cardiac tissue ACE activity independent of circulating components. ACE activity in solubilized left ventricular membrane preparations from failing hearts was 49.6 +/- 5.3 fmol 125I-Ang II formed per minute per milligram of protein (n = 8, +/- SE), and 35.9 +/- 4.8 fmol/min/mg from nonfailing human hearts (n = 7, P = 0.08). In the presence of 1 microM enalaprilat, ACE activity was reduced by 85%, to 7.3 +/- 1.4 fmol/min/mg in the failing group and to 4.6 +/- 1.3 fmol/min/mg in the nonfailing group (P < 0.001). We conclude that the predominant pathway for angiotensin II formation in the human heart is through ACE. Images PMID:7657820

  13. Angiotensin I-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat.

    PubMed

    Escudero, Elizabeth; Sentandreu, Miguel Angel; Arihara, Keizo; Toldrá, Fidel

    2010-03-10

    The main purpose of this work was to study the generation of Angiotensin I-converting enzyme inhibitory (ACEI) peptides after gastrointestinal digestion of pork meat by the action of pepsin and pancreatin at simulated gut conditions. The hydrolysate was further subjected to reverse phase chromatography in order to separate the fractions with ACEI activity. Using MALDI-TOF/TOF mass spectrometry, 12 peptides were identified in these fractions. It is worth highlighting the novel peptides ER, KLP, and RPR with IC(50) values of 667 microM, 500 microM, and 382 microM, respectively. Results obtained by MALDI-TOF/TOF mass spectrometry were complemented by a second approach consisting of the analysis of the hydrolysate directly by nanoLC-ESI-MS/MS followed by a study of the obtained sequences and comparison with known ACEI peptide sequences. By using these two approaches, a total of 22 peptides were selected for its synthesis and further in vitro assay of ACEI activity. The strongest ACE inhibition was observed for peptide KAPVA (IC(50) = 46.56 microM) followed by the sequence PTPVP (IC(50) = 256.41 microM). Sequence similarity searches revealed that these two peptides derive from muscle titin, constituting the first identified ACEI peptides coming from this protein. This is also the first time that ACEI sequences MYPGIA and VIPEL have been reported. Other identified and synthesized sequences showed less ACEI activity. The obtained results evidence the potential of pork meat proteins as a source of antihypertensive peptides after gastrointestinal digestion.

  14. Misdiagnosis and mistreatment of a common side-effect--angiotensin-converting enzyme inhibitor-induced cough.

    PubMed

    Vegter, Stefan; de Jong-van den Berg, Lolkje T W

    2010-02-01

    Angiotensin-converting enzyme inhibitors (ACEi) are frequently prescribed for various cardiovascular and renal diseases. A common side-effect of these drugs is a persistent dry cough. Physicians who fail to recognize a dry cough to be ACEi-related may attempt to treat it with antitussive agents instead of recommended ACEi substitution. Prescription behaviour in the general population considering treatment of the side-effect with antitussive agents has not been studied before. Drug dispensing data between 2000 and 2007 were retrieved from the IADB.nl database. A prescription sequence symmetry analysis was used to determine whether antitussive agents were prescribed more often following ACEi initiation than the other way around. A logistic regression model was fitted to determine predictors. We identified 27 446 incident users of ACEi therapy. One thousand and fifty-four patients were incident users of both ACEi and antitussives within a half-year time span. There was an excess of patients being prescribed antitussive agents after ACEi initiation (703 vs. 351), adjusted sequence ratio 2.2 [confidence interval (CI) 1.9, 2.4]. Female patients were more likely to be prescribed antitussive agents following ACEi therapy initiation, odds ratio 1.4 (CI 1.1, 1.9), age and co-medications were not significant predictors. There was a significant and clinically relevant excess of patients receiving antitussives after ACEi initiation. The results suggest that cough as a side-effect of ACEi is not recognized as being ACEi-related or is symptomatically treated with antitussive agents instead of ACEi substitution. The estimated frequency of antitussive treatment of ACEi-induced dry cough is 15%.

  15. Genetic Variants of Angiotensin-Converting Enzyme Are Linked to Autism: A Case-Control Study

    PubMed Central

    Firouzabadi, Negar; Erfani, Nasrallah; Fathi, Farshid; Bazrafkan, Mozhdeh; Bahramali, Ehsan

    2016-01-01

    Background Autism is a disease of complex nature with a significant genetic component. The importance of renin-angiotensin system (RAS) elements in cognition and behavior besides the interaction of angiotensin II (Ang II), the main product of angiotensin-converting enzyme (ACE), with neurotransmitters in CNS, especially dopamine, proposes the involvement of RAS in autism. Since the genetic architecture of autism has remained elusive, here we postulated that genetic variations in RAS are associated with autism. Methods Considering the relation between the three polymorphisms of ACE (I/D, rs4343 and rs4291) with the level of ACE activity, we have investigated this association with autism, in a case-control study. Genotype and allele frequencies of polymorphisms were determined in DNAs extracted from venous blood of 120 autistic patients and their age and sex-matched healthy controls, using polymerase chain reaction (PCR) and PCR–restriction fragment length polymorphism (PCR–RFLP) methods. Results There were strong associations between both DD genotype of ACE I/D and the D allele, with autism (P = 0.006, OR = 2.9, 95% CI = 1.64–5.13 and P = 0.006, OR = 2.18, 95% CI = 1.37–3.48 respectively). Furthermore, a significant association between the G allele of rs4343 and autism was observed (P = 0.006, OR = 1.84, 95%CI = 1.26–2.67). Moreover, haplotype analysis revealed an association between DTG haplotype and autism (P = 0.008). Conclusion Our data suggests the involvement of RAS genetic diversity in increasing the risk of autism. PMID:27082637

  16. Angiotensin-I-Converting Enzyme Inhibitory Activities and In Vivo Antihypertensive Effects of Sardine Protein Hydrolysate.

    PubMed

    Huang, Jiacheng; Liu, Qianyue; Xue, Bin; Chen, Long; Wang, Yong; Ou, Shiyi; Peng, Xichun

    2016-09-28

    In our previous study, an antihypertensive protein hydrolysate was prepared from sardine. This study aimed to investigate the composition of sardine protein hydrolysate (SPH) and it's in vivo antihypertensive effect. SPH was separated sequentially with ultrafiltration and size exclusion chromatography. Fractions with high angiotensin-I-converting enzyme (ACE) inhibitory activity were further analyzed with RP-HPLC and amino acids analysis. Then, SPH was individually oral administrated to spontaneously hypertensive rats (SHR) and normotensive wistar kyoto rats (WKY) for 4 wk. After treatment, the systolic blood pressure (SBP), organ index, oxidative status, serum ACE activity, and serum angiotensin-II (ANG-II) of all the rats were determined. According to the separation and analysis results, 3 main fractions with high ACE-inhibitory activity were obtained with different amino acids composition. The animal experiments results showed that SPH could significantly reduce SBP (P < 0.05 or P < 0.01) within 4 h after a single oral administration. After a chronic oral administration, a steady state of SBP in SHR rats was attained. The heart weight index and left ventricular weight index were significantly reduced (P < 0.05) in SPH-treated SHR rats. The malonyldialdehyde (MDA) levels in organs and serum, serum ACE activity, and serum ANG-II concentration in SPH-treated SHR rats were significantly lowered (P < 0.05 or P < 0.01) as compared to their controls. Meanwhile there was no significant effect (P > 0.05) on those parameters in WKY rats. These results indicate that SPH can decrease blood pressure in SHR rats and not in WKY rats. © 2016 Institute of Food Technologists®

  17. Conservative management of chronic kidney disease stage 5: role of angiotensin converting enzyme inhibitors.

    PubMed

    Dattolo, Pietro C; Gallo, Pamela; Michelassi, Stefano; Paudice, Nunzia; Cannavò, Rossella; Romoli, Elena; Fani, Filippo; Tsalouchos, Aris; Mehmetaj, Alma; Ferro, Giuseppe; Sisca, Sergio; Pizzarelli, Francesco

    2016-12-01

    Benefits and risks of angiotensin converting enzyme inhibitors (ACE-I) in advanced chronic kidney disease (CKD) are controversial. We tested the role of ACE-I in slowing the progression of renal damage in a real-world elderly population with CKD stage 5. We evaluated all patients consecutively referred to our CKD stage 5 outpatient clinic from January 2002 to December 2013. Chronicity was defined as two consecutive estimated glomerular filtration rate (eGFR) measurements below 15 ml/min/1.73 m(2). We retrieved parameters of interest at baseline and assessed eGFR reduction rate during follow-up. We estimated GFR by the 4-variable Modification of Diet in Renal Disease (MDRD) formula. Mean age of the 342 subjects analyzed was 72 years and eGFR 10 ml/min/1.73 m(2). In the 188 patients on ACE-I at baseline, the subsequent annual rate of eGFR reduction was less than a third of that found in the 154 patients off ACE-I. Across phosphate quartiles, baseline eGFR significantly decreased while its annual reduction rate significantly increased. Of the original cohort, 60 patients (17 %) died, 201 (59 %) started dialysis and 81 (24 %) were still in conservative treatment at the end of the study. Multivariate analysis identified age, phosphate, proteinuria, baseline eGFR and its rate of progression as independent risk factors directly or inversely predictive of progression to dialysis. ACE-I use significantly reduced by 31 % the risk of dialysis. Our study shows that proteinuria independently predicts further renal damage progression even in end-stage renal disease patients not yet in dialysis. In our cohort of elderly patients with very advanced CKD, ACE-I was effective in slowing down further renal damage progression.

  18. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis

    PubMed Central

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system. PMID:26904588

  19. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    PubMed Central

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (%) ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 (IC50 = 6.7 μg/mL) from the 5–10 kDa fraction and F1 (IC50 = 4.78 μg/mL) from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  20. Diagnostic Utility of Angiotensin-Converting Enzyme in Sarcoidosis: A Population-Based Study.

    PubMed

    Ungprasert, Patompong; Carmona, Eva M; Crowson, Cynthia S; Matteson, Eric L

    2016-02-01

    Sarcoidosis is a disease with heterogenous clinical presentations. Diagnosis of sarcoidosis is often challenging with the lack of gold standard tests. In this study, we investigated the diagnostic utility of angiotensin-converting enzyme (ACE) for diagnosis of sarcoidosis. A cohort of Olmsted County, Minnesota residents who were diagnosed with sarcoidosis between January 1, 1984 and December 31, 2013 was identified based on individual medical record review. ACE levels recorded in the medical records of all subjects at the time of diagnosis were extracted. Comparator subjects were residents of Olmsted County, Minnesota who had ACE levels tested the same time period but did not have a diagnosis of sarcoidosis. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the c-statistic of high versus low/normal ACE to diagnose sarcoidosis were calculated. A total of 3277 Olmsted County residents age ≥18 years had at least one ACE test in 1984-2013. The sarcoidosis incidence cohort contained 295 Olmsted County residents diagnosed with sarcoidosis in 1984-2013. Of these, ACE tests were obtained in 251. The sensitivity and specificity of high ACE for diagnosis of sarcoidosis were 41.4 % (95 % CI 35.3-47.8 %) and 89.9 % (95 % CI 88.8-91.0 %), respectively. The PPV and NPV in this population were 25.4 % (95 % CI 21.3-29.9 %) and 94.9 % (95 % CI 85.0-87.4 %). This study demonstrated a poor sensitivity and insufficient specificity of high ACE for diagnosis of sarcoidosis suggesting a limited role of ACE in clinical practice.

  1. Cigarette Smoking Attenuates Kidney Protection by Angiotensin-Converting Enzyme Inhibition in Nondiabetic Chronic Kidney Disease.

    PubMed

    Roehm, Bethany; Simoni, Jan; Pruszynski, Jessica; Wesson, Donald E

    2017-09-21

    Cigarette smoking exacerbates the estimated glomerular filtration rate (eGFR) decline in nondiabetic chronic kidney disease (CKD) despite the kidney protection that is achieved by angiotensin converting enzyme inhibition (ACEI). Whether smoking cessation restores ACEI-related kidney protection is not known. This 5-year, prospective, prevention trial recruited 108 smokers and 108 nonsmokers with stage-2 nondiabetic CKD with primary hypertension and urine albumin-to-creatinine ratio (Ualb) >200 mg/g. All smokers underwent smoking cessation intervention programs. Blood pressure was reduced in all participants toward achieving a goal of <130 mm Hg with regimens including ACEI. The primary outcome was eGFR change, and secondary outcomes included Ualb and urine levels of angiotensinogen (UATG), a surrogate for kidney angiotensin II (AII) levels, and isoprostane 8-isoprostaglandin F2α (U8-iso), an indicator of oxidative stress. One-year Ualb was lower than baseline in nonsmokers but not in either smoking group, supporting greater ACEI-related kidney protection in nonsmokers than smokers. Higher Ualb at 1 year in continued smokers was associated with higher UATG and higher U8-iso, consistent with smoking-induced AII and increased oxidative stress contributing to less ACEI-related kidney protection in smokers. Baseline eGFR was not different among groups (p = 0.92), but 5-year eGFR was higher in quitters than in continued smokers (62.0 ± 5.4 vs. 52.9 ± 5.6 mL/min/1.73 m2, p < 0.001); this value was lower in quitters than in nonsmokers (64.7 ± 5.6 mL/min/1.73 m2, p = 0.02). Smoking cessation compared with continued smoking ameliorates eGFR decline in nondiabetic CKD treated with ACEI, possibly by restoring kidney-protective effects of ACEI through reductions in kidney AII and oxidative stress. © 2017 S. Karger AG, Basel.

  2. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in chronic renal disease: safety issues.

    PubMed

    Mangrum, Amy J; Bakris, George L

    2004-03-01

    Reducing the actions of the renin-angiotensin-aldosterone system with angiotensin-converting enzyme inhibitors (ACE inhibitors) and angiotensin receptor blockers (ARBs) slows nephropathy progression in patients with or without diabetes. These drug classes have proven therapeutic benefits, particularly in patients with renal insufficiency (ie, serum creatinine level 133-265 micromol/L [1.5-3.0 mg/dL]). This class of drugs could also provide renoprotective effects that are nonblood pressure-dependent when used as part of combination antihypertensive therapy in patients with more advanced renal disease. Although many studies demonstrate the use of ACE inhibitors and ARBs to delay the decline in renal function and reduce proteinuria, many physicians fail to use these drug classes in patients with renal insufficiency for fear that either serum creatinine or potassium levels will rise. Thus, because of these issues, patients are deprived of known strategies that delay progression of renal disease. A strong association exists between acute increases in serum creatinine of up to 30% to 35% after initiating ACE inhibitor therapy and long-term preservation of renal function. This association is predominantly present in people with a baseline serum creatinine of up to 3 mg/dL and usually stablizes within 2 to 3 months of therapy given blood pressure is reduced to goal. Moreover, the appropriate use of diuretics mitigates against profound increases in serum potassium. Thus, withdrawal of an ACE inhibitor in such patients should occur only when the rise in creatinine exceeds this threshold over a shorter period of time or hyperkalemia develops, ie, serum potassium level of 5.6 mmol/L or greater.

  3. An evaluation of risk factors for adverse drug events associated with angiotensin-converting enzyme inhibitors.

    PubMed

    Morimoto, Takeshi; Gandhi, Tejal K; Fiskio, Julie M; Seger, Andrew C; So, Joseph W; Cook, E Francis; Fukui, Tsuguya; Bates, David W

    2004-11-01

    To identify potential factors leading to discontinuation of angiotensin-converting enzyme (ACE) inhibitors because of adverse drug events. Retrospective cohort study was conducted at outpatient clinics affiliated with an urban tertiary care hospital. ACE inhibitors were administered to 2225 consecutive outpatients. In 19% of the total cohort, ACE inhibitors were discontinued because of adverse drug events. Cox proportional hazard model identified the following independent risk factors for discontinuation because of adverse drug events: age, female gender, ethnicity other than African American or Latino, no history of previous ACE inhibitor use, history of cough caused by another ACE inhibitor, hypertension, anxiety or depression, no hemodialysis, and elevated creatinine. History of smoking was shown to be a risk factor for cough [hazard ratio (HR): 2.5; 95% confidence interval (CI): 1.1-5.7], angioedema (HR: 2.7; 95% CI: 1.1-7.0), and hyperkalaemia (HR: 5.4; 95% CI: 1.3-23.2). History of ACE inhibitor-induced cough was not only a risk factor for cough (HR: 12.9; 95% CI: 7.5-22.3) but also for angioedema (HR: 9.1; 95% CI: 2.1-39.9). Patients with creatinine > or = 1.6 mg dL(-1) were likely to discontinue ACE inhibitors because of renal dysfunction (HR: 4.7; 95% CI: 1.5-12.7) and hyperkalaemia (HR: 10.9; 95% CI: 3.1-39.0). East Asians were more likely to develop cough (HR: 2.5; 95% CI: 1.1-5.7) and hyperkalaemia (HR: 80.3; 95% CI: 5.4-1190) and African Americans to develop angioedema (HR: 3.5; 95% CI: 1.3-8.9). Although further validation is necessary, these risk factors should help doctors identify patients with elevated risk for adverse drug events because of ACE inhibitors.

  4. Different frequencies of angiotensin-converting enzyme genotypes in older hypertensive individuals.

    PubMed Central

    Morris, B J; Zee, R Y; Schrader, A P

    1994-01-01

    The frequency of the D allele of an insertion/deletion (I/D) polymorphism of the angiotensin I-converting enzyme (ACE) gene has been reported to be elevated in myocardial infarction and other patients. We therefore hypothesized that death rate of DD individuals should be increased in the population as a whole and this should be evident as a decrease in DD frequency with age. This hypothesis was tested in 118 Caucasian subjects who were already at high risk of cardiovascular events by having severe, early onset, familial hypertension (HT). A group of 196 age-, sex- and body mass index-matched normotensives (NTs) was used as a control. In the NT group II, ID, and DD genotype frequencies were similar for different age groups. DD frequency was 0.42 in NTs, but in HTs was 0.28, 0.26, and 0.10 for the age groups < 50, 50-59, and > or = 60 yr, respectively. Corresponding D allele frequencies were 0.52, 0.46, and 0.40 in the respective age groups of HTs, compared with 0.61 in NTs (by chi 2-analysis, P = 0.1, 0.047, and 0.0006, respectively). In HTs aged > or = 60, DD frequency was only 14% of expected. Plasma ACE activity tracked similarly with I/D genotype in HTs (P = 0.027; n = 35) as in NTs (P = 0.0001; n = 94) and Michaelis constant was identical for DD and II. Neither blood pressure, body mass index, nor sex bore any relationship with I/D genotype. In conclusion, in a group of severely HT patients not selected for cardiac pathology, there appeared to be a marked, selective decrease, in subgroups of increasing age, in frequency of the ACE DD genotype. One possibility suggested by this data might be that DD increases risk of premature death, at least in HTs who have two HT parents. PMID:8083349

  5. Urocortin 2 combined with angiotensin-converting enzyme inhibition in experimental heart failure.

    PubMed

    Rademaker, Miriam T; Charles, Christopher J; Nicholls, M Gary; Richards, A Mark

    2008-05-01

    Ucn2 (urocortin 2) is a recently discovered peptide with therapeutic potential in heart failure. As any new treatment is likely to be used in conjunction with standard ACEI (angiotensin-converting enzyme inhibitor) therapy, it is important that the combined effects of these agents are assessed. In the present study, we investigated the effects of Ucn2 and an ACEI (captopril) administered for 3 h, both separately and together, in eight sheep with pacing-induced heart failure. Ucn2 and captopril alone both increased CO (cardiac output; Ucn2>captopril) and decreased arterial pressure (captopril>Ucn2), left atrial pressure (Ucn2>captopril) and peripheral resistance (Ucn2=captopril) relative to controls. Compared with either treatment alone, combined treatment further improved CO and reduced peripheral resistance and cardiac preload, without inducing further falls in blood pressure. In contrast with the marked increase in plasma renin activity observed with captopril alone, Ucn2 administration reduced renin activity, whereas the combined agents resulted in intermediate renin levels. All active treatments decreased circulating levels of aldosterone (Ucn2+captopril>Ucn2=captopril), endothelin-1 and the natriuretic peptides (Ucn2+captopril=Ucn2>captopril), whereas adrenaline (epinephrine) fell only with Ucn2 (Ucn2+captopril=Ucn2), and vasopressin increased during captopril alone. Ucn2, both separately and in conjunction with captopril, increased urine output, sodium and creatinine excretion and creatinine clearance. Conversely, captopril administered alone adversely affected these renal indices. In conclusion, co-treatment with Ucn2 and an ACEI in heart failure produced significantly greater improvements in haemodynamics, hormonal profile and renal function than achieved by captopril alone. These results indicate that dual treatment with these two agents is beneficial.

  6. Endothelial Nitric Oxide Synthase and Angiotensin Converting Enzyme Gene Polymorphisms in Migraine Patients

    PubMed Central

    SİPAHİ, Tammam; GÜLDİKEN, Babürhan; KABAYEL, Levent; PALABIYIK, Orkide; ÖZKAN, Hülya; KILIÇ, Tülay Okman; SÜT, Necdet; TURGUT, Nilda

    2013-01-01

    Introduction In this study, we investigated the association of migraine with the Variable Number of Tandem Repeats (VNTR), repeated as 27 base pair, gene polymorphism in intron 4 of the endothelial nitric oxide synthase (eNOS) and the insertion/deletion of angiotensin converting enzyme (ACE) gene polymorphisms. Methods One hundred and five migraine and ninety seven healthy female control subjects were enrolled in the study. The patients were subdivided as migraine with aura and without aura, and the frequency and severity of migraine headaches were recorded. The eNOS VNTR (eNOS 4 a/b) and ACE insertion/deletion gene polymorphisms (ACE I/D) were assessed by polymerase chain reactions. Result The allele and genotype frequencies of eNOS 4 a/b gene polymorphism showed no difference between the migraine and control groups. The genotypic distribution of the ACE I/D gene polymorphism in the migraine group significantly differed from that in the control group. The DD and ID genotype increased the risk of migraine as much as 2.571 (95% CI-1.138–5.811) and 4.453 (95% CI-2.006–9.883) compared to the II genotype. The same increased risk sustained for both genotypes in the migraine with aura subgroup, but only the ID genotype remained as the risk factor in the migraine without aura subgroup (OR-3.750, 95% CI-1.493–9.420). No association of gene polymorphisms with migraine frequency and severity was observed. Conclusion Our findings support the relationship between migraine and the ACE I/D gene polymorphism. However, no association was found between migraine and the eNOS 4 a/b gene polymorphism.

  7. Effects of angiotensin-converting enzyme inhibitory peptide LAP on vascular remodeling.

    PubMed

    Huang, Junling; Luo, Ming; Fang, Hong; Zheng, Huan; Shen, Yi; Li, Lingxia; Deng, Yuqing; Xu, Huifeng

    2013-01-01

    The aim of this article is to study the efficiency of an angiotensin-converting enzyme (ACE)-inhibitory peptide LAP on the blood pressure (BP) and the vascular remodeling in spontaneously hypertensive rats (SHRs). Ten-week-old male SHRs were divided into four groups with 10 animals in each group and treated for 2 months: blank, pseudo-experimental (NS), enalapril (ENA), and LAP. The alterations of BP, plasma angiotensin II (AngII) levels, and morphological changes of left common carotid artery and the third level of superior mesenteric artery were investigated. After 2 weeks of treatment, LAP and ENA significantly decreased BP and the antihypertensive effects lasted till the end of experiment. After 2 months, LAP and ENA also significantly lowered plasma AngII levels. LAP and enalapril significantly lowered vascular medial thickness, media thickness/lumen diameter, medial cross-sectional area, and mean nuclear area of smooth muscle cells in left common carotid artery. When compared to the blank group, LAP and ENA significantly lowered the percentages of collagen fibers in the vascular area of left common carotid artery with 24.84 ± 0.53, 23.36 ± 0.99 versus 31.82 ± 0.57 (blank), respectively, and those of the third level of superior mesenteric artery with 15.82 ± 0.60, 15.15 ± 0.71 versus 23.42 ± 0.72, respectively. LAP had a beneficial effect on BP and vascular remodeling in SHRs. These findings suggest the potential therapeutic value of LAP in the treatment of hypertension.

  8. Use of angiotensin-converting enzyme inhibitors and freedom from amputation after lower extremity revascularization.

    PubMed

    Kray, Jared E; Dombrovskiy, Viktor Y; Vogel, Todd R

    2017-01-01

    Angiotensin-converting enzyme inhibitors (ACEIs) have not been well evaluated in conjunction with lower extremity revascularization (LER). This study evaluated freedom from amputation in patients who underwent either an open (OPEN) or endovascular (ENDO) revascularization with and without utilization of an ACEI. Patients who underwent LER were identified from 2007-2008 Medicare Provider Analysis and Review files. Demographics, comorbidities, and disease severity were obtained. Post-procedural use of an ACEI was confirmed using combining them with National Drug Codes and Part D Files. Outcomes were analyzed using chi-square analysis, Kaplan-Meier test, and Cox regression. We identified 22,954 patients who underwent LER: 8,128 (35.4%) patients with claudication, 3,056 (13.3%) with rest pain, and 11,770 (51.3%) with ulceration or gangrene. More patients underwent ENDO (14,353) than OPEN (8,601) revascularization and 38% of the cohort was taking an ACEI. Overall, ACEI utilization compared to patients not taking ACEI was not associated with lower amputation rates at 30 days (13.5% vs. 12.6%), 90 days (17.7% vs. 17.1%), or 1 year (23.9% vs. 22.8%) (P>0.05 for all). After adjustment for comorbidities, ACEI utilization was associated with higher amputation rates for patients with rest pain (hazard ratio: 1.4; 95% confidence interval: 1.1-1.8). ACEI utilization was not associated with overall improved rates of amputation-free survival or overall survival in the vascular surgery population. However, an important finding of this study was that patients presenting with a diagnosis of rest pain and taking an ACEI who underwent a LER had statistically higher amputation rates and a lower amputation-free survival at 1 year. Further analysis is needed to delineate best medical management for patients with critical limb ischemia and taking ACEI who undergo vascular revascularization.

  9. Activation of endogenous angiotensin converting enzyme 2 prevents early injuries induced by hyperglycemia in rat retina

    PubMed Central

    Foureaux, G.; Nogueira, B. S.; Coutinho, D. C. O.; Raizada, M. K.; Nogueira, J. C.; Ferreira, A. J.

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus that may result in blindness. We evaluated the effects of activation of endogenous angiotensin converting enzyme (ACE) 2 on the early stages of DR. Rats were administered an intravenous injection of streptozotocin to induce hyperglycemia. The ACE2 activator 1-[[2-(dimethylamino) ethyl] amino]-4-(hydroxymethyl)-7-[[(4-methylphenyl) sulfonyl] oxy]-9H-xanthone 9 (XNT) was administered by daily gavage. The death of retinal ganglion cells (RGC) was evaluated in histological sections, and retinal ACE2, caspase-3, and vascular endothelial growth factor (VEGF) expressions were analyzed by immunohistochemistry. XNT treatment increased ACE2 expression in retinas of hyperglycemic (HG) rats (control: 13.81±2.71 area%; HG: 14.29±4.30 area%; HG+XNT: 26.87±1.86 area%; P<0.05). Importantly, ACE2 activation significantly increased the RCG number in comparison with HG animals (control: 553.5±14.29; HG: 530.8±10.3 cells; HG+XNT: 575.3±16.5 cells; P<0.05). This effect was accompanied by a reduction in the expression of caspase-3 in RGC of the HG+XNT group when compared with untreated HG rats (control: 18.74±1.59; HG: 38.39±3.39 area%; HG+XNT: 27.83±2.80 area%; P<0.05). Treatment with XNT did not alter the VEGF expression in HG animals (P>0.05). Altogether, these findings indicate that activation of ACE2 reduced the death of retinal ganglion cells by apoptosis in HG rats. PMID:26421871

  10. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    PubMed Central

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  11. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis.

    PubMed

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis; Betancur Ancona, David

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5-2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427-455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  12. Angiotensin converting enzyme binding sites in human heart and lung: comparison with rat tissues.

    PubMed Central

    Vago, T.; Bevilacqua, M.; Conci, F.; Baldi, G.; Ongini, E.; Chebat, E.; Monopoli, A.; Norbiato, G.

    1992-01-01

    1. Angiotensin converting enzyme (ACE), a dipeptidyl carboxypeptidase which catalyzes the final activation step in the formation of angiotensin II, was identified by radioligand studies in rat heart and lung. In this work we identified ACE binding sites in human left ventricle and lung by radioligand binding using the ACE inhibitor [3H]-ramiprilat in all tissues tested was saturable, temperature and zinc-dependent, and inhibited by EDTA. In human left ventricle homogenate we found a density of binding sites of 121 +/- 15 fmol mg-1 protein (n = 4) with an affinity (Kd) of 850 +/- 55 pM, whereas in rat left ventricle the same values were 23 +/- 4 fmol mg-1 protein and 315 +/- 30 pM, (n = 4), respectively. 3. [3H]-ramiprilat binding to rat (n = 4) and human lung (n = 4) showed a binding site density of 2132 +/- 155 and 1085 +/- 51 fmol mg-1 protein respectively with an affinity of 639 +/- 54 and 325 +/- 22 pM. The lung:heart ratio of ACE binding site density was about 9:1 in man and 100:1 in rat. 4. The binding affinities of 13 ACE inhibitors were evaluated on human heart and lung: the drugs tested showed a wide range of affinities for the ACE binding sites in both tissues, and the affinity for lung was significantly greater than for heart for most of the drugs. 5. The greater potency of some ACE inhibitors in displacing [3H]-ramiprilat in human lung compared with the heart indicates differences between ACE binding sites in these tissues and suggests the possibility of a selective organ-targeted therapeutic approach. PMID:1335341

  13. Collagen production in cardiac fibroblasts during inhibition of angiotensin-converting enzyme and aminopeptidases.

    PubMed

    Lijnen, Paul J; Petrov, Victor V; Fagard, Robert H

    2004-01-01

    To determine whether lisinopril, an angiotensin-converting enzyme (ACE) inhibitor, and bestatin, an aminopeptidase inhibitor with broad specificity, could affect collagen production in control and transforming growth factor (TGF)-beta1-treated cardiac fibroblasts. Cardiac fibroblasts from passage 2 from normal male adult rats were cultured to confluency, incubated with or without 600 pmol/l TGF-beta1 for 2 days in serum-free Dulbecco's modified Eagle's medium and then incubated with the test products (lisinopril or bestatin) for 1 day in this medium with added ascorbic acid, beta-aminoproprionitrile and tritiated proline. Soluble collagen was measured in the conditioned medium and non-soluble collagen in the cell layer. ACE activity was measured fluorimetrically with hippuryl-histidyl-leucine as substrate, and DNA with the bisbenzimide dye, Hoechst 33,258. Aminopeptidase activity was estimated by spectrophotometric determination of the liberation of p-nitroaniline from alanine-p-nitroanilide. Lisinopril dose-dependently reduced ACE activity in control and TGF-beta1-treated cardiac fibroblasts. Bestatin inhibited the basal and TGF-beta1-stimulated aminopeptidase activity in a concentration-dependent manner. Lisinopril (10 micromol/l) decreased (P < 0.05) the production of soluble and non-soluble collagen in control cardiac fibroblasts. TGF-beta1 (600 pmol/l) increased (P < 0.05) the production of soluble and non-soluble collagen, and this effect was decreased (P < 0.05) by lisinopril. Bestatin (100 micromol/l) reduced (P < 0.01) the production of soluble collagen in control and TGF-beta1-treated cardiac fibroblasts, but did not affect the production of non-soluble collagen in these cells. Our data suggest that ACE and aminopeptidases are involved in the basal and TGF-beta1-stimulated production of collagen in adult rat cardiac fibroblasts in culture.

  14. Association between Insertion/Deletion Polymorphism in Angiotension Converting Enzyme and Susceptibility to Schizophrenia

    PubMed Central

    MAZAHERI, Hajar; SAADAT, Mostafa

    2015-01-01

    Background: The activity of angiotension converting enzyme (ACE; OMIM: 106180) in different brain regions of patients with schizophrenia changed, suggesting a possible involvement of ACE in psychiatric disorders. Genetic polymorphism of insertion/deletion (I/D; dbSNP rs4646994) in the gene encoding ACE has been well defined. Methods: The present case-control study was performed on 363 (268 males, 95 females) in-patients with schizophrenia diagnosis, and 363 (268 males, 95 females) healthy blood donor controls. The genotypes of I/D ACE polymorphism were determined using PCR method. PCR products were separated and sized by electrophoresis on a 2% agarose gel. The insertion allele (I) was detected as a 478 bp band, and the deletion allele (D) was visualized as a 191 bp band. The association between genotypes of the I/D polymorphism and the schizophrenia risk was examined by use of odds ratios (OR) and 95% of confidence intervals (CIs). Results: Among females, the II genotype significantly decreased the risk of schizophrenia compared with the DD genotype (OR=0.18, 95%CI: 0.04–0.72, P=0.015). There was significant linear trend for the number of the I allele and schizophrenia risk among females (Chi2=5.19, P=0.023). There was no significant association between I/D polymorphism and susceptibility to schizophrenia among male subjects. There was significant interaction between gender and the II genotype (P=0.031). Conclusion: The II genotype of the I/D polymorphism has a protective effect for schizophrenia among females. PMID:25905080

  15. Angiotensin-Converting Enzyme Inhibitors and Active Tuberculosis: A Population-Based Study.

    PubMed

    Wu, Jiunn-Yih; Lee, Meng-Tse Gabriel; Lee, Si-Huei; Lee, Shih-Hao; Tsai, Yi-Wen; Hsu, Shou-Chien; Chang, Shy-Shin; Lee, Chien-Chang

    2016-05-01

    Numerous epidemiological data suggest that the use of angiotensin-converting enzyme inhibitors (ACEis) can improve the clinical outcomes of pneumonia. Tuberculosis (TB) is an airborne bacteria like pneumonia, and we aimed to find out whether the use of ACEis can decrease the risk of active TB.We conducted a nested case-control analysis by using a 1 million longitudinally followed cohort, from Taiwan national health insurance research database. The rate ratios (RRs) for TB were estimated by conditional logistic regression, and adjusted using a TB-specific disease risk score (DRS) with 71 TB-related covariates.From January, 1997 to December, 2011, a total of 75,536 users of ACEis, and 7720 cases of new active TB were identified. Current use (DRS adjusted RR, 0.87 [95% CI, 0.78-0.97]), but not recent and past use of ACEis, was associated with a decrease in risk of active TB. Interestingly, it was found that chronic use (>90 days) of ACEis was associated with a further decrease in the risk of TB (aRR, 0.74, [95% CI, 0.66-0.83]). There was also a duration response effect, correlating decrease in TB risk with longer duration of ACEis use. The decrease in TB risk was also consistent across all patient subgroups (age, sex, heart failure, cerebrovascular diseases, myocardial infraction, renal diseases, and diabetes) and patients receiving other cardiovascular medicine.In this large population-based study, we found that subjects with recent and chronic use of ACEis were associated with decrease in TB risk.

  16. High calcium diet down-regulates kidney angiotensin-converting enzyme in experimental renal failure.

    PubMed

    Pörsti, Ilkka; Fan, Meng; Kööbi, Peeter; Jolma, Pasi; Kalliovalkama, Jarkko; Vehmas, Tuija I; Helin, Heikki; Holthöfer, Harry; Mervaala, Eero; Nyman, Tuulikki; Tikkanen, Ilkka

    2004-12-01

    Calcium salts are used as phosphate binders in renal failure, while high calcium diet also improves vasorelaxation and enhances natriuresis. The influences of calcium intake on renal renin-angiotensin system (RAS) are largely unknown. Four weeks after NTX, rats were put on 3.0% or 0.3% calcium diet for 8 weeks (12-week study). In additional experiments, 15 weeks after NTX, rats were put on similar diets for 12 weeks (27-week study). Appropriate blood, urine, and kidney samples were taken. Renal angiotensin-converting enzyme (ACE) and angiotensin II receptors (AT1, AT2) were examined using autoradiography, ACE also using Western blotting, and connective tissue growth factor (CTGF) using immunohistochemistry. In the 12-week study, albuminuria increased 5-fold in NTX rats, but only 2-fold in calcium NTX rats on 3.0% calcium. In the 27-week study, high calcium intake decreased blood pressure, retarded progression of renal failure, reduced glomerulosclerosis, interstitial damage, and aortic calcifications, and improved survival from 50% to 92% in NTX rats. In both experiments plasma parathyroid hormone and phosphate were elevated after NTX, and suppressed by high calcium diet, while kidney ACE was down-regulated by 40% or more after increased calcium intake. In the 27-week study renal CTGF was decreased and cortical AT1 receptor density reduced after high calcium diet. High calcium diet down-regulated kidney ACE, reduced albuminuria and blood pressure, and favorably influenced kidney morphology in experimental renal failure. These findings suggest a link between calcium metabolism and kidney ACE expression, which may play a role in the progression of renal damage.

  17. Angiotensin-Converting Enzyme ID Polymorphism in Patients with Heart Failure Secondary to Chagas Disease.

    PubMed

    Silva, Silene Jacinto da; Rassi, Salvador; Pereira, Alexandre da Costa

    2017-09-28

    Changes in the angiotensin-converting enzyme (ACE) gene may contribute to the increase in blood pressure and consequently to the onset of heart failure (HF). The role of polymorphism is very controversial, and its identification in patients with HF secondary to Chagas disease in the Brazilian population is required. To determine ACE polymorphism in patients with HF secondary to Chagas disease and patients with Chagas disease without systolic dysfunction, and to evaluate the relationship of the ACE polymorphism with different clinical variables. This was a comparative clinical study with 193 participants, 103 of them with HF secondary to Chagas disease and 90 with Chagas disease without systolic dysfunction. All patients attended the outpatient department of the General Hospital of the Federal University of Goias general hospital. Alleles I and D of ACE polymorphism were identified by polymerase chain reaction of the respective intron 16 fragments in the ACE gene and visualized by electrophoresis. In the group of HF patients, 63% were male, whereas 53.6% of patients with Chagas disease without systolic dysfunction were female (p = 0,001). The time from diagnosis varied from 1 to 50 years. Distribution of DD, ID and II genotypes was similar between the two groups, without statistical significance (p = 0,692). There was no difference in clinical characteristics or I/D genotypes between the groups. Age was significantly different between the groups (p = 0,001), and mean age of patients with HF was 62.5 years. No differences were observed in the distribution of (Insertion/Deletion) genotype frequencies of ACE polymorphism between the studied groups. The use of this genetic biomarker was not useful in detecting a possible relationship between ACE polymorphism and clinical manifestations in HF secondary to Chagas disease.

  18. Insertion/Deletion Polymorphisms and Serum Angiotensin-converting Enzyme Levels in Iranian Patients with Sarcoidosis

    PubMed Central

    JAVADI, Alireza; SHAMAEI, Masoud; ZAREI, Masoud; REZAEIAN, Lida; KIANI, Arda; ABEDINI, Atefeh

    2016-01-01

    Background: Sarcoidosis is a multisystem inflammatory disease of unknown origin with characterization of small granulomas. Angiotensin-converting enzyme (ACE) is a pathophysiologic marker of sarcoidosis. We present the ACE insertion/deletion (I/D) polymorphism in correlation with serum ACE level in Iranian patients with sarcoidosis. Methods: From Jan 2014 to Jan 2015, 102 Iranian patients who histopathologically diagnosed for sarcoidosis and 192 healthy age and sex-matched controls were recruited. PCR was used for detection of I/D polymorphism in ACE gene. Results: Frequency of II/ID/DD genotype in sarcoidosis disease was 17%, 35.5%, and 47.1%, respectively. The frequency of D allele was 0.65. A significant association between I/D genotypes and mean of sACE level was seen (DD=85.2±22.9, P<0.001). More frequent genotype in sarcoidosis patients was DD (47%), ID genotype (45.9%) was found more in controls. Logistic regression analysis adjusting age and sex showed that ID to II (OR=0.35, 95%CI=0.17–0.73, P=0.005) and DD to II (OR=2.11, 95%CI=0.98–4.54, P=0.05) could be considered as a predictor factor for the disease activity. No significant model for men in sarcoidosis group was seen, while women with II/ID were associated with a reduced risk for the disease. Conclusion: Although more regional studies with appropriate statistical scale must be done to provide a better diagnosis and prognostic tool for this disease, this study demonstrates that ID and DD genotype could be predictive factors for sarcoidosis. PMID:28032065

  19. Effect of the Angiotensin I Converting Enzyme Inhibitor, MK-421, on Experimentally Induced Drinking

    NASA Technical Reports Server (NTRS)

    Fregley, Melvin J.; Fater, Dennis C.; Greenleaf, John E.

    1982-01-01

    MK-421, the ethyl ester maleate salt of N-(S)-1-(ethoxycarbonyl)-3-phenyl-propyl- Ala-L-Pro, is an angiotensin I converting enzyme inhibitor. An initial objective was to determine whether MK-421, administered at 0, 2.5, 5.0, 10.0, 20.0 and 40.0 mg/kg, ip to 96 female rats 15 min prior to administration of the beta-adrenergic agonist, isoproterenol (25 microgram/kg, ip), would inhibit the drinking induced by isoproterenol during 2 h after its administration. The water intake induced by isoproterenol was inhibited significantly by 2.5 mg MK-421/kg. When a similar experiment was performed using Angiotensin I (AI) (200 microgram/kg, ip) as the dipsogenic agent, MK-421 (5 mg/kg, ip), administered 15 min prior to AI, inhibited significantly both the dipsogenic and the diuretic effect of AI. However, administration of angiotensin II (AII, 200 microgram/kg, ip) 15 min after MK-421 (5mg/kg) was accompanied by a water intake that did not differ from AII alone. The drink induced by ip administration of 1.0 m NaCl solution (1% of body wt, ip) was not inhibited by administration of MK-421 (5 mg/kg) 15 min prior to allowing access to water while the drink induced by a 24 h dehydration was partially inhibited. Thus, the drinks induced by administraition of either isoproterenol or AI are dependent on formation of AII. That induced by dehydration is partially dependent, while that induced by hypertonic siilinc is independent of the formation of AII.

  20. Angiotensin-Receptor Blocker, Angiotensin-Converting Enzyme Inhibitor, and Risks of Atrial Fibrillation

    PubMed Central

    Hsieh, Yu-Cheng; Hung, Chen-Ying; Li, Cheng-Hung; Liao, Ying-Chieh; Huang, Jin-Long; Lin, Ching-Heng; Wu, Tsu-Juey

    2016-01-01

    Abstract Both angiotensin-receptor blockers (ARB) and angiotensin-converting enzyme inhibitors (ACEI) have protective effects against atrial fibrillation (AF). The differences between ARB and ACEI in their effects on the primary prevention of AF remain unclear. This study compared ARB and ACEI in combined antihypertensive medications for reducing the risk of AF in patients with hypertension, and determined which was better for AF prevention in a nationwide cohort study. Patients aged ≥55 years and with a history of hypertension were identified from Taiwan National Health Insurance Research Database. Medical records of 25,075 patients were obtained, and included 6205 who used ARB, 8034 who used ACEI, and 10,836 nonusers (no ARB or ACEI) in their antihypertensive regimen. Cox regression models were applied to estimate the hazard ratio (HR) for new-onset AF. During an average of 7.7 years’ follow-up, 1619 patients developed new-onset AF. Both ARB (adjusted HR: 0.51, 95% CI 0.44–0.58, P < 0.001) and ACEI (adjusted HR: 0.53, 95% CI 0.47–0.59, P < 0.001) reduced the risk of AF compared to nonusers. Subgroup analysis showed that ARB and ACEI were equally effective in preventing new-onset AF regardless of age, gender, the presence of heart failure, diabetes, and vascular disease, except for those with prior stroke or transient ischemic attack (TIA). ARB prevents new-onset AF better than ACEI in patients with a history of stroke or TIA (log-rank P = 0.012). Both ARB and ACEI reduce new-onset AF in patients with hypertension. ARB prevents AF better than ACEI in patients with a history of prior stroke or TIA. PMID:27196491

  1. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release

    PubMed Central

    Neasta, Jérémie; Valmalle, Charlène; Coyne, Anne‐Claire; Carnazzi, Eric; Subra, Gilles; Galleyrand, Jean‐Claude; Gagne, Didier; M'Kadmi, Céline; Bernad, Nicole; Bergé, Gilbert; Cantel, Sonia; Marin, Philippe; Marie, Jacky; Banères, Jean‐Louis; Kemel, Marie‐Lou; Daugé, Valérie; Puget, Karine

    2016-01-01

    Background and Purpose Using an in‐house bioinformatics programme, we identified and synthesized a novel nonapeptide, H‐Pro‐Pro‐Thr‐Thr‐Thr‐Lys‐Phe‐Ala‐Ala‐OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. Experimental Approach The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra‐striatal injection of the peptide was investigated. A photoaffinity UV cross‐linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. Key Results The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine‐like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. Conclusion and Implications The synthetic nonapeptide acein interacted with high affinity with brain membrane‐bound ACE. This interaction occurs at a different site from the active site involved in the well‐known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected. PMID:27027724

  2. Effects of the angiotensin converting enzyme inhibitor enalapril compared with diuretic therapy in elderly hypertensive patients.

    PubMed

    Verza, M; Cacciapuoti, F; Spiezia, R; D'Avino, M; Arpino, G; D'Errico, S; Sepe, J; Varricchio, M

    1988-11-01

    The aim of this study was to evaluate the usefulness of the angiotensin converting enzyme (ACE) inhibitor enalapril in a group of 30 patients (mean age 73.3 years) with moderate hypertension and normal haematological and chemical parameters (170 +/- 8.1 mmHg systolic and 104 +/- 5.8 mmHg diastolic blood pressure), who were receiving diuretic therapy with chlorthalidone (12.5 mg/day). This therapy caused a significant decrease in systolic and diastolic blood pressure (to 165 +/- 6.7 and 98 +/- 4.7 mmHg, respectively; P less than 0.001) but it also induced hypokalaemia (3.04 +/- 0.7 mmol/l; P less than 0.001) and multiple (greater than 10/h) and complex premature ventricular depolarizations (2nd, 3rd and 4th Lown grade). Enalapril treatment (5 mg/day for 5 days and 10 mg thereafter) was added to the diuretic therapy and after 2 months a further decrease in blood pressure was observed (to 158 +/- 5.6 mmHg systolic, P less than 0.001; 87.2 +/- 5.0 mmHg diastolic, P less than 0.001). Moreover, there was a significant reduction in the mean heart rate (from 79 to 72 beats/min, P less than 0.005) and an increase in serum potassium (to 4.19 +/- 0.2 mmol/l; P less than 0.001). In 80% of patients a 24-h dynamic electrocardiogram showed a significant reduction in both the number and complexity of premature ventricular depolarizations. Our findings suggest that ACE inhibitors can be useful in patients developing hypokalaemia during therapy. However, we are not yet able to explain the beneficial effects of enalapril in decreasing the frequency of premature ventricular depolarizations.

  3. Angiotensin Converting Enzyme Inhibitors and Alzheimer Disease in the Presence of the Apolipoprotein E4 Allele

    PubMed Central

    Qiu, Wendy Wei Qiao; Lai, Angela; Mon, Timothy; Mwamburi, Mkaya; Taylor, Warren; Rosenzweig, James; Kowall, Neil; Stern, Robert; Zhu, Haihao; Steffens, David C.

    2013-01-01

    Objective The effect of angiotensin converting enzyme (ACE) inhibitors on Alzheimer disease (AD) remains unclear, with conflicting results reported. We studied the interaction of the Apolipoprotein E (ApoE) genotype and ACE inhibitors on AD. Methods This was a cross-sectional study of homebound elderly with an AD diagnosis and documentation of medications taken. ApoE genotype was determined. Results A total of 355 subjects with status on ApoE alleles and cognitive diagnoses were studied. The average age (mean ± SD) of this population was 73.3 ± 8.3 years old, and 73% were female. Cross-sectionally, there was no difference in the number of AD cases between ApoE4 carriers and ApoE4 non-carriers or between ACE inhibitor users and non-users in the homebound elderly. ApoE4 carriers treated with ACE inhibitors, however, had more diagnoses of AD compared with those who did not have the treatment (28% versus 6%, p = 0.01) or ApoE4 non-carriers treated with an ACE inhibitor (28% versus 10%, p = 0.03). ACE inhibitor use was associated with AD diagnosis only in the presence of an E4 allele. Using multivariate logistic regression analysis, we found that in diagnosed AD cases there was a significant interaction between ApoE4 and ACE inhibitor use (odds ratio: 20.85; 95% confidence interval: 3.08–140.95; p = 0.002) after adjusting for age, sex, ethnicity, and education. Conclusion The effects of ACE inhibitors on AD may be different depending on ApoE genotype. A prospective study is needed to determine whether ACE inhibitor use accelerates or poorly delays AD development in ApoE4 carriers compared with ApoE4 non-carriers. PMID:23567418

  4. Angiotensin converting enzyme inhibitors and Alzheimer disease in the presence of the apolipoprotein E4 allele.

    PubMed

    Qiu, Wendy Wei Qiao; Lai, Angela; Mon, Timothy; Mwamburi, Mkaya; Taylor, Warren; Rosenzweig, James; Kowall, Neil; Stern, Robert; Zhu, Haihao; Steffens, David C

    2014-02-01

    The effect of angiotensin converting enzyme (ACE) inhibitors on Alzheimer disease (AD) remains unclear, with conflicting results reported. We studied the interaction of the Apolipoprotein E (ApoE) genotype and ACE inhibitors on AD. This was a cross-sectional study of homebound elderly with an AD diagnosis and documentation of medications taken. ApoE genotype was determined. A total of 355 subjects with status on ApoE alleles and cognitive diagnoses were studied. The average age (mean ± SD) of this population was 73.3 ± 8.3 years old, and 73% were female. Cross-sectionally, there was no difference in the number of AD cases between ApoE4 carriers and ApoE4 non-carriers or between ACE inhibitor users and non-users in the homebound elderly. ApoE4 carriers treated with ACE inhibitors, however, had more diagnoses of AD compared with those who did not have the treatment (28% versus 6%, p = 0.01) or ApoE4 non-carriers treated with an ACE inhibitor (28% versus 10%, p = 0.03). ACE inhibitor use was associated with AD diagnosis only in the presence of an E4 allele. Using multivariate logistic regression analysis, we found that in diagnosed AD cases there was a significant interaction between ApoE4 and ACE inhibitor use (odds ratio: 20.85; 95% confidence interval: 3.08-140.95; p = 0.002) after adjusting for age, sex, ethnicity, and education. The effects of ACE inhibitors on AD may be different depending on ApoE genotype. A prospective study is needed to determine whether ACE inhibitor use accelerates or poorly delays AD development in ApoE4 carriers compared with ApoE4 non-carriers. Copyright © 2014. Published by Elsevier Inc.

  5. Angiotensin-Converting Enzyme N-Terminal Inactivation Alleviates Bleomycin-Induced Lung Injury

    PubMed Central

    Li, Ping; Xiao, Hong D.; Xu, Jianguo; Ong, Frank S.; Kwon, Mike; Roman, Jesse; Gal, Anthony; Bernstein, Kenneth E.; Fuchs, Sebastien

    2010-01-01

    Bleomycin has potent anti-oncogenic properties for several neoplasms, but drug administration is limited by bleomycin-induced lung fibrosis. Inhibition of the renin-angiotensin system has been suggested to decrease bleomycin toxicity, but the efficacy of such strategies remains uncertain and somewhat contradictory. Our hypothesis is that, besides angiotensin II, other substrates of angiotensin-converting enzyme (ACE), such as the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), play a significant role in controlling fibrosis. We studied bleomycin-induced lung injury in normotensive mice, termed N-KO and C-KO, which have point mutations inactivating either the N- or C-terminal catalytic sites of ACE, respectively. N-KO, but not C-KO mice, have a marked resistance to bleomycin lung injury as assessed by lung histology and hydroxyproline content. To determine the importance of the ACE N-terminal peptide substrate AcSDKP in the resistance to bleomycin injury, N-KO mice were treated with S-17092, a prolyl-oligopeptidase inhibitor that inhibits the formation of AcSDKP. In response to bleomycin injection, S-17092-treated N-KO mice developed lung fibrosis similar to wild-type mice. In contrast, the administration of AcSDKP to wild-type mice reduced lung fibrosis due to bleomycin administration. This study shows that the inactivation of the N-terminal catalytic site of ACE significantly reduced bleomycin-induced lung fibrosis and implicates AcSDKP in the mechanism of protection. These data suggest a possible means to increase tolerance to bleomycin and to treat fibrosing lung diseases. PMID:20651228

  6. Angiotensin converting enzyme 2: A new important player in the regulation of glycemia

    PubMed Central

    Chhabra, Kavaljit H.; Chodavarapu, Harshita; Lazartigues, Eric

    2015-01-01

    In spite of the novel anti-diabetic drugs available on the market, type 2 diabetes mellitus (T2DM) affects nearly 25 million people in the USA and causes about 5% of all deaths globally each year. Given the rate and proportion by which T2DM is affecting human beings, it is indispensable to identify new therapeutic targets that can control the disease. Recent pre-clinical and clinical studies suggest that attenuating the activity of the renin-angiotensin system (RAS) could improve glycemia in diabetic patients. Angiotensin converting enzyme 2 (ACE2) counteracts RAS over-activity by degrading Ang-II, a vasoconstrictor, to Ang-(1-7) which is a vasodilator. A decrease in ACE2 and an increase in ADAM17-mediated shedding activity have been observed with the progression of T2DM suggesting the importance of this mechanism in the disease. Indeed, restoration of ACE2 improves glycemia in db/db and Ang-II-infused mice. The beneficial effects of ACE2 can be attributed to reduced oxidative stress and ADAM17 expression in the islets of Langerhans in addition to the improvement of blood flow to the β-cells. The advantage of ACE2 over other RAS blockers is that ACE2 not only counteracts the negative effects of Ang-II but also increases Ang-(1-7)/MasR [a receptor through which Ang-(1-7) produces its actions] signaling in the cells. Increased Ang-(1-7)/MasR signaling has been reported to improve insulin sensitivity and glycemia in diabetic animals. Altogether, ACE2/Ang-(1-7)/MasR axis of the RAS appears to be protective in T2DM and strategies to restore ACE2 levels in the disease seem to be a promising therapy for Ang-II-mediated T2DM. PMID:23893738

  7. Angiotensin converting enzyme 2: a new important player in the regulation of glycemia.

    PubMed

    Chhabra, Kavaljit H; Chodavarapu, Harshita; Lazartigues, Eric

    2013-09-01

    In spite of the novel antidiabetic drugs available on the market, type 2 diabetes mellitus (T2DM) affects nearly 25 million people in the USA and causes about 5% of all deaths globally each year. Given the rate and proportion by which T2DM is affecting human beings, it is indispensable to identify new therapeutic targets that can control the disease. Recent preclinical and clinical studies suggest that attenuating the activity of the renin-angiotensin system (RAS) could improve glycemia in diabetic patients. Angiotensin-converting enzyme 2 (ACE2) counteracts RAS overactivity by degrading angiotensin-II (Ang-II), a vasoconstrictor, to Ang-(1-7) which is a vasodilator. A decrease in ACE2 and an increase in A disintegrin and metalloproteinase (ADAM17)-mediated shedding activity have been observed with the progression of T2DM, suggesting the importance of this mechanism in the disease. Indeed, restoration of ACE2 improves glycemia in db/db and Ang-II-infused mice. The beneficial effects of ACE2 can be attributed to reduced oxidative stress and ADAM17 expression in the islets of Langerhans in addition to the improvement of blood flow to the β-cells. The advantage of ACE2 over other RAS blockers is that ACE2 not only counteracts the negative effects of Ang-II but also increases Ang-(1-7)/Mas receptor (MasR) [a receptor through which Ang-(1-7) produces its actions] signaling in the cells. Increased Ang-(1-7)/MasR signaling has been reported to improve insulin sensitivity and glycemia in diabetic animals. Altogether, ACE2/Ang-(1-7)/MasR axis of the RAS appears to be protective in T2DM and strategies to restore ACE2 levels in the disease seem to be a promising therapy for Ang-II-mediated T2DM.

  8. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    SciTech Connect

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  9. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori.

    PubMed

    Yan, Hai-Yan; Mita, Kazuei; Zhao, Xia; Tanaka, Yoshikazu; Moriyama, Minoru; Wang, Huabin; Iwanaga, Masashi; Kawasaki, Hideki

    2017-04-15

    We previously reported regarding an ecdysone-inducible angiotensin-converting enzyme (ACE) gene. We found another four ACE genes in the Bombyx genome. The present study was undertaken to clarify the evolutionally changed function of the ACE of Bombyx mori. Core regions of deduced amino acid sequences of ACE genes were compared with those of other insect ACE genes. Five Bombyx genes have the conserved Zn(2+)-binding-site motif (HEXXH); however, BmAcer4 has only one and BmAcer3 has no catalytic ligand. BmAcer1 and BmAcer2 were expressed in several organs. BmAcer3 was expressed in testes, and BmAcer4 and BmAcer5 were expressed in compound eyes; however, the transcription levels of these three genes were very low. Quantitative RT-PCR and Western analysis were conducted to determine the tissue distribution and developmental expression of BmAcer1and BmAcer2. Transcripts of BmAcer1 and BmAcer2 were found in the reproductive organs during the larval and pupal stages. BmAcer1 was dominant in fat bodies during the feeding stage and showed high expression in the epidermis, wing discs, and pupal wing tissues after the wandering stage. Its expression patterns in epidermis, wing discs, and wing tissues resembled the hemolymph ecdysteroid titer in the larval and pupal stages. Acer1 was observed in the hemolymph at all stages, appearing to be the source of it are fat bodies, wings, and epidermis, and functioning after being secreted into the hemolymph. BmAcer2 was abundant in the midgut during the feeding stage and after the wandering stage and in silk glands after the pupal stage. We conclude that the evolution of BmAcer occurred through duplication, and, thereafter, functional diversification developed.

  10. Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies.

    PubMed

    Sisto, Margherita; Lisi, Sabrina; Lofrumento, Dario Domenico; Frassanito, Maria Antonia; Cucci, Liana; D'Amore, Simona; Mitolo, Vincenzo; D'Amore, Massimo

    2009-12-01

    The release of the soluble form of tumor necrosis factor (TNF)-alpha from the plasma membrane occurs through the activation of the secretase tumor necrosis factor-alpha-converting enzyme (TACE). The current study was designed to examine whether the anti-Ro/SSA autoantibodies (Abs) are capable to regulate TACE expression in non-neoplastic human salivary gland epithelial cells (SGEC) cultures. We investigated the effect of anti-Ro/SSA Abs on the localization and abundance of cell-surface TACE and on TACE pro-domain-shedding and activation. In addition, the potential physiological consequences of TNF-alpha blockage by the biological agent Adalimumab on post-translational regulation of TACE are discussed. Anti-Ro/SSA Abs were purified from IgG fractions of patients with primary Sjögren's syndrome, using Sepharose 4B-Ro/SSA affinity columns. Flow cytometry, reverse transcription-PCR, western blot and immunohistochemistry were used to study TACE expression on SGEC and TACE regulation by Abs. Our study demonstrated a dose-dependent increase of TACE messenger RNA (mRNA) expression in anti-Ro/SSA Abs-treated SGEC, followed by internalization, pro-domain shedding and activation of TACE protein, suggesting that increased TACE activity is necessary for the release of TNF-alpha observed in anti-Ro/SSA Abs-stimulated SGEC. Adalimumab treatment brought TACE mRNA and surface TACE expression to levels than those observed in untreated SGEC. These data suggest that the effect of anti-Ro/SSA Abs on TACE expression and intracellular distribution is exerted by TNF-alpha production.

  11. Antioxidative sulphated polygalactans from marine macroalgae as angiotensin-I converting enzyme inhibitors.

    PubMed

    Makkar, Fasina; Chakraborty, Kajal

    2017-08-17

    Antioxidant and antihypertensive potential of the sulphated polygalactans isolated from the marine macroalgae Kappaphycus alvarezii and Gracilaria opuntia were assessed by utilising different in vitro systems. The galactans isolated from K. alvarezii possessed significantly greater antioxidative properties as determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH IC90 0.97 mg/mL) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS(.+) IC90 0.72 mg/mL) scavenging activities than those isolated from G. opuntia (DPPH IC90 1.2 mg/mL and ABTS 0.86 mg/mL). The sulphated polygalactan →4)-4-O-sulphonato-(2-O-methyl)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-(2-O-methyl)-α-D-galactopyranan from K. alvarezii showed greater angiotensin-I-converting enzyme (ACE) inhibitory activity (IC50 0.02 μg/mL) than →3)-4-O-sulphonato-(6-O-acetyl)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-(2-O-sulphonato)-α-D-galactopyranosyl-(1→3)-4-O-sulphonato-(6-O-acetyl)-β-D-xylosyl-(1→3)-4-O-sulphonato-(6-O-acetyl)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-(2-O-sulphonato)-α-D-galactopyranan motif extracted from G. opuntia (IC50 0.70 μg/mL). Structure activity correlation studies displayed that the ACE inhibitory properties of titled polygalactans were directly proportional to their electronic properties and inversely with the steric and hydrophobic characteristics. Putative ACE inhibitory mechanism of action of sulphated galactans from marine macroalgae corroborated the structure bioactivity correlation analysis.

  12. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus.

    PubMed

    Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige

    2015-08-01

    Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products.

  13. Relationship Between Angiotensin-converting Enzyme Gene Polymorphism and QT Dispersion in Hemodialysis Patients.

    PubMed

    Toraman, Aysun; Colak, Hulya; Tekce, Hikmet; Cam, Sirri; Kursat, Seyhun

    2017-05-01

    The angiotensin-converting enzyme (ACE) gene insertion or deletion in long-term hemodialysis patients may be associated with corrected QT interval prolongation, leading to fatal arrhythmias. The ACE D allele is known to increase the risk of malignant ventricular arrhythmias and is also associated with increased QT dispersion after myocardial infarction and hypertension. This study aimed to evaluate the relationship between ACE gene polymorphism and QT dispersion in hemodialysis patients. In 70 hemodialysis patients, electrocardiography was performed and QT dispersion was calculated. Corrected QT interval was calculated using Bazett Formula. The ACE gene polymorphism was determined by polymerase chain reaction. The mean age of the patients was 60 ± 12 years. The mean QT dispersion and corrected QT dispersion were 61.71 ± 21.99 and 73.18 ± 25.51, respectively. QT dispersion inversely correlated with serum calcium and potassium levels and positively correlated with ACE gene polymorphism and residual urine. Calcium level was the predictor factor for QT dispersion. The ACE genotype correlated with QT dispersion, corrected QT dispersion, hemoglobin, and residual urine, and inversely correlated with serum potassium. Corrected QT dispersion correlated with ACE gene polymorphism and residual urine. The DD genotype of ACE had significally greater QT dispersion and corrected QT dispersion than the II and ID genotypes. Our study showed that the most important parameter affecting corrected QT dispersion was ACE gene polymorphism on the background of D allelle. Patients carrying this allelle need special attention regarding optimal suppression of renin-angiotensin-aldosteron system activity.

  14. Angiotensin converting enzyme 2 polymorphisms and postexercise hypotension in hypertensive medicated individuals.

    PubMed

    Goessler, Karla F; Polito, Marcos D; Mota, Gloria de F; de Oliveira, Edilamar M; Cornelissen, Véronique A

    2016-12-07

    The renin-angiotensin aldosterone system (RAAS) is associated with diverse physiological responses and adaptations to exercise. The angiotensin converting enzyme (ACE) 2 has vasodilatory effects, which might be associated with the blood pressure (BP) responses to acute exercise. The aim of this study was to investigate the role of ACE2 polymorphisms in postexercise hypotension (PEH). Thirty-four medicated hypertensive (61·3 ± 1·7 years, 76·1 ± 2·7 kg, 160 ± 1·6 cm) men (n = 12) and women (n = 22), participated in a control and a moderate intensity exercise session in a randomized order. After both experimental sessions, they left the laboratory wearing an ambulatory BP device for 24-h monitoring. ACE2 polymorphisms (Int-1 and Int-3) were assessed by polymerase chain reaction. Over the course of 5-h monitoring, we observed a significant reduction in SBP and DBP following exercise in the AA/AG of the Int-1 polymorphism (p-interaction = 0·02 and 0·001, respectively), whereas this could not be found in the individuals homozygous G (p-interaction = 0·76 and 0·51, respectively). With regard to Int-3 polymorphism, individuals AA/AG showed a significant reduction in SBP following exercise (p-interaction <0·0001) but not for DBP (p-interaction = 0·06) whereas GG individuals showed only a significant reduction in DBP following exercise (p-interaction = 0·02). Our results suggest that ACE2 polymorphism could affect PEH; however, larger trials are needed to confirm our findings.

  15. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme.

    PubMed Central

    Geng, Y. J.; Libby, P.

    1995-01-01

    This study sought evidence for apoptosis, a form of programmed cell death, in human atheromatous coronary and carotid arteries. Markers for apoptotic cells included in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), genomic DNA electrophoresis, and morphological analysis. Intimal lesions contained more TUNEL+ cells (34 +/- 6%, n = 8) than non-atherosclerotic arterial intima (8 +/- 3%, n = 5, P < 0.05). The tunica media of the diseased arteries had a percentage of TUNEL+ cells (5 +/- 1%) similar to that in the normal vessels (3 +/- 1%, N.S.). Oligonucleosomal DNA fragments were visualized in extracts from 12 atheromatous plaques but in none of 5 non-atherosclerotic vessels. Both smooth muscle cells (SMC) and macrophages, two major cell types in the atherosclerotic intima, bore markers of apoptosis, but with different patterns, as determined by double histochemical labeling for cell types and TUNEL. The TUNEL+ SMC localized mainly in the fibrotic portion of the atheroma, whereas TUNEL+ macrophages clustered near or within the lipid-rich core of the lesion. Atheromatous lesions expressed mRNA encoding interleukin-1 beta-converting enzyme (ICE), a mammalian cell death gene, as demonstrated by reverse transcriptase polymerase chain reaction. Immunohistochemistry revealed that ICE localized in regions of TUNEL+ SMC and macrophages. TUNEL- cells showed little or no immunoreactive ICE. These data point to a role for apoptosis in regulation of cell accumulation during atherogenesis and suggest involvement of ICE in SMC death in fibrous regions of complex atheroma, and in macrophage death in the lipid-rich core of the lesion. Apoptosis of vascular cells in fibrous cap may impede maintenance or repair of the matrix in this region and affect stability of the plaques. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:7639325

  16. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  17. Increased arterial distensibility induced by the angiotensin-converting enzyme inhibitor, lisinopril, in normotensive rats.

    PubMed Central

    Makki, T.; Talom, R. T.; Niederhoffer, N.; Amin, F.; Tankosic, P.; Mertès, P. M.; Atkinson, J.

    1994-01-01

    1. We investigated possible structural correlates of the beneficial effect of chronic angiotensin-converting enzyme inhibition (ACEI) with lisinopril on the aortic distensibility of normotensive rats. 2. Experiments were performed in young (4-month old), normotensive, Wistar rats which received lisinopril in their drinking water (0.9 or 9 mg kg-1 day-1) for 9 months. 3. Following ACEI treatment, rats were pithed and aortic pulse wave velocity was measured during the progressive rise in mean arterial blood pressure produced by i.v. infusion of the alpha 1-adrenoceptor agonist, phenylephrine. The slope of the regression line relating aortic pulse wave velocity to mean arterial blood pressure was taken as an index of aortic distensibility. Following this, the aorta was fixed in situ at a normotensive pressure level and histomorphometry was performed. We also measured the calcium content of the aortic wall by atomic absorption. 4. The lower dose of lisinopril failed to lower systolic arterial blood pressure (unanaesthetized rat) or mean arterial blood pressure (pithed rat). Chronic ACEI with the higher dose of lisinopril lowered both systolic arterial blood pressure (104 +/- 6 mmHg, controls 133 +/- 4 mmHg, unanaesthetized), and mean arterial blood pressure (27 +/- 1 mmHg, controls 34 +/- 2 mmHg, pithed). 5. Although the lower dose of lisinopril did not lower blood pressure, it did improve aortic distensibility as revealed by a fall in the slope relating aortic pulse wave velocity (Y) to mean arterial blood pressure (X). Values were 5.7 +/- 0.7, 3.8 +/- 0.6 and 2.7 +/- 0.3 in controls, and in low and high ACEI groups, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004398

  18. Interleukin-2 Receptor and Angiotensin-Converting Enzyme as Markers for Ocular Sarcoidosis

    PubMed Central

    Gundlach, Enken; Hoffmann, Michael Marcus; Prasse, Antje; Heinzelmann, Sonja; Ness, Thomas

    2016-01-01

    Purpose To study the impact of soluble IL2 receptor (sIL2R), chest x-ray (CxR), and angiotensin-converting enzyme (ACE) as markers for sarcoidosis in uveitis patients. Design Retrospective study. Methods Serum concentrations of sIL2R and ACE were measured in patients with active uveitis. Those with elevated sIL2R and /or ACE values were examined for suspected systemic sarcoidosis. Main Outcome Measure Our main outcome parameters were the specificity and sensitivity of sIL2R, CxR and ACE in screening for ocular sarcoidosis. Results We measured 261 patients with uveitis for sarcoidosis using sIL2R and ACE between January 2008 and November 2011; sarcoidosis was been diagnosed using other tests (e.g. computer tomography, brochoalveolar lavage, biopsy) in 41 of 53 patients with elevated sIL2R values (>639 U/ml) and in one patient with normal sIL2R (582 U/ml). Their mean sIL2R value was 1310 U/ml, extending from 582 to 8659 U/ml. Only 9 patients, however, presented elevated ACE (>82 U/l). Their mean ACE value was 116.4 U/l, ranging from 84.1 to 175.5 U/l. IL2R specificity was 94% with 98% sensitivity. In contrast, ACE had a specificity of 99.5%, but a sensitivity of only 22%; the chest x-ray had a specificity of 100% with 50% sensitivity in detecting sarcoidosis. We observed the entire spectrum of uveitis: sixteen patients suffered from anterior, 8 from intermediate, 16 from posterior, and 2 from panuveitis. Conclusions An elevated level of soluble IL2R suggests sarcoidosis with uveitis more convincingly than ACE, making sIL2R a more effective marker parameter for sarcoidosis than ACE or chest x-ray in uveitis patients. PMID:26799486

  19. Myocardial ischemia and angiotensin-converting enzyme inhibition: comparison of ischemia during mental and physical stress.

    PubMed

    Ramadan, Ronnie; Quyyumi, Arshed A; Zafari, A Maziar; Binongo, Jose N; Sheps, David S

    2013-01-01

    Mental stress provokes myocardial ischemia in many patients with stable coronary artery disease (CAD). Mental stress-induced myocardial ischemia (MSIMI) portends a worse prognosis, independent of standard cardiac risk factors or outcome of traditional physical stress testing. Angiotensin II plays a significant role in the physiological response to stress, but its role in MSIMI remains unknown. Our aim was to evaluate whether the use of angiotensin-converting enzyme inhibitors (ACEIs) is associated with a differential effect on the incidence of MSIMI compared with ischemia during physical stress. Retrospective analysis of 218 patients with stable CAD, including 110 on ACEI, was performed. 99m-Tc-sestamibi myocardial perfusion imaging was used to define ischemia during mental stress, induced by a standardized public speaking task, and during physical stress, induced by either exercise or adenosine. Overall, 40 patients (18%) developed MSIMI and 80 patients (37%) developed ischemia during physical stress. MSIMI occurred less frequently in patients receiving ACEIs (13%) compared with those not on ACEIs (24%; p = .030, adjusted odds ratio = 0.42, 95% confidence interval = 0.19-0.91). In contrast, the frequency of myocardial ischemia during physical stress testing was similar in both groups (39% versus 35% in those on and not on ACEIs, respectively); adjusted odds ratio = 0.91, 95% confidence interval = 0.48-1.73). In this retrospective study, patients using ACEI therapy displayed less than half the risk of developing ischemia during mental stress but not physical stress. This possible beneficial effect of ACEIs on MSIMI may be contributing to their salutary effects in CAD.

  20. Identification of positive and negative transcriptional regulatory elements of the rabbit angiotensin-converting enzyme gene.

    PubMed Central

    Goraya, T Y; Kessler, S P; Kumar, R S; Douglas, J; Sen, G C

    1994-01-01

    The two tissue-specific mRNAs encoding the isozymes of rabbit angiotensin-converting enzyme (ACE) are generated from the same gene by alternative choice of two transcription initiation sites 5.7 kb apart. In the current study, we have characterized the regulatory sites controlling the transcription of the larger pulmonary isozyme mRNA. For this purpose, reporter genes driven by varying lengths of upstream region of the ACE gene were transfected into ACE-producing cells. Our results demonstrated that the transcription of this gene is primarily driven by positive elements within the first 274 bp DNA upstream of the transcription initiation site. The reporter gene driven by this region was expressed in two ACE-producing cells but not in two ACE-non-producing cells thereby establishing its tissue specificity. Our experiments also revealed the existence of a strong negative element located between -692 and -610 positions. This element suppressed the expression of the reporter gene in a dose-dependent and position and orientation-independent fashion thus suggesting that it is a true silencer element. It could also repress the expression of a reporter gene driven by the heterologous strong promoter of the beta-actin gene. The repressing effects of the negative element could be partially overcome by cotransfecting the isolated negative element along with the reporter gene containing the negative element. This result was possibly due to the functional removal of a limiting trans-acting factor which binds to this element. Electrophoretic mobility shift assays revealed that the negative element can form several complexes with proteins present in the nuclear extract of an ACE-producing cell line. At least part of the negative element is strongly conserved in the upstream regions of the human and mouse ACE genes. Images PMID:8165133

  1. Angiotensin-Converting Enzyme Inhibitor Captopril Reverses the Adverse Cardiovascular Effects of Polymerized Hemoglobin

    PubMed Central

    Zhou, Ronghua; Yao, Yusheng; Yang, Qian; Zhou, Cheng; Wu, Wei; Li, Qian; You, Zhen; Zhao, Xiaolin; Yang, Linhui; Li, Chen; Zhu, Da; Qiu, Yanhua; Luo, Ming; Tan, Zhaoxia; Li, Huan; Chen, Yanfang; Gong, Gu; Feng, Yuan; Dian, Ke

    2014-01-01

    Abstract Aim: Cell-free hemoglobin-based oxygen carriers (HBOCs) may increase the risk of myocardial infarction and death. We studied the effect of an angiotensin-converting enzyme (ACE) inhibitor on HBOC-induced adverse cardiovascular outcomes and elucidated the underlying mechanisms. Results: With a dog cardiopulmonary bypass model, we demonstrated that a high-dose HBOC (3%, w/v) did not reduce—but aggravated—cardiac ischemia/reperfusion injury. Animals administered a high-dose HBOC experienced coronary artery constriction and depression of cardiac function. Exposure of isolated coronary arteries or human umbilical vein endothelial cells to high-dose HBOC caused impaired endothelium-dependent relaxation, increased endothelial cell necrosis/apoptosis, and elevated NAD(P)H oxidase expression (gp91phox, p47phox, p67phox, and Nox1) and reactive oxygen species (ROS) production. All observed adverse outcomes could be suppressed by the ACE inhibitor captopril (100 μM). Co-incubation with free radical scavenger tempol or NAD(P)H oxidase inhibitor apocynin had no effect on captopril action, suggesting that the positive effects of captopril are ROS- and NAD(P)H oxidase dependent. ACE inhibition by captopril also contributed to these effects. In addition, bioavailable nitrite oxide (NO) reduced by high-dose HBOC was preserved by captopril. Furthermore, HBOC, at concentrations greater than 0.5%, inhibited large conductance Ca2+-activated K+ channel currents in vascular smooth muscle cells in a dose-dependent manner, although captopril failed to improve current activity, providing additional evidence that captopril's effects are mediated by the endothelium, but not by the smooth muscle. Innovation and Conclusion: Captopril alleviates high-dose HBOC-induced endothelial dysfunction and myocardial toxicity, which is mediated by synergistic depression of NAD(P)H oxidase subunit overproduction and increases in vascular NO bioavailability. Antioxid. Redox Signal. 21, 2095

  2. Impairing effects of angiotensin-converting enzyme inhibitor Captopril on bone of normal mice.

    PubMed

    Yang, Min; Xia, Chao; Song, Yan; Zhao, Xi; Wong, Man-Sau; Zhang, Yan

    2016-01-15

    There are contradicting results about the effects of angiotensin-converting enzyme inhibitors (ACEIs) on bones. This study was aimed to investigate the effect of ACEI, Captopril, on bone metabolism and histology as well as the action of Captopril on skeletal renin-angiotensin system (RAS) and bradykinin receptor pathway in normal male mice. The urine, serum, tibias and femurs from normal control mice and Captopril-treated (10mg/kg) mice were collected for biochemical, histological and molecular analyses after drug administration for eight weeks. The mice after the treatment with Captopril had a significant decrease of serum testosterone level. The histological measurements showed the loss of trabecular bone mass and trabecular bone number, and the breakage of trabecular bone network as well as the changes of chondrocyte zone at epiphyseal plate in Captopril-treated mice. The defect of Captopril on trabecular bone was reflected by the quantitative bio-parameters from micro-CT. The expression of renin receptor and bradykinin B2 receptor (B2R) was significantly up-regulated in tibia of mice upon to the Captopril treatment, which decreased the ratio of OPG/RANKL and the expression of osteoblastic factor RUNX2. Furthermore, Captopril treatment resulted in the increase of pAkt/Akt and pNFκB expression in tibia. The present study revealed the impairing effects of Captopril on bone via interfering with the circulating sex hormone level and B2R pathway, which suggests that the bone metabolism of patients need to be carefully monitored when being prescribed for ACEIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Angiotensin-converting enzyme inhibitor captopril reverses the adverse cardiovascular effects of polymerized hemoglobin.

    PubMed

    Li, Tao; Zhou, Ronghua; Yao, Yusheng; Yang, Qian; Zhou, Cheng; Wu, Wei; Li, Qian; You, Zhen; Zhao, Xiaolin; Yang, Linhui; Li, Chen; Zhu, Da; Qiu, Yanhua; Luo, Ming; Tan, Zhaoxia; Li, Huan; Chen, Yanfang; Gong, Gu; Feng, Yuan; Dian, Ke; Liu, Jin

    2014-11-20

    Cell-free hemoglobin-based oxygen carriers (HBOCs) may increase the risk of myocardial infarction and death. We studied the effect of an angiotensin-converting enzyme (ACE) inhibitor on HBOC-induced adverse cardiovascular outcomes and elucidated the underlying mechanisms. With a dog cardiopulmonary bypass model, we demonstrated that a high-dose HBOC (3%, w/v) did not reduce-but aggravated-cardiac ischemia/reperfusion injury. Animals administered a high-dose HBOC experienced coronary artery constriction and depression of cardiac function. Exposure of isolated coronary arteries or human umbilical vein endothelial cells to high-dose HBOC caused impaired endothelium-dependent relaxation, increased endothelial cell necrosis/apoptosis, and elevated NAD(P)H oxidase expression (gp91(phox), p47(phox), p67(phox), and Nox1) and reactive oxygen species (ROS) production. All observed adverse outcomes could be suppressed by the ACE inhibitor captopril (100 μM). Co-incubation with free radical scavenger tempol or NAD(P)H oxidase inhibitor apocynin had no effect on captopril action, suggesting that the positive effects of captopril are ROS- and NAD(P)H oxidase dependent. ACE inhibition by captopril also contributed to these effects. In addition, bioavailable nitrite oxide (NO) reduced by high-dose HBOC was preserved by captopril. Furthermore, HBOC, at concentrations greater than 0.5%, inhibited large conductance Ca(2+)-activated K(+) channel currents in vascular smooth muscle cells in a dose-dependent manner, although captopril failed to improve current activity, providing additional evidence that captopril's effects are mediated by the endothelium, but not by the smooth muscle. Captopril alleviates high-dose HBOC-induced endothelial dysfunction and myocardial toxicity, which is mediated by synergistic depression of NAD(P)H oxidase subunit overproduction and increases in vascular NO bioavailability.

  4. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata.

    PubMed

    Furuta, Tomoe; Miyabe, Yoshikatsu; Yasui, Hajime; Kinoshita, Yasunori; Kishimura, Hideki

    2016-02-04

    We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477-17,638) and β-subunit (Mw: 17,455-18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins.

  5. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata

    PubMed Central

    Furuta, Tomoe; Miyabe, Yoshikatsu; Yasui, Hajime; Kinoshita, Yasunori; Kishimura, Hideki

    2016-01-01

    We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477–17,638) and β-subunit (Mw: 17,455–18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins. PMID:26861357

  6. Liquid chromatographic determination of hippuric acid for the evaluation of ethacrynic acid as angiotensin converting enzyme inhibitor.

    PubMed

    Mehanna, A S; Dowling, M

    1999-05-01

    A rapid, simple and interference-free method is described to evaluate the inhibitory effects of organic compounds on the activity of angiotensin converting enzyme irrespective of their acid-base properties. The assay is based on the high performance liquid chromatographic separation of the synthetic substrate hippuryl-L-histidyl-L-leucine, the hydrolysis product hippuric acid and the test compound. Using the new method, the diuretic drug ethacrynic acid was found to act as an inhibitor for the enzyme in a non competitive mode.

  7. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides

    PubMed Central

    Muhammad, Syed Aun; Fatima, Nighat

    2015-01-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of −8.5 kcal/mol as compared to the standard (−7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  8. Angiotensin-Converting Enzyme Inhibitors' Influence on Antiplatelet Therapy of Clopidogrel in ACS.

    PubMed

    Yang, Shuo; Cui, Chanjuan; Zhang, Jie; Qiao, Rui

    2016-10-01

    Clopidogrel is a prodrug, the minority of which is converted to an active metabolite by hepatic cytochrome P450 (CYP2C19), however, most of it is metabolized to inactive substance by hepatic carboxylesterase1 (CES1). Meanwhile angiotensin-converting enzyme inhibitors (ACEIs) are mostly metabolized by CES1. We aimed to assess the impact of ACEIs on platelet inhibition by clopidogrel. We genotyped variants CES1, CYP2C19*2 and *3 in 502 patients with acute coronary syndrome (ACS) receiving clopidogrel therapy, and analyzed the effects of ACEIs on responsiveness to clopidogrel by the vasodilator-stimulated phosphoprotein (VASP) phosphorylation assay and ADP-stimulated impedance whole blood platelet aggregation assay. It showed that the allele frequency of CES1 c.428A was 0% in these patients. 45.22% (227/502) of these patients were carriers of CYP2C19*2 or CYP2C9*3 loss-of-function alleles. Among them, 57.71% (131/227) of the patients with CYP2C19 variants received ACEIs therapy. In a total of 502 patients, there was no difference in the VASP-PRI or the impedance whole blood platelet aggregation assay between the ACEIs group and non-ACEIs group [56.26 ± 14.55% versus 57.76 ± 13.56%, p = 0.241; 0 (0 - 2) Ω vs. 0 (0 - 2) Ω, p = 0.856]. In the CYP2C19 variant patients, there was no difference in the VASP-PRI or the impedance whole blood platelet aggregation assay between ACEIs group and non-ACEIs group [57.24 ± 15.12% versus 58.07 ± 13.90%, p = 0.667; 0 (0 - 2) Ω versus 0 (0 - 2) Ω, p = 0.536]. In the subgroups of ACS patients (unstable angina, non-ST-segment elevation myocardial infarction, ST-segment elevation myocardial infarction), there was no difference in the VASP-PRI between the ACEIs group and non-ACEIs group [55.81 ± 15.24% versus 58.37 ± 13.31%, p = 0.103; 55.76 ± 15.20% versus 49.09 ± 15.22%, p = 0.098; 58.13 ± 11.48% versus 61.87 ± 10.34%, p = 0.221], and there was no difference in the impedance whole blood platelet aggregation assay between

  9. Angiotensin-converting enzyme inhibitors and beta-blockers in cardiac asymptomatic patients with Duchenne muscular dystrophy.

    PubMed

    Fayssoil, A

    2010-01-01

    Duchenne muscular dystrophy (DMD) is an X-linkedrecessive disorder caused by the absence of dystrophin. Cardiac dysfunction is a classical complication in this disease. Most DMD patients remain asymptomatic for years in spite of the progression of cardiac dysfunction because of their limited daily activities. Angiotensin-converting enzyme inhibitors and beta-blockers may delay the onset and the progression of cardiac dysfunction and have to be recommended earlier in this disease.

  10. Molecular identification of tuliposide B-converting enzyme: a lactone-forming carboxylesterase from the pollen of tulip.

    PubMed

    Nomura, Taiji; Murase, Tatsunori; Ogita, Shinjiro; Kato, Yasuo

    2015-07-01

    6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. Multifunctional gold nanoparticles for targeted imaging of angiotensin converting enzyme design, characterization, and application

    NASA Astrophysics Data System (ADS)

    Ghann, William Emmanuel

    Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the United States with approximately one in every three death being attributed to these diseases. The overarching problem with heart diseases is that once a person has suffered from an attack, there is a high likelihood of a recurrent attack. According to the American Heart Association, approximately 785,000 Americans per year suffer from heart attacks for the first time and about half of the aforementioned experience an ensuing attack. The second attack is often fatal, and therefore relapse prevention is crucial. One of the possible ways of averting the recurrence of such an attack is through the precise monitoring of the preceding biomarkers or risk indicators. This project encompasses the design, synthesis, characterization, and application of nanoparticle-based contrast agents that can potentially be used in the monitoring of the reemergence of a biomarker expressed after a person has suffered myocardial infarction. The overexpression of this biomarker, angiotensin converting enzyme (ACE), is also associated with development of cardiac and pulmonary fibrosis. To this end, highly concentrated gold nanoparticles have been synthesized and conjugated to Lisinopril, an ACE inhibitor, for the molecular imaging of ACE using X-ray CT. Various stabilities studies were conducted to verify the resistance of this gold nanoprobe in biological relevant media. They have also been successfully used in X-ray computed tomography to visualize tissue ACE and thus render them potentially versatile in the monitoring of cardiovascular diseases. An MRI tag was also conjugated to the gold nanoparticle affording the opportunity for bimodal imaging of ACE. This contrast agent could further be used for the quantification using K-edge CT of the relationship between the amount of the said marker and its role in predicting the possibility of a successive heart attack. The prepared nanoparticle-based contrast

  12. Impact of reference-based pricing for angiotensin-converting enzyme inhibitors on drug utilization.

    PubMed

    Schneeweiss, Sebastian; Soumerai, Stephen B; Glynn, Robert J; Maclure, Malcolm; Dormuth, Colin; Walker, Alexander M

    2002-03-19

    Increasing copayments for higher-priced prescription medications has been suggested as a means to help finance drug coverage for elderly patients, but evaluations of the impact of such policies are rare. The objective of this study was to analyze the effect of reference-based pricing of angiotensin-converting enzyme (ACE) inhibitors on drug utilization, cost savings and potential substitution with other medication classes. We analyzed 36 months of claims data from British Columbia for 2 years before and 1 year after implementation of reference-based pricing (in January 1997). The 119,074 patients were community-living Pharmacare beneficiaries 65 years of age or older who used ACE inhibitors during the study period. The main outcomes were changes over time in use of ACE inhibitors, use of antihypertensive drugs and expenditures for antihypertensive drugs, as well as predictors of medication switching related to reference-based pricing. We observed a sharp decline (29%) in the use of higher-priced cost-shared ACE inhibitors immediately after implementation of the policy (p < 0.001). After a transition period, the post-implementation utilization rate for all ACE inhibitors was 11% lower than projected from pre-implementation data. However, overall utilization of antihypertensives was unchanged (p = 0.40). The policy saved $6.7 million in pharmaceutical expenditures during its first 12 months. Patients with heart failure or diabetes mellitus who were taking a cost-shared ACE inhibitor were more likely to remain on the same medication after implementation of reference-based pricing (OR 1.12 [95% confidence interval, CI, 1.06-1.19] and 1.28 [95% CI 1.20-1.36] respectively). Patients with low-income status were more likely than those with high-income status to stop all antihypertensive therapy (OR 1.65 [95% CI 1.43-1.89]), which reflects a general trend toward discontinuation of therapy among these patients even before implementation of reference-based pricing. Reference

  13. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism.

    PubMed

    Vaughan, David; Brogioli, Michael; Maier, Thomas; White, Andy; Waldron, Sarah; Rittweger, Jörn; Toigo, Marco; Wettstein, Jessica; Laczko, Endre; Flück, Martin

    2016-01-01

    A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle. Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc. Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and -3%, respectively). Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione) were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon. The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in working

  14. Left ventricular hypertrophy among black hypertensive patients: focusing on the efficacy of angiotensin converting enzyme inhibitors

    PubMed Central

    2014-01-01

    Background Left ventricular hypertrophy (LVH) is an independent cardiovascular risk factor in patients with essential hypertension. The main objective of this study was to assess the echocardiographic prevalence of left ventricular hypertrophy in patients with hypertension, its risk factors and effect of antihypertensive drugs on its prevalence. Methods A hospital based cross sectional study was conducted on 200 hypertensive patients on treatment in southwest Ethiopia. A pretested structured questionnaire was used to collect data from participants and their clinical records. Blood pressure and anthropometric measurements were taken according to recommended standards. Left ventricular mass was measured by transthoracic echocardiography. Associations between categorical variables were assessed using chi-square test and odds ratio with 95% confidence interval. Logistic regression model was done to identify risks factors of LVH. P values of < 0.05 were considered as statistically significant. Results The mean age, systolic blood pressure, diastolic blood pressure and body mass index were 55.7 ± 11.3 years, 139.2 ± 7.7 mmHg, 89.2 ± 5.7 mmHg and 24.2 ± 3.4 Kg/m2 respectively. The overall prevalence of LVH among these study subjects was 52%. Age ≥50 years (OR: 3.49, 95% CI 1.33-9.14, P = 0.011), female gender (OR: 7.69, 95% CI 3.23-20.0, P < 0.001), systolic blood pressure ≥140 mmHg (OR: 2.85, 95% CI 1.27-6.41, P = 0.011), and duration of hypertension (OR: 3.59, 95% CI 1.47-8.76, P = 0.005) were independent predictors of left ventricular hypertrophy. Angiotensin converting enzyme (ACE) inhibitors were the only antihypertensive drugs associated with lower risk of left ventricular hypertrophy (OR: 0.08, 95% CI 0.03-0.19, p < 0.001). Conclusions Left ventricular hypertrophy was found to be highly prevalent in hypertensive patients in Ethiopia. ACE inhibitors were the only antihypertensive drugs associated with reduced risk

  15. Cardiac-restricted angiotensin-converting enzyme overexpression causes conduction defects and connexin dysregulation

    PubMed Central

    Kasi, Vijaykumar S.; Xiao, Hong D.; Shang, Lijuan L.; Iravanian, Shahriar; Langberg, Jonathan; Witham, Emily A.; Jiao, Zhe; Gallego, Carlos J.; Bernstein, Kenneth E.; Dudley, Samuel C.

    2011-01-01

    Renin-angiotensin (RAS) system activation is associated with an increased risk of sudden death. Previously, we used cardiac-restricted angiotensin-converting enzyme (ACE) overexpression to construct a mouse model of RAS activation. These ACE 8/8 mice die prematurely and abruptly. Here, we have investigated cardiac electrophysiological abnormalities that may contribute to early mortality in this model. In ACE 8/8 mice, surface ECG voltages are reduced. Intracardiac electrograms showed atrial and ventricular potential amplitudes of 11% and 24% compared with matched wild-type (WT) controls. The atrioventricular (AV), atrio-Hisian (AH), and Hisian-ventricular (HV) intervals were prolonged 2.8-, 2.6-, and 3.9-fold, respectively, in ACE 8/8 vs. WT mice. Various degrees of AV nodal block were present only in ACE 8/8 mice. Intracardiac electrophysiology studies demonstrated that WT and heterozygote (HZ) mice were noninducible, whereas 83% of ACE 8/8 mice demonstrated ventricular tachycardia with burst pacing. Atrial connexin 40 (Cx40) and connexin 43 (Cx43) protein levels, ventricular Cx43 protein level, atrial and ventricular Cx40 mRNA abundances, ventricular Cx43 mRNA abundance, and atrial and ventricular cardiac Na+ channel (Scn5a) mRNA abundances were reduced in ACE 8/8 compared with WT mice. ACE 8/8 mice demonstrated ventricular Cx43 dephosphorylation. Atrial and ventricular L-type Ca2+ channel, Kv4.2 K+ channel α-subunit, and Cx45 mRNA abundances and the peak ventricular Na+ current did not differ between the groups. In isolated heart preparations, a connexin blocker, 1-heptanol (0.5 mM), produced an electrophysiological phenotype similar to that seen in ACE 8/8 mice. Therefore, cardiac-specific ACE overexpression resulted in changes in connexins consistent with the phenotype of low-voltage electrical activity, conduction defects, and induced ventricular arrhythmia. These results may help explain the increased risk of arrhythmia in states of RAS activation such as

  16. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry?

    PubMed

    Reardon, L C; Macpherson, D S

    1998-01-12

    Hyperkalemia is a potentially life-threatening complication resulting from the use of angiotensin-converting enzyme (ACE) inhibitors; data to guide the intensity of monitoring for or responding to hyperkalemia in outpatients are limited. Case-control methodological procedures were used to identify risk factors for hyperkalemia. Outpatients prescribed ACE inhibitors during 1992 and 1993 at a Veterans Affairs medical center general medicine clinic were identified. Case patients had a potassium level higher than 5.1 mmol/L on the day of clinic visit while using an ACE inhibitor; controls had a potassium level lower than 5.0 mmol/L on the day of clinic visit while using an ACE inhibitor and had no elevated potassium level during the study period. Predictor variables measured included type and dosage of ACE inhibitor; serum chemistries; comorbidities; concurrent drug use; and age. Case patients were followed up for 1 year after the index episode of hyperkalemia. Follow-up variables included changes in therapy with ACE inhibitor, maximum potassium for each change, and mortality. Of 1818 patients using ACE inhibitors, 194 (11%) developed hyperkalemia. Results of laboratory studies indicating a serum urea nitrogen level higher than 6.4 mmol/L (18 mg/dL), creatinine level higher than 136 mumol/L (1.5 mg/dL), congestive heart failure, and long-acting ACE inhibitors were independently associated with hyperkalemia; concurrent use of loop or thiazide diuretic agent was associated with reduced risk. After 1 year of follow-up, 15 (10%) of 146 case patients remaining on a regimen of an ACE inhibitor developed severe hyperkalemia (potassium level > 6.0 mmol/L). A serum urea nitrogen level higher than 8.9 mmol/L (25 mg/dL) and age more than 70 years were independently associated with subsequent severe hyperkalemia. Mild hyperkalemia is common in medical outpatients using ACE inhibitors, especially in those with renal insufficiency or congestive heart failure. However, once

  17. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism

    PubMed Central

    Vaughan, David; Brogioli, Michael; Maier, Thomas; White, Andy; Waldron, Sarah; Rittweger, Jörn; Toigo, Marco; Wettstein, Jessica; Laczko, Endre; Flück, Martin

    2016-01-01

    Objective A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle. Methods Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc. Results Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and –3%, respectively). Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione) were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon. Conclusion The observations imply a genetically modulated role for ACE in control of

  18. Role of angiotensin converting enzyme in the vascular effects of an endopeptidase 24.15 inhibitor.

    PubMed Central

    Telford, S E; Smith, A I; Lew, R A; Perich, R B; Madden, A C; Evans, R G

    1995-01-01

    1. We investigated the role of angiotensin converting enzyme (ACE) in the cardiovascular effects of N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), a peptidase inhibitor selective for metalloendopeptidase (EP) E.C. 3.4.24.15. 2. In conscious rabbits, cFP (5 mg kg-1, i.v.) markedly slowed the degradation of [3H]-bradykinin, potentiated the depressor response to right atrial administration of bradykinin (10-1000 ng kg-1), and inhibited the pressor response to right atrial angiotensin I (10-100 ng kg-1). In each of these respects, the effects of cFP were indistinguishable from those of the ACE inhibitor, captopril (0.5 mg plus 10 mg kg-1h-1 i.v.). Furthermore, the effects of combined administration of cFP and captopril were indistinguishable from those of captopril alone. 3. In experimentally naive anaesthetized rats, cFP administration (9.3 mg kg-1, i.v.) was followed by a moderate but sustained fall in arterial pressure of 13 mmHg. However, in rats pretreated with bradykinin (50 micrograms kg-1) a more pronounced fall of 30 mmHg was observed. Captopril (5 mg kg-1) had similar hypotensive effects to those of cFP, and cFP had no effect when it was administered after captopril. 4. CFP displaced the binding of [125I]-351A (the p-hydroxybenzamidine derivative of lisinopril) from preparations of rat plasma ACE and solubilized lung membrane ACE (KD = 1.2 and 0.14 microM respectively), and inhibited rat plasma ACE activity (KI = 2.4 microM). Addition of phosphoramidon (10 microM), an inhibitor of a range of metalloendopeptidases, including neutral endopeptidase (E.C.3.4.24.11), markedly reduced the potency of cFP in these systems.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7620708

  19. Localization of angiotensin-converting enzyme in the human prostate: pathological expression in benign prostatic hyperplasia.

    PubMed

    Nassis, L; Frauman, A G; Ohishi, M; Zhuo, J; Casley, D J; Johnston, C I; Fabiani, M E

    2001-12-01

    Benign prostatic hyperplasia (BPH) is the most common hyperplastic disease in man and it is characterized by increased cellular growth (stromal and epithelial hyperplasia) and enhanced local sympathetic tone, both of which are known to be augmented by activation of the renin-angiotensin system (RAS) in other tissues. Angiotensin-converting enzyme (ACE) is an integral component of the RAS that is responsible for the production of the active peptide angiotensin II from the inactive precursor angiotensin I. The present study was undertaken to map the anatomical localization of ACE protein and messenger ribonucleic acid (mRNA) in the normal human prostate and to establish whether their expression is pathologically altered in BPH. Human prostate samples were obtained at post-mortem and histologically defined as normal or hyperplastic. ACE protein binding/expression was determined by in vitro autoradiography and immunohistochemistry using the ACE-specific radioligand [125I]-MK351A and a mouse anti-ACE polyclonal antibody, respectively, whereas the spatiotemporal distribution of ACE mRNA was determined by in situ hybridization using 35S-labelled oligonucleotide probes. ACE protein was localized to the glandular epithelium in the human prostate. ACE binding and immunostaining were increased in BPH compared with normal (non-hyperplastic) prostate specimens [X-ray film autoradiography: normal 873+/-48 dpm/mm2 (n=8) vs. BPH 1631+/-274 dpm/mm2 (n=6), p<0.05; emulsion autoradiography: normal 3.1+/-0.5 grains/mm2 (n=6) vs. BPH 32.8+/-8.6 grains/mm2 (n=5), p<0.01]. ACE mRNA was also localized to glandular epithelial cells in the human prostate with a significant increase in ACE mRNA expression in BPH compared with the normal prostate [normal 11.04+/-2.03 grains/cell (n=220 cells total) vs. BPH 22.29+/-1.34 grains/cell (n=198 cells total), p<0.05]. The findings of the present study suggest that ACE is localized to the glandular epithelium of the human prostate and that its

  20. Trends in co-prescribing of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in Ireland

    PubMed Central

    Wan Md Adnan, Wan A H; Zaharan, Nur L; Bennett, Kathleen; Wall, Catherine A

    2011-01-01

    AIMS (i) To examine the trends in co-prescribing of angiotensin converting enzyme inhibitor (ACEI) and angiotensin-II receptor blocker (ARB) therapy and (ii) to examine the influence of major clinical trials (CALM, COOPERATE, VALIANT and ONTARGET) on co-prescribing. METHODS The Irish HSE-Primary Care Reimbursement Services database was used to identify patients ≥16 years old co-prescribed ACEIs and ARBs between January 2000 and April 2009 (n= 266 554 prescriptions). The rate of prescribing per 1000 general medical services (GMS) scheme population was calculated for each month. Patients with diabetes, hypertension, heart failure and ischaemic heart disease were also identified by prescribing of certain medications. A linear trend test was used to examine prescribing trends. Logistic regression was used to examine prescribing according to patient characteristics. The effects of the major trials on prescribing were examined using segmented regression analysis for 12 months pre- and post-trials. RESULTS There was a significant linear trend in overall ACEI and ARB co-prescribing over the study period (P < 0.001). Rate of co-prescribing in January 2000 and April 2009 was 0.16 and 5.72, per 1000 eligible population, respectively. Those 45–64 years old (OR = 2.88, 95% confidence interval (CI) 2.71, 3.06) and ≥65 years (OR = 2.52, 95% CI 2.36, 2.68) were more likely to receive dual therapy compared with those <45 years old. Those with hypertension (OR = 8.85, 95% CI 8.45, 9.27), diabetes (OR = 4.10, 95% CI 3.97, 4.23) and heart failure (OR = 1.78, 95% CI 1.72, 1.84) were more likely to receive dual therapy compared with the general population. Significant increases in prescribing were observed only after the CALM (P= 0.03) and VALIANT (P= 0.007) trials. CONCLUSION Increased co-prescribing of ACEIs and ARBs was observed in Ireland during 2000–09. Prescribing patterns did not appear to be affected by results from major trials. PMID:21284706

  1. Angiotensine converting enzyme inhibitors In acute myocardial infarction--a review.

    PubMed

    Sawhney, J P S

    2011-01-01

    Coronary artery diseases (CADs) are preventable and controllable disorders, but they continue to be a major cause of morbidity and premature mortality across globe. India is projected to have 62 million CAD patients by 2015, with nearly 1/3rd of this burden shared by patients younger than 40 years. The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in blood pressure (BP) regulation and fluid and electrolyte homoeostasis. Activation of RAAS has long been implicated in the pathogenesis of acute myocardial infarction (AMI) and benefits of inhibition of RAAS as an effective way to intervene in the pathogenesis of AMI is well documented. In the setting of AMI, angiotensin-II plays a significant detrimental role, contributing to cardiac remodeling, a process that predisposes to subsequent arrhythmia and cardiac failure. Angiotensin converting enzyme inhibitors (ACEls) play a key role in the clinical management of several cardiovascular disease (CVD)s such as AMI, by inhibiting the actions of angiotensin-II, ACEIs would be expected to modify unwanted post-AMI events. ACEIs trials have tested AMI patients with two different approaches: selective (those with left ventricular dysfunction (LVD) treated over a long-term) and relatively unselective (those treated early over the course and for a short-period, up to 6 weeks). In general, results are consistent and beneficial as regards to reduction in both short-term & long-term mortality and heart failure. There are evidences that suggest yielding of an extra protection (reduced mortality and occurrence of severe LVD) with early introduction of ACEIs in the course of AMI. Trials have also shown ACEIs effective and consistent protection against re-infarction and management of arrhythmias after AMI. Large clinical trials have proven ACEIs to be superior to ARB, in preventing CV deaths in high-risk AMI subjects. They have proven to be safe & effective in diabetic & older population. With wealth of evidence

  2. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials.

    PubMed

    Shahin, Yousef; Khan, Junaid Alam; Samuel, Nehemiah; Chetter, Ian

    2011-05-01

    Several studies have assessed the effect of angiotensin converting enzyme inhibitors (ACEIs) on endothelial dysfunction as measured by brachial flow-mediated vasodilatation (FMD). We conducted a meta-analysis to investigate this effect in comparison to placebo or no treatment and to other antihypertensive agents. MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from 1996 to October 2010 on randomised controlled trials (RCTs) that assessed the effect of ACEIs on brachial FMD versus placebo or no treatment and ACEIs versus angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs) and β-blockers. Data from included studies were pooled with use of random effects meta-analysis of the weighted mean change differences between the comparator groups. Heterogeneity across studies was assessed with the I(2) statistic. In 10 trials including 1129 patients, treatment with ACEIs (n = 498) versus placebo or no treatment (n = 503) significantly improved brachial FMD (pooled mean change difference 1.26%, 95% C.I. 0.46-2.07, p = 0.002 with significant heterogeneity). In 11 trials which included 805 patients, treatment with ACEIs (n = 264) had a significant effect on brachial FMD when compared with other antihypertensives (ARBs, CCBs and β-blockers) (n = 420) (pooled mean change difference 0.89%, 95% C.I. 0.22-1.56, p = 0.009, I(2) = 83%, p for heterogeneity < 0.00001). In 7 trials, treatment with ACEIs had no significant effect on FMD when compared with ARBs (pooled mean change difference = 0.21%, 95% C.I. -0.24 to 0.66, p = 0.36, I(2) = 0%). However, in 4 trials ACEIs significantly improved FMD when compared with CCBs (pooled mean change difference 2.15%, 95% C.I. 0.55-3.75, p = 0.009, I(2) = 90%, p for heterogeneity < 0.00001). When compared with β-blockers in 4 trials, ACEIs also had a significant effect on FMD (pooled mean change difference = 0.59%, 95% C.I. 0.05-1.13, p = 0.03, I(2) = 34%, p for heterogeneity = 0

  3. Can Angiotensin-Converting Enzyme Inhibitors Reduce the Incidence, Severity, and Duration of Radiation Proctitis?

    PubMed

    Alashkham, Abduelmenem; Paterson, Catherine; Rauchhaus, Petra; Nabi, Ghulam

    2016-01-01

    To determine whether participants taking angiotensin-converting enzyme inhibitors (ACEIs) and treated with radical radiation therapy with neoadjuvant/adjuvant hormone therapy have less incidence, severity, and duration of radiation proctitis. A propensity score analysis of 817 patients who underwent radical radiation therapy with neoadjuvant or adjuvant hormone therapy as primary line management in a cohort study during 2009 to 2013 was conducted. Patients were stratified as follows: group 1, hypertensive patients taking ACEIs (as a study group); group 2, nonhypertensive patients not taking ACEIs; and group 3, hypertensive patients not taking ACEIs (both as control groups). The incidence, severity, and duration of proctitis were the main outcome. χ(2) tests, Mann-Whitney U tests, analysis of variance, risk ratio (RR), confidence interval (CI), Kaplan-Meier plots, and log-rank tests were used. The mean age of the participants was 68.91 years, with a follow-up time of 3.38 years. Based on disease and age-matched comparison, there was a statistically significant difference of proctitis grading between the 3 groups: χ(2) (8, n=308) = 72.52, P<.001. The Mann-Whitney U test indicated that grades of proctitis were significantly lower in hypertensive patients taking ACEIs than in nonhypertensive patients not taking ACEIs and hypertensive patients not taking ACEIs (P<.001). The risk ratio (RR) of proctitis in hypertensive patients taking ACEIs was significantly lower than in hypertensive patients not taking ACEIs (RR 0.40, 95% CI 0.30-0.53, P<.001) and in nonhypertensive patients not taking ACEIs (RR 0.58, 95% CI 0.44-0.77, P<.001). Time to event analysis revealed that hypertensive patients taking ACEIs were significantly different from the control groups (P<.0001). Furthermore, hypertensive patients taking ACEIs had significantly faster resolution of proctitis (P<.0001). Patients who were taking ACEIs were significantly less likely to have high-grade proctitis after

  4. Are angiotensin-converting enzyme inhibitors and angiotensin receptor blockers especially useful for cardiovascular protection?

    PubMed

    Ong, Hean Teik

    2009-01-01

    This article seeks to objectively review the clinical trial evidence to determine whether angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) have special cardiovascular protective effects. An objective review of the clinical trial evidence. Clinical trials in hypertensive patients comparing ACEI and ARB with other drugs generally showed no difference in the primary cardiovascular outcome (United Kingdom Prospective Diabetes Study Group, Captopril Prevention Project, Swedish Trial in Old Patients with Hypertension 2, Japan Multicenter Investigation for Cardiovascular Diseases-B Randomized Trial, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, Second Australian National Blood Pressure Study Group, Valsartan Antihypertensive Long-Term Use Evaluation). Where the primary, or major secondary, cardiovascular end-point favors one of the treatment arms, it was always the arm with the lower achieved blood pressure that saw the better clinical result as in Losartan Intervention For Endpoint Reduction in Hypertension Study, Captopril Prevention Project, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, and Valsartan Antihypertensive Long-Term Use Evaluation. Trials comparing ACEI or ARB against placebo in patients at high risk of cardiovascular events have not showed a consistent result; cardiovascular outcomes were reduced in Heart Outcomes Prevention Evaluation, European Trial on Reduction of Cardiac Events with Perindopril in Stable Coronary Artery Disease, and the Jikei Heart Study, but were not significantly reduced in Perindopril Protection Against Recurrent Stroke Study, Comparison of Arnlodipine vs Enalapril to Limit Occurrences of Thrombosis Trial, Prevention of Events with ACEIs Trial, Telmisartan Randomized Assessment Study in ACE-Intolerant Subjects with Cardiovascular Disease Trial, and Prevention Regimen for Effectively Avoiding Second Strokes Trial. In the Ongoing

  5. Automated multi-step purification protocol for Angiotensin-I-Converting-Enzyme (ACE).

    PubMed

    Eisele, Thomas; Stressler, Timo; Kranz, Bertolt; Fischer, Lutz

    2012-12-12

    Highly purified proteins are essential for the investigation of the functional and biochemical properties of proteins. The purification of a protein requires several steps, which are often time-consuming. In our study, the Angiotensin-I-Converting-Enzyme (ACE; EC 3.4.15.1) was solubilised from pig lung without additional detergents, which are commonly used, under mild alkaline conditions in a Tris-HCl buffer (50mM, pH 9.0) for 48h. An automation of the ACE purification was performed using a multi-step protocol in less than 8h, resulting in a purified protein with a specific activity of 37Umg(-1) (purification factor 308) and a yield of 23.6%. The automated ACE purification used an ordinary fast-protein-liquid-chromatography (FPLC) system equipped with two additional switching valves. These switching valves were needed for the buffer stream inversion and for the connection of the Superloop™ used for the protein parking. Automated ACE purification was performed using four combined chromatography steps, including two desalting procedures. The purification methods contained two hydrophobic interaction chromatography steps, a Cibacron 3FG-A chromatography step and a strong anion exchange chromatography step. The purified ACE was characterised by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and native-PAGE. The estimated monomer size of the purified glycosylated ACE was determined to be ∼175kDa by SDS-PAGE, with the dimeric form at ∼330kDa as characterised by a native PAGE using a novel activity staining protocol. For the activity staining, the tripeptide l-Phe-Gly-Gly was used as the substrate. The ACE cleaved the dipeptide Gly-Gly, releasing the l-Phe to be oxidised with l-amino acid oxidase. Combined with peroxidase and o-dianisidine, the generated H(2)O(2) stained a brown coloured band. This automated purification protocol can be easily adapted to be used with other protein purification tasks. Copyright © 2012 Elsevier B.V. All rights

  6. Characterization of Angiotensin-Converting Enzyme 2 Ectodomain Shedding from Mouse Proximal Tubular Cells

    PubMed Central

    Xiao, Fengxia; Zimpelmann, Joseph; Agaybi, Samih; Gurley, Susan B.; Puente, Lawrence; Burns, Kevin D.

    2014-01-01

    Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney proximal tubule, where it cleaves angiotensin (Ang) II to Ang-(1-7). Urinary ACE2 levels increase in diabetes, suggesting that ACE2 may be shed from tubular cells. The aim of this study was to determine if ACE2 is shed from proximal tubular cells, to characterize ACE2 fragments, and to study pathways for shedding. Studies involved primary cultures of mouse proximal tubular cells, with ACE2 activity measured using a synthetic substrate, and analysis of ACE2 fragments by immunoblots and mass spectrometry. The culture media from mouse proximal tubular cells demonstrated a time-dependent increase in ACE2 activity, suggesting constitutive ACE2 shedding. ACE2 was detected in media as two bands at ∼90 kDa and ∼70 kDa on immunoblots. By contrast, full-length ACE2 appeared at ∼100 kDa in cell lysates or mouse kidney cortex. Mass spectrometry of the two deglycosylated fragments identified peptides matching mouse ACE2 at positions 18-706 and 18-577, respectively. The C-terminus of the 18-706 peptide fragment contained a non-tryptic site, suggesting that Met706 is a candidate ACE2 cleavage site. Incubation of cells in high D-glucose (25 mM) (and to a lesser extent Ang II) for 48–72 h increased ACE2 activity in the media (p<0.001), an effect blocked by inhibition of a disintegrin and metalloproteinase (ADAM)17. High D-glucose increased ADAM17 activity in cell lysates (p<0.05). These data indicate that two glycosylated ACE2 fragments are constitutively shed from mouse proximal tubular cells. ACE2 shedding is stimulated by high D-glucose, at least partly via an ADAM17-mediated pathway. The results suggest that proximal tubular shedding of ACE2 may increase in diabetes, which could enhance degradation of Ang II in the tubular lumen, and increase levels of Ang-(1-7). PMID:24454948

  7. Urinary angiotensin converting enzyme 2 is strongly related to urinary nephrin in type 2 diabetes patients.

    PubMed

    Mariana, Ciorba Pop; Ramona, Potra Alina; Ioana, Bondor Cosmina; Diana, Moldovan; Claudia, Rusu Crina; Stefan, Vladutiu Dan; Maria, Kacso Ina

    2016-09-01

    Podocyte lesion is recently recognized as an early event in diabetic kidney disease (DKD) and is reflected by urinary (u) nephrin (Neph) shedding. Angiotensin II plays an important role in podocyte dysfunction of diabetes. Angiotensin converting enzyme 2 (ACE2) is the main ACE variant in podocytes and counteracts deleterious angiotensin II effects. We assessed for the first time the relation of uACE2 and uNeph in type 2 diabetes subjects. Seventy-five type 2 diabetes patients were included in a transversal study. History, clinical and laboratory data, urinary albumin-to-creatinine ratio (uACR), and ELISA determination of uNeph and uACE2 were obtained. uNeph was 349.00 ± 133.42 pg/ml, and uACE2 was 45.50 (36.35-62.60) pg/ml. uNeph correlated to uACE2 (r = 0.44, p < 0.001) and to uACR (r = 0.25, p = 0.032). In multivariate regression, introducing parameters that are known to be related to DKD, uACE2 (p < 0.0001), LDL cholesterol (p = 0.02) and glycated hemoglobin (p = 0.03) remained significant predictors of uNeph. Normoalbuminuric patients had lower uNeph than patients with uACR > 30 mg/g (325.50 ± 135.45 vs 391.03 ± 121.40 pg/ml, p = 0.04); they also had a tendency versus lower uACE2 [41.40 (34.30-60.65) vs 52.57 (37.95-69.85) pg/ml, p = 0.06]. A cutoff for uNeph of 451.6 pg/ml was derived from the ROC curve analysis; uACE2 was the main determinant for uNeph being above or below this cutoff-OR = 1.09; 95 %CI (1.04-1.15), p = 0.001. Patients taking blockers of the renin angiotensin system had similar uNeph and uACE2. uNeph and uACE2 were not influenced by renal function. uNeph is significantly correlated to uACE2 and uACR in type 2 diabetes patients.

  8. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    PubMed

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  9. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    PubMed Central

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  10. Role of Protein Kinase C in Endothelin Converting Enzyme-1 trafficking and shedding from endothelial cells

    SciTech Connect

    Kuruppu, Sanjaya; Tochon-Danguy, Natalie; Ian Smith, A.

    2010-07-23

    Research highlights: {yields} PKC activation increases the trafficking of ECE-1 to the cell surface. {yields} This in turn leads to an increase in the amount of ECE-1 shed. {yields} Only the catalytically active C-terminal region is shed from the cell surface. -- Abstract: This study aimed to determine the consequences of Protein Kinase C (PKC) mediated Endothelin Converting Enzyme-1 (ECE-1) phosphorylation and its relationship to ECE-1 expression and shedding. The proteins on the surface of EA.hy926 cells were labelled with EZ-Link NHS-SS-Biotin both prior to (control) and following stimulation by 2 {mu}M phorbol 12-myristate 13-acetate (PMA) which activates PKC. The biotinylated proteins were isolated using neutravidin beads, resolved by gel electrophoresis and analysed by western blotting using anti-ECE-1 antibodies. Significant increase in ECE-1 expression at the cell surface was observed following stimulation by PMA, compared to unstimulated control cells (170 {+-} 32.3% of control, n = 5). The ECE-1 activity (expressed as {mu}M substrate cleaved/min) was determined by monitoring the cleavage of a quenched fluorescent substrate. The specificity of cleavage was confirmed using the ECE-1 inhibitor (CGS35066). The stimulation of cells by PMA (1 {mu}M, 6 h) significantly increased the ECE-1 activity (0.28 {+-} 0.02; n = 3) compared to the control (0.07 {+-} 0.02; n = 3). This increase was prevented by prior incubation with the PKC inhibitor bisindolymaleimide (BIM; 2 {mu}M for 1 h; 0.10 {+-} 0.01; n = 3). Treatment with PMA also increased the activity of ECE-1 in the media (0.18 {+-} 0.01; n = 3) compared to control (0.08 {+-} 0.01; n = 3). In addition, this study confirmed by western immunoblotting that only the extracellular region of ECE-1 is released from the cell surface. These data indicate for the first time that PKC activation induces the trafficking and shedding of ECE to and from the cell surface, respectively.

  11. Substrate phosphorylation affects degradation and interaction to endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme.

    PubMed

    Machado, M F M; Cunha, F M; Berti, D A; Heimann, A S; Klitzke, C F; Rioli, V; Oliveira, V; Ferro, E S

    2006-01-13

    Recent findings from our laboratory suggest that intracellular peptides containing putative post-translational modification sites (i.e., phosphorylation) could regulate specific protein interactions. Here, we extend our previous observations showing that peptide phosphorylation changes the kinetic parameters of structurally related endopeptidase EP24.15 (EC 3.4.24.15), neurolysin (EC 3.4.24.16), and angiotensin-converting enzyme (EC 3.4.15.1). Phosphorylation of peptides that are degraded by these enzymes leads to reduced degradation, whereas phosphorylation of peptides that interacted as competitive inhibitors of these enzymes alters only the K(i)'s. These data suggest that substrate phosphorylation could be one of the mechanisms whereby some intracellular peptides would escape degradation and could be regulating protein interactions within cells.

  12. Purification and characterization of a tuliposide-converting enzyme from bulbs of Tulipa gesneriana.

    PubMed

    Kato, Yasuo; Shoji, Kazuaki; Ubukata, Makoto; Shigetomi, Kengo; Sato, Yukio; Nakajima, Noriyuki; Ogita, Shinjiro

    2009-08-01

    An enzyme that catalyzes the stoichiometric conversion of 6-tuliposide into tulipalin was purified and characterized from bulbs of Tulipa gesneriana. The enzyme appeared to be a dimer, the relative molecular mass (Mr) of each subunit being 34,900; it had maximum activity and stability at neutral pH and moderate temperature. The enzyme preferentially acted on such glucose esters as 6-tuliposides, and to a lesser extent on p-nitrophenylacetate.

  13. Angiotensin I Converting Enzyme (Kininase II) of the Brush Border of Human and Swine Intestine.

    DTIC Science & Technology

    1980-05-23

    demonstrated by bioassay. Captopril , the orally active specific inhibitor of ACE, inhibited tt6 enzyme: its I was 3 x 10_9M. Antibody to swine kidney ACE...interference in the functions of this enzyme may occur with chronic captopril therapy. K ngiotensir Iconverting enzyme (ACE; dipeptidyl carboxypeptidase; E.C...intestinal brush border (l0).+ These studies were also prompted by the use of the specific inhibitor of ACE, SQ 14225 or captopril , on a large scale in

  14. Effect of angiotensin converting enzyme inhibition with quinaprilat on the ischaemic and reperfused myocardium.

    PubMed

    Cargnoni, A; Boraso, A; Scotti, C; Ghirardelli, N; Benigno, M; Bernocchi, P; Pedersini, P; Ferrari, R

    1994-01-01

    We assessed whether the local inhibition of myocardial converting enzyme by quinaprilat and captopril reduces the functional and metabolic damage caused by ischaemia and reperfusion. Quinaprilat and captopril were either subcutaneously injected (0.3 mg/kg once daily for 5-6 days) in the rabbit before isolation of the heart or delivered to the isolated hearts in the perfusate (10(-6) M) 60 min before ischaemia. Cardiac protection was evaluated in terms of left ventricular pressure recovery during reperfusion, creatine phosphokinase (CPK) release, mitochondrial function, ATP and CP tissue contents, calcium homeostasis and the occurrence of oxidative stress, established by measuring content and release of reduced and oxidized glutathione. Both drugs exerted cardioprotection. Optimal myocardial preservation is achieved when quinaprilat is prophylactically administered to the rabbit. Recovery of developed pressure on reperfusion improved from 11.3 +/- 2.7 (S.E.) to 25.4 +/- 5.4 mmHg, P < 0.01 and the release of CPK was reduced from 665.8 +/- 101.4 to 231.8 +/- 81.4 mU/min/g wet wt, P < 0.01. Peak of noradrenaline release was also attenuated, from 5.253 ng/min/g wet wt to 1.764 ng/min/g wet wt. The accumulation of tissue and mitochondrial calcium was reduced from 52.3 +/- 7.5 and 44.1 +/- 5.6 to 20.5 +/- 3.2 and 27.3 +/- 4.6 nmol/kg dry wt, respectively, P < 0.01. This resulted in significant (P < 0.01) improvement of left ventricular diastolic dysfunction during ischaemia and reperfusion and in a preservation of all indices of mitochondrial function, allowing a higher recovery of ATP and CP after reperfusion (from 4.1 +/- 0.5 and 5.2 +/- 0.5 to 11.1 +/- 1.1 and 24.8 +/- 1.0 mumol/g dry wt, respectively, P < 0.01). Reperfusion-induced myocardial accumulation and release of oxidized glutathione were reduced from 0.301 +/- 0.056 and 0.318 +/- 0.083 to 0.138 +/- 0.025 nmol/mg protein and 0.076 +/- 0.012 nmol/min/g wet wt, respectively, P < 0.01. Similar results were

  15. Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max).

    PubMed

    Mallikarjun Gouda, K G; Gowda, Lalitha R; Rao, A G Appu; Prakash, V

    2006-06-28

    Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, catalyzes the conversion of Angiotensin I to the potent vasoconstrictor Angiotensin II and plays an important physiological role in regulating blood pressure. Inhibitors of angiotensin 1-converting enzyme derived from food proteins are utilized for pharmaceuticals and physiologically functional foods. ACE inhibitory properties of different enzymatic hydrolysates of glycinin, the major storage protein of soybean, have been demonstrated. The IC50 value for the different enzyme digests ranges from 4.5 to 35 microg of N2. The Protease P hydrolysate contained the most potent suite of ACE inhibitory peptides. The ACE inhibitory activity of the Protease P hydrolysate after fractionation by RP-HPLC and ion-pair chromatography was ascribed to a single peptide. The peptide was homogeneous as evidenced by MALDI-TOF and identified to be a pentapeptide. The sequence was Val-Leu-Ile-Val-Pro. This peptide was synthesized using solid-phase FMOC chemistry. The IC50 for ACE inhibition was 1.69 +/- 0.17 microM. The synthetic peptide was a potent competitive inhibitor of ACE with a Ki of 4.5 +/- 0.25 x 10(-6) M. This peptide was resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods.

  16. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.

    1992-01-01

    The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.

  17. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO.

    PubMed Central

    Dennis, M; Kolattukudy, P E

    1992-01-01

    The final step in hydrocarbon biosynthesis involves loss of CO from a fatty aldehyde. This decarbonylation is catalyzed by microsomes from Botyrococcus braunii. Among the several detergents tested for solubilizing the decarbonylase, octyl beta-glucoside (0.1%) was found to be the most effective and released 65% of the enzyme activity in soluble form. FPLC of the solubilized enzyme preparation with Superose 6 followed by ion-exchange FPLC with Mono Q resulted in 200-fold increase in specific activity with 7% recovery. The purified enzyme released nearly 1 mol of CO for each mol of hydrocarbon. SDS/PAGE of the enzyme preparation showed two protein bands of equal intensity at 66 and 55 kDa. The absorption spectrum of the enzyme with bands at 410 nm, 425 nm, 580 nm, and 620 nm suggests the presence of a porphyrin. Electron microprobe analysis revealed that the enzyme contained Co. Purification of the decarbonylase from B. braunii grown in 57CoCl2 showed that 57Co coeluted with the decarbonylase. These results suggest that the enzyme contains Co that might be part of a Co-porphyrin, although a corrin structure cannot be ruled out. Co-protoporphyrin IX itself caused decarbonylation of octadecanal at 60 degrees C, whereas the metal ion or protoporphyrin alone, or several other metal porphyrins, did not cause decarbonylation. These results strongly suggest that biosynthesis of hydrocarbons is effected by a microsomal Co-porphyrin-containing enzyme that catalyzes decarbonylation of aldehydes and, thus, reveal a biological function for Co in plants. Images PMID:1608940

  18. Effects of an angiotensin-converting enzyme inhibitor (ramipril) on inflammatory markers in secondary prevention patients: RAICES Study.

    PubMed

    Lopez Santi, Ricardo G; Valeff, Eduardo C; Duymovich, Claudio R; Mazziotta, Daniel; Mijailovsky, Norma E; Filippa, Gerardo C; Maltez, Raúl; Hernandez, Violeta A; Monroy, Alejandro Gomez; Borzi, Jorge G; Acheme, Rosana A; Etchegoyen, María C

    2005-11-01

    To evaluate the hypothesis that angiotensin-converting enzyme inhibitor therapy with ramipril reduces baseline levels of C-reactive protein in patients at high cardiovascular risk. Secondary prevention patients were screened for eligibility and treated with ramipril for 6 month. Baseline and 6-month highly sensitive C-reactive protein levels were determined. A total of 77 patients were analyzed. The median highly sensitive C-reactive protein concentration at baseline was 2.17 mg/l (interquartile interval 0.97-4.54); whereas in post-treatment, the median was 1.70 mg/l (interquartile interval 0.88-3.41), P=0.0009. Patients were stratified according to risk level determined by baseline highly sensitive C-reactive protein levels: low-risk (<1 mg/l), intermediate risk (1-3 mg/l) and high risk (>3 mg/l) The reduction in highly sensitive C-reactive protein occurred at the expense of the high-risk group (baseline 5.02 mg/l, post-treatment 3.3 mg/l, P<0.0001), with no differences in the other groups. In multiple regression analysis, the reduction observed in the high-risk group could not be explained by baseline treatment or change in any of the variables analyzed. Highly sensitive C-reactive protein levels were reduced after a 6-month ramipril therapy in secondary prevention patients, suggesting an anti-inflammatory effect of angiotensin-converting enzyme inhibitors. Future investigations will be done to confirm these results, and to investigate how angiotensin-converting enzyme inhibitor treatment elicits anti-inflammatory effects.

  19. In vitro modeling of angiotensin-converting enzyme inhibitor's absorption with chromatographic retention data and selected molecular descriptors.

    PubMed

    Odović, Jadranka; Marković, Bojan; Vladimirov, Sote; Karljiković-Rajić, Katarina

    2014-03-15

    Set of nine angiotensin-converting enzyme inhibitors (enalapril, quinapril, fosinopril, lisinopril, cilazapril, ramipril, benazepril, perindopril and moexipril) were studied to evaluate the correlation between their intestinal absorption and salting-out thin-layer chromatography hydrophobicity parameters (RM(0) or C0) obtained by ascending technique applying four different salts, (NH4)2SO4, NH4NO3, NH4Cl and NaCl as mobile phases. The best correlations between KOWWIN logP and both hydrophobicity parameters, RM(0) and C0, (R(2)>0.850) were observed for NaCl (1.0-3.0M) while the lowest R(2) was obtained for (NH4)2SO4 (0.649 and 0.427, respectively) due to highest salting-out effect of (NH4)2SO4. The effect of selected inorganic salts in the salting-out mobile phases, on the solutes solubility and retention was evaluated. The topological polar surface area should be selected as independent variable (only this molecular descriptor showed low correlation with chromatographic hydrophobicity parameters) for multiple linear regression analysis, to obtain reliable correlation between angiotensin-converting enzyme inhibitor's intestinal absorption data and salting-out thin-layer chromatograpic hydrophobicity parameters. These correlations provide R(2)=0.823 for RM(0) or R(2)=0.799 for C0 indicating good relationship between predicted and literature available intestinal absorption (ranged from 22% to 70%) of investigated angiotensin-converting enzyme inhibitors. The proposed in vitro model was checked with three in addition experimentally analyzed drugs, zofenopril, trandolapril and captoril. The satisfactory absorption prediction was obtained for zofenopril and trandolapril, while divergence established for captopril resulted from considerably different structure.

  20. Fibroblast Growth Factor-23, Cardiovascular Prognosis, and Benefit of Angiotensin-Converting Enzyme Inhibition in Stable Ischemic Heart Disease

    PubMed Central

    Udell, Jacob A.; Morrow, David A.; Jarolim, Petr; Sloan, Sarah; Hoffman, Elaine B.; O’Donnell, Thomas F.; Vora, Amit N.; Omland, Torbjørn; Solomon, Scott D.; Pfeffer, Marc A.; Braunwald, Eugene; Sabatine, Marc S.

    2014-01-01

    Objectives This study sought to test 2 hypotheses: 1) fibroblast growth factor (FGF)-23 identifies patients with stable ischemic heart disease (SIHD) at high risk of cardiovascular events independent of clinical factors, renal function, and established cardiovascular biomarkers; and 2) FGF-23 identifies patients who derive greater clinical benefit from angiotensin-converting enzyme inhibitor therapy. Background FGF-23 is an endocrine regulator of mineral metabolism and markedly elevated levels are associated with cardiovascular events in patients with chronic kidney disease. Data in patients with SIHD are more sparse. Methods FGF-23 levels were measured in 3,627 patients with SIHD randomly assigned to trandolapril or placebo within the PEACE (Prevention of Events With Angiotensin-Converting Enzyme) trial and followed up for a median of 5.1 years. Results After adjustment for clinical risk predictors, left ventricular ejection fraction, markers of renal function, and established cardiovascular biomarkers, FGF-23 concentration was independently associated with an increased risk of cardiovascular death or heart failure among patients allocated to placebo (quartile 4 hazard ratio: 1.73; 95% confidence interval, 1.09 to 2.74; p = 0.02) and significantly improved metrics of discrimination. Furthermore, among patients in the top quartile of FGF-23 levels, trandolapril significantly reduced cardiovascular death or incident heart failure (hazard ratio: 0.45; 95% confidence interval: 0.28 to 0.72), whereas there was no clinical benefit in the remaining patients (hazard ratio: 1.07; 95% confidence interval: 0.75 to 1.52; p interaction = 0.0039). This interaction was independent of and additive to stratification based on renal function. Conclusions Elevated levels of FGF-23 are associated with cardiovascular death and incident heart failure in patients with SIHD and identify patients who derive significant clinical benefit from angiotensin-converting enzyme inhibitor therapy

  1. Screening the Brazilian flora for antihypertensive plant species for in vitro angiotensin-I-converting enzyme inhibiting activity.

    PubMed

    Castro Braga, F; Wagner, H; Lombardi, J A; de Oliveira, A B

    2000-06-01

    The evaluation of several antihypertensive activity of Brazilian plant species was performed using in vitro inhibition of the angiotensin I-converting enzyme (ACE). Nineteen species belonging to 13 families were investigated. Plants were selected based on their use as diuretics and on a chemosystematic consideration. Extracts of the following species presented the highest ACE inhibition rate, at concentrations of 0.33 mg/ml: Ouratea semiserrata (Mart. & Nees) Engl. stems (68%), Cuphea cartagenesis (Jacq.) Macbride leaves (50%) and Mansoa hirsuta DC. leaves (54%). Some hypotheses about the nature of the compounds that may be responsible for the activity of these species are discussed in the paper.

  2. Racial differences in blood pressure response to angiotensin-converting enzyme inhibitors in children: a meta-analysis.

    PubMed

    Li, J S; Baker-Smith, C M; Smith, P B; Hasselblad, V; Murphy, M D; Califf, R M; Benjamin, D K

    2008-09-01

    Angiotensin-converting enzyme (ACE) inhibitors are frequently used to treat hypertension in children.(1) ACE inhibitors alter the balance between the vasoconstrictive, salt-retentive, and cardiac hypertrophic properties of angiotensin II and the vasodilatory and natriuretic properties of bradykinin; they also alter the metabolism of other vasoactive substances.(2) Through these mechanisms, ACE inhibitors decrease systemic vascular resistance and promote natriuresis without increasing heart rate. This study evaluated the results of six trials of ACE inhibitors in children, using meta-analytic techniques to estimate the effect of race on blood pressure response.

  3. Purification and characterization of mouse hepatic enzyme that converts selenomethionine to methylselenol by its alpha,gamma-elimination.

    PubMed

    Okuno, Tomofumi; Motobayashi, Shinji; Ueno, Hitoshi; Nakamuro, Katsuhiko

    2005-07-01

    The objective of this study was to purify and characterize a mouse hepatic enzyme that directly generates CH3SeH from seleno-l-methionine (l-SeMet) by the alpha,gamma-elimination reaction. The l-SeMet alpha,gamma-elimination enzyme was ubiquitous in tissues from ICR mice and the activity was relatively high in the large intestine, brain, and muscle, as well as the liver. Aging and sex of the mice did not have any significant influence on the activity in the liver. The enzyme was purified from the mouse liver by ammonium sulfate precipitation and four kinds of column chromatography. These procedures yielded a homogeneous enzyme, which was purified approx 1000-fold relative to mouse liver extract. Overall recovery was approx 8%. The purified enzyme had a molecular mass of approx 160 kDa with four identical subunits. The Km value of the enzyme for the catalysis of l-SeMet was 15.5 mM, and the Vmax was 0.29 units/mg protein. Pyridoxal 5'-phosphate (pyridoxal-P) was required as a cofactor because the holoenzyme could be resolved to the apoenzyme by incubation with hydroxylamine and reconstituted by addition of pyridoxal-P. The enzyme showed the optimum activity at around pH 8.0 and the highest activity at 50 degrees C; it catalyzed the alpha,gamma-elimination reactions of several analogs such as d,l-homocysteine and l-homoserine in addition to l-SeMet. This enzyme also catalyzed the alpha,beta-elimination reaction of Se-methylseleno-l-cysteine. However, l-methionine was inert. Therefore, the purified enzyme was different from the bacterial l-methionine gamma-lyase that metabolizes l-SeMet to CH3SeH, in terms of the substrate specificity. These results were the first identification of a mammalian enzyme that specifically catalyzes the alpha,gamma-elimination reaction of l-SeMet and immediately converts it to CH3SeH, an important metabolite of Se.

  4. Chirally Pure Prodrugs and Their Converting Enzymes Lead to High Supersaturation and Rapid Transcellular Permeation of Benzodiazepines.

    PubMed

    Kapoor, Mamta; Cheryala, Narsihmulu; Rautiola, Davin; Georg, Gunda I; Cloyd, James C; Siegel, Ronald A

    2016-08-01

    Water-soluble prodrugs can be rapidly converted by enzymes to hydrophobic drugs, whose aqueous thermodynamic solubilities are low, but are maintained in aqueous solution at supersaturated concentrations due to slow precipitation kinetics. Recently, we investigated avizafone (AVF) in combination with Aspergillus oryzae protease as a prodrug/enzyme system intended to produce supersaturated diazepam (DZP). Several fold enhancement of permeation of supersaturated DZP across Madin-Darby canine kidney II-wild type (MDCKII-wt) monolayers was observed, compared to saturated DZP solutions. However, prodrug conversion was incomplete, putatively due to partial racemization of AVF and stereoselectivity of A oryzae protease. Here we report synthesis of chirally pure AVF, and demonstrate complete conversion to supersaturated DZP followed by complete DZP permeation at enhanced rates across MDCKII-wt cell monolayers. We also synthesized, for the first time, a chirally pure prodrug of midazolam (MDZ-pro) and carried out the same sequence of studies. A oryzae protease was identified as a benign and efficient activating enzyme for MDZ-pro. The MDZ-pro/A oryzae protease system showed greater than 25-fold increase in absorption rate of MDZ across MDCKII-wt monolayers, compared to saturated MDZ. Such chirally pure prodrug/enzyme systems are promising candidates for efficient intranasal delivery of benzodiazepine drugs used in the treatment of seizure emergencies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families.

    PubMed

    Patten, Glen S; Abeywardena, Mahinda Y; Bennett, Louise E

    2016-01-01

    Hypertension is a major risk factor for coronary heart disease, kidney disease, and stroke. Interest in medicinal or nutraceutical plant bioactives to reduce hypertension has increased dramatically. The main biological regulation of mammalian blood pressure is via the renin-angiotensin-aldosterone system. The key enzyme is angiotensin converting enzyme (ACE) that converts angiotensin I into the powerful vasoconstrictor, angiotensin II. Angiotensin II binds to its receptors (AT1) on smooth muscle cells of the arteriole vasculature causing vasoconstriction and elevation of blood pressure. This review focuses on the in vitro and in vivo reports of plant-derived extracts that inhibit ACE activity, block angiotensin II receptor binding and demonstrate hypotensive activity in animal or human studies. We describe 74 families of plants that exhibited significant ACE inhibitory activity and 16 plant families with potential AT1 receptor blocking activity, according to in vitro studies. From 43 plant families including some of those with in vitro bioactivity, the extracts from 73 plant species lowered blood pressure in various normotensive or hypertensive in vivo models by the oral route. Of these, 19 species from 15 families lowered human BP when administered orally. Some of the active plant extracts, isolated bioactives and BP-lowering mechanisms are discussed.

  6. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    SciTech Connect

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  7. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates.

    PubMed

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-12-04

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  8. Influence of angiotensin converting enzyme inhibition on pump function and cardiac contractility in patients with chronic congestive heart failure.

    PubMed Central

    Baur, L H; Schipperheyn, J J; Baan, J; van der Laarse, A; Buis, B; van der Wall, E E; Manger Cats, V; van Dijk, A D; Blokland, J A; Frölich, M

    1991-01-01

    Eleven patients with coronary artery disease and chronic heart failure were studied before and three months after the angiotensin converting enzyme inhibitor enalapril was added to their frusemide medication. The following were measured: left ventricular pressure and volume with transient occlusion of the inferior vena cava, radionuclide angiography, and hormone concentrations in plasma. As in other reported studies, the clinical condition of the patients improved and their exercise tolerance increased moderately. Addition of enalapril reduced end diastolic and systolic pressure, reduced ventricular volume, and concomitantly increased the ejection fraction. The end systolic pressure-volume relation shifted to the left as it did in a similar animal study. In the animal study unloading by a vasodilator did not induce a leftward shift, so it can be inferred that in the present study unloading combined with a decrease in the angiotensin concentration was instrumental in remodelling the heart. Though unloading was expected to have a beneficial effect on the oxygen supply/demand ratio of the heart, the patients still showed the same drop in the ejection fraction during exercise as they did before treatment with enalapril, and early diastolic filling did not improve. Normally, regression of cardiac dilatation is only found if pump function improves; the present study showed that unloading in combination with angiotensin converting enzyme inhibition reshapes the ventricle without improving intrinsic pump function. PMID:2015121

  9. Production of Angiotensin I Converting Enzyme Inhibitory (ACE-I) Peptides during Milk Fermentation and Their Role in Reducing Hypertension.

    PubMed

    Rai, Amit Kumar; Sanjukta, Samurailatpam; Jeyaram, Kumaraswamy

    2015-10-13

    Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as yoghurt, cheese, sour milk, etc, which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria, yeast, etc), substrate composition (casein type, whey protein, etc), composition of ACE-I peptide, pre and post fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in-vitro and in-vivo (animal and human trials) experiments. This article reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.

  10. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate.

    PubMed

    Aissaoui, Neyssene; Abidi, Ferid; Hardouin, Julie; Abdelkafi, Zaineb; Marrakchi, Naziha; Jouenne, Thierry; Marzouki, M Nejib

    2017-03-01

    Fish protein hydrolysate was prepared from muscle of small red scorpionfish (Scorpaena notata) by treatment with a protease from the fungus Penicillium digitatum. Protein hydrolysate was found to strongly inhibit the angiotensin I converting enzyme and exhibited high antioxidative activity through 1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay. After ultrafiltration, peptides were isolated by a two-step procedure: size exclusion chromatography on a Toyopearl HW-40 followed by reversed-phase high-performance liquid chromatography with a high purification yield of 2.5 mg of peptide per gram of initial protein. Two major peptides were then identified by nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS), corresponding to the following sequences: Leu-Val-Thr-Gly-Asp-Asp-Lys-Thr-Asn-Leu-Lys (1,204.665 Da) and Asp-Thr-Gly-Ser-Asp-Lys-Lys-Gln-Leu (992.511 Da). These peptides, mainly composed of hydrophilic amino acids, showed high antioxidative and angiotensin I converting enzyme inhibitory activities. These data suggest that the two novel peptides isolated from the muscle hydrolysate of small red scorpionfish can be a beneficial ingredient for functional foods or pharmaceuticals against hypertension and oxidative stress. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  11. Impact of angiotensin and endothelin converting enzymes and related bradykinin on renal functions in L-NAME hypertensive rats

    NASA Astrophysics Data System (ADS)

    Omar, Ali Zainal; Maulood, Ismail M.

    2017-09-01

    The renin-angiotensin system (RAS), one of the most important hormonal systems, controls the kidney functions by regulating fluid volume, and electrolyte balance. The current study included the effects of kinin-kallikrein system (KKS) and its interaction with both angiotensin converting enzyme (ACE) and endothelin converting enzyme (ECE) on some of kidney function test parameters. In the present experiment, rats were divided into six groups, the first group was infused with normal saline, the second group was L-NG-Nitroarginine methyl ester (L-NAME) treated rats, third group was bradykinin (BK), forth group was captopril (ACEi), fifth group was phosphoramidon (ECEi), sixth group was a combination of BK with phosphoramidon. L-NAME was intravenously infused for one hour to develop systematic hypertension in male rats. After one hour of infusion, the results showed that L-NAME significantly increased serum creatinine. While, it decreased glomerular filtration rate (GFR), and K+ excretion rate. Moreover, BK increased packed cell volume PCV%, serum creatinine and K+ ion concentration. While, it reduced GFR, serum Ca+2 ion concentration, K+ and Na+ excretion rates. On the other hand, captopril infusion showed its effect by reduction in GFR, serum Ca+2 ion and electrolyte excretion rates. Phosphoramidon an ECEi dramatically reduced serum Ca+2 ion, but it increased pH, GFR and Ca+2 excretion rate. The results suggested that BK and Captopril each alone severely reduces GFR value. Interestingly, inhibition of ET-1 production via phosphoramidon could markedly elevate GFR values.

  12. Involvement of Renin-Angiotensin System in Damage of Angiotensin-Converting Enzyme Inhibitor Captopril on Bone of Normal Mice.

    PubMed

    Liu, Jin-Xin; Wang, Liang; Zhang, Yan

    2015-01-01

    This study was performed to investigate the effect of angiotensin-converting enzyme inhibitor, captopril, on bone metabolism and histology, and the action of captopril on the components of the skeletal renin-angiotensin system (RAS) and bradykinin receptor in normal male mice. The mice were orally administered captopril (10 mg/kg) for 4 weeks with vehicle-treated mice as normal control. The histology of trabecular bone at the distal femoral end was determined by hematoxylin & eosin, Safranin O and Masson-Trichrome staining. The captopril-treated mice showed a decreased level of testosterone (p<0.05) and procollagen type I N-terminal propeptide (p<0.05) in serum as compared to those in the control group. Captopril has detrimental effects on trabecular bone as demonstrated by the loss of cancellous bone mass and network connections as well as changes to the chondrocytes zone. The expression of angiotensin-converting enzyme (p<0.05), renin receptor (p<0.01), angiotensin II (p<0.05) and bradykinin receptor 2 (p<0.05) was significantly up-regulated following the captopril treatment. Thus, the potential underlying mechanism of the damage of captopril on bone can be attributed the increased activity of local bone RAS and the activation of bradykinin receptor.

  13. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates

    PubMed Central

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  14. Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection.

    PubMed

    Kurbanoglu, Sevinc; Rivas, Lourdes; Ozkan, Sibel A; Merkoçi, Arben

    2017-02-15

    In this work, a novel biosensor based on electrochemically reduced graphene oxide and iridium oxide nanoparticles for the detection of angiotensin-converting enzyme inhibitor drug, captopril, is presented. For the preparation of the biosensor, tyrosinase is immobilized onto screen printed electrode by using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-Hydroxysuccinimide coupling reagents, in electrochemically reduced graphene oxide and iridium oxide nanoparticles matrix. Biosensor response is characterized towards catechol, in terms of graphene oxide concentration, number of cycles to reduce graphene oxide, volume of iridium oxide nanoparticles and tyrosinase solution. The designed biosensor is used to inhibit tyrosinase activity by Captopril, which is generally used to treat congestive heart failure. It is an angiotensin-converting enzyme inhibitor that operates via chelating copper at the active site of tyrosinase and thioquinone formation. The captopril detections using both inhibition ways are very sensitive with low limits of detection: 0.019µM and 0.008µM for chelating copper at the active site of tyrosinase and thioquinone formation, respectively. The proposed methods have been successfully applied in captopril determination in spiked human serum and pharmaceutical dosage forms with acceptable recovery values. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar) Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    PubMed Central

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E.; Minkiewicz, Piotr; Iwaniak, Anna

    2014-01-01

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes. PMID:25123137

  16. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes.

    PubMed

    Darewicz, Małgorzata; Borawska, Justyna; Vegarud, Gerd E; Minkiewicz, Piotr; Iwaniak, Anna

    2014-08-13

    The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  17. Major amyloid-β-degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex.

    PubMed

    Pacheco-Quinto, Javier; Eckman, Christopher B; Eckman, Elizabeth A

    2016-12-01

    Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling.

  18. Expression of interleukin 1β and interleukin 1β converting enzyme by intestinal macrophages in health and inflammatory bowel disease

    PubMed Central

    McAlindon, M; Hawkey, C; Mahida, Y

    1998-01-01

    Background—In the lipopolysaccharide (LPS) stimulated peripheral blood monocyte, the precursor form of interleukin 1β (IL-1β, 31 kD) is processed by IL-1β converting enzyme (ICE) to the mature, bioactive form (17 kD). IL-1β is a proinflammatory cytokine which is likely to have a role in the pathogenesis of inflammatory bowel disease (IBD). 
Aims—To investigate the expression and processing of IL-1β and ICE by tissue macrophages from normal and IBD colonic mucosa. 
Methods—Mucosal biopsy specimens and lamina propria cells from normal and IBD colons were studied by reverse transcription polymerase chain reaction (RT-PCR), western blot analysis, and ELISA (enzyme linked immunosorbent assay). 
Results—Normal colonic macrophages synthesised only the precursor form of IL-1β whereas in IBD the mature form was also produced. Similarly, cells from normal colonic mucosa synthesised ICE as the precursor (p45) only, whereas macrophages from IBD colons produced active (p20) ICE. Ac-Tyr-Val-Ala-Asp-CHO, a specific peptide aldehyde inhibitor of ICE, significantly reduced the amount of mature IL-1β released by isolated IBD macrophages (from a median of 1.2 (range 0.78-4.42) ng/ml to 0.43 (0.21-1.6) ng/ml; p<0.01). 
Conclusions—Exposure of normal colonic macrophages to LPS only induces the production of the precursor form of IL-1β, because the cells fail to activate ICE. In contrast, IBD colonic macrophages are able to activate ICE and hence release mature IL-1β in a manner similar to circulating monocytes. This is consistent with IBD macrophages being recently recruited from the circulating monocyte population. Targeted inhibition of ICE may represent a novel form of therapy in IBD. 

 Keywords: interleukin 1β; interleukin 1β converting enzyme; macrophages; lipopolysaccharide; ulcerative colitis; Crohn's disease PMID:9536946

  19. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    PubMed Central

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  20. Secretion of endothelin converting enzyme-1a: the hydrophobic signal anchor domain alone is not sufficient to promote membrane localization.

    PubMed

    Brooks, S C; Fernandez, L; Ergul, A

    2000-05-01

    Endothelin converting enzyme-1 (ECE-1) is a type II membrane protein that is important for the proteolytic activation of big endothelin-1 to endothelin-1. Although the highly conserved zinc-binding motif is known to be located in the extracellular domain, the role(s) of the N-terminal and membrane-spanning signal anchor domains in the biosynthesis and function of ECE-1 isoforms, ECE-1a, ECE-1b, and ECE-1c, remain undetermined. In this study, we provide evidence that the deletion of the cytoplasmic N-terminal tail (residues 1-55) of ECE-1a results in the cleavage of a potential signal peptide located in the signal anchor domain leading to the partial secretion of the recombinant enzyme into the media. However, the truncation of N-terminal and/or signal anchor domain does not affect the activity of ECE-1a. Therefore, our results demonstrate that the hydrophobic signal anchor domain alone is not sufficient for the membrane anchoring of ECE-1a and that the N-terminal domain of ECE-1a is important for membrane targeting as well as the intracellular localization of the enzyme.

  1. Molecular diversity of tuliposide B-converting enzyme in tulip (Tulipa gesneriana): identification of the root-specific isozyme.

    PubMed

    Nomura, Taiji; Ueno, Ayaka; Ogita, Shinjiro; Kato, Yasuo

    2017-06-01

    6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.

  2. Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food.

    PubMed

    Murakami, Keiko; Yamanaka, Naoki; Ohnishi, Katsunori; Fukayama, Minoru; Yoshino, Masataka

    2012-06-01

    Angiotensin I converting enzyme (ACE) was inhibited by the culture medium of Bacillus subtilis subsp. natto, which ferments boiled soy beans to natto, a Japanese traditional food. Subtilisin NAT (nattokinase) produced by B. subtilis also inhibited ACE, and the inhibition was markedly stimulated by heat treatment of subtilisin at 120 °C for 15 min. Inhibition of ACE by subtilisin was of a mixed type: the decrease in V(max) and the increase in K(m) value. SDS-polyacrylamide gel electrophoresis showed that heat treatment of subtilisin caused inactivation with fragmentation of the enzyme protein into small peptides. The inhibitory action of subtilisin was not due to an enzymatic action of protease, but may be ascribed to the potent ACE-inhibitory peptides such as LY and FY, amino acid sequences in subtilisin. HPLC-MS analysis of heat-inactivated subtilisin confirmed that LY and FY were liberated by fragmentation of the enzyme. Inhibition of ACE by subtilisin and its degradation peptides such as LY and FY may participate in the suppression of blood pressure by ingestion of natto.

  3. Angiotensin-converting enzyme gene polymorphism, left ventricular remodeling, and exercise capacity in strength-trained athletes.

    PubMed

    Kasikcioglu, Erdem; Kayserilioglu, Abidin; Ciloglu, Figen; Akhan, Hulya; Oflaz, Huseyin; Yildiz, Safinaz; Peker, Ismail

    2004-11-01

    The mechanisms that regulate the development of human physiological cardiac hypertrophy remain poorly understood. The renin-angiotensin system, which is modulated by genetic polymorphism, plays an important role in the regulation of vascular tone and myocardial hypertrophy. Although a few studies have analyzed the association of angiotensin-converting enzyme (ACE) polymorphism and left ventricular (LV) hypertrophy in isotonic exercise-trained subjects who developed eccentric cardiac hypertrophy, there has been no research done in power athletes who developed concentric cardiac hypertrophy. We have hypothesized that ACE genotypic modulation characteristics may affect LV mass in power athletes. This study included 29 elite Caucasian wrestlers (mean age, 22.6 years) and 51 age-matched sedentary subjects. According to the absence or presence of the insertion segment in the polymerase chain reaction (PCR) product, the subjects were classified as homozygous deletion-deletion (DD), insertion-insertion (II), or heterozygous insertion-deletion (ID). The association of LV hypertrophy with ACE gene insertion/deletion (I/D) polymorphism was analyzed. Left ventricular mass and index were determined by echocardiography. Angiotensin-converting enzyme genotyping was performed on peripheral leukocytes using the polymerase chain reaction technique. The study and control group subjects were similar in height and weight. Left ventricular hypertrophy in the athletes was more apparent than in the controls. Angiotensin-converting enzyme genotype II frequency was 17.2% (5) in the athletes, 17.6% (9) in the controls; ID frequency was 51.7% (15) in the athletes, 56.8% (29) in the controls; and the DD frequency was 31% (9) in the athletes and 25.4% (13) in the controls. Left ventricular mass and mass index were found to be higher in genotype DD (126.2 +/- 2.9g/m2) than genotype II (85.5 +/- 4.0g/m2) or genotype ID (110.1 +/- 2.3g/m2) in the athletes (P < 0.001). Furthermore, maximal oxygen

  4. Transcription and activity of 5-fluorouracil converting enzymes in fluoropyrimidine resistance in colon cancer in vitro.

    PubMed

    Mader, R M; Sieder, A E; Braun, J; Rizovski, B; Kalipciyan, M; Mueller, M W; Jakesz, R; Rainer, H; Steger, G G

    1997-12-01

    Cellular resistance to 5-fluorouracil (5-FU) is not completely understood. Since 5-FU shares the pyrimidine pathway with the physiological pyrimidines, we investigated the relationship between fluoropyrimidine metabolism, nucleic acid uptake and cytotoxicity of 5-FU in eight colon tumour cell lines including 5-FU-resistant subclones. The cytotoxicity of 5-FU was increased up to 423-fold when the anabolites 5-fluorouridine (FUrd), 5-fluorodeoxyuridine (FdUrd), and 5-fluorodeoxyuridine monophosphate (FdUMP) were compared with the parent drug in vitro. The enzymes uridine phosphorylase and thymidine phosphorylase were predictive for the cytotoxicity of 5-FU in 5/7 cell lines. Inhibition of uridine phosphorylase and thymidine phosphorylase by antisense strategies effectively antagonised 5-FU, abolishing 84% and 79% of its toxicity. The importance of thymidine phosphorylase was supported by a highly restricted enzyme activity in 5-FU-resistant cells. In 5-FU naive cells, a stimulating effect of 5-FU on thymidylate synthase mRNA and ribonucleotide reductase mRNA expression was observed. In these cells, antisense oligonucleotides to ribonucleotide reductase significantly reduced cell growth. Downregulation of ribonucleotide reductase mRNA in 5-FU-resistant subclones suggests different mechanisms in primary and secondary resistance to 5-FU. Most of the intracellular 5-FU was selectively incorporated into RNA (range: 45-91%) and generally spared DNA (range: 0.2-11%). In synthesising our data, we conclude that drug resistance could be overwhelmed through bypassing limiting steps in the activation of 5-FU. In the majority of colonic tumours, the activity of uridine phosphorylase and thymidine phosphorylase may have prognostic relevance for the cytotoxicity of 5-FU in vitro.

  5. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells.

    PubMed Central

    Faucheu, C; Diu, A; Chan, A W; Blanchet, A M; Miossec, C; Hervé, F; Collard-Dutilleul, V; Gu, Y; Aldape, R A; Lippke, J A

    1995-01-01

    We have identified a novel cDNA encoding a protein (named TX) with > 50% overall sequence identity with the interleukin-1 beta converting enzyme (ICE) and approximately 30% sequence identity with the ICE homologs NEDD-2/ICH-1L and CED-3. A computer homology model of TX was constructed based on the X-ray coordinates of the ICE crystal recently published. This model suggests that TX is a cysteine protease, with the P1 aspartic acid substrate specificity retained. Transfection experiments demonstrate that TX is a protease which is able to cleave itself and the p30 ICE precursor, but not to generate mature IL-1 beta from pro-IL-1 beta. In addition, this protein induces apoptosis in transfected COS cells. TX therefore delineates a new member of the growing Ice/ced-3 gene family coding for proteases with cytokine processing activity or involved in programmed cell death. Images PMID:7743998

  6. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells.

    PubMed

    Faucheu, C; Diu, A; Chan, A W; Blanchet, A M; Miossec, C; Hervé, F; Collard-Dutilleul, V; Gu, Y; Aldape, R A; Lippke, J A

    1995-05-01

    We have identified a novel cDNA encoding a protein (named TX) with > 50% overall sequence identity with the interleukin-1 beta converting enzyme (ICE) and approximately 30% sequence identity with the ICE homologs NEDD-2/ICH-1L and CED-3. A computer homology model of TX was constructed based on the X-ray coordinates of the ICE crystal recently published. This model suggests that TX is a cysteine protease, with the P1 aspartic acid substrate specificity retained. Transfection experiments demonstrate that TX is a protease which is able to cleave itself and the p30 ICE precursor, but not to generate mature IL-1 beta from pro-IL-1 beta. In addition, this protein induces apoptosis in transfected COS cells. TX therefore delineates a new member of the growing Ice/ced-3 gene family coding for proteases with cytokine processing activity or involved in programmed cell death.

  7. Media effects in modulating the conformational equilibrium of a model compound for tumor necrosis factor converting enzyme inhibition

    NASA Astrophysics Data System (ADS)

    Banchelli, Martina; Guardiani, Carlo; Sandberg, Robert B.; Menichetti, Stefano; Procacci, Piero; Caminati, Gabriella

    2015-07-01

    Small-molecule inhibitors of Tumor Necrosis Factor α Converting Enzyme (TACE) are a promising therapeutic tool for Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. Here we report on an extensive chemical-physical analysis of the media effects in modulating the conformational landscape of MBET306, the common scaffold and a synthetic precursor of a family of recently discovered tartrate-based TACE inhibitors. The structural features of this molecule with potential pharmaceutical applications have been disclosed by interpreting extensive photophysical measurements in various solvents with the aid of enhanced sampling molecular dynamics simulations and time dependent density functional calculations. Using a combination of experimental and computational techniques, the paper provides a general protocol for studying the structure in solution of molecular systems characterized by the existence of conformational metastable states.

  8. Synthesis and biological studies of highly concentrated lisinopril-capped gold nanoparticles for CT tracking of angiotensin converting enzyme (ACE)

    NASA Astrophysics Data System (ADS)

    Ghann, William E.; Aras, Omer; Fleiter, Thorsten; Daniel, Marie-Christine

    2011-05-01

    For patients with a history of heart attack or stroke, the prevention of another cardiovascular or cerebrovascular event is crucial. The development of cardiac and pulmonary fibrosis has been associated with overexpression of tissue angiotensin-converting enzyme (ACE). Recently, gold nanoparticles (GNPs) have shown great potential as X-ray computed tomography (CT) contrast agents. Since lisinopril is an ACE inhibitor, it has been used as coating on GNPs for targeted imaging of tissue ACE in prevention of fibrosis. Herein, lisinopril-capped gold nanoparticles (LIS-GNPs) were synthesized up to a concentration of 55 mgAu/mL. Their contrast was measured using CT and the results were compared to Omnipaque, a commonly used iodine-based contrast agent. The targeting ability of these LIS-GNPs was also assessed.

  9. Severe hyperkalaemia induced by trimethoprim in combination with an angiotensin-converting enzyme inhibitor in a patient with transplanted lungs.

    PubMed

    Bugge, J F

    1996-10-01

    A 40-year-old woman with transplanted lungs developed life threatening hyperkalaemia (6.8 mmol L-1) during high dose treatment with trimethoprim-sulfamethoxazole for Pneumocystis carinii pneumonia. Trimethoprim has an amiloride-like effect on the distal nephron and may thus induce hyperkalaemia, particularly if other contributing factors coexist. The present patient was also treated with the angiotensin-converting enzyme (ACE) inhibitor enalapril, and the combination of ACE-inhibition and potassium-sparing diuretics is known to induce hyperkalaemia. Hyperkalaemia was probably induced by the combination of ACE-inhibitor and trimethoprim, and this combination may be as dangerous as the combination of ACE-inhibitors with other potassium-sparing diuretics.

  10. Interaction of angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase M (CPM) - a new function of ACE.

    PubMed

    Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn

    2008-12-01

    Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.

  11. Influence of Angiotensin-converting enzyme polymorphism on neuropsychological subacute performance in moderate and severe traumatic brain injury.

    PubMed

    Ariza, Mar; Matarin, Maria Del; Junqué, Carme; Mataró, María; Clemente, Immaculada; Moral, Pedro; Antonia Poca, María; Garnacho, Angel; Sahuquillo, Juan

    2006-01-01

    Traumatic brain injury (TBI) frequently results in cerebrovascular lesions that may increase secondary damage and cause neuropsychological impairment. Previous studies suggest an association among the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE), cardiovascular disease, and cognitive performance. Clinical and experimental studies have demonstrated the beneficial effects of ACE inhibitor treatment on vascular injury, hypertension, brain ischemia, and cognitive functioning. In a sample of 73 moderate and severe TBI patients, the authors assessed whether cognitive sequelae differed in relation to the ACE I/D polymorphism. D allele carrier patients performed worse than those with I/I polymorphism on tests involving attention and processing speed. Findings suggest that the physiopathological changes associated with TBI may have greater consequences in ACE D allele carriers.

  12. Angiotensin converting enzyme 2 gene expression increased compensatory for left ventricular remodeling in patients with end-stage heart failure.

    PubMed

    Ohtsuki, Masatsugu; Morimoto, Shin-ichiro; Izawa, Hideo; Ismail, Tevfik F; Ishibashi-Ueda, Hatsue; Kato, Yasuchika; Horii, Taiko; Isomura, Tadashi; Suma, Hisayoshi; Nomura, Masanori; Hishida, Hitoshi; Kurahashi, Hiroki; Ozaki, Yukio

    2010-11-19

    It has been reported that angiotensin converting enzyme (ACE) 2, a homologue of ACE, has direct effects on cardiac function. However, the role of ACE2 in the development of human heart failure is not fully understood. We evaluated the expression of the ACE2 gene by means of real-time RT-PCR in myocardium from 14 patients with end-stage heart failure. The amount of ACE2 mRNA positively correlated with left ventricular (LV) end-diastolic diameter (r(2)=0.56, p<0.01) but did not significantly correlate with LV ejection fraction or plasma brain natriuretic peptide levels. In conclusion, our data show that the up-regulation of the ACE2 gene in the LV myocardium of patients with severe heart failure was associated with the degree of LV dilatation and may thereby constitute an important adaptive mechanism to retard the progression of adverse LV remodeling.

  13. Effects of nabumetone, celecoxib, and ibuprofen on blood pressure control in hypertensive patients on angiotensin converting enzyme inhibitors.

    PubMed

    Palmer, Robert; Weiss, Robert; Zusman, Randall M; Haig, Ann; Flavin, Susan; MacDonald, Brian

    2003-02-01

    Nonsteroidal anti-inflammatory drugs interfere with certain antihypertensive therapies. In a double-blind study, 385 hypertensive patients stabilized on an angiotensin converting enzyme inhibitor were treated with nabumetone, celecoxib, ibuprofen, or placebo for 4 weeks. Ibuprofen caused significantly greater increases in systolic (P < .001) and diastolic (P < .01) blood pressures (BPs) compared to placebo, but not nabumetone or celecoxib. The proportion of patients with systolic BP increases of clinical concern at end point was significantly higher (P < .001) for the ibuprofen group (16.7%; 15 of 90), but not for the nabumetone group (5.5%; 5 of 91) or the celecoxib group (4.6%; 4 of 87) compared to the placebo group (1.1%; 1 of 91).

  14. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype

    PubMed Central

    Shrestha, Sanjeeb; Noh, Jae Myoung; Kim, Shin-Yeong; Ham, Hwa-Yong; Kim, Yeon-Ja; Yun, Young-Jin; Kim, Min-Ju; Kwon, Min-Soo; Song, Dong-Keun; Hong, Chang-Won

    2016-01-01

    ABSTRACT Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype. PMID:26942086

  15. Synthesis and evaluation of novel triazoles and mannich bases functionalized 1,4-dihydropyridine as angiotensin converting enzyme (ACE) inhibitors.

    PubMed

    Kumbhare, Ravindra M; Kosurkar, Umesh B; Bagul, Pankaj K; Kanwal, Abhinav; Appalanaidu, K; Dadmal, Tulshiram L; Banerjee, Sanjay Kumar

    2014-11-01

    A series of novel diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate embedded triazole and mannich bases were synthesized, and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. Screening of above synthesized compounds for ACE inhibition showed that triazoles functionalized compounds have better ACE inhibitory activity compared to that of mannich bases analogues. Among all triazoles we found 6 h, 6 i and 6 j to have good ACE inhibition activity with IC50 values 0.713 μM, 0.409 μM and 0.653 μM, respectively. Among mannich bases series compounds, only 7c resulted as most active ACE inhibitor with IC50 value of 0.928 μM.

  16. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question.

  17. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis

    PubMed Central

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  18. Effect of Angiotensin-Converting Enzyme Inhibitors on Physical Function in Elderly Subjects: A Systematic Review and Meta-Analysis.

    PubMed

    Zhou, Ling-shan; Xu, Ling-jie; Wang, Xue-qing; Huang, Yi-huan; Xiao, Qian

    2015-09-01

    Sarcopenia has been accepted as a new geriatric syndrome, which will become a common and important public health challenge. And angiotensin-converting enzyme inhibitors (ACEIs) have been shown to improve exercise capacity in elderly without heart failure. To evaluate the effect of angiotensin-converting enzyme inhibitors (ACEIs) on physical function in elderly. The Cochrane Library, PubMed, EMBASE and Web of Science were searched. All researches included were randomized controlled trials (RCTs) which compared any kind of ACEIs with placebo or other anti-hypertensives in elderly, and provided empirical data of grip strength and 6-min walk distance change from baseline. Risk of bias was systematically assessed by using the Cochrane risk of bias tool. Data of grip strength and 6-min walk distance change from baseline were collected and mean differences (MDs) were calculated along with 95% CI (confidence interval) by using a random effects model. In 3 RCTs including 337 elderly participants, ACEIs (n = 178) did not significantly improved 6-min walk distance (13.45, 95% CI: -16.71 to 43.61; P = 0.38) versus placebo or other antihypertensives (n = 159). In 3 RCTs including 499 elderly participants, grip strength was not significantly different (-0.67, 95% CI: -1.53 to 0.19; P = 0.12) between ACEIs (n = 260) and placebo or other antihypertensives (n = 239). There exists only 4 RCTs and the number of participants is limited. Pooling of data were from different trials including different participant characteristics. And intervention is not strictly consistent. This study shows that ACEIs can not significantly improve walk distance or the age-related decline of muscle strength for older participants in clinical trials.

  19. Significant correlation of angiotensin converting enzyme and glycoprotein IIIa genes polymorphisms with unexplained recurrent pregnancy loss in north of Iran.

    PubMed

    Fazelnia, Shokoufeh; Farazmandfar, Touraj; Hashemi-Soteh, Seyed Mohammad Bagher

    2016-05-01

    Spontaneous abortion is considered as the most complex problem during pregnancy. Thrombophilia is resumed as a cause of recurrent pregnancy loss (RPL). Glycoprotein IIIa (GPIIIa) gene is involved in thrombosis and abortion. Angiotensin converting enzyme (ACE) converts angiotensin I to angiotensin II and is involved in thrombosis. The most common polymorphism in this gene is the insertion/deletion (I/D). In this study, we analyzed the association between ACE I/D and GPIIIa c.98C >T polymorphisms in women with unexplained RPL from the north of Iran. Sample population consisted of 100 women with unexplained RPL and 100 controls. The ACE I/D and GPIIIa c.98C>T polymorphisms were genotyped by TETRA-ARMS PCR. The association between genotypes frequency and RPL were analyzed using χ(2) and exact fisher tests. Associated risk with double genotype combinations was also investigated by binary logistic regression. There was significant association between ACE DD genotype and RPL (OR=2.04; 95% CI=0.94-4.44; p=0.036). ACE D Allele was also significantly associated with the RPL (OR=1.59; 95% CI=1.05-2.41; p=0.013). No significant association was observed between GPIIIa c.98C>T polymorphism and RPL. ACE I/D polymorphism may probably be a prognostic factor in female family members of women with the history of recurrent abortion.

  20. Combination of vitamin K2 and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression.

    PubMed

    Yoshiji, Hitoshi; Kuriyama, Shigeki; Noguchi, Ryuichi; Yoshii, Junichi; Ikenaka, Yasuhide; Yanase, Koji; Namisaki, Tadashi; Kitade, Mitsuteru; Yamazaki, Masaharu; Masaki, Tsutomu; Fukui, Hiroshi

    2005-05-01

    Chemoprevention should be a promising approach to improve the prognosis of the patients with hepatocellular carcinoma (HCC). Angiogenesis is now recognized as a crucial step not only in tumor growth, but also in early carcinogenesis. The aim of this study was to elucidate the combination effect of the clinically used vitamin K(2) (VK) and the angiotensin-converting enzyme inhibitor, perindopril (PE), on hepatocarcinogenesis, especially in conjunction with angiogenesis. In a diethylnitrosamine-induced rat hepatocarcinogenesis model, the effects of VK and PE on the development of liver enzyme-altered preneoplastic lesions and angiogenesis were examined. Treatment with both VK and PE markedly inhibited the development of preneoplastic lesions in association with suppression of neovascularization in the liver. The combination treatment with VK and PE exerted a more potent inhibitory effect as compared with the single agent treatments. The in vitro study demonstrated that VK and PE inhibited the endothelial cell (EC) tubular formation. VK also suppressed the EC proliferation in a dose-dependent manner. The combination of VK and PE exerted a chemopreventive effect against rat liver carcinogenesis via suppression of angiogenesis. Since both agents are widely used in the clinical practice, this combination therapy may represent a potential new strategy for chemoprevention against HCC in the future.

  1. [Reconstitution of polyunsaturated fatty acid synthesis enzymes in mammalian cells to convert LA to DHA].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Qiu, Lihong; Sun, Jie; Shang, Yu; Jiang, Xudong; Ge, Tangdong; Zhang, Tao

    2015-02-01

    DHA (22:6n-3) is a Ω-3 polyunsaturated fatty acid with 22 carbon atoms and 6 double bonds, which has important biological functions in human body. Human and other mammals synthesize only limited amounts of DHA, more requirements must be satisfied from food resources. However, the natural resources of DHA (Mainly deep-sea fish and other marine products) are prone to depletion. New resources development is still insufficient to satisfy the growing market demand. Previous studies have revealed that the mammals can increase the synthesis of DHA and other long-chain polyunsaturated fatty acids after transgenic procedures. In this study, mammalian cells were transfected with Δ6, Δ5 desaturase, Δ6, Δ5 elongase, Δ15 desaturase (Isolated from nematode Caenorhabditis elegans) and Δ4 desaturase (Isolated from Euglena gracilis), simultaneously. Results show that the expression or overexpression of these 6 enzymes is capable of conversion of the o-6 linoleic acid (LA, 18:2n-6) in DHA (22:6n-3). DHA content has increased from 16.74% in the control group to 25.3% in the experimental group. The strategy and related technology in our research provided important data for future production the valuable DHA (22:6n-3) by using genetically modified animals.

  2. Angiotensin-converting enzyme inhibitory and antioxidative activities and functional characterization of protein hydrolysates of hard-to-cook chickpeas.

    PubMed

    Medina-Godoy, Sergio; Ambriz-Pérez, Dulce L; Fuentes-Gutiérrez, Cindy I; Germán-Báez, Lourdes J; Gutiérrez-Dorado, Roberto; Reyes-Moreno, Cuauhtémoc; Valdez-Ortiz, Angel

    2012-07-01

    The potential use of hard-to-cook (hardened) chickpeas to obtain value-added functional food ingredients was evaluated. For that purpose, some nutraceutical and functional attributes of several chickpea protein hydrolysates (CPHs) prepared from both fresh and hard-to-cook grains were evaluated. All the CPHs prepared from both fresh and hard-to-cook grains, with the enzymes alcalase, pancreatin and papain, showed high angiotensin converting enzyme inhibitory (ACE-I) activity with IC₅₀ values ranging from 0.101 to 37.33 µg mL⁻¹; similarly, high levels of antioxidant activity (around 18.17-95.61 µmol Trolox equivalent antioxidant capacity µg⁻¹ CPH) were obtained through both the 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. Regarding functional characterization of the CPHs, oil absorption values ranged from 1.91 to 2.20 mL oil g⁻¹ CPH, with water solubility almost 100% from pH 7 to 10. The high antioxidant and ACE-I activities as well as the good functional properties of the CPH prepared from both fresh and hard-to-cook grains, suggest its use in food formulations with value added in human health. Copyright © 2012 Society of Chemical Industry.

  3. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities.

    PubMed

    Neves, Adriana C; Harnedy, Pádraigín A; O'Keeffe, Martina B; FitzGerald, Richard J

    2017-03-01

    The pH shift method was utilised for the recovery of proteins from salmon trimmings (ST), yielding 93% (w/w) protein. ST protein (STP) hydrolysates were generated with different enzyme preparations. STP incubated with Corolase PP for 1h (STP-C1) had the most potent angiotensin converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory and oxygen radical absorbance capacity (ORAC) activities. Analysis of fractions of STP-C1 using UPLC-MS/MS identified sixteen peptides/amino acids. Tyr-Pro had the highest ACE inhibitory activity (ACE IC50=5.21±0.94μM). The highest DPP-IV inhibitory activity was found with the amino acid Tyr (DPP-IV IC50=75.15±0.84μM). Val-Pro had the highest ORAC activity (19.45±2.15μmol of TEg(-1)). To our knowledge, the peptides Gly-Pro-Ala-Val, Val-Cys, and Phe-Phe have not been previously identified to have the activities tested in this study. These results indicate that STP hydrolysates are potential sources of bioactive peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Inhibitory properties of bambara groundnut protein hydrolysate and peptide fractions against angiotensin-converting enzymes, renin and free radicals.

    PubMed

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Malomo, Sunday A; Aluko, Rotimi E; Amonsou, Eric O

    2017-07-01

    An increased rate of high blood pressure has led to critical human hypertensive conditions in most nations. In the present study, bambara protein hydrolysates (BPHs) obtained using three different proteases (alcalase, trypsin and pepsin) and their peptide fractions (molecular weight: 10, 5, 3 and 1 kDa) were investigated for antihypertensive and antioxidant activities. Alcalase hydrolysate contained the highest amount of low molecular weight (LMW) peptides compared to pepsin and trypsin hydrolysates. LMW peptides fractions (<1 kDa) exhibited the highest inhibitory activity against angiotensin-converting enzyme (ACE) for all the enzymes hydrolysates. For renin inhibition, alcalase hydrolysate showed the highest inhibition at 59% compared to other hydrolysates and their corresponding membrane fractions. The antioxidant power of bambara protein hydrolysates and peptide fractions was evaluated through the inhibition of linoleic acid peroxidation and ABTS scavenging activity. Among the hydrolysates, alcalase exhibited the highest inhibition of linoleic acid oxidation. Furthermore, all BPHs were able to scavenge ABTS(•+) to a three-fold greater extent compared to the isolate. BPH and LMW peptide fractions could potentially serve as useful ingredients in the formulation of functional foods and nutraceuticals against high blood pressure and oxidative stress. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea.

    PubMed

    Lee, Bao-Hong; Lai, Yi-Syuan; Wu, She-Ching

    2015-12-01

    Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids) and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight) and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight) significantly improved systolic blood pressure (21 mmHg) and diastolic blood pressure (30 mmHg) in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension. Copyright © 2015. Published by Elsevier B.V.

  6. Monoclonal Antibody against Angiotensin-Converting Enzyme: Its Use as a Marker for Murine, Bovine, and Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Auerbach, R.; Alby, L.; Grieves, J.; Joseph, J.; Lindgren, C.; Morrissey, L. W.; Sidky, Y. A.; Tu, M.; Watt, S. L.

    1982-12-01

    A monoclonal antibody has been prepared against rat angiotensin-converting enzyme (ACE). By selection for antibody binding to endothelial cells of bovine rather than rat origin we have obtained a reagent that has broad cross-species binding properties and that can at the same time serve as a useful marker for the surface of endothelial cells. The IgM-producing clone that we have established, α -ACE 3.1.1, has been grown in ascites form to yield ascites fluid that binds selectively to immobilized ACE at a >1:10,000 dilution. By use of enzyme-linked immunosorbent assays, immunofluorescence histology, and flow cytometry, we have demonstrated the presence of ACE on endothelial cells of murine, bovine, and human origin. By means of a fluorescence-activated cell sorter (FACS-IV) we have been able to selectively isolate viable endothelial cells from a mixture of endothelial cells and fibroblasts. We believe the antibody will be useful not only for the selection and in vitro cultivation of endothelial cells but also as a tool for the identification and pharmacological study of ACE.

  7. [Matrix metalloproteinases 2 and 9, their endogenous regulators, and angiotensin-converting enzyme in cervical squamous cell carcinoma].

    PubMed

    Timoshenko, O S; Kugaevskaya, E V; Gureeva, T A; Zavalishina, L E; Andreeva, Yu Yu; Solovуeva, N I

    2015-01-01

    to investigate the specific features of the expression of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), tissue inhibitor of metalloptoteinase 2 (TIMP-2), urokinase-type plasminogen activator (uPA), and angiotensin-converting enzyme (ACE) in cervical squamous cell carcinoma (CSCC). The samples of tumor tissue and morphologically normal tissue adjacent to the tumor were investigated. Enzymatic assays applying specific substrates, as well as zymographic and immunohistochemical studies were used. The invasive potential of CSCC has been established to be substantially influenced by the increased expression of MMP-9 and uPA and by the decreased expression of TIMP-2, as well as to a lesser extent by a change in MMP-2 expression. MMP-9 may serve as a marker for invasive growth. Enhanced ACE activity in cancer confirms the involvement of this enzyme in tumor progression. The morphologically normal tissue adjacent to the tumor shows the substantial expression of MMP-2 and MMP-9 and in some cases the enhanced activity of uPA and ACE, which makes an additional contribution to the increased invasive potential of tumor. The findings are important in understanding the mechanisms of cancer progression and may affect therapeutic strategies for the patient.

  8. Implications of the angiotensin converting enzyme gene insertion/deletion polymorphism in health and disease: a snapshot review

    PubMed Central

    Gard, Paul R

    2010-01-01

    This review considers the 250+ papers concerning the association of the angiotensin converting enzyme (ACE) gene insertion/deletion polymorphism (rs1799752) and various disease conditions published in 2009. The deletion allele occurs in approximately 55% of the population and is associated with increased activity of the ACE enzyme. It might be predicted that the D allele, therefore, might be associated with pathologies involving increased activity of the renin-angiotensin system. The D allele was seen to be associated with an increased risk of hypertension, pre-eclampsia, heart failure, cerebral infarct, diabetic nephropathy, encephalopathy, asthma, severe hypoglycaemia in diabetes, gastric cancer (in Caucasians) and poor prognosis following kidney transplant. On the positive side, the D allele appears to offer protection against schizophrenia and chronic periodontitis and confers greater up-per-body strength in old age. The I allele, meanwhile, offers improved endurance/athletic performance and aerobic capacity as determined by lung function tests, although it does increase the risk of oral squamous cell carcinoma and obstructive sleep apnoea in hypertensives. PMID:21537387

  9. Compartmentalization and cyclic variation of immunoreactivity of renin and angiotensin converting enzyme in human endometrium throughout the menstrual cycle.

    PubMed

    Li, X F; Ahmed, A

    1997-12-01

    Renin and angiotensin converting enzymes (ACE) are responsible for the generation of angiotensin II which regulates blood pressure and fluid/electrolyte homeostasis. The cellular localization and cyclic distribution of renin and ACE in human endometrium are demonstrated in this study. Immunohistochemical studies revealed that both renin and ACE were consistently localized in the endometrial glandular epithelia throughout the menstrual cycle; however, the immunostainings respectively for ACE and renin were weak and moderate in stromal cells of proliferative endometrium and negligible in secretory endometrium. No renin immunostaining was detected around endometrial blood vessels. Although endothelial cells consistently stained for ACE, no renin immunoreactivity was detected in these cells during the menstrual cycle. Western blot analysis using ACE antibody directed against human kidney identified a single protein band with a relative molecular mass of approximately 153 kDa. The intensity of this band showed cyclic variation during the menstrual cycle with the highest ACE expression during the late secretory phase and at menses suggesting that ACE plays a role in the initiation of menstruation. The differences in the cellular distribution patterns of these two enzymes further supports our previous proposition that angiotensin II has different functions at the different stages of the menstrual cycle.

  10. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae

    PubMed Central

    Abu Hasan, Zatul-’Iffah; Williams, Helen; Ismail, Nur M.; Othman, Hidayatulfathi; Cozier, Gyles E.; Acharya, K. Ravi; Isaac, R. Elwyn

    2017-01-01

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides. PMID:28345667

  11. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae.

    PubMed

    Abu Hasan, Zatul-'Iffah; Williams, Helen; Ismail, Nur M; Othman, Hidayatulfathi; Cozier, Gyles E; Acharya, K Ravi; Isaac, R Elwyn

    2017-03-27

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3(rd) instars showing greater resistance. Mortality was also high within 24 h of exposure of 1(st), 2(nd) and 3(rd) instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1(st) instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.

  12. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    PubMed

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  13. Insights into the Hypertensive Effects of Tityus serrulatus Scorpion Venom: Purification of an Angiotensin-Converting Enzyme-Like Peptidase

    PubMed Central

    Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Duzzi, Bruno; Iwai, Leo Kei; de Oliveira, Úrsula Castro; Junqueira de Azevedo, Inácio de Loiola Meirelles; Kodama, Roberto Tadashi; Portaro, Fernanda Vieira

    2016-01-01

    The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension. PMID:27886129

  14. Mixed inhibitors of angiotensin-converting enzyme and enkephalinase: Rational design, properties, and potential cardiovascular applications of glycopril and alatriopril

    SciTech Connect

    Gros, C.; Noel, N.; Souque, A.; Schwartz, J.C. ); Danvy, D.; Plaquevent, J.C.; Duhamel, L.; Duhamel, P. ); Lecomte, J.M. ); Bralet, J. )

    1991-05-15

    Angiotensin-converting enzyme (ACE) and enkephalinase, two cell surface metallopeptidases, are responsible for angiotensin II formation and atrial natriuretic factor (ANF) degradation, respectively, and thereby play a critical role in the metabolism of hormonal peptides exerting essentially opposite actions in cardiovascular regulations. To affect simultaneously both hormonal systems by a single molecular structure, the authors designed glycoprilat and alatrioprilat {l brace}(S)-N-(3-(3,4-methylenedioxyphenyl)-2-(mercaptomethyl)-1-oxopropyl)glycine and -alanine, respectively{r brace}. In vitro the two compounds inhibit both ACE and enkephalinase activities with similar, nanomolar potencies, and in vivo, glycopril and alatriopril, the corresponding diester prodrugs, occupy the two enzyme molecules in lung at similar low dosages. The high potency of these compounds is attributable to interaction of the methylenedioxy group with the S{sub 1} subsite of ACE and of the aromatic ring with the S{prime}{sub 1} subsite of enkephalinase. In rodents, low doses of these mixed inhibitors exert typical actions of ACE inhibitors--i.e., prevention of angiotensin I-induced hypertension-as well as of enkephalinase inhibitors--i.e., protection from {sup 125}I-ANF degradation or enhancement of diuresis and natriuresis following acute extracellular volume expansion. In view of the known counterbalanced physiological actions of the two hormonal peptides, whose metabolism is controlled by ACE and enkephalinase, mixed inhibitors of the two peptidases show promise for the treatment of various cardiovascular and salt-retention disorders.

  15. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities.

    PubMed

    Fontoura, Roberta; Daroit, Daniel J; Correa, Ana P F; Meira, Stela M M; Mosquera, Mauricio; Brandelli, Adriano

    2014-09-25

    The antioxidant and antihypertensive activities of feather hydrolysates obtained with the bacterium Chryseobacterium sp. kr6 were investigated. Keratin hydrolysates were produced with different concentrations of thermally denatured feathers (10-75 g l(-1)) and initial pH values (6.0-9.0). Soluble proteins accumulated in high amounts in media with 50 and 75 g l(-1) of feathers, reaching values of 18.5 and 22 mg ml(-1), respectively, after 48 hours of cultivation. In media with 50 g l(-1) of feathers, initial pH had minimal effect after 48 hours. Maximal protease production was observed after 24 hours of cultivation, and feather concentration and initial pH values showed no significant effect on enzyme yields at this time. Feather hydrolysates displayed in vitro antioxidant properties, and optimal antioxidant activities were observed in cultures with 50 g l(-1) feathers, at initial pH 8.0, after 48 hours growth at 30°C. Also, feather hydrolysates were demonstrated to inhibit the angiotesin I-converting enzyme by 65% and dipeptidyl peptidase-IV by 44%. The bioconversion of an abundant agroindustrial waste such as chicken feathers can be utilized as a strategy to obtain hydrolysates with antioxidant and antihypertensive activities. Feather hydrolysates might be employed as supplements in animal feed, and also as a potential source of bioactive molecules for feed, food and drug development.

  16. Induction by Glucocorticoids of Angiotensin Converting Enzyme Production from Bovine Endothelial Cells in Culture and Rat Lung In Vivo

    PubMed Central

    Mendelsohn, F. A. O.; Lloyd, C. J.; Kachel, C.; Funder, J. W.

    1982-01-01

    The effect of corticosteroids on angiotensin converting enzyme was investigated in endothelial cell cultures and intact rat lung. Cultured endothelial cells from bovine aorta showed net production of angiotensin converting enzyme (ACE) over 2 d culture in serum-free medium. Dexamethasone (DM) increased cell ACE activity six- to sevenfold at 100 nM with a threshold effect at 0.3 nM. The effect of DM on ACE production was completely inhibited by actinomycin D or cycloheximide. Deoxycorticosterone (DOC) and aldosterone were markedly less active, with a threshold near 100 nM and significant (two to threefold) stimulation of ACE activity at 1 μM. In cells incubated in the presence of 10 nM DM, DOC (10 μM) significantly inhibited ACE production compared with 10 nM DM alone, suggesting that DOC is a partial agonist/partial antagonist in this enzyme system. Protein content of cells or medium was unchanged by steroids at all doses used. In vivo, adrenalectomized rats showed lower pulmonary ACE compared with intact controls, and when injected with DM (40 μg/d for 4 d) showed a significant (twofold, P < 0.002) increase in lung ACE over oil-injected, adrenalectomized controls; serum ACE did not change. Injection with DOC (40 μg/d) or aldosterone (10 μg/d) had no effect on lung or serum ACE. Over a range (0.6 to 2,000 μg) of concentrations of DM administered daily for 7 d, the dose-response curve of DM for induction of pulmonary ACE mirrored that for thymolysis; for both, half-maximal effects were seen at ∼6 μg DM/d, and plateau levels at 60 μg/d. We conclude that glucocorticoids are potent inducers of ACE activity in endothelial cells in culture and in rat lung in vivo, and that the action of aldosterone and DOC reflects occupancy of glucocorticoid receptors. This effect may be of (patho)physiological relevance in regulating levels of ACE in local vascular beds, and thereby modulating local levels of the vasoactive peptides angiotensin II and bradykinin. PMID:6286730

  17. MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality.

    PubMed

    Pernomian, Larissa; do Prado, Alejandro F; Gomes, Mayara S; Pernomian, Laena; da Silva, Carlos H T P; Gerlach, Raquel F; de Oliveira, Ana M

    2015-10-05

    AT1 antagonists effectively prevent atherosclerosis since AT1 upregulation and angiotensin II-induced proinflammatory actions are critical to atherogenesis. Despite the classic mechanisms underlying the vasoprotective and atheroprotective actions of AT1 antagonists, the cross-talk between angiotensin-converting enzyme-angiotensin II-AT1 and angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axes suggests other mechanisms beyond AT1 blockage in such effects. For instance, angiotensin-converting enzyme 2 activity is inhibited by reactive oxygen species derived from AT1-mediated proinflammatory signaling. Since angiotensin-(1-7) promotes antiatherogenic effects, we hypothesized that the vasoprotective and atheroprotective effects of AT1 antagonists could result from their inhibitory effects on the AT1-mediated negative modulation of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Interestingly, our results showed that early atherosclerosis triggered in thoracic aorta from high cholesterol fed-Apolipoprotein E-deficient mice impairs angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality by a proinflammatory-redox AT1-mediated pathway. In such mechanism, AT1 activation leads to the aortic release of tumor necrosis factor-α, which stimulates NAD(P)H oxidase/Nox1-driven generation of superoxide and hydrogen peroxide. While hydrogen peroxide inhibits angiotensin-converting enzyme 2 activity, superoxide impairs MAS functionality. Candesartan treatment restored the functionality of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis by inhibiting the proinflammatory-redox AT1-mediated mechanism. Candesartan also promoted vasoprotective and atheroprotective effects that were mediated by MAS since A779 (MAS antagonist) co-treatment inhibited them. The role of MAS receptors as the final mediators of the vasoprotective and atheroprotective effects of candesartan was supported by the vascular actions of angiotensin

  18. Decrease of serum Angiotensin converting enzyme levels upon telbivudine treatment for chronic hepatitis B virus infection and negative correlations between the enzyme levels and estimated glumerular filtration rates.

    PubMed

    Liang, Kung-Hao; Chen, Yi-Cheng; Hsu, Chao-Wei; Chang, Ming-Ling; Yeh, Chau-Ting

    2014-01-01

    During antiviral therapy for chronic hepatitis B, renal function impairment could be a critical concern when oral nucleot(s)ide analogues were used. Paradoxically, long-term telbivudine treatment was associated with an increase of estimated glomerular filtration rate (eGFR) through unknown mechanisms. We aimed to investigate changes in serum protein abundances associated with renal function in response to antiviral treatments. Primarily, a transcriptomic assay was performed to identify differentially expressed genes in peripheral blood cells caused by the telbivudine treatment. Two genes coding angiotensin converting enzyme (ACE) and complement factor H (CFH) were screened from 14 candidate renal function-related genes. ACE and CFH production were further investigated using enzyme-linked immunoassays. Verification studies showed no significant change of serum CFH levels, but there was a significant reduction of serum ACE levels by continuous telbivudine treatment for 330.00 ± 0.85 days (34 patients; paired t-test, P = 0.022). Serum HBV DNA and ALT levels also decreased (P = 0.008 and < 0.001, respectively). A significant increase in eGFR was found (33 patients, paired t-test, P = 0.002) at 708.64 ± 31.63 days. Patients' eGFRs were negatively correlated with serum ACE levels (r = -0.375, P = 0.002) but not with serum HBV DNA and ALT levels (P = 0.241 and 0.088 respectively). Significant decreases of the ACE levels were also observed upon entecavir treatment (20 patients; paired t-test, P = 0.020) at 412.88 ± 36.92 days. No significant correlation was found between serum ACE levels and eGFRs (r = -0.239, P = 0.138) in entecavir-treated patients. We discovered a consistent reduction of serum ACE levels by two oral antiviral monotherapies, entecavir and telbivudine. Serum ACE levels were negatively correlated with eGFRs in telbivudine treated patients.

  19. Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes.

    PubMed

    Tavares, Tânia; Contreras, Maria Del Mar; Amorim, Manuela; Pintado, Manuela; Recio, Isidra; Malcata, F Xavier

    2011-05-01

    Whey protein concentrate (WPC) was subjected to enzymatic hydrolysis by proteases from the flowers of Cynara cardunculus, and the resulting angiotensin-converting enzyme (ACE)-inhibitory effect was monitored. The whole WPC hydrolysate exhibited an IC(50) value of 52.9 ± 2.9 μg/mL, whereas the associated peptide fraction with molecular weight below 3 kDa scored 23.6 ± 1.1 μg/mL. The latter fraction was submitted to RP-HPLC, and 6 fractions were resolved that exhibited ACE-inhibitory effects. Among the various peptides found, a total of 14 were identified via sequencing with an ion-trap mass spectrometer. Eleven of these peptides were synthesized de novo--to validate their ACE-inhibitory effect, and also to ascertain their stability when exposed to simulated gastrointestinal digestion. Among them, three novel, highly potent peptides were found, corresponding to α-lactalbumin f(16-26)--with the sequence KGYGGVSLPEW, α-lactalbumin f(97-104) with DKVGINYW, and β-lactoglobulin f(33-42) with DAQSAPLRVY; their IC(50) values were as low as 0.80 ± 0.1, 25.2 ± 1.0 and 13.0 ± 1.0 μg/mL, respectively. None of them remained stable in the presence of gastrointestinal enzymes: they were partially, or even totally hydrolyzed to smaller peptides--yet the observed ACE-inhibitory effects were not severely affected for two of those peptides. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker.

    PubMed

    Furuhashi, Masato; Moniwa, Norihito; Mita, Tomohiro; Fuseya, Takahiro; Ishimura, Shutaro; Ohno, Kohei; Shibata, Satoru; Tanaka, Marenao; Watanabe, Yuki; Akasaka, Hiroshi; Ohnishi, Hirofumi; Yoshida, Hideaki; Takizawa, Hideki; Saitoh, Shigeyuki; Ura, Nobuyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney and converts angiotensin (Ang) II to Ang-(1-7), a renoprotective peptide. Urinary ACE2 has been shown to be elevated in patients with chronic kidney disease. However, the effects of antihypertensive agents on urinary ACE2 remain unclear. Of participants in the Tanno-Sobetsu cohort study in 2011 (n = 617), subjects on no medication (n = 101) and hypertensive patients treated with antihypertensive agents, including the calcium channel blockers amlodipine and long-acting nifedipine; the ACE inhibitor enalapril; and the Ang II receptor blockers losartan, candesartan, valsartan, telmisartan, and olmesartan, for more than 1 year (n = 100) were enrolled, and urinary ACE2 level was measured. Glucose and hemoglobin A1c were significantly higher in patients treated with enalapril, telmisartan or olmesartan than in the control subjects. Urinary albumin-to-creatinine ratio (UACR) was significantly higher in patients treated with enalapril than in the control subjects. Urinary ACE2 level was higher in the olmesartan-treated group, but not the other treatment groups, than in the control group. Urinary ACE2 level was positively correlated with systolic blood pressure (r = 0.211; P = 0.003), UACR (r = 0.367; P < 0.001), and estimated salt intake (r = 0.260; P < 0.001). Multivariable regression analysis after adjustment of age, sex, and the correlated indices showed that the use of olmesartan was an independent predictor of urinary ACE2 level. In contrast with other antihypertensive drugs, olmesartan may uniquely increase urinary ACE2 level, which could potentially offer additional renoprotective effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The endopeptidase activity and the activation by Cl- of angiotensin-converting enzyme is evolutionarily conserved: purification and properties of an an angiotensin-converting enzyme from the housefly, Musca domestica.

    PubMed Central

    Lamango, N S; Sajid, M; Isaac, R E

    1996-01-01

    A soluble 67 kDa angiotensin-converting enzyme (ACE) has been purified by lisinopril-Sepharose affinity column chromatography from adult houseflies, Musca domestica. The dipeptidyl carboxypeptidase activity towards benzoyl-Gly-His-Leu was inhibited by captopril (IC50 50 nM) and fosinoprilat (IC50 251 nM), two inhibitors of mammalian ACE, and was activated by Cl- (optimal Cl- concentration 600 mM). Musca ACE removed C-terminal dipeptides from angiotensin I, bradykinin [Leu5]enkephalin and [Met5]enkephalin and also functioned as an endopeptidase by hydrolysing dipeptideamides from [Leu5]enkephalinamide and [Met5]enkephalinamide, and a dipeptideamide and a tripeptideamide from substance P. Musca ACE was also able to cleave a tripeptide from both the N-terminus and C-terminus of luteinizing hormone-releasing hormone, with C-terminal hydrolysis predominating. Maximal N-terminal tripeptidase activity occurred at 150 mM NaCl, whereas the C-terminal tripeptidase activity continued to rise with increasing concentration of Cl- (0-0.5 M). Musca ACE displays properties of both the N- and C-domains of human ACE, indicating a high degree of conservation during evolution of the substrate specificity of ACE and its response to Cl-. PMID:8670080

  2. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors: Attack Severity, Treatment, and Hospital Admission in a Prospective Multicenter Study.

    PubMed

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-11-01

    The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack.A prospective, multicenter, observational study (April 2012-December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission.Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5-1.0] versus 3.9 [2.5-7.0] hours; P < 0.0001). Even though icatibant was injected more promptly than plasma-derived C1-INH, there, however, was no significant difference in median time to onset of symptom relief between the 2 drugs (0.5 [0.5-1.3] versus 0.5 [0.4-1.0] hours for C1-INH and icatibant, respectively, P = 0.49). Of the 62 patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3-28.2] and 5.9 [1.3-26.5], respectively). A favorable course

  3. Serp2, an Inhibitor of the Interleukin-1β-Converting Enzyme, Is Critical in the Pathobiology of Myxoma Virus

    PubMed Central

    Messud-Petit, Frederique; Gelfi, Jacqueline; Delverdier, Maxence; Amardeilh, Marie-France; Py, Robert; Sutter, Gerd; Bertagnoli, Stephane

    1998-01-01

    Recently, myxoma virus was shown to encode an additional member of the serpin superfamily. The viral gene, called serp2, was cloned, and the Serp2 protein was shown to specifically bind to interleukin-1β (IL-1β)-converting enzyme (ICE), thus inhibiting the cleavage of pro-IL-1β by the protease (F. Petit, S. Bertagnoli, J. Gelfi, F. Fassy, C. Boucraut-Baralon, and A. Milon, J. Virol. 70:5860–5866, 1996). Here, we address the role of Serp2 in the development of myxomatosis, a lethal infectious disease of the European rabbit. A Serp2 mutant myxoma virus was constructed by disruption of the single-copy serp2 gene and insertion of the Escherichia coli gpt gene serving as the selectable marker. A revertant virus was obtained by replacing the E. coli gpt gene by the intact serp2 open reading frame. The Serp2− mutant virus replicated with wild-type kinetics both in rabbit fibroblasts and a rabbit CD4+ T-cell line (RL5). Moderate reduction of cell surface levels of major histocompatibility complex I was observed after infection with wild-type or Serp2− mutant myxoma virus, and both produced white pocks on the chorioallantoic membrane of the chick embryo. After the infection of European rabbits, the Serp2− mutant virus proved to be highly attenuated compared to wild-type myxoma virus, as demonstrated by the clinical course of myxomatosis and the survival rates of infected animals. Pathohistological examinations revealed that infection with wild-type myxoma virus resulted in a blockade of the inflammatory response at the vascular level. In contrast, rapid inflammatory reactions occurred upon infection with the Serp2− mutant virus. Furthermore, lymphocytes in lymph nodes derived from animals inoculated with Serp2 mutant virus were shown to rapidly undergo apoptosis. We postulate that the virulence of myxoma virus in the European rabbit can be partially attributed to an impairment of host inflammatory processes and to the prevention of apoptosis in lymphocytes. The

  4. Circulating angiotensin-converting enzyme 2 activity in patients with chronic kidney disease without previous history of cardiovascular disease.

    PubMed

    Anguiano, Lidia; Riera, Marta; Pascual, Julio; Valdivielso, José Manuel; Barrios, Clara; Betriu, Angels; Mojal, Sergi; Fernández, Elvira; Soler, María José

    2015-07-01

    Patients with cardiovascular (CV) disease have an increased circulating angiotensin-converting enzyme 2 (ACE2) activity, but there is little information about changes in ACE2 in chronic kidney disease (CKD) patients without history of CV disease. We examined circulating ACE2 activity in CKD patients at stages 3-5 (CKD3-5) and in dialysis (CKD5D) without any history of CV disease. Circulating ACE2 activity was measured in human ethylenediamine-tetraacetic acid (EDTA)-plasma samples from the NEFRONA study (n = 2572): control group (CONT) (n = 568), CKD3-5 (n = 1458) and CKD5D (n = 546). Different clinical and analytical variables such as gender; age; history of diabetes mellitus (DM), dyslipidemia and hypertension; glycaemic, renal, lipid and anaemia profiles; vitamin D analogues treatment and antihypertensive treatments (angiotensin-converting enzyme inhibitor and angiotensin receptor blockade) were analysed. Circulating ACE2 and ACE activities were measured using modified fluorimetric assay for EDTA-plasma samples, where zinc chloride was added to recover enzymatic activity. In CKD3-5 and CKD5D, significant decrease in circulating ACE2 activity was observed when compared with CONT, but no differences were found between CKD3-5 and CKD5 when performing paired case-control studies. By multivariate linear regression analysis, male gender and advanced age were identified as independent predictors of ACE2 activity in all groups. Diabetes was identified as independent predictor of ACE2 activity in CKD3-5. Significant increase in the activity of circulating ACE was found in CKD3-5 and CKD5D when compared with CONT and in CKD5D when compared with CKD3-5. By multiple regression analysis, female gender and younger age were identified as independent predictors of ACE activity in CONT and CKD3-5. Diabetes was also identified as an independent predictor of ACE activity in CKD3-5 patients. Circulating ACE2 and ACE activities can be measured in human EDTA-plasma samples with zinc

  5. Angiotensin-Converting Enzyme I/D Polymorphism and Preeclampsia Risk: Evidence of Small-Study Bias

    PubMed Central

    Serrano, Norma C; Díaz, Luis A; Páez, Maria C; Mesa, Clara M; Cifuentes, Rodrigo; Monterrosa, Alvaro; González, Adriana; Smeeth, Liam; Hingorani, Aroon D; Casas, Juan P

    2006-01-01

    Background Inappropriate activation of the renin–angiotensin system may play a part in the development of preeclampsia. An insertion/deletion polymorphism within the angiotensin-I converting enzyme gene (ACE-I/D) has shown to be reliably associated with differences in angiotensin-converting enzyme (ACE) activity. However, previous studies of the ACE-I/D variant and preeclampsia have been individually underpowered to detect plausible genotypic risks. Methods and Findings A prospective case-control study was conducted in 1,711 unrelated young pregnant women (665 preeclamptic and 1,046 healthy pregnant controls) recruited from five Colombian cities. Maternal blood was obtained to genotype for the ACE-I/D polymorphism. Crude and adjusted odds ratio (OR) and 95% confidence interval (CI) using logistic regression models were obtained to evaluate the strength of the association between ACE-I/D variant and preeclampsia risk. A meta-analysis was then undertaken of all published studies to February 2006 evaluating the ACE-I/D variant in preeclampsia. An additive model (per-D-allele) revealed a null association between the ACE-I/D variant and preeclampsia risk (crude OR = 0.95 [95% CI, 0.81–1.10]) in the new case-control study. Similar results were obtained after adjusting for confounders (adjusted per-allele OR = 0.90 [95% CI, 0.77–1.06]) and using other genetic models of inheritance. A meta-analysis (2,596 cases and 3,828 controls from 22 studies) showed a per-allele OR of 1.26 (95% CI, 1.07–1.49). An analysis stratified by study size showed an attenuated OR toward the null as study size increased. Conclusions It is highly likely that the observed small nominal increase in risk of preeclampsia associated with the ACE D-allele is due to small-study bias, similar to that observed in cardiovascular disease. Reliable assessment of the origins of preeclampsia using a genetic approach may require the establishment of a collaborating consortium to generate a dataset of

  6. Pharmacogenetic Risk Stratification in Angiotensin-Converting Enzyme Inhibitor-Treated Patients with Congestive Heart Failure: A Retrospective Cohort Study

    PubMed Central

    Nelveg-Kristensen, Karl Emil; Busk Madsen, Majbritt; Torp-Pedersen, Christian; Køber, Lars; Egfjord, Martin; Berg Rasmussen, Henrik; Riis Hansen, Peter

    2015-01-01

    Background Evidence for pharmacogenetic risk stratification of angiotensin-converting enzyme inhibitor (ACEI) treatment is limited. Therefore, in a cohort of ACEI-treated patients with congestive heart failure (CHF), we investigated the predictive value of two pharmacogenetic scores that previously were found to predict ACEI efficacy in patients with ischemic heart disease and hypertension, respectively. Score A combined single nucleotide polymorphisms (SNPs) of the angiotensin II receptor type 1 gene (rs275651 and rs5182) and the bradykinin receptor B1 gene (rs12050217). Score B combined SNPs of the angiotensin-converting enzyme gene (rs4343) and ABO blood group genes (rs495828 and rs8176746). Methods Danish patients with CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were included. Subjects were genotyped and categorized according to pharmacogenetic scores A and B of ≤1, 2 and ≥3 each, and followed for up to 10 years. Difference in cumulative incidences of cardiovascular death and all-cause death were assessed by the cumulative incidence estimator. Survival was modeled by Cox proportional hazard analyses. Results We included 667 patients, of whom 80% were treated with ACEIs. Differences in cumulative incidences of cardiovascular death (P = 0.346 and P = 0.486) and all-cause death (P = 0.515 and P = 0.486) were not significant for score A and B, respectively. There was no difference in risk of cardiovascular death or all-cause death between subjects with score A ≤1 vs. 2 (HR 1.03 [95% CI 0.79–1.34] and HR 1.11 [95% CI 0.88–1.42]), score A ≤1 vs. ≥3 (HR 0.80 [95% CI 0.59–1.08] and HR 0.91 [95% CI 0.70–1.20]), score B ≤1 vs. 2 (HR 1.02 [95% CI 0.78–1.32] and HR 0.98 [95% CI 0.77–1.24]), and score B ≤1 vs. ≥3 (HR 1.03 [95% CI 0.75–1.41] and HR 1.05 [95% CI 0.79–1.40]), respectively. Conclusions We found no association between either of the analyzed pharmacogenetic scores and fatal outcomes in ACEI

  7. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    PubMed

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the

  8. Interleukin-1 beta-converting enzyme-like protease cleaves DNA- dependent protein kinase in cytotoxic T cell killing

    PubMed Central

    1996-01-01

    Cytotoxic T cells (CTL) represent the major defense mechanism against the spread of virus infection. It is believed that the pore-forming protein, perforin, facilitates the entry of a series of serine proteases (particularly granzyme B) into the target cell which ultimately leads to DNA fragmentation and apoptosis. We demonstrate here that during CTL-mediated cytolysis the catalytic subunit of DNA- dependent protein kinase (DNA-PKcs), an enzyme implicated in the repair of double strand breaks in DNA, is specifically cleaved by an interleukin (IL)-1 beta-converting enzyme (ICE)-like protease. A serine protease inhibitor, 3,4-dichloroisocoumarin (DCl), which is known to block granzyme B activity, inhibited CTL-induced apoptosis and prevented the degradation of DNA-PKcs in cells but failed to prevent the degradation of purified DNA-PKcs by CTL extracts. However, Tyr-Val- Ala-Asp-CH2Cl (YVAD-CMK) and other cysteine protease inhibitors prevented the degradation of purified DNA-PKcs by CTL extracts. Furthermore, incubation of DNA-PKcs with granzyme B did not produce the same cleavage pattern observed in cells undergoing apoptosis and when this substrate was incubated with either CTL extracts or the ICE-like protease, CPP32. Sequence analysis revealed that the cleavage site in DNA-PKcs during CTL killing was the same as that when this substrate was exposed to CPP32. This study demonstrates for the first time that the cleavage of DNA-PKcs in this intact cell system is exclusively due to an ICE-like protease. PMID:8760815

  9. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation.

    PubMed

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2015-03-01

    Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and

  10. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction.

    PubMed Central

    Studer, R; Reinecke, H; Müller, B; Holtz, J; Just, H; Drexler, H

    1994-01-01

    Local activation of the components of the renin angiotensin system in the heart is regarded as an important modulator of cardiac phenotype and function; however, little is known about their presence, regulation, and potential activation in the human heart. To investigate the gene expression of major angiotensin-II-forming enzymes in left ventricles of normal (n = 9) and failing human hearts (n = 20), we established a competitive RNA-polymerase chain reaction (PCR) for mRNA quantification of angiotensin-I converting enzyme (ACE) and human heart chymase. For each gene, competitor RNA targets with small internal deletions were used as internal standards to quantify the original number of transcripts and to control reverse transcription and PCR. In PCR, each target and the corresponding competitor were amplified by competing for the same primer oligonucleotides. The variability of ACE RNA-PCR was 11% indicating a high reproducibility of this method. In addition, ACE mRNA levels obtained by competitive RNA-PCR correlated favorably with traditional slot blot hybridization (r = 0.69, n = 10; P < 0.05). Compared with nonfailing hearts, the number of ACE transcripts referred to 100 ng of total RNA was increased threefold in patients with chronic heart failure (4.2 +/- 2.5 vs. 12.8 +/- 6 x 10(5); P < 0.0005). In contrast, no significant difference was found in chymase gene expression between normal and failing hearts. Thus, the expression of the cardiac ACE but not of human heart chymase is upregulated in failing human heart indicating an activation of the cardiac renin-angiotensin system in patients with advanced heart failure. Images PMID:8040271

  11. Angiotensin-converting enzyme of the human small intestine. Subunit and quaternary structure, biosynthesis and membrane association.

    PubMed Central

    Naim, H Y

    1992-01-01

    Angiotensin-converting enzyme (ACE) was isolated from detergent-derived extracts of human intestinal brush-border membranes (BBMs) by immunoprecipitation using a monoclonal antibody. Analysis of the immunoprecipitates by SDS/PAGE revealed a polypeptide of apparent M(r) 184,000 under reducing and non-reducing conditions, indicating that ACE does not contain intermolecular disulphide bridges. The quaternary structure of ACE was examined using cross-linking experiments with dithiobis[succinimidylpropionate] (DSP) and density gradient centrifugation on sucrose gradients. Both approaches demonstrated that ACE is assembled in the membrane as a monomer. By contrast, the control glycoprotein aminopeptidase N (ApN) exists as a dimer. Biosynthetic labelling experiments in intestinal tissue explants demonstrated that the 184,000-M(r) protein is generated from a single-polypeptide, mannose-rich precursor of ACE (M(r) 175,000) by modification of the carbohydrate side-chains in the Golgi apparatus. The mode of association of the mature form of the enzyme with BBMs was investigated by hydrophobic labelling of right-side-out brush-border vesicles with the photoactivatable carbene-generating reagent 125I-labelled 3-(trifluoromethyl)-3-(m[formylamino]phenyl)diazirine (125I-labelled TID), followed by treatment with trypsin at dilutions that do not cause substantial degradation of ACE. These studies demonstrated that ACE is associated with the membrane via a hydrophobic segment. Furthermore, treatment of 35S-labelled inside-out membrane vesicles with trypsin revealed that ACE possesses a cytoplasmic tail, and therefore has a transmembraneous orientation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:1326943

  12. Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2.

    PubMed

    Moran, Corey S; Biros, Erik; Krishna, Smriti M; Wang, Yutang; Tikellis, Chris; Moxon, Joseph V; Cooper, Mark E; Norman, Paul E; Burrell, Louise M; Thomas, Merlin C; Golledge, Jonathan

    2017-09-21

    Recent evidence suggests an important role for angiotensin-converting enzyme 2 (ACE2) in limiting abdominal aortic aneurysm (AAA). This study examined the effect of ACE2 deficiency on AAA development and the efficacy of resveratrol to upregulate ACE2 in experimental AAA. APPROACH AND RESULTS: Ace2 deletion in apolipoprotein-deficient mice (ApoE(-/)(-)Ace2(-/y) ) resulted in increased aortic diameter and spontaneous aneurysm of the suprarenal aorta associated with increased expression of inflammation and proteolytic enzyme markers. In humans, serum ACE2 activity was negatively associated with AAA diagnosis. ACE2 expression was lower in infrarenal biopsies of patients with AAA than organ donors. AAA was more severe in ApoE(-/-)Ace2(-/y) mice compared with controls in 2 experimental models. Resveratrol (0.05/100-g chow) inhibited growth of pre-established AAAs in ApoE(-/-) mice fed high-fat chow and infused with angiotensin II continuously for 56 days. Reduced suprarenal aorta dilatation in mice receiving resveratrol was associated with elevated serum ACE2 and increased suprarenal aorta tissue levels of ACE2 and sirtuin 1 activity. In addition, the relative phosphorylation of Akt and ERK (extracellular signal-regulated kinase) 1/2 within suprarenal aorta tissue and gene expression for nuclear factor of kappa light polypeptide gene enhancer in B cells 1, angiotensin type-1 receptor, and metallopeptidase 2 and 9 were significantly reduced. Upregulation of ACE2 in human aortic smooth muscle cells by resveratrol in vitro was sirtuin 1-dependent. This study provides experimental evidence of an important role for ACE2 in limiting AAA development and growth. Resveratrol upregulated ACE2 and inhibited AAA growth in a mouse model. © 2017 American Heart Association, Inc.

  13. Cell Signaling, Internalization, and Nuclear Localization of the Angiotensin Converting Enzyme in Smooth Muscle and Endothelial Cells*

    PubMed Central

    Lucero, Héctor A.; Kintsurashvili, Ekaterina; Marketou, Maria E.; Gavras, Haralambos

    2010-01-01

    The angiotensin converting enzyme (ACE) catalyzes the extracellular formation of angiotensin II, and degradation of bradykinin, thus regulating blood pressure and renal handling of electrolytes. We have previously shown that exogenously added ACE elicited transcriptional regulation independent of its enzymatic activity. Because transcriptional regulation generates from protein-DNA interactions within the cell nucleus we have investigated the initial cellular response to exogenous ACE and the putative internalization of the enzyme in smooth muscle cells (SMC) and endothelial cells (EC). The following phenomena were observed when ACE was added to cells in culture: 1) it bound to SMC and EC with high affinity (Kd = 361.5 ± 60.5 pm) and with a low binding occupancy (Bmax = 335.0 ± 14.0 molecules/cell); 2) it triggered cellular signaling resulting in late activation of focal adhesion kinase and SHP2; 3) it modulated platelet-derived growth factor receptor-β signaling; 4) it was endocytosed by SMC and EC; and 5) it transited through the early endosome, partially occupied the late endosome and the lysosome, and was localized to the nuclei. The incorporation of ACE or a fragment of it into the nuclei reached saturation at 120 min, and was preceded by a lag time of 40 min. Internalized ACE was partially cleaved into small fragments. These results revealed that extracellular ACE modulated cell signaling properties, and that SMC and EC have a pathway for delivery of extracellular ACE to the nucleus, most likely involving cell surface receptor(s) and requiring transit through late endosome/lysosome compartments. PMID:20022959

  14. Conditional inactivation of TNFα-converting enzyme in chondrocytes results in an elongated growth plate and shorter long bones.

    PubMed

    Saito, Kenta; Horiuchi, Keisuke; Kimura, Tokuhiro; Mizuno, Sakiko; Yoda, Masaki; Morioka, Hideo; Akiyama, Haruhiko; Threadgill, David; Okada, Yasunori; Toyama, Yoshiaki; Sato, Kazuki

    2013-01-01

    TNFα-converting enzyme (TACE) is a membrane-bound proteolytic enzyme with essential roles in the functional regulation of TNFα and epidermal growth factor receptor (EGFR) ligands. Previous studies have demonstrated critical roles for TACE in vivo, including epidermal development, immune response, and pathological neoangiogenesis, among others. However, the potential contribution of TACE to skeletal development is still unclear. In the present study, we generated a Tace mutant mouse in which Tace is conditionally disrupted in chondrocytes under the control of the Col2a1 promoter. These mutant mice were fertile and viable but all exhibited long bones that were approximately 10% shorter compared to those of wild-type animals. Histological analyses revealed that Tace mutant mice exhibited a longer hypertrophic zone in the growth plate, and there were fewer osteoclasts at the chondro-osseous junction in the Tace mutant mice than in their wild-type littermates. Of note, we found an increase in osteoprotegerin transcripts and a reduction in Rankl and Mmp-13 transcripts in the TACE-deficient cartilage, indicating that dysregulation of these genes is causally related to the skeletal defects in the Tace mutant mice. Furthermore, we also found that phosphorylation of EGFR was significantly reduced in the cartilage tissue lacking TACE, and that suppression of EGFR signaling increases osteoprotegerin transcripts and reduces Rankl and Mmp-13 transcripts in primary chondrocytes. In accordance, chondrocyte-specific abrogation of Egfr in vivo resulted in skeletal defects nearly identical to those observed in the Tace mutant mice. Taken together, these data suggest that TACE-EGFR signaling in chondrocytes is involved in the turnover of the growth plate during postnatal development via the transcriptional regulation of osteoprotegerin, Rankl, and Mmp-13.

  15. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide

    USDA-ARS?s Scientific Manuscript database

    An eight amino acid fragment (PFPEVFGK) of a known milk protein-derived antihypertensive peptide was synthesized by microwave-assisted solid phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit the angiotensin-converting enzyme was assessed and compared to that of the ...

  16. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal

    PubMed Central

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-01-01

    Key Clinical Message C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  17. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    PubMed

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine.

  18. Sleep-related movement disorder symptoms in SHR are attenuated by physical exercise and an angiotensin-converting enzyme inhibitor.

    PubMed

    Frank, Miriam Kannebley; de Mello, Marco Tulio; Lee, Kil Sun; Daubian-Nosé, Paulo; Tufik, Sergio; Esteves, Andrea Maculano

    2016-02-01

    The relationship between hypertension and sleep-related movement disorders has been hypothesized for humans, but the causes and mechanisms have not been elucidated. We investigated whether an alteration in blood pressure (BP) induced by physical exercise and/or an angiotensin-converting enzyme inhibitor (enalapril) could affect locomotor activity in spontaneously hypertensive rats, with emphasis on the dopaminergic system. We used SHR and normotensive Wistar rats distributed into 4 groups for each strain: control, physical exercise, enalapril and physical exercise+enalapril. Physical exercise was performed on a treadmill, and enalapril was administered by gavage, both for 8weeks. During this period, locomotor activity was evaluated in an open field test, and BP was evaluated by tail plethysmography. Dopaminergic receptors, dopamine transporter and tyrosine hydroxylase levels at the striatum were evaluated by Western blotting. The control group of spontaneously hypertensive rats showed higher BP, increased activity in the open field test and lower levels of D2 receptors and tyrosine hydroxylase compared with all other groups throughout the experimental period. In general, physical exercise and enalapril attenuated these alterations. This study suggested the existence of comorbidity between hypertension and sleep-related movement disorders in spontaneously hypertensive rats. Physical exercise and enalapril conferred protection for both hypertension and the observed behavioral changes. In addition, these treatments led to changes in dopaminergic signaling in the striatal region (i.e., D2 receptor, TH and DAT).

  19. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan.

    PubMed

    Abe, Masanori; Oikawa, Osamu; Okada, Kazuyoshi; Soma, Masayoshi

    2015-03-01

    Angiotensin-converting enzyme 2 (ACE2) is a member of the renin-angiotensin system that degrades angiotensin (Ang) II to the seven-amino acid peptide fragment Ang-(1-7). We evaluated the changes in urinary ACE2 levels in response to treatment with the angiotensin II type 1 receptor blocker olmesartan in diabetes patients with nephropathy. This prospective, open-label, interventional study was conducted with 31 type 2 diabetes patients with nephropathy. After initial evaluation, patients received 20 mg/day olmesartan, which was increased to 40 mg/day over a 24-week period. In diabetes patients with chronic kidney disease, olmesartan significantly increased urinary ACE2 levels independently of blood pressure and plasma aldosterone levels and reduced albuminuria, urinary liver-type fatty acid binding protein (L-FABP), and plasma aldosterone levels. Multivariable regression analysis revealed that the change in urinary L-FABP levels was an independent predictor of increased urinary ACE2 levels. Olmesartan may have the unique effect of increasing urinary ACE2 levels. However, whether this contributes to olmesartan's renoprotective effect must be examined further. © The Author(s) 2014.

  20. Pharmacological and clinical studies with temocapril, an angiotensin converting enzyme inhibitor that is excreted in the bile.

    PubMed

    Yasunari, Kenichi; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Yoshikawa, Junichi; Asada, Akira

    2004-01-01

    Temocapril is an angiotensin converting enzyme inhibitor (ACEI), a prodrug with a thiazepine ring. Its active form, temocaprilat, is slightly more potent than enalaprilat in inhibiting ACE isolated from rabbit lung. The inhibitory potency of temocaprilat on isolated rat aorta is 3 times that of enalaprilat. Temocapril is excreted in the bile and urine and can be used in patients with renal insufficiency. It reduces blood pressure without causing any significant change in heart rate or cardiac output. Temocapril has been reported to improve endothelial dysfunction in vitro by suppressing increased oxidative stress. In vivo it improves reactive hyperemia in patients with essential hypertension. It has been reported to prevent coronary vascular remodeling in vivo by suppressing local ACE and increased oxidative stress. In humans temocapril has been found to improve insulin resistance partly by increasing adiponectin levels. Cardiac remodeling was improved by temocapril not only in experiment animals but also in humans. It improves renal function and decreases urinary albumin excretion in diabetics as well as in hypertensive patients. Temocapril is currently marketed only in Japan. Considering its beneficial effects and unique pharmacokinetics, temocapril, is likely to be introduced in other countries as well.

  1. LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs.

    PubMed

    Hu, Ying; Stromeck, Achim; Loponen, Jussi; Lopes-Lutz, Daise; Schieber, Andreas; Gänzle, Michael G

    2011-11-23

    This study quantified antiotensin I-converting enzyme (ACE) inhibitory peptides in rye malt sourdoughs supplemented with gluten proteins and fermented with six strains of Lactobacillus spp. Bioinformatic analysis of prolamins from barley, rye, and wheat demonstrated that the ACE inhibitory peptides LQP, LLP, VPP, and IPP are frequently encrypted in their primary sequence. These tripeptides were quantified by liquid chromatography-tandem mass spectrometry. Tripeptide levels in sourdoughs were generally higher as compared to the chemically acidified controls. Sourdoughs fermented with different strains showed different concentrations of LQP and LLP. These differences corresponded to strain-specific differences in PepO and PepN activities. The highest levels of peptides VPP, IPP, LQP, and LLP, 0.23, 0.71, 1.09, and 0.09 mmol (kg DM)(-1), respectively, were observed in rye malt: gluten sourdoughs fermented with Lactobacillus reuteri TMW 1.106 and added protease. These concentrations were 6-7 times higher as compared to sourdough without fungal protease and exceed the IC(50) by 100-1000-fold.

  2. The effectiveness and safety of angiotensin-converting enzyme inhibition or receptor blockade in vascular diseases in patients with hemodialysis

    PubMed Central

    Liao, Kuang-Ming; Cheng, Hui-Teng; Lee, Yi-Hsuan; Chen, Chung-Yu

    2017-01-01

    Abstract Patients with end-stage renal disease (ESRD) who are on hemodialysis have high risk of vascular diseases. Our study sought to examine whether angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin type 1 receptor blockers (ARBs) could reduce the frequencies of cardiovascular and cerebrovascular events in patients receiving hemodialysis using the medication possession ratio (MPR) method of analysis. This retrospective cohort study identified cases of ESRD with dialysis from the National Health Insurance Research Database between 1999 and 2006, and used Cox-regression methods to evaluate risk of poor outcomes. Primary outcomes, including death from any cause, and secondary outcomes, including admission for stroke, myocardial infarction, and heart failure, were examined. Compared to the nonuser group, the adjusted HRs for mortality of the nonadherence group and the adherence group were 0.81 (95% CI: 0.76–0.86) and 0.98 (95% CI: 0.86–1.13), respectively. Cardiovascular events were more frequent in patients with ESRD receiving ACEIs /ARBs than in nonusers. Compared with nonusers, the hazard of secondary outcome significantly increased in the nonadherence group or adherence group in 10 years follow-up. Compared with patients with diabetes or chronic kidney disease, patients on hemodialysis may not experience the same cardiovascular and cerebrovascular benefits from ACEIs/ARBs use. PMID:28353612

  3. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium.

    PubMed

    Gamboa-Gómez, Claudia I; González-Laredo, Rubén F; Gallegos-Infante, José Alberto; Pérez, Mş Del Mar Larrosa; Moreno-Jiménez, Martha R; Flores-Rueda, Ana G; Rocha-Guzmán, Nuria E

    2016-09-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical (i.e. lower IC50). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  4. Evaluation of bamboo shoot peptide preparation with angiotensin converting enzyme inhibitory and antioxidant abilities from byproducts of canned bamboo shoots.

    PubMed

    Liu, Lianliang; Liu, Lingyi; Lu, Baiyi; Chen, Meiqin; Zhang, Ying

    2013-06-12

    In this paper, aqueous extract fractions from byproducts of the processing of canned bamboo shoots, including boiled water, filled liquid, and squeezed juice, were obtained by 5 kDa molecular cutoff membranes and marcoporous resin DA201-C treatment. The enriched bamboo shoot angiotensin converting enzyme (ACE) inhibitory peptide preparation fraction (called BSP for short) was extracted with ethyl acetate and n-butanol. The ethyl acetate fraction and n-butanol fraction exhibited higher antioxidant capacities than the leaving water fraction (BSML), which was attributed to the higher phenolic acid and flavonoid content of both fractions, while BSML exhibited the strongest ACE inhibitory activity. Sephadex G-15 gel filtration and semipreparative high-performance liquid chromatography were used for further purification of bamboo shoot ACE inhibitory peptide from BSML. Asp-Tyr was identified as the key active component by ultra-high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. A short-term antihypertensive assay stated that both Asp-Tyr [10 mg day(-1) (kg of body weight)(-1)] and BSP [50 mg day(-1) (kg of body weight)(-1)] could significantly reduce the systolic blood pressure of spontaneously hypertensive rats (3-6 h). This study provides further examples of utilization of byproducts from the processing of canned bamboo shoots for the prevention of hypertension and attenuation of oxidative stress.

  5. Endothelin-converting enzyme-1 (ECE-1) is a downstream target of the homeobox transcription factor Nkx2-5.

    PubMed

    Funke-Kaiser, H; Lemmer, J; Langsdorff, C V; Thomas, A; Kovacevic, S D; Strasdat, M; Behrouzi, T; Zollmann, F S; Paul, M; Orzechowski, H-D

    2003-08-01

    The homeobox transcription factor Nkx2-5 and the zinc metalloprotease endothelin-converting enzyme-1 (ECE-1) are essential for cardiac development. Here, we demonstrate for the first time a functional link between Nkx2-5 and ECE-1. In transiently transfected rat H9c2 cardiomyoblasts, the alternative promoters specific for ECE-1a, ECE-1b, and ECE-1c are activated by Nkx2-5 coexpression. Lack of a consensus sequence for Nkx2-5 binding within the ECE-1c promoter and mutational analyses of Nkx2-5 consensus sequences identified in the ECE-1a and ECE-1b promoters, respectively, reveal an indirect mechanism of activation that is supported by gel shift assays. Furthermore, we have evidence of an additional direct activation mechanism of the ECE-1b promoter by Nkx2-5. With the use of RNase protection assay, Northern blot, and real-time PCR, the activating effect of Nkx2-5 on mRNA expression of ECE-1 isoforms was confirmed in the chromatin context of H9c2 and endothelial EA.hy926 cells, respectively, by stable Nkx2-5 overexpression. The interaction presented in this work provides a possible explanation for distinct phenotypic aspects of patients carrying mutations in the Nkx2-5 gene and may also be of significance for the pathophysiology of heart failure.

  6. The effects of phosphoramidon on the expression of human endothelin-converting enzyme-1 (ECE-1) isoforms.

    PubMed

    Isaka, Daiji; Emoto, Noriaki; Raharjo, Sunu Budhi; Yokoyama, Mitsuhiro; Matsuo, Masafumi

    2003-07-01

    Endothelin-1 (ET-1) is generated from big ET-1 by endothelin converting enzyme-1 (ECE-1). This process is inhibited by phosphoramidon through binding to the catalytic domain of ECE-1. There are four isoforms of human ECE-1 (ECE-1a, ECE-1b, ECE-1c and ECE-1d) which possess a conserved catalytic domain. Interestingly, a recent study has shown that in ECE-1b-transfected CHO cells phosphoramidon increases the expression and activity of ECE-1b. It is not known, however, whether phosphoramidon has similar effects on the expression of other ECE-1 isoforms. To address this point, we have established recombinant CHO cell lines that permanently express either human ECE-1a, ECE-1b or ECE-1c. Incubation of CHO/ECE-1a, -1b, and -1c with phosphoramidon (100 microM) for 16 hours markedly elevated the intracellular expression of ECE-1a and ECE-1b, but not ECE-1c protein, as indicated by Western blotting and immunocytochemistry. These increases appear to be due to inhibition of intracellular degradation of the protein because metabolic labeling followed by immunoprecipitation showed ECE-1a and ECE-1b proteins had prolonged half-lives in the phosphoramidon-treated cells. This is further supported by the finding that ECE-1 mRNA levels were unchanged following phosphoramidon treatment. Taken together, our results demonstrate that phosphoramidon differentially affects the expression of three human ECE-1 isoforms.

  7. On the role of endothelin-converting enzyme-1 (ECE-1) and neprilysin in human breast cancer.

    PubMed

    Smollich, Martin; Götte, Martin; Yip, George W; Yong, Eng-Siang; Kersting, Christian; Fischgräbe, Jeanett; Radke, Isabel; Kiesel, Ludwig; Wülfing, Pia

    2007-12-01

    Endothelin-1 (ET-1) and its receptors, ET(A)R and ET(B)R, are overexpressed in breast carcinomas. However, little is known about the relevance of endothelin-converting enzyme-1 (ECE-1) and ET-1 degrading neprilysin (NEP). In this study, expression of ECE-1 and NEP was determined in 600 breast cancer tissue samples by immunohistochemistry; staining results were correlated with clinicopathological parameters. For ECE-1 expression, we found a significant correlation with VEGF (P < 0.001) and ET(A)R expression (P = 0.048). While patients with ECE-1 overexpressing tumours had more frequent disease recurrence (P = 0.03), NEP overexpression correlated with improved disease-free survival (DFS) (P = 0.023) and less frequent metastasis (P = 0.046). Also, a decrease of NEP expression with malignant progression (G1-G3) was found. ECE-1 inhibition using the selective ECE-1 inhibitor RO 67-7447 in MCF-7 breast cancer cells led to a significantly decreased ET-1 expression and reduced cell invasiveness (54.3% of controls, P = 0.014). Our results indicate that overexpression of ECE-1 is associated with unfavourable outcome, whereas NEP positively influences survival. Thus, expression of ECE-1 and NEP may have prognostic relevance. Due to the anti-invasive effect of the selective ECE-1 inhibitor, targeting ECE-1 may represent an innovative option in future breast cancer therapy.

  8. Isoforms of endothelin-converting enzyme-1 (ECE-1) have opposing effects on prostate cancer cell invasion.

    PubMed

    Lambert, L A; Whyteside, A R; Turner, A J; Usmani, B A

    2008-10-07

    Cross-talk between tumour and stromal cells can profoundly influence cancer cell invasion by increasing the availability of mitogenic peptides such as endothelin-1 (ET-1). Endothelin-1 is elevated in men with metastatic prostate cancer (PC), and can exert both an autocrine (epithelial) and a paracrine (stromal) influence on growth. Endothelin-1 is generated from its inactive precursor big-ET-1 by endothelin-converting enzyme 1 (ECE-1). We and others have demonstrated that ECE-1 expression is significantly elevated in tumours and surrounding stromal tissue. Our current data show siRNA-mediated knockdown of stromal ECE-1 reduces epithelial (PC-3) cell invasion in coculture. Interestingly, readdition of ET-1 only partially recovers this effect suggesting a novel role for ECE-1 independent of ET-1 activation. Parallel knockdown of ECE-1 in both stromal and epithelial compartments results in an additive decrease in cell invasion. We extrapolated this observation to the four recognised isoforms ECE-1a, ECE-1b, ECE-1c and ECE-1d. Only ECE-1a and ECE-1c were significant but with reciprocal effects on cell invasion. Transient ECE-1c overexpression increased PC-3 invasiveness through matrigel, whereas transient ECE-1a expression suppressed invasion. Furthermore, transient ECE-1a expression in stromal cells strongly counteracts the effect of transient ECE-1c expression in PC-3 cells. The ECE-1 isoforms may, therefore, be relevant targets for antiinvasive therapy in prostate and other cancers.

  9. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities.

    PubMed

    Corrêa, Ana Paula Folmer; Daroit, Daniel Joner; Fontoura, Roberta; Meira, Stela Maris Meister; Segalin, Jeferson; Brandelli, Adriano

    2014-11-01

    Enzymatic proteolysis may be employed to release bioactive peptides, which have been investigated for potential benefits from both technological and human health perspectives. In this study, sheep cheese whey (SCW) was hydrolyzed with a protease preparation from Bacillus sp. P7, and the hydrolysates were evaluated for antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities. Soluble protein and free amino acids increased during hydrolysis of SCW for up to 4h. Antioxidant activity of hydrolysates, evaluated by the 2,2'azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid radical scavenging method, increased 3.2-fold from 0 h (15.9%) to 6h of hydrolysis (51.3%). Maximum Fe(2+) chelation was reached in 3h hydrolysates, and the reducing power peaked at 1h of hydrolysis, representing 6.2 and 2.1-fold increase, respectively, when compared to that of non-hydrolyzed SCW. ACE inhibition by SCW (12%) was improved through hydrolysis, reaching maximal values (55% inhibition) in 4h, although 42% inhibition was already observed after 1h hydrolysis. The peptide LAFNPTQLEGQCHV, derived from β-lactoglobulin, was identified from 4-h hydrolysates. Such a biotechnological approach might be an interesting strategy for SCW processing, potentially contributing to the management and valorization of this abundant dairy byproduct. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine.

    PubMed

    Singh, V K; Mishra, A; Gupta, K K; Misra, R; Patel, M L; Shilpa

    2015-01-01

    The aim of our study was to find out the antiproteinuric effect of enalapril angiotensin-converting enzyme (ACE inhibitor) alone or in combination with cilnidipine in patients with type-2 diabetes mellitus. The study was conducted on 71 patients with type-2 diabetes mellitus patients with hypertension and microalbuminuria. They were divided into two groups randomly as follows: Group I (enalaprilalone, n = 36) and Group II (enalapril with cilnidipine, n = 35). In both the groups, baseline 24 h urinary albumin was estimated and was repeated every 3 months upto 1-year. After 1-year follow-up, reduction in microalbuminuria was found to be greater in Group II. In Group I microalbuminuria came down by 25.68 ± 21.40 while in Group II it reduced by 54.88 ± 13.84 (P < 0.001). We conclude that in diabetic population, cilnidipine has an additive effect in microalbuminuria reduction over and above the well-proven effect of ACE inhibitors.

  11. Potentiation of Paclitaxel-Induced Pain Syndrome in Mice by Angiotensin I Converting Enzyme Inhibition and Involvement of Kinins.

    PubMed

    Brusco, Indiara; Silva, Cássia Regina; Trevisan, Gabriela; de Campos Velho Gewehr, Camila; Rigo, Flávia Karine; La Rocca Tamiozzo, Lidia; Rossato, Mateus Fortes; Tonello, Raquel; Dalmolin, Gerusa Duarte; de Almeida Cabrini, Daniela; Gomez, Marcus Vinícius; Ferreira, Juliano; Oliveira, Sara Marchesan

    2016-11-14

    Paclitaxel is a chemotherapeutic agent used to treat solid tumours. However, it causes an acute and neuropathic pain syndrome that limits its use. Among the mechanisms involved in neuropathic pain caused by paclitaxel is activation of kinin receptors. Angiotensin converting enzyme (ACE) inhibitors can enhance kinin receptor signalling. The goal of this study was to evaluate the role of kinins on paclitaxel-associated acute pain syndromes (P-APS) and the effect of ACE inhibition on P-APS and paclitaxel-associated chronic peripheral neuropathy (P-CPN) in mice. Herein, we show that paclitaxel caused mechanical allodynia and spontaneous nociceptive behaviour that was reduced by antagonists of kinin receptors B1 (DALBk and SSR240612) and B2 (Hoe140 and FR173657). Moreover, enalapril (an ACE inhibitor) enhanced the mechanical allodynia induced by a low dose of paclitaxel. Likewise, paclitaxel injection inhibited ACE activity and increased the expressions of B1 and B2 receptors and bradykinin-related peptides levels in peripheral tissue. Together, our data support the involvement of kinin receptors in the P-APS and suggest kinin receptor antagonists to treat this syndrome. Because hypertension is the most frequent comorbidity affecting cancer patients, treatment of hypertension with ACE inhibitors in patients undergoing paclitaxel chemotherapy should be reviewed, since this could enhance the P-APS and P-CPN.

  12. Segregation and linkage analysis of serum angiotensin I-converting enzyme levels: Evidence for two quantitative-trait loci

    SciTech Connect

    McKenzie, C.A.; Keavney, B.; Farrall, M.

    1995-12-01

    Human serum angiotensin I-converting enzyme (ACE) levels vary substantially between individuals and are highly heritable. Segregation analysis in European families has shown that more than half of the total variability in ACE levels is influenced by quantitative-trait loci (QTL). One of these QTLs is located within or close to the ACE locus itself. Combined segregation/linkage analysis in a series of African Caribbean families from Jamaica shows that the ACE insertion-deletion polymorphism is in moderate linkage disequilibrium with an ACE-linked QTL. Linkage analysis with a highly informative polymorphism at the neighboring growth hormone gene (GH) shows surprisingly little support for linkage (LOD score [Z] = 0.12). An extended analysis with a two-QTL model, where an ACE-linked QTL interacts additively with an unlinked QTL, significantly improves both the fit of the model (P = .002) and the support for linkage between the ACE-linked QTL and GH polymorphism (Z = 5.0). We conclude that two QTLs jointly influence serum ACE levels in this population. One QTL is located within or close to the ACE locus and explains 27% of the total variability; the second QTL is unlinked to the ACE locus and explains 52% of the variability. The identification of the molecular mechanisms underlying both QTLs is necessary in order to interpret the role of ACE in cardiovascular disease. 44 refs., 7 tabs.

  13. Angiotensin I-converting enzyme (ACE) activity and expression in rat central nervous system after sleep deprivation.

    PubMed

    Visniauskas, Bruna; Oliveira, Vitor; Carmona, Adriana K; D'Almeida, Vânia; de Melo, Robson L; Tufik, Sérgio; Chagas, Jair R

    2011-04-01

    Proteases are essential either for the release of neuropeptides from active or inactive proteins or for their inactivation. Neuropeptides have a fundamental role in sleep-wake cycle regulation and their actions are also likely to be regulated by proteolytic processing. Using fluorescence resonance energy transfer substrates, specific protease inhibitors and real-time PCR we demonstrate changes in angiotensin I-converting enzyme (ACE) expression and proteolytic activity in the central nervous system in an animal model of paradoxical sleep deprivation during 96 h (PSD). Male rats were distributed into five groups (PSD, 24 h, 48 h and 96 h of sleep recovery after PSD and control). ACE activity and mRNA levels were measured in hypothalamus, hippocampus, brainstem, cerebral cortex and striatum tissue extracts. In the hypothalamus, the significant decrease in activity and mRNA levels, after PSD, was only totally reversed after 96 h of sleep recovery. In the brainstem and hippocampus, although significant, changes in mRNA do not parallel changes in ACE specific activity. Changes in ACE activity could affect angiotensin II generation, angiotensin 1-7, bradykinin and opioid peptides metabolism. ACE expression and activity modifications are likely related to some of the physiological changes (cardiovascular, stress, cognition, metabolism function, water and energy balance) observed during and after sleep deprivation.

  14. Angiotensin-converting-enzyme inhibitors slow renal decline in IgA nephropathy, independent of tubulointerstitial fibrosis at presentation.

    PubMed

    Kanno, Y; Okada, H; Yamaji, Y; Nakazato, Y; Suzuki, H

    2005-03-01

    Tubulointerstitial fibrosis (TIF) is a marker of progression of diabetic and non-diabetic nephropathy, correlating with creatinine clearance (CCr), and functional outcome. Angiotensin-converting-enzyme inhibitors (ACEIs) slow the rate of decline of renal function in proteinuric patients. To examine whether ACEIs affect TIF, directly or indirectly. Prospective 3-year follow-up study. We enrolled 49 patients with IgA nephropathy (IgAN), treating some with ACE inhibitors (n = 26, 1-2 mg/day temocapril or trandolapril) and some with calcium-channel blockers (CCB, n = 23, 2.5-5 mg/day amlodipine). Blood pressure, serum creatinine, and urinalysis were measured monthly, and 24-h endogenous creatinine clearance (CCr) at least once a year. In the CCB group, TIF was positively correlated with the rate of decline in CCr (dCCr), consistent with previous observations. In the ACEI group, dCCr was lower (0.02 +/- 0.02 vs. 0.06 +/- 0.03), and the TIF-dCCr correlation was absent. In the absence of post-treatment histological data, it is not possible to say whether ACEIs have an effect on TIF. However, ACEIs appear to slow the progression of renal failure in IgAN, regardless of the degree of TIF at presentation.

  15. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    PubMed

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  16. Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation.

    PubMed

    Luo, Jianming; Zhang, Cheng; Liu, Qianyue; Ou, Shiyi; Zhang, Lili; Peng, Xichun

    2017-10-01

    Hypertension had relation to angiotensin I converting enzyme (ACE) activity and inflammation. In our previous research, sardine peptides (SP) with ACE inhibitory activity were prepared. However, the combinative effect of SP and quercetin (QC) on hypertension alleviation was still unknown. In the present study, the antihypertensive effect of SP and QC was discovered and the optimal proportion of SP and QC (v/v=8:2, with 20.00mg/mL of SP and 12.99μg/mL of QC for their original concentrations) was screened on ACE activity inhibition in vitro. And the in vivo experiment supported it by indicating that the mixture reduced the systolic blood pressure, heart, left ventricular and kidney weight and their corresponding indices, serum ACE activity, angiotensin-II (ANG-II) and tumor necrosis factor-α (TNF-α) (in high dose) concentration in SHR rats. Besides, the mixture also lowers NO, TNF-α andinterleukin-6 (IL-6) concentration significantly in vitro. Hence, the combinative effect of SP and QC in optimal proportion had stronger inhibition on ACE activity than SP or QC alone, and could alleviate hypertension through inhibition of ACE activity and inflammation. Copyright © 2017. Published by Elsevier Ltd.

  17. The effect of angiotensin-converting enzyme polymorphism on hemodynamic response to endotracheal intubation in hypertensive patients.

    PubMed

    Wang, Jun; Wang, Zhi-Ping; Wang, Hao-Xing; Shao, Mu-Qing; Mu, Hui-Jun

    2016-09-01

    Endotracheal intubation elicits a hemodynamic response associated with increased heart rate and blood pressure that is influenced by the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) genetic polymorphism which may be of importance also for the pressure response to anesthesia. A total of 337 patients underwent abdominal surgery in general anesthesia and 16% were D/D-homozygotes, 45% were I/D heterozygotes and 39% of the patients were I/I homozygotes. Before surgery most patients were in treatment for arterial hypertension. Systolic and diastolic pressure, heart rate and concentrations of catecholamines in blood were determined before and after induction of anesthesia and for up to 10 minutes following endotracheal intubation. Anesthesia decreased blood pressure and for patients presenting ID and DD, blood pressure and heart rate reached similar levels but compared to II-homozygotes, D-carriers demonstrated significantly higher levels for systolic pressure and heart rate before and after intubation (p < 0.05). The blood levels of catercholamines were similar in the three genotype groups. The incidence of ECG-determined myocardial ischemia was higher in D-allele carriers compared to I-allele homozygotes (DD 22%, ID 25% vs. II 5%). In response to anesthesia and intubation and independent of sympathetic nervous activity, D-allele carriers for ACE polymorphism increased blood pressure response and higher risk for development of cardiovascular complications compared to patients homozygous for the I-allele.

  18. Effect of Angiotensin-Converting Enzyme Inhibitor, Lisinopril on Morphological and Biochemical Aspects of Fibrotic Liver Regeneration

    PubMed Central

    Ambreen, Aysha; Jahan, Sarwat; Malik, Satwat

    2016-01-01

    Background/Aims: Hepatic fibrosis results in defective liver regeneration following partial hepatectomy. Angiotensin converting enzyme (ACE) inhibitors can enhance liver regeneration and are also involved in the reduction of hepatic fibrosis. The present study has been conducted to evaluate the potential effect of an ACE inhibitor, lisinopril, on the morphological and biochemical aspects of fibrotic liver regeneration. Materials and Methods: Eight-week old female Sprague Dawley rats were made fibrotic by intragastric carbon tetrachloride treatment. Rats were given saline or lisinopril (1 mg/kg) orally for 1 week and were subjected to sham surgery or two-third partial hepatectomy. Liver regenerative and functional capacities were determined 48 hours post surgery. Results: Lisinopril administration did not affect the regeneration rate, proliferation cell nuclear antigen count, and hepatocellular area of fibrotic livers following partial hepatectomy. No statistically significant difference between treated and control rats regarding mitotic count, hepatocyte nuclear area, and binuclear hepatocyte frequency was observed. Serum biochemical analysis showed that lisinopril non-significantly decreased the partial hepatectomy induced elevated levels of alanine aminotransferase, aspartate transaminase, and alkaline phosphatase whereas lactate dehydrogenase and total bilirubin levels were significantly reduced. No marked reduction in hepatic collagen content and alpha smooth actin positive cells was observed by lisinopril treatment. Conclusion: ACE inhibitor lisinopril did not produce major histomorphological alterations in regenerating fibrotic liver following partial hepatectomy, however, it may improve its functional capability. PMID:27976638

  19. Polymorphism of Angiotensin-Converting Enzyme (rs4340) and Diabetic Nephropathy in Caucasians with Type 2 Diabetes Mellitus

    PubMed Central

    Šeruga, M; Makuc, J; Završnik, M; Cilenšek, I; Ekart, R; Petrovič, D

    2016-01-01

    Abstract Diabetic nephropathy (DN) is the leading cause of endstage renal disease (ESRD) in developed countries. Several environmental and genetic factors predict the development and progression of DN. The renin-angiotensin system was demonstrated to be involved in the development of DN. We evaluated the association between rs4340 of the angiotensin-converting enzyme (ACE) gene and DN in Caucasians with type 2 diabetes mellitus (T2DM) in 276 Slovenian patients with T2DM who had DN, and 375 patients without clinical signs of DN. Genetic analysis was performed with either standard polymerase chain reaction (PCR) (for rs4340). Results were analyzed using the χ2 test and multivariate logistic regression analyses. We found no association between rs4340 and DN. Cystatin C was significantly higher in the DN+ group (p <0.001) than in the DN group. Cystatin C was a better marker for the estimation of renal function than estimated glomerular filtration rate (eGFR) according to the modification diet in renal disease (MDRD) equation mL/ min. We concluded that there was no association between the rs4340 of the ACE gene and DN in Caucasian patients who have T2DM. PMID:28289586

  20. Phytochemical screening and evaluation of in vitro angiotensin-converting enzyme inhibitory activity of Artocarpus altilis leaf.

    PubMed

    Siddesha, Jalahalli M; Angaswamy, Nataraju; Vishwanath, Bannikuppe S

    2011-12-01

    This study investigates the effect of Artocarpus altilis leaf extracts on angiotensin-converting enzyme (ACE) activity. Among the extracts tested, hot ethanol extract exhibited a potent ACE-inhibitory activity with an IC₅₀ value of 54.08 ± 0.29 µg mL⁻¹ followed by cold ethyl acetate extract (IC₅₀ of 85.44 ± 0.85 µg mL⁻¹). In contrast, the hot aqueous extracts showed minimum inhibition with the IC₅₀ value of 765.52 ± 11.97 µg mL⁻¹ at the maximum concentration tested. Further, the phytochemical analysis indicated the varied distribution of tannins, phenolics, glycosides, saponins, steroids, terpenoids and anthraquinones in cold and hot leaf extracts. The correlation between the phytochemical analysis and ACE-inhibitory activity suggests that the high content of glycosidic and phenolic compounds could be involved in exerting ACE-inhibitory activity. In conclusion, this study supports the utilisation of A. altilis leaf in the folk medicine for the better treatment of hypertension. Further studies on isolation and characterisation of specific ACE-inhibitory molecule(s) from ethyl acetate, ethanol and methanol extracts of A. altilis leaf would be highly interesting.

  1. Tissue renin angiotensin systems: theoretical implications for the development of hyperkalemia using angiotensin-converting enzyme inhibitors.

    PubMed

    Schlueter, W; Keilani, T; Batlle, D C

    1994-02-01

    In patients with renal insufficiency, as the number of functioning nephrons is reduced, potassium balance is maintained by an increase in potassium excretion in the remaining nephrons. This adaptive response is, in part, mediated by an increase in aldosterone production by the adrenal gland. Use of angiotensin-converting enzyme (ACE) inhibitors in these patients can result in hyperkalemia by suppressing aldosterone production by the adrenal gland. Inhibition of aldosterone production depends on the degree of inhibition of angiotensin II formation in the circulation as well as the degree of inhibition of angiotensin II formed locally in the adrenal gland. Recent experimental evidence suggests that the latter process may be important for the tonic regulation of aldosterone production. Because the various ACE inhibitors exhibit different degrees of ACE inhibition at the tissue level, it is reasonable to postulate that angiotensin II-dependent aldosterone production will be inhibited to a lesser degree by agents that have low tissue specificity for the adrenal gland. This feature would be most advantageous in treating patients with chronic renal insufficiency and congestive heart failure who are at risk for hyperkalemia. Therefore, the ideal ACE inhibitor should not suppress aldosterone secretion in such patients.

  2. Rapid life-threatening hyperkalemia after addition of amiloride HCl/hydrochlorothiazide to angiotensin-converting enzyme inhibitor therapy.

    PubMed

    Chiu, T F; Bullard, M J; Chen, J C; Liaw, S J; Ng, C J

    1997-11-01

    To highlight the dangers of a precipitous rise in serum potassium levels in patients at risk for renal insufficiency, already receiving an angiotensin-converting enzyme (ACE) inhibitor, who are given a potassium-sparing diuretic. We conducted a retrospective chart review of five patients who were taking the above combination of medications who were seen in our ED with hyperkalemia. All five patients had diabetes and were older than 50 years of age. Except for one patient, they had some degree of renal impairment and all were receiving an ACE inhibitor. Each had amiloride HCl/hydrochlorothiazide added to their therapeutic regimen 8 to 18 days before presenting to our ED with hyperkalemia. Potassium levels were between 9.4 and 11 mEq/L in 4 of the patients; 2 did not respond to resuscitation measures. The concomitant use of ACE inhibitor and potassium-sparing diuretic therapy should be avoided. If impossible, weekly monitoring of both renal function and serum potassium should be performed. In the ED patients who are receiving such a combination should receive immediate ECG monitoring.

  3. Association of angiotensin converting enzyme gene insertion/deletion polymorphism and familial hypercholesterolemia in the Saudi population

    PubMed Central

    2013-01-01

    Background The study of the association between genotype and phenotype is of great importance for the prediction of multiple diseases and pathophysiological conditions. The relationship between angiotensin converting enzyme (ACE) Insertion/Deletion (I/D) polymorphism and Familial Hypercholesterolemia (FH) has been not fully investigated in all the ethnicities. In this study we sought to determine the frequency of I/D polymorphism genotypes of ACE gene in Saudi patients with FH. Results This is a case–control study carried out purely in Saudi population. Genomic DNA was isolated from 128 subjects who have participated in this study. ACE gene I/D polymorphism was analyzed by polymerase chain reaction in 64 FH cases and 64 healthy controls. There was no statistically significant difference between the groups with respect to genotype distribution. Furthermore, we did not find any significant difference in the frequency of ACE I/D polymorphism in FH subjects when stratified by gender (p = 0.43). Conclusion Our data suggest that ACE gene I/D polymorphism examined in this study has no role in predicting the occurrence and diagnosis of FH. PMID:24289455

  4. Production, purification, and crystallization of human interleukin-1 beta converting enzyme derived from an Escherichia coli expression system.

    PubMed

    Malinowski, J J; Grasberger, B L; Trakshel, G; Huston, E E; Helaszek, C T; Smallwood, A M; Ator, M A; Banks, T M; Brake, P G; Ciccarelli, R B

    1995-10-01

    Interleukin-1 beta converting enzyme (ICE) is a cysteine protease that catalyzes the conversion of the inactive precursor form of IL-1 beta to an active mature form. The mature form of IL-1 beta is involved in mediating inflammatory responses and in the progression of autoimmune diseases. We recently reported on the production of active human ICE in insect cells using the baculovirus expression system (Wang XM et al., 1994, Gene 145:273-277). Because the levels of expression achieved with this system were limiting for the purpose of performing detailed biochemical and biophysical studies, we examined the production of ICE in Escherichia coli. By using a tac promoter-based expression system and fusion to thioredoxin we were able to recover high levels of active ICE protein. The expressed protein, which was distributed between the soluble and insoluble fractions, was purified to homogeneity from both fractions using a combination of classical and affinity chromatography. Comparisons of ICE derived from both fractions indicated that they were comparable in their specific activities, subunit composition, and sensitivities to specific ICE inhibitors. The combined yields of ICE obtained from the soluble and insoluble fractions was close to 1 mg/L of induced culture. Recombinant human ICE was crystallized in the presence of a specific ICE inhibitor in a form suitable for X-ray crystallographic analysis. This readily available source of ICE will facilitate the further characterization of this novel and important protease.

  5. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    PubMed Central

    Gamboa-Gómez, Claudia I.; González-Laredo, Rubén F.; Gallegos-Infante, José Alberto; Pérez, MŞ del Mar Larrosa; Moreno-Jiménez, Martha R.; Flores-Rueda, Ana G.

    2016-01-01

    Summary Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical (i.e. lower IC50). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages. PMID:27956869

  6. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    PubMed

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered.

  7. Relationship between Angiotensin Converting Enzyme, Apelin, and New-Onset Atrial Fibrillation after Off-Pump Coronary Artery Bypass Grafting.

    PubMed

    Xu, Shu; Zhang, Jian; Xu, Yin-Li; Wu, Hai-Bo; Xue, Xiao-Dong; Wang, Hui-Shan

    2017-01-01

    It has been shown that inflammation and oxidative stress are important factors in postoperative atrial fibrillation (POAF). Angiotensin converting enzyme (ACE) and apelin have a close relationship with inflammation and oxidative stress. The effect of ACE and apelin on POAF after off-pump coronary artery bypass grafting (OPCABG) remains a question. The concentrations of serum ACE, angiotensin II (Ang II), apelin, bradykinin (BK), malondialdehyde (MDA), and C reactive protein (CRP) were measured in the perioperative period of OPCABG. The levels of serum ACE in the POAF group were higher than in the no POAF group both preoperatively and postoperatively. Apelin in the POAF group was lower than in the no POAF group. There was a correlation between serum ACE and apelin. Postoperatively, CRP and MDA in the POAF group were higher than in the no POAF group; however, there was no difference before the operation. Preoperative ACE and apelin were both significant and independent risk factors for POAF. In conclusion, the high ACE and low apelin preoperatively led to CRP and MDA being increased postoperatively, which was probably associated with POAF after OPCABG. Apelin may be a new predictor for POAF.

  8. Angiotensin I converting enzyme gene polymorphisms in systemic lupus erythematosus: decreased prevalence of DD genotype in African American patients.

    PubMed

    Tassiulas, I O; Aksentijevich, I; Salmon, J E; Kim, Y; Yarboro, C H; Vaughan, E M; Davis, J C; Scott, D L; Austin, H A; Klippel, J H; Balow, J E; Gourley, M F; Boumpas, D T

    1998-07-01

    The presence of the D (deletion) allele at the angiotensin converting enzyme (ACE) gene has been associated with a) adverse vascular events contributing to early mortality and b) progressive deterioration of renal function in a variety of chronic glomerular diseases. We investigated the potential role of ACE polymorphisms in patients with systemic lupus erythematosus (SLE). Two hundred and sixteen (216) SLE patients (121 Caucasians; 78 African Americans; and 17 other) and 200 normal controls were studied; 134 patients had evidence of renal disease. ACE genotypes were determined by a polymerase chain reaction based assay. The frequency of genotype DD was increased in African American normal controls compared to Caucasians (55% vs. 37%, p = 0.017) and in African American normal controls vs. African American lupus patients (55% vs. 30%, p = 0.008). Trend analysis of the genotype distribution across the three African American groups (renal, non-renal, controls) revealed a trend of increased frequency of I and decreased frequency of D as likelihood of renal disease increases (p = 0.008). No association between any ACE genotype with parameters of renal disease and/or response to therapy was identified. African American patients with lupus have a lower frequency of DD genotype as compared to African American normal controls. Further studies will be necessary to address whether this is due to decreased survival of these patients, a protective effect of DD genotype from developing the disease or a chance sample effect.

  9. Aronia melanocarpa Elliot reduces the activity of angiotensin i-converting enzyme-in vitro and ex vivo studies.

    PubMed

    Sikora, Joanna; Broncel, Marlena; Mikiciuk-Olasik, Elżbieta

    2014-01-01

    The aim of the study was to analyze the effects of two-month supplementation with chokeberry preparation on the activity of angiotensin I-converting enzyme (ACE) in patients with metabolic syndrome (MS). During the in vitro stage of the study, we determined the concentration of chokeberry extract, which inhibited the activity of ACE by 50% (IC50). The participants (n = 70) were divided into three groups: I-patients with MS who received chokeberry extract supplements, II-healthy controls, and III-patients with MS treated with ACE inhibitors. After one and two months of the experiment, a decrease in ACE activity corresponded to 25% and 30%, respectively. We documented significant positive correlations between the ACE activity and the systolic (r = 0.459, P = 0.048) and diastolic blood pressure, (r = 0.603, P = 0.005) and CRP. The IC50 of chokeberry extract and captopril amounted to 155.4 ± 12.1 μg/mL and 0.52 ± 0.18 μg/mL, respectively. Our in vitro study revealed that chokeberry extract is a relatively weak ACE inhibitor. However, the results of clinical observations suggest that the favorable hypotensive action of chokeberry polyphenols may be an outcome of both ACE inhibition and other pleotropic effects, for example, antioxidative effect.

  10. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ.

    PubMed

    Matsui, T; Li, C H; Osajima, Y

    1999-07-01

    Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I-converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%-8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%-3 h alpha-amylase treatment of defatted WG (IC50; 0.37 mg protein ml(-1)). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml(-1)). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 microM, composed of 2-7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 microM), Ile-Val-Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate.

  11. Changes in renal vessels associated with long-term administration of angiotensin converting enzyme inhibitor in Zucker fatty rats

    PubMed Central

    Nakanishi, Kazushige; Nagai, Yohko; Akimoto, Tatsuo; Yamanaka, Nobuaki

    2017-01-01

    Background Recently, we showed that long-term angiotensin receptor blocker (ARB) administration induced unusual proliferative changes in smooth muscle cells (SMCs) of afferent arterioles of the kidneys of Zucker fatty rats (ZFRs). In this study, we investigated renal afferent arteriolar changes induced by the long-term administration of an angiotensin converting enzyme inhibitor (ACEI) in ZFRs. Materials and Methods Fourteen 6-week-old male ZFRs were divided into two groups (n=14): the ZFR+ACEI group (n=6) was fed a standard diet containing ACEI (Enalapril, 2 mg/kg/day), and the ZFR control group (n=8) for 12 weeks. Blood pressure and proteinuria were examined and morphological studies on kidneys were performed. Results Remarkable proliferative changes in the afferent arteriolar SMCs were frequently observed in the group given ACEI; (66.1 ± 12.9%) compared with the control group (1.77 ± 1.56%, P<0.001). Conclusions It was indicated that long-term ACEI administration induced unusual proliferative changes in SMCs in afferent arterioles of ZFRs. These changes could reduce intraglomerular pressure by narrowing the lumens of afferent arterioles, but they could cause irreversible damage to the arterioles. PMID:28260705

  12. Relationship between Angiotensin Converting Enzyme, Apelin, and New-Onset Atrial Fibrillation after Off-Pump Coronary Artery Bypass Grafting

    PubMed Central

    Xu, Shu; Zhang, Jian; Xu, Yin-li; Wu, Hai-bo; Xue, Xiao-dong

    2017-01-01

    It has been shown that inflammation and oxidative stress are important factors in postoperative atrial fibrillation (POAF). Angiotensin converting enzyme (ACE) and apelin have a close relationship with inflammation and oxidative stress. The effect of ACE and apelin on POAF after off-pump coronary artery bypass grafting (OPCABG) remains a question. The concentrations of serum ACE, angiotensin II (Ang II), apelin, bradykinin (BK), malondialdehyde (MDA), and C reactive protein (CRP) were measured in the perioperative period of OPCABG. The levels of serum ACE in the POAF group were higher than in the no POAF group both preoperatively and postoperatively. Apelin in the POAF group was lower than in the no POAF group. There was a correlation between serum ACE and apelin. Postoperatively, CRP and MDA in the POAF group were higher than in the no POAF group; however, there was no difference before the operation. Preoperative ACE and apelin were both significant and independent risk factors for POAF. In conclusion, the high ACE and low apelin preoperatively led to CRP and MDA being increased postoperatively, which was probably associated with POAF after OPCABG. Apelin may be a new predictor for POAF. PMID:28299332

  13. A Variant in XPNPEP2 Is Associated with Angioedema Induced by Angiotensin I–Converting Enzyme Inhibitors

    PubMed Central

    Duan, Qing Ling; Nikpoor, Borzoo; Dubé, Marie-Pierre; Molinaro, Giuseppe; Meijer, Inge A.; Dion, Patrick; Rochefort, Daniel; Saint-Onge, Judith; Flury, Leah; Brown, Nancy J.; Gainer, James V.; Rouleau, Jean L.; Agostoni, Angelo; Cugno, Massimo; Simon, Pierre; Clavel, Pierre; Potier, Jacky; Wehbe, Bassem; Benarbia, Seddik; Marc-Aurèle, Julien; Chanard, Jacques; Foroud, Tatiana; Adam, Albert; Rouleau, Guy A.

    2005-01-01

    Angiotensin I–converting enzyme inhibitors (ACEi), which are used to treat common cardiovascular diseases, are associated with a potentially life-threatening adverse reaction known as angioedema (AE-ACEi). We have previously documented a significant association between AE-ACEi and low plasma aminopeptidase P (APP) activity. With eight large pedigrees, we hereby demonstrate that this quantitative trait is partially regulated by genetic factors. We tested APP activity using a variance-component QTL analysis of a 10-cM genomewide microsatellite scan enriched with seven markers over two candidate regions. We found significant linkage (LOD = 3.75) to a locus that includes the XPNPEP2 candidate gene encoding membrane-bound APP. Mutation screening of this QTL identified a large coding deletion segregating in one pedigree and an upstream single-nucleotide polymorphism (C–2399A SNP), which segregates in the remaining seven pedigrees. Measured genotype analysis strongly suggests that the linkage signal for APP activity at this locus is accounted for predominantly by the SNP association. In a separate case-control study (20 cases and 60 controls), we found significant association of this SNP to ACEi-induced AE (P=.0364). In conclusion, our findings provide supporting evidence that the C-2399A variant in XPNPEP2 is associated with reduced APP activity and a higher incidence of AE-ACEi. PMID:16175507

  14. Genetic Polymorphism of Angiotensin-Converting Enzyme and Chronic Obstructive Pulmonary Disease Risk: An Updated Meta-Analysis

    PubMed Central

    Kang, Sang Wook; Kim, Su Kang; Jung, Hee-Jae; Kim, Kwan-Il; Kim, Jinju

    2016-01-01

    The relationship between polymorphism of the angiotensin I converting enzyme (ACE) gene and chronic obstructive pulmonary disease (COPD) has been examined in many previous studies. However, their results were controversial. Therefore, we performed a meta-analysis to evaluate the relationship between the ACE gene and the risk of COPD. Fourteen case-control studies were included in this meta-analysis. The pooled p value, odds ratio (OR), and 95% confidence interval (95% CI) were used to investigate the strength of the association. The meta-analysis was performed using comprehensive meta-analysis software. Our meta-analysis results revealed that ACE polymorphisms were not related to the risk of COPD (p > 0.05 in each model). In further analyses based on ethnicity, we observed an association between insertion/deletion polymorphism of the ACE gene and risk of COPD in the Asian population (codominant 2, OR = 3.126, 95% CI = 1.919–5.093, p < 0.001; recessive, OR = 3.326, 95% CI = 2.190–5.050, p < 0.001) but not in the Caucasian population (p > 0.05 in each model). In conclusion, the present meta-analysis indicated that the insertion/deletion polymorphism of the ACE gene may be associated with susceptibility to COPD in the Asian population but not in the Caucasian population. However, the results of the present meta-analysis need to be confirmed in a larger sample. PMID:27830153

  15. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    PubMed

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo