Sample records for preparing accelerator systems

  1. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  2. Fisher information of accelerated two-qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-02-01

    In this paper, Fisher information for an accelerated system initially prepared in the X-state is discussed. An analytical solution, which consists of three parts: classical, the average over all pure states and a mixture of pure states, is derived for the general state and for Werner state. It is shown that the Unruh acceleration has a depleting effect on the Fisher information. This depletion depends on the degree of entanglement of the initial state settings. For the X-state, for some intervals of Unruh acceleration, the Fisher information remains constant, irrespective to the Unruh acceleration. In general, the possibility of estimating the state’s parameters decreases as the acceleration increases. However, the precision of estimation can be maximized for certain values of the Unruh acceleration. We also investigate the contribution of the different parts of the Fisher information on the dynamics of the total Fisher information.

  3. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  4. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  5. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  6. Peake in Columbus with sensor

    NASA Image and Video Library

    2016-01-26

    ISS046e024411 (01/26/2016) --- European Space Agency (ESA) astronaut Timothy Peake prepares to install a space acceleration measurement system sensor inside the European Columbus module aboard the International Space Station. The device is used in an ongoing study of the small forces (vibrations and accelerations) on the International Space Station resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments.

  7. A New {sup 14}C-AMS Facility at UFF- Niteroi, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, P. R. S.; Macario, K. D.; Anjos, R. M.

    2010-08-04

    We report a new Accelerator Mass Spectrometry facility at the Physics Institute of Fluminense Federal University in Brazil, the Nuclear Chronology Laboratory - LACRON. The sample preparation laboratory is ready to perform chemical treatment through graphitization and the acquisition of a Single Stage Accelerator Mass Spectrometry System is in progress. LACRON will be the first independent laboratory to perform the {sup 14}C-AMS technique not only in Brazil but in Latin America.

  8. A New 14C-AMS Facility at UFF- Niteroi, Brazil

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Macario, K. D.; Anjos, R. M.; Linares, R.; Carvalho, C.; Queiroz, E.

    2010-08-01

    We report a new Accelerator Mass Spectrometry facility at the Physics Institute of Fluminense Federal University in Brazil, the Nuclear Chronology Laboratory—LACRON. The sample preparation laboratory is ready to perform chemical treatment through graphitization and the acquisition of a Single Stage Accelerator Mass Spectrometry System is in progress. LACRON will be the first independent laboratory to perform the 14C-AMS technique not only in Brazil but in Latin America.

  9. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemicalmore » Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.« less

  10. Design and construction of a DC high-brightness laser driven electron gun

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Geng, R. L.; Wang, L. F.; Zhang, B. C.; Yu, J.; Wang, T.; Wu, G. F.; Song, J. H.; Chen, J. E.

    1996-02-01

    A DC high-brightness laser driven photoemissive electron gun is being developed at Peking University, in order to produce 50-100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathodes, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. The laser system is a mode-locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelengths (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is also discussed in this paper.

  11. Advanced Vehicle Control Systems (Avcs) For Maintenance Vehicle Applications, Contract No. Dtfh61-94-C-00131, Work Order 11, Prepared For: Department Of Transportation

    DOT National Transportation Integrated Search

    1996-12-20

    IT IS WIDELY BELIEVED THAT BARRIERS TO AN AUTOMATED HIGHWAY SYSTEM (AHS) : DEPLOYMENT ARE DUE MORE TO INSTITUTIONAL, ECONOMIC, AND LEGAL ISSUES THAN TECHNOLOGY LIMITATIONS. IN ORDER TO SUSTAIN AND ACCELERATE THE AHS DEPLOYMENT PROCESS, IT IS DESIRABL...

  12. SAMS Acceleration Measurements on Mir from May 1997 to June 1998 (NASA Increments 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1999-01-01

    During NASA Increments 5, 6, and 7 (May 1997 to June 1998), about eight gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station Mir. The data were recorded on twenty-seven optical disks which were returned to Earth on Orbiter missions STS-86, STS-89, and STS-91. During these increments, SAMS data were collected in the Priroda module to support various microgravity experiments. This report points out some of the salient features of the microgravity acceleration environment to which the experiments were exposed. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous Mir increment summary reports prepared by the Principal Investigator Microgravity Services project.

  13. System of cryogenic security of the superconducting accelerator of relativistic nuclei-nuclotron

    NASA Astrophysics Data System (ADS)

    Agapov, N. N.; Lipchenko, V. I.; Mazarskij, V. L.; Makarov, L. G.; Sukhanova, A. K.

    The system of cryogenic security of the Nuclotron (superconducting accelerator of relativistic nuclei) is described. The system consists of three helium liquefiers KGU-16004/5. Refrigeration in each liquefier is performed by three preliminary cool-down turboexpanders and a vapor-liquid turboexpander. In this case the refrigeration of the KGU-1600/4.5 liquefiers reaches 1700 W. The system of gas preparation is composed of driers operating at the surrounding temperature. Purification from the admixtures of oxygen, nitrogen, neon, hydrogen and other gases is carried out in low-temperature blocks built in the helium liquefiers KGU-1600/4.5. To store the helium, there are ten 20 cu m receivers under a pressure of 3MPA.

  14. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  15. Mechanism and preparation of liquid alkali-free liquid setting accelerator for shotcrete

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Ding, Bei; Gan, Jiezhong; Guo, Zhaolai; Zheng, Chunyang; Jiang, Haidong

    2017-03-01

    A new alkali-free liquid accelerator for shotcrete was prepared through normal temperature drop process by using the nano activated alumina and the modified alcohol amine as the main raw materials. The effect of alkali-free liquid accelerator on the cement setting time and the mechanical properties of mortar, the effect of the penetration strength on the shotcrete rebound were investigated. And the accelerating mechanism of the as-prepared alkali-free liquid accelerator was also analyzed via XRD and SEM characterization methods. The experimental results indicated that the hydration of C3A was accelerated by the polyamine complexation of accelerator, resulting in forming a large number of acicular ettringite and reducing the amount of Ca(OH)2 crystal, which would not affect the later hydration of cement. When the content of alkali-free liquid accelerator was 6%, the initial setting time and final setting time were less than 3min and 8min respectively, and 1d and 28d compressive strength ratios reached 207.6% and 114.2% respectively; beside that, the shotcrete rebound was very low because of the high penetration strength within 30min.

  16. Integrating Traumatic Brain Injury Model Systems Data into the Federal InteragencyTraumatic Brain Injury Research Informatics Systems

    DTIC Science & Technology

    2017-12-01

    methodologies , and associated tools, rather than summaries or interpretations of this information, can accelerate research progress by allowing re-analysis of... Research Informatics Systems PRINCIPAL INVESTIGATOR: Cynthia Harrison-Felix, PhD CONTRACTING ORGANIZATION: Craig Hospital Englewood, CO 80113...REPORT DATE: December 2017 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702

  17. Shortcuts to adiabatic passage for the generation of a maximal Bell state and W state in an atom–cavity system

    NASA Astrophysics Data System (ADS)

    Lu, Mei; Chen, Qing-Qin

    2018-05-01

    We propose an efficient scheme to generate the maximal entangle states in an atom–cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.

  18. Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study.

    PubMed

    Jo, Chris Hyunchul; Kim, Ji Eun; Yoon, Kang Sup; Lee, Ji Ho; Kang, Seung Baik; Lee, Jae Hyup; Han, Hyuk Soo; Rhee, Seung Hwan; Shin, Sue

    2011-10-01

    Platelet-rich plasma (PRP) has been recently used to enhance and accelerate the healing of musculoskeletal injuries and diseases, but evidence is still lacking, especially on its effects after rotator cuff repair. Platelet-rich plasma accelerates recovery after arthroscopic rotator cuff repair in pain relief, functional outcome, overall satisfaction, and enhanced structural integrity of repaired tendon. Cohort study; Level of evidence, 2. Forty-two patients with full-thickness rotator cuff tears were included. Patients were informed about the use of PRP before surgery and decided themselves whether to have PRP placed at the time of surgery. Nineteen patients underwent arthroscopic rotator cuff repair with PRP and 23 without. Platelet-rich plasma was prepared via plateletpheresis and applied in the form of a gel threaded to a suture and placed at the interface between tendon and bone. Outcomes were assessed preoperatively and at 3, 6, 12, and finally at a minimum of 16 months after surgery (at an average of 19.7 ± 1.9 months) with respect to pain, range of motion, strength, and overall satisfaction, and with respect to functional scores as determined using the following scoring systems: the American Shoulder and Elbow Surgeon (ASES) system, the Constant system, the University of California at Los Angeles (UCLA) system, the Disabilities of the Arm, Shoulder and Hand (DASH) system, the Simple Shoulder Test (SST) system, and the Shoulder Pain and Disability Index (SPADI) system. At a minimum of 9 months after surgery, repaired tendon structural integrities were assessed by magnetic resonance imaging. Platelet-rich plasma gel application to arthroscopic rotator cuff repairs did not accelerate recovery with respect to pain, range of motion, strength, functional scores, or overall satisfaction as compared with conventional repair at any time point. Whereas magnetic resonance imaging demonstrated a retear rate of 26.7% in the PRP group and 41.2% in the conventional group, there was no statistical significance between the groups (P = .388). The results suggest that PRP application during arthroscopic rotator cuff repair did not clearly demonstrate accelerated recovery clinically or anatomically except for an improvement in internal rotation. Nevertheless, as the study may have been underpowered to detect clinically important differences in the structural integrity, additional investigations, including the optimization of PRP preparation and a larger randomized study powered for healing rate, are necessary to further determine the effect of PRP.

  19. Transverse impedances and collective instabilities in a heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Wu, B.; Ruan, S.; Zhao, H.; Wang, G.; Dong, Z. Q.; Wang, K. D.; Yao, L. P.

    2018-06-01

    Evaluation of transverse impedances and collective instabilities is important for determining whether a transverse feedback system or damping schemes should be prepared in the BRing (Booster Ring) at the HIAF (High Intensity Heavy-ion Accelerator Facility). In this paper, some dominant transverse impedances are estimated to build a transverse impedance model of the BRing. With this model, all potential transverse instabilities and their growth times or rates are analyzed by analytical methods or simulations, and the results agree with each other. The growth times of some instabilities are shorter than the duration times of corresponding manipulations, which shows transverse instabilities may have many detrimental impacts on the BRing. To cure the transverse instabilities, a transverse feedback system will be proposed in the design of the BRing. Besides, this paper not only shows the transverse instabilities in the BRing, but also provides the whole method for estimating them in the design of a new accelerator facility.

  20. Pedagogy for Economic Competitiveness and Sustainable Development

    ERIC Educational Resources Information Center

    Sahlberg, Pasi; Oldroyd, David

    2010-01-01

    Accelerating threats to a sustainable relationship between economic growth and the capacity of the global social-ecological system to support it require that the implications of competitiveness be reassessed. Today, the capacities that underlie economic competitiveness must also be brought to bear on policy and pedagogy to prepare the coming…

  1. Long-Term Accelerated Corrosion and Adhesion Assessment of CARC Prepared Aluminum Alloy 5059-H131 Using Three Different Surface Preparation Methods

    DTIC Science & Technology

    2008-08-01

    as part of a complete coating system, as was the case in this study. Trivalent chromium pretreatments such as Metalast TCP-HF must provide additional...pretreatment conditions. The pretreatment conditions were abrasive blasted; a nonchromate pretreatment, Alodine 5200; or a commercial trivalent chromate...vehicle in accordance with the MIL-DTL-46027J (1) for its combination of desirable traits such as lighter weight, ease of manufacturing via welds

  2. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction Control System (VRCS) reboost, venting operations, Flight Control System (FCS) checkout, rack excitation, operation of the Life Sciences Laboratory Equipment Refrigerator/Freezer (LSLE R/F), operation of the JSC Projects Centrifuge, crew sleep, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.

  3. From scientific discovery to health outcomes: A synergistic model of doctoral nursing education.

    PubMed

    Michael, Melanie J; Clochesy, John M

    2016-05-01

    Across the globe, health system leaders and stakeholder are calling for system-level reforms in education, research, and practice to accelerate the uptake and application of new knowledge in practice and to improve health care delivery and health outcomes. An evolving bi-dimensional research-practice focused model of doctoral nursing education in the U.S. is creating unprecedented opportunities for collaborative translational and investigative efforts for nurse researchers and practitioners. The nursing academy must commit to a shared goal of preparing future generations of nurse scientists and practitioners with the capacity and motivation to work together to accelerate the translation of evidence into practice in order to place nursing at the forefront of health system improvement efforts and advance the profession. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Accelerated Recovery of Endothelium Function after Stent Implantation with the Use of a Novel Systemic Nanoparticle Curcumin.

    PubMed

    Lu, Qi; Ye, Fang; Yang, Xiangjun; Gu, Qingqing; Wang, Peng; Zhu, Jianhua; Shen, Li; Gong, Feirong

    2015-01-01

    Curcumin was reported to exhibit a wide range of pharmacological effects including antioxidant, anti-inflammatory, and antiproliferative activities and significantly prevent smooth muscle cells migration. In the present study, a novel kind of curcumin loaded nanoparticles (Cur-NP) has been prepared and characterized with the aim of inhibiting inflammation formation and accelerating the healing process of the stented arteries. Cur-NP was administrated intravenously after stent implantation twice a week and detailed tissue responses were evaluated. The results demonstrated that intravenous administration of Cur-NP after stent implantation accelerated endothelial cells restoration and endothelium function recovery and may potentially be an effective therapeutic alternative to reduce adverse events for currently available drug eluting stents.

  5. An Accelerated Release Study to Evaluate Long-Acting Contraceptive Levonorgestrel-Containing in Situ Forming Depot Systems

    PubMed Central

    Janagam, Dileep R.; Wang, Lizhu; Ananthula, Suryatheja; Johnson, James R.; Lowe, Tao L.

    2016-01-01

    Biodegradable polymer-based injectable in situ forming depot (ISD) systems that solidify in the body to form a solid or semisolid reservoir are becoming increasingly attractive as an injectable dosage form for sustained (months to years) parenteral drug delivery. Evaluation of long-term drug release from the ISD systems during the formulation development is laborious and costly. An accelerated release method that can effectively correlate the months to years of long-term release in a short time such as days or weeks is economically needed. However, no such accelerated ISD system release method has been reported in the literature to date. The objective of the current study was to develop a short-term accelerated in vitro release method for contraceptive levonorgestrel (LNG)-containing ISD systems to screen formulations for more than 3-month contraception after a single subcutaneous injection. The LNG-containing ISD formulations were prepared by using biodegradable poly(lactide-co-glycolide) and polylactic acid polymer and solvent mixtures containing N-methyl-2-pyrrolidone and benzyl benzoate or triethyl citrate. Drug release studies were performed under real-time (long-term) conditions (PBS, pH 7.4, 37 °C) and four accelerated (short-term) conditions: (A) PBS, pH 7.4, 50 °C; (B) 25% ethanol in PBS, pH 7.4, 50 °C; (C) 25% ethanol in PBS, 2% Tween 20, pH 7.4, 50 °C; and (D) 25% ethanol in PBS, 2% Tween 20, pH 9, 50 °C. The LNG release profile, including the release mechanism under the accelerated condition D within two weeks, correlated (r2 ≥ 0.98) well with that under real-time conditions at four months. PMID:27598191

  6. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    1987-01-01

    A control law was developed to control the elevator during short-distance maneuvers along the tether of a 4-mass tethered system. This control law (called retarded exponential or RE) was analyzed parametrically in order to assess which control parameters provide a good dynamic response and a smooth time history of the acceleration on board the elevator. The short-distance maneuver under investigation consists of a slow crawling of the elevator over the distance of 10 m that represents a typical maneuver for fine tuning the acceleration level on board the elevator. The contribution of aerodynamic and thermal perturbations upon acceleration levels was also evaluated and acceleration levels obtained when such pertubations are taken into account were compared to those obtained by neglecting the thermal and aerodynamic forces. In addition, the preparation of a tether simulation questionnaire is illustrated. Analytic solutions to be compared to numerical cases and simulator test cases are also discussed.

  7. Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline.

    PubMed

    Dupuy, Lionel X; Wright, Gladys; Thompson, Jacqueline A; Taylor, Anna; Dekeyser, Sebastien; White, Christopher P; Thomas, William T B; Nightingale, Mark; Hammond, John P; Graham, Neil S; Thomas, Catherine L; Broadley, Martin R; White, Philip J

    2017-01-01

    There are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample. Here we describe a cost-effective root phenotyping pipeline, on which we perform time and accuracy benchmarking to identify bottlenecks in such pipelines and strategies for their acceleration. Our root phenotyping pipeline was assembled with custom software and low cost material and equipment. Results show that sample preparation and handling of samples during screening are the most time consuming task in root phenotyping. Algorithms can be used to speed up the extraction of root traits from image data, but when applied to large numbers of images, there is a trade-off between time of processing the data and errors contained in the database. Scaling-up root phenotyping to large numbers of genotypes will require not only automation of sample preparation and sample handling, but also efficient algorithms for error detection for more reliable replacement of manual interventions.

  8. New Personnel Profiles in Relation to Changes in Society and Educational Systems. Report of a Regional Seminar, Bangkok, 14-21 January 1980.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    This document reports on a seminar held in Bangkok, 1980, to examine the creative thrusts made in Asia and Oceania in the recent past toward relating educational roles and preparation of educational personnel to the accelerated pace of changes in society and educational systems. The seminar was attended by 15 participants from 14 countries:…

  9. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  10. Characteristics of Teachers Nominated for an Accelerated Principal Preparation Program

    ERIC Educational Resources Information Center

    Rios, Steve J.; Reyes-Guerra, Daniel

    2012-01-01

    This article reports the initial evaluation results of a new accelerated, job-embedded principal preparation program funded by a Race to the Top Grant (U.S. Department of Education, 2012a) in Florida. Descriptive statistics, t-tests, and chi-square analyses were used to describe the characteristics of a group of potential applicants nominated to…

  11. An Exploration of the Relationship between Clinical Decision-Making Ability and Educational Preparation among New Graduate Nurses

    ERIC Educational Resources Information Center

    Blount, Kamilah V.

    2013-01-01

    This study examined the impact of accelerated nursing direct entry master's programs on the development of clinical decision-making skills of new graduate nurses that completed the Performance Based Development System (PBDS) assessment during the study period of 2008-2012 at a healthcare organization. Healthcare today is practiced in a…

  12. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil.

    PubMed

    Shi, Rong; Zhang, Qiuyue; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-08-20

    Food-grade organogels are semisolid systems with immobilized liquid edible oil in a three-dimensional network of self-assembled gelators, and they are supposed to have a broad range of potential applications in food industries. In this work, an edible organogel with tea polyphenols was developed, which possesses a highly effective antioxidative function. To enhance the dispersibility of the tea polyphenols in the oil phase, a solid lipid-surfactant-tea polyphenols complex (organogel complex) was first prepared according to a novel method. Then, a food-grade organogel was prepared by mixing this organogel complex with fresh peanut oil. Compared with adding free tea polyphenols, the organogel complex could be more homogeneously distributed in the prepared organogel system, especially under heating condition. Furthermore, the organogel loading of tea polyphenols performed a 2.5-fold higher antioxidation compared with other chemically synthesized antioxidants (butylated hydroxytoluene and propyl gallate) by evaluating the peroxide value of the fresh peanut oil based organogel in accelerated oxidation conditions.

  13. One Year Report for SAMS and OARE on STS-73/USML-2. Experiment 36

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Second United States Microgravity Laboratory (USML-2) payload flew on the orbiter Columbia on mission STS-73 from October 20 to November 5, 1995. The USML-2 payload on STS-73 was dedicated to microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). OARE downlinked real-time quasi-steady acceleration data, which were provided to the investigators. The SAMS recorded higher frequency data onboard for post-mission analysis. The Principal Investigator Microgravity Services (PIMS) project at NASA LeRC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-73, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-73 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-73 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, payload bay door motion, Glovebox fan operations, water dumps, Ku band antenna activity, orbital maneuvering system, and primary reaction control system firings, and attitude changes. The low-gravity environment related to these activities is discussed in the summary report.

  14. Value 101: the basics of clinical transformation.

    PubMed

    Hancock, Melinda S

    2013-06-01

    Health systems should take strong steps to ensure that their current and aspiring finance leaders are fully prepared to engage with clinicians in meeting the requirements of healthcare reform. In 2012, Bon Secours held a clinical transformation finance intensive to teach finance staff how to accelerate clinical transformation within their markets. The education and skills that Bon Secours' finance professionals gained from the intensive have strengthened the health system's ability to respond to the challenges of reform.

  15. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  16. Measurements of 59Ni in meteorites by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Paul, M.; Fifield, L. K.; Fink, D.; Albrecht, A.; Allan, G. L.; Herzog, G.; Tuniz, C.

    1993-10-01

    Isotopic abundances of the radionuclide 59Ni (T1/2 = 76000 yr) were measured by accelerator mass spectrometry with the 14UD Pelletron tandem accelerator at the Australian National University and a detection system solely based on a multianode ionization chamber. The sensitivity limit in the measurement of 59Ni isotopic abundances is 5 × 10-13, as determined by residual interferences from isobaric 59Co and isotopic 58Ni ions. Cosmogenic 59Ni abundances 59Ni/Ni = (8-20) × 10-12 were measured in four samples prepared from the metal phase of two meteorites (mesosiderites). The ratio of the 59Ni abundances to those measured for 41Ca in the silicate phase of the same samples, is in fair agreement with the ratio of the production rates via thermal-neutron capture on 58Ni and 40Ca.

  17. Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning. A Compendium of Research (1950-1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; McKenzie, M. A.; Stad, N. J.; Barnes, P. R.; Jackson, C. G. R.; Ghiasvand, F.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and keyword indices are provided, plus an additional selected bibliography of related work and of those papers received after the volume was prepared for publication. This volume includes material published from 1950-1996.

  18. A GPU accelerated PDF transparency engine

    NASA Astrophysics Data System (ADS)

    Recker, John; Lin, I.-Jong; Tastl, Ingeborg

    2011-01-01

    As commercial printing presses become faster, cheaper and more efficient, so too must the Raster Image Processors (RIP) that prepare data for them to print. Digital press RIPs, however, have been challenged to on the one hand meet the ever increasing print performance of the latest digital presses, and on the other hand process increasingly complex documents with transparent layers and embedded ICC profiles. This paper explores the challenges encountered when implementing a GPU accelerated driver for the open source Ghostscript Adobe PostScript and PDF language interpreter targeted at accelerating PDF transparency for high speed commercial presses. It further describes our solution, including an image memory manager for tiling input and output images and documents, a PDF compatible multiple image layer blending engine, and a GPU accelerated ICC v4 compatible color transformation engine. The result, we believe, is the foundation for a scalable, efficient, distributed RIP system that can meet current and future RIP requirements for a wide range of commercial digital presses.

  19. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  20. Feasibility study of a cyclotron complex for hadron therapy

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2018-04-01

    An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.

  1. A new and compact system at the AMS laboratory in Bucharest

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.; Petre, A. R.; Simion, C. A.; Calinescu, C. I.; Ghita, D. G.

    2015-10-01

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  2. SLAC Linac Preparations for FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, R.; Bentson, L.; Kharakh, D.

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  3. Vertical accelerator device to apply loads simulating blast environments in the military to human surrogates.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael

    2015-09-18

    The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented. Published by Elsevier Ltd.

  4. Accelerating Technologies: Consequences for the Future Wellbeing of Students

    ERIC Educational Resources Information Center

    Saltinski, Ronald

    2015-01-01

    Today's students, K-12 and beyond, will face an ominous future unless educators quickly invest in preparing student perspectives for the accelerating technologies that will have global implications for the wellbeing of all humanity. Accelerating technologies are quietly, almost insidiously, transforming the world with little fanfare and certainly…

  5. An Object in Motion: An Integrative STEM Approach to Accelerating Students' Interest in Newton's Laws of Motion

    ERIC Educational Resources Information Center

    Hughes, Bill; Mona, Lynn; Wilson, Greg; McAninch, Steve; Seamans, Jeff; Stout, Heather

    2017-01-01

    Science, Technology, Engineering, and Math (STEM) have developed broad prevalence in the American (U.S.) education system over the last decade. Academic, government, and business experts emphasize that attracting K-12-university students to STEM subject matter is crucial for expanding the innovation capacity of the U.S. and preparing citizens for…

  6. Accelerator mass spectrometry of strontium-90 for homeland security, environmental monitoring and human health

    NASA Astrophysics Data System (ADS)

    Tumey, Scott J.; Brown, Thomas A.; Hamilton, Terry E.; Hillegonds, Darren J.

    2008-05-01

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of 90Sr by accelerator mass spectrometry. Despite a pervasive interference from 90Zr, our initial development has yielded an instrumental background of ∼108 atoms (75 mBq) per sample. Further refinement of our system (e.g. redesign of our detector, use of alternative target materials) is expected to push the background below 106 atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring and human health.

  7. Applications of the pulsed gas stripper technique at the GSI UNILAC

    NASA Astrophysics Data System (ADS)

    Scharrer, P.; Barth, W.; Bevcic, M.; Düllmann, Ch. E.; Gerhard, P.; Groening, L.; Horn, K. P.; Jäger, E.; Khuyagbaatar, J.; Krier, J.; Vormann, H.; Yakushev, A.

    2017-08-01

    In the frame of an upgrade program for the GSI UNILAC, preparing it for the use as an injector system for FAIR, a pulsed gas stripper cell was developed. It utilizes the required low duty cycle by applying a pulsed gas injection instead of a continuous gas inlet. The resulting lower gas consumption rate enables the use of low-Z gas targets over a wide range of stripper target thicknesses. The setup enables an increased flexibility for the accelerator by allowing the gas stripper to be used in time-sharing beam operation matching the capabilities of the GSI UNILAC like the acceleration of different ion beams in quasi-parallel operation. Measured charge state distributions of 238U, 50Ti, and CH3 beams on H2 and N2 gas highlight the benefits of the pulsed gas stripper cell for the accelerator operation and performance.

  8. ARIEL e-LINAC: Commissioning and Development

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  9. The Efficacy of Academic Acceleration for Gifted Minority Students

    ERIC Educational Resources Information Center

    Lee, Seon-Young; Olszewski-Kubilius, Paula; Peternel, George

    2010-01-01

    This study supported the use of acceleration for gifted minority students in math. The gifted minority students in this study viewed taking accelerated math courses as exciting and beneficial for preparation for high school and college and particularly liked the challenges they encountered while taking advanced classes. They enjoyed working ahead…

  10. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  11. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  12. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojanmore » Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.« less

  13. Compendium of Information for Interpreting the Microgravity Environment of the Orbiter Spacecraft

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1996-01-01

    Science experiments are routinely conducted on the NASA shuttle orbiter vehicles. Primarily, these experiments are operated on such missions to take advantage of the microgravity (low-level acceleration) environment conditions during on-orbit operations. Supporting accelerometer instruments are operated with the experiments to measure the microgravity acceleration environment in which the science experiments were operated. Tne Principal Investigator Microgravity Services (PIMS) Project at NASA Lewis Research Center interprets these microgravity acceleration data and prepares mission summary reports to aid the principal investigators of the scientific experiments in understanding the microgravity environment. Much of the information about the orbiter vehicle and the microgravity environment remains the same for each mission. Rather than repeat that information in each mission summary report, reference information is presented in this report to assist users in understanding the microgravity-acceleration data. The characteristics of the microgravity acceleration environment are first presented. The methods of measurement and common instruments used on orbiter missions are described. The coordinate systems utilized in the orbiter and accelerometers are described. Some of the orbiter attitudes utilized in microgravity related missions are illustrated. Methods of data processing are described and illustrated. The interpretation of the microgravity acceleration data is included with an explanation of common disturbance sources. Instructions to access some of the acceleration data and a description of the orbiter thrusters are explained in the appendixes. A microgravity environment bibliography is also included.

  14. [Preparation and in vitro dissolution of magnolol solid dispersion].

    PubMed

    Tang, Lan; Qiu, Shuai-Bo; Wu, Lan; Lv, Long-Fei; Lv, Hui-Xia; Shan, Wei-Guang

    2016-02-01

    In this study, solid dispersion system of magnolol in croscarmellose sodium was prepared by using the solvent evaporation method, in order to increase the drug dissolution. And its dissolution behavior, stability and physical characteristics were studied. The solid dispersion was prepared with magnolol and croscarmellose sodium, with the proportion of 1∶5, the in vitro dissolution of magnolol solid dispersion was up to 80.66% at 120 min, which was 6.9 times of magnolol. The results of DSC (differential scanning calorimetry), IR (infra-red) spectrum and SEM (scanning electron microscopy) showed that magnolol existed in solid dispersion in an amorphous form. After an accelerated stability test for six months, the drug dissolution and content in magnolol solid dispersion showed no significant change. So the solid dispersion prepared with croscarmellose sodium as the carrier can remarkably improve the stability and dissolution of magnolol. Copyright© by the Chinese Pharmaceutical Association.

  15. Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters.

    PubMed

    Liu, Junxi; Wang, Chuan; Shi, Jianying; Liu, Hong; Tong, Yexiang

    2009-04-15

    This work investigated the effect of co-existing organic matters on aqueous Cr(VI) reduction by electrodeposited zero-valent iron (ED Fe(0)) at neutral pH. The ED Fe(0) prepared in a solution containing mixture of saccharin, L-ascorbic acid and sodium dodecyl sulfate showed higher activity in reducing the aqueous Cr(VI) at neutral pH than that prepared without any organic presence. XRD and SEM indicated that the structure of ED Fe(0) was significantly improved to nano-scale by the presence of organic mixture in the preparation solution. Further, the ED Fe(0) activity in the Cr(VI) reduction at neutral pH was increased by the co-existence of citric acid or oxalic acid in the chromate solution. Electrochemical impedance spectroscopy (EIS) demonstrated that the corrosive current increased with the concentration of organic matter in the reaction solution. With the co-existing organic matters in the preparation solution, the ED Fe(0) corroded more rapidly due to its nano-size, thus the Cr(VI) reduction by the ferrous iron was accelerated. With the co-existing organic matters in the reaction solution, the Cr(VI) reduction was accelerated by a Fe(II) complex as the main electron donor, and a prevention of the passivation due to the Fe(III) and Cr(III) complexes also accelerated the Cr(VI) reduction.

  16. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    DOEpatents

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  17. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    PubMed Central

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355

  18. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats.

    PubMed

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.

  19. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  20. The Public Health Information Network (PHIN) Preparedness Initiative

    PubMed Central

    Loonsk, John W.; McGarvey, Sunanda R.; Conn, Laura A.; Johnson, Jennifer

    2006-01-01

    The Public Health Information Network (PHIN) Preparedness initiative strives to implement, on an accelerated pace, a consistent national network of information systems that will support public health in being prepared for public health emergencies. Using the principles and practices of the broader PHIN initiative, PHIN Preparedness concentrates in the short term on ensuring that all public health jurisdictions have, or have access to, systems to accomplish known preparedness functions. The PHIN Preparedness initiative defines functional requirements, technical standards and specifications, and a process to achieve consistency and interconnectedness of preparedness systems across public health. PMID:16221945

  1. Acceptance Tests for AMS Radiocarbon Measurements at iThemba LABS, Gauteng, South Africa

    NASA Astrophysics Data System (ADS)

    Mbele, Vela L.; Mullins, Simon M.; Winkler, Stephan R.; Woodborne, Stephan

    The accelerator mass spectrometer was commissioned recently at the iThemba LABS 6 MV tandem accelerator. Improvements in the vacuum system, requiring procurement of cryo-pumps and the reducing the tank pressure of the N2 + CO2 insulation gas mixture below the level used for IBA measurements, were necessary. This resulted in the reduction of the nitrogen background and improved the resolution of 14C from 14N background in the ionisation chamber. The nitrogen was leaking to the stripping canal because of inadequate sealing. The analysing magnet was scaled to detect C3+ ions, at 3 MV terminal potential. The first sensible spectra allowed for the pin-pointing of many persistent issues. This resulted in measurements with a precision better than 1 pMC, and current blank levels correspond to 12 half-lives of 14C or ∼68000 years. The radiocarbon sample preparation laboratory has reached production status. A brief outlook of the work towards the implementation of the measurement and chemical preparation protocols for radionuclides 10Be and 26Al is also summarised in the conclusion

  2. Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramham, R.; Jacquot, C.; Riz, D.

    1998-08-20

    Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less

  3. Review of EuCARD project on accelerator infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-01-01

    The aim of big infrastructural and research programs (like pan-European Framework Programs) and individual projects realized inside these programs in Europe is to structure the European Research Area - ERA in this way as to be competitive with the leaders of the world. One of this projects in EuCARD (European Coordination of Accelerator Research and Development) with the aim to structure and modernize accelerator, (including accelerators for big free electron laser machines) research infrastructure. This article presents the periodic development of EuCARD which took place between the annual meeting, April 2012 in Warsaw and SC meeting in Uppsala, December 2012. The background of all these efforts are achievements of the LHC machine and associated detectors in the race for new physics. The LHC machine works in the regime of p-p, Pb-p, Pb-Pb (protons and lead ions). Recently, a discovery by the LHC of Higgs like boson, has started vivid debates on the further potential of this machine and the future. The periodic EuCARD conference, workshop and meetings concern building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The aim of the discussion is not only summarize the current status but make plans and prepare practically to building new infrastructures. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. Accelerator technology is intensely developed in all developed nations and regions of the world. The EuCARD project contains a lot of subjects related directly and indirectly to photon physics and photonics, as well as optoelectronics, electronics and integration of these with large research infrastructure.

  4. Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumey, S J; Brown, T A; Hamilton, T F

    2008-03-03

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of {sup 90}Sr by accelerator mass spectrometry. Despite a pervasive interference from {sup 90}Zr,more » our initial development has yielded an instrumental background of {approx} 10{sup 8} atoms (75 mBq) per sample. Further refinement of our system (e.g., redesign of our detector, use of alternative target materials) is expected to push the background below 10{sup 6} atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring, and human health.« less

  5. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  6. preparation of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry: A closed-system approach

    NASA Astrophysics Data System (ADS)

    Verkouteren, R. Michael; Klouda, George A.; Currie, Lloyd A.; Donahue, Douglas J.; Jull, A. J. Timothy; Linick, T. W.

    1987-11-01

    A technique has been developed at NBS for the production of high quality targets for radiocarbon analysis by accelerator mass spectrometry (AMS). Our process optimizes chemical yields, ion currents and characterizes the chemical blank. The approach encompasses sample combustion to CO 2, catalytic reduction of CO 2 by Zn to CO, reduction to graphitic carbon on high-purity iron wool and in situ formation of a homogeneous iron-carbon bead; all steps are performed in a closed system. The total measurement system blank and variability are considered in the light of contributions from combustion, iron wool, reduction, bead formation and instrument blank. Additionally, use of this approach provides an increase in throughput, i.e. the effective management of large numbers of samples. Chemical yields for 50-800 μg C samples deposited on 15 mg iron wool were greater than 90%. Integrated 12C - ion currents observed were significant, being 4-64% of those observed in pure graphite. These currents are about an order of magnitude greater than those expected from dilution of graphite with an inert substrate. Isotopic accuracy, precision and blank were assessed by measuring the {14C }/{13C } ratios of a series of targets prepared from dead carbon and oxalic acid (SRM 4990C). Each target was typically measured for one hour; bead consumption was estimated at 5% to 10%. System blank subsequent to combustion was equivalent to (2.2 ± 0.5) μg modern carbon (chemistry + instrument); combustion blank currently stands at (0.4 ± 0.1) (SE, n = 6) μg C.

  7. Radiosurgery with a linear accelerator. Methodological aspects.

    PubMed

    Betti, O O; Galmarini, D; Derechinsky, V

    1991-01-01

    Based on the concepts of Leksell and on recommendations of different Swedish physicists on the use of linear accelerator for radiosurgical use, we developed a new methodology coupling the Talairach stereotactic system with a commercial linac. Anatomical facts encouraged us to use coronal angles of irradiation employing the angular displacement of the linac above the horizontal plane. Different coronal planes are obtained by rotation of the stereotactic frame. The center of the irradiated target coincides with the irradiation and rotation center of the linear accelerator. Multiple targets can be irradiated in the same session. We use as recommended a secondary collimator in heavy alloy. Special software was prepared after different dosimetric controls. The use of a PC allows us to employ 1-6 targets and different collimators to displace the isocenters in order to obtain geometrical isodose modification, and to change the value of each irradiation arc or portions of each arc in some minutes. Simple or sophisticated neurosurgical strategies can be applied in the treatment of frequently irregular shape and volume AVMs.

  8. Radionuclide measurements by accelerator mass spectrometry at Arizona

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  9. Preparation of multilayer graphene sheets and their applications for particle accelerators

    NASA Astrophysics Data System (ADS)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  10. On-Demand Drug Delivery System Using Micro-organogels with Gold Nanorods

    PubMed Central

    2016-01-01

    In this study, we designed a biocompatible drug carrier: micro-organogels prepared by emulsification using vegetable oils and self-assembled gelator fibers. Flurbiprofen was chosen as a hydrophobic model drug and is classified as a nonsteroidal anti-inflammatory drug. In the absence of NIR light, flurbiprofen encapsulated in micro-organogels with gold nanorods (GNRs) was released slowly, while release was accelerated in the presence of NIR light due to the increase in the temperature surrounding the GNRs that transforms the gels into liquid. These results suggest that our system can be efficiently used as a versatile scaffold for on-demand drug delivery systems. PMID:27994743

  11. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  12. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application.

    PubMed

    Jangde, Rajendra; Srivastava, Shikha; Singh, Manju R; Singh, Deependra

    2018-05-03

    The present work aim to prepare and evaluate multiphase hydrogel system incorporated with quercetin loaded liposomes (QLH), for wound healing. The quercetin loaded liposomal hydrogel were prepared by taking 15% carbopol and varying gelatin ratio. The clear and transparent hydrogel was obtained by taking ratio of gelatin to carbapol (6/4) compared to other ratios. The best prepared hydrogel were characterized for surface morphology, water vapor transmission rate (WVTR), swelling ratio, hemocompatibility, stability, in-vitro release and in-vivo studies. The evaluated results of (QLH) for surface morphology, WVTR, swelling ratio, hemocompatibility and in-vitro release were found to be significant compared to other prepared formulations. Consequently, on basis of optimized hydrogel was selected to study wound healing activity in albino rats. The results demonstrated accelerated wound-healing with significant decrease in wound closure time compared to conventional dosage form. The results of in-vitro and in-vivo promises reliable mode of treatment for connective tissue disorder as wound healing. Copyright © 2018. Published by Elsevier B.V.

  13. Extended Performance Assessment in Accelerated Corrosion and Adhesion of CARC Prepared Aluminum Alloy 5059-H131 for Three Different Pretreatment Methods

    DTIC Science & Technology

    2008-03-01

    conversion coating, only works well as part of a complete coating system as was the case in this study. Trivalent chromium pretreatments such as TCP must...conditions. The pretreatment conditions were abrasive blasted, a nonchromate pretreatment (NCP)1, and a commercial trivalent chromate pretreatment...ease of manufacturing via welds , excellent performance against fragmentation based threats, and excellent corrosion resistance. As threat levels have

  14. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  15. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  16. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  17. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    PubMed

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SAMS Acceleration Measurements on Mir (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  19. Ring design of the Prague synchrotron for cancer therapy

    NASA Astrophysics Data System (ADS)

    Molodozhentsev, A.; Makoveev, V.; Minashkin, V.; Shevtsov, V.; Sidorov, G.; Prokesh, K.; Sedlak, J.; Kuzmiak, M.

    1998-04-01

    The paper presents main elements of a dedicated proton synchrotron for hadron therapy. The beam parameters for active scanning of tumours are discussed. The output energy of the beam should be variable in the range 60-220 MeV. The average current of the proton beam is equal to 10 nA. The repetition rate of the accelerator is chosen of 1 Hz to get a spill time for slow extraction of about 500 ms. The timing cycle of the accelerator including the quasi-adiabatic capture process and acceleration is described. The RF gymnastics is utilized to prepare the unbunched beam for slow extraction. The magnetic elements of the ring, compact RF and VCO systems are presented in the paper. The maximum magnet field of the dipole magnet should be 1.2 T and the maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The resonator should work on the first harmonic with a frequency from 1.298 MHz till 4.804 MHz. The length of the resonator should be less than 1 m. The maximum voltage on the accelerator gap should be about 2 kV.

  20. Oral controlled release optimization of pellets prepared by extrusion-spheronization processing.

    PubMed

    Bianchini, R; Vecchio, C

    1989-06-01

    Controlled release high dosage forms of a typical drug such as Indobufen were prepared as multiple-unit doses by employing extrusion-spheronization processing and subsequently film coating operations. The effects of drug particle size, drug/binder ratio, extruder screen size and preparation reproducibility on the physical properties of the spherical granules were evaluated. Controlled release optimization was obtained on the same granules by coating with polymeric membranes of different thickness consisting of water-soluble and insoluble substances. Film coating was applied from an organic solution using pan coating technique. The drug diffusion is allowed by dissolution of part of the membrane leaving small channels of the polymer coat. Further preparations were conducted to evaluate coatings applied from aqueous dispersion (pseudolatex) using air suspension coating technique. In this system the drug diffusion is governed by the intrinsic pore network of the membrane. The most promising preparations having the desired in vitro release, were metered into hard capsules to obtain the drug unit dosage. Accelerated stability tests were carried out to assess the influence of time and the other storage parameters on the drug release profile.

  1. Self-perception of readiness for clinical practice: A survey of accelerated Masters program graduate registered nurses.

    PubMed

    Cantlay, Andrew; Salamanca, Jennifer; Golaw, Cherie; Wolf, Daniel; Maas, Carly; Nicholson, Patricia

    2017-05-01

    Accelerated nursing programs are gaining momentum as a means of career transition into the nursing profession for mature age learners in an attempt to meet future healthcare workforce demands in Australia. With a gap in the literature on readiness for practice of graduates from accelerated nursing programs at the Masters level the purpose of this study was to evaluate the effectiveness of the program based on graduates' preparedness for practice and graduate outcomes. Using a descriptive, exploratory design an online survey was used to explore the perception of graduate nurses' readiness for clinical practice. Forty-nine graduates from a nursing Masters program at an Australian university completed the survey defining readiness for practice as knowledge of self-limitations and seeking help, autonomy in basic clinical procedures, exhibiting confidence, possessing theoretical knowledge and practicing safe care. Graduates perceived themselves as adequately prepared to work as a beginner practitioner with their perception of readiness for clinical practice largely positive. The majority of participants agreed that the program had prepared them for work as a beginner practitioner with respondents stating that they felt adequately prepared in most areas relating to clinical practice. This would suggest that educational preparation was adequate and effective in achieving program objectives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Doing accelerator physics using SDDS, UNIX, and EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, M.; Emery, L.; Sereno, N.

    1995-12-31

    The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system and EPICS (Experimental Physics and Industrial Controls System), has proved powerful during the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol has permitted a tool-oriented approach to developing applications, wherein generic programs axe written that function as part of multiple applications. While EPICS-specific tools were written for data collection, automated experiment execution, closed-loop control, and so forth, data processing and display axe done with the SDDS Toolkit. Experiments and data reduction axe implemented as UNIX shell scripts that coordinatemore » the execution of EPICS specific tools and SDDS tools. Because of the power and generic nature of the individual tools and of the UNIX shell environment, automated experiments can be prepared and executed rapidly in response to unanticipated needs or new ideas. Examples are given of application of this methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron characterization.« less

  3. Curing kinetics and thermomechanical properties of latent epoxy/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Dalle Vacche, S.; Michaud, V.; Demierre, M.; Bourban, P.-E.; Månson, J.-A. E.

    2016-07-01

    In this work, resins based on diglycidyl ether of bisphenol A (DGEBA) epoxy and a latent hardener, dicyandiamide (DICY), as well as carbon fiber (CF) composites based on them, were prepared with three commercial accelerators: a methylene bis (phenyl dimethyl urea), a cycloaliphatic substituted urea, and a modified polyamine. The curing kinetics of the three DGEBA/DICY/accelerator systems were investigated by chemorheology and differential scanning calorimetry (DSC), in isothermal and over temperature change conditions. Differences in the reaction onset temperature, and in the glass transition temperature (Tg) were highlighted. For curing of thick resin samples, a slow curing cycle at the lowest possible temperature was used, followed by high temperature (160 - 180 °C) post-curing. Indeed, fast curing at higher temperatures caused the formation of hot spots and led to local burning of the samples. The obtained thermomechanical properties, assessed by ultimate tensile testing and dynamic mechanical analysis (DMA) in single cantilever configuration, were all in the expected range for epoxy resins, with tensile moduli close to 3 GPa and Tg > 140 °C. The longterm stability of these resins at room temperature was verified by DSC. Composite samples were prepared by hand lay-up by manually impregnating four layers of 5-harness satin CF textile, and curing in vacuum bag. Impregnation quality and void content were assessed by optical microscopy. The flexural properties of the post-cured composites were assessed by three-point bending test at room temperature and showed no relevant differences, all composites having bending moduli of 45 - 50 GPa. Finally, composites cured with a faster high temperature curing cycle (20 min at 140 °C) were prepared with the DGEBA/DICY/ methylene bis (phenyl dimethyl urea) system, obtaining similar properties as with the slower curing cycle, showing that the prepreg system allowed more flexibility in terms of curing cycle than the bulk resin samples.

  4. Holifield Heavy-Ion Research Facility at Oak Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.M.

    1977-01-01

    A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described.

  5. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  6. Silicone absorption of elastomeric closures--an accelerated study.

    PubMed

    Degrazio, F L; Hlobik, T; Vaughan, S

    1998-01-01

    There is a trend in the parenteral industry to move from the use of elastomeric closures which are washed, siliconized, dried and sterilized in-house at the pharmaceutical manufacturers' site to pre-prepared closures purchased from the closure supplier. This preparation can consist of washing to reduce particle-load and bioburden, siliconization, placement in ready-to-sterilize bags and may eventually extend to sterilization by steam autoclave or gamma irradiation. Since silicone oil lubrication is critical to the processability/machinability of closures, research was designed to investigate this phenomenon in closures prepared using the Westar RS (Ready-to-Sterilize) process. This paper presents the data gathered in a study of the characteristic of silicone absorption into elastomeric closures under accelerated conditions. Variables such as silicone viscosity, rubber formulation, effect of sterilization and others are considered.

  7. Production of .sup.64 Cu and other radionuclides using a charged-particle accelerator

    DOEpatents

    Welch, Michael J.; McCarthy, Deborah W.; Shefer, Ruth E.; Klinkowstein, Robert E.

    2000-01-01

    Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area. The irradiated target is remotely and automatically transferred from the target holder, preferably without transferring any target holder subassemblies, to a conveyance system which is preferably a pneumatic or hydraulic conveyance system, and then further transferred to an automated separation system. The system is effective for processing a single target or a plurality of targets. After separation, the unreacted target material can be recycled for preparation of other targets. In a preferred application of the invention, a biomedical cyclotron has been used to produce over 500 mCi of .sup.64 Cu having a specific activity of over 300 mCi/.mu.g Cu according to the reaction .sup.64 Ni(p,n).sup.64 Cu. These results indicate that accelerator-produced .sup.64 Cu is suitable for radiopharmaceutical diagnostic and therapeutic applications.

  8. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: an in vitro study.

    PubMed

    Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad

    2014-01-01

    Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  9. Changing societies and four tasks of schooling: Challenges for strongly differentiated educational systems

    NASA Astrophysics Data System (ADS)

    van de Werfhorst, Herman G.

    2014-05-01

    Changing labour markets, increased calls for selection and excellence, and increased diversity and individualisation have repercussions on how educational systems can prepare youth for work, optimise knowledge production, achieve equality of opportunity, and socialise students into active civic engagement. This paper discusses four central tasks of schooling and examines to what extent societal developments challenge education policy to deliver on the tasks at hand. Particular attention is given to the challenges Europe's strongly diversified educational systems are currently facing. Both the Netherlands and Germany, for example, have been offering vocationally-oriented pathways alongside traditional academic higher education for some time. But today's ongoing changes in job descriptions, mainly due to ever-accelerating technological developments, are causing a risk of skills obsolescence which can only be avoided by continuous upskilling and/or reskilling of a sufficiently flexible workforce. Overcoming differences of intelligence as well as differences of diverse socioeconomic, ethnic and linguistic backgrounds by way of education is another challenge, as is fostering "soft" skills and political awareness. This paper investigates the effectiveness of current education systems in preparing citizens for a functioning modern society.

  10. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Lee, H; Choi, K

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantrymore » and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations.« less

  11. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  12. Flexible and experimentally feasible shortcut to quantum Zeno dynamic passage

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zhang, Fengyang; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-10-01

    We propose and discuss a theoretical scheme to speed up Zeno dynamic passage by an external acceleration Hamiltonian. This scheme is a flexible and experimentally feasible acceleration because the acceleration Hamiltonian does not adhere rigidly to an invariant relationship, whereas it can be a more general form ∑uj (t)Hcj. Here Hcj can be arbitrarily selected without any limitation, and therefore one can always construct an acceleration Hamiltonian by only using realizable Hcj. Applying our scheme, we finally design an experimentally feasible Hamiltonian as an example to speed up an entanglement preparation passage.

  13. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  14. The Value of Digital Tutoring and Accelerated Expertise for Military Veterans

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    2017-01-01

    This report concerns use of a digital tutor to accelerate veterans' acquisition of expertise and improve their preparation for the civilian workforce. As background, it briefly discusses the need to improve veterans' employability, the technology of digital tutoring, its ability to produce advanced levels of technical expertise, and the design,…

  15. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  16. Quantum metrology and estimation of Unruh effect

    PubMed Central

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2014-01-01

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772

  17. Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms

    PubMed Central

    Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus

    2017-01-01

    All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130

  18. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  19. The need to incorporate health information technology into physicians' education and professional development.

    PubMed

    Graham-Jones, Pierce; Jain, Sachin H; Friedman, Charles P; Marcotte, Leah; Blumenthal, David

    2012-03-01

    Nationwide, as physicians and health care systems adopt electronic health records, health information technology is becoming integral to the practice of medicine. But current medical education and professional development curricula do not systematically prepare physicians to use electronic health records and the data these systems collect. We detail how training in meaningful use of electronic health records could be incorporated into physician training, from medical school, through licensure and board certification, to continuing medical education and the maintenance of licensure and board certification. We identify six near-term opportunities for professional organizations to accelerate the integration of health information technology into their requirements.

  20. SAMS Acceleration Measurements on Mir From January to May 1997 (NASA Increment 4)

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFT), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine burn, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.

  1. Further Studies of the NRL Collective Particle Accelerator VIA Numerical Modeling with the MAGIC Code.

    DTIC Science & Technology

    1984-08-01

    COLLFCTIVF PAPTTCLE ACCELERATOR VIA NUMERICAL MODFLINC WITH THF MAGIC CODE Robert 1. Darker Auqust 19F4 Final Report for Period I April. qI84 - 30...NUMERICAL MODELING WITH THE MAGIC CODE Robert 3. Barker August 1984 Final Report for Period 1 April 1984 - 30 September 1984 Prepared for: Scientific...Collective Final Report Particle Accelerator VIA Numerical Modeling with April 1 - September-30, 1984 MAGIC Code. 6. PERFORMING ORG. REPORT NUMBER MRC/WDC-R

  2. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fabrication of niobium-based oxides/oxynitrides/nitrides and their applications in dye-sensitized solar cells and anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Zhang, Taihong; Yun, Sining; Li, Xue; Huang, Xinlei; Hou, Yuzhi; Liu, Yanfang; Li, Jing; Zhou, Xiao; Fang, Wen

    2017-02-01

    Transition metal compounds (TMCs), as a representative family of functional materials, have attracted great attention in the field of renewable energy. Herein, Nb3.49N4.56O0.44 and NbN are prepared from the nitridation of NbO2 in an NH3 atmosphere. These dual-functional Nb-based compounds were applied to dye-sensitized solar cells (DSSCs) and anaerobic digestion (AD), and the efficiency and stability of these DSSCs and AD systems were systematically evaluated. The Nb3.49N4.56O0.44 counter electrode (CE) exhibited considerable electrocatalytic activity and stability in I3- reduction in DSSCs, achieving photovoltaic performance comparable with Pt (6.36% vs. 7.19%). Furthermore, as accelerants, Nb-based compounds can greatly improve the AD environment, increasing substrate utilization and decreasing the hazards in the digestate. Compared with the control sample (409.2 mL/g·VS and 29.55%), substantially higher cumulative biogas production (437.1-522.7 mL/g·VS) and chemical oxygen demand removal rates (56.08%-65.19%) were achieved using Nb-based accelerants in the AD system. The nitridation technique is an effective and general means of converting Nb-based oxides into oxynitrides and nitrides. The Nb-based compounds with high electrocatalytic activities showed promise for DSSCs applications, while greatly enhancing the biodegradability of the AD system as accelerants. These findings could pave the way for multifunctional applications of TMCs in renewable energy fields.

  4. COBRA accelerator for Sandia ICF diode research at Cornell University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.

    1995-05-01

    The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse formingmore » lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.« less

  5. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix

    PubMed Central

    Wu, Xiao-Ting; Mei, May Lei; Li, Quan-Li; Cao, Chris Ying; Chen, Jia-Long; Xia, Rong; Zhang, Zhi-Hong; Chu, Chun Hung

    2015-01-01

    This in vitro study aimed to accelerate the remineralization of a completely demineralized dentine collagen block in order to regenerate the dentinal microstructure of calcified collagen fibrils by a novel electric field-aided biomimetic mineralization system in the absence of non-collagenous proteins. Completely demineralized human dentine slices were prepared using ethylene diamine tetraacetic acid (EDTA) and treated with guanidine hydrochloride to extract the bound non-collagenous proteins. The completely demineralized dentine collagen blocks were then remineralized in a calcium chloride agarose hydrogel and a sodium hydrogen phosphate and fluoride agarose hydrogel. This process was accelerated by subjecting the hydrogels to electrophoresis at 20 mA for 4 and 12 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to evaluate the resultant calcification of the dentin collagen matrix. SEM indicated that mineral particles were precipitated on the intertubular dentin collagen matrix; these densely packed crystals mimicked the structure of the original mineralized dentin. However, the dentinal tubules were not occluded by the mineral crystals. XRD and EDX both confirmed that the deposited crystals were fluorinated hydroxyapatite. TEM revealed the existence of intrafibrillar and interfibrillar mineralization of the collagen fibrils. A novel electric field-aided biomimetic mineralization system was successfully developed to remineralize a completely demineralized dentine collagen matrix in the absence of non-collagenous proteins. This study developed an accelerated biomimetic mineralization system which can be a potential protocol for the biomineralization of dentinal defects. PMID:28793685

  6. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.

  7. The College Completion Agenda: State Policy Guide. Latino Edition

    ERIC Educational Resources Information Center

    College Board Advocacy & Policy Center, 2011

    2011-01-01

    State public policy has been an important tool for improving the educational preparation and opportunity for many communities. However, without concerted statewide efforts it will continue to be difficult to substantially expand opportunities to accelerate higher education attainment and workforce preparation. Over the next 15 years, the states…

  8. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  9. Closed tubes preparation of graphite for high-precision AMS radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Hajdas, I.; Michczynska, D.; Bonani, G.; Maurer, M.; Wacker, L.

    2009-04-01

    Radiocarbon dating is an established tool applied in Geochronology. Technical developments of Accelerator Mass Spectrometry AMS, which allow measurements of samples containing less than 1 mg of carbon, opened opportunities for new applications. Moreover, high resolution records of the past changes require high-resolution chronologies i.e. sampling for 14C dating. In result, the field of applications is rapidly expanding and number of radiocarbon analysis is growing rapidly. Nowadays dedicated 14C AMS machines have great capacity for analysis but in order to keep up with the demand for analysis and provide the results as fast as possible a very efficient way of sample preparation is required. Sample preparation for 14C AMS analysis consists of two steps: separation of relevant carbon from the sample material (removing contamination) and preparation of graphite for AMS analysis. The last step usually involves reaction of CO2 with H2, in the presence of metal catalyst (Fe or Co) of specific mesh size heated to 550-625°C, as originally suggested by Vogel et al. (1984). Various graphitization systems have been built in order to fulfil the requirement of sample quality needed for high-precision radiocarbon data. In the early 90ties another method has been proposed (Vogel 1992) and applied by few laboratories mainly for environmental or biomedical samples. This method uses TiH2 as a source of H2 and can be easily and flexibly applied to produce graphite. Sample of CO2 is frozen in to the tube containing pre-conditioned Zn/TiH2 and Fe catalyst. Torch sealed tubes are then placed in the stepwise heated oven at 500/550°C and left to react for several hours. The greatest problem is the lack of control of the reaction completeness and considerable fractionation. However, recently reported results (Xu et al. 2007) suggest that high precision dating using graphite produced in closed tubes might be possible. We will present results of radiocarbon dating of the set of standards and secondary IAEA standards to demonstrate to what level this method can be used for high precision radiocarbon dating. References Vogel JS. 1992. Rapid Production of Graphite without Contamination for Biomedical Ams. Radiocarbon 34: 344-350. Vogel JS, Southon JR, Nelson DE, and Brown TA. 1984. Performance of Catalytically Condensed Carbon for Use in Accelerator Mass-Spectrometry. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 233: 289-293. Xu X, Trumbore SE, Zheng S, Southon JR, McDuffee KE, Luttgen M, and Liu JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Accelerator Mass Spectrometry - Proceedings of the Tenth International Conference on Accelerator Mass Spectrometry 259: 320-329.

  10. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hideki; Maruta, Shinsaku, E-mail: maruta@soka.ac.jp

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesinmore » monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.« less

  11. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  12. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  13. Electron-beam lithography data preparation based on multithreading MGS/PROXECCO

    NASA Astrophysics Data System (ADS)

    Eichhorn, Hans; Lemke, Melchior; Gramss, Juergen; Buerger, B.; Baetz, Uwe; Belic, Nikola; Eisenmann, Hans

    2001-04-01

    This paper will highlight an enhanced MGS layout data post processor and the results of its industrial application. Besides the preparation of hierarchical GDS layout data, the processing of flat data has been drastically accelerated. The application of the Proximity Correction in conjunction with the OEM version of the PROXECCO was crowned with success for data preparation of mask sets featuring 0.25 micrometers /0.18 micrometers integration levels.

  14. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  15. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  16. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  17. Plutonium (TRU) transmutation and 233U production by single-fluid type accelerator molten-salt breeder (AMSB)

    NASA Astrophysics Data System (ADS)

    Furukawa, Kazuo; Kato, Yoshio; Chigrinov, Sergey E.

    1995-09-01

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility: (2) few operation/maintenance/processing works; (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  18. Preparation and comparative testing of advanced diamond-like carbon foils for tandem accelerators and time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Liechtenstein, V. Kh.; Ivkova, T. M.; Olshanski, E. D.; Baranov, A. M.; Repnow, R.; Hellborg, R.; Weller, R. A.; Wirth, H. L.

    1999-12-01

    The sputter preparation technique for thin diamond-like carbon (DLC) foils, advantageously used for ion-beam stripping and timing in accelerator experiments, has been optimized to improve the quality and the performance of the foils. Irradiation lifetimes of 5 μg/cm 2 DLC foils prepared by this technique have been compared with those for foils of approximately the same thickness, prepared by laser plasma ablation and for ethylene cracked foils when bombarded by 11 MeV Cu - - and Au --ion beams of ˜1 μA beam current at the Heidelberg MP-tandem. Standard carbon arc-evaporated foils were used as references. In these experiments, DLC stripper foils appeared to have a mean lifetime approximately two times longer than ethylene-cracked foils regardless of ion species, and compared favorably with foils prepared by laser ablation method. All these foils lasted at least, 10 times longer than standard carbon foils, when irradiated in the MP terminal. Approximately, the same improvement factor was confirmed with 3 μg/cm 2 DLC stripper foils irradiated with 2.3 MeV Ni-beams at the Pelletron accelerator in Lund. Unlike standard carbon foils, most of the advanced lifetime foils exhibited thinning during long irradiation, under clean vacuum. This suggests that sputtering of the foil by the heavy-ion beam might be a dominant process, responsible for the observed failure of these long-lived strippers. Along with specifically corrugated self-supporting DLC beam strippers, we succeeded in the fabrication of very smooth and ultra thin (˜0.5 μg/cm 2) DLC foils, mounted on grids and used as start foils for the ToF spectrometers applied in ion beam analysis.

  19. Development of stable Grid service at the next generation system of KEKCC

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Iwai, G.; Matsunaga, H.; Murakami, K.; Sasaki, T.; Suzuki, S.; Takase, W.

    2017-10-01

    A lot of experiments in the field of accelerator based science are actively running at High Energy Accelerator Research Organization (KEK) by using SuperKEKB and J-PARC accelerator in Japan. In these days at KEK, the computing demand from the various experiments for the data processing, analysis, and MC simulation is monotonically increasing. It is not only for the case with high-energy experiments, the computing requirement from the hadron and neutrino experiments and some projects of astro-particle physics is also rapidly increasing due to the very high precision measurement. Under this situation, several projects, Belle II, T2K, ILC and KAGRA experiments supported by KEK are going to utilize Grid computing infrastructure as the main computing resource. The Grid system and services in KEK, which is already in production, are upgraded for the further stable operation at the same time of whole scale hardware replacement of KEK Central Computer System (KEKCC). The next generation system of KEKCC starts the operation from the beginning of September 2016. The basic Grid services e.g. BDII, VOMS, LFC, CREAM computing element and StoRM storage element are made by the more robust hardware configuration. Since the raw data transfer is one of the most important tasks for the KEKCC, two redundant GridFTP servers are adapted to the StoRM service instances with 40 Gbps network bandwidth on the LHCONE routing. These are dedicated to the Belle II raw data transfer to the other sites apart from the servers for the data transfer usage of the other VOs. Additionally, we prepare the redundant configuration for the database oriented services like LFC and AMGA by using LifeKeeper. The LFC servers are made by two read/write servers and two read-only servers for the Belle II experiment, and all of them have an individual database for the purpose of load balancing. The FTS3 service is newly deployed as a service for the Belle II data distribution. The service of CVMFS stratum-0 is started for the Belle II software repository, and stratum-1 service is prepared for the other VOs. In this way, there are a lot of upgrade for the real production service of Grid infrastructure at KEK Computing Research Center. In this paper, we would like to introduce the detailed configuration of the hardware for Grid instance, and several mechanisms to construct the robust Grid system in the next generation system of KEKCC.

  20. Preparation of 6-substituted quinoxaline JSP-1 inhibitors by microwave accelerated nucleophilic substitution.

    PubMed

    Zhang, Li; Qiu, Beiying; Li, Xin; Wang, Xin; Li, Jingya; Zhang, Yongliang; Liu, Jian; Li, Jia; Shen, Jingkang

    2006-12-21

    A small library of 6-aminoquinoxalines has been prepared by nucleophilic substitution of 6-fluoroquinoxaline with amines and nitrogen-containing heterocycles under computer-controlled microwave irradiation. Some compounds were found to be potent inhibitors of JNK Stimulatory Phosphatase-1 (JSP-1) in an in vitro biological assay.

  1. Culturally Efficacious Mathematics and Science Teacher Preparation for Working with English Learners

    ERIC Educational Resources Information Center

    Bustos Flores, Belinda; Claeys, Lorena; Gist, Conra D.; Riojas Clark, Ellen; Villarreal, Abelardo

    2015-01-01

    To address the challenge of ensuring the quality of preparation of secondary mathematics and science teachers, this article describes the efforts of the "Academy for Teacher Excellence" (ATE; Flores et al., 2007), which received Transition to Teaching grants to establish the Accelerated Teacher Education Program (ATEP). ATEP's purpose…

  2. Design and characterisation of a polyethylene oxide matrix with the potential use as a teat insert for prevention/treatment of bovine mastitis.

    PubMed

    Bhattarai, Sushila; Alany, Raid G; Bunt, Craig R; Abdelkader, Hamdy; Rathbone, Michael J

    2015-01-01

    This manuscript reports (for the first time) on antibiotic-free polymeric inserts for the prevention and/or treatment of bovine mastitis. Polyethylene oxide (PEO)-based inserts were prepared using different concentrations of various hydrophilic polymers and water-soluble and water-insoluble drug-release-modifying excipients. A simple and scalable melt-extrusion method was employed to prepare the inserts. The prepared inserts were characterised for their dimension, rheological and mechanical properties. The in vitro release of a model bacteriostatic drug (salicylic acid) from the prepared inserts was studied to demonstrate the effectiveness and reproducibility of the melt-extrusion manufacturing method. Further, the in vitro stability of the inserts was evaluated using gel permeation chromatography (GPC) to monitor any change in molecular weight under real-time and accelerated storage conditions. The investigated inserts were stable at accelerated storage conditions over a period of 6 months. PEO inserts have the potential to serve a dual purpose, act as a physical barrier against pathogens invading the teat canal of cows and possibly control the release of a drug.

  3. Development of Maximum Considered Earthquake Ground Motion Maps

    USGS Publications Warehouse

    Leyendecker, E.V.; Hunt, R.J.; Frankel, A.D.; Rukstales, K.S.

    2000-01-01

    The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings use a design procedure that is based on spectral response acceleration rather than the traditional peak ground acceleration, peak ground velocity, or zone factors. The spectral response accelerations are obtained from maps prepared following the recommendations of the Building Seismic Safety Council's (BSSC) Seismic Design Procedures Group (SDPG). The SDPG-recommended maps, the Maximum Considered Earthquake (MCE) Ground Motion Maps, are based on the U.S. Geological Survey (USGS) probabilistic hazard maps with additional modifications incorporating deterministic ground motions in selected areas and the application of engineering judgement. The MCE ground motion maps included with the 1997 NEHRP Provisions also serve as the basis for the ground motion maps used in the seismic design portions of the 2000 International Building Code and the 2000 International Residential Code. Additionally the design maps prepared for the 1997 NEHRP Provisions, combined with selected USGS probabilistic maps, are used with the 1997 NEHRP Guidelines for the Seismic Rehabilitation of Buildings.

  4. Symposium on accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on themore » status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.« less

  5. Delayed release film coating applications on oral solid dosage forms of proton pump inhibitors: case studies.

    PubMed

    Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R

    2010-02-01

    Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.

  6. Adding Audio Supported Smartboard Lectures to an Introductory Astronomy Online Laboratory

    NASA Astrophysics Data System (ADS)

    Lahaise, U. G. L.

    2003-12-01

    SMART Board(TM) and RealProducer(R) Plus technologies were used to develop a series of narrated pre-lab introductory online lectures. Smartboard slides were created by capturing images from internet pages and power point slides, then annotated and saved as web pages using smartboard technology. Short audio files were recorded using the RealProducer Plus software which were then linked to individual slides. WebCT was used to deliver the online laboratory. Students in an Introductory Astronomy of the Solar System Online laboratory used the lectures to prepare for laboratory exercises. The narrated pre-lab lectures were added to six out of eight suitable laboratory exercises. A survey was given to the students to research their online laboratory experience, in general, and the impact of the narrated smartboard lectures on their learning success, specifically. Data were collected for two accelerated sessions. Results show that students find the online laboratory equally hard or harder than a separate online lecture. The accelerated format created great time pressure which negatively affected their study habits. About half of the students used the narrated pre-lab lectures consistently. Preliminary findings show that lab scores in the accelerated sessions were brought up to the level of full semester courses.

  7. A Preliminary Experimental Study on Vibration Responses of Foamed Concrete Composite Slabs

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Ghaffar, N. H. Abd; Rahman, N. Abd

    2017-11-01

    In recent years, composite slab has received utmost demand as a floor system in the construction industry. The composite slab is an economical type of structure and able to accelerate the construction process. Basically, the composite slab can be casting by using a combination of corrugated steel deck and normal concrete in which selfweight represents a very large proportion of the total action. Therefore, foamed concrete become an attractive alternative to be utilized as a replacement of normal concrete. However, foamed concrete has high flexibility due to the presence of large amount of air-void and low modulus elasticity. It may result in vibration responses being greater. Hence, this experimental study investigates the vibration responses of composite slab made of corrugated steel deck and foamed concrete. The specimens were prepared with dimension of 750mm width, 1600mm length and 125mm thickness. The hammer-impact test was conducted to obtain the acceleration-time history. The analysis revealed that the first natural frequency is around 27.97 Hz to 40.94 Hz, while the maximum acceleration reaches 1.31 m/s2 to 1.88 m/s2. The first mode shape depicts normal pattern and favourable agreement of deformation.

  8. The effects of gamma irradiation on diclofenac sodium, liposome and niosome ingredients for rheumatoid arthritis

    PubMed Central

    Turker, Selcan; Çolak, Seyda; Korkmaz, Mustafa; Kiliç, Ekrem; Özalp, Meral

    2013-01-01

    The use of gamma rays for the sterilization of pharmaceutical raw materials and dosage forms is an alternative method for sterilization. However, one of the major problems of the radiosterilization is the production of new radiolytic products during the irradiation process. Therefore, the principal problem in radiosterilization is to determine and to characterize these physical and chemical changes originating from high-energy radiation. Parenteral drug delivery systems were prepared and in vitro characterization, biodistribution and treatment studies were done in our previous studies. Drug delivery systems (liposomes, niosomes, lipogelosomes and niogelosomes) encapsulating diclofenac sodium (DFNa) were prepared for the treatment of rheumatoid arthritis (RA). This work complies information about the studies developed in order to find out if gamma radiation could be applied as a sterilization method to DFNa, and the raw materials as dimyristoyl phosphatidylcholine (DMPC), surfactant I [polyglyceryl-3-cethyl ether (SUR I)], dicethyl phosphate (DCP) and cholesterol (CHOL) that are used to prepare those systems. The raw materials were irradiated with different radiation doses (5, 10, 25 and 50 kGy) and physicochemical changes (organoleptic properties pH, UV and melting point), microbiological evaluation [sterility assurance level (SAL), sterility and pyrogen test] and electron spin resonance (ESR) characteristics were studied at normal (25 °C, 60% relative humidity) and accelerated (40 °C, 75% relative humidity) stability test conditions. PMID:24265902

  9. Preparing for College Success: Exploring the Impact of the High School Cambridge Acceleration Program on U.S. University Students

    ERIC Educational Resources Information Center

    Shaw, Stuart D.; Werno, Magda A.

    2016-01-01

    This case study sought to gain a better understanding of the impact of the Cambridge Acceleration Program on students' transition from high school to college at one American university. The findings from an online questionnaire indicate that many participants develop a range of skills that are perceived as important in the context of university…

  10. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  11. Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability.

    PubMed

    Guo, Qin; Cai, Jie; Li, Pengyu; Xu, Dongling; Ni, Xiaomin; Wen, Hui; Liu, Dan; Lin, Suizhen; Hu, Haiyan

    2016-01-01

    Androst-3β,5α,6β-triol (Triol) is a promising neuroprotective agent, but its poor solubility restricts its development into parenteral preparations. In this study, Triol is significantly solubilized by bile salt/phosphatidylcholine mixed micelles (BS/PC-MM). All BS/PC-MM systems are tested to remarkably improve the drug solubility with various stabilities after drug loading. Among them, the sodium glycocholate (SGC)/egg phosphatidylcholine (EPC) system with 2:1 ratio in weight and the total concentration of SGC and EPC of 100 mg/mL is proved to produce stable mixed micelles with high drug loading. It is found that the stability of drug-loaded mixed micelles is quite different, which might be related to the change in critical micelle concentration (CMC) after incorporating drugs. SGC/EPC and SGC/soya phosphatidylcholine (SPC) remain transparent under accelerated conditions and manifest a decreased CMC (dropping from 0.105 to 0.056 mg/mL and from 0.067 to 0.024 mg/mL, respectively). In contrast, swine bile acid-sodium salt (SBA-Na)/PC and sodium deoxycholate (SDC)/PC are accompanied by drug precipitation and reached the maximum CMC on the first and the third days, respectively. Interestingly, the variation of CMC under accelerated testing conditions highly matches the drug-precipitating event in the primary stability experiment. In brief, the bile salt/phosphatidylcholine system exists as a potential strategy of improving sterol drug solubility. CMC variation under accelerated testing conditions might be a simple and easy method to predict the stability of drug-loaded mixed micelles.

  12. Color Stability of CAD/CAM Fabricated Inlays after Accelerated Artificial Aging.

    PubMed

    Karaokutan, Isil; Yilmaz Savas, Tuba; Aykent, Filiz; Ozdere, Eda

    2016-08-01

    To investigate the influence of accelerated artificial aging on the color stability of three different inlay restorations produced with a CAD/CAM system. Thirty non-carious human mandibular molar teeth were used. The teeth were embedded in autopolymerizing acrylic resin blocks. Standard Class I inlay cavities were prepared, and the teeth were randomly divided into three groups (n = 10) to fabricate inlay restorations: (1) a feldspathic-ceramic group, (2) a resin nano-ceramic group, and (3) a leucite glass-ceramic group. Optical impressions were made with CEREC software, and the restorations were designed and then milled. The inlays were adhesively cemented with a dual-polymerizing resin cement and left in distilled water at room temperature for 1 week. Color measurements were performed with a spectrophotometer before and after accelerated aging in a weathering machine with a total energy of 150 kJ/m(2) . Changes in color (∆E, ∆L, ∆a, ∆b, ∆C) were determined using the CIE L*a*b* system. The results were assessed using a one-way ANOVA and Tukey's HSD test (p = 0.05). The color changes of the materials ranged from 2.1 to 9.29. The highest color change was seen in the resin nano-ceramic material. This change was not clinically acceptable (∆E > 5.5). No significant differences were found in the ∆L and ∆a values of the test groups. Color changes were observed in each evaluated material after accelerated aging. All CAD/CAM inlays became darker in appearance, more saturated, a little reddish, and more yellow. © 2015 by the American College of Prosthodontists.

  13. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  14. Isolated hepatocytes--past, present and future.

    PubMed

    Berry, M N; Grivell, A R; Grivell, M B; Phillips, J W

    1997-07-01

    The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca(2+)-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase. The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.

  15. Quality control of concrete at the stage of designing its composition and technology

    NASA Astrophysics Data System (ADS)

    Kudyakov, A.; Prischepa, I.; Kiselev, D.; Prischepa, B.

    2016-01-01

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology - hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation of foam concrete mix technological regulations are worked out, in which it is recommended to use additives - hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.

  16. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.

  17. Preparation and characterization of azithromycin--Aerosil 200 solid dispersions with enhanced physical stability.

    PubMed

    Li, Xuechao; Peng, Huanhuan; Tian, Bin; Gou, Jingxin; Yao, Qing; Tao, Xiaoguang; He, Haibing; Zhang, Yu; Tang, Xing; Cai, Cuifang

    2015-01-01

    The main purpose of this study was to investigate the feasibility of azithromycin (AZI)--Aerosil 200 solid dispersions specifically with high stability under accelerated condition (40 °C/75% RH). Ball milling (BM) and hot-melt extrusion (HME) were used to prepare AZI solid dispersions. The physical properties of solid dispersions were evaluated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). For solid dispersions prepared with both methods, no crystalline of AZI was detected (except for AZI: Aerosil 200=75:25) by DSC or PXRD, indicating the amorphous state of AZI in solid dispersions. The FT-IR results demonstrated the loss of crystallization water and the formation of hydrogen bonds between Aerosil 200 and AZI during the preparation of solid dispersions. After 4 weeks storage under accelerated condition, the degree of crystallinity of AZI increased in solid dispersions prepared by BM, whereas for solid dispersions containing AZI, Aerosil 200 and glyceryl behenate (GB) prepared by HME, no crystalline of AZI was identified. This high stability can be attributed to the hydrophobic properties of GB and the presence of hydrogen bonds. Based on the above results, it is inferred the protection of hydrogen bonds between AZI and Aerosil 200 formed during preparation process effectively inhibited the recrystallization of AZI and improved the physical stability of amorphous AZI in the presence of Aerosil 200. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A startling acoustic stimulus facilitates voluntary lower extremity movements and automatic postural responses in people with chronic stroke.

    PubMed

    Coppens, Milou J M; Roelofs, Jolanda M B; Donkers, Nicole A J; Nonnekes, Jorik; Geurts, Alexander C H; Weerdesteyn, Vivian

    2018-05-14

    A startling acoustic stimulus (SAS) involuntary releases prepared movements at accelerated latencies, known as the StartReact effect. Previous work has demonstrated intact StartReact in paretic upper extremity movements in people after stroke, suggesting preserved motor preparation. The question remains whether motor preparation of lower extremity movements is also unaffected after stroke. Here, we investigated StartReact effects on ballistic lower extremity movements and on automatic postural responses (APRs) following perturbations to standing balance. These APRs are particularly interesting as they are critical to prevent a fall following balance perturbations, but show substantial delays and poor muscle coordination after stroke. Twelve chronic stroke patients and 12 healthy controls performed voluntary ankle dorsiflexion movements in response to a visual stimulus, and responded to backward balance perturbations evoking APRs. Twenty-five percent of all trials contained a SAS (120 dB) simultaneously with the visual stimulus or balance perturbation. As expected, in the absence of a SAS muscle and movement onset latencies at the paretic side were delayed compared to the non-paretic leg and to controls. The SAS accelerated ankle dorsiflexion onsets in both the legs of the stroke subjects and in controls. Following perturbations, the SAS accelerated bilateral APR onsets not only in controls, but for the first time, we also demonstrated this effect in people after stroke. Moreover, APR inter- and intra-limb muscle coordination was rather weak in our stroke subjects, but substantially improved when the SAS was applied. These findings show preserved movement preparation, suggesting that there is residual (subcortical) capacity for motor recovery.

  19. Accelerator/Experiment Operations - FY 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarapata, P.; Geer, S.; Geesaman, D.

    2014-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2014. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2014 MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  20. Plutonium (TRU) transmutation and {sup 233}U production by single-fluid type accelerator molten-salt breeder (AMSB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kazuo; Kato, Yoshio; Chigrinov, Sergey E.

    1995-09-15

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R and D items including radiation damage, heat removal and material compatibility: (2) few operation/maintenance/processing works; (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  1. Plutonium (TRU) transmutation and {sup 233}U production by single-fluid type accelerator molten-salt breeder (AMSB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukaw, Kazuo; Kato, Yoshio; Chigrinov, Sergey E.

    1995-10-01

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility; (2) few operation/maintenance/processing works: (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  2. The Successful Diagnosis and Typing of Systemic Amyloidosis Using A Microwave-Assisted Filter-Aided Fast Sample Preparation Method and LC/MS/MS Analysis

    PubMed Central

    Zou, Lili; Shen, Kaini; Zhong, Dingrong; Zhou, Daobin; Sun, Wei; Li, Jian

    2015-01-01

    Laser microdissection followed by mass spectrometry has been successfully used for amyloid typing. However, sample contamination can interfere with proteomic analysis, and overnight digestion limits the analytical throughput. Moreover, current quantitative analysis methods are based on the spectrum count, which ignores differences in protein length and may lead to misdiagnoses. Here, we developed a microwave-assisted filter-aided sample preparation (maFASP) method that can efficiently remove contaminants with a 10-kDa cutoff ultrafiltration unit and can accelerate the digestion process with the assistance of a microwave. Additionally, two parameters (P- and D-scores) based on the exponentially modified protein abundance index were developed to define the existence of amyloid deposits and those causative proteins with the greatest abundance. Using our protocol, twenty cases of systemic amyloidosis that were well-typed according to clinical diagnostic standards (training group) and another twenty-four cases without subtype diagnoses (validation group) were analyzed. Using this approach, sample preparation could be completed within four hours. We successfully subtyped 100% of the cases in the training group, and the diagnostic success rate in the validation group was 91.7%. This maFASP-aided proteomic protocol represents an efficient approach for amyloid diagnosis and subtyping, particularly for serum-contaminated samples. PMID:25984759

  3. State health policy for terrorism preparedness.

    PubMed

    Ziskin, Leah Z; Harris, Drew A

    2007-09-01

    State health policy for terrorism preparedness began before the terrorist attacks on September 11, 2001, but was accelerated after that day. In a crisis atmosphere after September 11, the states found their policies changing rapidly, greatly influenced by federal policies and federal dollars. In the 5 years since September 11, these state health policies have been refined. This refinement has included a restatement of the goals and objectives of state programs, the modernization of emergency powers statutes, the education and training of the public health workforce, and a preparation of the health care system to better care for victims of disasters, including acts of terrorism.

  4. Opinions concerning euthanasia, life-sustaining treatment and acceleration of death: results of an Italian Association of Medical Oncology (AIOM) survey.

    PubMed

    Catania, C; Zagonel, V; Fosser, V; La Verde, N; Bertetto, O; Iacono, C; Venturini, M; Radice, D; Adamoli, L; Boccardo, F

    2008-11-01

    Advance directives, acceleration of death, euthanasia and 'life-sustaining treatment' have sparked much heated debate among the media, the public, doctors and political leaders. We evaluate the personal opinions of Italian Association of Medical Oncology (AIOM) members. A 30-item questionnaire was developed and delivered to all 1,832 AIOM members. Six-hundred and eighty-five (37%) oncologists completed and returned the questionnaires. Sixty-three per cent felt culturally and psychologically prepared to face these issues. Fifty-four per cent believed that what had been decided while the patient enjoyed good health is no longer applicable in an advanced state of terminal illness. Thirty-nine per cent believed that doctors should abide by these directives, while 49% believed that this should be discussed on a case-by-case basis. Fourteen per cent of oncologists were favourable towards euthanasia and 42% only in particular circumstances. Fifty-six per cent had received at least one request for accelerating death: 15% consented, 50% discussed it with the patient and 31% refused. Advance directives, euthanasia, accelerated death and life-sustaining treatment represent considerable challenges for Italian oncologists. Although prepared to face these issues, AIOM members ask for a debate within the medical world and for a shared judicial regulation.

  5. Seismic hazard of American Samoa and neighboring South Pacific Islands--methods, data, parameters, and results

    USGS Publications Warehouse

    Petersen, Mark D.; Harmsen, Stephen C.; Rukstales, Kenneth S.; Mueller, Charles S.; McNamara, Daniel E.; Luco, Nicolas; Walling, Melanie

    2012-01-01

    American Samoa and the neighboring islands of the South Pacific lie near active tectonic-plate boundaries that host many large earthquakes which can result in strong earthquake shaking and tsunamis. To mitigate earthquake risks from future ground shaking, the Federal Emergency Management Agency requested that the U.S. Geological Survey prepare seismic hazard maps that can be applied in building-design criteria. This Open-File Report describes the data, methods, and parameters used to calculate the seismic shaking hazard as well as the output hazard maps, curves, and deaggregation (disaggregation) information needed for building design. Spectral acceleration hazard for 1 Hertz having a 2-percent probability of exceedance on a firm rock site condition (Vs30=760 meters per second) is 0.12 acceleration of gravity (1 second, 1 Hertz) and 0.32 acceleration of gravity (0.2 seconds, 5 Hertz) on American Samoa, 0.72 acceleration of gravity (1 Hertz) and 2.54 acceleration of gravity (5 Hertz) on Tonga, 0.15 acceleration of gravity (1 Hertz) and 0.55 acceleration of gravity (5 Hertz) on Fiji, and 0.89 acceleration of gravity (1 Hertz) and 2.77 acceleration of gravity (5 Hertz) on the Vanuatu Islands.

  6. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    PubMed Central

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  7. GRAPPA reconstructed wave-CAIPI MP-RAGE at 7 Tesla.

    PubMed

    Schwarz, Jolanda M; Pracht, Eberhard D; Brenner, Daniel; Reuter, Martin; Stöcker, Tony

    2018-04-16

    The aim of this project was to develop a GRAPPA-based reconstruction for wave-CAIPI data. Wave-CAIPI fully exploits the 3D coil sensitivity variations by combining corkscrew k-space trajectories with CAIPIRINHA sampling. It reduces artifacts and limits reconstruction induced spatially varying noise enhancement. The GRAPPA-based wave-CAIPI method is robust and does not depend on the accuracy of coil sensitivity estimations. We developed a GRAPPA-based, noniterative wave-CAIPI reconstruction algorithm utilizing multiple GRAPPA kernels. For data acquisition, we implemented a fast 3D magnetization-prepared rapid gradient-echo wave-CAIPI sequence tailored for ultra-high field application. The imaging results were evaluated by comparing the g-factor and the root mean square error to Cartesian CAIPIRINHA acquisitions. Additionally, to assess the performance of subcortical segmentations (calculated by FreeSurfer), the data were analyzed across five subjects. Sixteen-fold accelerated whole brain magnetization-prepared rapid gradient-echo data (1 mm isotropic resolution) were acquired in 40 seconds at 7T. A clear improvement in image quality compared to Cartesian CAIPIRINHA sampling was observed. For the chosen imaging protocol, the results of 16-fold accelerated wave-CAIPI acquisitions were comparable to results of 12-fold accelerated Cartesian CAIPIRINHA. In comparison to the originally proposed SENSitivity Encoding reconstruction of Wave-CAIPI data, the GRAPPA approach provided similar image quality. High-quality, wave-CAIPI magnetization-prepared rapid gradient-echo images can be reconstructed by means of a GRAPPA-based reconstruction algorithm. Even for high acceleration factors, the noniterative reconstruction is robust and does not require coil sensitivity estimations. By altering the aliasing pattern, ultra-fast whole-brain structural imaging becomes feasible. © 2018 International Society for Magnetic Resonance in Medicine.

  8. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    NASA Astrophysics Data System (ADS)

    Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.

    2014-03-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.

  9. Seismic design parameters - A user guide

    USGS Publications Warehouse

    Leyendecker, E.V.; Frankel, A.D.; Rukstales, K.S.

    2001-01-01

    The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings (1997 NEHRP Provisions) introduced seismic design procedure that is based on the explicit use of spectral response acceleration rather than the traditional peak ground acceleration and/or peak ground velocity or zone factors. The spectral response accelerations are obtained from spectral response acceleration maps accompanying the report. Maps are available for the United States and a number of U.S. territories. Since 1997 additional codes and standards have also adopted seismic design approaches based on the same procedure used in the NEHRP Provisions and the accompanying maps. The design documents using the 1997 NEHRP Provisions procedure may be divided into three categories -(1) Design of New Construction, (2) Design and Evaluation of Existing Construction, and (3) Design of Residential Construction. A CD-ROM has been prepared for use in conjunction with the design documents in each of these three categories. The spectral accelerations obtained using the software on the CD are the same as those that would be obtained by using the maps accompanying the design documents. The software has been prepared to operate on a personal computer using a Windows (Microsoft Corporation) operating environment and a point and click type of interface. The user can obtain the spectral acceleration values that would be obtained by use of the maps accompanying the design documents, include site factors appropriate for the Site Class provided by the user, calculate a response spectrum that includes the site factor, and plot a response spectrum. Sites may be located by providing the latitude-longitude or zip code for all areas covered by the maps. All of the maps used in the various documents are also included on the CDROM

  10. Generators and automated generator systems for production and on-line injections of pet radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Shimchuk, G.; Shimchuk, Gr; Pakhomov, G.; Avalishvili, G.; Zavrazhnov, G.; Polonsky-Byslaev, I.; Fedotov, A.; Polozov, P.

    2017-01-01

    One of the prospective directions of PET development is using generator positron radiating nuclides [1,2]. Introduction of this technology is financially promising, since it does not require expensive special accelerator and radiochemical laboratory in the medical institution, which considerably reduces costs of PET diagnostics and makes it available to more patients. POZITOM-PRO RPC LLC developed and produced an 82Sr-82Rb generator, an automated injection system, designed for automatic and fully-controlled injections of 82RbCl produced by this generator, automated radiopharmaceutical synthesis units based on generated 68Ga produced using a domestically-manufactured 68Ge-68Ga generator for preparing two pharmaceuticals: Ga-68-DOTA-TATE and Vascular Ga-68.

  11. A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

    PubMed Central

    Hu, Zhenhua; Liao, Meiling; Chen, Yinghui; Cai, Yunpeng; Meng, Lele; Liu, Yajun; Lv, Nan; Liu, Zhenguo; Yuan, Weien

    2012-01-01

    Background Silicone oil, as a major component in conditioner, is beneficial in the moisture preservation and lubrication of hair. However, it is difficult for silicone oil to directly absorb on the hair surface because of its hydrophobicity. Stable nanoemulsions containing silicone oil may present as a potential solution to this problem. Methods Silicone oil nanoemulsions were prepared using the oil-in-water method with nonionic surfactants. Emulsion particle size and distribution were characterized by scanning electron microscopy. The kinetic stability of this nanoemulsion system was investigated under accelerated stability tests and long-term storage. The effect of silicone oil deposition on hair was examined by analyzing the element of hair after treatment of silicone oil nanoemulsions. Results Nonionic surfactants such as Span 80 and Tween 80 are suitable emulsifiers to prepare oil-in-water nanoemulsions that are both thermodynamically stable and can enhance the absorption of silicone oil on hair surface. Conclusion The silicone oil-in-water nanoemulsions containing nonionic surfactants present as a promising solution to improve the silicone oil deposition on the hair surface for hair care applications. PMID:23166436

  12. Review of online coupling of sample preparation techniques with liquid chromatography.

    PubMed

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-07

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preparation and stability evaluation of extemporaneous oral suspension of valsartan using commercially available tablets.

    PubMed

    Zaid, Abdel Naser; Assali, Mohyeddin; Qaddomi, Aiman; Ghanem, Mashhour; Zaaror, Yara Abu

    2014-01-01

    The aim of this study was to develop an extemporaneous valsartan suspension (80 mg valsartan/5 mL) starting from commercial tablets (80-mg/ tablet). A high-performance liquid chromatographic system was used for the analysis and quantification of valsartan in the samples studied. Samples of valsartan suspension for analysis were prepared as reported by the validated high-performance liquid chromatographic method and the dissolution tests were performed according to the U.S. Food and Drug Administration's method. The high-performance liquid chromatographic assay indicated that the 80-mg/5-mL valsartan suspension was stable for 30 days when stored at long-term and accelerated storage conditions. Valsartan release profile showed that approximately 85% of valsartan dissolved after 10 minutes and, accordingly, the calculation of similarity factor was not necessary. It is possible for the pharmacist to crush valsartan 80-mg tablets and prepare a suspension which has dosage flexibility that can be calculated according to body-surface area, kidney, and liver functions, without affecting the chemical stability of the active ingredient nor its dissolution profile and also have a cost-effective dosage form.

  14. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  15. Traditional and Accelerated Baccalaureate Nursing Students' Self-Efficacy for Interprofessional Learning.

    PubMed

    Durkin, Anne E; Feinn, Richard S

    The aim of the study was to examine self-efficacy among traditional and accelerated nursing students with regard to interprofessional learning. The World Health Organization and other organizations recognize the need for interprofessional education to prepare health care providers for collaborative practice. Graduates of baccalaureate nursing programs require competence in interprofessional collaboration and communication. Traditional (n = 239) and accelerated (n = 114) nursing students' self-efficacy was measured utilizing Mann et al.'s Self-Efficacy for Interprofessional Experiential Learning Scale. Accelerated students averaged significantly higher than traditional students on the interprofessional team evaluation and feedback subscale (p = .006) and overall self-efficacy (p = .041). Awareness of possible differences between traditional and accelerated nursing students with regard to self-efficacy may help faculty develop effective interprofessional learning experiences for students in each cohort. Although results cannot be generalized, findings from this study provide evidence to guide the selection of learning strategies.

  16. Quality control of concrete at the stage of designing its composition and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudyakov, A., E-mail: kudyakow@mail.tomsknet.ru; Prischepa, I., E-mail: ingaprishepa@mail.ru; Kiselev, D.

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology – hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation ofmore » foam concrete mix technological regulations are worked out, in which it is recommended to use additives – hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.« less

  17. New 'patent accelerated care environment' aims to facilitate work flow, free up ED for acute care needs.

    PubMed

    2012-02-01

    Faced with rising acuity levels and surging demand, Virginia Mason Medical Center modified the Clinical Decision Unit concept used in many EDs, and developed a new Patient Accelerated Care Environment (PACE) to care for observation patients, process patients for discharge, and to prepare patients for admission.The approach is designed to utilize ED beds for initial processing of patients, allowing resuscitative care if needed, and treating and releasing the patients with quick care needs. Using the Virginia Mason Production System, a methodology that is modeled after Toyota production techniques, developers designed an optimal work flow pattern and then built infrastructure to facilitate that process. All patients who present to the ED for care are seen by the ED team through a "team greet" approach. Approximately 35% to 40% of patients who come to the ED for care are transferred to the PACE unit. Patients assigned to the PACE unit typically remain there for 4 to 48 hours, depending on their care needs.

  18. Copper cladding on polymer surfaces by ionization-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki

    2018-03-01

    Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.

  19. A new method in accelerating PROPELLER MRI.

    PubMed

    Li, Bing Keong; D'Arcy, Michael; Weber, Ewald; Crozier, Stuart

    2008-01-01

    In this work, a new method has been proposed to accelerate the PROPELLER MRI operation. The proposed method uses a rotary phased array coil and a new method in acquiring the k-space strips and preparing the complete k-space trajectories data set. It is numerically shown that for a 12 strips PROPELLER MR brain imaging sequence, the operation time can be reduced by four folds, with no apparent loss in the image quality.

  20. Dual linear accelerator system for use in sterilization of medical disposable supplies

    NASA Astrophysics Data System (ADS)

    Sadat, Theo

    1991-05-01

    Accelerators can be used for sterilization or decontamination (medical disposables, food, plastics, hospital waste, etc.). Most of these accelerators are located in an industrial environment and must have a high availability. A dual accelerator system (composed of two accelerators) offers optimal flexibility and reliability. The main advantage of this system is "all-in all-out" because it does not need a turnover of products. Such a dual system, composed of two 10 MeV 20 kW linear accelerators (instead of one 40 kW linac), has been chosen by a Swedish company (Mölnlycke).

  1. Impact of Auditory Context on Executed Motor Actions

    PubMed Central

    Yoles-Frenkel, Michal; Avron, Maayan; Prut, Yifat

    2016-01-01

    The auditory and motor systems are strongly coupled, as is evident in the specifically tight motor synchronization that occurs in response to regularly occurring auditory cues compared with cues of other modalities. Timing of rhythmic action is known to rely on multiple neural centers including the cerebellum and the basal-ganglia which have access to both motor cortical and spinal circuitries. To date, however, there is little information on the motor mechanisms that operate during preparation and execution of rhythmic vs. non-rhythmic movements. We measured acceleration profile and muscle activity while subjects performed tapping movements in response to auditory cues. We found that when tapping at random intervals there was a higher variability of both acceleration profile and muscle activity during motor preparation compared to rhythmic tapping. However, the specific rhythmic context (cued, self-paced, or syncopation) did not affect the motor parameters of the executed taps. Finally, during entrainment we found a gradual as opposed to episodic change in low-level motor parameters (i.e., preparatory muscle activity) that was strongly correlated with changes in high-level parameters (i.e., shift in the reaction time to negative asynchrony). These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters that are related to its production. These changes in motor output were insensitive to the specifics of the rhythmic cue: although it took subjects different times to become entrained to different types of rhythmic cues, the motor actions produced once entrainment was obtained were indistinguishable. These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters related to its production. The reduced variability of muscle activity during the preparatory period could be one mechanism used by the motor system to enhance the accuracy of motor timing. PMID:26834584

  2. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less

  3. An Accelerated Release Method of Risperidone Loaded PLGA Microspheres with Good IVIVC.

    PubMed

    Hu, Xiaoqin; Zhang, Jianwei; Tang, Xuemei; Li, Mingyuan; Ma, Siyu; Liu, Cheng; Gao, Yue; Zhang, Yue; Liu, Yan; Yu, Fanglin; Yang, Yang; Guo, Jia; Li, Zhiping; Mei, Xingguo

    2018-01-01

    A long release period lasting several days or several weeks is always needed and thereby it is tedious and time consuming to screen formulations of such microspheres with so long release period and evaluate their release profiles in vitro with conventional long-term or "real-time" release method. So, an accelerated release testing of such system is necessary for formulation design as well as quality control purpose. The purpose of this study is to obtain an accelerated release method of risperidone loaded poly(lactic-co-glycolic acid) (PLGA) microspheres with good in vitro/in vivo correlation (IVIVC). Two formulations of risperidone loaded PLGA microspheres used for evaluating IVIVC were prepared by O/W method. The accelerated release condition was optimized by investigating the effect of pH, osmotic pressure, temperature and ethanol concentration on the release of risperidone from microspheres and the in vitro accelerated release profiles of risperidone from PLGA microspheres were obtained under this optimized accelerated release condition. The plasma concentration of risperidone were also detected after subcutaneous injection of risperidone loaded microspheres to rats. The in vivo cumulative absorption profiles were then calculated using Wagner-Nelson model, Loo- Riegelman model and numerical convolution model, respectively. The correlation between in vitro accelerated release and in vivo cumulative absorption were finally evaluated with Least Square Method. It was shown that temperature and ethanol concentration significantly affected the release of risperidone from the microspheres while pH and osmotic pressure of release media slightly affected the release behavior of risperidone. The in vitro release of risperidone from microspheres were finally undergone in PBS (pH7.0, 300mosm) with 20% (V/V) ethanol at 45°C. The sustained and complete release of risperidone was observed in both formulations under the accelerated release condition although these two release profiles were dissimilar. The correlation coefficients (R2) of IVIVC were all above 0.95 and the slopes were all between 0.9564 and 1.1868 in spite of fitted model and microsphere formulation. An in vitro accelerated release method of risperidone microspheres with good IVIVC was established in this paper and this accelerated release method was supposed to have great potential in both in vivo performance prediction and quality control for risperidone loaded PLGA microspheres. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  5. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  6. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  7. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

  8. A systematic FPGA acceleration design for applications based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  9. Can-AMS: The New Accelerator Mass Spectrometry Facility At The University Of Ottawa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.

    2011-06-01

    The Canadian Centre for Accelerator Mass Spectrometry (AMS) at the University of Ottawa will be equipped with a new, 3 MV tandem accelerator with peripheral equipment for the analysis of elements ranging from tritium to the actinides. This facility, along with a wide array of support instrumentation recently funded by the Canada Foundation for Innovation, will be located in a new science building on the downtown campus of the University of Ottawa. In addition to providing the standard AMS measurements on {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I for earth, environmental, cultural and biomedical sciences, thismore » facility will incorporate the new technologies of anion isobar separation at low energies using RFQ chemical reaction cells for {sup 36}Cl and new heavy element applications, integrated sample combustion and gas ion source for biomedical and environmental {sup 14}C analysis and the use of novel target matrices for expanding the range of applicable elements and simplifying sample preparation, all currently being developed at IsoTrace. This paper will outline the design goals for the new facility, present some details of the new AMS technologies, in particular the Isobar Separator for Anions and discuss the design of the AMS system resulting from these requirements.« less

  10. Transactions of the Second All-Union Conference on Charged Particle Accelerators (Moscow, 11-18 November 1970). Volume 2

    DTIC Science & Technology

    1980-10-09

    to the interruption/discontinu.Lty into y - higher than transition energy. Discontinuity can be removed, for example, by the introduction to special...stable acceleration mode in acccrdance with theory ri], is arranged/located with the negative detuning of rescnator (when its frequency higher than...TRANSLATION IS A RENDITION OF THE ORIGI. NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY: ADVOCATED OR

  11. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  12. Optimizations of Human Restraint Systems for Short-Period Acceleration

    NASA Technical Reports Server (NTRS)

    Payne, P. R.

    1963-01-01

    A restraint system's main function is to restrain its occupant when his vehicle is subjected to acceleration. If the restraint system is rigid and well-fitting (to eliminate slack) then it will transmit the vehicle acceleration to its occupant without modifying it in any way. Few present-day restraint systems are stiff enough to give this one-to-one transmission characteristic, and depending upon their dynamic characteristics and the nature of the vehicle's acceleration-time history, they will either magnify or attenuate the acceleration. Obviously an optimum restraint system will give maximum attenuation of an input acceleration. In the general case of an arbitrary acceleration input, a computer must be used to determine the optimum dynamic characteristics for the restraint system. Analytical solutions can be obtained for certain simple cases, however, and these cases are considered in this paper, after the concept of dynamic models of the human body is introduced. The paper concludes with a description of an analog computer specially developed for the Air Force to handle completely general mechanical restraint optimization programs of this type, where the acceleration input may be any arbitrary function of time.

  13. Transmission electron microscopy of polyhydroxybutyrate-co-valerate (PHBV)/nanocrystalline cellulose (NCC) bio-nanocomposite prepared using cryo-ultramicrotomy

    NASA Astrophysics Data System (ADS)

    Ismarul, N. I.; Engku, A. H. E. U.; Siti, N. K.; Tay, K. Y.

    2017-12-01

    Environmental issues on disposal and end-of-life for product made from synthetic petroleum-derived polymers have gained increasing attention from materials scientist to search for new materials with similar physical and mechanical properties but environmental friendly in a way that they are renewable and biodegradable as well. This work is to study the effect of nanocrystalline cellulose in improving the thermal stability of polyhydroxybutyrate-co-valerate biopolymer for high temperature processing of packaging material. 10 % w/w PHBV-NCC bio-nanocomposite feedstock pellet prepared using RONDOL minilab compounder was used as the sample for the preparation of Transmission Electron Microscopy (TEM) sample. RMC Cryo-Ultramicrotomy equipment was used to prepare the ultra-thin slice of the bio-nanocomposite pellet under liquid nitrogen at - 60 °C. Diamond knife was used to slice off about 80-100 nm ultra-thin bio-nanocomposite films and was transferred into the lacey carbon film coated grid using cooled sugar solution. A few drops of phosphotungstic acid was used as negative stain to improve the contrast during the TEM analysis. HITACHI TEM systems was used to obtain the TEM micrograph of PHBV-NCC bio-nanocomposite using 80kV accelerating voltage. A well dispersed NCC in PHBV matrix, ranging from 5 to 25 nm in width was observed.

  14. RFQ design for the RAON accelerator's ISOL system

    NASA Astrophysics Data System (ADS)

    Choi, Bong Hyuk; Hong, In-Seok

    2015-10-01

    The heavy-ion accelerator RAON has the advantage of having both an in-flight (IF) and an isotope separator on-line (ISOL) system. Two radio frequency quadrupoles (RFQs) will be installed in the RAON: the main linear accelerator (LINAC) RFQ will be used to accelerate the two-charge state 238U for the IF system, while the post-accelerator RFQ will be used to accelerate low-current isotope beams from the ISOL system. In this paper, the post-accelerator RFQ design for the ISOL system is reported. A beam current of 1 pμA was used, and the input beam and the output beam energies were 5 keV/u and 400 keV/u, respectively. Moreover, the design was optimized by reducing the total length and power, adjusting the beam quality. To quantify the influence of thermal expansion on the frequency, we calculated the frequency difference according to deference between the vane's tip and the body's diameter.

  15. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  16. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  17. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  18. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  19. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  20. State Health Policy for Terrorism Preparedness

    PubMed Central

    Ziskin, Leah Z.; Harris, Drew A.

    2007-01-01

    State health policy for terrorism preparedness began before the terrorist attacks on September 11, 2001, but was accelerated after that day. In a crisis atmosphere after September 11, the states found their policies changing rapidly, greatly influenced by federal policies and federal dollars. In the 5 years since September 11, these state health policies have been refined. This refinement has included a restatement of the goals and objectives of state programs, the modernization of emergency powers statutes, the education and training of the public health workforce, and a preparation of the health care system to better care for victims of disasters, including acts of terrorism. PMID:17666689

  1. Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.

    PubMed

    Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N

    2015-06-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.

  2. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  3. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  4. Fermilab’s Accelerator Complex: Current Status, Upgrades and Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Convery, M. E.

    We report on the status of the Fermilab accelerator complex, including recent performance, upgrades in progress, and plans for the future. Beam delivery to the neutrino experiments surpassed our goals for the past year. The Proton Improvement Plan is well underway with successful 15 Hz beam operation. Beam power of 700 kW to the NOvA experiment was demonstrated and will be routine in the next year. We are also preparing the Muon Campus to commission beam to the g-2 experiment.

  5. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations sincemore » the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.« less

  6. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring.

    PubMed

    Mello, S L A; Codeço, C F S; Magnani, B F; Sant'Anna, M M

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  7. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    NASA Astrophysics Data System (ADS)

    Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  8. Collective acceleration of ions in a system with an insulated anode

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Didenko, A. N.; Krasik, Ya. E.; Lopatin, V. S.; Podkatov, V. I.

    1980-11-01

    An investigation was made of the processes of collective acceleration of protons in vacuum in a system with an insulated anode and trans-anode electrodes, which were insulated or grounded, in high-current Tonus and Vera electron accelerators. The influence of external conditions and parameters of the electron beam on the efficiency of acceleration processes was investigated. Experiments were carried out in which protons were accelerated in a system with trans-anode electrodes. A study was made of the influence of a charge prepulse and of the number of trans-anode electrodes on the energy of the accelerated electrons. A system with a single anode produced Np=1014 protons of 2Ee < Ep < 3Ee energy. Suppression of a charge prepulse increased the proton energy to (6 8)Ee and the yield was then 1013. The maximum proton energy of 14Ee was obtained in a system with three trans-anode electrodes. A possible mechanism of proton acceleration was analyzed. The results obtained were compared with those of other investigations. Ways of increasing the efficiency of this acceleration method were considered.

  9. Implementing research results : highlighting state and national practices.

    DOT National Transportation Integrated Search

    2011-03-01

    Caltrans Division of Research and Innovation is holding a peer exchange, Characteristics of : Organizations and Skill Sets of Individuals Successful at Accelerating Adoption of Innovation, March 16- : 18, 2011. To prepare for the discussions that ...

  10. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  11. Module and electronics developments for the ATLAS ITk pixel system

    NASA Astrophysics Data System (ADS)

    Muñoz, F. J.

    2018-03-01

    The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2018. In this paper an overview of the ongoing R&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

  12. [Lab-on-a-chip systems in the point-of-care diagnostics].

    PubMed

    Szabó, Barnabás; Borbíró, András; Fürjes, Péter

    2015-12-27

    The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which - acting as a micro-laboratory - contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention.

  13. Laser engineering of microbial systems

    NASA Astrophysics Data System (ADS)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  14. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  15. Microscopic heat engine and control of work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang

    In this thesis, we study novel behaviors of microscopic work and heat in systems involving few degrees of freedom. We firstly report that a quantum Carnot cycle should consist of two isothermal processes and two mechanical adiabatic processes if we want to maximize its heat-to-work conversion efficiency. We then find that the efficiency can be further optimized, and it is generally system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. We then move on to the studies the fluctuations of microscopic work. We find a principle of minimal work fluctuations related to the Jarzynski equality. In brief, an adiabatic process without energy level crossing yields the minimal fluctuations in exponential work, given a thermally isolated system initially prepared at thermal equilibrium. Finally, we investigate an optimal control approach to suppress the work fluctuations and accelerate the adiabatic processes. This optimal control approach can apply to wide variety of systems even when we do not have full knowledge of the systems.

  16. 500-MHz x-ray counting with a Si-APD and a fast-pulse processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu

    2010-06-23

    We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less

  17. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  18. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  19. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    NASA Astrophysics Data System (ADS)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  20. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.

  1. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator

    PubMed Central

    Huang, Min; Hou, Yi; Li, Yubao; Wang, Danqing; Zhang, Li

    2017-01-01

    Abstract A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels’ properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields. PMID:29491822

  2. Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.

    2017-10-01

    Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.

  3. The status and road map of Turkish Accelerator Center (TAC)

    NASA Astrophysics Data System (ADS)

    Yavaş, Ö.

    2012-02-01

    Turkish Accelerator Center (TAC) project is supported by the State Planning Organization (SPO) of Turkey and coordinated by Ankara University. After having completed the Feasibility Report (FR) in 2000 and the Conceptual Design Report (CDR) in 2005, third phase of the project started in 2006 as an inter-universities project including ten Turkish Universities with the support of SPO. Third phase of the project has two main scientific goals: to prepare the Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility, named as Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) as a first step. The facility is planned to be completed in 2015 and will be based on 15-40 MeV superconducting linac. In this paper, main aims, national and regional importance, main parts main parameters, status and road map of Turkish Accelerator Center will be presented.

  4. Determination of 14C/ 12C of acetaldehyde in indoor air by compound specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Kato, Yoshimi; Shinohara, Naohide; Yoshinaga, Jun; Uchida, Masao; Matsuda, Ayuri; Yoneda, Minoru; Shibata, Yasuyuki

    A method of compound-specific radiocarbon analysis (CSRA) for acetaldehyde in indoor air was established for the source apportionment purpose and the methodology was applied to indoor air samples. Acetaldehyde in indoor air samples was collected using the conventional 2,4-dinitrophenylhydrazine (DNPH) derivatization method. Typically 24-h air sampling at 5-10 L min -1 allowed collection of adequate amount of acetaldehyde for radiocarbon analysis by accelerator mass spectrometry (AMS). The 14C abundance of acetaldehyde in indoor air was measured by AMS after solvent extraction of derivatized acetaldehyde and sequential purification by a preparative liquid chromatography system and a preparative capillary gas chromatography system. The recovery and purity of the derivatized acetaldehyde was satisfactory for 14C analysis by AMS. 14C abundance of acetaldehyde was calculated by considering that of derivatizing agent DNPH. Our preliminary survey showed that percent modern carbon (pMC) values of acetaldehyde isolated from indoor air sampled in newly built, unoccupied housings ( n=5) in the suburb of Tokyo ranged from 49.4 to 67.0. This result indicated that contribution of anthropogenic source was greater than previously expected.

  5. Formulation and evaluation of non-effervescent floating tablets of losartan potassium.

    PubMed

    Getyala, Anil; Gangadharappa, H V; Prasad, M Sarat Chandra; Reddy, M Praveen Kumar; Kumar, T M Pramod

    2013-10-01

    The aim of the work is to modify the solubility and bioavailability of Losartan potassium, by employing noneffervescent floating drug delivery (tablet dosage forms). Non-effervescent systems are a type of floating drug delivery systems, that have been used to boost the gastric residence and the floatation time in the gastro intestinal tract. The study included formulation of floating tablets using polymers like Chitosan and Karaya gum as matrix forming agents. Accurel(®) MP 1000 was used as floating agent. The tablets were prepared by direct compression technique. FTIR, DSC studies conformed that there was no incompatibility between the polymer and the drug. Tablet preformulation parameters were within the Pharmacopoeial limit. Tablet showed zero lag time, contisnuance of buoyancy for >12 h. The tablet showed good in vitro release. Drug release was through swelling and abided by the gellation mechanism. In vivo X-ray studies depicted that tablets continued to float in the GIT for 12 h. Accelerated stability showed that, tablets were stable for over 6 month. Thus the prepared non-effervescent floating tablet of Losartan potassium can be used for the treatment of hypertension for more than 12 h with single dose administration.

  6. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  7. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields.

    PubMed

    Anitua, Eduardo; Sánchez, Mikel; Orive, Gorka; Andía, Isabel

    2007-11-01

    Platelet-rich preparations constitute a relatively new biotechnology for the stimulation and acceleration of tissue healing and bone regeneration. The versatility and biocompatibility of this approach has stimulated its therapeutic use in numerous medical and scientific fields including dentistry, oral implantology, orthopaedics, ulcer treatment, tissue engineering among others. Here we discuss the important progress that has been accomplished in the field of platelet-rich preparations in the last few years. Some of the most interesting therapeutic applications of this technology are discussed as are some of the limitations, future challenges and directions in the field.

  8. Hypophosphite/Graphitic Carbon Nitride Hybrids: Preparation and Flame-Retardant Application in Thermoplastic Polyurethane

    PubMed Central

    Shi, Yongqian; Fu, Libi; Chen, Xilei; Guo, Jin; Yang, Fuqiang; Wang, Jingui; Zheng, Yuying; Hu, Yuan

    2017-01-01

    A series of aluminum hypophosphite (AHPi)/graphite-like carbon nitride (g-C3N4) (designated as CAHPi) hybrids were prepared, followed by incorporation into thermoplastic polyurethane (TPU). The introduction of CAHPi hybrids into TPU led to a marked reduction in the peak of the heat release rate (pHRR), total heat release, weight loss rate, smoke production rate and total smoke production (TSP). For instance, pHRR and TSP decreased by 40% and 50% for TPU/CAHPi20. Furthermore, the increasing fire growth index and decreasing fire performance index were obtained for TPU/CAHPi systems, suggesting reduced fire hazards. It was found that improved fire safety of TPU nanocomposites was contributed by condensed phase and gas phase mechanisms. On one hand, g-C3N4 accelerated the thermal decomposition of AHPi for the formation of more char layers. On the other hand, g-C3N4 induced AHPi to generate more free radical capture agents when exposed to flame, besides protecting AHPi against thermal oxidation. PMID:28872606

  9. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow

    NASA Astrophysics Data System (ADS)

    Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy

    2017-02-01

    Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.

  10. Modified Y-TZP Core Design Improves All-ceramic Crown Reliability

    PubMed Central

    Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.

    2011-01-01

    This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036

  11. Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    2015-01-01

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less

  12. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  13. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  14. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  15. Compact all-fiber interferometer system for shock acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the interferometer system measured shock acceleration with peak accelerations of ~100,000 m/s2 and the durations of ~0.2 ms which are conformed to the results of the shock acceleration calibration system. The measured relative error of the acceleration is within 3%.

  16. One map policy (OMP) implementation strategy to accelerate mapping of regional spatial planing (RTRW) in Indonesia

    NASA Astrophysics Data System (ADS)

    Hasyim, Fuad; Subagio, Habib; Darmawan, Mulyanto

    2016-06-01

    A preparation of spatial planning documents require basic geospatial information and thematic accuracies. Recently these issues become important because spatial planning maps are impartial attachment of the regional act draft on spatial planning (PERDA). The needs of geospatial information in the preparation of spatial planning maps preparation can be divided into two major groups: (i). basic geospatial information (IGD), consist of of Indonesia Topographic maps (RBI), coastal and marine environmental maps (LPI), and geodetic control network and (ii). Thematic Geospatial Information (IGT). Currently, mostly local goverment in Indonesia have not finished their regulation draft on spatial planning due to some constrain including technical aspect. Some constrain in mapping of spatial planning are as follows: the availability of large scale ofbasic geospatial information, the availability of mapping guidelines, and human resources. Ideal conditions to be achieved for spatial planning maps are: (i) the availability of updated geospatial information in accordance with the scale needed for spatial planning maps, (ii) the guideline of mapping for spatial planning to support local government in completion their PERDA, and (iii) capacity building of local goverment human resources to completed spatial planning maps. The OMP strategies formulated to achieve these conditions are: (i) accelerating of IGD at scale of 1:50,000, 1: 25,000 and 1: 5,000, (ii) to accelerate mapping and integration of Thematic Geospatial Information (IGT) through stocktaking availability and mapping guidelines, (iii) the development of mapping guidelines and dissemination of spatial utilization and (iv) training of human resource on mapping technology.

  17. Technological developments for strontium-90 determination using AMS

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Takahashi, Tsutomu; Shibayama, Nao; Izumi, Daiki; Kinoshita, Norikazu; Matsuzaki, Hiroyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is one of method used for 90Sr determination. It would enable rapid 90Sr measurements from environmental samples such as water, soil, and milk. However, routine analysis of 90Sr using AMS has not yet been achieved because of difficulties associated with isobaric separation and production of intense negative ion beams characterized by currents from hundreds of nanoamperes to several microamperes. We have developed a rapid procedure for preparing samples with optimum compositions for use with AMS, which enables production of intense Sr beam currents from an ion source. Samples of SrF2 were prepared from a standard Sr solution and agricultural soil. The time required to prepare a SrF2 sample from a soil sample was 10 h. Negative 88SrF3- ions were successfully extracted at 500 nA from mixed samples of SrF2 and PbF2. In the present work, negative ions of 90Zr, included as an impurity, were accelerated with a tandem accelerator operated at a terminal voltage of 5 MV. Ions characterized by a charge state of 6+ were channeled into a gas counter. An atomic ratio of 90Zr/88Sr of 3 × 10-8 was estimated for the soil sample. No signal was detected from the assay of PbF2, which was pressed in an aluminum cathode, for a mass number of 90. PbF2 revealed good performance in the production of negative SrF3- molecular ion beams and detection of 90Sr with a gas counter.

  18. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  19. Subattomole sensitivity in biological accelerator mass spectrometry.

    PubMed

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  20. Energy limit in cyclotron autoresonance acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.; Hirshfield, J.L.

    1995-03-01

    A multimegawatt gyroharmonic converter depends critically on the parameters of a spatiotemporally modulated gyrating electron beam prepared using a cyclotron autoresonance accelerator (CARA). This paper extends a prior analysis of CARA [B. Hafizi, P. Sprangle, and J. L. Hirshfield, Phys. Rev. E 50, 3077 (1994)] to identify an approximate constant of the motion and, therefore, to give limits to the beam energy from CARA that can be utilized in a harmonic converter. It is also shown that particles are strongly phase trapped during acceleration in CARA and thus are insensitive to deviations from exact autoresonance. This fact could simplify constructionmore » of the up-tapered guide magnetic field in the device and augurs well for production of high-quality multimegawatt beams using CARA.« less

  1. Understanding Sgr A* with PIC Simulations of Particle Acceleration in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ozel, Feryal

    2017-09-01

    Sgr A* has been the subject of intense observational studies with Chandra. In the proposed work, we will investigate magnetic reconnection and particle acceleration in low-luminosity black hole accretion flows using a combination of GRMHD and particle-in-cell (PIC) simulations. We will use the PIC simulations to understand how particles are accelerated when magnetic energy is dissipated and quantify the resulting electron energy distributions. Incorporating the results of the microphysical studies into the global simulations of Sgr A*, we will investigate the origin of the intense X-ray flares observed with Chandra. We will also study how these processes affect the 1.3 mm image size in preparation for the upcoming simultaneous Chandra and EHT observations of Sgr A*.

  2. Influence of surface sealing on color stability and roughness of composite submitted to ultraviolet-accelerated aging.

    PubMed

    Catelan, Anderson; Suzuki, Thaís Yumi Umeda; Becker, Francisco; Briso, André Luiz Fraga; Dos Santos, Paulo Henrique

    2017-05-01

    In the present study, we evaluated the influence of surface sealing on color stability and surface roughness of a composite resin after accelerated artificial aging. Thirty-two specimens of a composite were prepared. After 24 h, the specimens were polished and divided into four groups (n = 8), according to the surface sealant used, including the control, which had no sealant application. Baseline color was measured according to the CIELab system using a reflection spectrophotometer. Surface roughness was determined using a profilometer with a cut-off of 0.25 mm. After these tests, specimens were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber. Color stability was determined by difference between coordinates obtained before and after the aging procedure. Data of color change and roughness were evaluated by anova and Fisher's exact test (α = 0.05). The results showed that the unsealed group had the highest color change compared to other groups (P = 0.0289), and there was no significant difference between groups sealed with surface sealant (P > 0.05). The artificial aging caused an increase in roughness values independent of the experimental group studied (P = 0.0015). The sealed composites showed lower color change after UV aging, but all groups showed clinically-acceptable color change, and only liquid polish decreased roughness. © 2016 John Wiley & Sons Australia, Ltd.

  3. Acceleration of boundary element method for linear elasticity

    NASA Astrophysics Data System (ADS)

    Zapletal, Jan; Merta, Michal; Čermák, Martin

    2017-07-01

    In this work we describe the accelerated assembly of system matrices for the boundary element method using the Intel Xeon Phi coprocessors. We present a model problem, provide a brief overview of its discretization and acceleration of the system matrices assembly using the coprocessors, and test the accelerated version using a numerical benchmark.

  4. JAERI R & D on accelerator-based transmutation under OMEGA program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takizuka, T.; Nishida, T.; Mizumoto, M.

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts alsomore » as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.« less

  5. Flying qualities design criteria applicable to supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  6. A Survey of Plasmas and Their Applications

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Grabbe, C. (Editor)

    2006-01-01

    Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).

  7. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach.

    PubMed

    Patil, Ganesh B; Patil, Nandkishor D; Deshmukh, Prashant K; Patil, Pravin O; Bari, Sanjay B

    2016-01-01

    Present invention relates to design of nanostructured lipid carriers (NLC) to augment oral bioavailability of Carvedilol (CAR). In this attempt, formulations of CAR-NLCs were prepared with glyceryl-monostearate (GMS) as a lipid, poloxamer 188 as a surfactant and tween 80 as a co-surfactant using high pressure homogenizer by 2(3) factorial design approach. Formed CAR-NLCs were assessed for various performance parameters. Accelerated stability studies demonstrated negligible change in particle size and entrapment efficiency, after storage at specified time up to 3 months. The promising findings in this investigation suggest the practicability of these systems for enhancement of bioavailability of drugs like CAR.

  8. Electrical Chips for Biological Point-of-Care Detection.

    PubMed

    Reddy, Bobby; Salm, Eric; Bashir, Rashid

    2016-07-11

    As the future of health care diagnostics moves toward more portable and personalized techniques, there is immense potential to harness the power of electrical signals for biological sensing and diagnostic applications at the point of care. Electrical biochips can be used to both manipulate and sense biological entities, as they can have several inherent advantages, including on-chip sample preparation, label-free detection, reduced cost and complexity, decreased sample volumes, increased portability, and large-scale multiplexing. The advantages of fully integrated electrical biochip platforms are particularly attractive for point-of-care systems. This review summarizes these electrical lab-on-a-chip technologies and highlights opportunities to accelerate the transition from academic publications to commercial success.

  9. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  10. HIMAC RF system with a digital synthesizer

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Sato, K.; Itano, A.; Sudou, M.; Noda, K.; Takada, E.; Kumada, M.; Yamazaki, C.; Yamagishi, T.; Morii, Y.; Toyoda, E.; Tsuzuki, N.; Yagi, T.

    2000-04-01

    An RF acceleration system, in which digital control with a direct digital synthesizer (DDS) is applied, has been developed for the Heavy Ion Medical Accelerator in Chiba (HIMAC) synchrotron. This digital system allows us to obtain stable operation of the acceleration system over a wide frequency range from 1.04 to 7.9 MHz. In this paper the designed digital RF control system and its performance are described.

  11. Evaluation of marginal gap of Ni-Cr copings made with conventional and accelerated casting techniques.

    PubMed

    Tannamala, Pavan Kumar; Azhagarasan, Nagarasampatti Sivaprakasam; Shankar, K Chitra

    2013-01-01

    Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Experimental design, in vitro study, lab settings. Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.

  12. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  13. Developments and applications of accelerator system at the Wakasa Wan Energy Research Center

    NASA Astrophysics Data System (ADS)

    Hatori, S.; Kurita, T.; Hayashi, Y.; Yamada, M.; Yamada, H.; Mori, J.; Hamachi, H.; Kimura, S.; Shimoda, T.; Hiroto, M.; Hashimoto, T.; Shimada, M.; Yamamoto, H.; Ohtani, N.; Yasuda, K.; Ishigami, R.; Sasase, M.; Ito, Y.; Hatashita, M.; Takagi, K.; Kume, K.; Fukuda, S.; Yokohama, N.; Kagiya, G.; Fukumoto, S.; Kondo, M.

    2005-12-01

    At the Wakasa Wan Energy Research Center (WERC), an accelerator system with a 5 MV tandem accelerator and a 200 MeV proton synchrotron is used for ion beam analyses and irradiation experiments. The study of cancer therapy with a proton beam is also performed. Therefore, the stable operation and efficient sharing of beam time of the system are required, based on the treatment standard. Recent developments and the operation status of the system put stress on the tandem accelerator operation, magnifying the problems.

  14. Physicochemical characterization and study of in vitro interactions of pH-sensitive liposomes with the complement system.

    PubMed

    Carmo, Vildete A S; De Oliveira, Mônica C; Reis, Eduardo C O; Guimarães, Tânia M P D; Vilela, José M C; Andrade, Margareth S; Michalick, Marilene S M; Cardoso, Valbert N

    2008-01-01

    Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG(2000)-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non-long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non-pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.

  15. 3-D video techniques in endoscopic surgery.

    PubMed

    Becker, H; Melzer, A; Schurr, M O; Buess, G

    1993-02-01

    Three-dimensional visualisation of the operative field is an important requisite for precise and fast handling of open surgical operations. Up to now it has only been possible to display a two-dimensional image on the monitor during endoscopic procedures. The increasing complexity of minimal invasive interventions requires endoscopic suturing and ligatures of larger vessels which are difficult to perform without the impression of space. Three-dimensional vision therefore may decrease the operative risk, accelerate interventions and widen the operative spectrum. In April 1992 a 3-D video system developed at the Nuclear Research Center Karlsruhe, Germany (IAI Institute) was applied in various animal experimental procedures and clinically in laparoscopic cholecystectomy. The system works with a single monitor and active high-speed shutter glasses. Our first trials with this new 3-D imaging system clearly showed a facilitation of complex surgical manoeuvres like mobilisation of organs, preparation in the deep space and suture techniques. The 3-D-system introduced in this article will enter the market in 1993 (Opticon Co., Karlsruhe, Germany.

  16. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.

    PubMed

    Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska

    2016-07-14

    A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes.

  18. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  19. Mathematics and science acceleration in grade eight: School leaders' perceptions and satisfaction

    NASA Astrophysics Data System (ADS)

    Graham, Kenneth

    Shifts in attitudes regarding academic program accessibility to provide the most rigorous academic opportunities to all students will not occur smoothly without departmental level leaders who believe in the potential benefits of accelerating larger numbers of students. Without the support and the belief of the department level leadership, practices such as open enrollment and universal acceleration that target school equity will be doomed to failure. This study was conducted using a questionnaire developed by the researcher called the Perceptions of Acceleration and Leadership Survey. The survey was distributed to all math and science department leaders within a suburban region of New York. The survey sought to determine how the perceptions of acceleration, job satisfaction, self-efficacy, and role longevity for the department level leaders are impacted by their personal demographics, professional characteristics, and community characteristics. The study did not reveal any statistically significant differences among department level leaders' personal, professional, and community characteristics with respect to perceptions of acceleration. There were significant differences for job satisfaction, self-efficacy, and role longevity for several intervening and independent variables within the study. Statistically significant correlations were found between beliefs in college preparation and perceptions of acceleration as well as relationships with the community and perceptions of acceleration. The results indicate the importance of hiring department leaders who recognize the potential for accelerating more students, hiring more ethnically diverse candidates for these leadership positions, affording department level leaders with significant professional development, and evaluation of administrative structures to maximize student success.

  20. Experimental Hypervelocity Dust Impact in Olivine: FIB/TEM Characterization of Micron-Scale Craters with Comparison to Natural and Laser-Simulated Small-Scale Impact Effects

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team

    2017-01-01

    The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.

  1. Activity profile of high-level Australian lacrosse players.

    PubMed

    Polley, Chris S; Cormack, Stuart J; Gabbett, Tim J; Polglaze, Ted

    2015-01-01

    Despite lacrosse being one of the fastest growing team sports in the world, there is a paucity of information detailing the activity profile of high-level players. Microtechnology systems (global positioning systems and accelerometers) provide the opportunity to obtain detailed information on the activity profile in lacrosse. Therefore, this study aimed to analyze the activity profile of lacrosse match-play using microtechnology. Activity profile variables assessed relative to minutes of playing time included relative distance (meter per minute), distance spent standing (0-0.1 m·min), walking (0.2-1.7 m·min), jogging (1.8-3.2 m·min), running (3.3-5.6 m·min), sprinting (≥5.7 m·min), number of high, moderate, low accelerations and decelerations, and player load (PL per minute), calculated as the square root of the sum of the squared instantaneous rate of change in acceleration in 3 vectors (medio-lateral, anterior-posterior, and vertical). Activity was recorded from 14 lacrosse players over 4 matches during a national tournament. Players were separated into positions of attack, midfield, or defense. Differences (effect size [ES] ± 90% confidence interval) between positions and periods of play were considered likely positive when there was ≥75% likelihood of the difference exceeding an ES threshold of 0.2. Midfielders had likely covered higher (mean ± SD) meters per minute (100 ± 11) compared with attackers (87 ± 14; ES = 0.89 ± 1.04) and defenders (79 ± 14; ES = 1.54 ± 0.94) and more moderate and high accelerations and decelerations. Almost all variables across positions were reduced in quarter 4 compared with quarter 1. Coaches should accommodate for positional differences when preparing lacrosse players for competition.

  2. Evaluation of the Accelerate Pheno System for Fast Identification and Antimicrobial Susceptibility Testing from Positive Blood Cultures in Bloodstream Infections Caused by Gram-Negative Pathogens.

    PubMed

    Marschal, Matthias; Bachmaier, Johanna; Autenrieth, Ingo; Oberhettinger, Philipp; Willmann, Matthias; Peter, Silke

    2017-07-01

    Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI. Copyright © 2017 American Society for Microbiology.

  3. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  4. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... levels prescribed, calculated as anhydrous calcium disodium EDTA: Food Limitation (parts per million) Use Aqueous multivitamin preparations 150 With iron salts as a stabilizer for vitamin B 12 in liquid... accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75 Preservative. French...

  5. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, S. L. A., E-mail: smello@ufv.br; Codeço, C. F. S.; Magnani, B. F.

    2016-06-15

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up tomore » 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.« less

  6. AC magnetic field measurement using a small flip coil system for rapid cycling AC magnets at the China Spallation Neutron Source (CSNS)

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng

    2018-02-01

    The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.

  7. Basic features of the STS/Spacelab vibration environment

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Ramachandran, N.

    1994-01-01

    The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.

  8. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  9. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  10. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  11. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  12. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  13. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  14. 48 CFR 32.009 - Providing accelerated payments to small business subcontractors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Providing accelerated payments to small business subcontractors. 32.009 Section 32.009 Federal Acquisition Regulations System... accelerated payments to small business subcontractors. ...

  15. Polished sample preparing and backscattered electron imaging and of fly ash-cement paste

    NASA Astrophysics Data System (ADS)

    Feng, Shuxia; Li, Yanqi

    2018-03-01

    In recent decades, the technology of backscattered electron imaging and image analysis was applied in more and more study of mixed cement paste because of its special advantages. Test accuracy of this technology is affected by polished sample preparation and image acquisition. In our work, effects of two factors in polished sample preparing and backscattered electron imaging were investigated. The results showed that increasing smoothing pressure could improve the flatness of polished surface and then help to eliminate interference of morphology on grey level distribution of backscattered electron images; increasing accelerating voltage was beneficial to increase gray difference among different phases in backscattered electron images.

  16. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  17. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  18. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  19. Knowledge engineering for PACES, the particle accelerator control expert system

    NASA Astrophysics Data System (ADS)

    Lind, P. C.; Poehlman, W. F. S.; Stark, J. W.; Cousins, T.

    1992-04-01

    The KN-3000 used at Defense Research Establishment Ottawa is a Van de Graaff particle accelerator employed primarily to produce monoenergetic neutrons for calibrating radiation detectors. To provide training and assistance for new operators, it was decided to develop an expert system for accelerator operation. Knowledge engineering aspects of the expert system are reviewed. Two important issues are involved: the need to encapsulate expert knowledge into the system in a form that facilitates automatic accelerator operation and to partition the system so that time-consuming inferencing is minimized in favor of faster, more algorithmic control. It is seen that accelerator control will require fast, narrowminded decision making for rapid fine tuning, but slower and broader reasoning for machine startup, shutdown, fault diagnosis, and correction. It is also important to render the knowledge base in a form conducive to operator training. A promising form of the expert system involves a hybrid system in which high level reasoning is performed on the host machine that interacts with the user, while an embedded controller employs neural networks for fast but limited adjustment of accelerator performance. This partitioning of duty facilitates a hierarchical chain of command yielding an effective mixture of speed and reasoning ability.

  20. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  1. Effect of noopept and afobazole on the development of neurosis of learned helplessness in rats.

    PubMed

    Uyanaev, A A; Fisenko, V P; Khitrov, N K

    2003-08-01

    We studied the effects of new psychotropic preparations noopept and afobazole on acquisition of the conditioned active avoidance response and development of neurosis of learned helplessness in rats. Noopept in doses of 0.05-0.10 mg/kg accelerated acquisition of conditioned active avoidance response and reduced the incidence of learned helplessness in rats. Afobazole in a dose of 5 mg/kg produced an opposite effect, which is probably related to high selective anxiolytic activity of this preparation.

  2. Anti-motion-sickness therapy. [amphetamine preparation effects in human acceleration tolerance

    NASA Technical Reports Server (NTRS)

    Wood, C. D.

    1973-01-01

    Neither alterations in environmental temperature nor moderate intake of alcohol was found to alter susceptibility to motion sickness in subjects exposed to rotation in the Pensacola slow rotation room. Scopolamine with d-amphetamine was found to be the most effective preparation for the prevention of motion sickness under the experimental conditions of the studies reported here. Promethazine in combination with d-amphetamine was in the same range of effectiveness. Drug actions suggest that acetylcholine and norepinephrine may be involved in motion sickness.

  3. Lecture Notes on Topics in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex W.

    These are lecture notes that cover a selection of topics, some of them under current research, in accelerator physics. I try to derive the results from first principles, although the students are assumed to have an introductory knowledge of the basics. The topics covered are: (1) Panofsky-Wenzel and Planar Wake Theorems; (2) Echo Effect; (3) Crystalline Beam; (4) Fast Ion Instability; (5) Lawson-Woodward Theorem and Laser Acceleration in Free Space; (6) Spin Dynamics and Siberian Snakes; (7) Symplectic Approximation of Maps; (8) Truncated Power Series Algebra; and (9) Lie Algebra Technique for nonlinear Dynamics. The purpose of these lectures ismore » not to elaborate, but to prepare the students so that they can do their own research. Each topic can be read independently of the others.« less

  4. Accelerator-driven Medical Sterilization to Replace Co-60 Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Thangaraj, Jayakar C.T.; Penning, Richard T.

    This report documents the results of a study prepared at the request of the Office of Radiological Security of the National Nuclear Security Administration (NNSA), as part of the Domestic Protect and Reduce mission by the Illinois Accelerator Research Center (IARC) of Fermi National Accelerator Laboratory. The study included a literature survey of over 80 relevant documents and articles including industry standards, regulatory documents, technical papers, a court case, previous task force reports and industry white papers. The team also conducted interviews or had conversations with over 40 individuals representing over a dozen organizations over the course of its 10-monthmore » program. This report summarizes our findings, addresses the specific questions posed to us by NNSA, and concludes with a list of actionable recommendations.« less

  5. A proposal for antiparallel acceleration of positrons using CEBAF

    NASA Astrophysics Data System (ADS)

    Tiefenback, M.; Wojtsekhowski, B.

    2018-05-01

    We present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e- acceleration and counter clockwise e+ acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increased energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.

  6. Accelerated bridge construction (ABC) decision making and economic modeling tool.

    DOT National Transportation Integrated Search

    2011-12-01

    In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...

  7. [Methods for the rapid preparation of paraffin blocks].

    PubMed

    Shmurun, R I

    1992-01-01

    Two accelerated chloroform-paraffin processings of materials with the use of ultrasound (US) and microwave (MW) irradiation in the stove "Electronica" as well as a combined method with US- and MW-irradiation are proposed to shorten drastically the duration of the prehistologic processing.

  8. METRICS OF PERFORMANCE FOR THE SABRE MICROCOSM STUDY (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, a laboratory microcosm study was conducted to provide...

  9. CHARACTERIZING THE MICROBIAL COMMUNITY IN SABRE MICROCOSM STUDIES (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, laboratory microcosm and column studies were conducte...

  10. Modeling Acceleration of a System of Two Objects Using the Concept of Limits

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2018-01-01

    Traditional school laboratory exercises on a system of moving objects connected by strings involve deriving expressions for the system acceleration, a = (?F)/m, and sketching a graph of acceleration vs. force. While being in the form of rational functions, these expressions present great opportunities for broadening the scope of the analysis by…

  11. Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning

    NASA Astrophysics Data System (ADS)

    Kuo, K. S.; Rilee, M. L.; Oloso, A.

    2017-12-01

    Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in Earth Science.

  12. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  13. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    PubMed

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  15. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  16. EuCARD2: enhanced accelerator research and development in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. Themore » degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.« less

  18. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  19. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  20. SU-E-T-274: Does Atmospheric Oxygen Affect the PRESAGE Dosimeter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alqathami, M; Ibbott, G; Blencowe, A

    Purpose: To experimentally determine the influence of atmospheric oxygen on the efficiency of the PRESAGE dosimeter and its reporting system. Methods: Batches of the reporting system – a mixture of chloroform and leuchomalachite green dye – and PRESAGE were prepared in aerobic and anaerobic conditions. For anaerobic batches, samples were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses using a clinical linear accelerator. Changes in optical density of themore » dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. In addition, the concentrations of dissolved oxygen were measured using a dissolved oxygen meter. Results: The experiments revealed that oxygen has little influence on the characteristics of PRESAGE, with the radical initiator oxidizing the leucomalachite green even in the presence of oxygen. However, deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ∼ 30% when compared to the non-deoxygenated system. A slight improvement in sensitivity (∼ 5%) was also achieved by deoxygenating the PRESAGE precursor prior to casting. Measurement of the dissolved oxygen revealed low levels (0.4 ppm) in the polyurethane precursor used to fabricate the dosimeters, as compared to water (8.6 ppm). In addition, deoxygenation had no effect on the retention of the post-response absorption value of the PRESAGE dosimeter. Conclusion: The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE system. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of the PRESAGE under the conditions investigated.« less

  1. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity.

    PubMed

    Murad, S; Strycharz, G D; Kishimoto, Y

    1976-09-10

    Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.

  2. The challenges of sequencing by synthesis.

    PubMed

    Fuller, Carl W; Middendorf, Lyle R; Benner, Steven A; Church, George M; Harris, Timothy; Huang, Xiaohua; Jovanovich, Stevan B; Nelson, John R; Schloss, Jeffery A; Schwartz, David C; Vezenov, Dmitri V

    2009-11-01

    DNA sequencing-by-synthesis (SBS) technology, using a polymerase or ligase enzyme as its core biochemistry, has already been incorporated in several second-generation DNA sequencing systems with significant performance. Notwithstanding the substantial success of these SBS platforms, challenges continue to limit the ability to reduce the cost of sequencing a human genome to $100,000 or less. Achieving dramatically reduced cost with enhanced throughput and quality will require the seamless integration of scientific and technological effort across disciplines within biochemistry, chemistry, physics and engineering. The challenges include sample preparation, surface chemistry, fluorescent labels, optimizing the enzyme-substrate system, optics, instrumentation, understanding tradeoffs of throughput versus accuracy, and read-length/phasing limitations. By framing these challenges in a manner accessible to a broad community of scientists and engineers, we hope to solicit input from the broader research community on means of accelerating the advancement of genome sequencing technology.

  3. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... following foods at not to exceed the levels prescribed, calculated as anhydrous calcium disodium EDTA: Food... vitamin B 12 in liquid multivitamin preparations. Canned black-eyed peas 145 Promote color retention... sausage 36 As a cure accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75...

  4. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... following foods at not to exceed the levels prescribed, calculated as anhydrous calcium disodium EDTA: Food... vitamin B 12 in liquid multivitamin preparations. Canned black-eyed peas 145 Promote color retention... sausage 36 As a cure accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75...

  5. Stemming the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    In years past, strong analytical, creative, and communication skills were enough to prepare students for successful careers, but as technological change accelerates, so must innovation in science education. Unfortunately, American students today are lacking exposure to the programs and curriculum that teach these technical skills. Only 32.4% of…

  6. New technique for more rapid cryopreservation of dormant vegetative tree buds

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of dormant buds of temperate trees in liquid nitrogen can provide a safe backup of field germplasm collections. However the process requires several months of preparation before buds can be cryopreserved. Cryopreservation at the natural moisture content (MC) would greatly accelerate...

  7. The Scholars' Nursery.

    ERIC Educational Resources Information Center

    McGivern, Diane O'Neill

    2003-01-01

    Despite the critical need for nurse researchers, only a limited number of institutions are equipped to prepare them. Schools that do have the necessary programs have the opportunity and responsibility to create accelerated research-intensive tracks that link baccalaureate through doctoral programs and move the graduates to postdoctoral training.…

  8. A proposal for antiparallel acceleration of positrons using CEBAF

    DOE PAGES

    Tiefenback, M.; Wojtsekhowski, B.

    2018-05-01

    Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less

  9. A proposal for antiparallel acceleration of positrons using CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiefenback, M.; Wojtsekhowski, B.

    Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less

  10. Faculty to faculty: advice for educators new to teaching in accelerated second baccalaureate degree nursing programs.

    PubMed

    Boellaard, Melissa R; Brandt, Cheryl L; Zorn, CeCelia R

    2015-06-01

    Despite a growing faculty shortage, accelerated second baccalaureate degree nursing programs (ASBSN) proliferate. To prepare faculty for this teaching role, guide their development, and enhance recruitment and retention, ASBSN faculty in this descriptive study offered advice to new ASBSN educators. Data were collected online from ASBSN faculty (N = 93) across the midwestern United States. Six themes emerged: (a) Plan for Program Intensity That Stresses Students and Faculty, (b) Be Available, Flexible, Open-Minded, and Patient, (c) Uphold Early-Established Expectations and Rigorous Standards, (d) Be Prepared for Challenging Questions: Know Your Material and Be Organized, (e) Integrate Students' Diversity Into Teaching and Learning, and (f) Adapt Content and Teaching Strategies to Align With Student and Program Characteristics. Consistency with the Suplee and Gardner new faculty orientation model was explored. Respondents viewed new ASBSN faculty as active agents who can influence their own effectiveness and success. [J Nurs Educ. 2015;54(6):343-346.]. Copyright 2015, SLACK Incorporated.

  11. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    PubMed

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  12. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  13. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro-magnetic pulse (EMP). The calibrated detector system was finally used for online detection of laser-accelerated proton and carbon ions at the Astra-Gemini laser.

  14. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  15. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  16. Driving improvement in patient care: lessons from Toyota.

    PubMed

    Thompson, Debra N; Wolf, Gail A; Spear, Steven J

    2003-11-01

    Nurses today are attempting to do more with less while grappling with faulty error-prone systems that do not focus on patients at the point of care. This struggle occurs against a backdrop of rising national concern over the incidence of medical errors in healthcare. In an effort to create greater value with scarce resources and fix broken systems that compromise quality care, UPMC Health System is beginning to master and implement the Toyota Production System (TPS)--a method of managing people engaged in work that emphasizes frequent rapid problem solving and work redesign that has become the global archetype for productivity and performance. The authors discuss the rationale for applying TPS to healthcare and implementation of the system through the development of "learning unit" model lines and initial outcomes, such as dramatic reductions in the number of missing medications and thousands of hours and dollars saved as a result of TPS-driven changes. Tracking data further suggest that TPS, with sufficient staff preparation and involvement, has the potential for continuous, lasting, and accelerated improvement in patient care.

  17. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  18. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  19. An adaptive cryptographic accelerator for network storage security on dynamically reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei

    2008-12-01

    Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.

  20. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  1. Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure

    NASA Astrophysics Data System (ADS)

    Pei, Shi-Lun; Gao, Bin

    2018-04-01

    Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.

  2. Development of a wireless displacement measurement system using acceleration responses.

    PubMed

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F

    2013-07-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.

  3. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  4. Formulation of unidirectional release buccal patches of carbamazepine and study of permeation through porcine buccal mucosa

    PubMed Central

    Govindasamy, Parthasarathy; Kesavan, Bhaskar Reddy; Narasimha, Jayaveera Korlakunta

    2013-01-01

    Objective To achieve transbuccal release of carbamazepine by loading in unidirectional release mucoadhesive buccal patches. Methods Buccal patches of carbamazepine with unidirectional drug release were prepared using hydroxypropyl methyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone and ethyl cellulose by solvent casting method. Water impermeable backing layer (Pidilite® Biaxially-oriented polypropylene film) of patches provided unidirectional drug release. They were evaluated for thickness, mass uniformity, surface pH and folding endurance. Six formulations FA2, FA8, FA10, FB1, FB14 and FB16 (folding endurance above 250) were evaluated further for swelling studies, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, ex vivo permeation, accelerated stability studies and FTIR and XRD spectral studies. Results The ex vivo mucoadhesion time of patches ranged between 109 min (FA10) to 126 min (FB14). The ex vivo mucoadhesive force was in the range of 0.278 to 0.479 kg/m/s. The in vitro drug release studies revealed that formulation FA8 released 84% and FB16 released 99.01% of drug in 140 min. Conclusions The prepared unidirectional buccal patches of carbamazepine provided a maximum drug release within specified mucoadhesion period and it indicates a potential alternative drug delivery system for systemic delivery of carbamazepine. PMID:24093793

  5. The Role of Polydimethylsiloxane in the Molecular Structure of Silica Xerogels Intended for Drug Carriers

    PubMed Central

    Czarnobaj, Katarzyna

    2015-01-01

    The aim of this study was to prepare and examine polymer/oxide xerogels with metronidazole (MT) as delivery systems for the local application of a drug to a bone. The nanoporous SiO2-CaO and PDMS-modified SiO2-CaO xerogel materials with different amounts of the polymer, polydimethylsiloxane (PDMS), were prepared by the sol-gel method. Characterization assays comprised the analysis of the composite materials by using Fourier transform infrared spectroscopy (FTIR), determining the specific surface area of solids (BET), using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) techniques, and further monitoring in the ultraviolet and visible light regions (UV-Vis) of the in vitro release of the drug (metronidazole) over time. According to these results, the bioactive character and chemical stability of PDMS-modified silica xerogels have been proven. The release of MT from xerogels was strongly correlated with the composition of the matrix. In comparison with the pure oxide matrix, PDMS-modified matrices accelerated the release of the drug through its bigger pores, and additionally, on account of weaker interactions with the drug. The obtained results for the xerogel composites suggest that the metronidazole-loaded xerogels could be promising candidates for formulations in local delivery systems particularly to bone. PMID:26839836

  6. Accelerated Testing and Analysis | Photovoltaic Research | NREL

    Science.gov Websites

    & Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability

  7. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeratitham, Waralee, E-mail: waralee.ke@student.chula.ac.th; Somwangthanaroj, Anongnat, E-mail: anongnat.s@chula.ac.th

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (T{sub g}) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that T{sub g} obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage bymore » weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (∼90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.« less

  9. Flow induced protein nucleation: Insulin oligomerization under shear.

    NASA Astrophysics Data System (ADS)

    Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2007-11-01

    A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.

  10. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; hide

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  11. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  12. Effect of Chemicals on Morphology and Luminescence of CdSe Quantum Dots.

    PubMed

    Zhang, Xiao; Li, Xiaoyu; Zhang, Ruili; Yang, Ping

    2015-04-01

    CdSe quantum dots (QDs) with several morphologies were fabricated using various reaction sys- tems. In a trioctylamine (TOA) and octadecylphosphonic acid (ODPA) system, yellow-emitting (a photoluminescence (PL) peak wavelength of 583 nm) CdSe QDs revealed rod morphology and nar- row size distribution. When ODPA was replaced by tetradecylphosphonic acid (TDPA), red-emitting CdSe rods (a PL peak wavelength of 653 nm) with broad size distribution were fabricated. This is ascribed that the short carbon chain accelerated the growth of CdSe QDs. As a result, the use of ODPA resulted in CdSe QDs with high PL efficiency (3.1%). Furthermore, cubic-like CdSe QDs were created in a stearic acid (SA) and octadecene (ODE) reaction system. The PL efficiency of the QDs is low (0.2%). When hexadecylamine (HDA) was added in such SA and ODE reaction system, spherical CdSe QDs with narrow size distribution and high PL efficiency (3.4%) were prepared.

  13. Ion conducting membranes for aqueous flow battery systems.

    PubMed

    Yuan, Zhizhang; Zhang, Huamin; Li, Xianfeng

    2018-06-07

    Flow batteries, aqueous flow batteries in particular, are the most promising candidates for stationary energy storage to realize the wide utilization of renewable energy sources. To meet the requirement of large-scale energy storage, there has been a growing interest in aqueous flow batteries, especially in novel redox couples and flow-type systems. However, the development of aqueous flow battery technologies is at an early stage and their performance can be further improved. As a key component of a flow battery, the membrane has a significant effect on battery performance. Currently, the membranes used in aqueous flow battery technologies are very limited. In this feature article, we first cover the application of porous membranes in vanadium flow battery technology, and then the membranes in most recently reported aqueous flow battery systems. Meanwhile, we hope that this feature article will inspire more efforts to design and prepare membranes with outstanding performance and stability, and then accelerate the development of flow batteries for large scale energy storage applications.

  14. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.

  15. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in Various Sustained Acceleration Fields."

  16. Use of active control technology to improve ride qualities of large transport aircraft

    NASA Technical Reports Server (NTRS)

    Cohen, G. C.; Cotter, C. J.; Taylor, D. L.

    1976-01-01

    Analyses, construction and flight testing of two systems: Beta-vane and Modal Suppression Augmentation System (MSAS), which were developed to suppress gust induced lateral accelerations of large aircraft, are described. The 747 transport was used as the test vehicle. The purpose of the Beta-vane system is to reduce acceleration levels at the dutch roll frequency whereas the function of the MSAS system is to reduce accelerations due to flexible body motions caused by turbulence. Data from flight test, with both systems engaged shows a 50 to 70 percent reduction in lateral aft body acceleration levels. Furthermore, it is suggested that present day techniques used for developing dynamic equations of motion in the flexible mode region are limited.

  17. A novel electron accelerator for MRI-Linac radiotherapy.

    PubMed

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-03-01

    MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility.

  18. A novel electron accelerator for MRI-Linac radiotherapy

    PubMed Central

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-01-01

    Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility. PMID:26936713

  19. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  20. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGES

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; ...

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  1. Accelerated application development: The ORNL Titan experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Archibald, Rick; Berrill, Mark

    2015-08-01

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  2. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  3. Photocatalysis as an Effective Advanced Oxidation Process

    EPA Science Inventory

    Photocatalysis is generally referred to as the acceleration of a photoreaction by the presence of a semiconductor catalyst such as titanium dioxide (TiO2) or zinc oxide (ZnO). Photocatalytic materials can be prepared by using various methods such as a sol-gel process, solution pr...

  4. 23 CFR 646.218 - Simplified procedure for accelerating grade crossing improvements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... preliminary engineering costs may include those incurred in selecting crossings to be improved, determining the type of improvement for each crossing, estimating the cost and preparing the required agreement... ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Projects § 646.218 Simplified procedure for...

  5. 23 CFR 646.218 - Simplified procedure for accelerating grade crossing improvements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... preliminary engineering costs may include those incurred in selecting crossings to be improved, determining the type of improvement for each crossing, estimating the cost and preparing the required agreement... ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Projects § 646.218 Simplified procedure for...

  6. 23 CFR 646.218 - Simplified procedure for accelerating grade crossing improvements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... preliminary engineering costs may include those incurred in selecting crossings to be improved, determining the type of improvement for each crossing, estimating the cost and preparing the required agreement... ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Projects § 646.218 Simplified procedure for...

  7. 23 CFR 646.218 - Simplified procedure for accelerating grade crossing improvements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... preliminary engineering costs may include those incurred in selecting crossings to be improved, determining the type of improvement for each crossing, estimating the cost and preparing the required agreement... ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Projects § 646.218 Simplified procedure for...

  8. 23 CFR 646.218 - Simplified procedure for accelerating grade crossing improvements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... preliminary engineering costs may include those incurred in selecting crossings to be improved, determining the type of improvement for each crossing, estimating the cost and preparing the required agreement... ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Projects § 646.218 Simplified procedure for...

  9. Accelerating sample preparation through enzyme-assisted microfiltration of Salmonella in chicken extract

    USDA-ARS?s Scientific Manuscript database

    Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration ...

  10. Spinel type CoFe oxide porous nanosheets as magnetic adsorbents with fast removal ability and facile separation.

    PubMed

    Ge, X; Gu, C D; Wang, X L; Tu, J P

    2015-09-15

    Adsorption is often time consuming due to slow diffusion kinetic. Sizing he adsorbent down might help to accelerate adsorption. For CoFe spinel oxide, a magnetically separable adsorbent, the preparation of nanosheets faces many challenges including phase separation, grain growth and difficulty in preparing two-dimensional materials. In this work, we prepared porous CoFe oxide nanosheet with chemical formula of Co2.698Fe0.302O4 through topochemical transformation of a CoFe precursor, which has a layered double hydroxide (LDH) analogue structure and a large interlayer spacing. The LDH precursor was synthesized from a cheap deep eutectic solvent (DES) system. The calcined Co2.698Fe0.302O4 has small grain size (10-20nm), nanosheet morphology, and porous structure, which contribute to a large specific surface area of 79.5m(2)g(-1). The Co2.698Fe0.302O4 nanosheets show fast removal ability and good adsorption capacity for both organic waste (305mgg(-1) in 5min for Congo red) and toxic heavy metal ion (5.27mgg(-1) in 30min for Cr (VI)). Furthermore, the Co2.698Fe0.302O4 can be separated magnetically. Considering the precursor can be prepared through a fast, simple, surfactant-free and high-yield synthetic strategy, this work should have practical significance in fabricating adsorbents. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian

    2008-07-08

    This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less

  12. Development of wide area environment accelerator operation and diagnostics method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  13. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    PubMed

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  14. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

    PubMed Central

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-01-01

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems. PMID:28809232

  15. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  16. Sequence-dependent rotation axis changes in tennis.

    PubMed

    Hansen, Clint; Martin, Caroline; Rezzoug, Nasser; Gorce, Philippe; Bideau, Benoit; Isableu, Brice

    2017-09-01

    The purpose of this study was to evaluate the role of rotation axes during a tennis serve. A motion capture system was used to evaluate the contribution of the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis) during the four discrete tennis serve phases (loading, cocking, acceleration and follow through). Ten ranked athletes (International Tennis Number 1-3) repeatedly performed a flat service aiming at a target on the other side of the net. The four serve phases are distinct and thus, each movement phase seems to be organised around specific rotation axes. The results showed that the limbs' rotational axis does not necessarily coincide with the minimum inertia axis across the cocking phase of the tennis serve. Even though individual serving strategies were exposed, all participants showed an effect due to the cocking phase and changed the rotation axis during the task. Taken together, the results showed that despite inter-individual differences, nine out of 10 participants changed the rotation axis towards the minimum inertia and/or the mass axis in an endeavour to maximise external rotation of the shoulder to optimally prepare for the acceleration phase.

  17. Acceleration environment of payloads while being handled by the Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Turnbull, J. F.

    1983-01-01

    Described in this paper is the method used in the Draper Remote Manipulator System (RMS) Simulation to compute linear accelerations at the point on the SPAS01 payload where its accelerometers are mounted. Simulated accelerometer output for representative on-orbit activities is presented. The objectives of post-flight analysis of SPAS01 data are discussed. Finally, the point is made that designers of acceleration-dependent payloads may have an interest in the capability of simulating the acceleration environment of payloads while under the control of the overall Payload Deployment and retrieval System (PDRS) that includes the Orbiter and its attitude control system as well as the Remote Manipulator Arm.

  18. Method of modeling transmissions for real-time simulation

    DOEpatents

    Hebbale, Kumaraswamy V.

    2012-09-25

    A transmission modeling system includes an in-gear module that determines an in-gear acceleration when a vehicle is in gear. A shift module determines a shift acceleration based on a clutch torque when the vehicle is shifting between gears. A shaft acceleration determination module determines a shaft acceleration based on at least one of the in-gear acceleration and the shift acceleration.

  19. Automatic external filling for the ion source gas bottle of a Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Strivay, D.; Bastin, T.; Dehove, C.; Dumont, P. D.; Marchal, A.; Garnir, H.; Weber, G.

    1997-09-01

    We describe a fully automatic system we developed to fill, from an external gas bottle, the ion source terminal gas storage bottle of a 2 MV Van de Graaff accelerator without depressing the 25 bar insulating gas. The system is based on a programmable automate ordering electropneumatical valves. The only manual operation is the connection of the external gas cylinder. The time needed for a gas change is reduced to typically 15 min (depending on the residual pressure wished for the gas removed from the terminal bottle). To check this system we study the ionic composition of the ion beam delivered by our accelerator after different gas changes. The switching magnet of our accelerator was used to analyse the ionic composition of the accelerated beams in order to verify the degree of elimination of the previous gases in the system.

  20. The physics of sub-critical lattices in accelerator driven hybrid systems: The MUSE experiments in the MASURCA facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, J. P.; Lebrat, J. F.; Soule, R.

    Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment ismore » planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.« less

  1. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  2. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  3. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  4. Optimization of electrostatic dual-grid beam-deflection system

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.

    1972-01-01

    Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.

  5. Acceleration and Performance Modeling Workshop, Washington, DC, 14-17 May 79,

    DTIC Science & Technology

    1979-12-01

    disturbance of the muscular systems, perhaps changes in spindle fiber output, and changes in the perceived weight of the muscle because of the acceleration...at this point either. The output models which are determining performance are essentially tied to muscular systems, through manual control (hand and...feet), and through speech, another muscular output. In normal activities the pilot, who senses changes in the visual system, the acceleration vector

  6. Design, modeling and simulations of a Cabinet Safe System for a linear particle accelerator of intermediate-low energy by optimization of the beam optics

    NASA Astrophysics Data System (ADS)

    Maidana, Carlos Omar

    As part of an accelerator based Cargo Inspection System, studies were made to develop a Cabinet Safe System by Optimization of the Beam Optics of Microwave Linear Accelerators of the IAC-Varian series working on the S-band and standing wave pi/2 mode. Measurements, modeling and simulations of the main subsystems were done and a Multiple Solenoidal System was designed. This Cabinet Safe System based on a Multiple Solenoidal System minimizes the radiation field generated by the low efficiency of the microwave accelerators by optimizing the RF waveguide system and by also trapping secondaries generated in the accelerator head. These secondaries are generated mainly due to instabilities in the exit window region and particles backscattered from the target. The electron gun was also studied and software for its right mechanical design and for its optimization was developed as well. Besides the standard design method, an optimization of the injection process is accomplished by slightly modifying the gun configuration and by placing a solenoid on the waist position while avoiding threading the cathode with the magnetic flux generated. The Multiple Solenoidal System and the electron gun optimization are the backbone of a Cabinet Safe System that could be applied not only to the 25 MeV IAC-Varian microwave accelerators but, by extension, to machines of different manufacturers as well. Thus, they constitute the main topic of this dissertation.

  7. Helium refrigeration systems for super-conducting accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, V.

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  8. Low Level RF Control for the PIP-II Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.; Cullerton, E.

    The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.

  9. Automated Synthesis of a 184-Member Library of Thiadiazepan-1, 1-dioxide-4-ones

    PubMed Central

    Fenster, Erik; Long, Toby R.; Zang, Qin; Hill, David; Neuenswander, Benjamin; Lushington, Gerald H.; Zhou, Aihua; Santini, Conrad; Hanson, Paul R.

    2011-01-01

    The construction of a 225-member (3 × 5 × 15) library of thiadiazepan-1,1-dioxide-4-ones was performed on a Chemspeed Accelerator (SLT-100) automated parallel synthesis platform, culminating in the successful preparation of 184/225 sultams. Three sultam core scaffolds were prepared based upon the utilization of an aza-Michael reaction on a multifunctional vinyl sulfonamide linchpin. The library exploits peripheral diversity in the form of a sequential, two-step [3 + 2] Huisgen cycloaddition/Pd-catalyzed Suzuki–Miyaura coupling sequence. PMID:21309582

  10. Automated synthesis of a 184-member library of thiadiazepan-1,1-dioxide-4-ones.

    PubMed

    Fenster, Erik; Long, Toby R; Zang, Qin; Hill, David; Neuenswander, Benjamin; Lushington, Gerald H; Zhou, Aihua; Santini, Conrad; Hanson, Paul R

    2011-05-09

    The construction of a 225-member (3 × 5 × 15) library of thiadiazepan-1,1-dioxide-4-ones was performed on a Chemspeed Accelerator (SLT-100) automated parallel synthesis platform, culminating in the successful preparation of 184/225 sultams. Three sultam core scaffolds were prepared based upon the utilization of an aza-Michael reaction on a multifunctional vinyl sulfonamide linchpin. The library exploits peripheral diversity in the form of a sequential, two-step [3 + 2] Huisgen cycloaddition/Pd-catalyzed Suzuki-Miyaura coupling sequence.

  11. Preparation of SRN1-type coupling adducts from aliphatic gem-dinitro compounds in ionic liquids.

    PubMed

    Kamimura, Akio; Toyoshima, Seiichi

    2012-04-25

    S(RN)1-type coupling adducts are readily prepared by the reaction between a-sulfonylesters or a-cyanosulfones and gem-dinitro compounds in ionic liquids. The reactions progress smoothly and recovered ionic liquids can be used for several iterations, as long as they are washed with water to remove alkali metallic salts. The reaction rate is slower than the corresponding S(RN)1 reaction in DMSO, but no acceleration on irradiation or no inhibition in the presence of m-DNB are observed.

  12. PW-class laser-driven super acceleration systems in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke

    2017-10-01

    Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.

  13. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  14. Streamlined research funding using short proposals and accelerated peer review: an observational study.

    PubMed

    Barnett, Adrian G; Herbert, Danielle L; Campbell, Megan; Daly, Naomi; Roberts, Jason A; Mudge, Alison; Graves, Nicholas

    2015-02-07

    Despite the widely recognised importance of sustainable health care systems, health services research remains generally underfunded in Australia. The Australian Centre for Health Services Innovation (AusHSI) is funding health services research in the state of Queensland. AusHSI has developed a streamlined protocol for applying and awarding funding using a short proposal and accelerated peer review. An observational study of proposals for four health services research funding rounds from May 2012 to November 2013. A short proposal of less than 1,200 words was submitted using a secure web-based portal. The primary outcome measures are: time spent preparing proposals; a simplified scoring of grant proposals (reject, revise or accept for interview) by a scientific review committee; and progressing from submission to funding outcomes within eight weeks. Proposals outside of health services research were deemed ineligible. There were 228 eligible proposals across 4 funding rounds: from 29% to 79% were shortlisted and 9% to 32% were accepted for interview. Success rates increased from 6% (in 2012) to 16% (in 2013) of eligible proposals. Applicants were notified of the outcomes within two weeks from the interview; which was a maximum of eight weeks after the submission deadline. Applicants spent 7 days on average preparing their proposal. Applicants with a ranking of reject or revise received written feedback and suggested improvements for their proposals, and resubmissions composed one third of the 2013 rounds. The AusHSI funding scheme is a streamlined application process that has simplified the process of allocating health services research funding for both applicants and peer reviewers. The AusHSI process has minimised the time from submission to notification of funding outcomes.

  15. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less

  16. Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy

    1992-01-01

    The main thrust of our work in the third year of contract NAG8-759 was the development and analysis of various data processing techniques that may be applicable to residual acceleration data. Our goal is the development of a data processing guide that low gravity principal investigators can use to assess their need for accelerometer data and then formulate an acceleration data analysis strategy. The work focused on the flight of the first International Microgravity Laboratory (IML-1) mission. We are also developing a data base management system to handle large quantities of residual acceleration data. This type of system should be an integral tool in the detailed analysis of accelerometer data. The system will manage a large graphics data base in the support of supervised and unsupervised pattern recognition. The goal of the pattern recognition phase is to identify specific classes of accelerations so that these classes can be easily recognized in any data base. The data base management system is being tested on the Spacelab 3 (SL3) residual acceleration data.

  17. Flooding Vocabulary Gaps to Accelerate Word Learning

    ERIC Educational Resources Information Center

    Brabham, Edna; Buskist, Connie; Henderson, Shannon Coman; Paleologos, Timon; Baugh, Nikki

    2012-01-01

    Students entering school with limited vocabularies are at a disadvantage compared to classmates with robust knowledge of words and meanings. Teaching a few unrelated words at a time is insufficient for catching these students up with peers and preparing them to comprehend texts they will encounter across the grades. This article presents…

  18. Accounting Education for the Non-Accountant.

    ERIC Educational Resources Information Center

    Spiceland, J. David

    1983-01-01

    The nondegree Certified Public Accountant (CPA) preparation program at Memphis State University is an accelerated series of eight credit courses in accounting designed for those who have earned a nonaccounting degree and need the technical training and required courses to enable them to take the CPA examination in Tennessee. (JOW)

  19. Prepared Stimuli Enhance Aversive Learning without Weakening the Impact of Verbal Instructions

    ERIC Educational Resources Information Center

    Atlas, Lauren Y.; Phelps, Elizabeth A.

    2018-01-01

    Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive…

  20. The Early College Challenge: Navigating Disadvantaged Students' Transition to College

    ERIC Educational Resources Information Center

    Rosenbaum, James E.; Becker, Kelly Iwanaga

    2011-01-01

    Successful early college high schools (ECHSs) are formed through partnerships between high schools and colleges (usually community colleges). Think of it as preparation through acceleration. ECHSs enroll disadvantaged students who have not excelled with ordinary grade-level academic content and have them take college courses while still in high…

  1. ACORN's Accelerated Income Redistribution Project: A Program Evaluation

    ERIC Educational Resources Information Center

    Brooks, Fred; Russell, Daniel; Fisher, Robert

    2006-01-01

    Objective: This study evaluated the Association of Community Organizations for Reform Now's (ACORN) efforts to increase the uptake of families claiming the earned income tax credit through door-to-door canvassing and managing free tax preparation clinics in three pilot cities. Method: The mixed-method program evaluation included administrative…

  2. The Leadership Assignment: Creating Change.

    ERIC Educational Resources Information Center

    Calabrese, Raymond L.

    This book provides change-motivated leaders with an understanding of the change process and the tools to drive change. Eight change principles guide change agents in creating and sustaining change: prepare to lead change; knowledge is power; create empowering mental models; overcome resistance to change; lead change; accelerate the change process;…

  3. Hydrogen and water reactor safety: proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  4. Educating Women Leaders for the Twenty-First Century

    ERIC Educational Resources Information Center

    Trigg, Mary K.

    2006-01-01

    The Leadership Scholars Certificate Program at Rutgers University is an intellectually rigorous program that draws on the rich scholarship in gender studies to reimagine leadership, accelerate young women to leadership, and prepare them as educated citizens who will make a difference in the world. This article describes a leadership development…

  5. Self-Evaluation Using iPads in EFL Teaching Practice

    ERIC Educational Resources Information Center

    Allen, Christopher; Hadjistassou, Stella K.; Richardson, David

    2016-01-01

    The relentlessly accelerating global educational demands for teaching English as a Second or Foreign Language (ESL/EFL) in multiple, diverse, and often remote geographic locations constitute new challenges for academic institutions, teacher training and preparation programs, and teachers themselves. This study describes a novel approach where five…

  6. 42 CFR 413.64 - Payments to providers: Specific rules.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... small as possible. (c) Interim payments during initial reporting period. At the beginning of the program... experienced a temporary delay in preparing and submitting bills to the contractor beyond its normal billing.... Recovery of the accelerated payment may be made by recoupment as provider bills are processed or by direct...

  7. Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines

    EPA Science Inventory

    A simple and facile condensation of hydrazines/hydrazides and diamines with 1,3-diketones/β-ketoester leads to the preparation of pyrazoles and diazepines in high yields. This eco-friendly protocol is accelerated by microwave heating and efficiently carried out without any r...

  8. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  9. Temporal Development of Auroral Acceleration Potentials: High-Altitude Evolutionary Sequences, Drivers and Consequences

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Wilber, M.; Chaston, C.; Bonnell, J.; Mozer, F.; McFadden, J.; Goldstein, M.; Fillingim, M.

    2007-12-01

    The region above the auroral acceleration region is an integral part of the auroral zone electrodynamic system. At these altitudes (≥ 3 Re) we find the source plasma and fields that determine acceleration processes occurring at lower altitudes, which play a key role in the transport of mass and energy into the ionosphere. Dynamic changes in these high-altitude regions can affect and/or control lower-altitude acceleration processes according to how field-aligned currents and specific plasma sources form and decay and how they are spatially distributed, and through magnetic configuration changes deeper in the magnetotail. Though much progress has been made, the time development and consequential effects of the high-altitude plasma and fields are still not fully understood. We present Cluster multi-point observations at key instances within and above the acceleration region (> 3 RE) of evolving auroral arc current systems. Results are presented from events occurring under different conditions, such as magnetospheric activity, associations with density depletions or gradients, and Alfvenic turbulence. A preliminary survey, primarily at or near the plasma sheet boundary, indicates quasi- static up-down current pair systems are at times associated with density depletions and other instances occur in association with density gradients. The data suggest that such quasi-static current systems may be evolving from structured Alfvenic current systems. We will discuss the temporal development of auroral acceleration potentials, plasma and currents, including quasi-static system formation from turbulent systems of structured Alfvenic field-aligned currents, density depletion and constituent reorganization of the source and ionospheric plasma that transpire in such systems. Of particular emphasis is how temporal changes in magnetospheric source plasma and fields affect the development of auroral acceleration potentials at lower altitudes.

  10. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis.

    PubMed

    Zhang, Mingzhen; Xu, Changlong; Liu, Dandan; Han, Moon Kwon; Wang, Lixin; Merlin, Didier

    2018-01-24

    Oral drug delivery is the most attractive pathway for ulcerative colitis [UC] therapy, since it has many advantages. However, this strategy has encountered many challenges, including the instability of drugs in the gastrointestinal tract [GT], low targeting of disease tissues, and severe adverse effects. Nanoparticles capable of colitis tissue-targeted delivery and site-specific drug release may offer a unique and therapeutically effective system that addresses these formidable challenges. We used a versatile single-step surface-functionalising technique to prepare PLGA/PLA-PEG-FA nanoparticles loaded with the ginger active compound, 6-shogaol [NPs-PEG-FA/6-shogaol]. The therapeutic efficacy of NPs-PEG-FA/6-shogaol was evaluated in the well-established mouse model of dextran sulphate sodium [DSS]-induced colitis. NPs-PEG-FA exhibited very good biocompatibility both in vitro and in vivo. Subsequent cellular uptake experiments demonstrated that NPs-PEG-FA could undergo efficient receptor-mediated uptake by colon-26 cells and activated Raw 264.7 macrophage cells. In vivo, oral administration of NPs-PEG-FA/6-shogaol encapsulated in a hydrogel system [chitosan/alginate] significantly alleviated colitis symptoms and accelerated colitis wound repair in DSS-treated mice by regulating the expression levels of pro-inflammatory [TNF-α, IL-6, IL-1β, and iNOS] and anti-inflammatory [Nrf-2 and HO-1] factors. Our study demonstrates a convenient, orally administered 6-shogaol drug delivery system that effectively targets colitis tissue, alleviates colitis symptoms, and accelerates colitis wound repair. This system may represent a promising therapeutic approach for treating inflammatory bowel disease [IBD]. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  11. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring.

    PubMed

    Pallarés, María Eugenia; Adrover, Ezequiela; Baier, Carlos Javier; Bourguignon, Nadia S; Monteleone, Melisa C; Brocco, Marcela A; González-Calvar, Silvia I; Antonelli, Marta C

    2013-07-01

    Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.

  12. [THERMAL STABILITY AS A PROGNOSTIC INDICATOR OF CONSERVATION OF LIVE EMBRYONIC SMALLPOX VACCINE (TEOVAC) DURING STORAGE].

    PubMed

    Zhukov, V A; Kokorev, S V; Rogozhkina, S V; Melnikov, D G; Terentiev, A I; Kovalchuk, E A; Vakhnov, E Yu; Borisevich, S V

    2016-01-01

    Determination of values of coefficients of thermal stability of TEOVac for prognosis of conservation of the vaccine (specific biological activity) during the process of warranty period storage. TEOVac (masticatory tablets) in primary packaging was kept at increased temperature (accelerated and stress-tests) and at the conditions established by PAP for the preparation (long-term tests). Biological activity of the vaccine was determined by titration on 12-day chicken embryos. A correlation between the value of coefficients of thermal stability and conservation of the prepared series of the condition preparation at the final date of storage was experimentally established. Coefficients of thermal stability could be used as a prognostic indicator of quality of the produced pelleted formulation of the preparation for evaluation of conservation of the vaccine during warranty period storage.

  13. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  14. A Novel Detection Model and Its Optimal Features to Classify Falls from Low- and High-Acceleration Activities of Daily Life Using an Insole Sensor System

    PubMed Central

    Cates, Benjamin; Sim, Taeyong; Heo, Hyun Mu; Kim, Bori; Kim, Hyunggun; Mun, Joung Hwan

    2018-01-01

    In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe. PMID:29673165

  15. Microemulsion of babassu oil as a natural product to improve human immune system function.

    PubMed

    Pessoa, Rafael Souza; França, Eduardo Luzia; Ribeiro, Elton Brito; Lanes, Patrícia Kelly Dias; Chaud, Natalina Galdeano Abud; Moraes, Lucélia Campelo Albuquerque; Honorio-França, Adenilda Cristina

    2015-01-01

    The aim of this study was to develop and characterize a babassu oil microemulsion system and determine the effect of this microemulsion on the functional activity of phagocytes. The microemulsion was formulated using distilled water, babassu as the oil phase component, Sorbitan monooleate-Span 80(®) (SP), Polysorbate 80-Tween 80(®) (TW), and 1-butanol (BT). Pseudoternary diagrams were prepared, and microemulsion diagram regions were preselected. Rheological characterization and preliminary and accelerated stability tests were performed. The effect of the microemulsion on the interactions between leukocytes and bacteria was determined by superoxide release, phagocytosis, and microbicidal activity. The developed formulation SP/TW/BT (4.2/4.8/1.0) was classified as oil/water, showed a Newtonian profile, and had linear viscosity. When we assessed the interaction of the microemulsion or babassu oil with phagocytes, we observed an increase in superoxide, phagocytosis, and microbicidal activity. The babassu oil microemulsion system is an option for future applications, including for vaccine delivery systems. Babassu oil is a natural product, so is an alternative for future immunotherapy strategies, in particular for infectious diseases.

  16. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  17. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  18. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  19. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  20. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2017-12-09

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  1. First heavy ion beam tests with a superconducting multigap CH cavity

    NASA Astrophysics Data System (ADS)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  2. Improving particle beam acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    C. de Sousa, M.; L. Caldas, I.

    2018-04-01

    The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.

  3. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  4. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    DOE PAGES

    Persaud, A.; Ji, Q.; Feinberg, E.; ...

    2017-06-08

    Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less

  5. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  6. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    PubMed

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  7. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  8. Small Accelerators for the Next Generation of BNCT Irradiation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T.; Tanaka, K.; Bengua, G.

    2005-01-15

    The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.

  9. Formulation and evaluation of in situ gelling systems for intranasal administration of gastrodin.

    PubMed

    Cai, Zheng; Song, Xiangrong; Sun, Feng; Yang, Zhaoxiang; Hou, Shixiang; Liu, Zhongqiu

    2011-12-01

    Gastrodin is the major bioactive constituent of the traditional Chinese drug "Tianma." It is used in the treatment of some nervous system diseases and can be transported to the brain via intranasal administration. In the current paper, the development of a novel ion-activated in situ gelling system for the nasal delivery of gastrodin is discussed. An in situ perfusion model was used to determine the absorption-rate constant of gastrodin through rat nasal mucosa. The optimal formulation was determined by measuring the critical cation concentration, anti-dilution capacity, gel expansion coefficient, water-holding capacity, and adhesive capacity. The best formulation consisted of 10% gastrodin, 0.5% deacetylated gellan gum as the gelatinizer, and 0.03% ethylparaben as the preservative. The rheological properties of gastrodin nasal in situ gels were also investigated. The viscosity and elasticity sharply increased at temperatures below 25°C. When physiological concentrations of cations were added into the preparation, the mixture gelled into a semi-solid. The results of an accelerated stability test show that gastrodin nasal in situ gels can be stable for more than 2 years. Mucociliary toxicity was evaluated using the in situ toad palate model and the rat nasal mucociliary method; both models demonstrated no measurable ciliotoxicity. Pharmacodynamic studies suggest that similar acesodyne and sedative effects were induced following intranasal administration of 50 mg/kg gastrodin nasal in situ gels or oral administration of 100 mg/kg gastrodin solution. The in situ gel preparation is a safe and effective nasal delivery system for gastrodin.

  10. Limitation to Communication of Fermionic System in Accelerated Frame

    NASA Astrophysics Data System (ADS)

    Chang, Jinho; Kwon, Younghun

    2015-03-01

    In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.

  11. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  12. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  13. Radiotherapy using a laser proton accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities

  14. Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This paper is for the AIAA Space Conference. The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  15. The First United States Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Mikatarian, Jeff

    1991-01-01

    The United States Microgravity Laboratory (USML-1) is one part of a science and technology program that will open NASA's next great era of discovery and establish the United States' leadership in space. A key component in the preparation for this new age of exploration, the USML-1 will fly in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. The major components of the USML-1 are the Crystal Growth Furnace, the Surface Tension Driven Convection Experiment (STDCE) Apparatus, and the Drop Physics Module. Other components of USML-1 include Astroculture, Generic Bioprocessing Apparatus, Extended Duration Orbiter Medical Project, Protein Crystal Growth, Space Acceleration Measurement System, Solid Surface Combustion Experiment, Zeolite Crystal Growth and Spacelab Glovebox provided by the European Space Agency.

  16. Decompression Sickness During Simulated Low Pressure Exposure is Increased with Mild Ambulation Exercise

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.

  17. Advance prototype silver ion water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.

  18. The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear

    NASA Astrophysics Data System (ADS)

    Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.

    2016-08-01

    This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.

  19. HPLC study on the 'history' dependence of gramicidin A conformation in phospholipid model membranes.

    PubMed

    Bañó, M C; Braco, L; Abad, C

    1989-06-19

    A novel HPLC methodology for the study of gramicidin A reconstituted in model membranes has been tested in comparison with circular dichroism data. It is shown that this chromatographic technique not only corroborates most of the recent spectroscopic results but allows one to explain them in terms of mass fractions of different actual conformational species of GA in the phospholipid assemblies. In particular, the dependence of the inserted peptide configuration on the organic solvent and other parameters involved in the 'history' of the sample preparation and handling has been analyzed by HPLC in two phospholipid model systems: small unilamellar vesicles and micelles. Moreover, a slow conformational transition of GA towards a beta 6.3-helical configuration, accelerated by heat incubation, has been also chromatographically visualized and quantitatively interpreted.

  20. Magnetospheric Multiscale (MMS)

    NASA Image and Video Library

    2017-12-08

    MMS Four Separate – View of all four spacecraft in the MMS Cleanroom getting prepared for stacking operations. Learn more about MMS at www.nasa.gov/mms Credit NASA/Chris Gunn The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator

    NASA Astrophysics Data System (ADS)

    Dube, Chioniso; Pedro, Jimoh O.

    2018-05-01

    This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.

  2. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  3. Progress report of the innovated KIST ion beam facility

    NASA Astrophysics Data System (ADS)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  4. Accelerating the College and Career Readiness of Minnesota's Students

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2011

    2011-01-01

    Minnesota is in the process of transitioning to new English language arts and mathematics standards that will better prepare students to be successful in college and their careers. Time, effort, and resources must be dedicated to effective implementation in order to realize the promise of these new common core state standards. This state card…

  5. Minority Achievement Gaps in STEM: Findings of a Longitudinal Study of Project Excite

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Steenbergen-Hu, Saiying; Thomson, Dana; Rosen, Rhoda

    2017-01-01

    This longitudinal study examined the outcomes of Project Excite on reducing minority students' achievement gaps in STEM over 14 years. Project Excite was designed to provide intensive supplemental enrichment and accelerated programming for high-potential, underrepresented minority students from third through eighth grades to better prepare them…

  6. Acceleration across California: Shorter Pathways in Developmental English and Math

    ERIC Educational Resources Information Center

    Hern, Katie

    2012-01-01

    Developmental courses in English, math, and reading have an important purpose in higher education, especially in the open-access world of community colleges. These classes--also referred to as "remedial"--are intended to give less-prepared students a chance to catch up and meet the challenges of college-level coursework. However,…

  7. From Remediation to Acceleration: Recruiting, Retaining, and Graduating Future Culturally and Linguistically Diverse (CLD) Educators

    ERIC Educational Resources Information Center

    Herrera, Socorro G.; Morales, Amanda R.; Holmes, Melissa A.; Terry, Dawn Herrera

    2012-01-01

    This ethnographic case study explores one mid-western state university's response to the challenge of culturally and linguistically diverse (CLD), especially Latino/a, student recruitment and retention. BESITOS (Bilingual/Bicultural Education Students Interacting To Obtain Success) is an integrated teacher preparation program implemented at a…

  8. Accelerating the College and Career Readiness of Pennsylvania's Students

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2011

    2011-01-01

    Pennsylvania is in the process of transitioning to new English language arts and mathematics standards that will better prepare students to be successful in college and their careers. Time, effort, and resources must be dedicated to effective implementation in order to realize the promise of these new common core state standards. This paper…

  9.  Climate change may trigger broad shifts in North America's Pacific Coastal rainforests

    Treesearch

    Dominick A. DellaSala; Patric Brandt; Marni   Koopman; Jessica Leonard; Claude Meisch; Patrick Herzog; Paul Alaback; Michael I. Goldstein; Sarah Jovan; Andy MacKinnon; Henrik von Wehrden

    2015-01-01

    Climate change poses significant threats to Pacific coastal rainforests of North America. Land managers currently lack a coordinated climate change adaptation approach with which to prepare the region's globally outstanding biodiversity for accelerating change. We provided analyses intended to inform coordinated adaptation for eight focal rainforest tree species...

  10. [Treatment of burn wounds with dibunol liniment].

    PubMed

    Shalonov, P M; Dadabaev, T D; Khalilov, Kh N

    1989-01-01

    In 40 burned patients with the area of damage from 10 to 40% of the body surface in local treatment with dibunol against the background of active infusion-transfusion therapy, the accelerated rejection of the necrotic crust was noted, which permitted to reduce the period of preparation for autodermoplasty. The antiinflammatory effect of dibunol was established.

  11. Accelerating the College and Career Readiness of Diverse K-5 Literacy Learners

    ERIC Educational Resources Information Center

    Turner, Jennifer D.; Danridge, Jocelyn C.

    2014-01-01

    Given the increasing demand for a well-educated American workforce, college and career readiness has become a significant educational priority. New educational initiatives, including the Common Core State Standards for English Language Arts, are being developed and implemented to prepare students for success in postsecondary education and the…

  12. Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application.

    PubMed

    Lobo, Anderson O; Corat, Marcus A F; Ramos, Sandra C; Matsushima, Jorge T; Granato, Alessandro E C; Pacheco-Soares, Cristina; Corat, Evaldo J

    2010-12-07

    A method for the electrodeposition of hydroxyapatite films on superhydrophilic vertically aligned multiwalled carbon nanotubes is presented. The formation of a thin homogeneous film with high crystallinity was observed without any thermal treatment and with bioactivity properties that accelerate the in vitro biomineralization process and osteoblast adhesion.

  13. Graphite sample preparation for AMS in a high pressure and temperature press

    USGS Publications Warehouse

    Rubin, M.; Mysen, B.O.; Polach, H.

    1984-01-01

    A high pressure-high temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical 14C samples including oxalic acid and carbonates. Beam strength of 12C was generally adequate, but random radioactive contamination by 14C made age measurements impractical. ?? 1984.

  14. ALUMINUM AND PHOSPHORUS SEPARATION: APPLICATION TO PREPARATION OF TARGET FROM BRAIN TISSUE FOR 26AL DETERMINATION BY ACCELERATOR MASS SPECTROMETRY. (R825357)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Graphite sample preparation for AMS in a high pressure and temperature press

    USGS Publications Warehouse

    Rubin, Meyer; Mysen, Bjorn O.; Polach, Henry

    1984-01-01

    A high pressure-temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical **1**4C samples including oxalic acid and carbonates. Beam strength of **1**2C was generally adequate, but random radioactive contamination by **1**4C made age measurements impractical.

  16. Composite-Unit Accelerated Life Testing (CUALT) of Sonar Transducers

    DTIC Science & Technology

    1979-09-01

    Developed and technically defended the Texas Research Institute CUALT plan, Helped prepare sections 5 and 7. Edward Hobaica and Ray Haworth - Developed...le2--Te- TT-Sonar 3R. A. Larmi, E. C. Hobaica , Failure Modes & Effects Analysis for the DT-308’ (now called the DT-605) Hydrophone, EB Div Report No.: U

  17. Future Shock--Education 1984: The Economists' Viewpoint.

    ERIC Educational Resources Information Center

    Hanlon, J. William

    Education, like other institutions of our society, is susceptible to "future shock", the inadequate preparation for a radically different future. Our nation is on the threshold of an age of scarcity, and the impact on education will be the accelerated demands for educators to justify their use of resources based on impersonal objective criteria.…

  18. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods

    EPA Science Inventory

    Two common laboratory extraction techniques were evaluated for routine use with the micro-colorimetric lipid determination method developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1(1985) 302] and recently validated for small samples by Inouye and Lotufo ...

  19. Applications of microwave-accelerated organic synthesis

    NASA Astrophysics Data System (ADS)

    Majetich, George; Hicks, Rodgers

    1995-04-01

    A comparison of microwave vs conventional heating is presented for a variety of Diels-Alder reactions, ortho-Claisen rearrangements, ene reactions, alkyl bromide preparations, Finkelstein reactions, oxidations, esterifications, hydrolyses, Williamson ether syntheses and other common organic transformations. In general, microwave-promoted reactions proceed with significant decreases in reaction times and in comparable chemical yield.

  20. Accelerating the College and Career Readiness of Wisconsin's Students

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2011

    2011-01-01

    Wisconsin is in the process of transitioning to new English language arts and mathematics standards that will better prepare students to be successful in college and their careers. Time, effort, and resources must be dedicated to effective implementation in order to realize the promise of these new common core state standards. This paper captures…

  1. Hemostatic granules and dressing prepared from formulations of carboxymethyl cellulose, kappa-carrageenan and polyethylene oxide crosslinked by gamma radiation

    NASA Astrophysics Data System (ADS)

    Barba, Bin Jeremiah D.; Aranilla, Charito T.; Relleve, Lorna S.; Cruz, Veriza Rita C.; Vista, Jeanina Richelle; Abad, Lucille V.

    2018-03-01

    Uncontrolled hemorrhage remains a persistent problem especially in anatomical areas where compression and tourniquet cannot be applied. Hemostatic agents are materials which can achieve control of bleeding in acute, life-threatening traumatic coagulopathy. In this study, we prepared biocompatible hydrogel-based hemostat crosslinked by ionizing radiation. Granules made from carboxymethyl cellulose and dressing from kappa carrageenan and polyethylene oxide were characterized by FT-IR, SEM, and gel analysis. Gamma radiation with a dose of 25 kGy was used for sterilization process. Stability studies indicate that the products remain effective with a shelf life of up to 18 months based on accelerated aging. Both hemostatic agents were demonstrated to be effective in vitro blood clotting assays showing a low blood clotting index, high platelet adhesion capacity and accelerated clotting time. Hemostat granules and dressing were also used in a femoral artery rat bleeding model where hemorrhage control was achieved in 90 s without compression and resulted in 100% survival rate after a 7 and 14-day observation.

  2. Impact of flavour solvent (propylene glycol or triacetin) on vanillin, 5-(hydroxymethyl)furfural, 2,4-decadienal, 2,4-heptadienal, structural parameters and sensory perception of shortcake biscuits over accelerated shelf life testing.

    PubMed

    Yang, Ni; Hort, Joanne; Linforth, Robert; Brown, Keith; Walsh, Stuart; Fisk, Ian D

    2013-11-15

    The influence of choice of flavour solvent, propylene glycol (PG) or triacetin (TA), was investigated during accelerated shelf life (ASL) testing of shortcake biscuits. Specifically, the differential effect on the stability of added vanillin, the natural baked marker compound 5-(hydroxymethyl)furfural (HMF), specific markers of oxidative rancidity (2,4-decadienal, 2,4-heptadienal), and the structural parameters of hardness and fracturability. Significantly more HMF was formed during baking of biscuits prepared with TA; these biscuits were also more stable to oxidative degradation and loss of vanillin during ageing than biscuits prepared with PG. Fresh TA biscuits were significantly more brittle than fresh PG biscuits. There was no impact of solvent choice on hardness. Sensory evaluation of hardness, vanilla flavour and oily off-note was tested during ASL testing. There was no significant impact of storage on sensory ratings for either the PG or TA biscuits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Comparison of extraction techniques of robenidine from poultry feed samples.

    PubMed

    Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek

    2007-10-31

    In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.

  4. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  5. Psychophysiological reactivity of currently dental phobic-, remitted dental phobic- and never-dental phobic individuals during exposure to dental-related and other affect-inducing materials.

    PubMed

    Wannemueller, André; Adolph, Dirk; Joehren, Hans-Peter; Blackwell, Simon E; Margraf, Jürgen

    2017-03-01

    Psychophysiological responses indicating the preparation of defensive behaviour, such as heart rate (HR)-increase and startle-response (SR) potentiation, have often been reported amongst individuals suffering from phobic disorders when exposed to phobia-related information. Although exposure is widely considered the 'gold standard' for treatment of Specific Phobia, it is unclear to what extent psychophysiological defensive response patterns change following treatment, and whether any changes are maintained. We assessed the acoustic SR- and HR-response to neutral, positive, negative and phobia-related pictures and sounds in 41 individuals currently suffering from dental phobia, 22 formerly dental phobic individuals who had remitted following an exposure-based treatment eight months prior to assessment, and 29 control individuals with no history of dental phobia. We observed SR-potentiation to dental-related stimuli in controls combined with HR-deceleration. In contrast, amongst phobic individuals SR-potentiation was accompanied by HR-acceleration to dental pictures. Successfully treated individuals showed inhibited startle reactivity in combination with HR-deceleration to dental related materials of both modalities. Our findings suggest inappropriate fight-flight preparation amongst individuals with dental phobia, reflecting overactivation of the defensive system. However, successful treatment results in inhibited physiological defence preparation, with remitted individuals displaying a response pattern that differed from that of phobic individuals and controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Revision of Time-Independent Probabilistic Seismic Hazard Maps for Alaska

    USGS Publications Warehouse

    Wesson, Robert L.; Boyd, Oliver S.; Mueller, Charles S.; Bufe, Charles G.; Frankel, Arthur D.; Petersen, Mark D.

    2007-01-01

    We present here time-independent probabilistic seismic hazard maps of Alaska and the Aleutians for peak ground acceleration (PGA) and 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404), 5 percent in 50 years (annual probability of 0.001026) and 10 percent in 50 years (annual probability of 0.0021). These maps represent a revision of existing maps based on newly obtained data and assumptions reflecting best current judgments about methodology and approach. These maps have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States. A significant improvement relative to the 2002 methodology is the ability to include variable slip rate along a fault where appropriate. These maps incorporate new data, the responses to comments received at workshops held in Fairbanks and Anchorage, Alaska, in May, 2005, and comments received after draft maps were posted on the National Seismic Hazard Mapping Web Site. These maps will be proposed for adoption in future revisions to the International Building Code. In this documentation we describe the maps and in particular explain and justify changes that have been made relative to the 1999 maps. We are also preparing a series of experimental maps of time-dependent hazard that will be described in future documents.

  7. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy.

    PubMed

    Kong, Lulu; Gao, Yuanyuan; Zhou, Qixing; Zhao, Xuyang; Sun, Zhongwei

    2018-02-05

    Sawdust and wheat straw biochars prepared at 300°C and 500°C were applied to petroleum-polluted soil for an 84-day incubation to estimate their effectiveness on polycyclic aromatic hydrocarbons (PAHs) removal. Biochars alone were most effective at reducing PAHs contents. However, adding biochar to soils in company with NaN 3 solution resulted in a decreasing trend in terms of PAHs removal, which was even lower than treatment CK without biochar. Moreover, it was discovered by PCR-DGGE files and sequencing analysis that the predominant bacterial diversity slightly decreased but the abundance of some specific taxa, including PAHs degraders, was promoted with biochar input. These results highlighted the potential of biochar application on accelerating PAHs biodegradation, which could be attributed to the properties of biochars that benefit for making the amended soil a better habitat for microbes. The impacts of biochar preparation and pollutants nature on PAHs removal were also determined. Significant reduction in the PAHs contents was detected when adding biochar prepared at a high temperature (500°C), while the feedstocks of biochar showed little effect on PAHs removal. Due to the high hydrophobicity of aromatic rings, high-molecular weight PAHs were found much more resistant to microbial degradation in comparison with low-molecular weight PAHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Physicochemical stability, pharmacokinetic, and biodistribution evaluation of paclitaxel solid dispersion prepared using supercritical antisolvent process.

    PubMed

    Shanmugam, Srinivasan; Park, Jae-Hyun; Chi, Sang-Cheol; Yong, Chul Soon; Choi, Han-Gon; Woo, Jong Soo

    2011-06-01

    To investigate the physicochemical stability, pharmacokinetics (PK), and biodistribution of paclitaxel (PTX) from paclitaxel solid dispersion (PSD) prepared by supercritical antisolvent (SAS) process. Physicochemical stability was performed in accelerated (40°C 70 ± 5% RH) and stress (60°C) storage conditions for a period of 6 months and 4 weeks, respectively. PK and biodistribution studies were performed in rats following i.v. administration of PTX equivalent to 6 and 12 mg/kg formulations. Physical stability of PSD showed excellent stability with no recrystallization of the amorphous form. Chemical stability of PSD in terms of % PTX remaining was 98.2 ± 0.6% at 6 months and 97.9 ± 0.3% at 4 weeks of accelerated and stress conditions, respectively. The PK study showed a nonlinear increase in AUC with increasing dose, that is, 100% increase in dose (from 6 to 12 mg/kg) resulted in 405.90% increase in AUC. Unlike PK study, the organ distribution study of PTX from PSD showed linear relationship with dose escalation. The order of organ distribution of PTX from highest to lowest for both PSD and Taxol® was liver>kidney>lung>brain. This study demonstrated excellent physicochemical stability with insight information on the PK and biodistribution of PTX from PSD prepared by SAS process.

  9. Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; DeLombard, Richard

    1996-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.

  10. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  11. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  12. The High Resolution Accelerometer Package (HiRAP) flight experiment summary for the first 10 flights

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, K. T.; Barrett, M.

    1992-01-01

    The High Resolution Accelerometer Package (HiRAP) instrument is a triaxial, orthogonal system of gas damped accelerometers with a resolution of 1 x 10(exp -6) g (1 micro-g). The purpose of HiRAP is to measure the low frequency component of the total acceleration along the orbiter vehicle (OV) body axes while the OV descends through the rarefied flow flight regime. Two HiRAP instruments have flown on a total of 10 Space Transport System (STS) missions. The aerodynamic component of the acceleration measurements was separated from the total acceleration. Instrument bias and orbiter mechanical system acceleration effects were incorporated into one bulk bias. The bulk bias was subtracted from the acceleration measurements to produce aerodynamic descent data sets for all 10 flights. The aerodynamic acceleration data sets were input to an aerodynamic coefficient model. The aerodynamic acceleration data and coefficient model were used to estimate the atmospheric density for the altitude range of 140 to 60 km and a downrange distance of 600 km. For 8 of 10 flights results from this model agree with expected results. For the results that do not agree with expected results, a variety of error sources have been explored.

  13. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  14. Influence of grafting solvents on the properties of polymer electrolyte membranes prepared by γ-ray preirradiation method

    NASA Astrophysics Data System (ADS)

    Kimura, Yosuke; Asano, Masaharu; Chen, Jinhua; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2008-07-01

    The effect of grafting solvents, such as isopropanol (iPrOH), tetrachloroethane (TCE), tetrahydrofuran (THF), and toluene, on the preparation of poly(ethylene- co-tetrafluoroethylene)-graft-poly(styrene sulfonic acid) (ETFE-g-PSSA) electrolyte membranes by the γ-ray preirradiation grafting method was investigated. It was found that the iPrOH can drastically accelerate the grafting, resulting in a higher degree of grafting. However, for an appropriate degree of grafting of about 50%, the sulfonic acid groups in the ETFE-g-PSSA membrane prepared with the iPrOH were mainly distributed near the membrane surface, as shown by low proton conductivity in the membrane thickness direction. In contrast to this result, the ETFE-g-PSSA membranes prepared with the THF, toluene and TCE exhibited uniform distribution of the sulfonic acid groups in the membrane. Especially, in the case of the TCE grafting solvent, the chemical stability of the resultant electrolyte membrane was clearly higher than those prepared with the other grafting solvents.

  15. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.

  16. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less

  17. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4 missions ensuring benefits and enhancements during the system's design life.

  18. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  19. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  20. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  1. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  2. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  3. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  4. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications.

    PubMed

    Lei, Guoqing; Dou, Yong; Wan, Wen; Xia, Fei; Li, Rongchun; Ma, Meng; Zou, Dan

    2012-01-01

    Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.

  5. Use of the BINP HLS to measure vertical changes in the locations of the building and ground at the PAL-XFEL

    NASA Astrophysics Data System (ADS)

    Choi, Hyo-Jin; Seo, Kwang-Won; Gil, Kye-Hwan; Kim, Seung-Hwan; Kang, Heung-Sik

    2016-09-01

    The Pohang Accelerator Laboratory's X-ray free-electron laser (PAL-XFEL), a 4 th generation light source, is currently being installed and will be completed by December 2015 so that users can be supported beginning in 2016. The PAL-XFEL equipment must continuously maintain the bunch-tobunch beam parameters (60 Hz, Energy: 10 GeV, Charge: 200 pC, Bunch Length: 60 fs, Emittance X/Y: 0.481/0.256 mm rad) in order to supply stable photons with the energy and flux appropriate for tests by beamline users. To this end, the PAL-XFEL equipment has to be kept precisely aligned (Linear Accelerator: +/- 100 μm, Undulator: +/- 50 μm). As a part of the process for installing the PAL-XFEL, a GPS-using surface geodetic network is being constructed for precise equipment measurement and alignment, and the installation of a tunnel measurement network inside the buildings is in the preparation stage; additionally, the fiducialization of major equipment is underway. After the PAL-XFEL equipment is optimized and aligned, if the ground and the buildings go through vertical changes during operation, misalignment (and tilt) of the equipment, including various magnets and RF structures, will cause errors in the electron beam's trajectory, which will lead to changes to the beam parameters. For continuous and systemic measurement of vertical changes in the buildings and monitoring of ground sinking and uplifting, the Budker Institute of Nuclear Physics (BINP) Ultrasonic-type Hydrostatic Levelling System (HLS) is to be installed and operated in all sections of the PAL-XFEL for the linear accelerator, the insertion device (undulator) and the beamline. This study will introduce the operation principle, design concept, and advantages (self-calibration) of the HLS and will outline its installation plan and operation plan.

  6. Detailed analysis of Honeywell In-Space Accelerometer data - STS-32. [crystal microstructure response to different types of residual acceleration

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.; Schoess, Jeff

    1993-01-01

    The Honeywell In-Space Accelerometer (HISA) system collected data in the mid-deck area of the Shuttle Columbia during the flight of STS-32, January 1990. The resulting data were to be used to investigate the response of crystal microstructure to different types of residual acceleration. The HISA is designed to detect and record transient and oscillatory accelerations. The sampling and electronics package stored averaged accelerations over two sampling periods; two sampling rates were available: 1 Hz and 50 Hz. Analysis of the HISA data followed the CMMR Acceleration Data Processing Guide, considering in-house computer modelling of a float-zone indium crystal growth experiment. Characteristic examples of HISA data showing the response to the primary reaction control system, Orbiter Maneuvering System operations, and crew treadmill activity are presented. Various orbiter structural modes are excited by these and other activities.

  7. Neutron dose per fluence and weighting factors for use at high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations.more » A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.« less

  8. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  9. Design study of low-energy beam transport for multi-charge beams at RAON

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  10. [Characteristics of the sympathoadrenal system response to psychoemotional stress under hypoxic conditions in aged people with physiological and accelerated aging of the respiratory system].

    PubMed

    Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A

    2013-01-01

    The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.

  11. Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug.

    PubMed

    Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling

    2014-02-01

    Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.

  12. WHO expert committee on specifications for pharmaceutical preparations.

    PubMed

    2013-01-01

    The Expert Committee on Specifications for Pharmaceutical Preparations works towards clear, independent and practical standards and guidelines for the quality assurance of medicines. Standards are developed by the Committee through worldwide consultation and an international consensus-building process. The following new guidelines were adopted and recommended for use: Release procedure for International Chemical Reference Substances; WHO guidelines on quality risk management; WHO guidelines on variations to a prequalified product; and the Collaborative procedure between the World Health Organization Prequalification of Medicines Programme and national medicines regulatory authorities in the assessment and accelerated national registration of WHO-prequalified pharmaceutical products.

  13. Stabilities of Dried Suspensions of Influenza Virus Sealed in a Vacuum or Under Different Gases

    PubMed Central

    Greiff, Donald; Rightsel, Wilton A.

    1969-01-01

    Suspensions of purified influenza virus, dried to a 1.4% content of residual moisture by sublimation of ice in vacuo, were sealed in a vacuum or under different gases of high purity. The stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at different temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to sealing in vacuum or under different gases was as follows: helium > hydrogen > vacuum > argon > nitrogen > oxygen > carbon dioxide. Images PMID:5797938

  14. High-power microwave production by gyroharmonic conversion and co-generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, M.

    1997-03-01

    An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less

  15. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  16. Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale.

    PubMed

    Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason

    2016-10-01

    With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft's FPGA deployment in its Bing search engine and Intel's 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems-like Apache Spark and Hadoop-to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster.

  17. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  18. Commissioning the cryogenic system of the first LHC sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, F.; Claudet, S.; Ferlin, G.

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less

  19. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  20. Simulation-based MDP verification for leading-edge masks

    NASA Astrophysics Data System (ADS)

    Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki

    2017-07-01

    For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification acceptable.

  1. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  2. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188.

    PubMed

    Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin

    2014-04-01

    Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  3. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2018-05-23

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  4. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  5. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  6. Controlled Release of Antimicrobial ClO2 Gas from a Two-Layer Polymeric Film System.

    PubMed

    Bai, Zhifeng; Cristancho, Diego E; Rachford, Aaron A; Reder, Amy L; Williamson, Alexander; Grzesiak, Adam L

    2016-11-16

    We report a two-component label system comprising a chlorite-containing polymer film and an acid-containing polymer film that can release antimicrobial ClO 2 gas upon adhering the two films together to enable a reaction of the chlorite and acid under moisture exposure. The chlorite-containing film comprises a commercial acrylate-based pressure-sensitive adhesive polymer impregnated with sodium chlorite. The acid-containing film comprises a commercial poly(vinyl alcohol) polymer loaded with tartaric acid. Both of the films were prepared on low ClO 2 -absorbing substrate films from stable aqueous systems of the polymers with high reagent loading. Rapid and sustained releases of significant amounts of ClO 2 gas from the label system were observed in an in situ quantification system using UV-vis spectroscopy. It was found that the ClO 2 release is slower at a lower temperature and can be accelerated by moisture in the atmosphere and the films. Controlled release of ClO 2 gas from the label system was demonstrated by tailoring film composition and thickness. A model was developed to extract release kinetics and revealed good conversions of the label system. This two-component system can potentially be applied as a two-part label without premature release for applications in food packaging.

  7. Effect of predictive sign of acceleration on heart rate variability in passive translation situation: preliminary evidence using visual and vestibular stimuli in VR environment

    PubMed Central

    Watanabe, Hiroshi; Teramoto, Wataru; Umemura, Hiroyuki

    2007-01-01

    Objective We studied the effects of the presentation of a visual sign that warned subjects of acceleration around the yaw and pitch axes in virtual reality (VR) on their heart rate variability. Methods Synchronization of the immersive virtual reality equipment (CAVE) and motion base system generated a driving scene and provided subjects with dynamic and wide-ranging depth information and vestibular input. The heart rate variability of 21 subjects was measured while the subjects observed a simulated driving scene for 16 minutes under three different conditions. Results When the predictive sign of the acceleration appeared 3500 ms before the acceleration, the index of the activity of the autonomic nervous system (low/high frequency ratio; LF/HF ratio) of subjects did not change much, whereas when no sign appeared the LF/HF ratio increased over the observation time. When the predictive sign of the acceleration appeared 750 ms before the acceleration, no systematic change occurred. Conclusion The visual sign which informed subjects of the acceleration affected the activity of the autonomic nervous system when it appeared long enough before the acceleration. Also, our results showed the importance of the interval between the sign and the event and the relationship between the gradual representation of events and their quantity. PMID:17903267

  8. Accelerator science and technology in Europe: EuCARD 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  9. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  10. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  11. Oxidation of ethanol on NaX zeolite modified with transition metals

    NASA Astrophysics Data System (ADS)

    Mirzai, J. I.; Nadirov, P. A.; Velieva, A. D.; Muradkhanli, V. G.

    2017-06-01

    NaLaX, NaX + Co, and NaPdX catalysts are synthesized by modification of NaX zeolite with transition metals (La, Co, Pd). The activity of the prepared materials in catalytic ethanol oxidation is studied in the temperature range of 423-723 K. It is shown that NaPdX and NaX + Co accelerate the reactions of partial and complete oxidation of ethanol as the temperature rises. NaLaX accelerates both intramolecular and intermolecular dehydration of alcohol. It is shown that the NaPdX (1.0% Pd) sample has the highest activity in the complete oxidation of alcohol with the formation of CO2.

  12. Accelerator/Experiment Operations - FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, A.; Convery, M.; Geer, S.

    2016-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2016. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2016 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MicroBooNE experiment and the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment, LArIAT experiment and Meson Test Beam activities in the 120 GeV external switchyard beam (SY120). Each section was prepared by the relevant authors, and was then edited for inclusion inmore » this summary.« less

  13. Boron stripper foils for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zeisler, Stefan K.; Brigham, Michael; Kaur, Ishneet; Jaggi, Vinder

    2018-05-01

    Micromatter Technologies Inc., now located in Surrey B.C., Canada, is a worldwide supplier of pure and boron containing diamond-like carbon (DLC) stripper foils ranging from 10 nm to 10 μm. These foils are manufactured in-house using pulsed laser deposition. Continuing our research into novel production methods and alternative materials to be used as beam strippers for heavy elements and in particular for tandem particle accelerators, pure boron foils were prepared by laser plasma ablation of a disc shaped boron sputter target. Foil thickness between 10 nm to approximately 0.7 μm were achieved. The new boron foils showed considerably less stress, higher mechanical strength and better flexibility than comparable DLC films.

  14. RF synchronized short pulse laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less

  15. The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)

    2001-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.

  16. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    PubMed

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  17. Formulation development of allopurinol suppositories and injectables.

    PubMed

    Lee, D K; Wang, D P

    1999-11-01

    Allopurinol was formulated into injectable and suppository dosage forms. The injectable formulation was prepared by dissolving allopurinol in a cosolvent system consisting of dimethyl sulfoxide (DMSO) and propylene glycol (v/v = 50/50). The stability of allopurinol in the cosolvent system was studied under accelerated storage conditions, and results indicate first-order degradation kinetics with an activation energy of 24.3 kcal/mol. The development of suppository dosage forms was performed by formulating allopurinol with polyethylene glycol (PEG) mixtures of different molecular weights. In vitro release profiles of suppositories formulated with different polyethylene bases were obtained in the pH 7.4 buffer solution using the USP 23 paddle method at 100 rpm. Results indicate that the release rate of the suppository formulations containing PEG 1500/PEG 4000 at the ratio (w/w) of 2.5/10 to 10/2.5 appeared to be similar. However, the addition of sodium lauryl sulfate in the suppository decreased the release rate of allopurinol significantly. A future study to establish in vitro/in vivo correlation (iv/ivc) is suggested.

  18. STS-66 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

  19. STS-66 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W., Jr.

    1995-02-01

    The primary objective of this flight was to accomplish complementary science objectives by operating the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS). The secondary objectives of this flight were to perform the operations of the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) payload, the Experiment of the Sun Complementing the Atlas Payload and Education-II (ESCAPE-II) payload, the Physiological and Anatomical Rodent Experiment/National Institutes of Health Rodents (PARE/NIH-R) payload, the Protein Crystal Growth-Thermal Enclosure System (PCG-TES) payload, the Protein Crystal Growth-Single Locker Thermal Enclosure System (PCG-STES), the Space Tissue/National Institutes of Health Cells STL/N -A payload, the Space Acceleration Measurement Systems (SAMS) Experiment, and Heat Pipe Performance Experiment (HPPE) payload. The 11-day plus 2 contingency day STS-66 mission was flown as planned, with no contingency days used for weather avoidance or Orbiter contingency operations. Appendix A lists the sources of data from which this report was prepared, and Appendix B defines all acronyms and abbreviations used in the report.

  20. Unsupervised classification of Space Acceleration Measurement System (SAMS) data using ART2-A

    NASA Technical Reports Server (NTRS)

    Smith, A. D.; Sinha, A.

    1999-01-01

    The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.

  1. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  2. Overview of Accelerators with Potential Use in Homeland Security

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.

    Quite a broad range of accelerators have been applied to solving many of the challenging problems related to homeland security and defense. These accelerator systems range from relatively small, simple, and compact, to large and complex, based on the specific application requirements. They have been used or proposed as sources of primary and secondary probe beams for applications such as radiography and to induce specific reactions that are key signatures for detecting conventional explosives or fissile material. A brief overview and description of these accelerator systems, their specifications, and application will be presented. Some recent technology trends will also be discussed.

  3. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  4. International Space Station Increment-2 Quick Look Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric

    2001-01-01

    The objective of this quick look report is to disseminate the International Space Station (ISS) Increment-2 reduced gravity environment preliminary analysis in a timely manner to the microgravity scientific community. This report is a quick look at the processed acceleration data collected by the Microgravity Acceleration Measurement System (MAMS) during the period of May 3 to June 8, 2001. The report is by no means an exhaustive examination of all the relevant activities, which occurred during the time span mentioned above for two reasons. First, the time span being considered in this report is rather short since the MAMS was not active throughout the time span being considered to allow a detailed characterization. Second, as the name of the report implied, it is a quick look at the acceleration data. Consequently, a more comprehensive report, the ISS Increment-2 report, will be published following the conclusion of the Increment-2 tour of duty. NASA sponsors the MAMS and the Space Acceleration Microgravity System (SAMS) to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the MAMS and the SAMS units were launched on STS-100 from the Kennedy Space Center for installation on the ISS. The MAMS unit was flown to the station in support of science experiments requiring quasisteady acceleration data measurements, while the SAMS unit was flown to support experiments requiring vibratory acceleration data measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The ISS reduced gravity environment analysis presented in this report uses mostly the MAMS acceleration data measurements (the Increment-2 report will cover both systems). The MAMS has two sensors. The MAMS Orbital Acceleration Research Experiment Sensor Subsystem, which is a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle. The MAMS High Resolution Acceleration Package is used to characterize the ISS vibratory environment up to 100 Hz. This quick look report presents some selected quasi-steady and vibratory activities recorded by the MAMS during the ongoing ISS Increment-2 tour of duty.

  5. A microprocessor-based system for continuous monitoring of radiation levels around the CERN PS and PSB accelerators

    NASA Astrophysics Data System (ADS)

    Agoritsas, V.; Beck, F.; Benincasa, G. P.; Bovigny, J. P.

    1986-06-01

    This paper describes a new beam loss monitor system which has been installed in the PS and PSB machines, replacing an earlier system. The new system is controlled by a microprocessor which can operate independently of the accelerator control system, though setting up and central display are usually done remotely, using the standard control system facilities.

  6. Principles for timing at spallation neutron sources based on developments at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R. O.; Merl, R. B.; Rose, C. R.

    2001-01-01

    Due to AC-power-grid frequency fluctuations, the designers for accelerator-based spallation-neutron facilities have worked to optimize the conflicting demands of accelerator and neutron chopper performance. For the first time, we are able to quantitatively access the tradeoffs between these two constraints and design or upgrade a facility to optimize total system performance using powerful new simulation techniques. We have modeled timing systems that integrate chopper controllers and chopper hardware and built new systems. Thus, at LANSCE, we now operate multiple chopper systems and the accelerator as simple slaves to a single master-timing-reference generator. Based on this experience we recommend that spallationmore » neutron sources adhere to three principles. First, timing for pulsed sources should be planned starting with extraction at a fixed phase and working backwards toward the leading edge of the beam pulse. Second, accelerator triggers and storage ring extraction commands from neutron choppers offer only marginal benefits to accelerator-based spallation sources. Third, the storage-ring RF should be phase synchronized with neutron choppers to provide extraction without the one orbit timing uncertainty.« less

  7. Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2009-12-01

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  8. SGA-WZ: A New Strapdown Airborne Gravimeter

    PubMed Central

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given. PMID:23012545

  9. Comparison between the robo-horse and real horse movements for hippotherapy.

    PubMed

    Park, Ji H; Shurtleff, Timothy; Engsberg, Jack; Rafferty, Sandy; You, Joshua Y; You, Isaac Y; You, Sung H

    2014-01-01

    While the novel robotic hippotherapy system has gradually gained clinical application for therapeutic intervention on postural and locomotor control in individuals with neurological or musculoskeletal impairments, the system's validity and reliability for the robotic hippotherapy system has not been well established. The objective of the current study was to investigate the validity and test-retest reliability of the robotic hippotherapy system by comparing with real horse movements. The 3-axis accelerometer sensors attached on the robotic and real horse saddles were used to collect 3-dimensional acceleration data at a preferred walking velocity. Linear regression analysis showed an excellent correlation in the time-to-peak acceleration (TPA) (R(2)=0.997), but little correlation in X-axis acceleration between the real and robotic horses (R(2)=0.177), thus confirming consistent time control and a certain degree of variability between the robotic and real horse movements. The mean resultant accelerations for a real horse and robotic horse were 3.22 m/s(2) and 0.67 m/s(2), respectively, accounting for almost five times greater acceleration in the real horse than the robotic horse.

  10. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  11. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  12. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  13. GTA Beamloss-Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-09-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, {gamma}) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitormore » System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 {mu}s assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper.« less

  14. GTA Beamloss-Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, {gamma}) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitormore » System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 {mu}s assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper.« less

  15. Hubble Space Telescope Pointing Performance Due to Micro-Dynamic Disturbances from the NICMOS Cryogenic Cooler

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)

    2002-01-01

    The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.

  16. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

    NASA Astrophysics Data System (ADS)

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.

    2017-06-01

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  17. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E

    2017-06-21

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  18. Developing professional attributes in critical care nurses using Team-Based Learning.

    PubMed

    Currey, Judy; Eustace, Paula; Oldland, Elizabeth; Glanville, David; Story, Ian

    2015-05-01

    Australian nurses prepare for specialty practice by undertaking postgraduate theoretical and clinical education in partnership models between universities and hospitals. In our global healthcare system, nurses require advanced critical thinking and strong communication skills to provide safe, high quality patient care. Yet, few education programs focus on developing these skills. Team-Based Learning (TBL) is a specific educational strategy that encourages and rewards students to think critically and solve clinical problems individually and in teams. The aim of this study was to investigate critical care nursing students' perceptions and experiences of TBL after it was introduced into the second half of their postgraduate specialty course. Following Ethics Committee approval, thirty-two students were invited to participate in an extended response questionnaire on their perceptions of TBL as part of a larger study. Data were analyzed thematically. Postgraduate students perceived their professional growth was accelerated due to the skills and knowledge acquired through TBL. Four themes underpinned the development and accelerated acquisition of specialty nurse attributes due to TBL: Engagement, Learning Effectiveness, Critical Thinking, and Motivation to Participate. Team-Based Learning offered deep and satisfying learning experiences for students. The early acquisition of advanced critical thinking, teamwork and communication skills, and specialty practice knowledge empowered nurses to provide safe patient care with confidence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Longitudinal Study of State Strategies and Policies to Accelerate Evidence-Based Practices in the Context of Systems Transformation.

    PubMed

    Rieckmann, Traci; Abraham, Amanda; Zwick, Janet; Rasplica, Caitlin; McCarty, Dennis

    2015-08-01

    To profile state agency efforts to promote implementation of three evidence-based practices (EBPs): screening and brief intervention (SBIRT), psychosocial interventions, and medication-assisted treatment (MAT). Primary data collected from representatives of 50 states and the District of Columbia's Single State Authorities from 2007 to 2009. The study used mixed methods, in-depth, semistructured interviews and quantitative surveys. Interviews assessed state and provider strategies to accelerate implementation of EBPs. Statewide implementation of psychosocial interventions and MAT increased significantly over 3 years. In the first two assessments, states that contracted directly with providers were more likely to link use of EBPs to reimbursement, and states with indirect contract, through counties and other entities, increased recommendations, and some requirements for provision of specific EBPs. The number of states using legislation as a policy lever to promote EBPs was unchanged. Health care reform and implementation of parity in coverage increases access to treatment for alcohol and drug use. Science-based substance abuse treatment will become even more crucial as payers seek consistent quality of care. This study provides baseline data on service delivery, contracting, and financing as state agencies and treatment providers prepare for implementation of the Affordable Care Act. © Health Research and Educational Trust.

  20. Study of RF breakdown and multipacting in accelerator components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in

    2014-07-01

    Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less

Top