Portable Device Slices Thermoplastic Prepregs
NASA Technical Reports Server (NTRS)
Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.
1993-01-01
Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.
Composite prepreg application device
NASA Technical Reports Server (NTRS)
Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)
1995-01-01
A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5 C below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100 C above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.
Composite prepreg application device
NASA Technical Reports Server (NTRS)
Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)
1996-01-01
A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5.degree. C. below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100.degree. C. above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.
Cryomilling of Thermoplastic Powder for Prepreg Applications
2013-09-01
Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT
Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics
NASA Astrophysics Data System (ADS)
Ogihara, Shinji; Kobayashi, Satoshi
In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.
Efficient prepreg recycling at low temperatures
NASA Astrophysics Data System (ADS)
Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen
When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.
Development of lightweight THUNDER with fiber composite layers
NASA Astrophysics Data System (ADS)
Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.
2000-06-01
This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.
1978-01-01
Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics are described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) are discussed.
Characterisation of Ductile Prepregs
NASA Astrophysics Data System (ADS)
Pinto, F.; White, A.; Meo, M.
2013-04-01
This study is focused on the analysis of micro-perforated prepregs created from standard, off the shelf prepregs modified by a particular laser process to enhance ductility of prepregs for better formability and drapability. Fibres are shortened through the use of laser cutting in a predetermined pattern intended to maintain alignment, and therefore mechanical properties, yet increase ductility at the working temperature. The increase in ductility allows the product to be more effectively optimised for specific forming techniques. Tensile tests were conducted on several specimens in order to understand the ductility enhancement offered by this process with different micro-perforation patterns over standard prepregs. Furthermore, the effects of forming temperature was also analysed to assess the applicability of this material to hot draping techniques and other heated processes.
Influence of prepreg characteristics on stamp consolidation
NASA Astrophysics Data System (ADS)
Slange, T. K.; Warnet, L. L.; Grouve, W. J. B.; Akkerman, R.
2017-10-01
Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. The development of automated lay-up technologies further extends the applicability of stamp forming by allowing rapid lay-up of tailored blanks and partial preconsolidation. This partial preconsolidation makes the influence of prepreg more critical compared to conventional preconsolidation methods which provide full preconsolidation. This paper aims to highlight consolidation challenges that can appear when stamp forming blanks manufactured by automated lay-up. Important prepreg characteristics were identified based on an experimental study where a comparison was made between various prepreg in their as-received, deconsolidated and stamp consolidated state. It was found that adding up small thickness variations across the width of a prepreg when stacking plies into a blank by automated lay-up can cause non-uniform consolidation. Additionally, deconsolidation of the prepreg does not seem to obstruct interlaminar bonding, while intralaminar voids initially present in a prepreg cannot be removed during stamp forming. An additional preconsolidation step after automated lay-up seems necessary to remove blank thickness variations and intralaminar voids for the current prepregs. Eliminating this process step and the successful combination of rapid automated lay-up and stamp forming requires prepregs which are void-free and have less thickness variation.
2012-05-04
Wrapping Pre-impregnated CFRP unidirectional and +/-45° woven carbon fiber fabric prepreg was used for the loop. Pre-impregnated material was a...viable application for the connecting rod because there are no complex geometries for the CFRP to negotiate. Prepreg aids in maintaining proper fiber
Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2004-01-01
A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.
Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2003-01-01
A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.
Characterization of Polyimide Matrix Resins and Prepregs
NASA Technical Reports Server (NTRS)
Maximovich, M. G.; Galeos, R. M.
1985-01-01
Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.
The industrial processing of unidirectional fiber prepregs
NASA Technical Reports Server (NTRS)
Laird, B.
1981-01-01
Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.
Polyimide Prepregs With Improved Tack
NASA Technical Reports Server (NTRS)
Vanucci, R.
1987-01-01
Drape and tack improved without loss of strength. Composites made with PMR-15 (or equivalent) polyimides have gained acceptance as viable engineering materials for high-use-temperature applications. Acceptance due to both thermo-oxidative stability of PMR-15 (or equivalent) and ease which PMR-15 (or equivalent) prepreg materials processed into composite structures.
NASA Astrophysics Data System (ADS)
Giorgini, Loris; Mazzocchetti, Laura; Minak, Giangiacomo; Dolcini, Enrico
2012-07-01
A case-study is presented, in cooperation with RI-BA Composites srl, where the industrial production of a thick part for primary structural application is analysed. The final product is a bulk carbon fiber reinforced object characterized by great dimensions, with thickness ranging between 10mm and 35mm and obtained by Hand-Lay-Up of prepregs. The study shows that prepregs age along the time required for the process work up. Moreover, the isothermal curing investigation of the prepreg used in the production gives some useful hint for the design of a new thermal curing cycle, in order to avoid exotherm problems along the thickness of the object. The effect of the applied curing cycle on thermal properties of the object are reported.
System Applies Polymer Powder To Filament Tow
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.
1993-01-01
Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.
Prepreg effects on honeycomb composite manufacturing
NASA Astrophysics Data System (ADS)
Martin, Cary Joseph
Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.
Design and manufacture of a lightweight piezo-composite curved actuator
NASA Astrophysics Data System (ADS)
Yoon, K. Joon; Shin, Seokjun; Park, Hoon C.; Goo, Nam Seo
2002-02-01
In this paper we are concerned with the design, manufacture and performance test of a lightweight piezo-composite curved actuator (called LIPCA) using a top carbon fiber composite layer with near-zero coefficient of thermal expansion (CTE), a middle PZT ceramic wafer, and a bottom glass/epoxy layer with a high CTE. The main point of the design for LIPCA is to replace the heavy metal layers of THUNDERTM by lightweight fiber reinforced plastic layers without losing the capabilities for generating high force and large displacement. It is possible to save up to about 40% of the weight if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use an epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a carbon prepreg were simply stacked and cured at an elevated temperature (177 °C) after following an autoclave bagging process. We found that the manufactured composite laminate device had a sufficient curvature after being detached from a flat mould. An analysis method using the classical lamination theory is presented to predict the curvature of LIPCA after curing at an elevated temperature. The predicted curvatures are in quite good agreement with the experimental values. In order to investigate the merits of LIPCA, performance tests of both LIPCA and THUNDERTM have been conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERTM.
Tackifier for addition polyimides containing monoethylphthalate
NASA Technical Reports Server (NTRS)
St.clair, T. L.; Butler, J. M. (Inventor)
1981-01-01
An improvement of addition polyimides wherein an essentially solventless, high viscosity laminating resin is synthesized from low cost liquid monomers is disclosed. The improved process takes advantage of a reactive, liquid plasticizer such as monoethylphthalate (MEP) which is used in lieu of an alcohol solvent, and helps solve a major problem of maintaining good prepreg tack and drape, or the ability of the prepreg to adhere to adjacent plies and conform to a desired shape during the layup process. This improvement results in both longer life of the polymer prepreg and the processing of low void laminate and appears to be applicable to all addition polyimide systems.
NASA Astrophysics Data System (ADS)
Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.
2012-07-01
Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.
Continuous fiber thermoplastic prepreg
NASA Technical Reports Server (NTRS)
Wilson, Maywood L. (Inventor); Johnson, Gary S. (Inventor)
1993-01-01
A pultrusion machine employing a corrugated impregnator vessel to immerse multiple, continuous strand, fiber tow in an impregnating material, and an adjustable metered exit orifice for the impregnator vessel to control the quantity of impregnating material retained by the impregnated fibers, is provided. An adjustable height insert retains transverse rod elements within each depression of the corrugated vessel to maintain the individual fiber tows spread and in contact with the vessel bottom. A series of elongated heating dies, transversely disposed on the pultrusion machine and having flat heating surfaces with radiused edges, ensure adequate temperature exposed dwell time and exert adequate pressure on the impregnated fiber tows, to provide the desired thickness and fiber/resin ratio in the prepreg formed. The prepreg passing through the pulling mechanism is wound on a suitable take-up spool for subsequent use. A formula is derived for determining the cross sectional area opening of the metering device. A modification in the heating die system employs a heated nip roller in lieu of one of the pressure applying flat dies.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1993-01-01
During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg; role of surface coating in braiding; prepregger hot sled operation; ribbonizing powder-impregenated towpreg; textile composites from powder-coated towpreg; role of bulk factor powder curtain prepreg process advanced tow placement (ATP) open-section part warpage control. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, during the period ahead work will continue on the analysis of the performance of the new solution prepregger.
Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs
NASA Astrophysics Data System (ADS)
Silber, Martin; Wenzelburger, Martin; Gadow, Rainer
2007-04-01
Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, K.J.; Seferis, J.C.; Pelton, T.
A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant.more » Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.« less
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1993-01-01
Significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins during the past three months. Current and ongoing research activities reported herein include: (1) Prepregger Hot Sled Operation; (2) Ribbonizing Powder-Impregnated Towpreg; (3) Textile Composites from Powder-Coated Towpreg: Role of Bulk Factor; and (4) Powder Curtain Prepreg Process. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepegging technology and the various aspects of composite part fabrication using customized towpreg. Also, work will continue on the analysis of the new solution prepegger.
Process for application of powder particles to filamentary materials
NASA Technical Reports Server (NTRS)
Baucom, Robert M. (Inventor); Snoha, John J. (Inventor); Marchello, Joseph M. (Inventor)
1991-01-01
This invention is a process for the uniform application of polymer powder particles to a filamentary material in a continuous manner to form a uniform composite prepreg material. A tow of the filamentary material is fed under carefully controlled tension into a spreading unit, where it is spread pneumatically into an even band. The spread filamentary tow is then coated with polymer particles from a fluidized bed, after which the coated filamentary tow is fused before take-up on a package for subsequent utilization. This process produces a composite prepreg uniformly without imposing severe stress on the filamentary material, and without requiring long, high temperature residence times for the polymer.
Multipurpose Prepregging Machine
NASA Technical Reports Server (NTRS)
Johnston, N. J.; Wilkinson, Steven; Marchello, J. M.; Dixon, D.
1995-01-01
Machine designed and built for variety of uses involving coating or impregnating ("prepregging") fibers, tows, yarns, or webs or tapes made of such fibrous materials with thermoplastic or thermosetting resins. Prepreg materials produced used to make matrix/fiber composite materials. Comprises modules operated individually, sequentially, or simultaneously, depending on nature of specific prepreg material and prepregging technique used. Machine incorporates number of safety features.
Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs
NASA Astrophysics Data System (ADS)
横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二
Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.
Eisenman, Joey C; Sarzynski, Mark A; Tucker, Jerod; Heelan, Kate A
2010-08-01
The purpose of this study was to examine if offspring physical activity may affect the relationship between maternal overweight and offspring fatness and blood pressure (BP). Subjects included 144 maternal-child pairs (n = 74 boys and 70 girls, mean age = 7.3 yrs). Maternal prepregnancy BMI was determined by self-report. Offspring characteristics included resting systolic and diastolic BP, body fatness by dual energy x-ray absorbtiometry, and moderate-to-vigorous physical activity (MVPA) using the Actigraph accelerometer. Children whose mothers were overweight or obese prepregnancy (Prepreg OW) were significantly larger and fatter than children from mothers with a normal prepregnancy BMI (Prepreg NORM). Prepreg OW children also had higher mean arterial pressure than Prepreg NORM children. BP values were not different across maternal Prepreg BMI/ MVPA groups. Percent fat was significantly different across Prepreg BMI/MVPA groups. Prepreg OW children that did not meet the daily recommended value of MVPA were the fattest. Prepreg OW children that attained (3)60 min of MVPA/ day had a mean percent body fat that was similar to Prepreg NORM children of either MVPA group.
NASA Astrophysics Data System (ADS)
Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.
2017-12-01
Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.
Flow properties of a series of experimental thermoplastic polymides
NASA Technical Reports Server (NTRS)
Burks, H. D.; Nelson, J. B.; Price, H. L.
1981-01-01
The softening temperature to degradation temperature range of the polymers was about 440 to 650 K. All of the polymers retained small amounts of solvent as indicated by an increase in T(sub g) as the polymers were dried. The flow properties showed that all three polymers had very high apparent viscosities and would require high pressures and/or high temperatures and/or long times to obtain adequate flow in prepregging and molding. Although none was intended for such application, two of the polymers were combined with carbon fibers by solution prepregging. The prepregs were molded into laminates at temperatures and times, the selection of which was guided by the results from the flow measurements. These laminates had room temperature short beam shear strength similar to that of carbon fiber laminates with a thermosetting polyimide matrix. However, the strength had considerable scatter, and given the difficult processing, these polymides probably would not be suitable for continuous fiber composites.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1992-01-01
Significant progress has been made during the past three months on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: powdered tow ribbonizing; unitape from powdered tow; customized towpreg for textiles and ATP; and textile composite research. During the period ahead research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be initiated in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, a major effort during the coming months will be participating in the analysis of the performance of the new solution prepregger.
78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-659] Certain Prepregs, Laminates, and Finished..., and the sale within the United States after importation of certain prepregs, laminates, and finished... for sale, and selling for importation into the United States prepregs and laminates that are the...
PMR-15 polyimide modifications for improved prepreg tack
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1982-01-01
The use of mixed solvents and of modified monomeric ester reactants was investigated as a means of improving the tack and drape retention characteristics of PMR-15 polyimide prepreg. Methanol, ethanol, 1-propanol and 1-butanol were used to prepare the esters, prepreg solutions, and T-300 graphite fabric and Celion 6000 unidirectional fiber prepregs. The tack retention characteristics of the T-300 fabric prepreg after exposure to simulated use conditions were determined using a simple lap shear test. Drape was qualitatively assessed by visually monitoring the deformability of the prepreg. Thermo-oxidative stability and mechanical properties retention of the Celion 6000 grahite fiber composites were determined as a function of exposure time in air at 600 F.
Status review of PMR polyimides
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1978-01-01
The current status of first and second generation PMR polyimides are reviewed. Synthesis, processing, and applications were considered, using prepreg materials based on processable, high temperature resistant polyimides.
Development of quality assurance methods for epoxy graphite prepreg
NASA Technical Reports Server (NTRS)
Chen, J. S.; Hunter, A. B.
1982-01-01
Quality assurance methods for graphite epoxy/prepregs were developed. Liquid chromatography, differential scanning calorimetry, and gel permeation chromatography were investigated. These methods were applied to a second prepreg system. The resin matrix formulation was correlated with mechanical properties. Dynamic mechanical analysis and fracture toughness methods were investigated. The chromatography and calorimetry techniques were all successfully developed as quality assurance methods for graphite epoxy prepregs. The liquid chromatography method was the most sensitive to changes in resin formulation. The were also successfully applied to the second prepreg system.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.
2017-04-01
It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.
Heat resistant composite structure for shuttle applications (Ryton-B)
NASA Technical Reports Server (NTRS)
1972-01-01
A program was undertaken to characterize Ryton-B resin, develop graphite filament prepregs, undirectional laminates and determine the strength and heat resistance of the composite system. Through the use of a water soluble resin binder, high quality prepreg tape, three inches wide with 4 tows of HM-S were produced. The tape laminated to 0.00175 inch per ply. A wide range of properties in the cured resin and laminate were found using different curing conditions. The thermal stability and strength of molded laminates appears to be very dependent upon the cure cycle used for polymerization.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Petko, Jeannie F.
2004-01-01
Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.
PMR polyimide prepreg with improved tack characteristics
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.
1976-01-01
Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics were described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) were discussed.
Biotransformation of an uncured composite material
NASA Technical Reports Server (NTRS)
Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail
1994-01-01
The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.
Experience-based training of students on concretes reinforced by recycled carbon fibers
NASA Astrophysics Data System (ADS)
Cosgun, Cumhur; Patlolla, Vamsidhar R.; Alzahrani, Naif; Zeineddine, Hatim F.; Asmatulu, Eylem
2017-04-01
Fiber reinforcement increases many properties of the concretes, such as toughness, strength, abrasion, and resistance to corrosion. Use of recycled carbon fibers from industrial waste offers many advantages because it will reduce the waste, contribute the economy, protect natural resources and improve the property of structural units. The City of Wichita, KS is known to be "Air Capital of the World" where many aircraft companies have been producing aircraft, parts and components. Due to the superior properties of composites (e.g., light weight, low density, high impact resistance), they have been highly used by aircraft industry. Prepreg is the most preferred combination of the fiber and resin due to the easy application, but it has a limited shelf life (e.g., three months to one year at most) and scrap has no use after all in the same industry. Every year tons of un-used prepreg or after use scrap are being collected in Wichita, KS. Recycling prepreg from the post-consumer waste offers great advantages of waste reduction and resource conservation in the city. Reusing the carbon fibers obtained from outdated prepreg composites for concrete reinforcement will offer double advantages for our environment and concrete structures. In this study, recycled carbon fibers of the outdated prepreg composites were collected, and then incorporated with concretes at different ratios prior to the molding and mechanical testing. An undergraduate student was involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. We believe that experience based learning will enhance the students' skills and interest into the scientific and engineering studies.
Dynamics-based Nondestructive Structural Monitoring Teclrniques
2012-05-21
plate made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the...at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The prepregs were cut in pieces...with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs then went into a vacuum
Dynamics-based Nondestructive Structural Monitoring Techniques
2012-06-21
made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the thickness of...using facilities available at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The... prepregs were cut in pieces with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio
It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.
Viscous and thermal modelling of thermoplastic composites forming process
NASA Astrophysics Data System (ADS)
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Induction Bonding of Prepreg Tape and Titanium Foil
NASA Technical Reports Server (NTRS)
Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.
1998-01-01
Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.
Thermally Conductive Structural 2D Composite Materials
2012-08-14
through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and...impregnated with an EPON 862/Epikure W epoxy resin system. The unidirectional prepreg tape was then cut into twelve 6 inch by 6 inch plies and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weizhao; Ren, Huaqing; Lu, Jie
This paper reports several characterization methods of the properties of the uncured woven prepreg during the preforming process. The uniaxial tension, bias-extension, and bending tests are conducted to measure the in-plane properties of the material. The friction tests utilized to reveal the prepreg-prepreg and prepreg-forming tool interactions. All these tests are performed within the temperature range of the real manufacturing process. The results serve as the inputs to the numerical simulation for the product prediction and preforming process parameter optimization.
A new NASA LaRC Multi-Purpose Prepregging Unit
NASA Technical Reports Server (NTRS)
Wilkinson, S. P.; Marchello, J. M.; Dixon, D.; Johnston, N. J.
1993-01-01
A multi-purpose prepregging machine has been designed and built for NASA Langley Research Center. The machine has numerous advantages over existing units due to its various modular components. Each of these can be used individually or simultaneously depending on the required prepregging method. A reverse roll coater provides the ability to prepare thin films from typical hot-melt thermoset formulations. Also, if necessary, the design allows direct fiber impregnation within the reverse roll coater gap. Included in the impregnation module is a solution dip tank allowing the fabrication of thermoplastic prepregs from solution. The proceeding modules within the unit consist of four nip stations, two hot-plates, a hot-sled option and a high temperature oven. This paper describes the advantages of such a modular construction and discusses the various processing combinations available to the prepregger. A variety of high performance prepreg material systems were produced on IM7 (Hercules) carbon fiber. These included LaRC RP46, a PMR-type resin processed from methanol and two polyamide acids, LaRC IA and LaRC ITPI, prpregged from N-methyl pyrrolidinone (NMP). Parameters involved in the production of these prepreg materials are presented as are the mechanical properties of the resulting good quality laminates. A brief introduction into the existing prepregging science is presented. Topics relating to solution prepregging are identified with a focus on the current research effort and its future development.
PMR polyimide composites for aerospace applications
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1982-01-01
Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.
Novel matrix resins for composites for aircraft primary structures, phase 1
NASA Technical Reports Server (NTRS)
Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.
1992-01-01
The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.
2013-06-30
Rev. E) 2002. 7. RM-3002 Bismaleimide (BMI) Prepreg , Product Information, Renegade Materials Corporation, Revision Date: 16-May-2012 KOA 16... prepregs /polyimide- prepregs . Renegade Materials Corporation Website, Accessed June 20, 2013. 9. Shen, C. and G.S. Springer, “Moisture Absorption and
NASA Technical Reports Server (NTRS)
Standfield, Clarence E.
1994-01-01
Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.
A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs
NASA Technical Reports Server (NTRS)
Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)
1995-01-01
A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.
Apparatus for consolidating a pre-impregnated, filament-reinforced polymeric prepreg material
NASA Technical Reports Server (NTRS)
Sandusky, Donald A. (Inventor)
1995-01-01
An apparatus and method were developed for providing a uniform, consolidated, unidirectional, continuous, fiber-reinforced polymeric material. The apparatus comprises a supply means, a forming means, a shaping means, and a take-up means. The forming means further comprises a pre-melting chamber and a stationary bar assembly. The shaping means is a loaded cooled nip-roller apparatus. Forming takes place by heating a polymeric prepreg material to a temperature where the polymer becomes viscous and applying pressure gradients at separate locations along the prepreg material. Upon exiting the forming means, the polymeric prepreg material is malleable, consolidated, and flattened. Shaping takes place by passing the malleable, consolidated, flattened prepreg material through a shaped, matched groove in a loaded, cooled nip-roller apparatus to provide the final solid product.
NASA Technical Reports Server (NTRS)
1985-01-01
A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, D.J.
Three types of boron/epoxy prepreg tape were prestressed to fracture weak sites along the fiber by winding over 0.3- to 0.6-inch diameter rollers prior to lamination. The prestressed prepreg was then laminated, and design allowable testing was conducted to determine if mechanical strength properties are increased and data scatter is reduced by prestressing. The types of prepreg studied were standard 'Rigidite' 5505/4 prepreg, carbon substrate boron fiber prepreg, and a prepreg made from 'defect' tungsten substrate boron that was manufactured in a high-speed, low-cost, production process. The strength of angleply composites of both 'Rigidite' 5505/4 and carbon substrate boron compositesmore » were unaffected by prestressing. A study was made to determine if prepreg costs could be reduced by manufacturing low-cost 'defect' boron fiber and prestressing it to improve its properties. The results of this study were inconclusive. The test results show prestressing marginally improved some composite properties while others were reduced. On 'Rigidite' 5505/4 unidirectional composites, fatigue strength was significantly improved by prestressing, while longitudinal tensile strength was reduced at room temperature and 350 F. On unidirectional carbon substrate boron composites, the longitudinal tensile strength at room temperature and 350F was increased with attendant variability, while fatigue strength at high stress levels was reduced but not affected at low stress levels.« less
Kanerva, L; Jolanki, R; Estlander, T; Henriks-Eckerman, M; Tuomi, M; Tarvainen, K
2000-01-01
Very little is known about allergic contact dermatitis (ACD) from preimpregnated epoxy products (prepregs). To describe a patient with occupational ACD from prepregs, and report new quantitative data on the content of prepregs. A laminator developed work-related vesicular hand dermatitis. He worked in an aircraft plant assembling aircraft parts, being exposed to preimpregnated carbon fiber and fiberglass sheets (prepregs), and epoxy adhesive tapes and foams. Triglycidyl-p-aminophenol (TGPAP; 1-0.25%, 2+; 0.05%, 1+) and tetraglycidyl-4,4'-methylene dianiline (TGMDA; 1%, 3+; 0.5-0.05%, 2+) provoked allergic patch test reactions, whereas o-diglycidyl phthalate was negative (1-0.05% pet) and standard epoxy provoked a weak (?+) reaction. Six prepreg products provoking allergic patch test reactions were analyzed for their TGPAP, TGMDA and diglycidyl ether of bisphenol A (DGEBA) content using gas and liquid chromatographic methods, showing up to 10% of TGPAP, 19% of TGMDA and 5% of DGEBA in the prepregs. An epoxy primer contained 61% of TGPAP. TGPAP and TGMDA caused occupational ACD. These chemicals need to be used when patch testing patients are exposed to prepregs, because patch testing with DGEBA may be negative. Copyright 2000 S. Karger AG, Basel.
Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach
NASA Astrophysics Data System (ADS)
Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola
2016-05-01
Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.
Vallittu, Pekka K.
2018-01-01
Abstract Fibr-reinforced composites (FRC) have been used successfully for decades in many fields of science and engineering applications. Benefits of FRCs relate to physical properties of FRCs and versatile production methods, which can be utilized. Conventional hand lamination of prefabricated FRC prepregs is utilized still most commonly in fabrication of dental FRC devices but CAD-CAM systems are to be come for use in certain production steps of dental constructions and medical FRC implants. Although metals, ceramics and particulate filler resin composites have successfully been used as dental and medical biomaterials for decades, devices made out of these materials do not meet all clinical requirements. Only little attention has been paid to FRCs as dental materials and majority of the research in dental field has been focusing on particulate filler resin composites and in medical biomaterial research to biodegradable polymers. This is paradoxical because FRCs can potentially resolve many of the problems related to traditional isotropic dental and medical materials. This overview reviews the rationale and status of using biostable glass FRC in applications from restorative and prosthetic dentistry to cranial surgery. The overview highlights also the critical material based factors and clinical requirement for the succesfull use of FRCs in dental reconstructions. PMID:29707613
Vallittu, Pekka K
2018-01-01
Fibr-reinforced composites (FRC) have been used successfully for decades in many fields of science and engineering applications. Benefits of FRCs relate to physical properties of FRCs and versatile production methods, which can be utilized. Conventional hand lamination of prefabricated FRC prepregs is utilized still most commonly in fabrication of dental FRC devices but CAD-CAM systems are to be come for use in certain production steps of dental constructions and medical FRC implants. Although metals, ceramics and particulate filler resin composites have successfully been used as dental and medical biomaterials for decades, devices made out of these materials do not meet all clinical requirements. Only little attention has been paid to FRCs as dental materials and majority of the research in dental field has been focusing on particulate filler resin composites and in medical biomaterial research to biodegradable polymers. This is paradoxical because FRCs can potentially resolve many of the problems related to traditional isotropic dental and medical materials. This overview reviews the rationale and status of using biostable glass FRC in applications from restorative and prosthetic dentistry to cranial surgery. The overview highlights also the critical material based factors and clinical requirement for the succesfull use of FRCs in dental reconstructions.
Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi
2018-05-21
A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry.
Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi
2018-01-01
A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry. PMID:29883413
Bismaleimide resins for flame resistant honeycomb sandwich panels
NASA Technical Reports Server (NTRS)
1978-01-01
A 60 kg batch of Resin M751 was produced in pilot plant scale. The resin was delivered to the prepreg company as an NMP solution. 100 kg of glass-fabric prepregs were fabricated. Prepreg characteristics and curing cycles for laminate fabrication were provided. A new batch of Resin M756 (Code M756 - 2) was synthesized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lula, J.W.
Copper foil adhesion to polyimide/glass prepreg was evaluated. Typical peel strength obtained between prepreg and the smooth side of the copper foil was 1 to 3 lb./in. width. Peel strength between prepreg and the rough side of the copper foil ranged between 6 and 7 lb./in. width. An alternate test for evaluating the integrity of multilayer printed wiring boards is described.
2014-12-18
Resources/DataSheets/ Prepreg -Data- Sheets/M21_global.pdf. [20] Hexcel HexPly 8552. http://www.hexcel.com/Resources/DataSheets/ Prepreg -Data- Sheets...8552_eu.pdf [21] 3501-6 Epoxy Matrix, Hexcel. http://www.hexcel.com/Resources/DataSheets/ Prepreg -Data- Sheets/3501-6_eu.pdf [22] B.A. Dowd, G.H
2012-03-28
composites: determine mechanical and crack healing properties (4, 5) Composite (3) Prepreg (2) Polymer (1) Furan (1) Maleimide Healable Composites...5. Characterize the composites: determine mechanical and crack healing properties (4, 5) Composite (3) Prepreg (1) Furan (1) Maleimide (2...Furan (1) Maleimide (4, 5) Composite (3) Prepreg Healable Composites AFOSR FA9550-08-1-0314 Christian Nielsen Challenges • At room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubblefield, M.A.; Yang, C.; Lea, R.H.
The use of heat-activated thermal couplings is a quick and cost-effective joining method for composite-to-composite materials. In this study, a prepreg laminate which contains thermoset resins and fiberglass reinforcements is wrapped around the ends of components which are to be joined. A shrink tape, made of thermoplastic material, is placed over the prepreg laminate. When curing the shrink tape and the prepreg laminate, the shrink tape shrinks and compresses the prepreg to obtain good adhesion and the required mechanical properties. The mechanical strength of the heat coupling joint in bending increased by 29% over the currently used butt-weld method. Tomore » optimize the curing process, a finite element model was also developed to show the temperature distribution of the heat coupling joint during the curing process. Based on the tested prepreg material properties and model, the finite analysis temperature distribution differed less than 10% from that of the experimental data.« less
Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, R.J.; Massey, C.P.; St. Clair, T.L.
1996-12-31
This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber.more » Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.« less
Processable Aromatic Polyimide Thermoplastic Blends
NASA Technical Reports Server (NTRS)
Baucom, Robert M; Johnston, Norman J.; St. Clair, Terry L.; Nelson, James B.; Gleason, John R.; Proctor, K. Mason
1988-01-01
Method developed for preparing readily-processable thermoplastic polyimides by blending linear, high-molecular-weight, polyimic acid solutions in ether solvents with ultrafine, semicrystalline, thermoplastic polyimide powders. Slurries formed used to make prepregs. Consolidation of prepregs into finsihed composites characterized by excellent melt flow during processing. Applied to film, fiber, fabric, metal, polymer, or composite surfaces. Used to make various stable slurries from which prepregs prepared.
Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs
NASA Technical Reports Server (NTRS)
Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)
1997-01-01
A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.
Comparison of Autoclave and Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Sutter, James K.; Kenner, W. Scott; Pelham, Larry; Miller, Sandi G.; Polis, Danel L.; Nailadi, Chaitra; Zimmerman, Thomas J.; Lort, Richard D.; Hou, Tan-Hung; Quade, Derek J.;
2010-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite dry structural applications on Ares V inspired the evaluation of autoclave and out-of-autoclave (OOA) composite materials. A NASA and industry team selected the most appropriate materials based on component requirements for a heavy lift launch vehicle. Autoclaved and OOA composites were fabricated and results will highlight differences in processing conditions, laminate quality, as well as initial room temperature thermal and mechanical performance. Results from this study compare solid laminates that were both fiber-placed and hand-laid. Due to the large size of heavy-lift launch vehicle composite structures, there is significant potential that the uncured composite material or prepreg will experience significant out-life during component fabrication. Therefore, prepreg out-life was a critical factor examined in this comparison. In order to rigorously test material suppliers recommended out-life, the NASA/Industry team extended the out-time of the uncured composite prepreg to values that were approximately 50% beyond the manufacturers out-time limits. Early results indicate that the OOA prepreg composite materials suffered in both composite quality and mechanical property performance from their extended out-time. However, the OOA materials performed similarly to the autoclaved composites when processed within a few days of exposure to ambient "shop" floor handling. Follow on studies evaluating autoclave and OOA aluminum honeycomb core sandwich composites are planned.
Viscoelastic processing and characterization of high-performance polymeric composite systems
NASA Astrophysics Data System (ADS)
Buehler, Frederic Ulysse
2000-10-01
Fiber reinforced composites, a combination of reinforcing fiber and resin matrix, offer many advantages over traditional materials, and have therefore found wide application in the aerospace and sporting goods industry. Among the advantages that composite materials offer, the most often cited are weight saving, high modulus, high strength-to-weight ratio, corrosion resistance, and fatigue resistance. As much as their attributes are desirable, composites are difficult to process due to their heterogeneous, anisotropic, and viscoelastic nature. It is therefore not surprising that the interrelationship between structure, property, and process is not fully understood. Consequently, the major purpose of this research work was to investigate this interrelationship, and ways to scale it to utilization. First, four prepreg materials, which performed differently in the manufacturing of composite parts, but were supposedly identical, were characterized. The property variations that were found among these prepregs in terms of tack and frictional resistance assessed the need for improved understanding of the prepregging process. Therefore, the influence of the processing parameters on final prepreg quality were investigated, and led to the definition of more adequate process descriptors. Additionally, one of the characterization techniques used in this work, temperature modulated differential scanning calorimetry, was examined in depth with the development of a mathematical model. This model, which enabled the exploration of the relationship between user parameters, sample thermophysical properties, and final results, was then compared to literature data. Collectively, this work explored and identified the key connectors between process, structure, and property as they relate to the manufacturing, design, and performance of composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happe, J.A.; Morgan, R.J.; Walkup, C.M.
The chemical composition of commercial BF/sub 3/:amine complexes are variable and contain BF/sub 4//sup -/ and BF/sub 3/(OH)/sup -/ salts together with other unidentified highly reactive species. The BF/sub 3/:amine complexes, which are susceptible to hydrolysis, also partially convert to the BF/sub 4//sup -/ salt (i.e. BF/sub 4//sup -/NH/sub 3//sup +/C/sub 2/H/sub 5/) upon heating. This salt formation is accelerated in dimethyl sulfoxide solution and in the presence of the epoxides that are present in commercial prepregs. Commercial C fiber-epoxy prepregs are shown to contain either BF/sub 3/:NH/sub 2/C/sub 2/H/sub 5/ or BF/sub 3/:NHC/sub 5/H/sub 10/ species together with theirmore » BF/sub 4//sup -/ salts and a variety of boron-fluorine or carbon-fluorine prepreg species. Considerable variation in the relative quantities of BF/sub 3/:amine to its BF/sub 4//sup -/ salt was observed from prepreg lot to lot, which will cause variable viscosity-time-temperature prepreg cure profiles. It is concluded that the chemically stable and mobile BF/sub 4//sup -/ salt is the pre-dominant catalytic species, acting as a cationic catalyst for the prepreg cure reactions. During the early stages of cure the BF/sub 3/:amine catalyst converts to the BF/sub 4//sup -/ salt in the presence of epoxides, whereas the BF/sub 3/-prepreg species are susceptible to catalytic deactivation and immobilization.« less
Inkjet Assisted Creation of Self-Healing Layers Between Composite Plies
2013-07-29
technology into a prepreg manufacturing process. The approach consisted of depositing novel thermoplastic low-viscosity microdroplets with chemically and...mechanically comparable properties to epoxy matrix in aerospace grade composites onto fiber-reinforced epoxy prepregs before curing using an ink-jet... prepreg Cycom977-2. Double cantilever beam (DCB) and short beam shear (SBS) tests were used to evaluate the self-healing efficiency. It was shown
Multifunctional Composites through Inkjet-printed Architectures
2015-03-27
were printed onto prepreg before curing, and remained arrested between composite plies without direct contact with the neighboring micro-droplets after...micro-droplets were printed onto prepreg before curing, and remained arrested between composite plies without direct contact with the neighbouring...unidirectional carbon fibre prepreg (Cycom 977-2, Cytec Industries Inc., USA) was chosen as substrate in this work. Poly(methyl methacrylate) (PMMA) (Mn = 15 kDa
2012-10-29
up to 40%. Approach: Our approach was to work with conventional composite systems manufactured through the traditional prepreg and autoclave...structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated
Monitoring Prepregs As They Cure
NASA Technical Reports Server (NTRS)
Young, P. R.; Gleason, J. R.; Chang, A. C.
1986-01-01
Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.
2011-06-01
aerospace grade carbon fibre reinforced plastic (CFRP) prepreg . RELEASE LIMITATION Approved for public release UNCLASSIFIED Report...arrays manufactured from aerospace grade carbon fibre reinforced plastic (CFRP) prepreg . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...CFRP) prepreg tape and fabric. This report details Version 1.0 of a Standard Operating Procedure for this manufacture. UNCLASSIFIED
Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates
2013-06-01
individual metal layers as loading increases. The off-axis deformation properties of the prepreg layers were modeled by using equivalent constraint models...the degraded stiffness of the prepreg layer is found. At each loading step the stiffness properties of individual layers are calculated. These...predicts stress-strain curves on-axis, additional work is needed to study the local interactions between metal and prepreg layers as damage occurs in each
National Transonic Facility Fan Blade prepreg material characterization tests
NASA Technical Reports Server (NTRS)
Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.
1981-01-01
The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.
Innovative Approach for High Strength, High Thermal Conductive Composite Materials: Data Base
2013-11-01
pitch fiber types, from which we were able to down select K6356U pitch fiber with balanced TC and strength properties. A prepreg processing line was...Creating a robust prepreg processing line to infuse unidirectional pitch fiber tape that can be used with other fibers…Pan-based carbon or glass...pitch fiber composites • Compression molding process outperforms autoclaving in mechanical and thermal properties using the same prepreg material and
NASA Astrophysics Data System (ADS)
Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.
2017-10-01
Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.
Powder Production From Waste Polyethylene Terephthalate (PET) Water Bottles
2014-06-01
10 5. References 1. Van Brederode, R. A.; Steinkamp, R. A. Crosslinkable Polymer Powder and Laminate . U.S. Patent 42256560A, 1980, http...16. Parquette, B.; Giri, A.; Daniel, J.; O’Brien,D. J.; Brennan,S.; Cho, K.; Tzeng, J. Cryomilling of Thermoplastic Powder for Prepreg Applications
Fabrication of a First Article Lightweight Composite Technology Demonstrator - Exospine
2014-01-01
core, (b) 0/90, and (c) ± 45 ply cuts of ACG-MTM 45-1/CF0526 prepreg fabric...onboard diagnostics. 2. Experimental 2.1 Materials Plain woven carbon fiber/epoxy prepreg and a low-density foam core were provided to ARL for the...fabrication of the exospine technology demonstrator by UD-CCM. The prepreg was ACG - MTM∗ 45-1/CF0526 and has a cured ply thickness of 0.201 mm. It is
Effect of the conditions of prepreg preparation on the strength of structural plastics
NASA Astrophysics Data System (ADS)
Zaborskaya, L. V.; Yurkevich, O. R.
1995-05-01
A study is made of the effect of the temperature and duration of heat treatment of polymer composite prepregs on their strength. It is established that heat treatment under conditions ensuring close to maximal adhesive interaction between the components of the prepreg and subsequent shaping makes it possible to more than double the strength of the plastic (Table 1), A new approach is proposed to optimizing the conditions of formation of structural plastics.
NASA Astrophysics Data System (ADS)
Souza, Christiane S. R.; Cândido, Geraldo M.; Alves, Wellington; Marlet, José Maria F.; Rezende, Mirabel C.
2017-10-01
This study aims to contribute to sustainability by proposing the reuse of composite prepreg scrap as an added value from discards. The research evaluates the microstructure and mechanical properties of laminates processed by the reuse of uncured carbon fibre/F155-epoxy resin prepreg scraps, waste from the ply cutting area of an aeronautical industry. The composite scraps were used as collected and were randomly positioned to produce laminates to be cured at an autoclave. The mechanical characterization shows a decrease of 39% for the compression property due to the discontinuous fibres in the laminate and an increase of 34% for the interlaminar shear strength, when compared to continuous fibre laminates. This increase is attributed to the higher crosslink density of the epoxy resin, as a result of the cure temperature used in autoclave (60 °C higher than suggested by supplier) and also to the randomly positioned scraps. Microscopic analyses confirm the consolidation of laminates, although show resin rich areas with different sizes and shapes attributed to the overlapping of the scraps with different sizes and shapes. These resin rich areas may contribute to decrease the mechanical properties of laminates. The correlation between mechanical and morphological results shows potential to be used on non-critical structural application, as composite jigs, contributing to sustainability.
Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg
NASA Technical Reports Server (NTRS)
Ginty, C. A.; Chamis, C. C.
1985-01-01
A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.
Properties of autoclaved Gr/PI composites made from improved tack PMR-15 prepreg
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1985-01-01
Autoclave processing studies were conducted, using improved tack PMR-15 prepreg, to determine the effect of tack enhancing PMR resin modifications on composite processability and mechanical properties. Improved tack graphite fiber reinforced PMR-15 prepregs were prepared and exposed to ambient conditions for various times and then autoclave molded into composites. Composite specimens were prepared and tested for flexural and interlaminar shear strengths at room temperature and 316 C. The retention of flexural and interlaminar shear strength as a function of exposure in air at 316 C was also determined. The results show that the modified PMR resin solutions provide prepreg with improved tack and drape retention characteristics without adversely affecting processability or mechanical properties of autoclave molded graphite fiber reinforced PMR-15 composites.
Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg
NASA Technical Reports Server (NTRS)
Ginty, Carol A.; Chamis, Christos C.
1987-01-01
A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1982-01-01
The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.
Development of LaRC 160/NR150B2 polyimide graphite hybrid composites. [for shuttle applications
NASA Technical Reports Server (NTRS)
Maximovich, M. G.; Bergren, O.; Lockerby, S.
1980-01-01
A method for co-curing NR150B2 and LaRC 160 prepregs into hybrid composites was developed. The processing characteristics and the properties of the hybrid composites were compared with those of laminates fabricated from the individual component prepregs. Resin forms were selected and optimized and a new NR150 formulation was investigated. The new formulation greatly facilitated the processing and the performance of this system. Quality control techniques were evaluated and developed, high quality laminates were fabricated from both individual resin systems, and hybrid laminates were successfully co-cured. Optimum hybrid forms were investigated and several novel approaches were explored. An optimum hybrid system was developed that utilizes a LaRC curing schedule but shows no degradation of mechanical properties after aging 500 hr in air at 260 C.
Testing procedures for carbon fiber reinforced plastic components
NASA Technical Reports Server (NTRS)
Gosse, H. J.; Kaitatzidi, M.; Roth, S.
1977-01-01
Tests for studying the basic material are considered and quality control investigations involving preimpregnated materials (prepreg) are discussed. Attention is given to the prepreg area weight, the fiber area weight of prepregs, the resin content, volatile components, the effective thickness, resin flow, the resistance to bending strain, tensile strength, and shear strength. A description of tests conducted during the manufacturing process is also presented, taking into account X-ray methods, approaches of neutron radiography, ultrasonic procedures, resonance methods and impedance studies.
PMR polyimides-review and update
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Alston, W. B.
1982-01-01
Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides are commercially available and the PMR concept is used by other investigators. The current status of first and second generation PMR polyimides were reviewed. Emphasis is given to the chemistry, processing and applications of the first generation material known as PMR-15.
Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique
NASA Technical Reports Server (NTRS)
Young, P. R.; Chang, A. C.
1984-01-01
An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.
Jiang, Bo; Huang, Yu Dong
2007-01-01
A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.
Processing Robustness for A Phenylethynyl Terminated Polyimide Composite
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung
2004-01-01
The processability of a phenylethynyl terminated imide resin matrix (designated as PETI-5) composite is investigated. Unidirectional prepregs are made by coating an N-methylpyrrolidone solution of the amide acid oligomer (designated as PETAA-5/NMP) onto unsized IM7 fibers. Two batches of prepregs are used: one is made by NASA in-house, and the other is from an industrial source. The composite processing robustness is investigated with respect to the prepreg shelf life, the effect of B-staging conditions, and the optimal processing window. Prepreg rheology and open hole compression (OHC) strengths are found not to be affected by prolonged (i.e., up to 60 days) ambient storage. Rheological measurements indicate that the PETAA-5/NMP processability is only slightly affected over a wide range of B-stage temperatures from 250 deg C to 300 deg C. The OHC strength values are statistically indistinguishable among laminates consolidated using various B-staging conditions. An optimal processing window is established by means of the response surface methodology. IM7/PETAA-5/NMP prepreg is more sensitive to consolidation temperature than to pressure. A good consolidation is achievable at 371 deg C (700 deg F)/100 Psi, which yields an RT OHC strength of 62 Ksi. However, processability declines dramatically at temperatures below 350 deg C (662 deg F), as evidenced by the OHC strength values. The processability of the IM7/LARC(TM) PETI-5 prepreg was found to be robust.
Kim, Jong Won; Lee, Joon Seok
2016-01-01
A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf), and void content (Vc), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film. PMID:28773467
Kim, Jong Won; Lee, Joon Seok
2016-05-06
A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction ( V f ), and void content ( V c ), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, V c decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.
Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.
Jiang, B; Huang, Y D
2008-05-26
The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.
Study of Out-Time on the Processing and Properties of IM7/977-3 Composites
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Sutter, James K.; Scheiman, Daniel A.; Maryanski, Michael; Schlea, Michelle
2010-01-01
The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-life limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-life limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The neat resin was evaluated by differential scanning calorimetry, DSC, to characterize cure behavior of the aged material, as well as any change in activation energy. The rise in the modulus of the uncured prepreg was monitored throughout the 60 days by dynamic mechanical analysis, DMA. Composite panels made of the fresh and aged prepreg material were also characterized by DMA. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.
Out-Life Characteristics of IM7/977-3 Composites
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Sutter, James K.; Hou, Tan-Hung; Scheiman, Daniel A.; Martin, Richard E.; Maryanski, Michael; Schlea, Michelle; Gardner, John M.; Schiferl, Zack R.
2010-01-01
The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-time limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-time limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The effects of room temperature aging on the thermal and visco-elastic properties of the materials were investigated. Neat resin was evaluated by differential scanning calorimetry to characterize thermal properties and change in activation energy of cure. Neat resin was also evaluated by rheometry to characterize its processability in composite fabrication. IM7/977-3 prepreg was evaluated by dynamic mechanical analysis to characterize the curing behavior. Prepreg tack was also evaluated over 60 days. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Marchello, Joseph M.
1990-01-01
Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.
Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt vs Solution Prepreg
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.
2002-01-01
Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property-in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.
NASA Astrophysics Data System (ADS)
Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun
2018-02-01
Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.
Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt versus Solution Prepreg
NASA Technical Reports Server (NTRS)
Shin, Eugene E.; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weizhao; Zhang, Zixuan; Lu, Jie
Carbon fiber composites have received growing attention because of their high performance. One economic method to manufacturing the composite parts is the sequence of forming followed by the compression molding process. In this sequence, the preforming procedure forms the prepreg, which is the composite with the uncured resin, to the product geometry while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step and this paper reports a method to characterize the properties of the interaction between different prepreg layers, which is critical to predictive modeling and design optimization. An experimental setup wasmore » established to evaluate the interactions at various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how the temperature, the relative sliding speed, and the fiber orientation affect the tangential interaction between two prepreg layers. The interaction factors measured from these experiments will be implemented in the computational preforming program.« less
Evaluation of failure criterion for graphite/epoxy fabric laminates
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Wharram, G. E.
1985-01-01
The development and application of the tensor polynomial failure criterion for composite laminate analysis is described. Emphasis is given to the fabrication and testing of Narmco Rigidite 5208-WT300, a plain weave fabric of Thornel 300 Graphite fibers impregnated with Narmco 5208 Resin. The quadratic-failure criterion with F sub 12=0 provides accurate estimates of failure stresses for the graphite/epoxy investigated. The cubic failure criterion was recast into an operationally easier form, providing design curves that can be applied to laminates fabricated from orthotropic woven fabric prepregs. In the form presented, no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exist at present to generalize this approach for all prepreg constructions, and its use must be restricted to the generic materials and configurations investigated to date.
Improving Interlaminar Shear Strength
NASA Technical Reports Server (NTRS)
Jackson, Justin
2015-01-01
To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2
NASA Technical Reports Server (NTRS)
Merlette, J. B.
1972-01-01
Thin gage materials selected and the rationale for their basic requirements are discussed. The resin used in all prepreg manufacture is Monsanto RS-6234 polyimide. The selected fiber for core manufacture is Hercules HT-S, and the selected fiber for face sheets is Hercules HM-S. The technique for making thin gage prepreg was to wind spread carbon fiber tows into a resin film on a large drum. This technique was found to be superior to others investigated. A total of 22 pounds of 1 to 2 mil/ply prepreg was fabricated for use on the program.
Liquid chromatographic characterization of PMR-15 resin and prepreg
NASA Technical Reports Server (NTRS)
Reed, K. E.
1980-01-01
A liquid chromatographic method has been developed capable of providing a chemical fingerprint of PMR-15 resin solutions and prepreg. The amounts of two of the monomers can be quantified so their experimentally determined molar ratio can be compared to the formulated one. Only the monomers were detected in fresh resin solution, whereas several additional components, resulting from an association or reaction between the norbornenyl endcap and the amine, were detected in a resin solution aged for three days. Two commercial prepregs exhibited fingerprints similar to that of laboratory material, but three others contained additional components corresponding to higher esters and nadimides.
Hot forming of composite prepreg: Numerical analyses
NASA Astrophysics Data System (ADS)
Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin
2017-10-01
The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.
Effect of viscosity of a thermoplastic prepreg and matrix upon winding of rings
NASA Astrophysics Data System (ADS)
Stavrov, V. P.; Markov, A. V.; Zhernovskii, A. V.; Friedrich, K. F.
2000-05-01
The problem of compression of a unidirectional layer and shear of a polymer interlayer during winding of rings is considered. The equations determining the dependence of the layer thickness and stresses on the parameters entering into the power flow law for a prepreg and polymer matrix and on the basic parameters of the winding process—the initial tension of the prepreg, its placement rate, and the radius of a mandrel—are derived. The ring thickness measurements obtained at various temperatures and initial tension forces of plies confirm the adequacy of the model offered. It is found that the viscous properties of the prepreg and matrix upon winding affect the relative change in the layer thickness to a greater extent than the stresses in these layers. With increase in temperature and tension force upon winding, the effect of viscous deformations of the prepreg and matrix increases. A decrease in viscosity and an increase in the tension force of the tape lead to a higher strength of the ring in tension and interlaminar shear; however, the growing percolation of the polymer melt leads to a greater inhomogeneity of the structure of the composite in the ring and to a lower reinforcing effect of the factors mentioned.
NASA Astrophysics Data System (ADS)
Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.
2013-10-01
In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.
Tack Measurements of Prepreg Tape at Variable Temperature and Humidity
NASA Technical Reports Server (NTRS)
Wohl, Christopher; Palmieri, Frank L.; Forghani, Alireza; Hickmott, Curtis; Bedayat, Houman; Coxon, Brian; Poursartip, Anoush; Grimsley, Brian
2017-01-01
NASA’s Advanced Composites Project has established the goal of achieving a 30 percent reduction in the timeline for certification of primary composite structures for application on commercial aircraft. Prepreg tack is one of several critical parameters affecting composite manufacturing by automated fiber placement (AFP). Tack plays a central role in the prevention of wrinkles and puckers that can occur during AFP, thus knowledge of tack variation arising from a myriad of manufacturing and environmental conditions is imperative for the prediction of defects during AFP. A full design of experiments was performed to experimentally characterize tack on 0.25-inch slit-tape tow IM7/8552-1 prepreg using probe tack testing. Several process parameters (contact force, contact time, retraction speed, and probe diameter) as well as environmental parameters (temperature and humidity) were varied such that the entire parameter space could be efficiently evaluated. Mid-point experimental conditions (i.e., parameters not at either extrema) were included to enable prediction of curvature in relationships and repeat measurements were performed to characterize experimental error. Collectively, these experiments enable determination of primary dependencies as well as multi-parameter relationships. Slit-tape tow samples were mounted to the bottom plate of a rheometer parallel plate fixture using a jig to prevent modification of the active area to be interrogated with the top plate, a polished stainless steel probe, during tack testing. The probe surface was slowly brought into contact with the pre-preg surface until a pre-determined normal force was achieved (2-30 newtons). After a specified dwell time (0.02-10 seconds), during which the probe substrate interaction was maintained under displacement control, the probe was retracted from the surface (0.1-50 millimeters per second). Initial results indicated a clear dependence of tack strength on several parameters, with a particularly strong dependence on temperature and humidity. Although an increase in either of these parameters reduces tack strength, a maximum in tack was predicted to occur under conditions of low temperature and moderate humidity.
UTILIZATION OF SCRAP PREPREG WASTES AS A REINFORCEMENT IN A WHOLLY RECYCLED PLASTIC - PHASE II
Foster-Miller is proposing to combine Municipal Solid Waste (MSW) commingled plastics with a high performance reinforcement (scrap prepreg) to form a durable and cost competitive wood substitute with superior moisture, rodent and insect resistance. This proposed technology ...
Mechanics of Multifunctional Materials and Microsystems
2013-03-07
unlimited 46 Successfully processed the 1st self-healing prepreg in continuous production mode SEM image of E-glass fiber tow (200 count) with 3.3...healing composite with well dispersed microcapsules were fabricated from prepreg . E-glass fiber/epoxy resin Matrix: EPON862/EPIKURE3274
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, K.C.; Noel, D.; Hechler, J.-J.
Samples of Narmco Rigidite 5208/WC3000 carbon-epoxy composite prepreg were exposed to ambient temperature and 50 percent relative humidity for different periods up to 66 days. The aging has a significant effect on prepreg physical properties such as tack, volatiles content, and gel time. A set of four-ply laminates made from aged prepreg was subjected to tensile testing, ultrasonic inspection, and optothermal inspection. No relationship could be discerned between laminate properties and prepreg aging time. However, variations in panel homogeneity were observed, and these correlated with thermal diffusivity and tensile modulus measurements, but not with ultimate tensile strength or elongation. Amore » set of six-ply laminates was used to measure compressive properties, interlaminar shear strength, and physical properties. These panels also showed variations in porosity, again unrelated to aging, but in addition, the fiber-resin ratio was observed to decrease with aging time. Both factors were found to affect mechanical properties. The implications concerning the importance of monitoring the aging by physicochemical methods are discussed. 30 refs.« less
[A development of FRP frame for crown and bridge resin. (2) Rigidity and adaptability of FRP frame].
Kimura, H; Teraoka, F
1990-05-01
Retainer and pontic of FRP frame for crown and bridge resin were constructed with two different prepregs, used glass cloth and roving as reinforcement. Rigidity and adaptability of the FRP frame and bonding strength of jointing of retainer and pontic were investigated. The glass content was about 50 wt% for both kinds of prepregs. Bonding strength and modulus of FRP plate reinforced with glass roving were about 1.5 times larger than that of the FRP plate reinforced with glass cloth. Bonding strength of FRP specimen constructed by curing the prepreg put on the FRP plate was about 3 kgf/mm2. However, the bonding strength of specimen constructed by curing simultaneously the two prepregs was about 12 kgf/mm2. Though discrepancy of the FRP frame to stone cast of abutment tooth was proportional to the length of pontic, that of the FRP frame with a 50 mm pontic was less than 0.05 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, K.M.; Manson, J.A.E.; Seferis, J.C.
Consolidation of thermoplastic prepregs was measured with an integrally-heated parallel platen apparatus attached to a servo-hydraulic mechanical testing machine. The apparatus was designed as a small-scale, well-instrumented press. The lamination or consolidation process was viewed as a superposition of three distinctly occurring events identified as void volume reduction, fiber spreading, and autohesion. Consolidation was measured in relation to the original prepreg thickness and was reported as compressive or consolidation strain as a function of temperature. The derivative of the consolidation strain, the consolidation strain rate, was found to be qualitatively descriptive of viscoelastic phenomena occurring in the prepreg stack duringmore » consolidation. The apparatus was sensitive enough to identify glass and melt transitions of the polymer matrix, and to provide a measure of the net consolidation for a given processing cycle. The strain and the strain rate data were compared to thermoanalytical prepreg data obtained by Differential Scanning Calorimetry, and Dynamic Mechanical Analysis. Three different thermoplastic matrix composite systems were examined with this apparatus: Poly (etheretherketone), Poly(etherimide), and Poly(ethylene terephthalate). 21 refs.« less
Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregs
NASA Astrophysics Data System (ADS)
Sorba, G.; Binetruy, C.; Syerko, E.; Leygue, A.; Comas-Cardona, S.; Belnoue, J. P.-H.; Nixon-Pearson, O. J.; Ivanov, D. S.; Hallett, S. R.; Advani, S. G.
2018-05-01
Consolidation is a crucial step in manufacturing of composite parts with prepregs because its role is to eliminate inter- and intra-ply gaps and porosity. Some thermoset prepreg systems are toughened with thermoplastic particles. Depending on their size, thermoplastic particles can be either located in between plies or distributed within the inter-fibre regions. When subjected to transverse compaction, resin will bleed out of low-viscosity unidirectional prepregs along the fibre direction, whereas one would expect transverse squeeze flow to dominate for higher viscosity prepregs. Recent experimental work showed that the consolidation of uncured toughened prepregs involves complex flow and deformation mechanisms where both bleeding and squeeze flow patterns are observed [1]. Micrographs of compacted and cured samples confirm these features as shown in Fig.1. A phenomenological model was proposed [2] where bleeding flow and squeeze flow are combined. A criterion for the transition from shear flow to resin bleeding was also proposed. However, the micrographs also reveal a resin rich layer between plies which may be contributing to the complex flow mechanisms during the consolidation process. In an effort to provide additional insight into these complex mechanisms, this work focuses on the 3D numerical modelling of the compaction of uncured toughened prepregs in the cross-ply configuration described in [1]. A transversely isotropic fluid model is used to describe the flow behaviour of the plies coupled with interplay resin flow of an isotropic fluid. The multi-scale flow model used is based on [3, 4]. A numerical parametric study is carried out where the resin viscosity, permeability and inter-ply thickness are varied to identify the role of important variables. The squeezing flow and the bleeding flow are compared for a range of process parameters to investigate the coupling and competition between the two flow mechanisms. Figure 4 shows the predicted displacement of the sample edge with the multi-scale compaction model after one time step [3]. The ply distortion and resin flow observed in Fig.1 is qualitatively retrieved by the computational model.
Standardization of carbon-phenolic composite test methodology
NASA Technical Reports Server (NTRS)
Hall, W. B.
1986-01-01
The objective of this study was to evaluate the residual volatiles, filler content, and resin flow test procedures for carbon-phenolic prepreg materials. The residual volatile test procedure was rewritten with tighter procedure control which was then evaluated by round robin testing by four laboratories on the same rolls of prepreg. Results indicated that the residual volatiles test was too operator and equipment dependent to be reliable, and it was recommended that the test be discontinued. The resin flow test procedures were rewritten with tighter procedure control, and it is now considered to be an acceptable test. It was recommended that the filler content determination be made prior to prepregging.
LARC-TPI and new thermoplastic polyimides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, A.; Ohta, M.
1987-02-01
The LARC-TPI linear thermoplastic polyimide has been developed by NASA for high temperature adhesive applications in aerospace structures in the forms of varnish, films, powders, and prepregs. LARC-TPI improves adhesive processability and lowers glass transition temperature, while retaining mechanical, thermal and electrical properties inherent in the polyimides. It may be used as a structural adhesive for metals, composites, ceramics, and films. 8 references.
Development of a Spectra Fabric PASGT-Type Personnel Helmet
2015-06-01
ABSTRACT This report documents an effort that took place from October 1987 to September 1989 by AlliedSignal Inc. to develop a resin prepreg ...PASGT) helmet, but with at least 1/3 weight reduction utilizing Spectra® woven fabric prepreg . During the performance period, Allied evaluated
Process Makes Thermoplastic Prepreg Ribbon
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Johnson, Gary S.
1995-01-01
Manufacturing process produces ribbon of composite material (prepreg) consisting of continuous lengthwise fibers impregnated with thermoplastic resin. Ribbon can later be cut into sheets of required sizes and shapes, stacked, then heated under pressure to form composite-material structural components. Process accommodates variety of thermoplastic resins and variety of fibers.
NASA Technical Reports Server (NTRS)
Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.
2005-01-01
Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.
NASA Astrophysics Data System (ADS)
Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.
2004-06-01
This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensah, P.F.; Stubblefield, M.A.; Pang, S.S.
Thermal characterization of a prepreg fabric used as the bonding material to join composite pipes has been modeled and solved using finite difference modeling (FDM) numerical analysis technique for one dimensional heat transfer through the material. Temperature distributions within the composite pipe joint are predicted. The prepreg material has temperature dependent thermal properties. Thus the resulting boundary value equations are non linear and analytical solutions cannot be obtained. This characterization is pertinent in determining the temperature profile in the prepreg layer during the manufacturing process for optimization purposes. In addition, in order to assess the effects of induced thermal stressmore » in the joint, the temperature profile is needed. The methodology employed in this analysis compares favorably with data from experimentation.« less
Amine terminated bisaspartimide polymer
NASA Technical Reports Server (NTRS)
Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)
1986-01-01
Novel amine terminated bisaspartimides are prepared by a Michael-type reaction of an aromatic bismalteimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers cross-lined through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures, e.g., as lightweight laminates with graphite cloth, molding material prepregs, adhesives and insulating material.
NASA Technical Reports Server (NTRS)
Dickerson, G. E. (Inventor)
1977-01-01
A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.
Out-of-Autoclave Cure Composites
NASA Technical Reports Server (NTRS)
Hayes, Brian S.
2015-01-01
As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.
Liu, Hua; Gao, Zhanmei; Song, Yang; Lu, Mancun
2014-01-01
This study investigated the effects and Numerical Rating Pain Scale (NRS) of using absorbable shanching satin rb-bFGF prepreg sheet and expansion hemostatic sponge together nasal packing in the control of epistaxis with blood disease, and compared it with traditional vaseline gauze. Ninety-six blood disease patient with epistaxis were enrolled between January 2009 and February 2011, they were divided into two groups at random, and differently treated with absorbable shanching satin rb-bFGF prepreg sheet and the vaseline gauze nasal packing for haemostasis. Then haemostasis efficacy,the hemorrhage rate after nasal packing removed and host response, such as nasal pain and headache, which evaluated pain degrees against NRS, were all observed. There was no significant difference between the two groups of the haemostatic effect. But the hemorrhage rate of treatment group was obviously lower than that of the control group after paching,in addition, host responses, such as nasal pain and headache, remarkably better than the control group, the difference had statistical significance. It is indicate that absorbable shanching satin rb-bFGF prepreg sheet presents reliable hemostasis effect, good biocompatibility and compliance; the pain and headache caused by packing are superior to vaseline gauze. Moreover, this method avoids the direct touch of vaseline gauze with nasal mucosal wound, and reduce hemorrhage after packing. Absorbable shanching satin rb-bFGF prepreg sheet and expansion hemostatic sponge together is better to select the nasal packing material for blood disease patient with epistaxis.
X-HALE: The Development of a Research Platform for the Validation of Nonlinear Aeroelastic Codes
2011-03-01
general, whenever the number of plies or the laminate direction is specifically modified or selected for a composite aircraft, the aircraft’s design is...cm 35 X-HALE’s wings are composed primarily of Hexcel E-Glass 120/F155 prepreg fabric and Rohacell Foam. Hexcel E-Glass 120/F155 prepreg
NASA Astrophysics Data System (ADS)
Xiong, H.; Hamila, N.; Boisse, P.
2017-10-01
Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.
Quality control developments for graphite/PMR15 polyimide composites materials
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.
1979-01-01
The problem of lot-to-lot and within-lot variability of graphite/PMR-15 prepreg was investigated. The PMR-15 chemical characterization data were evaluated along with the processing conditions controlling the manufacture of PMR-15 resin and monomers. Manufacturing procedures were selected to yield a consistently reproducible graphite prepreg that could be processed into acceptable structural elements.
2013-03-01
remain nonvolatile during the entire fiber-infusion process and curing operation. The resin must offer several days of storage life before the prepreg ...shipboard handling and in-flight cyclic loading. The raw materials for the new resin and the process for making and curing the prepreg must be affordable
Impact Damage Detection of Toughened CFRP Laminates with Time Domain Reflectometry
2013-01-30
detect damage of the CFRP structures. 3. Experiments Material used for the experiments is IM600/133 highly toughened CFRP prepreg produced by Toho...Tenux Co. Ltd. The long specimen shown in Fig. 5 is made from the prepreg . The cure condition is 180°C×0.7MPa×2h. The specimen’s stacking sequence
2013-03-01
of microelectromechanical systems (MEMS) [37], and the epoxy in uncured pre-impregnated ( prepreg ) carbon fiber has also been used in bending [42] and...to assemble due to challenges in working with the carbon fiber. When the epoxy in the prepreg carbon fiber is used as a bonding agent, there is no
2011-12-01
kind of base fiber used Fab-ric uni, stitched, weave, woven roving, textile form, tape, prepreg Laminate Schedu le [0]10 [0]14 [0]36 Manufacturing...roving, textile form, tape, prepreg Laminate Schedule [0]10 [0]14 [0]36 Manufacturing Date 2006 Test Facility/Date 2007 Program of Record AHM&ST...9 Laminate Schedule .......................................................................................................10 Cure
A theoretical study of resin flows for thermosetting materials during prepreg processing
NASA Technical Reports Server (NTRS)
Hou, T. H.
1984-01-01
A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.
Laser displacement sensor to monitor the layup process of composite laminate production
NASA Astrophysics Data System (ADS)
Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze
2013-04-01
Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.
Bennett, Thomas E.; Nelson, Drew V.
2004-04-13
A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.
3D modelling of squeeze flow of unidirectional and fabric composite inserts
NASA Astrophysics Data System (ADS)
Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland
2016-10-01
The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.
Development and fabrication of an autoclave molded PES/Quartz sandwich radome
NASA Astrophysics Data System (ADS)
Stanton, Leonard E.; Levin, Stephen D.
1993-04-01
A cohesively bonded, thermoplastic composite sandwich radome for a leading edge supersonic aircraft has been built using autoclave processing with PES/Quartz prepreg and a PES coated honeycomb core. Processes were developed for solvent removal, thermoplastic laminate consolidation, surface etching to improve adhesion, honeycomb coating and forming, and ultrasound testing of bond integrity. Environmental testing was also conducted to verify the structural integrity of the radome for its intended application.
Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.
1999-01-01
Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung
1996-01-01
The processability of a phenylethynyl terminated imide (PETI) resin matrix composite was investigated. Unidirectional prepregs were made by coating an N-methylpyrrolidone solution of the amide acid oligomer onto unsized IM7. Two batches of prepregs were used: one was made by NASA in-house, and the other was from an industrial source. The composite processing robustness was investigated with respect to the effect of B-staging conditions, the prepreg shelf life, and the optimal processing window. Rheological measurements indicated that PETI's processability was only slightly affected over a wide range of B-staging temperatures (from 250 C to 300 C). The open hole compression (OHC) strength values were statistically indistinguishable among specimens consolidated using various B-staging conditions. Prepreg rheology and OHC strengths were also found not to be affected by prolonged (i.e., up to 60 days) ambient storage. An optimal processing window was established using response surface methodology. It was found that IM7/PETI composite is more sensitive to the consolidation temperature than to the consolidation pressure. A good consolidation was achievable at 371 C/100 Psi, which yielded an OHC strength of 62 Ksi at room temperature. However, processability declined dramatically at temperatures below 350 C.
Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications
NASA Astrophysics Data System (ADS)
Bhardwaj, Mahesh C.
2009-03-01
Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, G.J.; Brown, G.G.; Waterman, D.D.
The feasibility of prestressing commercial boron/epoxy and graphite/epoxy prepreg material to higher strengths and lower property dispersions is demonstrated. Its practical application as an on-line process for improving quality levels is possible with minor modifications to current experimental practice. The mechanics of the bendstressing method affects a controlled alteration in the fiber defect content to the extent that composite improvements can be achieved approaching the inherent fiber quality with dispersions in properties reduced to the 1 to 2% range. (Author, modified-PL)
Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended
NASA Technical Reports Server (NTRS)
Alston, William B.; Scheiman, Daniel A.
2000-01-01
PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.
Improved composite material and method for production of improved composite material
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1994-01-01
A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae is introduced. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.
Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom
NASA Technical Reports Server (NTRS)
Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)
2018-01-01
Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.
NASA Astrophysics Data System (ADS)
Protsenko, A. E.; Telesh, V. V.
2015-11-01
The possibility of increasing the static flexural strength of polymer composite materials and reducing their anisotropy by vacuum autoclave curing, during which gelation across the whole thickness of prepregs is carried out in a narrow time range, is shown. This is achieved by introducing a preset concentration of catalysts into the less heated layers or inhibitors in the more heated ones of the prepreg.
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.
1991-01-01
AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.
NASA Astrophysics Data System (ADS)
Javidinejad, Amir; Joshi, Shiv P.
2000-06-01
In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.
Xie, Qiufei; Lassila, Lippo V J; Vallittu, Pekka K
2007-07-01
This in vitro study was aimed to compare the fracture resistance of directly fabricated inlay-retained fiber-reinforced composite (FRC) fixed partial dentures (FPDs) with four types of framework designs. Forty-eight directly fabricated inlay retained FPDs were made of FRC and particulate resin composite (everStick/Tetric flow and Ceram). Extracted human mandibular first premolars and first molars were as abutments. The following framework designs were tested: in the Group A (control group), the framework was made of two prepregs of unidirectional glass FRC; the Group B, two prepregs in pontic portion were covered with one layer of multidirectional fiber veil FRC; the Group C, the FRC prepregs were covered in pontic portion with four short unidirectional FRC pieces along the main prepregs; in Group D, one short unidirectional FRC prepregs were placed on the main prepregs in 90 degrees angle to the main framework. After thermal cycling, FPDs of each group (n=12) were randomly divided into two subgroups (n=6). Fracture test was performed at the universal testing machine (1mm/min) where FPDs were loaded from the occlusal direction to the occlusal fossa or to the buccal cusp. Failure patterns were observed with stereomicroscope. Median and 25%/75% percentile values were calculated and nonparametric analysis was performed. Compared with three other framework designs, the FPDs in Group D showed the highest resistance when loading to the occlusal fossa, with maximum load of 2,353.8N (25%/75%: 2,155.5/2,500.0) (p=0.000, 0.000, and 0.005 for compared with Group A, B, and C). The same group showed also higher resistance when loaded to the buccal cusp (1,416.3N (1,409.2/1,480.8)) if compared to the FPDs of the Group A and Group C (p=0.044, 0.010). In general the FPDs showed higher resistant to loading at the occlusal fossa (p<0.05). This in vitro study showed that inlay-retained FRC FPD constructed with direct technique provided high fracture resistance. The framework design that provided support for the veneering composite of the pontic contributed to the highest load-bearing capacity even when loaded to the buccal cusp.
NASA Technical Reports Server (NTRS)
Ogden, Andrea L.; Hyer, Michael W.; Wilkes, Garth L.; Loos, Alfred C.; St.clair, Terry L.
1991-01-01
An alternative powder prepregging method for use with LaRC-TPI (a thermoplastic polyimide)/graphite composites is investigated. The alternative method incorporates the idea of moistening the fiber prior to powder coating. Details of the processing parameters are given and discussed. The material was subsequently laminated into small coupons which were evaluated for processing defects using electron microscopy. After the initial evaluation of the material, no major processing defects were encountered but there appeared to be an interfacial adhesion problem. As a result, prepregging efforts were extended to include an additional fiber system, XAS, and a semicrystalline form of the matrix. The semicrystalline form of the matrix was the result of a complex heat treating cycle. Using scanning electron microscopy (SEM), the fiber/matrix adhesion was evaluated in these systems relative to the amorphous/XAS coupons. Based on these results, amorphous and semicrystalline/AS-4 and XAS materials were prepregged and laminated for transverse tensile testing. The results of these tests are presented, and in an effort to obtain more information on the effect of the matrix, remaining semicrystalline transverse tensile coupons were transformed back to the amorphous state and tested. The mechanical properties of the transformed coupons returned to the values observed for the original amorphous coupons, and the interfacial adhesion, as observed by SEM, was better than in any previous sample.
3D modeling of squeeze flow of unidirectionally thermoplastic composite inserts
NASA Astrophysics Data System (ADS)
Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Binetruy, Christophe; Chinesta, Francisco; Advani, Suresh
2016-10-01
Thermoplastic composites are attractive because they can be recycled and exhibit superior mechanical properties. The ability of thermoplastic resin to melt and solidify allows for fast and cost-effective manufacturing processes, which is a crucial property for high volume production. Thermoplastic composite parts are usually obtained by stacking several prepreg plies to create a laminate with a particular orientation sequence to meet design requirements. During the consolidation and forming process, the thermoplastic laminate is subjected to complex deformation which can include intraply and/or interply shear, ply reorientation and squeeze flow. In the case of unidirectional prepregs, the ply constitutive equation, when elastic effects are neglected, can be modeled as a transversally isotropic fluid, that must satisfy the fiber inextensibility as well as the fluid incompressibility. The high-fidelity solution of the squeeze flow in laminates composed of unidirectional prepregs was addressed in our former works by making use of an in-plane-out-of-plane separated representation allowing a very detailed resolution of the involved fields throughout the laminate thickness. In the present work prepregs plies are supposed of limited dimensions compared to the in-plane dimension of the part and will be named inserts. Again within the Proper Generalized Decomposition framework high-resolution simulation of the squeeze flow occurring during consolidation is addressed within a fully 3D in-plane-out-of-plane separated representation.
Processing effects in production of composite prepreg by hot melt impregnation
NASA Astrophysics Data System (ADS)
Chmielewski, C.; Jayaraman, K.; Petty, C. A.
1993-06-01
The hot melt impregnation process for producing composite prepreg has been studied. The role of the exit die is highlighted by operating without impregnation bars. Experimental results show that when a fiber tow is pulled through a resin bath and then through a wedge shaped die, the total resin mass fraction and the extent of resin impregnation in the tow increase with the processing viscosity. The penetration of resin into a fiber bundle is greater when the resin viscosity is higher. This trend is unchanged over a range of tow speeds up to the breaking point. A theoretical model is developed to describe the effect of processing conditions and die geometry on the degree of impregnation. Calculations with this model indicate that for a given die geometry, the degree of impregnation increases from 58 percent to 90 percent as the ratio of the clearance between the tow and the die wall, to the total die gap is decreased from 0.15 to 0.05. Physical arguments related to the effective viscosity of the prepreg show that the clearance ratio is independent of the tow speed, but decreases as the ratio of the effective shear viscosity of the prepreg to the resin viscosity increases. This provides a connection between the experimental results obtained with varying resin viscosity and the computational results obtained with varying clearance values at the die inlet.
NASA Technical Reports Server (NTRS)
St. Clair, Terry L.; Progar, Donald J.; Smith, Janice Y.; Smith, Ricky E.
1991-01-01
Low-toxicity and low-mutogenicity monomer key to new high-performance polyimide. LaRC-IA is thermoplastic polyimide made from 3-4'-oxydianiline and 4,4'-oxydiphthalic anhydride. Good processing characteristics, low toxicity, and no mutagenicity. Adhesives, composite matrix resins, heat resin moldings, and coating films made of new polymer found to exhibit properties identical or superior to commercially available polyimides. Potential applications wide ranging. With and without end capping, employed to prepare unfilled moldings, coatings and free films, adhesive tape, adhesively bonded substrates, prepregs, and composites.
FTIR Monitoring Of Curing Of Composites
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Stevenson, William A.; Young, Philip R.
1990-01-01
Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani
The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presentedmore » that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.« less
NASA Technical Reports Server (NTRS)
Chase, V. A.; Harrison, E. S.
1985-01-01
A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.
Method for Coating a Tow with an Electrospun Nanofiber
NASA Technical Reports Server (NTRS)
Kohlman, Lee W. (Inventor); Roberts, Gary D. (Inventor)
2015-01-01
Method and apparatus for enhancing the durability as well as the strength and stiffness of prepreg fiber tows of the sort used in composite materials are disclosed. The method involves adhering electrospun fibers onto the surface of such composite materials as filament-wound composite objects and the surface of prepreg fiber tows of the sort that are subsequently used in the production of composite materials of the filament-wound, woven, and braided sorts. The apparatus performs the methods described herein.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1991-01-01
Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.
NASA Astrophysics Data System (ADS)
Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme
2016-10-01
The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.
NASA Astrophysics Data System (ADS)
Sorba, Grégoire; Binetruy, Christophe; Chinesta, Francisco
2016-10-01
In this paper a model of Transversely Isotropic Fluid (TIF), developed by Pipkin in [1], is presented and used for example to model in 2D the in-plane shearing of UD prepreg. This problem demonstrates the need to have a continuous fiber tension field over the elements, with the final objective of detecting the wrinkling of fibers during the forming process, at the price of a lower accuracy of the velocity field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baucom, R.M.; Marchello, J.M.
Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.
Rheological characterization of addition polyimide matrix resins and prepregs
NASA Technical Reports Server (NTRS)
Maximovich, M. G.; Galeos, R. M.
1984-01-01
Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.
Graphite polystyryl pyridine (PSP) structural composites
NASA Technical Reports Server (NTRS)
Malassine, B.
1981-01-01
PSP6022 M resin, PSP 6024 M resin and W 133 Thormel T 300 graphite fabric reinforced panels were fabricated and provided to NASA Ames Research Center. PSP6022 and PSP6024 characteristics, process specifications for the fabriation of prepregs and of laminates are detailed. Mechanical properties, thermomechanical properties and moisture resistance were evaluated. PSP6022 and PSP6024 appear as high performance thermostable systems, very easy to process, being soluble in MEK for prepregging and being cured at no more than 250C, and even 200C.
Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.
2003-01-01
A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, C.A.; Breitigam, W.; Bauer, R.S.
The laminates that are used to prepare advanced composite parts generally require curing at high temperature and pressure, and their raw material shelf lives are limited. The epoxy resin systems that the authors describe here offer the potential of extended shelf life while curing at relatively low temperatures with a method the authors call rapid thermoset processing (RTP). A laminate is formed by stacking the prepreg in a pre-determined manner as required by the end product configuration. The prepreg is then bagged by placing it in a sealed envelope of a heat-resistant film, which is subsequently bonded to a metalmore » surface (the tool) with a heat-resistant vacuum bag putty. The bag has an access hole through which vacuum can be applied to the prepreg stack, facilitating removal of air and other volatiles. This assembly is then heated under vacuum and pressure in an autoclave, the resin melts, and any excess air or volatile matter bleeds from the configuration, resulting in the required dense, void-free laminate.« less
The development of an alternative thermoplastic powder prepregging technique
NASA Technical Reports Server (NTRS)
Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.
1992-01-01
An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.
NASA Astrophysics Data System (ADS)
Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do
2017-08-01
As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.
Electrostatic dry powder prepregging of carbon fiber
NASA Technical Reports Server (NTRS)
Throne, James L.; Sohn, Min-Seok
1990-01-01
Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.
Technical assessment for quality control of resins
NASA Technical Reports Server (NTRS)
Gosnell, R. B.
1977-01-01
Survey visits to companies involved in the manufacture and use of graphite-epoxy prepregs were conducted to assess the factors which may contribute to variability in the mechanical properties of graphite-epoxy composites. In particular, the purpose was to assess the contributions of the epoxy resins to variability. Companies represented three segments of the composites industry - aircraft manufacturers, prepreg manufacturers, and epoxy resin manufacturers. Several important sources of performance variability were identified from among the complete spectrum of potential sources which ranged from raw materials to composite test data interpretation.
Development of RTM and powder prepreg resins for subsonic aircraft primary structures
NASA Technical Reports Server (NTRS)
Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.
1993-01-01
Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.
Fabrication and characterization of tapered graphite/epoxy box beams
NASA Astrophysics Data System (ADS)
Yen, S.-C.; Gopal, P.; Dharani, L. R.
1993-04-01
Graphite/epoxy (T300/934) prepreg is used to fabricate tapered box beams with a taper angle of 2 deg between the top and bottom walls. The prepreg is cured on a segmented steel core using a hot-press. A screw arrangement is used to apply curing pressure in the horizontal direction, while the platens of the hot-press apply pressure in the vertical direction. The inplane bending stiffness of the beam is determined by 3-point bend test and is found to be in agreement with theory.
HPLC for quality control of polyimides
NASA Technical Reports Server (NTRS)
Young, P. R.; Sykes, G. F.
1979-01-01
High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.
Application of small-diameter FBG sensors for detection of damages in composites
NASA Astrophysics Data System (ADS)
Okabe, Yoji; Mizutani, Tadahito; Yashiro, Shigeki; Takeda, Nobuo
2001-08-01
Small-diameter fiber Bragg grating (FBG) sensors have been developed by Hitachi Cable Ltd. and the authors. Since the outside diameter of polyimide coating is 52 micrometers , embedding of the sensors into carbon fiber reinforced plastic (CFRP) composites prepregs of 125 micrometers in thickness does not deteriorate the mechanical properties of the composite laminates. In this research, the small-diameter FBG sensor was applied for the detection of transverse cracks in CFRP composites. The FBG sensor was embedded in 0 degree(s) ply of a CFRP cross-ply laminate.
High-Solids Polyimide Precursor Solutions
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2004-01-01
The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.
A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate
NASA Astrophysics Data System (ADS)
Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.
2017-08-01
The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.
Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.
1979-01-01
Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.
A development of visible light cured FRP plate denture.
Kimura, H; Teraoka, F
1990-12-01
A FRP denture base, which was made from visible light curing prepreg, was developed. The visible light cured FRP denture base had advantages with respect to an adequate strength, bonding strength of acrylic base resin, esthetic properties and ease to manipulation. The matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 was determined from the results of the bending test and manipulation processing. The sateen weave's glasscloth was used for the reinforcement of the prepreg. The adaptability of the FRP plate denture was better than that of the resin base denture constructed with microwave heating.
Combining LaRC-TPI powder with carbon fiber by electrostatic fluidized bed coating
NASA Technical Reports Server (NTRS)
Varughese, Babu; Muzzy, John; Baucom, Robert M.
1989-01-01
Thermoplastic polyimide prepreg tow is produced rapidly and efficiently by applying the LaRC-TPI matrix as an electrostatically charged and fluidized powder to electrically grounded and spread carbon fiber tow. The powder is melted after coating to insure adhesion to the fibers and to reduce tow friction. Excellent wetout in towpreg samples is obtained resulting in very flexible prepregs. Processing conditions of this towpreg produced with LaRC-TPI powders from Rogers Corp. and Mitsui Toatsu Chemicals are described. Mechanical properties of the towpreg and unidirectional laminates are presented in detail.
Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing
2012-09-04
spacing) and initial resin distribution. This research is currently focused on characterizing Gurit® Single Sprint © ST94 Out-of-Autoclave prepreg for...consolidation). 200 400 600 Time (s) 1000 Figure 24. Images of ST 94 prepreg corresponding to the graph of the quantified area of resin observed...s) 1000 2kPa; 55C 4kPa; 55C 6kPa; 55C 15kPa.55C 30kPa. 55C 41kPa;55C 400 600 Time (s) 800 1000 Figure 25. (a) Effect of temperature and
Advances in In-Situ Inspection of Automated Fiber Placement Systems
NASA Technical Reports Server (NTRS)
Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.
2016-01-01
The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems present is the uniformity of the deposited prepreg tape layers, which are prone to laps, gaps, overlaps and twists. The current detection modus operandi involves halting fabrication and performing a time consuming visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The idea was proposed to use the preheated base layer as a through transmission heat source and to inspect the newly added tape layer using a thermographic camera. As a preliminary study of this concept a laboratory proof of concept device was designed and constructed to simulate the through transmission heat source. Using the proof of concept device, we inspected an AFP-built uncured composite specimen with artificial manufacturing defects. This paper will discuss the results of this preliminary study and the implications involved with deploying a full-scale AFP inspection system.
NASA Astrophysics Data System (ADS)
Bouquerel, Laure; Moulin, Nicolas; Drapier, Sylvain; Boisse, Philippe; Beraud, Jean-Marc
2017-10-01
While weight has been so far the main driver for the development of prepreg based-composites solutions for aeronautics, a new weight-cost trade-off tends to drive choices for next-generation aircrafts. As a response, Hexcel has designed a new dry reinforcement type for aircraft primary structures, which combines the benefits of automation, out-of-autoclave process cost-effectiveness, and mechanical performances competitive to prepreg solutions: HiTape® is a unidirectional (UD) dry carbon reinforcement with thermoplastic veil on each side designed for aircraft primary structures [1-3]. One privileged process route for HiTape® in high volume automated processes consists in forming initially flat dry reinforcement stacks, before resin infusion [4] or injection. Simulation of the forming step aims at predicting the geometry and mechanical properties of the formed stack (so-called preform) for process optimisation. Extensive work has been carried out on prepreg and dry woven fabrics forming behaviour and simulation, but the interest for dry non-woven reinforcements has emerged more recently. Some work has been achieved on non crimp fabrics but studies on the forming behaviour of UDs are seldom and deal with UD prepregs only. Tension and bending in the fibre direction, along with inter-ply friction have been identified as the main mechanisms controlling the HiTape® response during forming. Bending has been characterised using a modified Peirce's flexometer [5] and inter-ply friction study is under development. Anisotropic hyperelastic constitutive models have been selected to represent the assumed decoupled deformation mechanisms. Model parameters are then identified from associated experimental results. For forming simulation, a continuous approach at the macroscopic scale has been selected first, and simulation is carried out in the Zset framework [6] using proper shell finite elements.
Formulation and Characterization of Epoxy Resin Copolymer for Graphite Composites
NASA Technical Reports Server (NTRS)
Keck, F. L.
1983-01-01
Maximum char yield was obtained with a copolymer containing 25% mol fraction DGEBE and 75% mol fraction DGEBA (Epon 828). To achieve the high values (above 40%), a large quantity of catalyst (trimethoxyboroxine) was necessary. Although a graphite laminate 1/8" thick was successfully fabricated, the limited life of the catalyzed epoxy copolymer system precludes commercial application. Char yields of 45% can be achieved with phenolic cured epoxy systems as indicated by data generated under NAS2-10207 contract. A graphite laminate using this type of resin system was fabricated for comparison purposes. The resultant laminate was easier to process and because the graphite prepreg is more stable, the fabrication process could readily be adapted to commercial applications.
The mechanical behavior of GLARE laminates for aircraft structures
NASA Astrophysics Data System (ADS)
Wu, Guocai; Yang, J.-M.
2005-01-01
GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.
Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions
NASA Astrophysics Data System (ADS)
Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.
2012-08-01
The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a classical vacuum resin infusion; the second used a press in order to reach a resin ratio near to the existing protection. The existing protection is a prepreg structure with a fibre content of 88%. It has been revealed that a resin rate less than 35% inside the warp interlocks composite material leads to have equivalent ballistics performances than existing protection.
Filament winding - Waking the sleeping giant
NASA Technical Reports Server (NTRS)
Freeman, W. T., Jr.; Stein, B. A.
1985-01-01
The use of filament winding (FW) in the production of aerospace composite structures is examined. The FW process applies spools of fiber and prepreg tow or prepreg tape to a male mandrel; the process is more efficient and cost effective than metallic construction. The fibers used in FW and the curing process are explained. The reduced storage and fabrication costs that result from FW are discussed. The use of FW to produce a filament-wound case for a solid rocket motor and the substructure and skin of an aircraft fuselage are described. Areas which require further development in order to expand the use of FW are listed and discussed.
Characterization of PMR polyimide resin and prepreg
NASA Technical Reports Server (NTRS)
Lindenmeyer, P. H.; Sheppard, C. H.
1984-01-01
Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.
Differential Curing In Fiber/Resin Laminates
NASA Technical Reports Server (NTRS)
Webster, Charles N.
1989-01-01
Modified layup schedule counteracts tendency toward delamination. Improved manufacturing process resembles conventional process, except prepregs partially cured laid on mold in sequence in degree of partial cure decreases from mold side to bag side. Degree of partial cure of each layer at time of layup selected by controlling storage and partial-curing temperatures of prepreg according to Arrhenius equation for rate of gel of resin as function of temperature and time from moment of mixing. Differential advancement of cure in layers made large enough to offset effect of advance bag-side heating in oven or autoclave. Technique helps prevent entrapment of volatile materials during manufacturing of fiber/resin laminates.
Toughening of PMR composites by semi-interpenetrating networks
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivansan, K.
1991-01-01
Polymerization of monomer reactants (PMR-15) type polyimide and RP46 prepregs were drum wound using IM-7 fibers. Prepregging and processing conditions were optimized to yield good quality laminates with fiber volume fractions of 60 percent (+/- 2 percent). Samples were fabricated and tested to determine comprehensive engineering properties of both systems. These included 0 deg flexure, short beam shear, transverse flexure and tension, 0 deg tension and compression, intralaminar shear, short block compression, mode 1 and 2 fracture toughness, and compression after impact properties. Semi-2-IPN (interpenetrating polymer networks) toughened PMR-15 and RP46 laminates were also fabricated and tested for the same properties.
NASA Technical Reports Server (NTRS)
Working, Dennis C.
1991-01-01
Method developed to provide uniform impregnation of bundles of carbon-fiber tow with low-solubility, high-melt-flow polymer powder materials to produce composite prepregs. Vacuum powder injector expands bundle of fiber tow, applies polymer to it, then compresses bundle to hold powder. System provides for control of amount of polymer on bundle. Crystallinity of polymer maintained by controlled melt on takeup system. All powder entrapped, and most collected for reuse. Process provides inexpensive and efficient method for making composite materials. Allows for coating of any bundle of fine fibers with powders. Shows high potential for making prepregs of improved materials and for preparation of high-temperature, high-modulus, reinforced thermoplastics.
Fiber study involving a polyimide matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, R.J.; Rommel, M.; Hinkley, J.A.
1996-12-31
Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.
Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites.
Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong
2018-03-13
Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59-60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties.
Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites
Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong
2018-01-01
Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048
Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Shah, C. H.; Postyn, A. S.
1996-01-01
In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.
Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D
2013-05-01
Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.
Optimization of sensor introduction into laminated composite materials
NASA Astrophysics Data System (ADS)
Schaaf, Kristin; Nemat-Nasser, Sia
2008-03-01
This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.
1991-01-01
Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.
Solventless LARC-160 Polyimide Matrix Resin. [applied for use in aerospace engineering
NASA Technical Reports Server (NTRS)
Stclair, T. L.; Jewell, R. A.
1978-01-01
The addition polyimide, LARC-160, which was originally synthesized from low cost liquid monomers as a laminating resin in ethanol, was prepared as a solventless, high viscosity, neat liquid resin. The resin was processed by hot-melt coating techniques into graphite prepreg with excellent tack and drape. Comparable data on graphite reinforced laminates made from solvent-coated and various hot-melt coated prepreg were generated. LARC-160, because of its liquid nature, can be easily autoclave processed to produce low void laminates. Liquid chromatographic fingerprints indicate good reaction control on resin scale ups. Minor changes in monomer ratios were also made to improve the thermal aging performance of graphite laminates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, H.L.
Much of the polymer composites industry is built around the thermochemical conversion of raw material into useful composites. The raw materials (molding compound, prepreg) often are made up of thermosetting resins and small fibers or particles. While this conversion can follow a large number of paths, only a few paths are efficient, economical and lead to desirable composite properties. Processing instrument (P/I) technology enables a computer to sense and interpret changes taking place during the cure of prepreg or molding compound. P/I technology has been used to make estimates of gel time and cure time, thermal diffusivity measurements and transitionmore » temperature measurements. Control and sensing software is comparatively straightforward. The interpretation of results with appropriate software is under development.« less
An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites
NASA Astrophysics Data System (ADS)
Rider, Andrew N.; Baker, Alan A.; Wang, Chun H.; Smith, Graeme
2011-06-01
Carbon/bismaleimide (BMI) composite is increasingly employed in critical load carrying aircraft structures designed to operate at temperatures approaching 180°C. The high post-cure temperature (above 220°C) required to fully react the BMI resin, however, renders existing on-aircraft prepreg or wet layup repair methods invalid. This paper presents a new on-aircraft repair technique for carbon/BMI composites. The composite prepregs are first warm-staged to improve the ability to evacuate entrapped air. Then the patch is cured in the scarf cavity using the vacuum bag technique, followed by off-aircraft post-cure. The fully cured patch then can be bonded using a structural adhesive.
NASA Technical Reports Server (NTRS)
Mandell, B.
1970-01-01
Materials development topics include: development of analysis techniques to adjust heterogeneous data; determination of thermal conductivity for AISI 347 stainless steel and elastic moduli and Poisson's ratio for Inconel 718 and Ti 5Al-2.5Sn; embrittlement effects of 1400 psi gaseous hydrogen for alloy 718 and Ti 5Al-2.5Sn; cryogenic radiation damage of Ti 5Al-2.5Sn; and evaluation of prepreg, impregnation, and fabric materials for optimum fibrous graphite properties. Component support topics include: tensile design allowable development of Ti 5Al-2.5Sn for turbopump applications; evaluation of fatigue, fracture toughness, and stress corrosion properties of AA 7039-T63 for pressure vessel applications; development of AISI 347 sheet tensile and creep properties for nozzle applications; evaluation of orbital weld techniques for aluminum line fabrication; material selection of shield materials; development of high load friction and wear properties of hard chrome/gold plate combinations; and evaluation of weld processes for NASS duct coolant channel fabrication.
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Hou, Tan H.; Sheen, Jeen S.
1987-01-01
Fibers reinforced composites are used in many applications. The composite parts and structures are often manufactured by curing the prepreg or unmolded material. The magnitudes and durations of the cure temperature and the cure pressure applied during the cure process have significant consequences on the performance of the finished product. The goal of this study is to exploit the potential of applying the optimization technique to the cure cycle design. The press molding process of a polyester is used as an example. Various optimization formulations for the cure cycle design are investigated. Recommendations are given for further research in computerizing the cure cycle design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, S.B.; Walton, T.C.
Polyimides have gained wide acceptance for use in many aerospace composite, electrical, and industrial applications. The intent of this work is to share with the reader practical knowledge of how some of the currently available commercial systems perform. Several prepreg processable polyimide systems were evaluated for adhesive properties and characterized with the use of SEM, TGA, DSC, TMA, Dynamic Spectroscopy, and Force vs. Time Electronic Impact Analyses for comparison. The chemistry and nature of these resin systems is reviewed, including several BMIs (new hot melts examined)., Amide-Imides (Al) and Thermoplastic Polyimide (TPI). PMR-15 and a high temperature epoxy resin aremore » included for comparison of high temperature properties. 17 references.« less
Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery
Shroff, M.R.; Holzman, C.; Tian, Y.; Evans, R. W.; Sikorskii, A.
2014-01-01
Summary Objective Maternal blood leptin levels are positively associated with adiposity. Recent studies suggest that leptin is also abundantly produced by the placenta and may function as a regulator of fetal growth. Our goal was to examine mid-pregnancy levels of leptin in maternal blood in relation to birthweight for gestational age (BW/GA) and timing of delivery after accounting for maternal pre-pregnancy body mass index (prepreg-BMI) and pregnancy complications. Patients Data were from 1,304 sub-cohort mother/infant pairs who participated in the Pregnancy Outcomes and Community Health (POUCH) Study (1998–2004). Measurements Leptin levels, measured at 16–27 weeks’ gestation, were log-transformed. Geometric mean (GMean) leptin levels were estimated by weighted linear regression with gestational age at blood draw as a covariate. GMean was re-transformed to the original scale for reporting. Results Using the GMeans leptin in mothers of term appropriate-for-gestational age (AGA) neonates as the referent (25.2 μg/L), we observed lower levels in mothers of preterm AGA (21.9 μg/L), term small-for-gestational age (SGA) (20.3 μg/L), and preterm SGA neonates (21.7 μg/L). Results were largely unchanged after adjustment for prepreg-BMI. Leptin levels were higher in mothers who delivered large-for-gestational age (LGA) neonates, both preterm (33.6 μg/L) and term (29.1 μg/L), but the GMeans were markedly attenuated after adjustment for prepreg-BMI. Conclusion The association between BW/GA and maternal leptin levels after adjustment for prepreg-BMI may represent: 1) a residual effect of maternal adiposity that is not fully captured by BMI; and/or 2) variation in placental leptin levels entering the maternal circulation. In conclusion, mid-pregnancy maternal blood leptin levels may be an early indicator of fetal growth status. PMID:22934578
Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery.
Shroff, Monal R; Holzman, Claudia; Tian, Yan; Evans, Rhobert W; Sikorskii, Alla
2013-04-01
Maternal blood leptin levels are positively associated with adiposity. Recent studies suggest that leptin is also abundantly produced by the placenta and may function as a regulator of foetal growth. Our goal was to examine mid-pregnancy levels of leptin in maternal blood in relation to birthweight for gestational age (BW/GA) and timing of delivery after accounting for maternal prepregnancy body mass index (prepreg-BMI) and pregnancy complications. Data were from 1304 subcohort mother/infant pairs who participated in the Pregnancy Outcomes and Community Health (POUCH) Study (1998-2004). Leptin levels, measured at 16-27 weeks' gestation, were log-transformed. Geometric mean (GMean) leptin levels were estimated by weighted linear regression with gestational age at blood draw as a covariate. GMean was re-transformed to the original scale for reporting. Using the GMeans leptin in mothers of term appropriate-for-gestational age (AGA) neonates as the referent (25·2 μg/l), we observed lower levels in mothers of preterm-AGA (21·9 μg/l), term small-for-gestational age (SGA) (20·3 μg/l) and preterm-SGA neonates (21·7 μg/l). Results were largely unchanged after adjustment for prepreg-BMI. Leptin levels were higher in mothers who delivered large-for-gestational age (LGA) neonates, both preterm (33·6 μg/l) and term (29·1 μg/l), but the GMeans were markedly attenuated after adjustment for prepreg-BMI. The association between BW/GA and maternal leptin levels after adjustment for prepreg-BMI may represent: (i) a residual effect of maternal adiposity that is not fully captured by BMI; and/or (ii) variation in placental leptin levels entering the maternal circulation. In conclusion, mid-pregnancy maternal blood leptin levels may be an early indicator of foetal growth status. © 2012 Blackwell Publishing Ltd.
Out-of-Autoclave Manufacturing of Aerospace Representative Parts
NASA Astrophysics Data System (ADS)
Cauberghs, Julien
The use of carbon fibre reinforced composites for aerospace structures has seen a high increase in recent years, and is still growing. The high stiffness-to-weight ratio of these materials makes them ideal for primary structures on airplanes, satellites, and spacecrafts. Nevertheless, the manufacturing of composites remains very costly since it requires equipment investment such as an autoclave, and very qualified workers. Out-of-autoclave manufacturing technology is very promising since it only requires a traditional oven, while still aiming at similar part quality. However, the absence of positive pressure compared with an autoclave makes it more difficult to achieve low porosity parts. This research investigates the manufacturing of complex features with out-of autoclave prepreg technology. The features studied are tight-radius corners with a curvature change, and ply drop-offs. Ply drop-offs tests were conducted to identify if porosity is higher at ply terminations. In corners, the bagging arrangement was modified to achieve the most uniform thickness in areas of curvature change, even with small radii. The conclusions from these studies provided us with guidelines to manufacture larger representative parts, which included these features. The representative parts were tested for porosity, thickness uniformity, mechanical performance, and glass transition temperature (Tg). A total of four representative parts were manufactured with out-of-autoclave technology, and one more was manufactured with an autoclave to allow for a proper comparison between the two processes. The materials used were MTM45-1 5 harness satin and CYCOM5320 plain weave for the out-of-autoclave parts, and CYCOM5276-1 plain weave for the autoclave part. The effect of ply drop-offs on porosity was found to be negligible. Thickness deviation in corners was attributed to a combination of consumable bridging, prepreg's bulk factor and inter-ply shear. Overall, out-of-autoclave prepregs showed performance similar to autoclave prepregs.
Development of an impact- and solvent-resistant thermoplastic composite matrix, phase 3
NASA Technical Reports Server (NTRS)
Delano, C. B.; Kiskiras, C. J.
1985-01-01
The polyimide from BTDA 1,6-hexanediamine and m-phenylenediamine was selected from a prior study for the present study. Methods to prepare prepreg which would provide low void composites at low molding pressures from the thermoplastic polyimide were studied. Cresol solutions of the polyimide were applied to a balanced weave carbon fabric and the cresol removed prior to composite molding. Low void composites were prepared from smoothed prepregs at high pressures (34.5 MPa) and temperatures as low as 260 C. Lower molding pressures lead to higher void composites. Need for a lower melt viscosity in the neat resin is suggested as a requirement to achieve low void composites at low pressures. Some mechanical properties are included.
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites
Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia
2010-01-01
A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.
Kimura, H; Yu, P Y; Teraoka, F; Sugita, M
1989-09-01
To develop the visible light-cured FRP denture base, we investigated the physical properties and the warp of FRP plate by using various combinations of matrix resin and reinforcement. From the results of the bending test, hardness test and manipulation processing, the matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 wt% was determined. The sateen weave's glasscloth as the reinforcement of the prepreg was used. The maximum plies included FRP of 0.5 mm, 0.8 and 1.0 mm thickness have the same maximum bending strengths of 45 kgf/mm2, which is about 5 times larger than that of conventional acrylic resin. The warp of these FRP plates were not found.
Utilization of Induction Bonding for Automated Fabrication of TIGR
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Johnston, Norman J.; Hulcher, A. Bruce; Marchello, Joseph M.; Messier, Bernadette C.
1999-01-01
A laboratory study of magnetic induction heat bonding of titanium foil and graphite fiber reinforced polymer prepreg tape, TiGr, demonstrated that the process is a viable candidate for low cost fabrication of aircraft structure made of this new material form. Data were obtained on weld bonding of PIXA and PETI-5 prepreg to titanium. Both the foil and honeycomb forms of titanium were investigated. The process relies on magnetic susceptor heating of titanium, not on high frequency heating of graphite fiber. The experiments showed that with a toroid magnet configuration, good weld bonds might be obtained with heating times of a few seconds. These results suggest the potential is good for the induction heating process to achieve acceptable commercial production rates.
Modeling of prepregs during automated draping sequences
NASA Astrophysics Data System (ADS)
Krogh, Christian; Glud, Jens A.; Jakobsen, Johnny
2017-10-01
The behavior of wowen prepreg fabric during automated draping sequences is investigated. A drape tool under development with an arrangement of grippers facilitates the placement of a woven prepreg fabric in a mold. It is essential that the draped configuration is free from wrinkles and other defects. The present study aims at setting up a virtual draping framework capable of modeling the draping process from the initial flat fabric to the final double curved shape and aims at assisting the development of an automated drape tool. The virtual draping framework consists of a kinematic mapping algorithm used to generate target points on the mold which are used as input to a draping sequence planner. The draping sequence planner prescribes the displacement history for each gripper in the drape tool and these displacements are then applied to each gripper in a transient model of the draping sequence. The model is based on a transient finite element analysis with the material's constitutive behavior currently being approximated as linear elastic orthotropic. In-plane tensile and bias-extension tests as well as bending tests are conducted and used as input for the model. The virtual draping framework shows a good potential for obtaining a better understanding of the drape process and guide the development of the drape tool. However, results obtained from using the framework on a simple test case indicate that the generation of draping sequences is non-trivial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeller, E.; Dobmann, G.; Kuhn, W.
Initial results are presented on the application of NMR techniques to prepregs in order to characterize the crosslink state under exposure to room and elevated (50 C) temperature. The experiments were conducted with a MSL-400 Bruker NMR spectrometer and microimaging system which works at 400 MHz. Aside from the sensitive measurement of the cross-link density there is also the potential to separate the influence of moisture content as a further parameter contributing to the aging process. It is shown that these experimental results correlate with results of destructive tests and document the potential of NMR as a NDT tool. Anmore » NMR-image of the moisture distribution in a glassfiber reinforced expoxy resin sample is shown. 17 refs.« less
Development of failure criterion for Kevlar-epoxy fabric laminates
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Elliott, W. G.
1984-01-01
The development of the tensor polynomial failure criterion for composite laminate analysis is discussed. In particular, emphasis is given to the fabrication and testing of Kevlar-49 fabric (Style 285)/Narmco 5208 Epoxy. The quadratic-failure criterion with F(12)=0 provides accurate estimates of failure stresses for the Kevlar/Epoxy investigated. The cubic failure criterion was re-cast into an operationally easier form, providing the engineer with design curves that can be applied to laminates fabricated from unidirectional prepregs. In the form presented no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exists at present to generalize this approach for all undirectional prepregs and its use must be restricted to the generic materials investigated to-date.
Development of lightweight graphite/polyimide sandwich panels.
NASA Technical Reports Server (NTRS)
Poesch, J. G.
1972-01-01
Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Wallace, John W.
1991-01-01
The results are presented of mechanical and physical properties characterization testing for the fiber glass prepreg system used to fabricate 15 of the replacement set of 25 fan blades for the National Transonic Facility. The fan blades were fabricated to be identical to the original blade set with the exception that the 7576 style E glass cloth used for the replacement set has a different surface finish than the original 7576 cloth. The 7781 E glass cloth and resin system were unchanged. The data are presented for elevated, room, and cryogenic temperatures. The results are compared with data from the original blade set and evaluated against selected structural design criteria. Test experience is described along with recommendations for future testing of these materials if required.
NASA Astrophysics Data System (ADS)
Poillucci, Richard
Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.
Material characterization for morphing purposes in order to match flight requirements
NASA Astrophysics Data System (ADS)
Geier, Sebastian; Kintscher, Markus; Heintze, Olaf; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin
2012-04-01
Natural laminar flow is one of the challenging aims of the current aerospace research. Main reasons for the aerodynamic transition from laminar into turbulent flow focusing on the airfoil-structure is the aerodynamic shape and the surface roughness. The Institute of Composite Structures and Adaptive Systems at the German Aerospace Center in Braunschweig works on the optimization of the aerodynamic-loaded structure of future aircrafts in order to increase their efficiency. Providing wing structures suited for natural laminar flow is a step towards this goal. Regarding natural laminar flow, the structural design of the leading edge of a wing is of special interest. An approach for a gap-less leading edge was developed to provide a gap- and step-less high quality surface suited for natural laminar flow and to reduce slat noise. In a national project the first generation of the 3D full scale demonstrator was successfully tested in 2010. The prototype consists of several new technologies, opening up the issue of matching the long and challenging list of airworthiness requirements simultaneously. Therefore the developed composite structure was intensively tested for further modifications according to meet requirements for abrasion, impact and deicing basically. The former presented structure consists completely of glass-fiber-prepreg (GFRP-prepreg). New functions required the addition of a new material-mix, which has to fit into the manufacturing-chain of the composite structure. In addition the hybrid composites have to withstand high loadings, high bending-induced strains (1%) and environmentally influenced aging. Moreover hot-wet cycling tests are carried out for the basic GFRP-structure in order to simulate the long term behavior of the material under extrem conditions. The presented paper shows results of four-points-bending-tests of the most critical section of the morphing leading edge device. Different composite-hybrids are built up and processed. An experimental based trend towards an optimized material design will be shown.
NASA Astrophysics Data System (ADS)
Bilyeu, Bryan
Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the unmodified epoxy, while the others showed much higher wear rates.
Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K
2018-02-01
This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (P<0.001). The regression coefficient suggests nanohardness increased on average by 0.039GPa for every storage group. The increased nanohardness values in the core region of 6-months and 2-years stored prepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of test methods for textile composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Ifju, Peter G.; Fedro, Mark J.
1993-01-01
NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.
PMR Extended Shelf Life Technology Given 2000 R and D 100 Award
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2001-01-01
An approach developed at the NASA Glenn Research Center for extending the shelf life of PMR polyimide solutions and prepregs received an R&D 100 Award this year. PMR polyimides, in particular PMR-15, have become attractive materials for a variety of aerospace applications because of their outstanding high-temperature stability and performance. PMR-15 can be used in components with exposures to temperatures as high as 290 C, which leads to substantial reductions in weight, as much as 30 percent over metal components. PMR-15 composites are used widely in aerospace applications ranging from ducts and external components in aircraft engines to an engine access door for the Space Shuttle Main Engine. A major barrier to more widespread use of these materials is high component costs. Recent efforts at Glenn have addressed the various factors that contribute to these costs in an attempt to more fully utilize these lightweight, high-temperature materials.
Phenolic cutter for machining foam insulation
NASA Technical Reports Server (NTRS)
Blair, T. A.; Miller, A. C.; Price, B. W.; Stiles, W. S.
1970-01-01
Pre-pregged fiber glass is an efficient abrasive for machining polystyrene and polyurethane foams. It bonds easily to any cutter base made of aluminum, steel, or phenolic, is inexpensive, and is readily available.
Composite material impregnation unit
NASA Technical Reports Server (NTRS)
Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.
1993-01-01
This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.
Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates
NASA Technical Reports Server (NTRS)
Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)
1994-01-01
A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.
Experimental study of optical fibers influence on composite
NASA Astrophysics Data System (ADS)
Liu, Rong-Mei; Liang, Da-Kai
2010-03-01
Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.
NASA Astrophysics Data System (ADS)
Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben
2012-11-01
Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.
Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures
NASA Technical Reports Server (NTRS)
Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika
2013-01-01
Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering additional weight savings. More robust structures capable of withstanding micrometeoroid and space debris impacts will be possible with the enhanced mechanical properties imparted by the aligned CNTs incorporated into the fiber composite structure, as well as the potential for improved electrical and thermal properties. The materials fabrication approach developed in the present effort is a platform for customer applications where additional reinforcement is required or would be beneficial, especially in FRC structures and component parts. Depending upon the specific customer application, the NRM could be tailored to the specific matrix resin and desired property enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, D.A.; Lula, J.W.
A simplified receiving inspection test for epoxy/glass prepreg was developed. This test, which could replace the resin flow test, uses differential scanning calorimetry to measure the glass transition temperature. The glass transition temperature was found to correlate well with the resin flow test.
Bismaleimide resins for flame resistant honeycomb sandwich panels
NASA Technical Reports Server (NTRS)
Stenzenberger, H. D.
1978-01-01
Bismaleimide resins are prime candidates for nonflammable aircraft interior panels. Three resin types with different structures and processing characteristics were formulated. Resin M 751 was used to fabricate 100 kg of glass fabric prepregs which were used for the preparation of face sheets for honeycomb sandwich panels. Prepreg characteristics and curing cycles for laminate fabrication are provided. In order to advance beyond the current solvent resin technology for fibre and fabric impregnation, a hot melt solvent-less resin system was prepared and characterized. Preliminary tests were performed to develop a wet bonding process for the fabrication of advanced sandwich honeycomb panels by use of polybismaleimide glass fabric face sheets and polybismaleimide Nomex honeycomb core. B-stage material was used for both the core and the face sheet, providing flatwise tensile properties equivalent to those obtained by the state-of-the-art 3-step process which includes an epoxy adhesive resin.
Composite sandwich structure and method for making same
NASA Technical Reports Server (NTRS)
Magurany, Charles J. (Inventor)
1995-01-01
A core for a sandwich structure which has multi-ply laminate ribs separated by voids is made as an integral unit in one single curing step. Tooling blocks corresponding to the voids are first wrapped by strips of prepreg layup equal to one half of each rib laminate so a continuous wall of prepreg material is formed around the tooling blocks. The wrapped tooling blocks are next pressed together laterally, like tiles, so adjoining walls from two tooling blocks are joined. The assembly is then cured by conventional methods, and afterwards the tooling blocks are removed so voids are formed. The ribs can be provided with integral tabs forming bonding areas for face sheets, and face sheets may be co-cured with the core ribs. The new core design is suitable for discrete ribcores used in space telescopes and reflector panels, where quasiisotropic properties and zero coefficient of thermal expansion are required.
Fabrication of CFRP/Al Active Laminates
NASA Astrophysics Data System (ADS)
Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka
This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.
Structural integrated sensor and actuator systems for active flow control
NASA Astrophysics Data System (ADS)
Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael
2016-04-01
An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.
CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites
NASA Astrophysics Data System (ADS)
Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey
2013-02-01
To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.
Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.
Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F
2016-05-28
Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.
Monitoring Pre-Stressed Composites Using Optical Fibre Sensors
Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.
2016-01-01
Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID:27240378
NASA Astrophysics Data System (ADS)
Qin, F. X.; Peng, H. X.; Popov, V. V.; Phan, M. H.
2011-02-01
Composites consisting of glass-coated amorphous microwire Co 68.59Fe 4.84Si 12.41B 14.16 and 913 E-glass prepregs were designed and fabricated. The influences of tensile stress, annealing and number of composite layers on the giant magneto-impedance (GMI) and giant stress-impedance (GSI) effects in these composites were investigated systematically. It was found that the application of tensile stress along the microwire axis or an increase in the number of composite layers reduced the GMI effect and increased the circular anisotropy field, while the annealing treatment had a reverse effect. The value of matrix-wire interfacial stress calculated via the GMI profiles coincided with the value of the applied effective tensile stress to yield similar GMI profiles. Enhancement of the GSI effect was achieved in the composites relative to their single microwire inclusion. These findings are important for the development of functional microwire-based composites for magnetic- and stress-sensing applications. They also open up a new route for probing the interfacial stress in fibre-reinforced polymer (FRP) composites.
Fingerprint test data report: FM 5064J (Kaiser) lots No. 1 (K) - No. 4 (K). [resin matrix composites
NASA Technical Reports Server (NTRS)
1986-01-01
Quality control tests are presented for resin matrix and carbon-carbon composites. Tests performed are filler test, resin test, prepregs test, and fabric test. The test results are presented in chart form.
Glass fibre-reinforced composite laced with chlorhexidine digluconate and yeast adhesion.
Waltimo, T; Luo, G; Samaranayake, L P; Vallittu, P K
2004-02-01
The aim of this study was to lace dental glass fibre reinforced composite (FRC) prepreg with chlorhexidine digluconate and to examine the adherence of common oral fungal pathogen Candida albicans to FRC made of the prepreg. Four different test and control material groups each comprising 16 test specimens ((5.0 x 5.0 x 0.8) mm3) each were used as substrates for C. albicans adherence. A porous polymer pre-impregnated woven glass fibre prepreg was laced with solution of chlorhexidine gluconate and it was used with autopolymerized denture base polymer to fabricate FRC test specimens. Control group (Group 1) consisted of FRC test specimens stored in water. In Group 2, the test specimens were stored in 10% chlorhexidine digluconate solution for 24 h. Group 3 consisted of specimens fabricated using such fibre reinforcements which were pre-soaked in 20% chlorhexidine digluconate and dried before preparation with denture base resin, and followed by storage of the specimens in water. Group 4 was similar to Group 3 but instead of water storage the specimens were immersed in 10% chlorhexidine digluconate for 24 h. For the candidal adhesion assay the test and control specimens were incubated in standardized suspensions of four different strains of C. albicans, rinsed and prepared for light-microscopy. The mean number of adherent cells in each group was counted microscopically and analysed statistically. There were significantly (P < 0.05) more adherent C. albicans cells found in Group 1 than in the other three groups which did not differ significantly from each other. The lowest numbers of adherent cells were found in Group 3. Pretreating the porous polymer pre-impregnated glass fibre reinforcement with chlorhexidine digluconate result in reduction in the number of adherent yeast cells on the surface FRC material.
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
NASA Astrophysics Data System (ADS)
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
Studies on Automated Manufacturing of High Performance Composites
NASA Technical Reports Server (NTRS)
Cano, R. J.; Belvin, H. L.; Hulcher, A. B.; Grenoble, R. W.
2001-01-01
The NASA Langley Research Center fiber placement facility has proven to be a valuable asset for obtaining data, experience, and insights into the automated fabrication of high performance composites. The facility consists of two automated devices: an Asea Brown Boveri (ABB) robotic arm with a modified heated head capable of hot gas and focused infrared heating and a 7' x 17' gantry containing a feeder head, rotating platform, focused infrared lamp and e-beam gun. While uncured thermoset tow and tape, e.g., epoxy and cyanate prepreg, can be placed with a robot, the placement facility s most powerful attribute is the ability to place thermoplastic and e-beam curable material to net shape. In recent years, ribbonizing techniques have been developed to make high quality thermoplastic and thermoset dry material forms to the standards required for robotic placement. A variety of composites have been fabricated from these ribbons by heated head tow and tape placement including both flat plates and cylinders. Composite mechanical property values of the former were between 85 and 100 percent of those obtained by hand lay-up/autoclave processing.
Improved Graphite Fiber/Acetylene Terminated Matrix Resin Prepreg Products
1988-03-01
AFWAL-TR-80-4151, "The Synthesis of Polymer Precursor and Exploratory Research Based on Acetylene Displacement Reaction," E.T. Sabourin , Gulf...Acetylene Terminated Quinoxalines," E.T. Sabourin , Gulf Research and Development Co., July 1982. ACETYLENE TERMINATED TECHNOLOGY BIBLIOGRAPHY SYNTHESIS AND
Liquid crystal polyester-carbon fiber composites
NASA Technical Reports Server (NTRS)
Chung, T. S.
1984-01-01
Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.
V-378A: A modified bismaleimide for advanced composites
NASA Technical Reports Server (NTRS)
Street, S. W.
1985-01-01
Addition polyimides cure with no evolution of gaseous by-products at relatively low temperatures and may be cured at low pressures to yield composites with excellent hot-wet strength retention. These properaties have made them excellent candidates as matrix resins for advanced composites. However, commercially available bismaleimides are solids and difficult to handle in preimpregnated form. V-378A is an addition polyimide composed of a mixture of bismaleimides and other reactive ingredients formulated to provide good prepreg properties and handling, facile cure and excellent composite mechanical properties. Several curing mechanisms are utilized to provide the characteristics exhibited by V-378A. Part of the mechanism is free radial and takes place at ambient temperature and above. Other mechanisms are principally Diels-Alder in nature. V-378A prepregs are tacky at ambient temperature, but do not have long tacky outlife similar to some epoxies. V-378A yields composites which exhibit hot-wet strength retention which is superior to that provided by epoxy resin systems.
Double Vacuum Bag Process for Resin Matrix Composite Manufacturing
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)
2007-01-01
A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.
ODC-Free Solvent Implementation for Phenolics Cleaning
NASA Technical Reports Server (NTRS)
Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)
2001-01-01
During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.
NASA Astrophysics Data System (ADS)
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-12-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
NASA Astrophysics Data System (ADS)
Park, Sang Yoon; Choi, Chi Hoon; Choi, Won Jong; Hwang, Seong Soon
2018-05-01
The non-autoclave curing technique with vacuum bag only (VBO) prepreg has been conceived as a cost-effective manufacturing method for producing high-quality composite part. This study demonstrated the feasibility of improving composite part's performances and established the effective mitigation strategies for manufacturing induced defects, such as internal voids and surface porosity. The experimental results highlighted the fact that voids and surface porosity were clearly dependent on the resin viscosity state at an intermediate dwell stage of the curing process. Thereafter, the enhancement of resin flow could lead to achieving high quality parts with minimal void content (1.3%) and high fiber fraction (53 vol.%). The mechanical testing showed comparable in-plane shear and compressive strength to conventional autoclave. The microscopic observations also supported the evidence of improved interfacial bonding in terms of excellent fiber wet-out and minimal void content for the optimized cure cycle condition.
Detection of layup errors in prepreg laminates using shear ultrasonic waves
NASA Astrophysics Data System (ADS)
Hsu, David K.; Fischer, Brent A.
1996-11-01
The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.
Method of making a partial interlaminar separation composite system
NASA Technical Reports Server (NTRS)
Elber, W. (Inventor)
1981-01-01
An interlaminar separation system for composites is disclosed a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes. Laminae adherence takes place through the perforations and a composite structure with improved physical property characteristics is produced.
Partial interlaminar separation system for composites
NASA Technical Reports Server (NTRS)
Elber, W. (Inventor)
1980-01-01
This inventor relates to an interlaminar separation system for composites wherein a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes to thereby permit laminate adherence through the perforations and produce a composite structure having improved physical property characteristics.
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Dawson, Stephen F.
2015-01-01
NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid nitrogen temperatures showed a marked increase in the magnitude of these discharges. The results indicate that dielectric discharges are primarily produced due to the presence of large regions of the non-conductive pre-preg on the surface of the carbon sheets. The frequency and magnitude of discharges decreased when layers of the pre-preg material were removed from the composite surface. These tests indicate that solar array panels may be used in the Jovian environment, but that electrostatic discharges can be expected on the carbon composite solar arrays.
Novel cost controlled materials and processing for primary structures
NASA Technical Reports Server (NTRS)
Dastin, S. J.
1993-01-01
Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.
Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors
NASA Astrophysics Data System (ADS)
Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio
2013-09-01
The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.
Preparation of prepreg graphite tape with insoluble polymer
NASA Technical Reports Server (NTRS)
Yates, C. I.
1973-01-01
Powdered polymer is finely ground. Second polymer, soluble, is mixed with appropriate solvent. Milled polymer and graphite filaments are added to soluble polymer-solvent solution to create slurry. Slurry is dried, and when ready for processing, the soluble, binder-polymer is removed by heat during precure or cure cycle.
Structures, Design and Test: Materials
NASA Technical Reports Server (NTRS)
2004-01-01
NASA Marshall has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils, or adhesives on the same placement machine. The deve!opment of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks.
Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends
NASA Technical Reports Server (NTRS)
Johnston, Norman J. (Inventor); St.clair, Terry L. (Inventor); Baucom, Robert M. (Inventor); Gleason, John R. (Inventor)
1991-01-01
Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.
Fingerprint test data report: FM 5834 test lots No. 1, 3, 4, and 5. [resin matrix composites
NASA Technical Reports Server (NTRS)
1986-01-01
Quality control testing is presented for various lots of resin matrix composites. The tests conducted were filler test, resin test, fabric test, and prepreg test for lots 1, 3, 4, and 5. The results of the tests are presented in chart forms.
Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990
NASA Astrophysics Data System (ADS)
Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.
Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.
Torque Limit for Bolted Joint For Composites. Part B; Experimentation
NASA Technical Reports Server (NTRS)
Kostreva, Kristian M.
2003-01-01
Today, aerospace quality composite parts are generally made from either a unidirectional tape or a fabric prepreg form depending on the application. The matrix material, typically epoxy because of it dimensional stability, is pre-impregnated onto the fibers to ensure uniform distribution. Both of these composite forms are finding themselves used in applications where a joint is required. Two widely used joint methods are the classic mechanically fastened joint, and the contemporary bonded joint; however, the mechanically fastened joint is most commonly used by design engineers. A major portion of the research up-to-date about bolted composite joints has dealt with the inplane static load capacity. This work has helped to spawn standards dealing with filled-hole static joint strength. Other research has clearly shown that the clamp-up load in the mechanical fastener significantly affects the joint strength in a beneficial manner by reducing the bearing strength dependence of the composite laminate. One author reported a maximum increase in joint strength of 28%. This finding has helped to improve the reliability and efficiency of the joint in a composite structure.
An Analysis of EM Railgun Cross Section Designs
2009-08-14
tube does not have to be cured in an autoclave afterwards. The fact that the resin in the prepreg is a thermoplastic rather than a thermoset is...decided that a chromium copper alloy would be used to take advantage of the electrical properties of copper while having a high strength material. The
Processing parameters for filament winding thick-section PEEK/carbon fiber composites
NASA Astrophysics Data System (ADS)
Colton, J.; Leach, D.
1992-12-01
The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semi-consolidated towpreg; and commingled fiber towpreg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8-mm ID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8-mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay-down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but a significant effect on the percentage of voids at only a 95 percent confidence level.
Processing parameters for thermoplastic filament winding
NASA Astrophysics Data System (ADS)
Colton, J.; Leach, D.
The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semiconsolidated towpreg; and commingled fiber towpeg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8 mmID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8 mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but only a significant effect on the percentage of voids at a 95 percent confidence level.
Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites
NASA Astrophysics Data System (ADS)
Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.
2013-04-01
Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.
NASA Technical Reports Server (NTRS)
Hall, William B.
1988-01-01
Carbon-phenolic composite materials are used in the ablation process in the nozzles of the Space Shuttle Main Engine. The nozzle is lined with carbon cloth-phenolic resin composites. The extreme heat and erosion of the burning propellant are controlled by the carbon-phenolic composite by means of ablation, a heat and mass transfer process in which a large amount of heat is dissipated by sacrificailly removing material from a surface. Phenolic materials ablate with the initial formation of a char. The depth of the char is a function of the heat conduction coefficient of the composite. The char layer is a poor conductor so it protects the underlying phenolic composite from the high heat of the burning propellant. The nozzle component ablative liners (carbon cloth-phenolic resin composites) are tape wrapped, hydroclave and/or autoclave cured, machined and assembled. The tape consists of prepreg broadcloth. The materials flow sheet for the nozzle ablative liners is given. The prepreg is a three component system: phenolic resin, carbon cloth, and carbon filler. This is Volume 2 of the report, Test Methods and Specifications.
Development of new and improved polymer matrix resin systems, phase 1
NASA Technical Reports Server (NTRS)
Hsu, M. S.
1983-01-01
Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.
Thermoplastic matrix composite processing model
NASA Technical Reports Server (NTRS)
Dara, P. H.; Loos, A. C.
1985-01-01
The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.
[Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].
Kasuga, H; Sato, H; Nakabayashi, N
1980-01-01
Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.
Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates
NASA Technical Reports Server (NTRS)
Cano, Robert J.; Jensen, Brian J.
2013-01-01
The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.
Improved ablative materials for the ASRM nozzle
NASA Technical Reports Server (NTRS)
Canfield, A.; Clinton, R. G.; Armour, W.; Koenig, J.
1992-01-01
Rayon precursor carbon-cloth phenolic was developed more than 30 years ago and is used in most nozzles today including the Poseidon, Trident, Peacekeeper, Small ICBM, Space Shuttle, and numerous tactical and space systems. Specifications and manufacturing controls were placed on these materials and, once qualified, a no-change policy was instituted. The current material is acceptable; however, prepreg variability does not always accommodate the requirements of automation. The advanced solid rocket motor requires material with less variability for automated manufacturing. An advanced solid rocket motor materials team, composed of NASA, Thiokol, Aerojet, SRI, and Lockheed specialists, along with materials suppliers ICI Fiberite/Polycarbon, BP Chemicals/Hitco, and Amoco, embarked on a program to improve the current materials. The program consisted of heat treatment studies and standard and low-density material improvements evaluation. Improvements evaluated included fiber/fabric heat treatments, weave variations, resin application methods, process controls, and monitors.
Design and performance of a shape memory alloy-reinforced composite aerodynamic profile
NASA Astrophysics Data System (ADS)
Simpson, J. C.; Boller, C.
2008-04-01
Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires.
NASA Astrophysics Data System (ADS)
Farquharson, Stuart; Smith, Wayne W.; Rigas, Elias J.; Granville, Dana
2001-02-01
12 The superior engineering properties of fiber reinforced polymer matrix composites, primarily the high strength-to- weight ratio, make them suitable to applications ranging from sporting goods to aircraft components (e.g. helicopter blades). Unfortunately, consistent fabrication of components with desired mechanical properties has proven difficult, and has led to high production costs. This is largely due to the inability to monitor and control polymer cure, loosely defined as the process of polymer chain extension and cross- linking. Even with stringent process control, slight variations in the pre-polymer formulations (e.g. prepreg) can influence reaction rates, reaction mechanisms, and ultimately, product properties. In an effort to optimize the performance of thermoset composite, we have integrated fiber optic probes between the plies of laminates and monitored cure by Raman spectroscopy, with the eventual goal of process control. Here we present real-time measurements of two high performance aerospace companies cured within an industrial autoclave.
Prediction of wrinklings and porosities of thermoplastic composits after thermostamping
NASA Astrophysics Data System (ADS)
Hamila, Nahiene; Guzman-Maldonado, Eduardo; Xiong, Hu; Wang, Peng; Boisse, Philippe; Bikard, Jerome
2018-05-01
During thermoforming process, the consolidation deformation mode of thermoplastic prepregs is one of the key deformation modes especially in the consolidation step, where the two resin flow phenomena: resin percolation and transverse squeeze flow, play an important role. This occurs a viscosity behavior for consolidation mode. Based on a visco-hyper-elastic model for the characterization of thermoplastic prepregs proposed by Guzman, which involves different independent modes of deformation: elongation mode, bending mode with thermo-dependent, and viscoelastic in-plan shearing mode with thermo-dependent, a viscoelastic model completed with consolidation behavior will be presented in this paper. A completed three-dimensional mechanical behavior with compaction effect for thermoplastic pre-impregnated composites is constituted, and the associated parameters are identified by compaction test. Moreover, a seven-node prismatic solid-shell finite element approach is used for the forming simulation. To subdue transverse shear locking, an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. Indeed, the enhanced assumed strain method and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element's rank deficiency for pinching. An additional node is added at the center providing a quadratic interpolation of the displacement in the thickness direction. The predominance of this element is the ability of three dimensional analysis, especially for the transverse stress existence through the thickness of material, which is essential for the consolidation modelling. Finally, an intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Several tests including a thermoforming test are launched to evaluate the consolidation model and the accuracy of the proposed element.
NASA Astrophysics Data System (ADS)
Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz
2016-03-01
Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (μ), was shown to increase with the increased void fraction.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1992-01-01
The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft.
Statistical characterization of carbon phenolic prepreg materials, volume 1
NASA Technical Reports Server (NTRS)
Beckley, Don A.; Stites, John, Jr.
1988-01-01
The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.
Development of resins for composites by resin transfer molding
NASA Technical Reports Server (NTRS)
Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.
1991-01-01
Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.
NASA Astrophysics Data System (ADS)
Kim, Yun Hae; Han, Joong Won; Kim, Don Won; Choi, Byung Keun; Murakami, R.
Delamination can be observed in the sound areas during and/or after a couple times exposure to the elevated curing temperature due to the repeated repair condition. This study was conducted for checking the degree of degradation of properties of the cured parts and delamination between skin prepreg and honeycomb core. Specimens with glass honeycomb sandwich construction and glass/epoxy prepreg were prepared. The specimens were cured 1 to 5 times at 260°F in an autoclave and each additionally exposed 50, 100 and 150 hours in the 260°F oven. Each specimen was tested for tensile strength, compressive strength, flatwise tensile strength and interlaminar shear strength. To monitor the characteristics of the resin itself, the cured resin was tested using DMA and DSC. As a results, the decrease of Tg value were observed in the specific specimen which is exposed over 50 hrs at 260°F. This means the change or degradative of resin properties is also related to the decrease of flatwise tensile properties. Accordingly, minimal exposure on the curing temperature is recommended for parts in order to prevent the delation and maintain the better condition.
Standardization of the carbon-phenolic materials and processes. Vol. 1: Experimental studies
NASA Technical Reports Server (NTRS)
Hall, William B.
1988-01-01
Carbon-phenolic composite materials are used as ablative material in the solid rocket motor nozzle of the Space Shuttle. The nozzle is lined with carbon cloth-phenolic resin composites. The nominal effects of the completely consumed solid propellant on the carbon-phenolic material are given. The extreme heat and erosion of the burning propellant are controlled by the carbon-phenolic composite by ablation, the heat and mass transfer process in which a large amount of heat is absorbed by sacrificially removing material from the nozzle surface. Phenolic materials ablate with the initial formation of a char. The depth of the char is a function of the heat conduction coefficient of the composite. The char layer is a very poor heat conductor so it protects the underlying phenolic composite from the high heat of the burning propellant. The nozzle component ablative liners (carbon cloth-phenolic composites) are tape wrapped, hydroclave and/or autoclave cured, machined, and assembled. The tape consists of a prepreg broadcloth. The materials flow sheet for the nozzle ablative liners is shown. The prepreg is a three component system: phenolic resin, carbon cloth, and carbon filler. This is Volume 1 of two, Experimental Studies.
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.
2012-01-01
Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.
Hot forming of composite prepreg : Experimental study
NASA Astrophysics Data System (ADS)
Tardif, Xavier; Duthille, Bertrand; Bechtel, Stephane; le Pinru, Louis; Campagne, Benjamin; Destombes, Gautier; Deshors, Antoine; Marchand, Christophe; Azzouzi, Khalid El; Moro, Tanguy
2017-10-01
The hot forming of thermoset prepreg consists in bending an uncured composite part by applying a mechanical constrain on the hot laminate. Most of the time, the mold is inserted in a vacuum box and the mechanical constrain is applied on the composite laminate by a single membrane or a double-membrane. But the performance improvement products resulted in forming increasingly complex parts with advanced materials having a less formability. These new complex parts require a finer comprehension of the process and an optimization of the key parameters to get acceptable quality. In this work, an experimental study has been carried out to identify the process conditions that do not lead to unacceptable defaults: undulations of fibers. In the present study, downward-bending has been evaluated with an original light mechanical forming concept, for a given stacking sequence. The influence of the part's temperature and the part's bending speed are investigated. To carry this study out, a hot forming test bench has been designed and manufactured to have a precise supervision of the process conditions. It is able to bend parts of 1500 mm length x 600 mm width x 20 mm thick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.; Moon, T.J.; Howell, J.R.
This paper presents an analysis of the heat transfer occurring during an in-situ curing process for which infrared energy is provided on the surface of polymer composite during winding. The material system is Hercules prepreg AS4/3501-6. Thermoset composites have an exothermic chemical reaction during the curing process. An Eulerian thermochemical model is developed for the heat transfer analysis of helical winding. The model incorporates heat generation due to the chemical reaction. Several assumptions are made leading to a two-dimensional, thermochemical model. For simplicity, 360{degree} heating around the mandrel is considered. In order to generate the appropriate process windows, the developedmore » heat transfer model is combined with a simple winding time model. The process windows allow for a proper selection of process variables such as infrared energy input and winding velocity to give a desired end-product state. Steady-state temperatures are found for each combination of the process variables. A regression analysis is carried out to relate the process variables to the resulting steady-state temperatures. Using regression equations, process windows for a wide range of cylinder diameters are found. A general procedure to find process windows for Hercules AS4/3501-6 prepreg tape is coded in a FORTRAN program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.
A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete.more » It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations.« less
Development of High Performance CFRP/Metal Active Laminates
NASA Astrophysics Data System (ADS)
Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka
This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.
1991-01-01
Poor processability of fiber reinforced high performance polyimide thermoplastic resin composites is a well recognized issue which, in many cases, prohibits the fabrication of composite parts with satisfactorily consolidated quality. Without modifying the resin matrix chemistry, improved compression modeling procedures were proposed and investigated with the AS-4/LaRC-TPI 1500 High Flow Grade (HFG) prepreg system. Composite panels with excellent C-scans can be consistently molded by this method under 700 F and a consolidation pressure as low as 100 psi. A mechanism for the consolidation of the composite under this improved molding technique is discussed. This mechanism reveals that a certain degree of matrix shear and tow filament slippage and nesting between plies occur during consolidation, which leads to a reduction of the consolidating pressure necessary to offset the otherwise intimate inter fiber-fiber contact and consequently achieves a better consolidation quality. Outstanding short beam shear strength and flexural strength were obtained from the molded panels. A prolonged consolidation step under low pressure, i.e., 100 psi at 700 F for 75 minutes, was found to significantly enhance the composite mechanical properties.
Polyimide-glass multilayer printed wiring boards
NASA Astrophysics Data System (ADS)
Lula, J. W.
1984-07-01
Multilayer printed wiring boards (PWBs) from a polyimide/glass reinforced copper clad laminate and prepreg were manufactured. A lamination cycle and innerlayer copper surface treatment that gave satisfactory delamination resistance at soldering temperatures were developed. When compared to similar epoxy/glass multilayer PWBs, the polyimide PWBs had higher thermal stability, greater resistance to raised lands, fewer plating voids, less outgassing, and adhesion that was equivalent to urethane foam encapsulants.
A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials
1978-07-01
MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.
This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infusedmore » and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.« less
Design Study for the Asteroid Redirect Vehicle (ARV) Composite Primary Bulkhead
NASA Technical Reports Server (NTRS)
Cressman, Thomas O.; Paddock, David A.
2017-01-01
A design study was undertaken of a carbon fiber primary bulkhead for a large solar electric propulsion (SEP) spacecraft. The bulkhead design, supporting up to 16 t of xenon propellant, progressed from one consisting of many simple parts with many complex joints, to one consisting of a few complex parts with a few simple joints. The unique capabilities of composites led to a topology that transitioned loads from bending to in-plane tension and shear, with low part count. This significantly improved bulkhead manufacturability, cost, and mass. The stiffness-driven structure utilized high-modulus M55J fiber unidirectional prepregs. A full-scale engineering demonstration unit (EDU) of the concept was used to demonstrate manufacturability of the concept. Actual labor data was obtained, which could be extrapolated to a full bulkhead. The effort demonstrated the practicality of using high-modulus fiber (HMF) composites for unique shape topologies that minimize mass and cost. The lessons are applicable to primary and secondary aerospace structures that are stiffness driven.
Impact and damage of an armour composite
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Parry, S.; Bourne, N. K.; Townsend, D.; James, B.
2017-01-01
The current study assesses the application of the Taylor Test to validate hydrocode modelling of composite materials. 0° in-plane and through-thickness rods were cut from a 25 mm thick composite panel, made from autoclave cured 0°, 90° uni-directional carbon/epoxy prepreg. The rods were fired against a semi-infinite steel anvil and high-speed video imaging was used to capture the difference in rod shape and damage patterns during the experiments. Results of simulation with a rate sensitive, transversely isotropic composite material model implemented in the CTH hydrocode were compared with the present experiments. The model showed good correlation with global deformation of the rods, and was used to qualitatively assess some of the asymmetric deformation features in the material. As the present model implementation did not account for damage at this stage, it did not predict inter-ply delamination normal to the impact face for the in-plane 0° rods and that parallel to the impact face in the through-thickness samples.
Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite
NASA Astrophysics Data System (ADS)
Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.
2017-12-01
The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.
Processing Science of Epoxy Resin Composites
1984-01-15
3 2.2 LAMINATE FABRICATION 30 2.2.1 Baseline Laminate Fabrication 30 2.2.2 Large Laminate Fabrication 36 2.3 DIFFUSIVITY AND SOLUBILITY...Thick Laminate 42 28 Baseline Cure Cycle With Specimen Advancement Levels 45 29 Composite Panel Fabrication 47 30 Composite Panel Fabrication 48 31...first change was the elimination of the different 1 resin formulations and concentration on the normal or baseline 5208/T300 prepreg as produced by
Fabrication of graphite/epoxy cases for orbit insertion motors
NASA Technical Reports Server (NTRS)
Schmidt, W. W.
1973-01-01
The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padaki, S.; Drzal, L.T.
The consolidation process in composites made out of powder impregnated tapes differs from that of other material forms because of the distribution of fiber and matrix in the unconsolidated state. A number of factors (e.g. time, pressure, particle size, volume fraction and viscosity) affect the efficiency of the consolidation of these tapes. This paper describes the development of a mathematical process model that describes the best set of parameters required for the consolidation of a given prepreg tape.
NASA Astrophysics Data System (ADS)
Wegman, Raymond F.; Tullos, Thomas R.
1993-10-01
A development status report is presented on the surface preparation procedures, tools, equipment, and facilities used in adhesively-bonded repair of aerospace and similar high-performance structures. These methods extend to both metallic and polymeric surfaces. Attention is given to the phos-anodize containment system, paint removal processes, tools for cutting composite prepreg and fabric materials, autoclaves, curing ovens, vacuum bagging, and controlled atmospheres.
Advanced tow placement of composite fuselage structure
NASA Technical Reports Server (NTRS)
Anderson, Robert L.; Grant, Carroll G.
1992-01-01
The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Lerch, Bradley A.; Wilmoth, Nathan
2012-01-01
Two manufacturing demonstration panels (1/16th-arc-segments of 10 m diameter cylinder) were fabricated under the composites part of the Lightweight Space Structures and Materials program. Both panels were of sandwich construction with aluminum core and 8-ply quasi-isotropic graphite/epoxy facesheets. One of the panels was constructed with in-autoclave curable unidirectional prepreg (IM7/977-3) and the second with out-of-autoclave unidirectional prepreg (T40-800B/5320-1). Following NDE inspection, each panel was divided into a number of small specimens for material property characterization and a large (0.914 m wide by 1.524 m long) panel for a buckling study. Results from the small specimen tests were used to (a) assess the fabrication quality of each 1/16th arc segment panel and (b) to develop and/or verify basic material property inputs to Finite Element analysis models. The mechanical performance of the two material systems is assessed at the coupon level by comparing average measured properties such as flatwise tension, edgewise compression, and facesheet tension. The buckling response of the 0.914 m wide by 1.524 m long panel provided a comparison between the in- and out-of autoclave systems at a larger scale.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.
1989-01-01
A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.
On Healable Polymers and Fiber-Reinforced Composites
NASA Astrophysics Data System (ADS)
Nielsen, Christian Eric
Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in bending using dynamic mechanical analysis (DMA). Simple, theory-based analyses indicate that numerous cracks are present before testing due to thermal expansion mismatches, and during testing, these cracks must be healing. Extending healable composites to include healable fiber-matrix interfaces is discussed as future work and interfacial healing characterization approaches are considered.
Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.
2007-01-01
The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h process. The multilayer tape is then heated to imidize the matrix material and remove most of the remaining solvent, and is pressed to consolidate the multiple layers into a dense tape. For tests, specimens of HYCARB tapes and laminated composite panels made from HYCARB tape were prepared as follows: HYCARB tapes were fabricated as described above. Each panel was made by laying down ten layers of tape, containing, variously, one, two, or three boron-fiber plies and the remainder carbon- fiber-only plies (see figure). Each panel was made by laying down ten layers of tape. Each panel was then cured by heating to a temperature of 225 C for 15 minutes, then pressing at 200 psi (A1.4 MPa) while heating to 371 C, holding at 371 C for 1 hour, then continuing to hold pressure during cooling. Control specimens that were otherwise identical except that they did not contain boron fibers also were prepared. In room-temperature flexural tests, the HYCARB specimens performed comparably to the control specimens; in room-temperature, open-hole compression tests, the HYCARB specimens performed slightly better, by amounts that increased with boron content.
21 CFR 872.3140 - Resin applicator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of...
Development of a Cross-Flow Fan Powered Quad-Rotor Unmanned Aerial Vehicle
2015-06-01
HVAC Heating ventilation and air conditioning LiPo Lithium - ion polymer PLA Polylactic acid, 3-D printer filament PVA Polyvinyl alcohol PREPREG...control console Figure 79. Rheostat speed control console. 74 c) 6 cell lithium polymer battery Figure 80. 6 Cell LiPo battery . 75 d...Radio control system and versatile unit mounted with zip ties. ......................67 Figure 75. LiPo batteries and parallel battery connector
Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator
2012-09-01
The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric
Developments in Signature Process Control
NASA Astrophysics Data System (ADS)
Keller, L. B.; Dominski, Marty
1993-01-01
Developments in the adaptive process control technique known as Signature Process Control for Advanced Composites (SPCC) are described. This computer control method for autoclave processing of composites was used to develop an optimum cure cycle for AFR 700B polyamide and for an experimental poly-isoimide. An improved process cycle was developed for Avimid N polyamide. The potential for extending the SPCC technique to pre-preg quality control, press modeling, pultrusion and RTM is briefly discussed.
2013-01-01
Figures iv Acknowledgments v 1. Introduction 1 2. Experimental 2 2.1 Composite Laminate Fabrication...2 Figure 2. Image of fiberglass composite being fabricated using VARTM processing. 2. Experimental 2.1 Composite Laminate Fabrication...style 5 × 5 plain 5 weave prepreg S-2 fiberglass fabric and a honeycomb core cured in an autoclave, much like the composite parts fielded in
High Performance Composites and Adhesives for V/STOL Aircraft.
1984-02-22
out to examine the effect of humidity and out-time on the processing behavior and the mechanical properties of C-10/T-300 composites. 39 M&ffcici...stored at room temperature in two separate environmental chambers, controlled at l6% and 95/« relative humidity , respective- ly. At the end of every...NBS Special Publication 563, 17 (Oct 1979). " Effects of Prepreg Out-time and Humidity on the Composition and Processing of Polyimide/Graphite
Flammability Characteristics of Fiber Reinforced Composite Materials
1990-08-01
Thick Vertical Sheet of Kevlar/Phenolio-PVB ( Owens - Corning $pall Liner), MTL A4) 3 12 Chemical Heat Release Rate During Fire Propagation for a 40 0.61 m...Long, 0.10 m Wide and 3 mm Thick Vertical Sheet of S-2/Phenolic ( Owens - Corning ), MTL #5) 13 Chemical Heac Release Rate During Fire Propagation for 41...Materials T eohnology Laboratory (AKTL) by Owens - Corning Corporation; 3. NTL #3: S-2 fiberglabs/polyestel’, flame retardant, prepreg, formulated for
Filament-wound graphite/epoxy rocket motor case
NASA Technical Reports Server (NTRS)
Humphrey, W. D.; Schmidt, W. W.
1972-01-01
The fabrication procedures are described for a filament-wound rocket motor case, approximately 56 cm long x 71 cm diameter, utilizing high tensile strength graphite fibers. The process utilized Fiberite Hy-E-1330B prepreg tape which consists of Courtaulds HTS fibers in a temperature-sensitive epoxy matrix. This fabrication effort, with resultant design, material and process recommendations, substantiates the manufacturing feasibility of graphite/epoxy rocket motor cases in the 56 cm x 71 cm size range.
Effects of water during cure on the properties of a carbon/phenolic system
NASA Technical Reports Server (NTRS)
Penn, B. G.; Clemons, J. M.; Ledbetter, F. E., III; Daniels, J. G.; Thompson, L. M.
1984-01-01
The effects of prepreg water contamination on interlaminar shear strength, tranverse compressive strength, and longitudinal compressive strength were determined. Decreases in these properties due to water contamination were sugstantial: 28 percent for the interlaminar shear strength, 21 percent for the transverse compressive strength and 31 percent for the longitudinal compressive strength. Since voids were not detected by X-ray analysis, the most likely cause for these results is fiber-matrix debounding in the laminate.
Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial
NASA Astrophysics Data System (ADS)
Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.
2014-01-01
The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.
Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading
2012-03-01
prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates
2011-11-01
ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose
Effect of Stitching on Debonding in Composite Structural Elements
NASA Technical Reports Server (NTRS)
Raju, I. S.; Glaessgen, E. H.
2001-01-01
Stitched multiaxial warp knit materials have been suggested as viable alternatives to laminated prepreg materials for large aircraft structures such as wing skins. Analyses have been developed to quantify the effectiveness of stitching for reducing strain energy release rates in skin-stiffener debond, lap joint and sandwich debond configurations. Strain energy release rates were computed using the virtual crack closure technique. In all configurations, the stitches were shown to significantly reduce the strain energy release rate.
Toughening and healing of continuous fibre reinforced composites with bis-maleimide based pre-pregs
NASA Astrophysics Data System (ADS)
Kostopoulos, V.; Kotrotsos, A.; Tsantzalis, S.; Tsokanas, P.; Christopoulos, A. C.; Loutas, T.
2016-08-01
Unidirectional (UD) pre-pregs containing self-healing materials based on Diels-Alder reaction bis-maleimide (BMI) polymers were successfully incorporated on the mid-plane of UD carbon fibre reinforced polymers. The fracture toughness of these composites and the introduced healing capability were measured under mode I loading. The interlaminar fracture toughness was enhanced considerably, since the maximum load (P max) of the modified composite increased approximately 1.5 times and the mode I fracture energy (G IC) displayed a significant increase of almost 3.5 times when compared to the reference composites. Furthermore the modified composites displayed a healing efficiency (HE) value of about 30% for P max and 20% for G IC after the first healing, appearing to be an almost stable behaviour after the third healing cycle. The HE displayed a decrease of 20% and 15% for P max and G IC values, respectively, after the fifth healing cycle. During the tests, the monitored acoustic emission (AE) activity of the samples showed that there is no significant difference due to the presence of BMI polymer in terms of AE hits. Moreover, optical microscopy not only showed that the epoxy matrix at the interface is partly infiltrated by the BMI polymer, but it also revealed the presence of pulled out fibres at the fractured surface, indicating ductile behaviour.
Shen, Lie; Yang, Hui; Ying, Jia; Qiao, Fei; Peng, Mao
2009-11-01
A novel biocomposite of carbon fiber (CF) reinforced hydroxyapatite (HA)/polylactide (PLA) was prepared by hot pressing a prepreg which consisting of PLA, HA and CF. The prepreg was manufactured by solvent impregnation process. Polymer resin PLA dissolved with chloroform was mixed with HA. After reinforcement CF bundle was impregnated in the mixture, the solvent was dried completely and subsequently hot-pressed uniaxially under a pressure of 40 MPa at 170 degrees C for 20 min. A study was carried out to investigate change in mechanical properties of CF/HA/PLA composites before and after degradation in vitro. The composites have excellent mechanical properties. A peak showed in flexural strength, flexural modulus and shear strength aspects, reaching up 430 MPa, 22 GPa, 212 MPa, respectively, as the HA content increased. Degraded in vitro for 3 months, the flexural strength and flexural modulus of the CF/HA/PLA fell 13.2% and 5.4%, respectively, while the shear strength of the CF/HA/PLA composites remains at the 190 MPa level. The SEM photos showed that there were gaps between the PLA matrix and CF after degradation. Water uptake increased to 5%, but the mass loss rate was only 1.6%. The pH values of the PBS dropped less than 0.1. That's because the alkaline of HA neutralize the acid degrades from PLA, which can prevent the body from the acidity harm.
Evaluation of Sandwich Structure Bonding In Out-of-Autoclave Processing
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Baughman, James M.; Zimmerman, Thomas J.; Sutter, James K.; Gardner, John M.
2010-01-01
The out-of-autoclave-vacuum-bag-only (OOA-VBO) process is low in capital expenditures compared to the traditional autoclave, however, the material challenges for OOA-VBO workable material systems are high. Presently there are few such aerospace grade prepreg materials available commercially. In this study, we evaluated processing and properties of honeycomb sandwich structure (HC/SS) panels fabricated by co-curing composite face sheet with adhesives by the OOA-VBO process in an oven. The prepreg materials were IM7/MTM 45-1 and T40-800B/5320. Adhesives studied were AF-555M, XMTA-241/PM15, FM-309-1M and FM-300K. Aluminum H/C cores with and without perforations were included. It was found that adhesives in IM7/MTM 45-1/AF-555M, T40-800B/5320/FM 309-1M and T40-800B/5320/FM-300K panels all foamed but yielded high flatwise tensile (FWT) strength values above 8,275 kPA (1,200 psi). IM7/MTM 45-1/XMTA-241/PM15 did not foam, yet yielded a low FWT strength. SEM photomicrographs revealed that the origin of this low strength was poor adhesion in the interfaces between the adhesive and face sheet composite due to poor wetting associated with the high initial viscosity of the XMTA-241/PM15 adhesive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzbruck, M.; Brackrock, D.; Brekow, G.
Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced withmore » different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.« less
Large size space construction for space exploitation
NASA Astrophysics Data System (ADS)
Kondyurin, Alexey
2016-07-01
Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).
NASA Astrophysics Data System (ADS)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2017-02-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
Occupational contact dermatitis caused by aniline epoxy resins in the aircraft industry.
Pesonen, Maria; Suuronen, Katri; Jolanki, Riitta; Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Valtanen, Ilona; Alanko, Kristiina
2015-08-01
Tetraglycidyl-4,4'-methylenedianiline (TGMDA) is an aniline epoxy resin used in, for example, resin systems of pre-impregnated composite materials (prepregs) of the aircraft industry. Allergic contact dermatitis caused by TGMDA in prepregs has been described previously. To report on 9 patients with occupational allergic contact dermatitis caused by TGMDA in epoxy glues used in helicopter assembly. The patients were examined with patch testing at the Finnish Institute of Occupational Health in 2004-2009. The first patient was diagnosed by testing both components of two epoxy glues from the workplace, and was also tested with glue ingredients, including TGMDA. The following patients were tested with the glues and TGMDA. The resin parts of the glues were analysed for their epoxy compounds, including TGMDA. All of the patients had a patch test reaction to one or both of the resin parts of the TGMDA-containing glues. Eight of them had a strong allergic reaction to TGMDA, and one had a doubtful reaction to TGMDA. Two of the patients also had an allergic reaction to triglycidyl-p-aminophenol (TGPAP), another aniline epoxy resin, which was not present in the TGMDA-containing glues. In aircraft industry workers with suspected occupational dermatitis, aniline epoxy resins should be considered and patch tested as possible contact allergens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of active CFRP/metal laminates and their demonstrations in complicated forms
NASA Astrophysics Data System (ADS)
Asanuma, H.; Nakata, T.; Tanaka, T.; Imori, M.; Haga, O.
2006-03-01
This paper describes development of high performance CFRP/metal active laminates and demonstrations of them in complicated forms. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature. The aluminum type active laminate was made into complicated forms, that is, a hatch, a stack, a coil and a lift types, and their actuation performances were successfully demonstrated.
NASA Astrophysics Data System (ADS)
Polilov, A. N.; Tatus’, N. A.
2018-04-01
The goal of this paper is analysis of design methods for composite beams and plates with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that traditional composite materials are typically formed using prepregs with rectilinear fibers only. The results application area is associated with design process for shaped composite structure element by using of biomechanical principles. One of the related problems is the evaluation of fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is considered as example, and it can be produced by unidirectional fiber bunch forming, impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when material with required accuracy can be considered as homogeneous, neglecting fiber misorientation, is determined. It is shown that for the beams with height-to-width ratio small enough it is possible to consider 2D misorientation only.
NASA Astrophysics Data System (ADS)
Matveenko, V. P.; Kosheleva, N. A.; Shardakov, I. N.; Voronkov, A. A.
2018-04-01
The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials (PCM). Conventional methods of registration and evaluation of process-induced strains can be laborious, time-consuming and demanding in terms of technical applications. The employment of embedded fibre-optic strain sensors (FOSS) offers a real prospect of measuring residual strains. This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate. The PCM plate is manufactured from prepreg, using the direct compression-moulding method. In this method, the prepared reinforcing package is placed inside a mould, heated, and then exposed to compaction pressure. The examined technology can be used for positioning FOSS between the layers of the composite material. Fibre-optic sensors, interacting with the material of the examined object, make it possible to register the evolution of the strain process during all stages of polymer-composite formation. FOSS data were recorded with interrogator ASTRO X 327. The obtained data were processed using specially developed algorithms.
Fabrication of Fiber-Reinforced Celsian Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Setlock, John A.
2000-01-01
A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.
Failure Analysis in Platelet Molded Composite Systems
NASA Astrophysics Data System (ADS)
Kravchenko, Sergii G.
Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.
Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments
NASA Astrophysics Data System (ADS)
Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.
2017-11-01
Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.
Compression Testing of Textile Composite Materials
NASA Technical Reports Server (NTRS)
Masters, John E.
1996-01-01
The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.
Processing and Properties of a Phenolic Composite System
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Bai, J. M.; Baughman, James M.
2006-01-01
Phenolic resin systems generate water as a reaction by-product via condensation reactions during curing at elevated temperatures. In the fabrication of fiber reinforced phenolic resin matrix composites, volatile management is crucial in producing void-free quality laminates. A commercial vacuum-bag moldable phenolic prepreg system was selected for this study. The traditional single-vacuum-bag (SVB) process was unable to manage the volatiles effectively, resulting in inferior voidy laminates. However, a double vacuum bag (DVB) process was shown to afford superior volatile management and consistently yielded void-free quality parts. The DVB process cure cycle (temperature /pressure profiles) for the selected composite system was designed, with the vacuum pressure application point carefully selected, to avoid excessive resin squeeze-outs and achieve the net shape and target resin content in the final consolidated laminate parts. Laminate consolidation quality was characterized by optical photomicrography for the cross sections and measurements of mechanical properties. A 40% increase in short beam shear strength, 30% greater flexural strength, 10% higher tensile and 18% higher compression strengths were obtained in composite laminates fabricated by the DVB process.
NASA Technical Reports Server (NTRS)
1980-01-01
Principal program activities dealt with the literature survey, design of joint concepts, assessment of GR/PI material quality, fabrication of test panels and specimens, and small specimen testing. Bonded and bolted designs are presented for each of the four major attachment types. Quality control data are presented for prepreg Lots 2W4651 and 3W2020. Preliminary design allowables test results for tension tests and compression tests of laminates are also presented.
Knowledge/Data Mining, Assessment and Forecasting of Ground Military Vehicle Technologies
2010-06-11
Equipment • Commercial Technology Evaluations • University Partnerships • International Cooperative R&D • Manufacturing / Industrial Base... manufacturing of industry successfully solved the blade pitting problem – Excellent adhesion properties of thin films Conclusion • Current...10. Pre‐action • Partially cured prepreg • Assembly line manufacture for automobiles inspired by the watch making industry. • Sterilized medical
Modeling the curing process of thermosetting resin matrix composites
NASA Technical Reports Server (NTRS)
Loos, A. C.
1986-01-01
A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.
Novel Concepts for Conformal Load-Bearing Antenna Structure
2008-02-01
through the entire cross-section of a conductor as visualised in the classical “water- through-a-garden- hose ” explanation of DC current flow. Rather, RF...these fabrics were 6k T650 carbon fibre tows braided into unidirectional fabrics. The 6k tows in these fabrics were oriented in the 0° direction and...90]s lay-up 0.050 DSF0302 Standard aerospace prepreg tape [±45]s lay-up 0.061 DSF0601 Braided standard carbon fibres/Standard resin 6k T650
Low cost damage tolerant composite fabrication
NASA Technical Reports Server (NTRS)
Palmer, R. J.; Freeman, W. T.
1988-01-01
The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.
NASA Technical Reports Server (NTRS)
Connell, John W.
2004-01-01
PETI-5 (1250 and 2500 g/mole) were prepared and characterized. Neat resin, adhesive and composite properties were determined and compared with those of PETI-5 (5000 g/mole). Relative to PETI-5 (5000 g/mole), PETI-5 (2500 g/mole) exhibited improved processability and equivalency in the adhesive and composite properties measured thus far. This resin, in both adhesive film and prepreg form, has the potential to offer significant improvements in the processing of complex structural composite parts.
Manufacturing Methods and Technology (MANTECH) Program for a YAH-64 Composite Flexbeam Tail Rotor.
1982-10-01
pitch link (feathering) motion to the blade. The laminated elastomeric pitch shear support aligns the pitch case with respect to the flexbeam. The pitch...15 for more details) In addition to these doublers, a longo bundle, consisting of S-2 unidirectional glass!5216 epoxy prepreg , extends from the inside...pitch st-ttings. ,-NUB BE R Th, elastomeric snubber is a laminated metal /elastomr bearing that is stiff with respi,,c to rdiat loading, but soft in
Study of flexural rigidity of weavable powder-coated towpreg
NASA Technical Reports Server (NTRS)
Hirt, Douglas E.; Marchello, Joseph M.; Baucom, Robert M.
1990-01-01
An effort has been made to weave powder-impregnated tow into a two-dimensional preform, controlling process variables to obtain high flexural rigidity in the warp direction and greater flexibility in the fill direction. The resulting prepregs have been consolidated into laminates with LaRC-TPI matrices. Complementary SEM and DSC studies have been performed to deepen understanding of the relationship between tow flexibility and heat treatment. Attention is also given to the oven temperature and residence time variables' effects on power/fiber fusion.
Ultrasonic NDE and mechanical testing of fiber placement composites
NASA Astrophysics Data System (ADS)
Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.
2002-05-01
A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.
The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.
76 FR 66283 - Notice of Intent To Grant Partially Exclusive Patent License; BOLD Industries, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... Method for a Mobile Tracking Device.//U.S. Patent Application No. 20110036998 filed on August 14, 2009: Countermeasure Device for a Mobile Tracking Device.//U.S. Patent Application No. 20110113949 filed on May 12, 2010: Modulation Device for a Mobile Tracking Device.//U.S. Patent Application Serial No. 12/778,643...
Applications for alliform carbon
Gogotsi, Yury; Mochalin, Vadym; McDonough, IV, John Kenneth; Simon, Patrice; Taberna, Pierre Louis
2017-02-21
This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.
21 CFR 880.6025 - Absorbent tipped applicator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... stick. The device is used to apply medications to, or to take specimens from, a patient. (b...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6025 Absorbent tipped applicator. (a) Identification. An absorbent tipped applicator is a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
...] Pilot Program for Early Feasibility Study Investigational Device Exemption Applications AGENCY: Food and... feasibility study investigational device exemption (IDE) applications. The pilot program will conform to the... Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies.'' Under the pilot...
Karbhari, Vistasp M; Strassler, Howard
2007-08-01
The aim of this study was to compare and elucidate the differences in damage mechanisms and response of fiber-reinforced dental resin composites based on three different brands under flexural loading. The types of reinforcement consisted of a unidirectional E-glass prepreg (Splint-It from Jeneric/Petron Inc.), an ultrahigh molecular weight polyethylene fiber based biaxial braid (Connect, Kerr) and an ultrahigh molecular weight polyethylene fiber based leno-weave (Ribbond). Three different commercially available fiber reinforcing systems were used to fabricate rectangular bars, with the fiber reinforcement close to the tensile face, which were tested in flexure with an emphasis on studying damage mechanisms and response. Eight specimens (n=8) of each type were tested. Overall energy capacity as well as flexural strength and modulus were determined and results compared in light of the different abilities of the architectures used. Under flexural loading unreinforced and unidirectional prepreg reinforced dental composites failed in a brittle fashion, whereas the braid and leno-weave reinforced materials underwent significant deformation without rupture. The braid reinforced specimens showed the highest peak load. The addition of the unidirectional to the matrix resulted in an average strain of 0.06mm/mm which is 50% greater than the capacity of the unreinforced matrix, whereas the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHM polyethylene fibers and the architectures to hold together without rupture under flexural loading. The addition of the fiber reinforcement substantially increases the level of strain energy in the specimens with the maximum being attained in the braid reinforced specimens with a 433% increase in energy absorption capability above the unreinforced case. The minimum scatter and highest consistency in response is seen in the leno-weave reinforced specimens due to the details of the architecture which restrict fabric shearing and movement during placement. It is crucial that the appropriate selection of fiber architectures be made not just from a perspective of highest strength, but overall damage tolerance and energy absorption. Differences in weaves and architectures can result in substantially different performance and appropriate selection can mitigate premature and catastrophic failure. The study provides details of materials level response characteristics which are useful in selection of the fiber reinforcement based on specifics of application.
Flexible devices: from materials, architectures to applications
NASA Astrophysics Data System (ADS)
Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong
2018-01-01
Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).
Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris
2018-01-01
Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved. PMID:29701698
Martín, Cristian; Hoebeke, Jeroen; Rossey, Jen; Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris
2018-04-26
Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved.
Cohesive Laws for Analyzing Through-Crack Propagation in Cross Ply Laminates
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Davila, Carlos G.
2015-01-01
The laminate cohesive approach (LCA) is a methodology for the experimental characterization of cohesive through-the-thickness damage propagation in fiber-reinforced polymer matrix composites. LCA has several advantages over other existing approaches for cohesive law characterization, including: visual measurements of crack length are not required, structural effects are accounted for, and LCA can be applied when the specimen is too small to achieve steady-state fracture. In this work, the applicability of this method is investigated for two material systems: IM7/8552, a conventional prepreg, and AS4/VRM34, a non-crimp fabric cured using an out-of-autoclave process. The compact tension specimen configuration is used to propagate stable Mode I damage. Trilinear cohesive laws are characterized using the fracture toughness and the notch tip opening displacement. Test results are compared for the IM7/8552 specimens with notches machined by waterjet and by wire slurry saw. It is shown that the test results are nearly identical for both notch tip preparations methods, indicating that significant specimen preparation time and cost savings can be realized by using the waterjet to notch the specimen instead of the wire slurry saw. The accuracy of the cohesive laws characterized herein are assessed by reproducing the structural response of the test specimens using computational methods. The applicability of the characterization procedure for inferring lamina fracture toughness is also discussed.
Modelling the development of defects during composite reinforcements and prepreg forming
Hamila, N.; Madeo, A.
2016-01-01
Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of ‘locking angle’ is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar ‘transition zones’ that are directly related to the bending stiffness of the fibres. The ‘transition zones’ are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242300
Modelling the development of defects during composite reinforcements and prepreg forming.
Boisse, P; Hamila, N; Madeo, A
2016-07-13
Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of 'locking angle' is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar 'transition zones' that are directly related to the bending stiffness of the fibres. The 'transition zones' are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Kondyurin, A; Lauke, B; Kondyurina, I; Orba, E
2004-01-01
The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Chao; Shi, Yaoyao; He, Xiaodong; Yu, Tao; Deng, Bo; Zhang, Hongji; Sun, Pengcheng; Zhang, Wenbin
2017-09-01
This study investigates the multi-objective optimization of quality characteristics for a T300/epoxy prepreg tape-wound cylinder. The method integrates the Taguchi method, grey relational analysis (GRA) and response surface methodology, and is adopted to improve tensile strength and reduce residual stress. In the winding process, the main process parameters involving winding tension, pressure, temperature and speed are selected to evaluate the parametric influences on tensile strength and residual stress. Experiments are conducted using the Box-Behnken design. Based on principal component analysis, the grey relational grades are properly established to convert multi-responses into an individual objective problem. Then the response surface method is used to build a second-order model of grey relational grade and predict the optimum parameters. The predictive accuracy of the developed model is proved by two test experiments with a low prediction error of less than 7%. The following process parameters, namely winding tension 124.29 N, pressure 2000 N, temperature 40 °C and speed 10.65 rpm, have the highest grey relational grade and give better quality characteristics in terms of tensile strength and residual stress. The confirmation experiment shows that better results are obtained with GRA improved by the proposed method than with ordinary GRA. The proposed method is proved to be feasible and can be applied to optimize the multi-objective problem in the filament winding process.
Recycling of Reinforced Plastics
NASA Astrophysics Data System (ADS)
Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri
2014-02-01
This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.
Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates
NASA Astrophysics Data System (ADS)
Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos
2018-03-01
Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janke, C.J.
Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly becausemore » of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements in the transverse tensile strength, were achieved. The project team was not satisfied with the laminate quality achieved, and low quality (specifically, high void fraction) laminates will compromise the composite properties. There were several problems with the prepregging and fabrication, many of them related to the use of new fiber treatments.« less
The nightmare of FDA clearance/approval to market: perception or reality?
Tylenda, C A
1996-09-01
Over the last few years the Center for Device Evaluation and Research (CDRH) at the Food and Drug Administration (FDA) has received annually over 16 thousand submissions related to medical devices. Over 10,000 of these are major submissions which include applications to conduct clinical trials and applications to market medical devices for a specified indication for use. Each application is carefully considered. FDA personnel work closely with applicants to ensure that clinical trial design minimizes risk to the patients and maximizes benefit with respect to addressing the safety and effectiveness of the device being tested. Applicants are given every opportunity to provide additional information when necessary to assure that applications to market medical devices are complete. Applicants have the opportunity to meet with FDA staff prior to submitting applications in cases where the application is other than a straight forward, uncomplicated submission. In addition, FDA assists applicants through the development of guidance documents, which discuss the type of information that would be beneficial to include in a submission. The Division of Small Manufacturers Assistance at FDA is dedicated to helping interested persons understand the clearance/approval process. This paper will discuss the role of FDA in the regulation of medical devices, with an emphasis on the pathway to obtaining permission to market medical devices in the United States.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
...] Pilot Program for Early Feasibility Study Investigational Device Exemption Applications; Termination of... acceptance of nominations for the Early Feasibility Study Investigational Device Exemption (IDE) Applications... technologies to participate in a pilot program for early feasibility study IDE applications. FDA is also...
Systems and methods to control multiple peripherals with a single-peripheral application code
Ransom, Ray M.
2013-06-11
Methods and apparatus are provided for enhancing the BIOS of a hardware peripheral device to manage multiple peripheral devices simultaneously without modifying the application software of the peripheral device. The apparatus comprises a logic control unit and a memory in communication with the logic control unit. The memory is partitioned into a plurality of ranges, each range comprising one or more blocks of memory, one range being associated with each instance of the peripheral application and one range being reserved for storage of a data pointer related to each peripheral application of the plurality. The logic control unit is configured to operate multiple instances of the control application by duplicating one instance of the peripheral application for each peripheral device of the plurality and partitioning a memory device into partitions comprising one or more blocks of memory, one partition being associated with each instance of the peripheral application. The method then reserves a range of memory addresses for storage of a data pointer related to each peripheral device of the plurality, and initializes each of the plurality of peripheral devices.
Stress Analysis and Permeability Testing of Cryogenic Composite Feed Line
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip
1999-01-01
For the next generation Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV), the use of advanced composite materials is highly desirable and critical to the success of the mission. NASA Marshall Space Flight Center (MSFC) has been working with the aerospace industry for many years to develop and demonstrate the cryogenic composite propellant tanks and feed lines technologies. A 50.8-mm diameter composite feed line for the Clipper Graham (DCY.A) was developed and tested. The purpose of the program is to demonstrate the LH2 permeability, composite to composite and metal joints, as well as composite flange interface of the composite feed line. Stress analysis and permeability testing have been performed on this article. Recently, a larger composite feed line design is being investigated and developed at MSFC for potential use in future RLV. The diameter of the feed line is 203 mm and the overall length is approximately 2.2 meters. This one piece unlined feed line consists of three straight tubular sections joined by two 90 degree elbows. The material chosen is IM7/977-3 prepreg fabric. The lay-up pattern is [0/90, plus or minus 45]s and is built up to 18 plies to the flanges at both ends. A preliminary stress analysis has been conducted to identify potential critical stresses and to develop the finite element analysis (FEA) capability of composite feed lines. As expected, the critical stresses occurred at the rims of some flange holes and the onset of the tapered tubular sections. Further analysis is required to determine the loads, flange deflection, vibration, and combined maximum loads. Two permeability-testing apparatuses were also designed for both flat panel specimens and curved feed line sections after impact damage. A larger permeant gas exposed area is required to accurately determine the effect of impact damage on the permeability of the feed line materials. The flat panel tester was fabricated and assembled. Three test coupons were made of graphite/epoxy plain weave prepreg and unidirectional prepreg. The flow rate was calculated by measuring the change of manometer fluid height per unit time. The permeability of the coupons is then calculated according to Darcy's Law. The pressure increase due to the head rise in the manometer was not considered for the initial estimation. The result of the unidirectional composite coupon agreed with that obtained from the DC-XA feed line testing of a similar material. Further improvement on the design may be required to improve the accuracy and efficiency of permeability testing.
NASA Technical Reports Server (NTRS)
Kaul, Anupama B. (Inventor); Epp, Larry W. (Inventor); Bagge, Leif (Inventor)
2013-01-01
Carbon nanofiber resonator devices, methods for use, and applications of said devices are disclosed. Carbon nanofiber resonator devices can be utilized in or as high Q resonators. Resonant frequency of these devices is a function of configuration of various conducting components within these devices. Such devices can find use, for example, in filtering and chemical detection.
21 CFR 888.5980 - Manual cast application and removal instrument.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual cast application and removal instrument... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application and removal instrument. (a) Identification. A manual cast application and removal instrument is a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Options for design and applications of traffic control devices, this Manual should not be considered a... application of traffic control devices, as well as in the location and design of roads and streets that the..., while this Manual provides Standards, Guidance, and Options for design and applications of traffic...
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.
1985-01-01
The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.
Processing module operating methods, processing modules, and communications systems
McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy
2014-09-09
A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.
1988-01-01
Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.B.; Carmichael, A.A.; Kremers, W.
The mechanical and physical properties of electron-beam (EB) curable carbon-fiber-reinforced composites were investigated, using a resin matrix made from a mixture of 50 percent of an epoxy diacrylate oligomer, 30 percent of a polybutadiene diacrylate oligomer, and 20 percent of dipentaerythritol monohydroxypentaacrylate monomer, and applying varying EB doses for curing the mixture. It was found that the gel content in the cured prepreg polymer depended upon the total EB dose below 50 kGy, the dose rate, and, at a low dose of 16 kGy/hr, on the atmosphere and pressure during irradiation. 14 refs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, John A.
A new, all ceramic magnet insulation system has been developed that can withstand the high radiation doses without significant damage. The insulation can be applied directly onto a Nb3Sn or copper cable as a ceramic based prepreg system using the same equipment and procedures used for the traditional epoxy systems. Excessive porosity was eliminated and compressions strength increased. Thermal expansion nearly matches the expansion of niobium tin conductor wire. A radiation test program has been defined and magnet fabrication issues have been identified. This report covers the results of the Phase I research program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu-khanh, T.; Denault, J.
The effects of the conditions of the processing of PEEK/carbon prepregs and comingled fabric on the microstructure and mechanical characteristics of the resulting composites were investigated. Results showed that, in the comingled fabric system, the fiber/matrix adhesion depends on the molding temperature, the residence time at the melt temperature, and the cooling rate. Too high molding temperature resulted in degradation of the PEEK matrix, which affected the crystallization behavior of the composites, the fiber/matrix adhesion, and the matrix properties. This effect was most important in the case of comingled systems containing sized carbon fibers. 17 refs.
Mechanisms of CFR composites destruction studying with pulse acoustic microscopy
NASA Astrophysics Data System (ADS)
Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.
2016-05-01
Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.
Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability
NASA Technical Reports Server (NTRS)
2005-01-01
This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.
Numerical investigation of the effect of delaminations on fracture characteristics of glare
NASA Astrophysics Data System (ADS)
Bhat, Sunil; Narayanan, S.
2013-10-01
A finite element examination of the effect of delaminations on fracture characteristics of fibre metal laminate (Glare), by comparing energy release rates of normal cracks in laminates with and without delaminations, is presented in the paper. Glare comprising thin cracked 2024-T3 aerospace aluminum alloy layers alternately bonded with E-glass fibre based composite prepregs is considered for the analysis. Delaminations are modeled with interface cohesive elements. Energy release rates of normal cracks in laminates with delaminations are found to be higher than those in the laminates without delaminations.
Quartz and E-glass fiber self-sensing composites
NASA Astrophysics Data System (ADS)
Zolfaghar, K.; Khan, N. A.; Brooks, David; Hayes, Simon A.; Liu, Tonguy; Roca, J.; Lander, J.; Fernando, Gerard F.
1998-04-01
This paper reports on developments in the field of self- sensing fiber reinforced composites. The reinforcing fibers have been surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in carbon fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. The self-sensing fibers were capable of detecting a 2 J impact.
NERVA turbopump bearing retainer fabrication on nonmetallic retainer
NASA Technical Reports Server (NTRS)
Accinelli, J. B.
1972-01-01
The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10 to the 9th power rads (C) prompted development of nonmetallic reinforced polymers of the following types: (1) polybenzimidazole, (2) polyimide, and (3) polyquinoxaline. Retainers were machined from tubular laminates (billets), including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this prepreg over a heated mandrel to form a tube with the required thickness and length.
1981-10-01
Protection Resin Nomex Composite Structure Tooling Graphite Electrolysis Ballistic Survivability 24. AUMT ACT’ (Zim llea m di nemsy mitily by block minubr...angles required by the design. 105 , ~ ii i w d q 100 Aluminum male molds (Figure 69) are u~tri to lay up prepreg material to form the angles that attach...aluminum male mold shaped to the airfoil contour as Figure 78 indicates. The spars and ribs are laid up in matched metal molds with silicone rubber
Progress and Prospects in Stretchable Electroluminescent Devices
NASA Astrophysics Data System (ADS)
Wang, Jiangxin; Lee, Pooi See
2017-03-01
Stretchable electroluminescent (EL) devices are a new form of mechanically deformable electronics that are gaining increasing interests and believed to be one of the essential technologies for next generation lighting and display applications. Apart from the simple bending capability in flexible EL devices, the stretchable EL devices are required to withstand larger mechanical deformations and accommodate stretching strain beyond 10%. The excellent mechanical conformability in these devices enables their applications in rigorous mechanical conditions such as flexing, twisting, stretching, and folding.The stretchable EL devices can be conformably wrapped onto arbitrary curvilinear surface and respond seamlessly to the external or internal forces, leading to unprecedented applications that cannot be addressed with conventional technologies. For example, they are in demand for wide applications in biomedical-related devices or sensors and soft interactive display systems, including activating devices for photosensitive drug, imaging apparatus for internal tissues, electronic skins, interactive input and output devices, robotics, and volumetric displays. With increasingly stringent demand on the mechanical requirements, the fabrication of stretchable EL device is encountering many challenges that are difficult to resolve. In this review, recent progresses in the stretchable EL devices are covered with a focus on the approaches that are adopted to tackle materials and process challenges in stretchable EL devices and delineate the strategies in stretchable electronics. We first introduce the emission mechanisms that have been successfully demonstrated on stretchable EL devices. Limitations and advantages of the different mechanisms for stretchable EL devices are also discussed. Representative reports are reviewed based on different structural and material strategies. Unprecedented applications that have been enabled by the stretchable EL devices are reviewed. Finally, we summarize with our perspectives on the approaches for the stretchable EL devices and our proposals on the future development in these devices.
21 CFR 814.104 - Original applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Original applications. 814.104 Section 814.104...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES Humanitarian Use Devices § 814.104 Original... applicant. (d) Address for submissions and correspondence. Copies of all original HDEs amendments and...
Glue-free assembly of glass fiber reinforced thermoplastics using laser light
NASA Astrophysics Data System (ADS)
Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.
2011-05-01
The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.
Shape memory alloy wires turn composites into smart structures: II. Manufacturing and properties
NASA Astrophysics Data System (ADS)
Michaud, Veronique J.; Schrooten, Jan; Parlinska, Magdelena; Gotthardt, Rolf; Bidaux, Jacques-Eric
2002-07-01
The manufacturing route and resulting properties of adaptive composites are presented in the second part of this European project report. Manufacturing was performed using a specially designed frame to pre-strain the SMA wires, embed them into Kevlar-epoxy prepregs, and maintain them during the curing process in an autoclave. Composite compounds were then tested for strain response, recovery stress response in a clamped-clamped configuration, as well as vibrational response. Through the understanding of the transformational behavior of constrained SMA wires, interesting and unique functional properties of SMA composites could be measured, explained and modeled. Large recovery stresses and as a consequence, a change in vibrational response in a clamped- clamped condition, or a reversible shape change in a free standing condition, could be generated by the SMA composites in a controllable way. These properties were dependent on composite design aspects and exhibited a reproducible and stable behavior, provided that the properties of the matrix, of the wires and the processing route were carefully optimized. In conclusion, the achievements of this effort in areas such as thermomechanics, transformational and vibrational behavior and durability of SMA based composites provide a first step towards a reliable materials design, and potentially an industrial application.
Performance of SMA-reinforced composites in an aerodynamic profile
NASA Astrophysics Data System (ADS)
Simpson, John; Boller, Christian
2002-07-01
Within the European collaborative applied fundamental research project ADAPT, fundamentals of SMA-reinforced composites were evaluated and the specific manufacturing techniques for these composites developed and realised. The involved partners are listed at the end. To demonstrate applicability of these composites a realistically scaled aerodynamic profile of around 0.5m span by 0.5m root chord was designed, manufactured and assembled. The curved skins were manufactured as SMA composites with two layers of SMA-wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and activated and excited by a shaker at its tip which allowed to test the dynamic performance of the profile under different external loading conditions with various internal actuation conditions through the SMA wires. The paper includes some background of the design and manufacturing of the aerodynamic profile and will discuss some of the results determined recently on the test rig. A view with regard to future wind tunnel testing will be given as well.
Influence of technology on magnetic tape storage device characteristics
NASA Technical Reports Server (NTRS)
Gniewek, John J.; Vogel, Stephen M.
1994-01-01
There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.
Forensic analysis of social networking application on iOS devices
NASA Astrophysics Data System (ADS)
Zhang, Shuhui; Wang, Lianhai
2013-12-01
The increased use of social networking application on iPhone and iPad make these devices a goldmine for forensic investigators. Besides, QQ, Wechat, Sina Weibo and skype applications are very popular in China and didn't draw attention to researchers. These social networking applications are used not only on computers, but also mobile phones and tablets. This paper focuses on conducting forensic analysis on these four social networking applications on iPhone and iPad devices. The tests consisted of installing the social networking applications on each device, conducting common user activities through each application and correlation analysis with other activities. Advices to the forensic investigators are also given. It could help the investigators to describe the crime behavior and reconstruct the crime venue.
Application accelerator system having bunch control
Wang, Dunxiong; Krafft, Geoffrey Arthur
1999-01-01
An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.
Application of phase-change materials in memory taxonomy.
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.
Finite element model correlation of a composite UAV wing using modal frequencies
NASA Astrophysics Data System (ADS)
Oliver, Joseph A.; Kosmatka, John B.; Hemez, François M.; Farrar, Charles R.
2007-04-01
The current work details the implementation of a meta-model based correlation technique on a composite UAV wing test piece and associated finite element (FE) model. This method involves training polynomial models to emulate the FE input-output behavior and then using numerical optimization to produce a set of correlated parameters which can be returned to the FE model. After discussions about the practical implementation, the technique is validated on a composite plate structure and then applied to the UAV wing structure, where it is furthermore compared to a more traditional Newton-Raphson technique which iteratively uses first-order Taylor-series sensitivity. The experimental testpiece wing comprises two graphite/epoxy prepreg and Nomex honeycomb co-cured skins and two prepreg spars bonded together in a secondary process. MSC.Nastran FE models of the four structural components are correlated independently, using modal frequencies as correlation features, before being joined together into the assembled structure and compared to experimentally measured frequencies from the assembled wing in a cantilever configuration. Results show that significant improvements can be made to the assembled model fidelity, with the meta-model procedure producing slightly superior results to Newton-Raphson iteration. Final evaluation of component correlation using the assembled wing comparison showed worse results for each correlation technique, with the meta-model technique worse overall. This can be most likely be attributed to difficultly in correlating the open-section spars; however, there is also some question about non-unique update variable combinations in the current configuration, which lead correlation away from physically probably values.
Stratospheric experiments on curing of composite materials
NASA Astrophysics Data System (ADS)
Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey
2016-07-01
Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.
[Development of visible-light cured FRP denture].
Yu, P Y
1990-06-01
Acrylic denture may be fractured easily because it has a relatively poor resistance to stresses of impact, and the thick acrylic denture base also uncomforted to denture wearers. In this study, for improvement of the mechanical properties, the FRP is applied to the denture base, and try to make a thin denture base. Using the visible light-curing system, the laboratory fabrication time is saved dramatically. To develop the visible light-cured FRP denture base, with various combination of matrix resins and reinforcements, the physical properties of FRP plates were investigated first. From the results of the bending test, hardness test, and manipulation considering, the sateen weave's glasscloth was choose as the reinforcement of the prepreg. The matrix resin of Bis-GMA/UDMA/3G at 48/48/4 wt% was determined. The 3 plies glasscloth included FRP plate is 0.8 mm thickness has the maximum bending strength about 50 kgf/mm2, which is about 5 times larger than that of acrylic resin. Succeeding the study of above, the FRP denture base was fabricated by using the 0.8 mm thickness 3 plies included prepreg. This repreg is manufactured in sheet form beforehand, which is ease to manipulate at laboratory. By using the visible light curing system, it is only taken 10 min. to make a FRP denture base. The following procedures of fabricating a FRP denture is the same as metalplate denture. The visible-light cured FRP denture has some advantages such as accuracy of fit, ease of fabrication and manipulation, and only 0.8 mm thickness but has superior strength.
21 CFR 888.5980 - Manual cast application and removal instrument.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...
21 CFR 888.5980 - Manual cast application and removal instrument.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...
21 CFR 888.5980 - Manual cast application and removal instrument.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...
21 CFR 888.5980 - Manual cast application and removal instrument.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...
Magnus effect: An overview of its past and future practical applications, 1850-1985, volumes 1 and 2
NASA Astrophysics Data System (ADS)
Borg, J.
The report is in two volumes and is intended to present the known data and past and future applications of Magnus effect devices. (Magnus effect devices are very high lift devices which can be used in applications where airfoils are currently used.) This first volume includes the history of Magnus effect devices, theory and principles, a significant patent review, practical marine applications, formulas and experimental data, comparisons of Magnus effect and other state-of-the-art devices, identification of further testing needed, and a proposed test program. Appendices include rudder research and a literature critique. The second volume is a collection of the drawings for 39 magnus effect patents plus a critique of each patent evaluating its potential, especially for marine applications.
21 CFR 886.4610 - Ocular pressure applicator.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4610 Ocular pressure applicator. (a... bulb, a dial indicator, a band, and bellows, intended to apply pressure on the eye in preparation for...
Application accelerator system having bunch control
Wang, D.; Krafft, G.A.
1999-06-22
An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.
78 FR 33447 - Draft Applications for Sealed Source and Device Evaluation and Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0104] Draft Applications for Sealed Source and Device... for sealed source and device evaluation and registration. The NRC is requesting public comment on... for Sealed Source and Device Evaluation and Registration.'' The document has been updated from the...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Marketing history. A brief description of the foreign and U.S. marketing history, if any, of the device... the device has been withdrawn from marketing for any reason related to the safety or effectiveness of the device. The description shall include the history of the marketing of the device by the applicant...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... INTERNATIONAL TRADE COMMISSION [DN 2874] Certain Ink Application Devices and Components Thereof... the U.S. International Trade Commission has received a complaint entitled In Re Certain Ink... United States after importation of certain ink application devices and components thereof and methods of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-832] Certain Ink Application Devices and..., and the sale within the United States after importation of certain ink application devices and... or, in the alternative, granting Complainants' motion for an ID finding T-Tech in default pursuant to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... research and marketing applications for medical devices. This draft guidance is not final nor is it in... FDA-regulated products (21 CFR 58.1). The draft guidance provides clarification on GLP terminology, the types of medical device research or marketing applications that are subject to the GLP regulation...
Resin transfer molding of textile preforms for aircraft structural applications
NASA Technical Reports Server (NTRS)
Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.
1992-01-01
The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.
A critical review of nanotechnologies for composite aerospace structures
NASA Astrophysics Data System (ADS)
Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent
2017-03-01
The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.
SAW devices for consumer communication applications.
Ruppel, C W; Dill, R; Fischerauer, A; Fischerauer, G; Gawlik, A; Machui, J; Muller, F; Reindl, L; Ruile, W; Scholl, G; Schropp, I; Wagner, K C
1993-01-01
An overview of surface acoustic wave (SAW) filter techniques available for different applications is given. Techniques for TV IF applications are outlined, and typical structures are presented. This is followed by a discussion of applications for SAW resonators. Low-loss devices for mobile communication systems and pager applications are examined. Tapped delay lines (matched filters) and convolvers for code-division multiaccess (CDMA) systems are also covered. Although simulation procedures are not considered, for many devices the theoretical frequency response is presented along with the measurement curve.
Silicon superlattices: Theory and application to semiconductor devices
NASA Technical Reports Server (NTRS)
Moriarty, J. A.
1981-01-01
Silicon superlattices and their applicability to improved semiconductor devices were studied. The device application potential of the atomic like dimension of III-V semiconductor superlattices fabricated in the form of ultrathin periodically layered heterostructures was examined. Whether this leads to quantum size effects and creates the possibility to alter familiar transport and optical properties over broad physical ranges was studied. Applications to improved semiconductor lasers and electrondevices were achieved. Possible application of silicon sperlattices to faster high speed computing devices was examined. It was found that the silicon lattices show features of smaller fundamental energyband gaps and reduced effective masses. The effects correlate strongly with both the chemical and geometrical nature of the superlattice.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
Graphene-Based Flexible and Stretchable Electronics.
Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun
2016-06-01
Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2010 CFR
2010-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2013 CFR
2013-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2014 CFR
2014-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2012 CFR
2012-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
NASA Technical Reports Server (NTRS)
1979-01-01
Graphite/polyimide (Gr/PI) bolted and bonded joints were investigated. Possible failure modes and the design loads for the four generic joint types are discussed. Preliminary sizing of a type 1 joint, bonded and bolted configuration is described, including assumptions regarding material properties and sizing methodology. A general purpose finite element computer code is described that was formulated to analyze single and double lap joints, with and without tapered adherends, and with user-controlled variable element size arrangements. An initial order of Celion 6000/PMR-15 prepreg was received and characterized.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1994-01-01
During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg - role of surface coating in braiding; prepregger hot sled operation in making tape from powder coated tow; ribbonizing powder-impregnated towpreg; textile composites from powder-coated towpreg - role of bulk factor in consolidation; powder curtain prepreg process improvements in doctoring of powder; and hot/cold shoe for ATP open-section part warpage control.
Preparing polymeric matrix composites using an aqueous slurry technique
NASA Technical Reports Server (NTRS)
Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)
1993-01-01
An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.
Titanium reinforced boron-polyimide composite
NASA Technical Reports Server (NTRS)
Clark, G. A.; Clayton, K. I.
1969-01-01
Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.
Evaluation of Repair Efficiency in Structures Made of Fibrous Polymer Composite Materials
NASA Astrophysics Data System (ADS)
Anoshkin, A. N.; Vil'deman, V. E.; Lobanov, D. S.; Chikhachev, A. I.
2014-07-01
Full-scale experimental investigations into the residual strength of structurally similar elements of acoustical panels after a local repair of defects, such as through breakdown, were conducted. Local repairs without using the vacuum technology were carried out. The technology of repair consists in removing and layer-bylayer replacing the damaged layers of material with repaired ones. For comparison, undamaged and repaired sandwich panel specimens were tested in tension and compression. The specimens were produced by serial technology from a VPS-33 fiberglass prepreg. Their deformation and fracture mechanisms are analyzed, and their loading diagrams are obtained.
NASA Astrophysics Data System (ADS)
Barkanov, E.; Beschetnikov, D.; Lvov, G.
2015-01-01
A mathematical model for the contact interaction of a cylindrical pipe with a composite band during its repair is constructed. A system of governing equations of the contact problem is formulated by using the Timoshenko theory of shells. An analysis of possible solutions is carried out for various combinations of geometric and elastic properties of shells. The possibility of pretension of a prepreg in order to improve the efficiency of repair is considered. The numerical results obtained allow one to establish the desired level of pretension for various repair situations.
How to make auxetic fibre reinforced composites
NASA Astrophysics Data System (ADS)
Alderson, K. L.; Simkins, V. R.; Coenen, V. L.; Davies, P. J.; Alderson, A.; Evans, K. E.
2005-03-01
Auxetic composite materials can be produced either from conventional components via specially designed configurations or from auxetic components. This paper reviews manufacturing methods for both these scenarios. It then looks at the possibility of property enhancements in both low velocity impact and fibre pull out due to the negative Poisson's ratio. Tests revealed that auxetic carbon fibre composites made from commercially available prepreg show evidence of increased resistance to low velocity impact and static indentation with a smaller area of damage. Also, using auxetic fibres in composite materials is shown to produce a higher resistance to fibre pullout.
Thermochemical tests on resins: Char resistance of selected phenolic cured epoxides
NASA Technical Reports Server (NTRS)
Keck, F. L.
1982-01-01
Curing epoxy resins with novalac phenolic resins is a feasible approach for increasing intact char of the resin system. Char yields above 40% at 700 C were achieved with epoxy novalac (DEN 438)/novalac phenolic (BRWE 5833) resin systems with or without catalyst such as ethyl tri-phenyl phosphonium iodide. These char yields are comparable to commercially used epoxy resin systems like MY-720/DDS/BF3. Stable prepregs are easily made from a solvent solution of the epoxy/phenolic system and this provides a feasible process for fabrication of same into commercial laminates.
Causes and remedies for porosity in composite manufacturing
NASA Astrophysics Data System (ADS)
Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.
2016-07-01
Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.
Quality improvement of polymer parts by laser welding
NASA Astrophysics Data System (ADS)
Puetz, Heidrun; Treusch, Hans-Georg; Welz, M.; Petring, Dirk; Beyer, Eckhard; Herziger, Gerd
1994-09-01
The growing significance of laser technology in industrial manufacturing is also observed in case of plastic industry. Laser cutting and marking are established processes. Laser beam welding is successfully practiced in processes like joining foils or winding reinforced prepregs. Laser radiation and its significant advantages of contactless and local heating could even be an alternative to conventional welding processes using heating elements, vibration or ultrasonic waves as energy sources. Developments in the field of laser diodes increase the interest in laser technology for material processing because in the near future they will represent an inexpensive energy source.
Development of SiC/SiC composites by PIP in combination with RS
NASA Astrophysics Data System (ADS)
Kotani, Masaki; Kohyama, Akira; Katoh, Yutai
2001-02-01
In order to improve the mechanical performances of SiC/SiC composite, process improvement and modification of polymer impregnation and pyrolysis (PIP) and reaction sintering (RS) process were investigated. The fibrous prepregs were prepared by a polymeric intra-bundle densification technique using Tyranno-SA™ fiber. For inter-bundle matrix, four kinds of process options utilizing polymer pyrolysis and reaction sintering were studied. The process conditions were systematically optimized through fabricating monoliths. Then, SiC/SiC composites were fabricated using optimized inter-bundle matrix slurries in each process for the first inspection of process requirements.
Eddy-Current Monitoring Of Composite Layups
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1993-01-01
Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.
Flexible thermoset towpregs by electrostatic powder fusion coating
NASA Technical Reports Server (NTRS)
Yang, Pei-Hua; Varughese, Babu; Muzzy, John D.
1991-01-01
Thermoset prepregs of expoxy and polyimide have been produced by electrostatic deposition of charged fluidized polymer powders on spread continuous fiber tows. The powders are melted onto the fibers by radiant heating to adhere the polymer to the fiber. This process produces towpreg uniformly and rapidly without imposing severe stresses on the fibers. The towpregs produced by this novel process were consolidated to make unidirectional laminates for mechanical testing. Low void content samples have been made and demonstrated by C-scan and scanning electron microscopy. The mechanical properties of unidirectional laminates are equivalent to composites fabricated by conventional techniques.
Fatigue damage development of various CFRP-laminates
NASA Technical Reports Server (NTRS)
Schulte, K.; Baron, CH.
1988-01-01
The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.
1989-01-01
A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.
Consolidation modelling for thermoplastic composites forming simulation
NASA Astrophysics Data System (ADS)
Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.
2016-10-01
Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.
Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles
NASA Technical Reports Server (NTRS)
Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael
2012-01-01
Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.
Application of phase-change materials in memory taxonomy
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557
Curing Composite Materials Using Lower-Energy Electron Beams
NASA Technical Reports Server (NTRS)
Byrne, Catherine A.; Bykanov, Alexander
2004-01-01
In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately equal to 41 cm) thick, without a ceiling. The success of the present method depends on the use of a cationic epoxy as the matrix material in the prepreg tape, heating the prepreg tape to a temperature of 50 C immediately prior to layup, and exposing the workpiece to an electron-beam dose of approximately 2 Mrad. Experiments have shown that structures fabricated by the present method have the same mechanical properties as those of nominally identical structures fabricated by the prior method with electron beams of 3 to 4 MeV.
Liu, Shenglin; Zhang, Xutian; Wang, Guohong; Zhang, Qiang
2012-03-01
Based on specified demands on medical devices maintenance for clinical engineers and Browser/Server architecture technology, a medical device maintenance information platform was developed, which implemented the following modules such as repair, preventive maintenance, accessories management, training, document, system management and regional cooperation. The characteristics of this system were summarized and application in increase of repair efficiency, improvement of preventive maintenance and cost control was introduced. The application of this platform increases medical device maintenance service level.
Liu, Zhike; Lau, Shu Ping; Yan, Feng
2015-08-07
Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
Review of multi-layered magnetoelectric composite materials and devices applications
NASA Astrophysics Data System (ADS)
Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang
2018-06-01
Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.
Performance Thresholds for Application of MEMS Inertial Sensors in Space
NASA Technical Reports Server (NTRS)
Smit, Geoffrey N.
1995-01-01
We review types of inertial sensors available and current usage of inertial sensors in space and the performance requirements for these applications. We then assess the performance available from micro-electro-mechanical systems (MEMS) devices, both in the near and far term. Opportunities for the application of these devices are identified. A key point is that although the performance available from MEMS inertial sensors is significantly lower than that achieved by existing macroscopic devices (at least in the near term), the low cost, low size, and power of the MEMS devices opens up a number of applications. In particular, we show that there are substantial benefits to using MEMS devices to provide vibration, and for some missions, attitude sensing. In addition, augmentation for global positioning system (GPS) navigation systems holds much promise.
Conference on Charge-Coupled Device Technology and Applications
NASA Technical Reports Server (NTRS)
1976-01-01
Papers were presented from the conference on charge coupled device technology and applications. The following topics were investigated: data processing; infrared; devices and testing; electron-in, x-ray, radiation; and applications. The emphasis was on the advances of mutual relevance and potential significance both to industry and NASA's current and future requirements in all fields of imaging, signal processing and memory.
Optical methods for wireless implantable sensing platforms
NASA Astrophysics Data System (ADS)
Mujeeb-U-Rahman, Muhammad; Chang, Chieh-Feng; Scherer, Axel
2013-09-01
Ultra small scale implants have gained lots of importance for both acute and chronic applications. Optical techniques hold the key to miniaturizing these devices to long sought sub-mm scale. This will lead towards long term use of these devices for medically relevant applications. It can also allow using multiple of these devices at the same time and forming a true body area network of sensors. In this paper, we present optical power transfer to such devices and the techniques to harness this power for different applications, for example high voltage or high current applications. We also present methods for wireless data transfer from such implants.
A review of digital microfluidics as portable platforms for lab-on a-chip applications.
Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina
2016-07-07
Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1983-01-01
GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.
Hybrid Power Management (HPM) Program Resulted in Several New Applications
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2003-01-01
Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential with applications from nanowatts to megawatts. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.
Synaptic electronics: materials, devices and applications.
Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip
2013-09-27
In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.
Likitlersuang, Jirapat; Leineweber, Matthew J; Andrysek, Jan
2017-10-01
Thin film force sensors are commonly used within biomechanical systems, and at the interface of the human body and medical and non-medical devices. However, limited information is available about their performance in such applications. The aims of this study were to evaluate and determine ways to improve the performance of thin film (FlexiForce) sensors at the body/device interface. Using a custom apparatus designed to load the sensors under simulated body/device conditions, two aspects were explored relating to sensor calibration and application. The findings revealed accuracy errors of 23.3±17.6% for force measurements at the body/device interface with conventional techniques of sensor calibration and application. Applying a thin rigid disc between the sensor and human body and calibrating the sensor using compliant surfaces was found to substantially reduce measurement errors to 2.9±2.0%. The use of alternative calibration and application procedures is recommended to gain acceptable measurement performance from thin film force sensors in body/device applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Application-oriented offloading in heterogeneous networks for mobile cloud computing
NASA Astrophysics Data System (ADS)
Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.
2018-04-01
Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.
850-nm implanted and oxide VCSELs in multigigabit data communication application
NASA Astrophysics Data System (ADS)
Pan, Jin-Shan; Lin, Yung-Sen; Li, Chao-Fang A.; Lai, Horng-Ching; Wu, Chang-Cherng; Huang, Kai-Feng
2001-10-01
In this paper, we will present the results of the 850nm implanted and oxide-confined vertical cavity surface emitting lasers in multi-Gigabit application. In TrueLight, we have a lot of experience in manufacturing VCSEL with ion-implantation and wet-oxidation technologies for single device Gigabit data transmission application. The ion-implanted VCSEL is reliable with the Mean Time To Failure (MTTF) up to 108 hours at room temperature operation. For the gigabit Ethernet data communication, it provides a very promising solution in short haul application. In transmission experiment we demonstrated the devices could be modulated up to 2.5Gbps and 3.2Gbps data rate. For oxide-confined VCSEL devices, we use wet oxidation technology to approach the device processing and get very good result to achieve the mutli-gigabit data communication application in single device form. The VCSEL device with oxide aperture around 12um could be modulated up to 2.5Gbps and 3.2Gbps. A data of employing VCSEL in high data rate POF transmission is also presented.
High-performance silicon photonics technology for telecommunications applications.
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
High-performance silicon photonics technology for telecommunications applications
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-01-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. PMID:27877659
High-performance silicon photonics technology for telecommunications applications
NASA Astrophysics Data System (ADS)
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W
2014-11-11
Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.
Exploiting spatio-temporal characteristics of human vision for mobile video applications
NASA Astrophysics Data System (ADS)
Jillani, Rashad; Kalva, Hari
2008-08-01
Video applications on handheld devices such as smart phones pose a significant challenge to achieve high quality user experience. Recent advances in processor and wireless networking technology are producing a new class of multimedia applications (e.g. video streaming) for mobile handheld devices. These devices are light weight and have modest sizes, and therefore very limited resources - lower processing power, smaller display resolution, lesser memory, and limited battery life as compared to desktop and laptop systems. Multimedia applications on the other hand have extensive processing requirements which make the mobile devices extremely resource hungry. In addition, the device specific properties (e.g. display screen) significantly influence the human perception of multimedia quality. In this paper we propose a saliency based framework that exploits the structure in content creation as well as the human vision system to find the salient points in the incoming bitstream and adapt it according to the target device, thus improving the quality of new adapted area around salient points. Our experimental results indicate that the adaptation process that is cognizant of video content and user preferences can produce better perceptual quality video for mobile devices. Furthermore, we demonstrated how such a framework can affect user experience on a handheld device.
Application and Design Characteristics of Generalized Training Devices.
ERIC Educational Resources Information Center
Parker, Edward L.
This program identified applications and developed design characteristics for generalized training devices. The first of three sequential phases reviewed in detail new developments in Naval equipment technology that influence the design of maintenance training devices: solid-state circuitry, modularization, digital technology, standardization,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spellman, G.P.
A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLAmore » RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.« less
Photonics and optoelectronics of two-dimensional materials beyond graphene.
Ponraj, Joice Sophia; Xu, Zai-Quan; Dhanabalan, Sathish Chander; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-18
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
Photonics and optoelectronics of two-dimensional materials beyond graphene
NASA Astrophysics Data System (ADS)
Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-01
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.
Linn, E; Menzel, S; Ferch, S; Waser, R
2013-09-27
Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.
Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring
NASA Astrophysics Data System (ADS)
Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham
2006-05-01
Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. An implant with multi-sectored interstitial devices can effectively control the angular heating pattern without applicator rotation. The MR derived 52 °C and lethal thermal dose contours (t43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.
Si nanocrystals-based multilayers for luminescent and photovoltaic device applications
NASA Astrophysics Data System (ADS)
Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji
2018-06-01
Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).
Automated Composites Processing Technology: Film Module
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce
2004-01-01
NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.
21 CFR 868.5170 - Laryngotracheal topical anesthesia applicator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Laryngotracheal topical anesthesia applicator. 868.5170 Section 868.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5170 Laryngotracheal...
21 CFR 868.5170 - Laryngotracheal topical anesthesia applicator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Laryngotracheal topical anesthesia applicator. 868.5170 Section 868.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5170 Laryngotracheal...
A Battery-Aware Algorithm for Supporting Collaborative Applications
NASA Astrophysics Data System (ADS)
Rollins, Sami; Chang-Yit, Cheryl
Battery-powered devices such as laptops, cell phones, and MP3 players are becoming ubiquitous. There are several significant ways in which the ubiquity of battery-powered technology impacts the field of collaborative computing. First, applications such as collaborative data gathering, become possible. Also, existing applications that depend on collaborating devices to maintain the system infrastructure must be reconsidered. Fundamentally, the problem lies in the fact that collaborative applications often require end-user computing devices to perform tasks that happen in the background and are not directly advantageous to the user. In this work, we seek to better understand how laptop users use the batteries attached to their devices and analyze a battery-aware alternative to Gnutella’s ultrapeer selection algorithm. Our algorithm provides insight into how system maintenance tasks can be allocated to battery-powered nodes. The most significant result of our study indicates that a large portion of laptop users can participate in system maintenance without sacrificing any of their battery. These results show great promise for existing collaborative applications as well as new applications, such as collaborative data gathering, that rely upon battery-powered devices.
Optimization Techniques for 3D Graphics Deployment on Mobile Devices
NASA Astrophysics Data System (ADS)
Koskela, Timo; Vatjus-Anttila, Jarkko
2015-03-01
3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.
Program for the exploitation of unused NASA patents
NASA Technical Reports Server (NTRS)
Fay, R. J.
1972-01-01
The program to exploit unused NASA patents through the use of a multidisciplinary approach involving faculty students, and research staff is reported. NASA patents were screened for their applicability outside the space program, specific applications were identified, and the technical and commercial feasibility of these applications was established. Also application of this technology by governmental agencies outside the space program was sought. The program was specifically interested in energy absorbing devices such as those developed for lunar soft landings. These energy absorbing devices absorb large amounts of mechanical energy but are, in general, not reusable. Some of these devices can also operate as structural elements until their structural load capacity is exceeded and they become activated as energy absorbers. The capability of these devices to operate as structural elements and as energy absorbing devices makes them candidates for many applications in the fields of transportation and materials handling safety where accidents take a large toll in human injury and property damage.
Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria
2018-01-01
This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.
The Role of Participatory Design in Mobile Application Development
NASA Astrophysics Data System (ADS)
Hamzah, Almed
2018-03-01
Mobile devices are used by people worldwide. It becomes a common equipment to complete a day-to-day activity. Inside the devices, there are numerous mobile applications that have been built for various needs. Some of these are quite successful while the other are not. The development of successful mobile application faces several challenges. In this research, we want to explore the use of participatory design method in mobile application development. Particularly, the aim of the study is to answer the question whether participatory design method has a place in the realm of mobile application development. We established two sessions of workshop to accommodate the participant to take part in the development process of mobile application. The result shows that participatory design method can determine how the user will deal with the limitations of mobile devices. It helps user to create a particular form of interaction that meets mobile devices characteristics.
Reconstructing Spatial Distributions from Anonymized Locations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horey, James L; Forrest, Stephanie; Groat, Michael
2012-01-01
Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstructionmore » algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.« less
Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier
2015-08-28
Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower(®), firstly guides the user to appropriately take an inflorescence photo using the smartphone's camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower(®) has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application's efficiency on four different devices covering a wide range of the market's spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play.
21 CFR 812.30 - FDA action on applications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false FDA action on applications. 812.30 Section 812.30...) MEDICAL DEVICES INVESTIGATIONAL DEVICE EXEMPTIONS Application and Administrative Action § 812.30 FDA action on applications. (a) Approval or disapproval. FDA will notify the sponsor in writing of the date...
21 CFR 812.30 - FDA action on applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false FDA action on applications. 812.30 Section 812.30...) MEDICAL DEVICES INVESTIGATIONAL DEVICE EXEMPTIONS Application and Administrative Action § 812.30 FDA action on applications. (a) Approval or disapproval. FDA will notify the sponsor in writing of the date...
21 CFR 812.30 - FDA action on applications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false FDA action on applications. 812.30 Section 812.30...) MEDICAL DEVICES INVESTIGATIONAL DEVICE EXEMPTIONS Application and Administrative Action § 812.30 FDA action on applications. (a) Approval or disapproval. FDA will notify the sponsor in writing of the date...
21 CFR 812.30 - FDA action on applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false FDA action on applications. 812.30 Section 812.30...) MEDICAL DEVICES INVESTIGATIONAL DEVICE EXEMPTIONS Application and Administrative Action § 812.30 FDA action on applications. (a) Approval or disapproval. FDA will notify the sponsor in writing of the date...
21 CFR 812.30 - FDA action on applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false FDA action on applications. 812.30 Section 812.30...) MEDICAL DEVICES INVESTIGATIONAL DEVICE EXEMPTIONS Application and Administrative Action § 812.30 FDA action on applications. (a) Approval or disapproval. FDA will notify the sponsor in writing of the date...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
...] User Fees and Refunds for Premarket Approval Applications and Device Biologics License Applications... availability of the guidance entitled ``User Fees and Refunds for Premarket Approval Applications (PMAs) and... for single copies of the guidance document entitled ``User Fees and Refunds for Premarket Approval...
Recent advances in low-cost microfluidic platforms for diagnostic applications.
Tomazelli Coltro, Wendell Karlos; Cheng, Chao-Min; Carrilho, Emanuel; de Jesus, Dosil Pereira
2014-08-01
The use of inexpensive materials and cost-effective manufacturing processes for mass production of microfluidic devices is very attractive and has spurred a variety of approaches. Such devices are particularly suited for diagnostic applications in limited resource settings. This review describes the recent and remarkable advances in the use of low-cost substrates for the development of microfluidic devices for diagnostics and clinical assays. Thus, a plethora of new and improved fabrication methods, designs, capabilities, detections, and applications of microfluidic devices fabricated with paper, plastic, and threads are covered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Miret, Josep M.; Sebé, Francesc
Low-cost devices are the key component of several applications: RFID tags permit an automated supply chain management while smart cards are a secure means of storing cryptographic keys required for remote and secure authentication in e-commerce and e-government applications. These devices must be cheap in order to permit their cost-effective massive manufacturing and deployment. Unfortunately, their low cost limits their computational power. Other devices such as nodes of sensor networks suffer from an additional constraint, namely, their limited battery life. Secure applications designed for these devices cannot make use of classical cryptographic primitives designed for full-fledged computers.
V2O5 thin film deposition for application in organic solar cells
NASA Astrophysics Data System (ADS)
Arbab, Elhadi A. A.; Mola, Genene Tessema
2016-04-01
Vanadium pentoxide V2O5 films were fabricated by way of electrochemical deposition technique for application as hole transport buffer layer in organic solar cell. A thin and uniform V2O5 films were successfully deposited on indium tin oxide-coated glass substrate. The characterization of surface morphology and optical properties of the deposition suggest that the films are suitable for photovoltaic application. Organic solar cell fabricated using V2O5 as hole transport buffer layer showed better devices performance and environmental stability than those devices fabricated with PEDOT:PSS. In an ambient device preparation condition, the power conversion efficiency increases by nearly 80 % compared with PEDOT:PSS-based devices. The devices lifetime using V2O5 buffer layer has improved by a factor of 10 over those devices with PEDOT:PSS.
Processing, properties and applications of composites using powder-coated epoxy towpreg technology
NASA Technical Reports Server (NTRS)
Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.
1993-01-01
Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.
2012-01-01
Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kg/sq m (3.1 lb/cu ft (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.
2012-01-01
Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kilograms per square meters (3.1 pounds per cubic feet (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
Fatigue resistance of unnotched and post impact(+/- 30 deg/0 deg) 3-D braided composites
NASA Technical Reports Server (NTRS)
Portanova, Marc A.
1994-01-01
The fatigue resistance of a multiaxial braided (3-D) graphite/expoxy composite in both unnotched and post impacted conditions has been evaluated. The material tested is a (+/- 30/0 deg) multiaxial braid constructed from AS4/12K tow graphite fibers and British Petroleum E905L epoxy resin. These materials were braided as dry preforms and the epoxy was added using a resin transfer molding process (RTM). The unnotched and post-impact specimens were tested in compression-compression fatigue at 10 Hz with a stress ratio of R=10. The unnotched tension-tension fatigue specimens were tested at S Hz with a stress ration of R=0.1. Damage initiation and growth was documented through the application of radiography and ultrasonic through transmission (C-scans). Visible inspection of surface and edge damage was also noted to describe the initiation and progression of damage in these materials. The mechanisms leading to damage initiation were established and failure modes were determined. Stiffness and strength degradation were measured as a function of applied cycles. These 3-D braided composite results were compared to strain levels currently used to design primary structure in commercial aircraft composite components made from prepreg tape and autoclave cured.
Composite Cryotank Technologies and Demonstration
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de
The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture whichmore » leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.« less
Ultrasonic Drilling and Coring
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1998-01-01
A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.
Reliability Prediction Models for Discrete Semiconductor Devices
1988-07-01
influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application., a plication...found to influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application...MFA Airbreathlng 14issile, Flight MFF Missile, Free Flight ML Missile, Launch MMIC Monolithic Microwave Integrated Circuits MOS Metal-Oxide
Code of Federal Regulations, 2011 CFR
2011-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2010 CFR
2010-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2012 CFR
2012-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2013 CFR
2013-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2014 CFR
2014-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
21 CFR 892.5700 - Remote controlled radionuclide applicator system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...
NASA Technical Reports Server (NTRS)
Clements, L. L.
1986-01-01
Optical microscopy and SEM have been used to examine the tensile failure surfaces of (0-deg)8 T300/5208 graphite-epoxy specimens, and fractography is employed to determine how moisture content and temperature, together with specimen preparation, affect failure modes. A low energy failure morphology is noted in defective specimens; specimens made from nondefective prepregs appeared to exhibit a decrease in flaw sensitivity and increasing strength with either temperature or moisture, although moisture also seemed to increase interfacial debonding between filament and matrix. The combination of temperature and moisture degraded performance by increasing interfacial debonding, and rendering the epoxy more prone to fracture.
Effects of processing induced defects on laminate response - Interlaminar tensile strength
NASA Technical Reports Server (NTRS)
Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.
1991-01-01
Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.B.; Dickson, L.W.; Singh, A.
A radiation-curable prepreg designed to meet the specifications set by a major aircraft company is described. The resin, consisting of a mixture of an epoxy diacrylate, polybutadiene diacrylate, and a multifunctional monomer, was used to impregnate a plain weave carbon fabric by a solvent process. The cured polymer, produced by irradiation in air to a dose of 40 kGy, is amorphous, with a gel fraction of 85 percent. The linear thermal expansion coefficient of the polymer was found to be 0.00017 m/m deg C from 25 to 150 C; it was not affected by varying the applied irradiation dose frommore » 30 to 50 kGy. 14 references.« less
Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees
NASA Astrophysics Data System (ADS)
Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard
2014-06-01
The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.