Biospheric-atmospheric coupling on the early Earth
NASA Technical Reports Server (NTRS)
Levine, J. S.
1991-01-01
Theoretical calculations performed with a one-dimensional photochemical model have been performed to assess the biospheric-atmospheric transfer of gases. Ozone reached levels to shield the Earth from biologically lethal solar ultraviolet radiation (220-300 nm) when atmospheric oxygen reached about 1/10 of its present atmospheric level. In the present atmosphere, about 90 percent of atmospheric nitrous oxide is destroyed via solar photolysis in the stratosphere with about 10 percent destroyed via reaction with excited oxygen atoms. The reaction between nitrous oxide and excited oxygen atoms leads to the production of nitric oxide in the stratosphere, which is responsible for about 70 percent of the global destruction of oxygen in the stratosphere. In the oxygen/ozone deficient atmosphere, solar photolysis destroyed about 100 percent of the atmospheric nitrous oxide, relegating the production of nitric oxide via reaction with excited oxygen to zero. Our laboratory and field measurements indicate that atmospheric oxygen promotes the biogenic production of N2O and NO via denitrification and the biogenic production of methane by methanogenesis.
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Summers, Michael E.
2008-01-01
In the early history of Mars, volcanic activity associated with the formation of the Tharsis ridge produced a very large amount of atmospheric SO2--on the order of a bar of atmospheric SO2. In the present-day atmosphere of Mars, the lifetime of SO2 is relatively short with a lifetime of less than a day. The short lifetime of SO2 in the present Mars atmosphere makes the production of significant levels of H2SO4 very difficult since the SO2 may be destroyed by various chemical and photochemical processes before the SO2 can be converted to H2SO4. However, photochemical calculations performed and described here, indicate that enhanced atmospheric levels of CO2 in the early atmosphere of Mars resulted in a significantly enhanced atmospheric lifetime for SO2 up to several years. With a significantly enhanced atmospheric lifetime, SO2 could readily form large amounts of H2SO4, which precipitated out of the atmosphere in the form of droplets. The precipitated H2SO4 then reacted with potential surface carbonates, destroying the carbonates and resulting in the abundant and widespread distribution of sulfates on the surface of Mars as detected by recent Mars missions.
Atmospheric oxygenation three billion years ago.
Crowe, Sean A; Døssing, Lasse N; Beukes, Nicolas J; Bau, Michael; Kruger, Stephanus J; Frei, Robert; Canfield, Donald E
2013-09-26
It is widely assumed that atmospheric oxygen concentrations remained persistently low (less than 10(-5) times present levels) for about the first 2 billion years of Earth's history. The first long-term oxygenation of the atmosphere is thought to have taken place around 2.3 billion years ago, during the Great Oxidation Event. Geochemical indications of transient atmospheric oxygenation, however, date back to 2.6-2.7 billion years ago. Here we examine the distribution of chromium isotopes and redox-sensitive metals in the approximately 3-billion-year-old Nsuze palaeosol and in the near-contemporaneous Ijzermyn iron formation from the Pongola Supergroup, South Africa. We find extensive mobilization of redox-sensitive elements through oxidative weathering. Furthermore, using our data we compute a best minimum estimate for atmospheric oxygen concentrations at that time of 3 × 10(-4) times present levels. Overall, our findings suggest that there were appreciable levels of atmospheric oxygen about 3 billion years ago, more than 600 million years before the Great Oxidation Event and some 300-400 million years earlier than previous indications for Earth surface oxygenation.
Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1985-01-01
A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.
Stellar atmosphere modeling of extremely hot, compact stars
NASA Astrophysics Data System (ADS)
Rauch, Thomas; Ringat, Ellen; Werner, Klaus
Present X-ray missions like Chandra and XMM-Newton provide excellent spectra of extremely hot white dwarfs, e.g. burst spectra of novae. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) can calculate such model at-mospheres and spectral energy distributions at a high level of sophistication. We present a new grid of models that is calculated in the parameter range of novae and supersoft X-ray sources and show examples of their application.
Atmospheric effects on METSAT data
NASA Technical Reports Server (NTRS)
Johnson, W. R.
1983-01-01
When using the J. V. Dave dataset, two channels of simulated METSAT advanced very high resolution radiometer (AVHRR) data compare favorably with actual data. Simulated NOAA6 and NOAA7 AVHRR data are presented as radiance profiles of reflected solar energy through atmosphere with three different aerosol levels. Effects of the atmosphere on the data are presented as functions of satellite view angle or pixel position on scanline. Vegetative index simultations are also profiled.
Burning of forest materials under late Paleozoic high atmospheric oxygen levels
Richard A., Jr. Wildman; Leo J. Hickey; Matthew B. Dickinson; Robert A. Berner; Jennifer M. Robinson; Michael Dietrich; Robert H. Essenhigh; Craig B. Wildman
2004-01-01
Theoretical models suggest that atmospheric oxygen reached concentrations as high as 35% O2 during the past 550 m.y. Previous burning experiments using strips of paper have challenged this idea, concluding that ancient wildfires would have decimated plant life if O2 significantly exceeded its present level of 21%. New...
Long-term sedimentary recycling of rare sulphur isotope anomalies.
Reinhard, Christopher T; Planavsky, Noah J; Lyons, Timothy W
2013-05-02
The accumulation of substantial quantities of O2 in the atmosphere has come to control the chemistry and ecological structure of Earth's surface. Non-mass-dependent (NMD) sulphur isotope anomalies in the rock record are the central tool used to reconstruct the redox history of the early atmosphere. The generation and initial delivery of these anomalies to marine sediments requires low partial pressures of atmospheric O2 (p(O2); refs 2, 3), and the disappearance of NMD anomalies from the rock record 2.32 billion years ago is thought to have signalled a departure from persistently low atmospheric oxygen levels (less than about 10(-5) times the present atmospheric level) during approximately the first two billion years of Earth's history. Here we present a model study designed to describe the long-term surface recycling of crustal NMD anomalies, and show that the record of this geochemical signal is likely to display a 'crustal memory effect' following increases in atmospheric p(O2) above this threshold. Once NMD anomalies have been buried in the upper crust they are extremely resistant to removal, and can be erased only through successive cycles of weathering, dilution and burial on an oxygenated Earth surface. This recycling results in the residual incorporation of NMD anomalies into the sedimentary record long after synchronous atmospheric generation of the isotopic signal has ceased, with dynamic and measurable signals probably surviving for as long as 10-100 million years subsequent to an increase in atmospheric p(O2) to more than 10(-5) times the present atmospheric level. Our results can reconcile geochemical evidence for oxygen production and transient accumulation with the maintenance of NMD anomalies on the early Earth, and suggest that future work should investigate the notion that temporally continuous generation of new NMD sulphur isotope anomalies in the atmosphere was likely to have ceased long before their ultimate disappearance from the rock record.
Atmospheric Models for Aeroentry and Aeroassist
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2005-01-01
Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA's systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.
The oxygenation of the atmosphere and oceans
Holland, Heinrich D
2006-01-01
The last 3.85 Gyr of Earth history have been divided into five stages. During stage 1 (3.85–2.45 Gyr ago (Ga)) the atmosphere was largely or entirely anoxic, as were the oceans, with the possible exception of oxygen oases in the shallow oceans. During stage 2 (2.45–1.85 Ga) atmospheric oxygen levels rose to values estimated to have been between 0.02 and 0.04 atm. The shallow oceans became mildly oxygenated, while the deep oceans continued anoxic. Stage 3 (1.85–0.85 Ga) was apparently rather ‘boring’. Atmospheric oxygen levels did not change significantly. Most of the surface oceans were mildly oxygenated, as were the deep oceans. Stage 4 (0.85–0.54 Ga) saw a rise in atmospheric oxygen to values not much less than 0.2 atm. The shallow oceans followed suit, but the deep oceans were anoxic, at least during the intense Neoproterozoic ice ages. Atmospheric oxygen levels during stage 5 (0.54 Ga–present) probably rose to a maximum value of ca 0.3 atm during the Carboniferous before returning to its present value. The shallow oceans were oxygenated, while the oxygenation of the deep oceans fluctuated considerably, perhaps on rather geologically short time-scales. PMID:16754606
Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter
2010-01-01
Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...
An emergency response mobile robot for operations in combustible atmospheres
NASA Technical Reports Server (NTRS)
Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)
1993-01-01
A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.
Emergency response mobile robot for operations in combustible atmospheres
NASA Technical Reports Server (NTRS)
Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)
1995-01-01
A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.
An emergency response mobile robot for operations in combustible atmospheres
NASA Astrophysics Data System (ADS)
Stone, Henry W.; Ohm, Timothy R.
1993-11-01
A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.
Emergency response mobile robot for operations in combustible atmospheres
NASA Astrophysics Data System (ADS)
Stone, Henry W.; Ohm, Timothy R.
1995-08-01
A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.
Atmospheric Models for Aeroentry and Aeroassist
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2004-01-01
Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.
Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.
Loulergue, Laetitia; Schilt, Adrian; Spahni, Renato; Masson-Delmotte, Valérie; Blunier, Thomas; Lemieux, Bénédicte; Barnola, Jean-Marc; Raynaud, Dominique; Stocker, Thomas F; Chappellaz, Jérôme
2008-05-15
Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.
2016-12-01
Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.
Atmospheric Models for Aerocapture
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duval, Aleta; Keller, Vernon W.
2003-01-01
There are eight destinations in the Solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Robe entry at Titan, are discussed. Recent updates to the Mars atmospheric model, in support of ongoing Mars aerocapture systems analysis studies, are also presented.
Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
Planavsky, Noah J; Reinhard, Christopher T; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H; Johnson, Thomas; Fischer, Woodward W; Lyons, Timothy W
2014-10-31
The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans. Copyright © 2014, American Association for the Advancement of Science.
Measurements of acetylene in air extracted from polar ice cores
NASA Astrophysics Data System (ADS)
Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.
2016-12-01
Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar ice cores. Air from fluid and dry-drilled ice cores from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The ice core air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusey, M.I.; Gil'denskiol'd, R.S.; Baikov, B.K.
There have recently been several investigations of the combined effect of several pollutants present simultaneously in the atmosphere. As a rule the combined effect of toxic substances in the atmosphere at the levels of liminal and subliminal concentrations are in accordance with the principle of simple summation. There is a definite gap between theory and practice in the establishment of standards for atmospheric pollutants. 17 references, 1 table.
Atmospheric Models for Aerocapture
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.
2004-01-01
There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.
Scattering of sound by atmospheric turbulence predictions in a refractive shadow zone
NASA Technical Reports Server (NTRS)
Mcbride, Walton E.; Bass, Henry E.; Raspet, Richard; Gilbert, Kenneth E.
1990-01-01
According to ray theory, regions exist in an upward refracting atmosphere where no sound should be present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism involved in producing the sound levels measured in shadow zones. No existing analytical method includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones. In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering from randomly distributed scattering centers ('turbules'). Sound pressure levels are computed for many realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with existing theories and experimental data.
Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.
1992-01-01
Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Ground Measurements in a Hot Desert Climate
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.
2017-01-01
The Sonic Booms in Atmospheric Turbulence (SonicBAT) Project flew a series of 20 F-18 flights with 69 supersonic passes at Edwards Air Force Base in July 2016 to quantify the effect of atmospheric turbulence on sonic booms. Most of the passes were at a pressure altitude of 32,000 feet and a Mach number of 1.4, yielding a nominal sonic boom overpressure of 1.6 pounds per square foot. Atmospheric sensors such as GPS sondeballoons, Sonic Detection and Ranging (SODAR) acoustic sounders, and ultrasonic anemometers were used to characterize the turbulence state of the atmosphere for each flight. Spiked signatures in excess of 7 pounds per square foot were measured at some locations, as well as rounded sonic-boom signatures with levels much lower than the nominal. This presentation will quantify the range of overpressure and Perceived Level of the sonic boom as a function of turbulence parameters, and also present the spatial variation of these quantities over the array. Comparison with historical data will also be shown.
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1984-01-01
A detailed analysis of the Voyager infrared spectrometer measurements on Jupiter's atmosphere is presented, and possible implications of para hydrogen disequilibrium for the energetics and dynamics of that atmosphere are examined. The method of data analysis is described, and results for the large scale latitude variation of the para hydrogen fraction are presented. The Jovian results show pronounced latitude variation, and are compared with other parameters including wind fields, thermal structure, and various indicators of atmospheric clouds. The problem of equilibration rate is reexamined, and it is concluded that on Jupiter the equilibration time is longer than the radiative time constant at the level of emission to space, but that this inequality reverses at greater depths. A model for the interaction of fluid motions with the ortho-para conversion process is presented, and a consistent mixing length theory for the reacting ortho-para mixture is developed. Several implications of the Jovian data for atmospheric energetics and stability on the outer planets are presented.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands from 0.415 to 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation I will review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of: (1) developing a cloud mask for distinguishing clear sky from clouds, (2) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (3) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (4) determining atmospheric profiles of moisture and temperature, and (5) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 deg (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented. Finally, I will present some highlights from the land and ocean algorithms developed for processing global MODIS observations, including: (1) surface reflectance, (2) vegetation indices, leaf area index, and FPAR, (3) albedo and nadir BRDF-adjusted reflectance, (4) normalized water-leaving radiance, (5) chlorophyll-a concentration, and (6) sea surface temperature.
NASA Astrophysics Data System (ADS)
Watson, T.; Sullivan, T.
2013-05-01
The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.
NASA Astrophysics Data System (ADS)
Pflug, Bringfried; Bieniarz, Jakub; Debaecker, Vincent; Louis, Jérôme; Müller-Wilms, Uwe
2016-04-01
ESA has developed and launched the Sentinel-2A optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. Many of these applications require accurate correction of satellite images for atmospheric effects to ensure the highest quality of scientific exploitation of Sentinel-2 data. Therefore the atmospheric correction processor Sen2Cor was developed by TPZ V on behalf of ESA. TPZ F and DLR have teamed up in order to provide the calibration and validation of the Level-2A processor Sen2Cor. Level-2A processing is applied to Top-Of-Atmosphere (TOA) Level-1C ortho-image reflectance products. Level-2A main output is the Bottom-Of-Atmosphere (BOA) corrected reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SC) map with Quality Indicators for cloud and snow probabilities. The poster will present some processing examples of Sen2Cor applied to Sentinel-2A data together with first performance investigations. Different situations will be covered like processing with and without DEM (Digital Elevation Model). Sen2Cor processing is controlled by several configuration parameters. Some examples will be presented demonstrating the influence of different settings of some parameters.
The production of trace gases by photochemistry and lightning in the early atmosphere
NASA Technical Reports Server (NTRS)
Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.
1986-01-01
Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.
High-Speed Research: 1994 Sonic Boom Workshop: Atmospheric Propagation and Acceptability Studies
NASA Technical Reports Server (NTRS)
Mccurdy, David A. (Editor)
1994-01-01
The workshop proceedings include papers on atmospheric propagation and acceptability studies. Papers discussing atmospheric effects on the sonic boom waveform addressed several issues. It has long been assumed that the effects of molecular relaxation are adequately accounted for by assuming that a steady state balance between absorption and nonlinear wave steepening exists. It was shown that the unsteadiness induced by the nonuniform atmosphere precludes attaining this steady state. Further, it was shown that the random atmosphere acts as a filter, effectively filtering out high frequency components of the distorted waveform. Several different propagation models were compared, and an analysis of the sonic boom at the edge of the primary carpet established that the levels there are bounded. Finally, a discussion of the levels of the sonic boom below the sea surface was presented.
Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows
NASA Astrophysics Data System (ADS)
Som, Sanjoy M.
2010-11-01
The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density < 2 kg/m3 and probably > 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a nitrogen level of at most twice present levels and perhaps well below present levels. To constrain this further, I re-evaluate a published paleobarometry technique using the vesicle size-distribution in simply emplaced lava flows and apply it to sea-level erupted lava flows from the 2.7 billion year old Fortescue group of Western Australia. Results from three flows suggest a range for atmospheric pressure 0.07 < Patm < 0.64 atm, which has profound consequences for our interpretation of the history of the nitrogen cycle by implying that the development of the nitrogenase enzyme necessary for nitrogen fixation happened very early on in the development of life.
Terzich, M; Quarles, C; Goodwin, M A; Brown, J
1998-01-01
In previous studies, Poultry Litter Treatment(R) (PLT(R)) was shown to reduce atmospheric ammonia levels and ascites death rates, and produce higher profit value in broiler chickens. The purpose of the present study was to determine the effect of PLT(R) on atmospheric ammonia levels, the development of respiratory tract lesions, and body weight gains in broiler chickens. Data were collected from chicks that were raised in containment conditions that resembled commercial settings. Atmospheric ammonia levels, gross thoracic air sac lesion scores, and the numbers and magnitudes of histopathologic tracheal mucosal injuries were significantly (P = 0.001) reduced in chickens that were raised on PLT(R)-treated litter than in their untreated-litter control counterparts. In addition, mean body weights and lung:body weight ratios were significantly (P < 0.03) larger in broilers that were raised on treated litter. The reductions in respiratory tract lesions among broilers raised on PLT(R)-treated litter were attributed to reductions in atmospheric ammonia levels.
Effects of climate change on water quality in the Yaquina ...
As part of a larger study to examine the effect of climate change (CC) on estuarine resources, we simulated the effect of rising sea level, alterations in river discharge, and increasing atmospheric temperatures on water quality in the Yaquina Estuary. Due to uncertainty in the effects of climate change, initial model simulations were performed for different steady river discharge rates that span the historical range in inflow, and for a range of increases in sea level and atmospheric temperature. Model simulations suggest that in the central portion of the estuary (19 km from mouth), a 60-cm increase in sea level will result in a 2-3 psu change in salinity across a broad range of river discharges. For the oligohaline portion of the estuary, salinity increases associated with a rise in sea level of 60 cm are only apparent at low river discharge rates (< 50 m3 s-1). Simulations suggest that the water temperatures near the mouth of the estuary will decrease due to rising sea level, while water temperatures in upriver portions of the estuary will increase due to rising atmospheric temperatures. We present results which demonstrate how the interaction of changes in river discharge, rising sea level, and atmospheric temperature associated with climate change produce non-linear patterns in the response of estuarine salinity and temperature, which vary with location inside the estuary and season. We also will discuss the importance of presenting results in a mann
Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S
2016-01-01
Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Kaufman, Yoram J.; Ackerman, Steven A.; Tanre, Didier; Gao, Bo-Cai
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar orbiting, sun-synchronous, platform at an altitude of 705 kilometers, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 meters (2 bands), 500 meters (5 bands) and 1000 meters (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Long-term results from an urban CO2 monitoring network
NASA Astrophysics Data System (ADS)
Ehleringer, J.; Pataki, D. E.; Lai, C.; Schauer, A.
2009-12-01
High-precision atmospheric CO2 has been monitored in several locations through the Salt Lake Valley metropolitan region of northern Utah over the past nine years. Many parts of this semi-arid grassland have transitioned into dense urban forests, supported totally by extensive homeowner irrigation practices. Diurnal changes in fossil-fuel energy uses and photosynthesis-respiration processes have resulted in significant spatial and temporal variations in atmospheric CO2. Here we present an analysis of the long-term patterns and trends in midday and nighttime CO2 values for four sites: a midvalley residential neighborhood, a midvalley non-residential neighborhood, an undeveloped valley-edge area transitioning from agriculture, and a developed valley-edge neighborhood with mixed residential and commercial activities; the neighborhoods span an elevation gradient within the valley of ~100 m. Patterns in CO2 concentrations among neighborhoods were examined relative to each other and relative to the NOAA background station, a desert site in Wendover, Utah. Four specific analyses are considered. First, we present a statistical analysis of weekday versus weekend CO2 patterns in the winter, spring, summer, and fall seasons. Second, we present a statistical analysis of the influences of high-pressure systems on the elevation of atmospheric CO2 above background levels in the winter versus summer seasons. Third, we present an analysis of the nighttime CO2 values through the year, relating these patterns to observed changes in the carbon isotope ratios of atmospheric CO2. Lastly, we examine the rate of increase in midday urban CO2 over time relative to regional and global CO2 averages to determine if the amplification of urban energy use is statistically detectable from atmospheric trace gas measurements over the past decade. These results show two important patterns. First, there is a strong weekday-weekend effect of vehicle emissions in contrast to the temperature-dependent effect of home-heating emissions on diurnal/seasonal cycles. Second, there appears to be photosynthetic drawdown of atmospheric CO2 levels during the growing season, but at a cost of significant water expenditure. To the degree that atmospheric CO2 and particulate matter levels are correlated, these results have implications for both climate and health issues.
García-Lomillo, Javier; Viegas, Olga; Gonzalez-SanJose, Maria L; Ferreira, Isabel M P L V O
2017-03-01
Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HAs) are carcinogenic compounds formed in barbecued meat. Conditions that reduce their formation are of major interest. This study aims to evaluate the influence of red wine pomace seasoning (RWPS) and high-oxygen atmosphere storage on the formation of PAHs and HAs in barbecued beef patties. In general, the levels of PAHs and HAs quantified were low. The storage (9days) promoted higher formation of PAHs in control patties without increase of HAs. RWPS patties cooked at preparation day presented higher levels of PAHs and HAs than control. Nevertheless, RWPS patties cooked after storage presented lower levels of PAHs and HAs than control. ABTS assay pointed out that higher radical scavenging activity may be related to with lower PAHs or HAs formation. In conclusion, RWPS can be an interesting ingredient to inhibit the formation of cooking carcinogens in barbecued patties stored at high-oxygen atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars
NASA Technical Reports Server (NTRS)
Burns, Roger G.
1992-01-01
During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.
Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases.
Schindler, T L; Kasting, J F
2000-05-01
NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.
SO2 in the middle atmosphere of Venus: IR measurements from Venera 15 and comparison to UV
NASA Technical Reports Server (NTRS)
Zasova, L. V.; Moroz, V. I.; Esposito, L. W.; Na, C. Y.
1992-01-01
Two sets of measurements of SO2 bands in the Venus spectra are presented and compared: IR spectra obtained on the USSR Venera 15 orbiter and UV spectra from the American Pioneer Venus orbiter and sounding rockets. The 40-mbar level was chosen as a reference level for comparison. The UV data are referred to this level. There are three SO2 bands in the infrared spectrum: at 519, 1150, and 1360 cm(exp -1). The levels of their formation in the atmosphere may differ significantly, by more than 10 km.
Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods
Nguyen Van Long, Nicolas; Vasseur, Valérie; Couvert, Olivier; Coroller, Louis; Burlot, Marion; Rigalma, Karim; Mounier, Jérôme
2017-01-01
Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax, depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products. PMID:29163403
Selenium cycling across soil-plant atmosphere interfaces: a critical review
USDA-ARS?s Scientific Manuscript database
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass, and in the atmosphere. Low Se levels in certain terrestrial environments ha...
The puzzling Venusian polar atmospheric structure reproduced by a general circulation model
Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa
2016-01-01
Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195
NASA Technical Reports Server (NTRS)
Ustinov, E. A.
1999-01-01
Evaluation of weighting functions in the atmospheric remote sensing is usually the most computer-intensive part of the inversion algorithms. We present an analytic approach to computations of temperature and mixing ratio weighting functions that is based on our previous results but the resulting expressions use the intermediate variables that are generated in computations of observable radiances themselves. Upwelling radiances at the given level in the atmosphere and atmospheric transmittances from space to the given level are combined with local values of the total absorption coefficient and its components due to absorption of atmospheric constituents under study. This makes it possible to evaluate the temperature and mixing ratio weighting functions in parallel with evaluation of radiances. This substantially decreases the computer time required for evaluation of weighting functions. Implications for the nadir and limb viewing geometries are discussed.
Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; Zhang, Pengfei
2013-01-01
Biomass burning is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we report the molecular tracer levoglucosan concentrations in marine air from the Arctic Ocean through the North and South Pacific Ocean to Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels with the highest atmospheric loadings present in the mid-latitudes (30°–60° N and S), intermediate loadings in the Arctic, and lowest loadings in the Antarctic and equatorial latitudes. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Biomass burning has a significant impact on atmospheric Hg and water-soluble organic carbon (WSOC) from pole-to-pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere. PMID:24176935
Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; Zhang, Pengfei
2013-11-01
Biomass burning is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we report the molecular tracer levoglucosan concentrations in marine air from the Arctic Ocean through the North and South Pacific Ocean to Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m(3) levels with the highest atmospheric loadings present in the mid-latitudes (30°-60° N and S), intermediate loadings in the Arctic, and lowest loadings in the Antarctic and equatorial latitudes. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Biomass burning has a significant impact on atmospheric Hg and water-soluble organic carbon (WSOC) from pole-to-pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.
Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1984-01-01
A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.
NASA Astrophysics Data System (ADS)
MacMillan, D. S.; van Dam, T. M.
2009-04-01
Variations in the horizontal distribution of atmospheric mass induce displacements of the Earth's surface. Theoretical estimates of the amplitude of the surface displacement indicate that the predicted surface displacement is often large enough to be detected by current geodetic techniques. In fact, the effects of atmospheric pressure loading have been detected in Global Positioning System (GPS) coordinate time series [van Dam et al., 1994; Dong et al., 2002; Scherneck et al., 2003; Zerbini et al., 2004] and very long baseline interferometery (VLBI) coordinates [Rabble and Schuh, 1986; Manabe et al., 1991; van Dam and Herring, 1994; Schuh et al., 2003; MacMillan and Gipson, 1994; and Petrov and Boy, 2004]. Some of these studies applied the atmospheric displacement at the observation level and in other studies, the predicted atmospheric and observed geodetic surface displacements have been averaged over 24 hours. A direct comparison of observation level and 24 hour corrections has not been carried out for VLBI to determine if one or the other approach is superior. In this presentation, we address the following questions: 1) Is it better to correct geodetic data at the observation level rather than applying corrections averaged over 24 hours to estimated geodetic coordinates a posteriori? 2) At the sub-daily periods, the atmospheric mass signal is composed of two components: a tidal component and a non-tidal component. If observation level corrections reduce the scatter of VLBI data more than a posteriori correction, is it sufficient to only model the atmospheric tides or must the entire atmospheric load signal be incorporated into the corrections? 3) When solutions from different geodetic techniques (or analysis centers within a technique) are combined (e.g., for ITRF2008), not all solutions may have applied atmospheric loading corrections. Are any systematic effects on the estimated TRF introduced when atmospheric loading is applied?
PCDD/F enviromental impact from municipal solid waste bio-drying plant.
Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A
2011-06-01
The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.
Theoretical and experimental investigations of upper atmosphere dynamics
NASA Technical Reports Server (NTRS)
Roper, R. G.; Edwards, H. D.
1980-01-01
A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.
Plate tectonic controls on atmospheric CO2 levels since the Triassic.
Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H
2014-03-25
Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.
Plate tectonic controls on atmospheric CO2 levels since the Triassic
Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.
2014-01-01
Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495
Atmospheric measurements of pyruvic and formic acid
NASA Technical Reports Server (NTRS)
Andreae, Meinrat O.; Li, Shao-Meng; Talbot, Robert W.
1987-01-01
Pyruvic acid, a product of the atmospheric oxidation of cresols and probably of isoprene, has been determined together with formic acid in atmospheric aerosols and rain as well as in the vapor phase. Both acids are present predominantly as vapor; only about 10-20 percent of the total atmospheric pyruvate and 1-2 percent of the total formate are in the particulate phase. The concentrations of pyruvic and formic acid are highly correlated, with typical formic-to-pyruvic ratios of 10-30 in the gas phase, 20-30 in rain, and 2-10 in aerosols. The gas-phase and rain ratios are comparable to those predicted to result from isoprene oxidation. Pyruvic acid levels were similar in the eastern United States (during summer) and the Amazon Basin, suggesting that natural processes, particularly the photochemical oxidation of isoprene, could account for most of the pyruvic acid present in the atmosphere.
GRAM Series of Atmospheric Models for Aeroentry and Aeroassist
NASA Technical Reports Server (NTRS)
Duvall, Aleta; Justus, C. G.; Keller, Vernon W.
2005-01-01
The eight destinations in the Solar System with sufficient atmosphere for either aeroentry or aeroassist, including aerocapture, are: Venus, Earth, Mars, Jupiter, Saturn; Uranus. and Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for four of these (Earth, Mars, Titan, and Neptune) have been developed for use in NASA's systems analysis studies of aerocapture applications in potential future missions. Work has recently commenced on development of a similar atmospheric model for Venus. This series of MSFC-sponsored models is identified as the Global Reference Atmosphere Model (GRAM) series. An important capability of all of the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Example applications for Earth aeroentry and Mars aerocapture systems analysis studies are presented and illustrated. Current and planned updates to the Earth and Mars atmospheric models, in support of NASA's new exploration vision, are also presented.
Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.
2017-01-01
It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event. PMID:28148950
NASA Astrophysics Data System (ADS)
Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.
2017-02-01
It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2~0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event.
A January angular momentum balance in the OSU two-level atmospheric general circulation model
NASA Technical Reports Server (NTRS)
Kim, J.-W.; Grady, W.
1982-01-01
The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.
Spectral distribution of solar radiation
NASA Technical Reports Server (NTRS)
Mecherikunnel, A. T.; Richmond, J.
1980-01-01
Available quantitative data on solar total and spectral irradiance are examined in the context of utilization of solar irradiance for terrestrial applications of solar energy. The extraterrestrial solar total and spectral irradiance values are also reviewed. Computed values of solar spectral irradiance at ground level for different air mass values and various levels of atmospheric pollution or turbidity are presented. Wavelengths are given for computation of solar, absorptance, transmittance and reflectance by the 100 selected-ordinate method and by the 50 selected-ordinate method for air mass 1.5 and 2 solar spectral irradiance for the four levels of atmospheric pollution.
A 320 Year Ice-Core Record of Atmospheric Hg Pollution in the Altai, Central Asia.
Eyrikh, Stella; Eichler, Anja; Tobler, Leonhard; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit
2017-10-17
Anthropogenic emissions of the toxic heavy metal mercury (Hg) have substantially increased atmospheric Hg levels during the 20th century compared to preindustrial times. However, on a regional scale, atmospheric Hg concentration or deposition trends vary to such an extent during the industrial period that the consequences of recent Asian emissions on atmospheric Hg levels are still unclear. Here we present a 320 year Hg deposition history for Central Asia, based on a continuous high-resolution ice-core Hg record from the Belukha glacier in the Siberian Altai, covering the time period 1680-2001. Hg concentrations and deposition fluxes start rising above background levels at the beginning of the 19th century due to emissions from gold/silver mining and Hg production. A steep increase occurs after the 1940s culminating during the 1970s, at the same time as the maximum Hg use in consumer products in Europe and North America. After a distinct decrease in the 1980s, Hg levels in the 1990s and beginning of the 2000s return to their maximum values, which we attribute to increased Hg emissions from Asia. Thus, rising Hg emissions from coal combustion and artisanal and small-scale gold mining (ASGM) in Asian countries determine recent atmospheric Hg levels in Central Asia, counteracting emission reductions due to control measures in Europe and North America.
The effect of aerosols on the earth-atmosphere albedo
NASA Technical Reports Server (NTRS)
Herman, B. M.; Browning, S. R.
1975-01-01
The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).
Mars Global Reference Atmospheric Model 2010 Version: Users Guide
NASA Technical Reports Server (NTRS)
Justh, H. L.
2014-01-01
This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.
Millet, M; Wortham, H; Sanusi, A; Mirabel, P
1997-01-01
Between 1991 and 1993, 18 fogwater samples, 31 rainwater samples and 17 atmosphere (gas and particles) samples were analysed for 13 pesticides (pp'DDT,pp'DDD,pp'DDE, aldrin, dieldrin, lindane, hexachlorobenzene, fenpropathrin, mecoprop, methyl-parathion, atrazine, isoproturon and aldicarb). The samples were collected in a rural area where some of the compounds are in use (experimental INRA farm, "Institut National de la Recherche Agronomique" in Colmar, Eastern France, 80,000 inhabitants). This paper briefly presents the analytical methodology used and, in detail, the contamination level of the different atmospheric phases. The contamination levels are roughly constant throughout the year in all the atmospheric phases and the most abundant pesticides are those commonly used on the experimental INRA farm and other surrounding farms. Nevertheless, some pesticides not used since the 1970s such as 1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (pp'DDT) and 2,2-Bis(4-chlorophenyl)-1,1-dichloroethane (pp 'DDD) are also detected in the atmosphere of Colmar. A small increase in the pesticide concentrations in the atmosphere (gas and particles) was observed during treatments.
NASA Astrophysics Data System (ADS)
Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus
2018-03-01
Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.
NASA Astrophysics Data System (ADS)
Klein, P. M.; Bonin, T. A.; Newman, J. F.; Wainwright, C. E.; Blumberg, W. G.; Turner, D. D.; Chilson, P. B.; Wharton, S.
2014-12-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma in 2012 and 2013. Its main objective was to study turbulent phenomena in the lowest 2-km of the atmosphere using a variety of novel atmospheric profiling techniques including a sodar, multiple Doppler wind lidars (DWL), a Raman lidar and an atmospheric emitted radiance interferometer (AERI). Several instruments from the University of Oklahoma and Lawrence Livermore National Laboratory were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides for a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, and multi-agency collaboration. Graduate students served as principal investigators who took the lead in designing and conducting experiments aimed at examining boundary-layer processes. This presentation provides an overview of the LABLE experiments and a summary of important results. One focus area will be the dynamic and thermodynamic structure of the nocturnal boundary layer and the formation of nocturnal low-level jets. Such low-level jets were frequently observed during both LABLE campaigns and often interacted with mesoscale atmospheric disturbances such as frontal passages. The combination of high-resolution AERI temperature profiles with DWL mean wind and turbulence profiles provided new insights about the structure and evolution of low-level jets.
NASA Astrophysics Data System (ADS)
Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac
2016-10-01
Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.
The multi-millennial Antarctic commitment to future sea-level rise
NASA Astrophysics Data System (ADS)
Golledge, Nicholas R.; Kowalewski, Douglas E.; Naish, Timothy R.; Levy, Richard H.; Fogwill, Christopher J.; Gasson, Edward G. W.
2016-04-01
Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above present values by the end of this century (Collins et al., 2013). If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (Rogelj et al., 2012). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Collins et al., 2013). We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.
Application of cascade lasers to detection of trace gaseous atmospheric pollutants
NASA Astrophysics Data System (ADS)
Miczuga, Marcin; Kopczyński, Krzysztof
2016-12-01
Understanding the impact of gaseous pollutants on the earth's atmosphere, as well as more and more felt by mankind negative effects of its contamination, result in increasing the level of environmental awareness and contribute to the intensification of actions aimed at reducing the emission of harmful gases into the atmosphere. At the same time, the extensive studies are conducted in order to continuously monitor the level of air contamination with harmful gases and the industry compliance with the standards limited the amount of emitted pollutants. Over recent years, there has been increasing use of cascade lasers and multi-pass cells in optical systems detecting the gaseous atmospheric pollutants and measuring the gas concentrations. The paper presents the use of a tunable quantum cascade laser as a source of the IR radiation in an advanced detection system enabling the trace gaseous atmospheric pollutants to be identified. Apart from the laser, the main elements of the system are: a multi-pass cell, an IR detector and a module for control and analysis. Operation of the system is exemplified by measuring the level of the air pollution with ammonia, carbon oxide and nitrous oxide.
An energy balance climate model with cloud feedbacks
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.
1984-01-01
The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.
Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV
NASA Astrophysics Data System (ADS)
Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okajima, Y.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Nishimura, Y.; Okumura, K.; Richard, E.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Elnimr, M.; Kropp, W. R.; Mine, S.; Locke, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Weatherly, P.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Akiri, T.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hayashino, T.; Hirota, S.; Huang, K.; Ieki, K.; Jiang, M.; Kikawa, T.; Nakamura, KE.; Nakaya, T.; Patel, N. D.; Suzuki, K.; Takahashi, S.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Murase, M.; Muto, F.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Ito, S.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Quilain, B.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; de Perio, P.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; Minamino, A.; Super-Kamiokande Collaboration
2018-04-01
An analysis of atmospheric neutrino data from all four run periods of Super-Kamiokande optimized for sensitivity to the neutrino mass hierarchy is presented. Confidence intervals for Δ m322 , sin2θ23, sin2θ13 and δC P are presented for normal neutrino mass hierarchy and inverted neutrino mass hierarchy hypotheses, based on atmospheric neutrino data alone. Additional constraints from reactor data on θ13 and from published binned T2K data on muon neutrino disappearance and electron neutrino appearance are added to the atmospheric neutrino fit to give enhanced constraints on the above parameters. Over the range of parameters allowed at 90% confidence level, the normal mass hierarchy is favored by between 91.9% and 94.5% based on the combined Super-Kamiokande plus T2K result.
Metals from deep atmosphere to exosphere in hot-Jupiters
NASA Astrophysics Data System (ADS)
Lecavelier des Etangs, Alain
2017-08-01
With STIS/UV observations we detected magnesium atoms at high altitude in the atmosphere of the hot-Jupiter HD209458b, probing lower regions in the atmosphere than previously done with Lyman-alpha observations (Vidal-Madjar et al. 2013). With the present program, we will search for magnesium and other heavy species in escaping atmospheres of 2 giant planets orbiting hot A and F-type stars: WASP-94Ab and WASP-33b.The observations will provide unprecedented information on the physical conditions (velocity, temperature, and density) in the upper atmosphere of these two hot-Jupiters. Targets have been selected for the expected high significance level of the atmospheric detections (>10 sigma). These exoplanets present favorable configuration for upper atmosphere observations because of the combination of high escape rates and large spatial extensions of the magnesium clouds surrounding them. The atmospheric signatures of the magnesium and other metals are therefore expected to be easily detectable. Moreover, the two selected exoplanets have highly different equilibrium temperatures, below and above the MgSiO3 condensation temperature. Consequently, because the metals observed in the escaping flow originate from deeper in the atmosphere where haze can condensate, the observations will constrain the physical processes taking place in the clouds that cannot be observed directly.
LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P.; Bonin, T. A.; Newman, J. F.
This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The mainmore » objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.« less
Psychrometric chart for physiological research
NASA Technical Reports Server (NTRS)
Chambers, A. B.
1971-01-01
Chart facilitates use of graphical techniques for solving problems involving thermodynamic properties of moist air. The properties are presented, and their units of measurement are listed. Chart presenting conditions at standard atmosphere pressure at sea level is most useful.
Song, I H; Kim, W J; Jo, C; Ahn, H J; Kim, J H; Byun, M W
2003-06-01
The effect of modified atmosphere packaging and irradiation in combination on nitrosodimethylamine (NDMA) and nitrosopyrrolidine (NPYR) levels in pork sausage was studied. Emulsion-type cooked pork sausage was manufactured and packaged in aerobic, CO2 (100%), N2 (100%), and CO2/N2 (25%/75%) environments, respectively, and irradiated at 0, 5, 10, and 20 kGy with gamma irradiation. The nitrosamine contents were significantly reduced by irradiation, and the reduction of nitrosamines was more extensive with modified atmosphere packaging than with aerobic packaging. The correlation coefficient between irradiation dose and nitrosamine content indicated that irradiation can reduce the levels of nitrosamines. The combination of irradiation and modified atmosphere packaging is effective in enhancing the chemical safety of sausage by reducing nitrosamines, if present, as well as enhancing the microbial safety of cooked pork sausage.
NASA Astrophysics Data System (ADS)
Viana, M.; Pérez, C.; Querol, X.; Alastuey, A.; Nickovic, S.; Baldasano, J. M.
Summer atmospheric coastal dynamics exert a significant influence on the levels and composition of atmospheric particulate matter (PM) in the North-Eastern Iberian Peninsula. Summer atmospheric scenarios in this region present a high degree of complexity as they are characterised by the absence of synoptic-scale air mass advections, the development of breeze circulations, enhanced photochemistry, local mineral dust re-suspension and the occurrence of African dust outbreaks. Three sampling sites were selected in Barcelona (NE Spain), an urban coastal site surrounded by complex topography. Regional dust modelling (DREAM) and high resolution meteorological modelling (MM5) were used to interpret PM levels and composition at the three sites. The results outline the effect of breeze dynamics and thermal internal boundary layer formation as the main meteorological drivers of the hourly evolution of PM levels. Levels of crustal components, secondary inorganic and carbon species are higher during the night, and only the marine aerosol content is higher during the day. Nitrate levels are higher during the night due to the thermal stability on NH 4NO 3. Sulphate levels are higher during the night as a consequence of the drainage flows. Lidar measurements and model results signalled the occurrence of two African dust episodes during the study period which mainly affected the free troposphere over Barcelona.
NASA Technical Reports Server (NTRS)
Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)
1989-01-01
Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.
Microbes in a bottle: Where model organisms and analog systems meet
NASA Astrophysics Data System (ADS)
Hamilton, T. L.; Weber, M.; Lott, C.; Havig, J. R.; Clark, C.; Bird, L. R.; de Beer, D.; Dron, A.; Freeman, K. H.; Macalady, J. L.
2015-12-01
Understanding the evolution of the Earth's surface chemistry is one of the most exciting challenges in modern geoscience. The Great Oxidation Event occurred ~2.5 Ga, when the concentration of oxygen in the atmosphere increased from <0.001% of the present atmospheric level (PAL) to within 1-10%. Following the initial rise, concentrations of O2 in the atmosphere and oceans remained well below present-day atmospheric levels through the Proterozoic until a second rise ~0.6 Ga to levels around those observed today. Thus, for much of Earth's history, deep oceans probably remained oxygen-poor until the most recent increase in atmospheric O2. In addition to low levels of O2, at least portions of the oceans were euxinic (sulfide-rich) with H2S often reaching the photic zone. Oxygenic photosynthesis is the largest source of O2 in the atmosphere. Primary productivity and the remineralization of organic matter are intimately linked to planetary redox and thus to levels of O2. As a result, biologic carbon isotope fractionation and other biomarkers (i.e. hopanoids) facilitate our interpretation of biogeochemical cycling during the Proterozoic Eon. Here, we describe the isolation and characterization of two photoautotrophs—the dominant primary producers—from a Proterozoic Ocean analog. We examined the 13C fractionation in the microbial mat and employed in situ microcosms to estimate primary productivity. In addition, we deployed diver-operated microsensors to determine oxygen production and sulfide consumption over a 24-hour cycle and sequenced total RNA from 4 time points. Using these data, we examined primary production in pure cultures of the dominant Cyanobacteria and green sulfur bacteria from the mat under conditions that mimic those observed in situ. We use this information to begin to build a model of oxygen production and organic carbon burial in a Proterozoic-like environment where Cyanobacteria can contribute to primary productivity in the absence of oxygen production. Furthermore, we examined the differences between 13C fractionation in cultures maintained under "ideal" conditions compared to those observed in situ. Collectively, the RNA sequencing data, the in situ primary productivity data and pure culture information were necessary to interpret the 13C signal from the mats.
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix
2018-06-01
A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.
Simple atmospheric perturbation models for sonic-boom-signature distortion studies
NASA Technical Reports Server (NTRS)
Ehernberger, L. J.; Wurtele, Morton G.; Sharman, Robert D.
1994-01-01
Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models.
NASA Astrophysics Data System (ADS)
Polichetti, Juliano; Grigoropoulos, Konstantinos; Ferentinos, George; Tselentis, Vasilios; Nastos, Panagiotis; Xatzioakeimidis, Konstantinos; Dimas, Konstantinos; Khan, Ubaidullah
2010-05-01
Since the 19th century anthropogenic activities in urban areas have increased dramatically due to socio-economic evolution, increased urbanization and transport needs. Fifty seven years ago London experienced the impacts of an acute atmospheric pollution episode, due to elevated levels of black carbon aerosols (BC) and SO2, leading to the realization that uncontrolled emissions to the atmosphere lead to severe impacts on human health. Many large cities (Mega cities) in the developed and developing world have, for the last two decades, been plagued by high levels of atmospheric pollution, a problem that the European and worldwide scientific community are at present studying with measurable success. However, due to rapid industrial development and the ever increasing traffic, many more studies are required to support decision makers and governments on measures to reduce atmospheric pollution and mitigate the associated serious health effects on the population. Registered health problems are numerous and dramatic in all ages groups, but particularly so in infants, and patients suffering from chronic diseases due to increased levels of pollutants and nocive substance inhaled, entering the lungs and blood stream and finally being deposited in several organs. Recent studies indicate that cardiac arrhythmias associated to increased atmospheric pollution pose a serious threat to human health. K.N.Grigoropoulos,et al.2008. This study is based on monitoring and mapping CO levels in six areas 3 different cities i.e. Athens, Naples and Islamabad, the objective being to present and analyze the spatial and temporal variability of carbon monoxide (CO) levels leading to the estimation of the concentration levels and the quantities inhaled by pedestrians on a daily basis. It is well know that exposure to carbon monoxide concentration values in excess of 200ppm for 2-3 h usually create headaches, tiredness, fatigue and nausea, whereas human exposure of values of 800 ppm for over three hours, are fatal. The findings of this research indicate that although CO concentrations remain at low levels throughout the measurement period, several peaks of high CO concentration are obtained, in many instances of several minutes duration, which are incompatible with public health levels and conditions for the afore mentioned cities. This research is yet another reminder that it is timely and necessary for the European Community to re examinate and evaluate the framework pertinent to CO emissions and levels in the urban ambient atmosphere.
Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early earth
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Pollack, J. B.; Crisp, D.
1984-01-01
One-dimensional radiative and photochemical models are used to determine how much CO2 must have been present to maintain a temperate early climate and to examine the consequences that are implied for the controls on atmospheric oxidation state. It is shown that CO2 concentrations of the order of 1000 PAL are required to keep the average surface temperature close to the present value, if albedo changes and heating by reduced greenhouse gases were relatively unimportant. The oxidation state of such a high-CO2, prebiotic atmosphere should have been largely determined by the balance between the H2O2 rainout rate and the rate at which hydrogen escaped to space, with only a weak dependence on the volcanic outgassing rate or on other speculative sources of H2. The implied upper limit on the ground-level O2 mixing ratio is approximately 10 to the -11th and is subject to less uncertainty than the results of previous models.
NASA Astrophysics Data System (ADS)
Najjar, R.; Sedwick, P.; Mulholland, M. R.; Friedrichs, M. A.; Thompson, A. M.; Martins, D. K.; Bernhardt, P. W.; Herrmann, M.; Price, L. M.; Sohst, B. M.; Sookhdeo, C.; St-Laurent, P.; Widner, B.
2016-02-01
We carried out a program of process-oriented field measurements and biogeochemical modeling in oligotrophic coastal waters off the eastern U.S.—a region that currently receives high levels of atmospheric nitrogen deposition (AND)—to test whether wet AND events stimulate primary productivity and accumulation of algal biomass in coastal waters following summer storms. Our results from shipboard incubations and numerical modeling indicate that nitrogen in rain stimulated primary production in these waters during the summer of 2014. We will present isotopic, tracer, and modeling analyses that determine the relative roles of vertical mixing and atmospheric deposition during the wet AND events in two anticyclonic eddies north and south of the Gulf Stream. 3-D atmospheric and oceanic modeling results will also be presented, which allow the understanding gained during the summer 2014 field campaign to be applied to quantifying the role of atmospheric deposition throughout coastal waters of the eastern US over many years.
NASA Astrophysics Data System (ADS)
Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.
2016-12-01
Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.
Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2
NASA Technical Reports Server (NTRS)
Titlow, James; Baum, Bryan A.
1993-01-01
Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.
NASA Astrophysics Data System (ADS)
Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua
2017-04-01
Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.
NASA Astrophysics Data System (ADS)
Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina
2017-04-01
The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.
Atlas of the global distribution of atmospheric heating during the global weather experiment
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1991-01-01
Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
NASA Technical Reports Server (NTRS)
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
The multi-millennial Antarctic commitment to future sea-level rise
NASA Astrophysics Data System (ADS)
Golledge, N. R.; Kowalewski, D. E.; Naish, T. R.; Levy, R. H.; Fogwill, C. J.; Gasson, E. G. W.
2015-10-01
Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.
The multi-millennial Antarctic commitment to future sea-level rise.
Golledge, N R; Kowalewski, D E; Naish, T R; Levy, R H; Fogwill, C J; Gasson, E G W
2015-10-15
Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.
Coping with cyclic oxygen availability: evolutionary aspects.
Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke
2007-10-01
Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.
Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review
Winkel, Lenny H.E.; Vriens, Bas; Jones, Gerrad D.; Schneider, Leila S.; Pilon-Smits, Elizabeth; Bañuelos, Gary S.
2015-01-01
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246
Selenium cycling across soil-plant-atmosphere interfaces: a critical review.
Winkel, Lenny H E; Vriens, Bas; Jones, Gerrad D; Schneider, Leila S; Pilon-Smits, Elizabeth; Bañuelos, Gary S
2015-05-29
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.
NASA Technical Reports Server (NTRS)
Baines, K. H.; Bergstralh, J. T.
1986-01-01
Recent high quality spectral observations have allowed the derivation of constraints on the atmospheric structure of Uranus. The present analysis, which is based on the detailed modeling of a broadband geometric albedo spectrum and high resolution observations of the H2 4-0 quadrupole and 6818.9-A CH4 features, yields (1) a family of models which parameterize an upper tropospheric haze layer, (2) a lower, optically infinite cloud at a given pressure level, (3) the cloud-level methane molar fraction, and (4) the mean ortho/para ratio in the visible atmosphere. The single scattering albedo of atmospheric aerosols exhibits a steep darkening between 5890 and 6040 A.
Local Dynamics of Baroclinic Waves in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Kavulich, M. J.; Szunyogh, I.; Gyarmati, G.; Wilson, R.
2010-12-01
In this presentation, the spatio-temporal evolution of baroclinic waves in the GFDL Mars GCM is investigated. The study employs diagnostic techniques that were developed to analyze the life cycles of baroclinic waves in the terrestrial atmosphere. These techniques include a Hilbert-transform-based method to extract the packets of Rossby wave envelopes at the jet level, the eddy kinetic energy equation for the full atmospheric column, and ensemble-based diagnostics. The results show that, similar to the terrestrial atmosphere, coherent westward-propagating wave packets can be detected in the Martian atmosphere. These wave packets are composed of waves of wavenumber 2 through 5, in contrast to the wavenumber 4 through 9 waves that contribute the upper-tropospheric wave packets of the terrestrial atmosphere. Additionally, as in the terrestrial atmosphere, the dominant part of the eddy kinetic energy is generated in regions of baroclinic energy conversion, which are strongly localized in both space and time. Implications of the results for predictability of the state of the Martian atmosphere are also discussed.
Some issues on modeling atmospheric turbulence experienced by helicopter rotor blades
NASA Technical Reports Server (NTRS)
Costello, Mark; Gaonkar, G. H.; Prasad, J. V. R.; Schrage, D. P.
1992-01-01
The atmospheric turbulence velocities seen by nonrotating aircraft components and rotating blades can be substantially different. The differences are due to the spatial motion of the rotor blades, which move fore and aft through the gust waves. Body-fixed atmospheric turbulence refers to the actual atmospheric turbulence experienced by a point fixed on a nonrotating aircraft component such as the aircraft's center of gravity or the rotor hub, while blade-fixed atmospheric turbulence refers to the atmospheric turbulence experienced by an element of the rotating rotor blade. An example is presented, which, though overly simplified, shows important differences between blade- and body-fixed rotorcraft atmospheric turbulence models. All of the information necessary to develop the dynamic equations describing the atmospheric turbulence velocity field experienced by an aircraft is contained in the atmospheric turbulence velocity correlation matrix. It is for this reason that a generalized formulation of the correlation matrix describing atmospheric turbulence that a rotating blade encounters is developed. From this correlation matrix, earlier treated cases restricted to a rotor flying straight and level directly into the mean wind can be recovered as special cases.
The Thermal Structure of Triton's Atmosphere: Results from the 1993 and 1995 Occultations
NASA Astrophysics Data System (ADS)
Olkin, C. B.; Elliot, J. L.; Hammel, H. B.; Cooray, A. R.; McDonald, S. W.; Foust, J. A.; Bosh, A. S.; Buie, M. W.; Millis, R. L.; Wasserman, L. H.; Dunham, E. W.; Young, L. A.; Howell, R. R.; Hubbard, W. B.; Hill, R.; Marcialis, R. L.; McDonald, J. S.; Rank, D. M.; Holbrook, J. C.; Reitsema, H. J.
1997-09-01
This paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young (1992,Astron. J.103,991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at ∼50-km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (∼20-km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 ± 1 K and the atmospheric pressure at 1400-km radius (∼50-km altitude) is 1.4 ± 0.1 μbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (D. F. Strobel, X. Zhu, M. E. Summers, and M. H. Stevens, 1996,Icarus120,266-289). The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model. In our opinion, the disagreement in temperature and pressure is probably due to modeling problems at the microbar level, since measurements at this level have not previously been made. Alternatively, the difference could be due to seasonal change in Triton's atmospheric structure.
Paleosols as Archives of Environmental Change in Deep Time
NASA Astrophysics Data System (ADS)
Crowley, Quentin
2015-04-01
Paleosols develop at the geosphere-atmosphere interface and potentially provide an archive of environmental conditions at the time of their formation. Although paleosols from deep time can be difficult to recognize due to the masking of pedogenic features by metamorphism and deformation, they may record transient (i.e. time-dependent) events which are often difficult to recognize in other geological proxies. Paleosols from the Archean and Paleoproterozoic are rare and complex to study, but offer an opportunity to gain insight into what may be relatively short-scale temporal variations in the Earth's atmospheric composition. For instance, it is widely believed that atmospheric oxygen saturation rose from <10E-05 present atmospheric level (PAL) in the Archean to >10E-02 PAL at the Great Oxidation Event (GOE) at ca. 2.4 Ga. Until recently however, chemical or physical evidence from paleosols for earlier oxygenation events were generally thought to be lacking. Recent studies of paleosols from eastern India (Keonjhar Paleosol, Singhbhum Craton) and South Africa (Nsuze Paleosol, Kaapvaal Craton) have provided chemical evidence for transient Mesoarchean atmospheric oxygenation at ca. 3.0 Ga. These paleosols are considered to preserve the earliest known vestiges of terrestrial oxidative weathering, signifying a transient, early oxygen accumulation in the Earth's atmosphere. This has far-reaching implications from both atmospheric and biological evolutionary perspectives in that chemical signatures preserved in these Mesoarchean paleosols are thought to signify the presence of molecular oxygen at levels higher than those attributable to photo-dissociation of atmospheric water alone. Such elevated levels of atmospheric oxygen could only be due to the presence of a sufficiently large biomass of micro-organisms capable of oxidative photosynthesis. Although the Archean-Paleoproterozoic paleosol geological record is fragmentary and geochemical signatures are not necessarily straightforward to interpret, these paleosols provide an opportunity to study the nature and timing of atmospheric compositional changes at a crucial time in the Earth's evolutionary history.
Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.
Wordsworth, Robin; Pierrehumbert, Raymond
2013-01-04
Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.
Efficient Radiative Transfer for Dynamically Evolving Stratified Atmospheres
NASA Astrophysics Data System (ADS)
Judge, Philip G.
2017-12-01
We present a fast multi-level and multi-atom non-local thermodynamic equilibrium radiative transfer method for dynamically evolving stratified atmospheres, such as the solar atmosphere. The preconditioning method of Rybicki & Hummer (RH92) is adopted. But, pressed for the need of speed and stability, a “second-order escape probability” scheme is implemented within the framework of the RH92 method, in which frequency- and angle-integrals are carried out analytically. While minimizing the computational work needed, this comes at the expense of numerical accuracy. The iteration scheme is local, the formal solutions for the intensities are the only non-local component. At present the methods have been coded for vertical transport, applicable to atmospheres that are highly stratified. The probabilistic method seems adequately fast, stable, and sufficiently accurate for exploring dynamical interactions between the evolving MHD atmosphere and radiation using current computer hardware. Current 2D and 3D dynamics codes do not include this interaction as consistently as the current method does. The solutions generated may ultimately serve as initial conditions for dynamical calculations including full 3D radiative transfer. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
NASA Technical Reports Server (NTRS)
Canfield, D. E.; Teske, A.
1996-01-01
The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.
Vertically Propagating Waves in the Upper Atmosphere of Saturn From Cassini Radio Occultations
NASA Astrophysics Data System (ADS)
Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.
2005-12-01
We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. We determine the properties and spectra of these waves, and speculate on their origins and their dynamical effects on the upper atmosphere.
POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2016-12-10
For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less
Evidence for CO in Jupiter's atmosphere from airborne spectroscopic observations at 5 microns
NASA Technical Reports Server (NTRS)
Larson, H. P.; Fink, U.; Treffers, R. R.
1978-01-01
High-altitude (12.4 km) spectra of Jupiter recorded at the Kuiper Airborne Observatory are analyzed for the presence of CO absorption lines. A line-by-line comparison of Jupiter's spectrum with that of carbon monoxide is presented, as well as a correlation analysis that includes the influence of other gases present in Jupiter's atmosphere (CH4, NH3, H2O, PH3, and GeH4). The resulting evidence points strongly to the presence of carbon monoxide in Jupiter's atmosphere, thus strengthening Beer's evidence for it. Possible explanations for the existence and observability of Jovian CO, including convection from hotter, deeper layers or decomposition of organic molecules, are explored. A recent suggestion that the Jovian CO is restricted to stratospheric levels is not supported by the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braennvall, M.L.; Bindler, R.; Renberg, I.
1999-12-15
There is great concern for contamination of sensitive ecosystems in high latitudes by long-range transport of heavy metals and other pollutants derived from industrial areas in lower latitudes. Atmospheric pollution of heavy metals has a very long history, and since metals accumulate in the environment, understanding of present-day pollution conditions requires knowledge of past atmospheric deposition. The authors use analyses of lead concentrations and stable lead isotopes ({sup 206}Pb/{sup 207}Pb ratios) of annually laminated sediments from four lakes in northern Sweden to provide a decadal record of atmospheric lead pollution for the last 3000 years. There is a clear signalmore » in the sediments of airborne pollution from Greek and Roman cultures 2000 years ago, followed by a period of clean conditions 400--900 A.D. From 900 A.D. there was a conspicuous, permanent increase in atmospheric lead pollution fallout, The sediments reveal peaks in atmospheric lead pollution at 1200 and 1530 A.D. comparable to present-day levels. These peaks match the history of metal production in Europe. This study indicates that the contemporary atmospheric pollution climate in northern Europe was established in Medieval time, rather than in the industrial period. Atmospheric lead pollution deposition did not, when seen in a historical perspective, increase as much as usually assumed with the Industrial Revolution.« less
Climatic Consequences of a Large-Scale Desertification in Northeast Brazil: A GCM Simulation Study.
NASA Astrophysics Data System (ADS)
Oyama, Marcos Daisuke; Nobre, Carlos Afonso
2004-08-01
The climatic impacts of a large-scale desertification in northeast Brazil (NEB) are assessed by using the Center for Weather Forecasting and Climate Studies Center for Ocean Land Atmosphere Studies (CPTEC COLA) AGCM. Two numerical runs are performed. In the control run, NEB is covered by its natural vegetation (most of NEB is covered by a xeromorphic vegetation known as caatinga); in the desertification run, NEB vegetation is changed to desert (bare soil). Each run consists of five 1-yr numerical integrations. The results for NEB wet season (March May) are analyzed. Desertification results in hydrological cycle weakening: precipitation, evapotranspiration, moisture convergence, and runoff decrease. Surface net radiation decreases and this reduction is almost evenly divided between sensible and latent heat flux. Atmospheric diabatic heating decreases and subsidence anomalies confined at lower atmospheric levels are found. The climatic impacts result from the cooperative action of feedback processes related to albedo increase, plant transpiration suppression, and roughness length decrease. On a larger scale, desertification leads to precipitation increase in the oceanic belt close to the northernmost part of NEB (NNEB). In the NEB NNEB dipole, the anomalies of vertical motion and atmospheric circulation are confined to lower atmospheric levels, that is, 850 700 hPa. At these levels, circulation anomalies resemble the linear baroclinic response of a shallow atmospheric layer (850 700 hPa) to a tropical heat sink placed over NEB at the middle-layer level. Therefore, NEB climate does show sensitivity to a vegetation change to desert. The present work shows the possibility of significant and pronounced climate impacts, on both regional and large scales, if the environmental degradation in NEB continues unchecked.
NASA Technical Reports Server (NTRS)
Chesters, D.; Uccellini, L.; Robinson, W.
1982-01-01
A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Changes in atmospheric CO2 - Influence of the marine biota at high latitude
NASA Technical Reports Server (NTRS)
Knox, F.; Mcelroy, M. B.
1984-01-01
Approximately half of the nitrogen and phosphorus entering deep waters of the contemporary ocean are transported from the surface in inorganic form as preformed nutrients. A simple model for ocean chemistry is presented and shown to account for the present level of atmospheric CO2. Fluctuations in preformed nutrients, modulated by changes in insolation and circulation at high latitudes, can result in significant variations in CO2. It is suggested that these changes may account for the apparent control on climate exercised by secular variations in the orbital parameters of the earth.
NASA Astrophysics Data System (ADS)
Iz, H. Bâki
2018-05-01
This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.
Bistability of atmospheric oxygen and the Great Oxidation.
Goldblatt, Colin; Lenton, Timothy M; Watson, Andrew J
2006-10-12
The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability. The largest chemical transition was the 'Great Oxidation', approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10(-5) of the present atmospheric level (PAL) to more than 0.01 PAL, and possibly to more than 0.1 PAL. This transition took place long after oxygenic photosynthesis is thought to have evolved, but the causes of this delay and of the Great Oxidation itself remain uncertain. Here we show that the origin of oxygenic photosynthesis gave rise to two simultaneously stable steady states for atmospheric oxygen. The existence of a low-oxygen (less than 10(-5) PAL) steady state explains how a reducing atmosphere persisted for at least 300 million years after the onset of oxygenic photosynthesis. The Great Oxidation can be understood as a switch to the high-oxygen (more than 5 x 10(-3) PAL) steady state. The bistability arises because ultraviolet shielding of the troposphere by ozone becomes effective once oxygen levels exceed 10(-5) PAL, causing a nonlinear increase in the lifetime of atmospheric oxygen. Our results indicate that the existence of oxygenic photosynthesis is not a sufficient condition for either an oxygen-rich atmosphere or the presence of an ozone layer, which has implications for detecting life on other planets using atmospheric analysis and for the evolution of multicellular life.
Global mapping of nonseismic sea level oscillations at tsunami timescales.
Vilibić, Ivica; Šepić, Jadranka
2017-01-18
Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (<2 h) may substantially contribute to global sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.
Global mapping of nonseismic sea level oscillations at tsunami timescales
Vilibić, Ivica; Šepić, Jadranka
2017-01-01
Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (<2 h) may substantially contribute to global sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates. PMID:28098195
NASA Astrophysics Data System (ADS)
Zetzer, J. I.; Lyakhov, A.; Yakymenko, K.
2012-12-01
The results of comprehensive analysis of long-term records of VLF-LF European transmitters by means of Mikhnevo geophysical observatory (Institute of Geospheres Dynamics), SID station A118 (France) and a number of AWESOM receivers are presented. In the previous study (A.A.Egoshin et al., Izvestiya, Physics of the Solid Earth, 2012, Vol. 48, No. 3, pp. 275-286) the results obtained under the minimum solar activity were presented that have shown the link between the lower ionosphere parameters and meteorological fields of the middle atmosphere. The current study expands the evidence to the increased solar activity level as well as the number of receivers, thus allowing more dense coverage of the Europe by the radio paths. Middle atmosphere data under study were provided by the EOS Aura Microwave Limb Sounder. These asynoptic data, in turn, were processed by the space-time spectral analysis on various pressure levels for various window lengths. The results are presented for the spatial structure of wave-like perturbations in the VLF-LF signal strength, which result from the lower ionosphere disturbances on various radio paths. Special short-windowed space-time study was evaluated for the periods of anomalous temporal behavior of the VLF-LF signals and the results of the altitude-latitude mode structures of the geopotential height, neutral temperature, water and ozone constituents are presented. It is shown that the spatial properties of the lower ionosphere can vary significantly at relatively small scale. Moreover, the altitude-latitude mode structures do not coincide in space as well as in time, thus, complicating the lower ionosphere response to the meteorological variations of the middle atmosphere. The analysis of all assembled data proves two main points. At first, it is possible to evaluate synoptic long-term monitoring of the middle atmosphere via the lower ionosphere perturbations as seen by VLF-LF receivers. At second, the theoretical models of the lower ionosphere must include the atmosphere dynamics. Otherwise, these models, which provide lower boundary conditions for the global self-consistent numerical ionosphere models, can set up wrong boundary conditions and lead to the unresolvable errors.
Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C
Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael
2013-01-01
Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. PMID:23401563
A survey of kinetic data of compounds containing flourine
NASA Technical Reports Server (NTRS)
Brewer, D. A.
1976-01-01
Chlorofluoromethanes may have a significant effect on the level of ozone in the atmosphere. However, the role of fluroine-containing compounds has not been examined fully. A tabulation of a search of the chemical kinetic literature published between 1953 and July 1975, is presented. The data are then evaluated with respect to acceptability and importance to the overall reaction balance in the atmosphere. Possible future research to elucidate important reaction processes is discussed.
Laboratory simulations of PH3 photolysis in the atmospheres of Jupiter and Saturn
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Khwaja, H.
1985-01-01
The effects of pressure, temperature, light wavelength and intensity, and components of the atmosphere of the Jovian planets on the photolysis of PH3 were experimentally studied. The products of the photolysis, P2H4 and red phosphorus, exhibited little variation when the irradiation experiments were performed under conditions prevalent in Jupiter's atmosphere. No quenching of PH2 radicals by the levels of hydrocarbons present in the Jovian atmosphere was noted. The high partial pressure of hydrogen present on Jupiter should have no effect on the course of the photolysis. The low temperatures on Jupiter and Saturn may result in some condensation of P2H4, but P2H4 had sufficient vapor pressure in the experimental studies at 157 K to be slowly converted to red phosphorus. The products of PH3 photolysis were the same whether a 147, 184.9, or 206.2 nm monochromatic light source or a xenon lamp with a broad spectral output was used.
Atmosphere behavior in gas-closed mouse-algal systems: An experimental and modelling study
NASA Astrophysics Data System (ADS)
Averner, Maurice M.; Moore, Berrien; Bartholomew, Irene; Wharton, Robert
Concepts of biologically-based regenerative life support systems anticipate the use of photosynthetic organisms for air revitalization. However, mismatches in the rates of production and uptake of oxygen or carbon dioxide between the crew and the plants will lead to an accumulation or depletion of these gases beyond tolerable limits. One method for correcting these atmospheric changes is to use physicochemical devices. This would conflict with the constraint of minimal size and weight imposed upon the successful development of a competitive bioregenerative system. An alternate control strategy is based upon reducing the gas exchange mismatch by manipulation of those environmental parameters known to affect plant or algae gas exchange ratios. We have initiated a research program using a dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere. Our goal is to develop control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels. A mathematical model simulating the atmospheric behavior in these systems has been developed and an experimental gas-closed system has been constructed. These will be described and preliminary results will be presented.
Atmospheric monitoring at abandoned mercury mine sites in Asturias (NW Spain).
Loredo, Jorge; Soto, Jorge; Alvarez, Rodrigo; Ordóñez, Almudena
2007-07-01
Mercury concentrations are usually significant in historic Hg mining districts all over the world, so the atmospheric environment is potentially affected. In Asturias, northern Spain, past mining operations have left a legacy of ruins and Hg-rich wastes, soils and sediments in abandoned sites. Total Hg concentrations in the ambient air of these abandoned mine sites have been investigated to evaluate the impact of the Hg emissions. This paper presents the synthesis of current knowledge about atmospheric Hg contents in the area of the abandoned Hg mining and smelting works at 'La Peña-El Terronal' and La Soterraña, located in Mieres and Pola de Lena districts, respectively, both within the Caudal River basin. It was found that average atmospheric Hg concentrations are higher than the background level in the area (0.1 microg Nm(-3)), reaching up to 203.7 microg Nm(-3) at 0.2 m above the ground level, close to the old smelting chimney at El Terronal mine site. Data suggest that past Hg mining activities have big influences on the increased Hg concentrations around abandoned sites and that atmospheric transfer is a major pathway for Hg cycling in these environments.
Low-Level Jets: The Data Assimilation Office and Reanalysis
NASA Technical Reports Server (NTRS)
2002-01-01
Data assimilation brings together atmospheric observations and atmospheric models-what we can measure of the atmosphere with how we expect it to behave. NASA's Data Assimilation Office (DAO) sponsors research projects in data reanalysis, which take several years of observational data and analyze them with a fixed assimilation system, to create an improved data set for use in atmospheric studies. Using NCCS computers, one group of NASA researchers employs reanalysis to examine the role of summertime low-level jet (LLJ) winds in regional seasonal climate. Prevailing winds that blow strongly in a fixed direction within a vertically and horizontally confined region of the atmosphere are known as jets. Jets can dominate circulation and have an enormous impact on the weather in a region. Some jets are as famous as they are influential. The jet stream over North America, for instance, is the wind that blows eastward across the continent, bringing weather from the west coast and increasing the speed of airplanes flying to the east coast. The jet stream, while varying in intensity and location, is present in all seasons at the very high altitude of 200-300 millibars - more than 6 miles above Earth's surface.
Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation
NASA Astrophysics Data System (ADS)
Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya
2015-11-01
The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.
NASA Astrophysics Data System (ADS)
Savin, Daniel Wolf; Ciccarino, Christopher
2017-06-01
Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.
Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Gornitz, Vivien; Miller, James R.
1999-01-01
Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
NASA Astrophysics Data System (ADS)
Loughman, R. P.; Bhartia, P. K.; Moy, L.; Kramarova, N. A.; Wargan, K.
2016-12-01
Many remote sensing techniques used to monitor the Earth's upper atmosphere fall into the broad category of "limb viewing" (LV) measurements, which includes any method for which the line of sight (LOS) fails to intersect the surface. Occultation, limb emission and limb scattering (LS) measurements are all LV methods that offer strong sensitivity to changes in the atmosphere near the tangent point of the LOS, due to the enhanced geometric path through the tangent layer (where the concentration also typically peaks, for most atmospheric species). But many of the retrieval algorithms used to interpret LV measurements assume that the atmosphere consists of "spherical shells", in which the atmospheric properties vary only with altitude (creating a 1D atmosphere). This assumption simplifies the analysis, but at the possible price of misinterpreting measurements made in the real atmosphere. In this presentation, we focus on the problem of LOS inhomogeneity for LS measurements made by the OMPS Limb Profiler (LP) instrument during the 2015 ozone hole period. The GSLS radiative transfer model (RTM) used in the default OMPS LP algorithms assumes a spherical-shell atmosphere defined at levels spaced 1 km apart, with extinction coefficients assumed to vary linearly with height between levels. Several recent improvements enable an updated single-scattering version of the GSLS RTM to ingest 3D MERRA-2 analysis fields (including temperature, pressure, and ozone concentration) when creating the model atmosphere, by introducing flexible altitude grids, flexible atmospheric specification along the LOS, and improved treatment of the radiative transfer within each atmospheric layer. As a result, the effect of LOS inhomogeneity on the current (1D) OMPS LP retrieval algorithm can now be studied theoretically, using realistic 3D atmospheric profiles. This work also represents a step towards enabling OMPS LP data to be ingested as part of future data assimilation efforts.
We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...
Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah.
Helmig, D; Thompson, C R; Evans, J; Boylan, P; Hueber, J; Park, J-H
2014-05-06
Oil and natural gas production in the Western United States has grown rapidly in recent years, and with this industrial expansion, growing environmental concerns have arisen regarding impacts on water supplies and air quality. Recent studies have revealed highly enhanced atmospheric levels of volatile organic compounds (VOCs) from primary emissions in regions of heavy oil and gas development and associated rapid photochemical production of ozone during winter. Here, we present surface and vertical profile observations of VOC from the Uintah Basin Winter Ozone Studies conducted in January-February of 2012 and 2013. These measurements identify highly elevated levels of atmospheric alkane hydrocarbons with enhanced rates of C2-C5 nonmethane hydrocarbon (NMHC) mean mole fractions during temperature inversion events in 2013 at 200-300 times above the regional and seasonal background. Elevated atmospheric NMHC mole fractions coincided with build-up of ambient 1-h ozone to levels exceeding 150 ppbv (parts per billion by volume). The total annual mass flux of C2-C7 VOC was estimated at 194 ± 56 × 10(6) kg yr(-1), equivalent to the annual VOC emissions of a fleet of ∼100 million automobiles. Total annual fugitive emission of the aromatic compounds benzene and toluene, considered air toxics, were estimated at 1.6 ± 0.4 × 10(6) and 2.0 ± 0.5 × 10(6) kg yr(-1), respectively. These observations reveal a strong causal link between oil and gas emissions, accumulation of air toxics, and significant production of ozone in the atmospheric surface layer.
NASA Astrophysics Data System (ADS)
Vaid, B. H.
2017-02-01
The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.
Conti, Marcelo Enrique; Jasan, Raquel; Finoia, Maria Grazia; Iavicoli, Ivo; Plá, Rita
2016-04-01
Lichen Usnea barbata transplants were tested as a biomonitor of atmospheric deposition in an apparently pristine environment that is Tierra del Fuego region (Patagonia, Argentina). The present survey is connected with the volcanic eruption that started in north Patagonia on June 4, 2011 from the Puyehue-Cordón Caulle volcano, Chile (north Patagonia, at 1700 km of distance of our sampling sites). Lichens were collected in September 2011 (one month of exposure) and September 2012 (1 year of exposure) in 27 sites covering the northern region of the province where trees are not present. The atmospheric deposition of 27 elements by using Neutron Activation Analysis (NAA) was determined in the collected samples. The first aim of the study was to evaluate the influence of the volcanic eruption on the regional atmospheric deposition comparing our results with baseline data we determined in U. barbata in 2006 in the same sites. The second aim was to test possible patterns of bioaccumulation between the two sampling campaigns after the volcanic eruption. With respect to 2006 baseline levels, we found significant higher levels for As, Ba, Co, Cr, Cs, Na, Sb and U in lichens collected after 1 month of exposure (first sampling campaign--2011). Between the two sampling campaigns (2011-2012) after the eruption, lichens reflected the natural contamination by volcanic ashes with significantly higher median levels of Br, Cr, Fe, K, Na, Sc, and Se. Results confirmed the very good aptitude of U. barbata to reflect the levels of elements in the environment at global scale and to reflect the volcanic emissions at distant places. Volcanic eruptions cause the emission in the atmosphere of elevated levels of particulate matter. In this regard, our findings demonstrate the importance to evaluate the metal composition of the particles to avoid possible health effects.
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, O.; Mayol-Bracero, O. L.; Sepulveda-Vallejo, P.; Heymsfield, A.
2013-12-01
Cloud formation in the tropical atmosphere is difficult to characterize when factors such as the Saharan Air Layer (SAL) play a role influencing the dynamic and thermodynamic processes. In order to characterize particle number size distribution across the Eastern Caribbean with the possible influence of African dust at low and mid levels, data collected during July 2011 from ground-based instruments and an aircraft platform were analyzed. Aerosol measurements from the ocean surface to ~8 km were performed below and in and around clouds by the National Center for Atmospheric Research (NCAR) C130 aircraft during the Ice in Clouds Experiment-Tropical (ICE-T) using the Passive Cavity Aerosol Spectrometer Probe (PCASP), while low-level measurements of aerosols were performed at the University of Puerto Rico-Rio Piedras Campus (UPRRP) during the Puerto Rican African Dust and Cloud Study (PRADACS) using an Optical Particle Counter (OPC) and a Scanning Mobility Particle Sizer (SMPS). Preliminary results using HYSPLIT back trajectories, flight tracks, SAL images and OPC/SMPS/PCASP time series all indicate peaks and troughs in aerosol concentrations at both low and mid levels over time, but the concentration was influenced by how strong the dust outbreak was as well as its horizontal travel speed. These and additional results regarding correlations between wind directions, cloud cover and atmospheric inversions will be presented.
Estimating Transmissivity from the Water Level Fluctuations of a Sinusoidally Forced Well
Mehnert, E.; Valocchi, A.J.; Heidari, M.; Kapoor, S.G.; Kumar, P.
1999-01-01
The water levels in wells are known to fluctuate in response to earth tides and changes in atmospheric pressure. These water level fluctuations can be analyzed to estimate transmissivity (T). A new method to estimate transmissivity, which assumes that the atmospheric pressure varies in a sinusoidal fashion, is presented. Data analysis for this simplified method involves using a set of type curves and estimating the ratio of the amplitudes of the well response over the atmospheric pressure. Type curves for this new method were generated based on a model for ground water flow between the well and aquifer developed by Cooper et al. (1965). Data analysis with this method confirmed these published results: (1) the amplitude ratio is a function of transmissivity, the well radius, and the frequency of the sinusoidal oscillation; and (2) the amplitude ratio is a weak function of storativity. Compared to other methods, the developed method involves simpler, more intuitive data analysis and allows shorter data sets to be analyzed. The effect of noise on estimating the amplitude ratio was evaluated and found to be more significant at lower T. For aquifers with low T, noise was shown to mask the water level fluctuations induced by atmospheric pressure changes. In addition, reducing the length of the data series did not affect the estimate of T, but the variance of the estimate was higher for the shorter series of noisy data.
Uranium Isotope Ratios in Modern and Precambrian Soils
NASA Astrophysics Data System (ADS)
DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.
2015-12-01
Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.
Effects of atmospheric temperature and humidity on outbreak of diseases.
Choi, Sung Hyuk; Lee, Sung Woo; Hong, Yun Sik; Kim, Su Jin; Kim, Nak Hoon
2007-12-01
The present study aimed to determine the plausibility of forecasting the outbreak of diseases based on the weather by analysing the impact of atmospheric temperature and humidity on the occurrence of different diseases. The subjects of the present study were the 30,434 patients who visited the ED in 1 year from 1 February 2005 to 3 February 2006. The present study analysed the correlation between the daily number of patients who suffered from 22 types of traumatic and non-traumatic diseases and the data on atmospheric temperature and humidity provided by the Korea Meteorological Administration. With traumatic disease, the occurrence tended to increase in proportion to the rise in temperature and humidity; whereas with non-traumatic disease, the occurrence tended to increase according to the rise in temperature, irrespective of humidity changes. The research on the impact of atmospheric temperature and humidity on different diseases revealed a high level of distribution of most diseases in an environment with high temperature and humidity. However, in the case of pulmonary diseases and trauma to multiple body regions, the occurrence increased in environments with low temperature and high humidity for pulmonary diseases, and with low temperature and low humidity for trauma to multiple body regions. Most diseases tend to increase in proportion to the rise in atmospheric temperature whereas being less affected by humidity. However, an increase in humidity in an optimum range of atmospheric temperature (12 degrees C or higher) triggers an increase in the occurrence of diseases.
Lysfjord, J P; Haas, P J; Melgaard, H L; Pflug, I J
1995-01-01
Barrier isolators that enclose aseptic filling equipment are being proposed as a means of: (1) assisting in achieving a 10(-6) sterility assurance level (SAL) in the filling area and (2) minimizing the clean environment required in the manufacturing area. The need for operator and maintenance access to the interior of the barrier isolators presents difficulties in achieving the above goals. Several methods are available for reducing the microbial level inside the isolation barrier. If the objective is the decontamination of all surfaces inside the enclosure, saturated steam at atmospheric pressure can be used. If the objective is to sterilize the inside of the enclosure, saturated steam at atmospheric pressure with added H2O2 can be used. Test data and practical interface considerations relative to various methodologies will be reviewed.
NASA Technical Reports Server (NTRS)
Otterman, J.; Fraser, R. S.
1976-01-01
Programs for computing atmospheric transmission and scattering solar radiation were used to compute the ratios of the Earth-atmosphere system (space) directional reflectivities in the vertical direction to the surface reflectivity, for the four bands of the LANDSAT multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa and Central America from the spectral radiance levels measured by the LANDSAT MSS. From these space reflectivities, surface vertical reflectivities were computed applying the pertinent graphs. These surface reflectivities were used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory measurements.
NASA Technical Reports Server (NTRS)
Hunt, R. J.; Wu, S. T.
1976-01-01
The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.
Photochemistry in Terrestrial Exoplanet Atmospheres. I. Photochemistry Model and Benchmark Cases
NASA Astrophysics Data System (ADS)
Hu, Renyu; Seager, Sara; Bains, William
2012-12-01
We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH4 and CO2) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO2-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.
Observational and modeling constraints on global anthropogenic enrichment of mercury.
Amos, Helen M; Sonke, Jeroen E; Obrist, Daniel; Robins, Nicholas; Hagan, Nicole; Horowitz, Hannah M; Mason, Robert P; Witt, Melanie; Hedgecock, Ian M; Corbitt, Elizabeth S; Sunderland, Elsie M
2015-04-07
Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling.
Acidic sulfate aerosols: characterization and exposure.
Lioy, P J; Waldman, J M
1989-01-01
Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, P.; Vilanova, R.M.; Martinez, C.
2000-05-15
Historical records of the deposition fluxes of polycyclic aromatic hydrocarbons (PAH) in 10 remote high altitude lakes distributed throughout Europe have been studied. Cores from each site were dated radiometrically, and the results were used for the reconstruction of the pollutant changes between 1830 and present. In general, both PAH pyrolytic fluxes and concentrations increased from uniform background levels at the turn of the century to maximum values in 1960--1980. After these peak values a slight decrease to present day levels has been observed in some lakes, though they are still 3--20 times greater than the preindustrial period. Distinctive featuresmore » in the downcore PAH profiles and concentrations between sites allowed for differentiation between five regions in Europe: peripheral areas (Norway and the Liberian Peninsula), Pyrenees and western Alps, central Alps, Tatra Mountains, and the Arctic. Atmospheric PAH inventories were estimated from the vertical integration of sedimentary inventories using {sup 210}Pb to correct for post depositional transport processes. This approach consistently reduces variability among lakes from the same region. The results obtained define the lakes in the Tatra mountains and that on Spits Bergen Island as those of highest and lowest atmospheric PAH input. The other lakes exhibit lower differences although their atmospheric inventory values group consistently with the above-mentioned regions.« less
Atmospheric chloride: Its implication for foliar uptake and damage
NASA Astrophysics Data System (ADS)
McWilliams, E. L.; Sealy, R. L.
Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.
DOE R&D Accomplishments Database
Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.
1990-02-01
The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.
Observations of Highly Variable Deuterium in the Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Clarke, John T.; Mayyasi-Matta, Majd A.; Bhattacharyya, Dolon; Chaufray, Jean-Yves; Chaffin, Michael S.; Deighan, Justin; Schneider, Nicholas M.; Jain, Sonal; Jakosky, Bruce
2017-10-01
One of the key pieces of evidence for historic high levels of water on Mars is the present elevated ratio of deuterium/hydrogen (D/H) in near-surface water. This can be explained by the loss of large amounts of water into space, with the lighter H atoms escaping faster than D atoms. Understanding the specific physical processes and controlling factors behind the present escape of H and D is the key objective of the MAVEN IUVS echelle channel. This knowledge can then be applied to an accurate extrapolation back in time to understand the water history of Mars. Observations of D in the martian upper atmosphere over the first martian year of the MAVEN mission have shown highly variable amounts of D, with a short-lived maximum just after perihelion and during southern summer. The timing and nature of this increase provide constraints on its possible origin. These results will be presented and compared with other measurements of the upper atmosphere of Mars.
Digital simulation of a communication link for Pioneer Saturn Uranus atmospheric entry probe, part 1
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1975-01-01
A digital simulation study is presented for a candidate modulator/demodulator design in an atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the conditions of an outer planet atmospheric probe. The simulation results indicate that the mean channel error rate with and without scintillation are similar to theoretical characterizations of the link. The simulation gives information for calculating other channel statistics and generates a quantized symbol stream on magnetic tape from which error correction decoding is analyzed. Results from the magnetic tape data analyses are also included. The receiver and bit synchronizer are modeled in the simulation at the level of hardware component parameters rather than at the loop equation level and individual hardware parameters are identified. The atmospheric scintillation amplitude and phase are modeled independently. Normal and log normal amplitude processes are studied. In each case the scintillations are low pass filtered. The receiver performance is given for a range of signal to noise ratios with and without the effects of scintillation. The performance is reviewed for critical reciever parameter variations.
Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality
Waqas, Muhammad Ahmed; Wang, Song-he; Xiong, Xiang-yang; Wan, Yun-fan
2017-01-01
The increased atmospheric temperatures resulting from the increased concentration of atmospheric carbon dioxide (CO2) have had a profound influence on global rice production. China serves as an important area for producing and consuming rice. Therefore, exploring the effects of the simultaneously rising levels of atmospheric CO2 and temperatures on rice growth and quality in the future is very important. The present study was designed to measure the most important aspects of variation for rice-related physiological, ecological and quality indices in different growing periods under a simultaneous increase of CO2 and temperature, through simulation experiments in climate-controlled growth chambers, with southern rice as the study object. The results indicated that the ecological indices, rice phenology, and leaf area would decrease under a simultaneous increase of CO2 and temperature. For the physiological indices, Malondialdehyde (MDA) levels increased significantly in the seedling period. However, it showed the trend of increase and subsequent decrease in the heading and filling periods. In addition, the decomposition of soluble protein (SP) and soluble sugar (SS) accelerated in filling period. The rice quality index of the Head Rice Rate showed the decreasing trend and subsequent increase, but the Chalky Rice Rate and Protein Content indices gradually decreased while the Gel Consistency gradually increased. PMID:29145420
Atmospheric mercury concentrations in the basin of the amazon, Brazil.
Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y
1998-01-01
A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.
NASA Astrophysics Data System (ADS)
Saylor, R. D.; Stein, A. F.
2012-12-01
The dynamic, bi-directional exchange of trace chemical species between forests and the atmosphere has important impacts on both the forest ecosystem and atmospheric composition, with potentially profound consequences on air quality, climate and global ecosystem functioning. Forests are a dominant source of biogenic volatile organic compound (BVOC) emissions into the earth's atmosphere and thus play an important role in the formation of secondary organic aerosol (SOA). To arrive at a better scientific understanding of the complex chemical and physical processes of forest-atmosphere exchange and provide a platform for robust analysis of field measurements of these processes, a process-level, multiphase model of the atmospheric chemistry and physics of forest canopies is being developed. This model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS) is being used to investigate various aspects of forest-atmosphere exchange and chemistry including gas, aqueous and aerosol phases. ACCESS currently includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer, detailed chemical reactions, mixing with the background atmosphere and bi-directional exchange between the atmosphere and the canopy and the forest floor. The Walker Branch Watershed (WBW) is a dedicated ecosystem research area on the U. S. Department of Energy's Oak Ridge Reservation in eastern Tennessee. The 97.5 ha watershed has been the site of long-term ecosystem and atmospheric research activities since the mid-1960's. A flux tower located within the watershed (35°57'30"N, 84°17'15"W; 365 m above mean sea level) and 10 km southwest of Oak Ridge, Tennessee, has served as a focal point for previous atmospheric turbulence and chemical flux measurements and the canopy morphology of the forest surrounding the flux tower has been extensively documented. The forest is broadleaf deciduous consisting of chestnut oak (Quercus prinus), tulip poplar (Liriodendron tulipifera), white oak (Quercus alba), red oak (Quercus rubra), red maple (Acer rubrum), and various hickory species (Carya sp.) in order of decreasing biomass density. At the time of isoprene flux measurements made at the tower in 1999, the stand was approximately 50 years old, the overstory canopy height was 24 m, and the whole canopy leaf area index was 4.9 m2 leaf/m2 ground area. In this presentation, the model formulation is described and results from the application of ACCESS to the WBW forest are presented and compared to measurements made at the site to investigate the influence of background anthropogenic sources on above canopy fluxes of SOA precursors in an isoprene emission dominated landscape in the unique atmospheric chemical environment of the southeastern United States. In particular, levels of background NOx concentrations are found to significantly influence both the magnitude and chemical composition of fluxes of SOA precursors from the canopy.
Effect of Poultry Litter Treatment (PLT) on death due to ascites in broilers.
Terzich, M; Quarles, C; Goodwin, M A; Brown, J
1998-01-01
The purposes of this study were to determine the effect of Poultry Litter Treatment (PLT) on levels of litter moisture, litter nitrogen, atmospheric ammonia, and death due to ascites. Data were collected from chicks raised in containment conditions that resembled commercial settings. The ascites death rate (5.9%) in broiler chicks on PLT-treated litter was significantly (chi 2 = 15.5, df = 1, P = 0.0001) lower than that (31.5%) in broiler chicks raised on untreated litter. Likewise, atmospheric ammonia levels in pens that had been treated with PLT were significantly (P < 0.05) lower than those in pens that received no treatment. Under the conditions of the present study, litter moisture and litter nitrogen levels were not different (P > 0.05) among treatments at any sample interval.
Colorimetric analysis of outdoor illumination across varieties of atmospheric conditions.
Peyvandi, Shahram; Hernández-Andrés, Javier; Olmo, F J; Nieves, Juan Luis; Romero, Javier
2016-06-01
Solar illumination at ground level is subject to a good deal of change in spectral and colorimetric properties. With an aim of understanding the influence of atmospheric components and phases of daylight on colorimetric specifications of downward radiation, more than 5,600,000 spectral irradiance functions of daylight, sunlight, and skylight were simulated by the radiative transfer code, SBDART [Bull. Am. Meteorol. Soc.79, 2101 (1998)], under the atmospheric conditions of clear sky without aerosol particles, clear sky with aerosol particles, and overcast sky. The interquartile range of the correlated color temperatures (CCT) for daylight indicated values from 5712 to 7757 K among the three atmospheric conditions. A minimum CCT of ∼3600 K was found for daylight when aerosol particles are present in the atmosphere. Our analysis indicated that hemispheric daylight with CCT less than 3600 K may be observed in rare conditions in which the level of aerosol is high in the atmosphere. In an atmosphere with aerosol particles, we also found that the chromaticity of daylight may shift along the green-purple direction of the Planckian locus, with a magnitude depending on the spectral extinction by aerosol particles and the amount of water vapor in the atmosphere. The data analysis showed that an extremely high value of CCT, in an atmosphere without aerosol particles, for daylight and skylight at low sun, is mainly due to the effect of Chappuis absorption band of ozone at ∼600 nm. In this paper, we compare our data with well-known observations from previous research, including the ones used by the CIE to define natural daylight illuminants.
USDA-ARS?s Scientific Manuscript database
Researchers at the US Department of Agriculture-Agricultural Research Service are exploring the environmental impact of agricultural waste management and rising levels of atmospheric carbon dioxide. This interview presents an overview of work being conducted at the National Soil Dynamics Laboratory ...
Long-term decline of global atmospheric ethane concentrations and implications for methane.
Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R
2012-08-23
After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.
An airborne sunphotometer for use with helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walthall, C.L.; Halthore, R.N.; Elman, G.C.
1996-04-01
One solution for atmospheric correction and calibration of remotely sensed data from airborne platforms is the use of radiometrically calibrated instruments, sunphotometers and an atmospheric radiative transfer model. Sunphotometers are used to measure the direct solar irradiance at the level at which they are operating and the data are used in the computation of atmospheric optical depth. Atmospheric optical depth is an input to atmospheric correction algorithms that convert at-sensor radiance to required surface properties such as reflectance and temperature. Airborne sun photometry has thus far seen limited use and has not been used with a helicopter platform. The hardware,more » software, calibration and deployment of an automatic sun-tracking sunphotometer specifically designed for use on a helicopter are described. Sample data sets taken with the system during the 1994 Boreal Ecosystem and Atmosphere Study (BOREAS) are presented. The addition of the sun photometer to the helicopter system adds another tool for monitoring the environment and makes the helicopter remote sensing system capable of collecting calibrated, atmospherically corrected data independent of the need for measurements from other systems.« less
Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher
2014-02-18
Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from undisturbed, background soils emphasizing the important role of soils in sequestering past and current Hg pollution loads.
NASA Astrophysics Data System (ADS)
Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.
2012-02-01
Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi-line high-cadence instruments. Movies are available in electronic form at http://www.aanda.org
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
Nuclear weapons tests and short-term effects on atmospheric ozone
NASA Technical Reports Server (NTRS)
Miller, A. J.; Krueger, A. J.; Prabhakara, C.; Hilsenrath, E.
1974-01-01
Observations made when Nimbus 4 passed over a nuclear cloud about three hours after the bomb exploded are presented. Infrared and BUV measurements indicated that the atmospheric ozone level in the area of cloud was significantly less than in areas directly north and south of the cloud. It is noted, however, that it is not possible to state definitively that the ozone depletion was caused by nitrogen oxides released in the nuclear weapons test, and that further observations must be made to clarify the situation.
Icelandic geothermal activity and the mercury of the Greenland icecap.
NASA Technical Reports Server (NTRS)
Siegel, B. Z.; Siegel, S. M.; Thorarinsson, F.
1973-01-01
Aerometric studies concerning the level of atmospheric mercury were conducted at a number of sites in Iceland during June and July 1972. Samples from widely separated locations yielded Hg concentrations well above the range commonly cited for unpolluted air. Atmospheric mercury may be introduced in part by degassing fluid magmas. However, the release from fine ash could also serve as a vehicle. It is pointed out that from the mid-17th century to the present, Iceland has recorded nearly 50 volcanic eruptions.
NASA Astrophysics Data System (ADS)
Belcher, Claire M.; Hadden, Rory; McElwain, Jennifer C.; Rein, Guillermo
2010-05-01
Fire is a natural process integral to ecosystems at a wide range of temporal and spatial scales and is a key driver of change in the Earth system. Fire has been a major influence on Earth's systems since the Carboniferous. Whilst, climate is considered the ultimate control on global vegetation, fire is now known to play a key role in determining vegetation structure and composition, such that many of the world's ecosystems can be considered fire-dependant. Products of fire include chars, soots and aromatic hydrocarbon species all of which can be traced in ancient through to modern sediments. Atmospheric oxygen has played a key role in the development of life on Earth, with the rise of oxygen in the Precambrian being closely linked to biological evolution. Variations in the concentration of atmospheric oxygen throughout the Phanerozoic are predicted from models based on geochemical cycling of carbon and sulphur. Such models predict that low atmospheric oxygen concentrations prevailed in the Mesozoic (251-65ma) and have been hypothesised to be the primary driver of at least two of the ‘big five' mass extinction events in the Phanerozoic. Here we assess the levels of atmospheric oxygen required to ignite a fire and infer the likely levels of atmospheric oxygen to support smouldering combustion. Smouldering fire dynamics and its effects on ecosystems are very different from flaming fires. Smouldering fires propagate slowly, are usually low in temperature and represent a flameless form of combustion. These fires creep through organic layers of forest ground and peat lands and are responsible for a large fraction of the total biomass consumed in wildfires globally and are also a major contributor of carbon dioxide to the atmosphere. Once ignited, they can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into soil. Smouldering fires are therefore, the oldest continuously burning fires on Earth. We have combined expertise from both the Earth science and fire engineering disciplines to develop realistic ignition mechanisms and measurements of fire propagation within different levels of atmospheric oxygen. We present data from experimental burns run in the fully controlled and realistic atmospheric environment of the UCD PÉAC facility. The burns are designed to develop our understanding of ignition of fires in the natural world. We have studied ignition and propagation of fire in peat, a natural and highly flammable substance. Peat samples of approximately 100mm by 100mm in cross section and 50mm in depth were exposed to an ignition source (~100W of electric power) for 30 minutes. Thermocouples were placed throughout the sample to measure temperature changes during the initial 30 minute ignition phase and in order to observe ignition of the peat, intensity of combustion and spread of the smouldering front within the different atmospheric oxygen settings. We show that ignition and propagation of smouldering in peat does not occur below 16% atmospheric oxygen and that smouldering combustion continues for long periods (~4 hours in the size sample used) at 18% atmospheric oxygen and above. This suggests that atmospheric levels above 16% atmospheric are required to allow ignition and propagation of smouldering fires and that frequent occurrences of wildfires might only be expected in the geological past when atmospheric levels were above 18% oxygen. Fires play an important role in Earth's biogeochemical cycles; this work suggests that fire feedbacks into the Earth system would likely have been suppressed during periods of low atmospheric oxygen.
Meteorological Predictions in Support of the Mars Science Laboratory Entry, Descent and Landing
NASA Astrophysics Data System (ADS)
Rothchild, A.; Rafkin, S. C.; Pielke, R. A., Sr.
2010-12-01
The Mars Science Laboratory (MSL) entry, descent, and landing (EDL) system employs a standard parachute strategy followed by a new sky crane concept where the rover is lowered to the ground via a tether from a hovering entry vehicle. As with previous missions, EDL system performance is sensitive to atmospheric conditions. While some observations characterizing the mean, large-scale atmospheric temperature and density data are available, there is effectively no information on the atmospheric conditions and variability at the scale that directly affects the spacecraft. In order to evaluate EDL system performance and to assess landing hazards and risk, it is necessary to simulate the atmosphere with a model that provides data at the appropriate spatial and temporal scales. Models also permit the study of the impact of the highly variable atmospheric dust loading on temperature, density and winds. There are four potential MSL landing sites: Mawrth Valle (22.3 N, 16.5W) , Gale Crater (5.4S, 137.7E), Holden Crater (26.1S, 34W), and Eberswalde Crater (24S, 33W). The final selection of the landing site will balance potential science return against landing and operational risk. Atmospheric modeling studies conducted with the Mars Regional Atmospheric Modeling System (MRAMS) is an integral part of the selection process. At each of the landing sites, a variety of simulations are conducted. The first type of simulations provide baseline predictions under nominal atmospheric dust loading conditions within the landing site window of ~Ls 150-170. The second type of simulation explores situations with moderate and high global atmospheric dust loading. The final type of simulation investigates the impact of local dust disturbances at the landing site. Mean and perturbation fields from each type of simulation at each of the potential landing sites are presented in comparison with the engineering performance limitations for the MSL EDL system. Within the lowest scale height, winds are strongly influenced by the local and regional topography and are highly variable in both space and time. Convective activity in the afternoon produces deep vertical circulations anchored primarily to topography. Aloft, winds become increasingly dominated by the large-scale circulation, but with gravity wave perturbations forced by both topography and boundary layer convective activity. The mean density field is tied directly to the level of dust loading; higher dust results in decreased densities and overall warming of the atmospheric column. In local and regional dust storm scenarios, winds are found to be enhanced, particularly in regions of active dust lifting. Local reductions in density are also pronounced. At present, the predicted mean and perturbation fields from all the simulations appear to fall within the engineering requirements, but not always comfortably so. This is in contrast to proposed landing sites for the Mars Exploration Rover mission, where the atmospheric environment presented unacceptable risk. Ongoing work is underway to confirm that atmospheric conditions will permit safe EDL operations with a tolerable level of risk.
Venus winds at cloud level from VIRTIS during the Venus Express mission
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre
2010-05-01
The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.
Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.
Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1987-01-01
Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.
A non-gaussian model of continuous atmospheric turbulence for use in aircraft design
NASA Technical Reports Server (NTRS)
Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.
1976-01-01
A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph
2012-01-01
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
NASA Astrophysics Data System (ADS)
Mamontova, E. A.; Tarasova, E. N.; Mamontov, A. A.
2014-11-01
The contents of persistent organic pollutants (POPs)—polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs)—in the natural environments of an industrial city (Bratsk) of Irkutsk oblast have been studied. Features of the spatial and seasonal distribution of the PCBs and OCPs in the soils and the atmospheric air have been revealed. The structure of the homological and congeneric composition of the PCBs in the soils and the atmospheric air has been shown. Parameters of the carcinogenic and noncarcinogenic risks for human health from the impact of the PCBs and OCPs present in the soils and the atmospheric air have been determined.
Atmosphere and ionosphere of venus from the mariner v s-band radio occultation measurement.
Kliore, A; Levy, G S; Cain, D L; Fjeldbo, G; Rasool, S I
1967-12-29
Measurements of the frequency, phase, and amplitude of the S-band radio signal of Mariner V as it passed behind Venus were used to obtain the effects of refraction in its atmosphere and ionosphere. Profiles of refractivity, temperature, pressure, and density in the neutral atmosphere, as well as electron density in the daytime ionosphere, are presented. A constant scale height was observed above the tropopause, and the temperature increased with an approximately linear lapse rate below the tropopause to the level at which signal was lost, presumably because heavy defocusing attenuation occurred as critical refraction was approached. An ionosphere having at least two maxima was observed at only 85 kilometers above the tropopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widory, D., E-mail: d.widory@brgm.fr; Proust, E.; Bellenfant, G.
2012-09-15
Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through amore » landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.« less
NASA Astrophysics Data System (ADS)
Bosart, L. F.; Papin, P. P.; Bentley, A. M.
2017-12-01
This presentation will show how the evolution of the large-scale and regional-scale atmospheric circulation contributes to the occurrence of extreme precipitation events (EPEs). An EPE requires that tropospheric moisture flux convergence (MFC) and the associated removal of hydrometeors be balanced by moisture replenishment via integrated (water) vapor transport (IVT) to continuously replenish condensed moisture. Moisture source regions may be distant or regional. Distant moisture sources may require the interaction of lower- and upper-level jet streams with a pre-existing mobile atmospheric disturbance to produce sufficient lift to condense moisture. Pre-existing regional moisture sources may require frontal lifting the presence of MFC to condense moisture. In cases of long-range IVT, such as moisture from a western North Pacific typhoon being drawn poleward along an atmospheric river (AR) toward the west coast of North America, moisture may be transported 1000s of kilometers along a low-level jet before a combination of dynamic and orographic lift results in an EPE. Alternatively, in the case of a typical summer warm and humid air mass over the continental United States, unused moisture may exist for several days in this air mass before sufficient MFC associated with a thermally direct mesoscale frontal circulation can concentrate and condense the moisture. In this case, there may be no long-range IVT via ARs. Instead, the atmospheric circulations may evolve to produce sustained MFC associated with mesoscale frontal circulations, especially in the presence of complex terrain, to produce an EPE. During this presentation, examples of EPEs associated with long-range IVT and distant MFC versus EPEs associated with regional MFC and mesoscale frontal circulations will be illustrated.
Sufficient oxygen for animal respiration 1,400 million years ago
Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E.
2016-01-01
The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves. PMID:26729865
Deriving Atmospheric Properties and Escape Rates from MAVEN's Imaging UV Spectrograph (IUVS)
NASA Astrophysics Data System (ADS)
Schneider, Nicholas M.; IUVS Science Team
2013-10-01
MAVEN (Mars Volatile and Atmosphere EvolutioN) is a Mars Scout mission being readied for launch in November 2013. The key hardware and management partners are University of Colorado, Goddard Space Flight Center, University of California at Berkeley, Lockheed Martin, and the Jet Propulsion Laboratory. MAVEN carries a powerful suite of fields and particles instruments and a sophisticated remote sensing instrument, the Imaging UltraViolet Spectrograph (IUVS). This presentation begins by describing IUVS' science goals, instrument design, operational approach and data analysis strategy. IUVS supports the top-level MAVEN science goals: measure the present state of the atmosphere, observe its response to varying solar stimuli, and use the information to estimate loss from Mars' atmosphere over time. The instrument operates at low spectral resolution spanning the FUV and MUV ranges in separate channels, and at high resolution around the hydrogen Lyman alpha line to measure the D/H ratio in the upper atmosphere. MAVEN carries the instrument on an Articulated Payload Platform which orients the instrument for optimal observations during four segments of its 4.5 hr elliptical orbit. During periapse passage, IUVS uses a scan mirror to obtain vertical profiles of emissions from the atmosphere and ionosphere. Around apoapse, the instrument builds up low-resolution images of the atmosphere at multiple wavelengths. In between, the instrument measures emissions from oxygen, hydrogen and deuterium in the corona. IUVS also undertakes day-long stellar occultation campaigns at 2 month intervals, to measure the state of the atmosphere at altitudes below the airglow layer and in situ sampling. All data will be pipeline-processed from line brightnesses to column abundances, local densities and global 3-D maps. The focus of the presentation is development of these automatic processing algorithms and the data products they will provide to the Mars community through the PDS Atmospheres Node. The combined results from all instruments on ion and neutral escape will bear on the central question of the history of Mars' atmosphere and climate history. This work has been supported by NASA's MAVEN mission.
ERIC Educational Resources Information Center
Kaufmann, William
1984-01-01
Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)
Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases
Zickfeld, Kirsten
2017-01-01
Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the “world avoided” by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing. PMID:28069937
NASA Astrophysics Data System (ADS)
Ahmed, M. N.; Bird, B. W.; Escobar, J.; Polissar, P. J.
2017-12-01
The Northern Hemisphere (NH) South American Monsoon (SAM) is a significant source of precipitation for the North Andes (north of 0˚) and has major control over regional hydroclimate variability. Holocene-length histories of NH SAM variability are few compared to the Southern Hemisphere (SH), limiting understanding of how these systems are connected on orbital and shorter timescales. Here, we present multi-proxy lake-sediment-based paleoclimate and paleohydrologic reconstructions from Lago de Tota, Colombia, using sedimentological, geochemical and leaf-wax hydrogen isotopic indicators from radiometically dated cores. The results indicate periods of wet and dry climate phases during the past 9000 BP with an average Holocene sedimentation rate 33cm/kyr. An increase in total organic matter (TOM) content and finer grain-size distributions was observed from 8000 to 3200 BP, suggesting a period of high lake level. This was followed by lower TOM and coarser grain sizes, suggesting lower lake levels from 3200 BP to the present. Although Tota's lake level pattern is antiphased with other lake level reconstructions from the NH and SH Andes, it is consistent with hypothesized changes in atmospheric convection over the Andes during the Holocene and the way in which they would be modified by the so-called dry island effect in the Colombian Andes. This suggests that a common forcing mechanism can be invoked to explain differing millennial-scale Andean hydroclimate changes, namely atmospheric convection. Orbital and Pacific atmosphere-forcing are therefore likely to have played a significant role in driving pan-Andean hydroclimate variability based on their inter-hemispheric influence on Andean convection.
Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.
Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M
2017-01-24
Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.
Global ice-sheet system interlocked by sea level
NASA Astrophysics Data System (ADS)
Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn
1986-07-01
Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide ( W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature ( London) 315, 21-26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.
Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?
McElwain, J. C.
1998-01-01
Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced concentrations during the Late Carboniferous and Early Permian. Such data are important in demonstrating the long-term responses of plants to changing carbon dioxide concentrations and in contributing to the database needed for general circulation model climatic analogues.
NASA Astrophysics Data System (ADS)
Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.
2017-03-01
The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.
NASA Astrophysics Data System (ADS)
Hull, Alexander W.; Field, Robert W.; Ono, Shuhei
2017-06-01
Sulfur mass independent fractionation (S-MIF) describes anomalous sulfur isotope ratios commonly found in sedimentary rocks older than 2.45 billion years. These anomalies likely originate from photochemistry of small, sulfur-containing molecules in the atmosphere, and their sudden disappearance from rock samples younger than 2.45 years is thought to be correlated with a sharp rise in atmospheric oxygen levels. The emergence of atmospheric oxygen is an important milestone in the development of life on Earth, but the mechanism for sulfur MIF in an anoxic atmosphere is not well understood. In this context, we present an analysis of the B-X UV spectrum of S_{2}, an extension of work presented last year. The B state of S_{2} is strongly perturbed by the nearby B" state, as originally described by Green and Western (1996). Our analysis suggests that a doorway-mediated transfer mechanism shifts excited state population from the short-lifetime B state to the longer-lifetime B" state. Furthermore, access to the perturbed doorway states is strongly dependent on the population distribution in the ground state. This suggests that the temperature of the Achaean atmosphere may have played a significant role in determining the extent of S-MIF.
Active molecular iodine photochemistry in the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in Februarymore » 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less
Active molecular iodine photochemistry in the Arctic
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; ...
2017-09-05
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I -) measurements, which were conducted near Utqiagvik, AK,more » in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na +, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. Furthermore, these results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less
Active molecular iodine photochemistry in the Arctic
NASA Astrophysics Data System (ADS)
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matt K.; Walker, Lawrence; Moore, Ronald J.; Huey, L. G.; Alexander, Liz; Shepson, Paul B.; Pratt, Kerri A.
2017-09-01
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I- measurements showed enrichments of up to ˜1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.
Active molecular iodine photochemistry in the Arctic.
Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A
2017-09-19
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.
NASA Astrophysics Data System (ADS)
Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo
2013-03-01
This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.
Some mean atmospheric characteristics for snowfall occurrences in southern Brazil
NASA Astrophysics Data System (ADS)
Mintegui, Jéssica Melo; Puhales, Franciano Scremin; Boiaski, Nathalie Tissot; Nascimento, Ernani de Lima; Anabor, Vagner
2018-01-01
Snowfall is considered a natural disaster in southern Brazil, where a little infrastructure exists up to prevent against the damage it induces, making snowfall forecast a matter of great interest in this region. The present article aims to describe the mean behavior of low, mid, and high atmospheric levels during snowfall occurrences in southern Brazil. Sea-level pressure (SLP), 1000-500 hPa atmospheric thickness, geopotential height at 500 hPa, and wind speed at 200 hPa have been analyzed. One hundred and ninety-six snowfall records from the conventional surface meteorological stations have been selected for the period from 1979 to 2015. The surface synoptic pattern associated with snowfall occurrences has been obtained from ERA-Interim reanalysis data with horizontal spatial resolution of 0.75° × 0.75° and temporal resolution of 12 h. SLP fields show a high-pressure transient system displacement from the Pacific Ocean to northeastern Argentina. In addition, it is possible to relate snowfall with displacement of a low-pressure system on the coast of southern Brazil. Thickness fields indicate shallow cold air mass intrusions one day before snowfall. Such a cold air continues moving towards low latitudes during consecutive snowfall days and it may be responsible for frost events in climatologically warm regions. Finally, mid and high atmospheric levels show an eastward propagating wave amplified by the Andes.
Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2016-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10-Megawatt electric (MWe) OTV power level and a 200-metric ton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.
Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2016-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.
NASA Astrophysics Data System (ADS)
Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.
2018-03-01
We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.
Sobhanardakani, Soheil
2018-05-12
The present study was intended to investigate the ecological and human health risk of cobalt, nickel, and vanadium in the atmospheric dry deposition of the Kermanshah city, Iran, in 2015. Totally 54 samples of atmospheric dry deposition were collected from the three regions of the city with different traffic intensity, and after acid digestion of the samples with ultrapure concentrated HNO 3 , the total contents of the metals were determined using inductively coupled plasma optical emission spectrometer (ICP-OES). Also, all statistical analyses were performed using the SPSS statistical package. The atmospheric dry deposition element contents increase according to the following descending order for both autumn seasons: Ni > Co > V. The results of potential ecological risk analysis demonstrated that metals in the samples are in low ecological risk levels, whereas the results of human health risk assessment showed that ingestion is the main exposure pathway of heavy metals in the dust to the local residents compared with inhalation and dermal pathways. Also, the upper limit of the 95% confidence interval (95% UCL) of hazard indices for non-carcinogenic risks of all analyzed metals in the dust samples was within the safe level for both children and adults. On the other hand, the carcinogenic risk levels of Co and Ni were all lower than the acceptable range (10 -6 -10 -4 ) to local citizens. Consequently, the results advocate the necessity of understanding the heavy metal content of atmospheric dry deposition and regular monitoring of air pollution.
Earth-atmosphere system and surface reflectivities in arid regions from Landsat MSS data
NASA Technical Reports Server (NTRS)
Otterman, J.; Fraser, R. S.
1976-01-01
Previously developed programs for computing atmospheric transmission and scattering of the solar radiation are used to compute the ratios of the earth-atmosphere system (space) directional reflectivities in the nadir direction to the surface Lambertian reflectivity, for the four bands of the Landsat multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa, and Central America from the spectral radiance levels measured by the Landsat MSS. From these space reflectivities, surface reflectivities are computed applying the pertinent graphs. These surface reflectivities are used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory and in situ measurements.
PPI/HASI Pressure Measurements in the Atmosphere of Titan
NASA Astrophysics Data System (ADS)
M'akinen, J. T. T.; Harri, A.-M.; Siili, T.; Lehto, A.; Kahanp'a'a, H.; Genzer, M.; Leppelmeier, G. W.; Leinonen, J.
2005-08-01
The Huygens probe descended through the atmosphere of Titan on January 14, 2005, providing an excellent set of observations. As a part of the Huygens Atmospheric Structure Instrument (HASI) measuring several variables, including acceleration, pressure, temperature and atmospheric electricity, the Pressure Profile Instrument (PPI) provided by FMI commenced operations after the deployment of the main parachute and jettisoning of the heat shield at an altitude of about 160 km. Based on aerodynamic considerations, PPI measured the total pressure with a Kiel probe at the end of a boom, connected to the sensor electronics inside the probe through an inlet tube. The instrument performed flawlessly during the 2.5 hour descent and the 0.5 hour surface phase before the termination of radio link between Huygens and the Cassini orbiter. We present an analysis of the pressure data including recreation of the pressure, temperature, altitude, velocity and acceleration profiles as well as an estimate for the level of atmospheric activity on the surface of Titan.
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.
1985-01-01
For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.
Coherent structures in the Es layer and neutral middle atmosphere
NASA Astrophysics Data System (ADS)
Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina
2015-12-01
The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.
Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan
2012-01-01
The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.
Bacteria in atmospheric waters: Detection, characteristics and implications
NASA Astrophysics Data System (ADS)
Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou
2018-04-01
In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.
Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor
2010-01-01
Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be described, such as non-thermal and lasing phenomena on Mars and Venus, mid-infrared aurora on Jupiter [5], and results of small body impacts on Jupiter [6]. The heterodyne technique can also be applied for detailed study of the Earth's stratosphere and mesosphere by measuring trace constituent abundances and temporal and spatial variability as well as winds, which provide information of transport. All ground-based measurements will be described as complementary and supporting studies for on-going and future space missions [7] (Mars Express, Venus Express, Cassini Huygens, JUNO, ExoMars Trace Gas Orbiter, and the Europa Jupiter System Mission, an Earth Science Venture Class missions), Proposed instrument and technology development for a space flight infrared heterodyne spectrometer will be described.
An upper limit on Early Mars atmospheric pressure from small ancient craters
NASA Astrophysics Data System (ADS)
Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.
2012-12-01
Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.
NASA Technical Reports Server (NTRS)
Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.
1975-01-01
An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.
Climate Change and Agriculture: Effects and Adaptation
USDA-ARS?s Scientific Manuscript database
This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...
Li, Qilu; Yang, Kong; Li, Kechang; Liu, Xin; Chen, Duohong; Li, Jun; Zhang, Gan
2017-05-01
Since the ban of polybrominated diphenyl ethers (PBDEs) excluding deca-BDE in China, new halogenated flame retardants (NHFRs), such as new brominated flame retardants and Dechlorane Plus, have become widely used. In this study, we assessed the atmospheric gaseous and particulate levels of eight NHFRs in nine urban areas in China. We detected high mean atmospheric (vapour plus particle phases) concentrations of tetrabromophthalate (TBPH) (74.8 pg m -3 ) and decabromodiphenyl ethane (DBDPE) (68.8 pg m -3 ), two major NHFRs. Most of the gaseous and particulate NHFR concentrations presented seasonal variations (from summer to autumn), possibly driven by temperature. Spatially, concentrations and patterns of the NHFRs differed among the nine cities. Significantly higher concentrations were detected in cities with higher gross domestic products. The composition, especially the DBDPE/TBPH ratio (S), were clearly different among the cities, which pattern in each city are likely driven by variations in the type of industries operating in each city. Based on the temporal analysis of other researches and our data, PBDE levels have decreased markedly, while NHFRs levels have increased. Since high NHFR levels had detrimental effects on public health, NHFRs research warrants more attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Initial Results from the Variable Intensity Sonic Boom Propagation Database
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Cliatt, Larry J., II; Bunce, Thomas J.; Gabrielson, Thomas B.; Sparrow, Victor W.; Locey, Lance L.
2008-01-01
An extensive sonic boom propagation database with low- to normal-intensity booms (overpressures of 0.08 lbf/sq ft to 2.20 lbf/sq ft) was collected for propagation code validation, and initial results and flight research techniques are presented. Several arrays of microphones were used, including a 10 m tall tower to measure shock wave directionality and the effect of height above ground on acoustic level. A sailplane was employed to measure sonic booms above and within the atmospheric turbulent boundary layer, and the sailplane was positioned to intercept the shock waves between the supersonic airplane and the ground sensors. Sailplane and ground-level sonic boom recordings were used to generate atmospheric turbulence filter functions showing excellent agreement with ground measurements. The sonic boom prediction software PCBoom4 was employed as a preflight planning tool using preflight weather data. The measured data of shock wave directionality, arrival time, and overpressure gave excellent agreement with the PCBoom4-calculated results using the measured aircraft and atmospheric data as inputs. C-weighted acoustic levels generally decreased with increasing height above the ground. A-weighted and perceived levels usually were at a minimum for a height where the elevated microphone pressure rise time history was the straightest, which is a result of incident and ground-reflected shock waves interacting.
Assessment of Ethanol Trends on the ISS
NASA Technical Reports Server (NTRS)
Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas
2016-01-01
The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.
NASA Technical Reports Server (NTRS)
Goldman, A.
1980-01-01
Individual spectral line parameters including line positions, strengths, and intensities were generated for the sq Alpha Sigma - sq Chi Pi (0,0) band of OH, applicable to atmospheric and high temperatures. Energy levels and transition frequencies are calculated by numerically diagonalizing the Hamiltonian. Line strengths are calculated using the dipole matrix and eigenvectors derived from energy matrix diagonalization. The line strengths are compared to those calculated from previously published algebraic line strength formulas. Tables of line parameters are presented for 240 K and 4600 K.
NASA Astrophysics Data System (ADS)
Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia
2014-12-01
In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.
Vertical motions in the Uranian atmosphere - An analysis of radio observations
NASA Technical Reports Server (NTRS)
Hofstadter, Mark D.; Berge, Glenn L.; Muhleman, Duane O.
1990-01-01
The present, 6-cm radio map of Uranus indicates latitudinal features which may be due to vertical motions of the atmosphere. It appears in light of Voyager IR measurements as well as previously obtained radio data that these large-scale vertical motions, which have not undergone significant changes over the course of 8 years, extend from the 0.1- to the 45-bar levels; this span corresponds to a height of the order of 250 km. The latitudinal structures are believed to be primarily caused by horizontal variations of absorber abundances.
Global atmospheric circulation statistics, 1000-1 mb
NASA Technical Reports Server (NTRS)
Randel, William J.
1992-01-01
The atlas presents atmospheric general circulation statistics derived from twelve years (1979-90) of daily National Meteorological Center (NMC) operational geopotential height analyses; it is an update of a prior atlas using data over 1979-1986. These global analyses are available on pressure levels covering 1000-1 mb (approximately 0-50 km). The geopotential grids are a combined product of the Climate Analysis Center (which produces analyses over 70-1 mb) and operational NMC analyses (over 1000-100 mb). Balance horizontal winds and hydrostatic temperatures are derived from the geopotential fields.
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Notari, A.; Collins, J. E., Jr.; Hare, R. J.; Harper, D. B.; Antill, C.; Cook, A. L.; Young, J.; Chuang, T.; Welch, W.
2016-12-01
Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere where water vapor has significant and long term impacts on the Earth's radiation budget. Active remote sensing employing the differential absorption lidar (DIAL) technique enables scientific assessments of both natural and anthropogenic sources and sinks of CH4 with high accuracy and precision as well as and its impacts on the climate. The DIAL technique also allows for profiling of tropospheric water vapor for weather and climate applications with unprecedented spatial and temporal resolution. NASA Langley is developing the High Altitude Lidar Observatory (HALO) lidar system to address the observational needs of NASA's weather, climate, carbon cycle, and atmospheric composition focus areas. HALO is a multi-function airborne lidar being developed to measure atmospheric H2O and CH4 mixing ratios and aerosol and cloud optical properties using the DIAL and High Spectral Resolution Lidar (HSRL) techniques, respectively. HALO is designed as an airborne simulator for future space based DIAL missions and will serve as test bed for risk reduction of key technologies required of future space based GHG DIAL missions. A system level overview and up-to-date progress of the HALO lidar will be presented. Simulations on the expected accuracy and precision of HALO CH4 and H2O DIAL measurements will also be presented.
Atmospheric Environments for Entry, Descent and Landing (EDL)
NASA Technical Reports Server (NTRS)
Justus, Carl G.; Braun, Robert D.
2007-01-01
Scientific measurements of atmospheric properties have been made by a wide variety of planetary flyby missions, orbiters, and landers. Although landers can make in-situ observations of near-surface atmospheric conditions (and can collect atmospheric data during their entry phase), the vast majority of data on planetary atmospheres has been collected by remote sensing techniques from flyby and orbiter spacecraft (and to some extent by Earth-based remote sensing). Many of these remote sensing observations (made over a variety of spectral ranges), consist of vertical profiles of atmospheric temperature as a function of atmospheric pressure level. While these measurements are of great interest to atmospheric scientists and modelers of planetary atmospheres, the primary interest for engineers designing entry descent and landing (EDL) systems is information about atmospheric density as a function of geometric altitude. Fortunately, as described in in this paper, it is possible to use a combination of the gas-law relation and the hydrostatic balance relation to convert temperature-versus-pressure, scientific observations into density-versus-altitude data for use in engineering applications. The following section provides a brief introduction to atmospheric thermodynamics, as well as constituents, and winds for EDL. It also gives methodology for using atmospheric information to do "back-of-the-envelope" calculations of various EDL aeroheating parameters, including peak deceleration rate ("g-load"), peak convective heat rate. and total heat load on EDL spacecraft thermal protection systems. Brief information is also provided about atmospheric variations and perturbations for EDL guidance and control issues, and atmospheric issues for EDL parachute systems. Subsequent sections give details of the atmospheric environments for five destinations for possible EDL missions: Venus. Earth. Mars, Saturn, and Titan. Specific atmospheric information is provided for these destinations, and example results are presented for the "back-of-the-envelope" calculations mentioned above.
A statistical evaluation and comparison of VISSR Atmospheric Sounder (VAS) data
NASA Technical Reports Server (NTRS)
Jedlovec, G. J.
1984-01-01
In order to account for the temporal and spatial discrepancies between the VAS and rawinsonde soundings, the rawinsonde data were adjusted to a common hour of release where the new observation time corresponded to the satellite scan time. Both the satellite and rawinsonde observations of the basic atmospheric parameters (T Td, and Z) were objectively analyzed to a uniform grid maintaining the same mesoscale structure in each data set. The performance of each retrieval algorithm in producing accurate and representative soundings was evaluated using statistical parameters such as the mean, standard deviation, and root mean square of the difference fields for each parameter and grid level. Horizontal structure was also qualitatively evaluated by examining atmospheric features on constant pressure surfaces. An analysis of the vertical structure of the atmosphere were also performed by looking at colocated and grid mean vertical profiles of both the satellite and rawinsonde data sets. Highlights of these results are presented.
NASA Technical Reports Server (NTRS)
Won, Young-In; Vollimer, Bruce; Theobald, Mike; Hua, Xin-Min
2008-01-01
The Atmospheric Infrared Sounder (AIRS) instrument suite is designed to observe and characterize the entire atmospheric column from the surface to the top of the atmosphere in terms of surface emissivity and temperature, atmospheric temperature and humidity profiles, cloud amount and height, and the spectral outgoing infrared radiation on a global scale. The AIRS Data Support Team at the GES DISC provides data support to assist others in understanding, retrieving and extracting information from the AIRS/AMSU/HSB data products. Because a number of years has passed since its operation started, the amount of data has reached a certain level of maturity where we can address the climate change study utilizing AIRS data, In this presentation we will list various service we provide and to demonstrate how to utilize/apply the existing service to long-term and short-term variability study.
NASA Astrophysics Data System (ADS)
Rivier, Leonard Gilles
Using an efficient parallel code solving the primitive equations of atmospheric dynamics, the jet structure of a Jupiter like atmosphere is modeled. In the first part of this thesis, a parallel spectral code solving both the shallow water equations and the multi-level primitive equations of atmospheric dynamics is built. The implementation of this code called BOB is done so that it runs effectively on an inexpensive cluster of workstations. A one dimensional decomposition and transposition method insuring load balancing among processes is used. The Legendre transform is cache-blocked. A "compute on the fly" of the Legendre polynomials used in the spectral method produces a lower memory footprint and enables high resolution runs on relatively small memory machines. Performance studies are done using a cluster of workstations located at the National Center for Atmospheric Research (NCAR). BOB performances are compared to the parallel benchmark code PSTSWM and the dynamical core of NCAR's CCM3.6.6. In both cases, the comparison favors BOB. In the second part of this thesis, the primitive equation version of the code described in part I is used to study the formation of organized zonal jets and equatorial superrotation in a planetary atmosphere where the parameters are chosen to best model the upper atmosphere of Jupiter. Two levels are used in the vertical and only large scale forcing is present. The model is forced towards a baroclinically unstable flow, so that eddies are generated by baroclinic instability. We consider several types of forcing, acting on either the temperature or the momentum field. We show that only under very specific parametric conditions, zonally elongated structures form and persist resembling the jet structure observed near the cloud level top (1 bar) on Jupiter. We also study the effect of an equatorial heat source, meant to be a crude representation of the effect of the deep convective planetary interior onto the outer atmospheric layer. We show that such heat forcing is able to produce strong equatorial superrotating winds, one of the most striking feature of the Jovian circulation.
NASA Astrophysics Data System (ADS)
Kulkarni, M. N.; Kamra, A. K.
2012-11-01
A theoretical model is developed for calculating the vertical distribution of atmospheric electric potential in exchange layer of maritime clean atmosphere. The transport of space charge in electrode layer acts as a convective generator in this model and plays a major role in determining potential distribution in vertical. Eddy diffusion is the main mechanism responsible for the distribution of space charge in vertical. Our results show that potential at a particular level increases with increase in the strength of eddy diffusion under similar conditions. A method is suggested to estimate columnar resistance, the ionospheric potential and the vertical atmospheric electric potential distribution in exchange layer from measurements of total air-earth current density and surface electric field made over oceans. The results are validated and found to be in very good agreement with the previous aircraft measurements. Different parameters involved in the proposed methodology can be determined either theoretically, as in the present work, or experimentally using the near surface atmospheric electrical measurements or using some other surface-based measurement technique such as LIDAR. A graphical relationship between the atmospheric eddy diffusion coefficient and height of exchange layer obtained from atmospheric electrical approach, is reported.
Pluto's Ultraviolet Airglow and Detection of Ions in the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Steffl, A.; Young, L. A.; Kammer, J.; Gladstone, R.; Hinson, D. P.; Summers, M. E.; Strobel, D. F.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.
2017-12-01
In July 2015, the Alice ultraviolet spectrograph aboard the New Horizons spacecraft made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet reflectance spectrum of Pluto and airglow emissions from its atmosphere. At wavelengths greater than 1400Å, Pluto's spectrum is dominated by sunlight reflected from the surface of the planet. Various hydrocarbon species such as C2H4 are detected in absorption of the solar continuum. Below 1400Å, Pluto's atmosphere is opaque and the surface cannot be detected. However, after carefully removing various sources of background light, we see extremely faint airglow emissions (<0.05 Rayleighs/Ångstrom) from Pluto's atmosphere. All of the emissions are produced by nitrogen in various forms: molecular, atomic, and singly ionized. The detection of N+ at 1086Å is the first, and thus far only, direct detection of ions in Pluto's atmosphere. This N+ emission line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 360Å). Notably absent from Pluto's spectrum are emission lines from argon at 1048 and 1067Å. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than pre-encounter atmospheric models.
Climatic consequences of very high CO2 levels in Earth's early atmosphere
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1985-01-01
Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of Venus' atmosphere. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of this CO2 may have resulted in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises concerning this hypothesis is whether this would have resulted in a runaway greenhouse affect. One-dimensional radiative/convective model calculations show that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 would have been less than 100C and no runaway greenhouse should have occurred. The climatic stability of the early atmosphere is a consequence of three factors: (1) reduced solar luminosity at that time; (2) an increase in planetary albedo caused by Rayleigh scattering by CO2; and (3) the stabilizing effects of moist convection. The latter two factors are sufficient to prevent a CO2-induced runaway greenhouse on the present Earth and for CO2 levels up to 100 bars. It is determined whether a runaway greenhouse could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed once the influx of material slowed down.
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.
Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P
2013-10-29
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer
Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.
2013-01-01
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201
An experimental study of growth and phase change of polar stratospheric cloud particles
NASA Technical Reports Server (NTRS)
Hallett, John; Teets, Edward
1992-01-01
This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.
2013-10-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3.
NASA Astrophysics Data System (ADS)
Gibson, D. K.; Bird, B. W.; Wattrus, N. J.; Escobar, J.; Fonseca, H.; Velasco, F.; Polissar, P. J.
2017-12-01
Geophysical analysis of lacustrine seismic stratigraphy at Laguna de Tota (hereafter "Tota"), Boyaca, Colombia, provides a record of lake level fluctuations that ranges from the Late Quaternary to the present. Changes in Tota's volume indicated by off-lap and on-lap sequences show that regional hydroclimate varied considerably during at least the last 40 Ka. Modern lake level variability at Tota has been directly linked to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), suggesting that past lake level changes identified in CHIRP seismic data may provide insight into past Pacific atmosphere-ocean dynamics. Here, we use high-resolution CHIRP data spanning the top 15 meters of sediment column and a preliminary age model based on Holocene sedimentation rates to investigate lake level variability over the past 40 Ka. Our data demonstrates that lake levels at Tota were generally lower between 40 and 30 Ka, experienced rapid and extreme fluctuations between 30 and 20 Ka (including the lowest recorded lake level at Tota during the LGM at 22 Ka), and gradually rose to the present day high stand between 20 and 0 Ka. Although the CHIRP data indicate significant late Quaternary lake level fluctuations, the timing and duration of these events needs to be more firmly constrained with additional investigations combining sediment core collection and analysis, geochronology, and other lake level proxies. Future work combining these methods holds tremendous potential in terms of reconstructing Late Quaternary atmosphere-ocean cycles.
ERIC Educational Resources Information Center
Ember, Lois R.; And Others
1986-01-01
Discusses the global trends associated with the increasing levels of carbon dioxide, nitrous oxide, methane, and chlorofluorocarbons (CFS) in the earth's atmosphere. Presents several ecological effects associated with these increases, along with some of the possible social and economic implications for the quality of life. Argues for more…
Smolyakov, Boris S; Makarov, Valeriy I; Shinkorenko, Marina P; Popova, Svetlana A; Bizin, Mikhail A
2014-05-01
Extensive forest fires occurred during the summer of 2012 in Siberia. This work presents the influence of long-range atmospheric smoke on the aerosol properties at urban, suburban and background sites, which are located 400-800 km from the fire source. The higher levels of submicron particles (PM1), organic (OC), secondary organic (SOC) and elemental (EC) carbon were observed at all sampling sites, whereas an increase in ionic species HCOO(-), K(+), NO3(-), and Cl(-) and a decrease in pH was higher at the background and suburban sites in comparison with the urban site. Other natural and anthropogenic factors appear to be more significant for ions Ca(2+) + Mg(2+), HCO3(-), NH4(+), SO4(2-) and Na(+). The present study indicates that the impact of remote fires on the aerosol characteristics depends on their background (without fires) levels at the sampling sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Callis, L. B.; Natarajan, M.
1981-01-01
The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.
Airborne laser systems for atmospheric sounding in the near infrared
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David
2012-06-01
This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.
Hot N2 in Titan's upper atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Yelle, R. V.; Heays, A.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.
2015-10-01
We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states,in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past [1] as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields.In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. This hot N2population can improve the agreement between models and observations for the emission of the c'4 state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.
Spectral solar attenuation due to aerosol loading over an urban area in India
NASA Astrophysics Data System (ADS)
Latha, K. Madhavi; Badarinath, K. V. S.
2005-06-01
Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.
Metrological traceability of carbon dioxide measurements in atmosphere and seawater
NASA Astrophysics Data System (ADS)
Rolle, F.; Pessana, E.; Sega, M.
2017-05-01
The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO2), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO2 in the atmosphere. The well established activity to assure the metrological traceability of CO2 in the atmosphere will be applied to the determination of CO2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use.
NASA Technical Reports Server (NTRS)
Banse, Karl
1991-01-01
This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2010-01-01
This study presents preliminary results from a multiscale modeling framework (MMF) with an advanced third-order turbulence closure in its cloud-resolving model (CRM) component. In the original MMF, the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling with a first-order turbulence closure is used as the CRM for representing cloud processes in each grid box of the GCM. The results of annual and seasonal means and diurnal variability are compared between the modified and original MMFs and the CAM3.5. The global distributions of low-level cloud amounts and precipitation and the amounts of low-level clouds in the subtropics and middle-level clouds in mid-latitude storm track regions in the modified MMF show substantial improvement relative to the original MMF when both are compared to observations. Some improvements can also be seen in the diurnal variability of precipitation.
NASA Astrophysics Data System (ADS)
Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles
2016-04-01
Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.
GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm
NASA Astrophysics Data System (ADS)
Funke, B.; López-Puertas, M.; García-Comas, M.; Kaufmann, M.; Höpfner, M.; Stiller, G. P.
2012-09-01
We present in this paper the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA). This model is able to compute non-LTE populations for vibrational, rotational, spin (i.e., NO and OH), and electronic (i.e., O2) states in a given planetary atmosphere. The model is very flexible and can be used for computing very accurate non-LTE populations or for calculating reasonably accurate but at high speed non-LTE populations in order to implement it into non-LTE remote sensing retrievals. We describe the model in detail and present an update of the non-LTE collisional processes and their rate coefficients for the most important molecules in Earth's atmosphere. In addition, we have applied the model to the most important atmospheric infrared emitters including 13 species (H2O, CO2, O3, N2O, CO, CH4, O2, NO, NO2, HNO3, OH, N2, and HCN) and 460 excited vibrational or electronic energy levels. Non-LTE populations for all these energy levels have been calculated for 48 reference atmospheres expanding from the surface up to 200 km, including seasonal (January, April, July and October), latitudinal (75°S, 45°S, 10°S, 10°N, 45°N, 75°N) and diurnal (day and night) coverages. The effects of the most recent updates of the non-LTE collisional parameters on the non-LTE populations are briefly described. This climatology is available online to the community and it can be used for estimating non-LTE effects at specific conditions and for testing and validation studies.
NASA Astrophysics Data System (ADS)
Miyamoto, K.
2005-12-01
I investigate how the intensity and the activity of mid-latitude cyclones change as a result of global warming, based on a time-slice experiment with a super-high resolution Atmospheric General Circulation Model (20-km mesh TL959L60 MRI/JMA AGCM). The model was developed by the RR2002 project "Development of Super High Resolution Global and Regional Climate Models" funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In this context, I use a 10-year control simulation with the climatological SST and a 10-year time-slice global warming simulation using the SST anomalies derived from the SRES A1B scenario run with the MRI-CGCM2.3 (T42L30 atmosphere, 0.5-2.0 x 2.5 L23 ocean) corresponding to the end of the 21st century. I have analyzed the sea-level pressure field and the kinetic energy field of the wind at the 500 hPa pressure level associated with mid-latitude transients from October through April. According to a comparison of 10-day average fields between present and future in the North Pacific, some statistically significant changes are found in a warmer climate for the both of sea-level pressure and the kinetic energy fields. In particular, from late winter through early spring, the sea-level pressure decreases on many parts of the whole Pacific. The kinetic energy of the wind becomes higher on center of the basin. Therefore, I suppose the Aleutian Low is likely to settle in longer by about one month than the present. Hereafter, I plan to investigate what kind of phenomena may accompany the changes on mid-latitude transients.
SAGE III Educational Outreach and Student's On-Line Atmospheric Research
NASA Astrophysics Data System (ADS)
Woods, D. C.; Moore, S. W.; Walters, S. C.
2002-05-01
Students On-Line Atmospheric Research (SOLAR) is a NASA-sponsored educational outreach program aimed at raising the level of interest in science among elementary, middle, and high school students. SOLAR is supported by, and closely linked to, NASA's Stratospheric Aerosol and Gas Experiment III (SAGE III). SAGE III, launched on a Russian METEOR 3M spacecraft in December 2001, is a key component of NASA's Earth Observing System. It will monitor the quantity and distribution of aerosols, ozone, clouds, and other important trace gases in the upper atmosphere. Early data from SAGE III indicate that the instrument is performing as expected. SAGE III measurements will extend the long-term data record established by its predecessors, SAGE I and SAGE II, which spans from 1979 to the present. In addition, SAGE III's added measurement capabilities will provide more detailed data on certain atmospheric species. SOLAR selects interesting topics related to the science issues addressed by the SAGE III experiments, and develops educational materials and projects to enhance science teaching, and to help students realize the relevance of these issues to our lives on Earth. For example, SOLAR highlights some of the major questions regarding the health of the atmosphere such as possible influences of aerosols on global climate, and atmospheric processes related to ozone depletion. The program features projects to give students hands-on experience with scientific equipment and help develop skills in collecting, analyzing, and reporting science results. SOLAR focuses on helping teachers become familiar with current research in the atmospheric sciences, helping teachers integrate SOLAR developed educational materials into their curriculum. SOLAR gives special presentations at national and regional science teacher conferences and conducts a summer teacher workshop at the NASA Langley Research Center. This poster will highlight some of the key features of the SOLAR program and will present descriptions of student projects, teacher workshops, and SOLAR resources.
Characterization of extreme sea level at the European coast
NASA Astrophysics Data System (ADS)
Elizalde, Alberto; Jorda, Gabriel; Mathis, Moritz; Mikolajewicz, Uwe
2015-04-01
Extreme high sea levels arise as a combination of storm surges and particular high tides events. Future climate simulations not only project changes in the atmospheric circulation, which induces changes in the wind conditions, but also an increase in the global mean sea level by thermal expansion and ice melting. Such changes increase the risk of coastal flooding, which represents a possible hazard for human activities. Therefore, it is important to investigate the pattern of sea level variability and long-term trends at coastal areas. In order to analyze further extreme sea level events at the European coast in the future climate projections, a new setup for the global ocean model MPIOM coupled with the regional atmosphere model REMO is prepared. The MPIOM irregular grid has enhanced resolution in the European region to resolve the North and the Mediterranean Seas (up to 11 x 11 km at the North Sea). The ocean model includes as well the full luni-solar ephemeridic tidal potential for tides simulation. To simulate the air-sea interaction, the regional atmospheric model REMO is interactively coupled to the ocean model over Europe. Such region corresponds to the EuroCORDEX domain with a 50 x 50 km resolution. Besides the standard fluxes of heat, mass (freshwater), momentum and turbulent energy input, the ocean model is also forced with sea level pressure, in order to be able to capture the full variation of sea level. The hydrological budget within the study domain is closed using a hydrological discharge model. With this model, simulations for present climate and future climate scenarios are carried out to study transient changes on the sea level and extreme events. As a first step, two simulations (coupled and uncoupled ocean) driven by reanalysis data (ERA40) have been conducted. They are used as reference runs to evaluate the climate projection simulations. For selected locations at the coast side, time series of sea level are separated on its different components: tides, short time atmospheric process influence (1-30 days), seasonal cycle and interannual variability. Every sea level component is statistically compared with data from local tide gauges.
The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration
Scott, Andrew C.; Glasspool, Ian J.
2006-01-01
By comparing Silurian through end Permian [≈250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (≈420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the “fire window”). Herein, we observe that, as predicted, atmospheric oxygen levels rise from ≈13% in the Late Devonian to ≈30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence. PMID:16832054
NASA Astrophysics Data System (ADS)
Harrison, R. G.; Aplin, K. L.
Atmospheric electrical measurements provide proxy data from which historic smoke pollution levels can be determined. This approach is applied to infer autumnal Parisian smoke levels in the 1890s, based on atmospheric electric potential measurements made at the surface and the summit of the Eiffel Tower (48.7°N, 2.4°E). A theoretical model of the development of the autumn convective boundary layer is used to determine when local pollution effects dominated the Eiffel Tower potential measurements. The diurnal variation of the Eiffel Tower potential showed a single oscillation, but it differs from the standard oceanic air potential gradient (PG) variations during the period 09-17 UT, when the model indicates that the Eiffel Tower summit should be within the boundary layer. Outside these hours, the potential changes closely follow the clean air PG variation: this finding is used to calibrate the Eiffel Tower measurements. The surface smoke pollution concentration found during the morning maximum was 60±30 μg m -3, substantially lower than the values previously inferred for Kew in 1863. A vertical smoke profile was also derived using a combination of the atmospheric electrical data and boundary layer meteorology theory. Midday smoke concentration decreased with height from 60 μg m -3 at the surface to 15 μg m -3 at the top of the Eiffel Tower. The 19th century PG measurements in both polluted and clean Parisian air present a unique resource for European air pollution and atmospheric composition studies, and early evidence of the global atmospheric electrical circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Mukhtar A.; Ali, Nawab; Akhter, Parveen
2013-07-01
This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipatingmore » the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how {sup 7}Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a {sup 7}Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of {sup 7}Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water and soil quality monitoring, and the final disposal with the major foci of dealing with related chemical, biogical, physical, geophysical, engineering, management and administration aspects. (authors)« less
Prediction of the far field noise from wind energy farms
NASA Technical Reports Server (NTRS)
Shepherd, K. P.; Hubbard, H. H.
1986-01-01
The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.
Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho
2016-01-01
In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in water. Results revealed that kresoxim-methyl readily form acid metabolite. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. In water, influence of various abiotic factors like pH, temperature, light and atmospheric carbon dioxide level on dissipation of kresoxim-methyl was studied. The half life value for kresoxim-methyl and total residue varied from 1 to 26.1 and 6.1 to 94.0 days under different conditions. Statistical analysis revealed the significant effect of abiotic factors on the dissipation of kresoxim-methyl from water.
Trajkovska, S; Mbaye, M; Gaye Seye, M D; Aaron, J J; Chevreuil, M; Blanchoud, H
2009-06-01
A detailed toxicological study on several pesticides, including chlorothalonil, cyprodynil, dichlobénil, pendimethaline, trifluraline, and alpha-endosulfan, present at trace levels in air and total atmospheric precipitations of Paris is presented. The pesticides contained in the atmospheric samples, collected during sampling campaigns in February-March 2007, are identified and quantified by a high-performance liquid chromatographic (HPLC)-UV detection method. The toxicity measurements are performed by means of the Microtox bioluminescence method, based on the evaluation of the bioluminescence inhibition of the Vibrio fischeri marine bacteria at two exposure times to the pesticide solutions. The specific toxicity, corresponding to the particular toxicity of the compound under study and represented by the EC(50) parameter, is determined for these pesticides. Also, the global toxicity, which is the toxicity of all micro-pollutants present in the sample under study, is estimated for the extracts of air and atmospheric precipitation (rainwater) samples. The specific toxicities strongly vary with the nature of the pesticide, the EC(50) parameter values being comprised between 0.17 and 0.83 mg/mL and 0.15 and 0.66 mg/mL, respectively, for exposure times of 5 and 15 min. The importance of the atmospheric samples' global toxicity and the respective contribution of the toxic potency of the various pesticides contained in these samples are discussed.
Results of the measurement of atmospheric ozone and hydrocarbons in Baden-Wurttemburg
NASA Technical Reports Server (NTRS)
Blander, W.; Siegel, D.
1978-01-01
Data are presented on the diurnal variations of the levels of ozone, ethylene, ethane, and acetylene. The measurement procedures used are described. Variations in monthly ozone levels are given, and measurements from different stations are compared. Data on the total monthly concentrations of NO and NO2 are compared with similar data for ozone. Problems in determining interrelationships among the concentrations of the various substances are discussed.
Validation of Aircraft Noise Prediction Models at Low Levels of Exposure
NASA Technical Reports Server (NTRS)
Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)
2000-01-01
Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.
Combining VPL tools with NEMESIS to Probe Hot Jupiter Exoclimes for JWST
NASA Astrophysics Data System (ADS)
Afrin Badhan, Mahmuda; Kopparapu, Ravi Kumar; Domagal-Goldman, Shawn; Hébrard, Eric; Deming, Drake; Barstow, Joanna; Claire, Mark; Irwin, Patrick GJ; Mandell, Avi; Batalha, Natasha; Garland, Ryan
2016-06-01
Hot Jupiters are the most readily detected exoplanets by present technology. Since the scorching temperatures (>1000K) from high stellar irradiation levels do not allow for cold traps to form in their atmospheres, we can constrain their envelope’s elemental composition with greater confidence compared to our own Jupiter. Thus highly irradiated giant exoplanets hold keys to advancing our understanding of the origin and evolution of planetary systems.Constraining the atmospheric constituents through retrieval methods demands high-precision spectroscopic measurements and robust models to match those measurements. The former will be provided by NASA’s upcoming missions such as JWST. We meet the latter by producing self-consistent retrievals. Here I present modeling results for the temperature structure and photochemical gas abundances of water, methane, carbon dioxide and carbon monoxide, in the dayside atmospheres of selected H2-dominated hot Jupiters observed by present space missions and JWST/NIRSpec simulations, for two [C]/[O] metallicity ratios.The photochemical models were computed using a recently upgraded version of the NASA Astrobiology Institute’s VPL/Atmos software suite. For the radiative transfer and retrieval work, I have utilized a combination of two different numerical approaches in the extensively validated NEMESIS Atmospheric Retrieval Algorithm (Oxford Planetary Group). I have also represented the temperature profile in an analytical radiative equilibrium form to ascertain their physical plausibility. Finally, high-temperature (T> 1000K) spectroscopic opacity databases are slowly but continually being improved. Since this carries the potential of impacting irradiated atmospheric models quite significantly, I also talk about the potential observable impact of such improvements on the retrieval results.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2017-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.
UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugheimer, S.; Sasselov, D.; Segura, A.
2015-06-10
The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less
Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo
2013-03-01
This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution 'Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10(-9) M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.
High Arctic Forests During the Middle Eocene Supported by ~400 ppm Atmospheric CO2
NASA Astrophysics Data System (ADS)
Maxbauer, D. P.; Royer, D. L.; LePage, B. A.
2013-12-01
Fossils from Paleogene High Arctic deposits provide some of the clearest evidence for greenhouse climates and offer the potential to improve our understanding of Earth system dynamics in a largely ice-free world. One of the most well-known and exquisitely-preserved middle Eocene (47.9-37.8 Myrs ago) polar forest sites, Napartulik, crops out on eastern Axel Heiberg Island (80 °N), Nunavut, Canada. An abundance of data from Napartulik suggest mean annual temperatures of up to 30 °C warmer than today and atmospheric water loads 2× above current levels. Despite this wealth of paleontological and paleoclimatological data, there are currently no direct constraints on atmospheric CO2 levels for Napartulik or any other polar forest site. Here we apply a new plant gas-exchange model to Metasequoia (dawn redwood) leaves to reconstruct atmospheric CO2 from six fossil forests at Napartulik. Individual reconstructions vary between 405-489 ppm with a site mean of 437 ppm (337-564 ppm at 95% confidence). These estimates represent the first direct constraints on CO2 for polar fossil forests and suggest that the temperate conditions present at Napartulik during the middle Eocene were maintained under CO2 concentrations ~1.6× above pre-industrial levels. Our results strongly support the case that long-term climate sensitivity to CO2 in the past was sometimes high, even during largely ice-free periods, highlighting the need to better understand the climate forcing and feedback mechanisms responsible for this amplification.
Measuring atmospheric density using GPS-LEO tracking data
NASA Astrophysics Data System (ADS)
Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.
2014-01-01
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.
Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products
NASA Technical Reports Server (NTRS)
Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt
2016-01-01
The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda < 0.94 microns the SDs on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For lambda > 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.
Probing the Physics and Chemistry in Hot Jupiter Exoclimes for Future Missions
NASA Astrophysics Data System (ADS)
Afrin Badhan, Mahmuda; Kopparapu, Ravi Kumar; Domagal-Goldman, Shawn; Deming, Drake; Hébrard, Eric; Irwin, Patrick GJ; Batalha, Natasha; Mandell, Avi
2017-01-01
Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of vastly different extrasolar systems. In particular, close-in planets such as Hot Jupiters provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to such high levels of stellar insolation. Observed spectroscopic signatures from a planet reveal all spectrally active species in its atmosphere, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA’s upcoming missions will give us the high-resolution spectra necessary to constrain such atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric modeling tools that map both the physical and chemical processes affecting the particular type of planet under investigation. My work seeks to expand on past efforts in these two categories for irradiated giant exoplanets. These atmospheric models can be combined with future mission simulations to build tools that allow us to self-consistently “retrieve” the signatures we can expect to observe with the instruments. In my work thus far, I have built the robust Markov Chain Monte Carlo convergence scheme, with an analytical radiative equilibrium formulation to represent the thermal structures, within the NEMESIS atmospheric radiative transfer modeling and retrieval tool. I have combined this physics-based thermal structure with photochemical abundance profiles for the major gas atmospheric constituents, using the NASA Astrobiology Institute’s VPL/Atmos photochemistry model, which I recently extended to giant planet regimes. Here I will present my new Hot Jupiter models and retrievals results constructed from these latest enhancements. For comparison, I will show applications to both archival data from present missions and JWST/NIRSpec simulations, and discuss any new information we expect to reliably extract from the upcoming JWST mission.
NASA Technical Reports Server (NTRS)
Zak, J. A.
1989-01-01
A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.
The Atmospheric Structure of Triton and Pluto
NASA Technical Reports Server (NTRS)
Elliot, James L.
1998-01-01
The goal of this research was to better determine the atmospheric structures of Triton and Pluto through further analysis of three occultation data sets obtained with the Kuiper Airborne Observatory (KAO.) As the research progressed, we concentrated our efforts on the Triton data, as this appeared to be the most fruitful. Three papers have been prepared as a result of this research. The first paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogenous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent isothermal temperature of the atmosphere is 47 plus or minus 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 plus or minus 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989. The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model. In our opinion, the disagreement in temperature and pressure is probably due to modeling problems at the microbar level, since measurements at this level have not previously been made. Alternatively, the difference could be due to seasonal change in Triton's atmospheric structure. The second paper reports observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. The most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years -- significantly faster than predicted by published frost model for Triton. Our results suggests that permanent polar caps on Triton play a dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto. A third paper 'Global Warming on Triton' will appear in a the January 1999 issue of Sky and Telescope.
NASA Astrophysics Data System (ADS)
Power, H. C.; de Freitas, C. R.; Hay, J. E.
1992-06-01
Atmospheric lead levels were examined to assess the consequences of the 46 percent reduction in the lead content of premium grade petrol in New Zealand. Since this change was implemented in July 1986 observed levels of atmospheric lead decreased by 38 percent, but all or part of this reduction may have been due to factors other than fluctuations in lead emissions, notably variations in climate. Analysis of detailed atmospheric lead, meteorological and traffic data measured contemporaneously provided insight into the atmospheric processes influencing lead levels in Auckland and formed the basis of a statistical model capable of predicting monthly lead concentrations. The model was used to predict lead levels in Auckland for the period July 1986 through to July 1989 in the absence of any reduction in the lead content of petrol. Comparison with values observed for the same period showed that all of the reduction in atmospheric lead levels since July 1986 can be attributed to the reduction in the lead content of petrol. Policy planning implications of such a finding are considered.
Study of properties of tungsten irradiated in hydrogen atmosphere
NASA Astrophysics Data System (ADS)
Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.
2017-12-01
The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.
Sheibley, Rich W.; Foreman, James R.; Moran, Patrick W.; Swarzenski, Peter W.
2012-01-01
To evaluate the potential effect from atmospheric deposition of nitrogen to high-elevation lakes, the U.S. Geological Survey partnered with the National Park Service to develop a "critical load" of nitrogen for sediment diatoms. A critical load is defined as the level of a given pollutant (in this case, nitrogen) at which detrimental effects to a target endpoint (sediment diatoms) result. Because sediment diatoms are considered one of the "first responders" to ecosystem changes from nitrogen, they are a sensitive indicator for nitrogen deposition changes in natural areas. This report presents atmospheric deposition, water quality, sediment geochronology, and sediment diatom data collected from July 2008 through August 2010 in support of this effort.
Mercury emission to the atmosphere from municipal solid waste landfills: A brief review
NASA Astrophysics Data System (ADS)
Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli
2017-12-01
Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.
NASA Astrophysics Data System (ADS)
Molto, Carlos; Mas, Miquel
2010-05-01
The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The second group's task is similar to the first. Students have to study how the concentration of methane affects the temperature of their atmosphere box. Similarly, the third group monitors the influence of the water steam (generated by evaporation) on the temperature of their atmosphere box. Results must be carefully analyzed because of possible interferences from water steam. And finally, the forth and last group explores the long term effects that the accumulation of greenhouse gases have on the Earth's temperature. As temperature rises, evaporation increases and more water steam accumulates in the atmosphere. As a greenhouse gas, water absorbs heat, therefore the air gets warmer and, again, more water is evaporated. To develop this project, a previous experiment is needed so that the concentration of carbon dioxide remains constant and water steam levels increase gradually. Thus, the consequences of an uncontrolled increase of temperature can be simulated. Students' aim is to examine the data elicited from the last step of the scientific method experiment. They have to decide either if the experiment supported their hypothesis and, therefore, they can be regarded as true, or the experiment disproved them and, therefore, they are false. Finally, in the last lesson, students perform an oral presentation about their experimental results, establishing relationships amongst the different experiments. All together emphasizes the must of humankind to promote renewable energies.
NASA Astrophysics Data System (ADS)
Iannone, Rosario Q.; Romanini, Daniele; Cattani, Olivier; Meijer, Harro A. J.; Kerstel, Erik R. Th.
2010-05-01
Water vapor isotopes represent an innovative and excellent tool for understanding complex mechanisms in the atmospheric water cycle over different time scales, and they can be used for a variety of applications in the fields of paleoclimatology, hydrology, oceanography, and ecology. We use an ultrasensitive near-infrared spectrometer, originally designed for use on airborne platforms in the upper troposphere and lower stratosphere, to measure the water deuterium and oxygen-18 isotope ratios in situ, in ground-level tropospheric moisture, with a high temporal resolution (from 300 s down to less than 1 s). We present some examples of continuous monitoring of near-surface atmospheric moisture, demonstrating that our infrared laser spectrometer could be used successfully to record high-concentration atmospheric water vapor mixing ratios in continuous time series, with a data coverage of ˜90%, interrupted only for daily calibration to two isotope ratio mass spectrometry-calibrated local water standards. The atmospheric data show that the water vapor isotopic composition exhibits a high variability that can be related to weather conditions, especially to changes in relative humidity. Besides, the results suggest that observed spatial and temporal variations of the stable isotope content of atmospheric water vapor are strongly related to water vapor transport in the atmosphere.
Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Zahnle, K.; Barlow, N. G.
2018-01-01
Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.
Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil
NASA Astrophysics Data System (ADS)
de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago
2009-03-01
The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).
Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones
NASA Astrophysics Data System (ADS)
Seiler, C.; Zwiers, F. W.
2017-12-01
Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an undulation of the dynamic tropopause and the formation of a PV tower with values exceeding 1 PV unit during maximum ETC intensity. The dominant contribution from the lower level underlines the importance of latent heating for intense ETCs. The ability of GCMs to reproduce this mechanism remains to be assessed.
Andrzej Bytnerowicz; Mark Fenn; Edith B. Allen; Ricardo Cisneros
2016-01-01
At present, negative impacts of air pollution on California ecosystems are caused mainly by elevated levels of ozone and nitrogen deposition. Generally, ozone air pollution in California has been improving significantly since the 1970s; however, it still causes serious ecological and human health effects. The most serious ecological effects occur in mixed conifer...
We present a robust methodology for examining the relationship between synoptic-scale atmospheric transport patterns and pollutant concentration levels observed at a site. Our approach entails calculating a large number of back-trajectories from the observational site over a long...
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.
2013-12-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project
NASA Astrophysics Data System (ADS)
Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L. G.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J. D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Sindelarova, T.; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, J.
2018-03-01
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.
Ozone and nitrogen dioxide above the northern Tien Shan
NASA Technical Reports Server (NTRS)
Arefev, Vladimir N.; Volkovitsky, Oleg A.; Kamenogradsky, Nikita E.; Semyonov, Vladimir K.; Sinyakov, Valery P.
1994-01-01
The results of systematic perennial measurements of the total ozone (since 1979) and nitrogen dioxide column (since 1983) in the atmosphere in the European-Asian continent center above the mountainmass of the Tien Shan are given. This region is distinguished by a great number of sunny days during a year. The observation station is at the Northern shore of Issyk Kul Lake (42.56 N 77.04 E 1650 m above the sea level). The measurement results are presented as the monthly averaged atmospheric total ozone and NO2 stratospheric column abundances (morning and evening). The peculiarities of seasonal variations of ozone and nitrogen dioxide atmospheric contents, their regular variances with a quasi-biennial cycles and trends have been noticed. Irregular variances of ozone and nitrogen dioxide atmospheric contents, i.e. their positive and negative anomalies in the monthly averaged contents relative to the perennial averaged monthly means, have been analyzed. The synchronous and opposite in phase anomalies in variations of ozone and nitrogen dioxide atmospheric contents were explained by the transport and zonal circulation in the stratosphere (Kamenogradsky et al., 1990).
Liquid water on Mars - an energy balance climate model for CO2/H2O atmospheres
NASA Astrophysics Data System (ADS)
Hoffert, M. I.; Callegari, A. J.; Hsieh, T.; Ziegler, W.
1981-07-01
A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.
NASA Astrophysics Data System (ADS)
Brown, A.; Ayres, T. R.; Harper, G. M.; Osten, R. A.; Linsky, J. L.; Dupree, A. K.; Jordan, C.
2000-05-01
Yellow supergiants with spectral types F-G show a complex pattern of outer atmospheric structure with stellar wind and activity indicators varying significantly for stars with similar positions in the H-R diagram. The efficiency of the processes driving their stellar winds and heating their atmospheres is critically dependent on the evolutionary position and surface gravity of each star. We present high-resolution ultraviolet HST/STIS and HST/GHRS spectra for a range of intermediate mass F and G supergiants, including Alpha Car (F0 Ib), Beta Cam (G0 Ib), Beta Dra (G2 Ib), and Epsilon Gem (G8 Ib), and compare the atmospheric properties of these stars with lower luminosity giants and bright giants. We provide a systematic overview of the supergiant atmospheric properties dealing particularly with activity levels, the presence of hot ``transition region'' plasma, signatures of wind outflow, and the role of overlying cool absorbing plasma that becomes increasingly prominent for the cooler stars like Epsilon Gem. This work is supported by HST grants for program GO-08280 and by NASA grant NAG5-3226.
Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.
1981-01-01
A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.
A measurement system for the atmospheric trace gases CH4 and CO
NASA Technical Reports Server (NTRS)
Condon, E. P.
1977-01-01
A system for measuring ambient clean air levels of the atmospheric trace gases methane and carbon monoxide is described. The analytical method consists of a gas chromatographic technique that incorporates sample preconcentration with catalytic conversion of CO to CH4 and subsequent flame ionization detection of these gases. The system has sufficient sensitivity and repeatability to make the precise measurements required to establish concentration profiles for CO and CH4 in the planetary boundary layer. A discussion of the bottle sampling program being conducted to obtain the samples for the concentration profiles is also presented.
Extraterrestrial platinum group nuggets in deep-sea sediments
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Bates, B. A.; Wheelock, M. M.
1984-01-01
A previously unrecognized property of iron cosmic spheres is reported. The most common spheres larger than 300 microns do not, in fact, contain FeNi metal cores, but instead contain a micrometer-sized nugget composed almost entirely of platinum group elements. These elements appear to have been concentrated by the oxidation of molten meteoritic metal during atmospheric entry. This process is critically dependent on the relative abundance of oxygen in the atmosphere, and the first appearance of the nuggets in the geological record may provide a marker indicating when the oxygen abundance attained half of its present level.
NASA Astrophysics Data System (ADS)
Lozano, R. L.; Bolívar, J. P.; San Miguel, E. G.; García-Tenorio, R.; Gázquez, M. J.
2011-12-01
In this work, an accurate method for the measurement of natural alpha-emitting radionuclides from aerosols collected in air filters is presented and discussed in detail. The knowledge of the levels of several natural alpha-emitting radionuclides (238U, 234U, 232Th, 230Th, 228Th, 226Ra and 210Po) in atmospheric aerosols is essential not only for a better understanding of the several atmospheric processes and changes, but also for a proper evaluation of the potential doses, which can inadvertently be received by the population via inhalation. The proposed method takes into account the presence of intrinsic amounts of these radionuclides in the matrices of the quartz filters used, as well as the possible variation in the humidity of the filters throughout the collection process. In both cases, the corrections necessary in order to redress these levels have been evaluated and parameterized. Furthermore, a detailed study has been performed into the optimisation of the volume of air to be sampled in order to increase the accuracy in the determination of the radionuclides. The method as a whole has been applied for the determination of the activity concentrations of U- and Th-isotopes in aerosols collected at two NORM (Naturally Occurring Radioactive Material) industries located in the southwest of Spain. Based on the levels found, a conservative estimation has been performed to yield the additional committed effective doses to which the workers are potentially susceptible due to inhalation of anthropogenic material present in the environment of these two NORM industries.
US EPA's National Dioxin Air Monitoring Network: Analytical ...
The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry, and animal feed crops are grown; (2) to provide measurements of atmospheric levels in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations and is achieving congener-specific detection lmits of 0.1 fg/m3 for 2,3,7,8-TCDD and 10 fg/m3 for OCDD. With respect to coplanar PCBs, the detection limits are generally higher due to the presence of background levels in the air during the preparation and processing of the samples. Achieving these extremely low levels of detection present a host of analytical issues. Among these issues are the methods used to establish ultra-trace detection limits, measures to ensure against and monitor for breakthrough of native analytes when sampling large volumes of air, and procedures for handling and e
Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century.
Cuevas, Carlos A; Maffezzoli, Niccolò; Corella, Juan Pablo; Spolaor, Andrea; Vallelonga, Paul; Kjær, Helle A; Simonsen, Marius; Winstrup, Mai; Vinther, Bo; Horvat, Christopher; Fernandez, Rafael P; Kinnison, Douglas; Lamarque, Jean-François; Barbante, Carlo; Saiz-Lopez, Alfonso
2018-04-13
Atmospheric iodine causes tropospheric ozone depletion and aerosol formation, both of which have significant climate impacts, and is an essential dietary element for humans. However, the evolution of atmospheric iodine levels at decadal and centennial scales is unknown. Here, we report iodine concentrations in the RECAP ice-core (coastal East Greenland) to investigate how atmospheric iodine levels in the North Atlantic have evolved over the past 260 years (1750-2011), this being the longest record of atmospheric iodine in the Northern Hemisphere. The levels of iodine tripled from 1950 to 2010. Our results suggest that this increase is driven by anthropogenic ozone pollution and enhanced sub-ice phytoplankton production associated with the recent thinning of Arctic sea ice. Increasing atmospheric iodine has accelerated ozone loss and has considerably enhanced iodine transport and deposition to the Northern Hemisphere continents. Future climate and anthropogenic forcing may continue to amplify oceanic iodine emissions with potentially significant health and environmental impacts at global scale.
Constraints on the thermosteric component of Last Interglacial sea level
NASA Astrophysics Data System (ADS)
Shackleton, S. A.; Severinghaus, J. P.; Petrenko, V. V.; Dyonisius, M.; Hmiel, B.
2016-12-01
With global temperatures 1 to 2°C above preindustrial, but sea level exceeding current levels by upwards of 8 meters, the Last Interglacial (LIG) period at 125 ka may provide valuable insight into Earth system constraints under future global warming. The relative contributions of thermal expansion and ice sheet loss to sea level rise over this period are of particular interest in seeking to improve sea level projections in the upcoming decades and beyond. Here we quantify this thermosteric component from a reconstruction of global ocean temperature over the LIG from atmospheric noble gases trapped in glacial ice. With no major sources or sinks outside of the ocean-atmosphere system, the relative changes in the atmospheric content of krypton, xenon, and nitrogen reflect changes in ocean gas storage. This storage is primarily governed by solubility and ocean temperature, making dKr/N2, dXe/N2, and dXe/Kr unique tracers of globally integrated oceanic heat content. However, processes within the firn can fractionate these gases, and firn effects on these tracers must be removed to derive an ocean temperature. We present high precision measurements of these gas ratios along with isotopes of argon, krypton, and xenon in firn air withdrawn from the snowpack at Summit, Greenland. We use these isotopes to identify sources of fractionation within the firn and quantify their effects on the noble gas tracers, enabling a reconstruction of Last Interglacial ocean temperature.
Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse
NASA Technical Reports Server (NTRS)
Fritts, David C.; Luo, Zhangai
1993-01-01
We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.
NASA Astrophysics Data System (ADS)
Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik
2016-09-01
We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.
1999-01-01
The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.
A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P.
Bronk Ramsey, Christopher; Staff, Richard A; Bryant, Charlotte L; Brock, Fiona; Kitagawa, Hiroyuki; van der Plicht, Johannes; Schlolaut, Gordon; Marshall, Michael H; Brauer, Achim; Lamb, Henry F; Payne, Rebecca L; Tarasov, Pavel E; Haraguchi, Tsuyoshi; Gotanda, Katsuya; Yonenobu, Hitoshi; Yokoyama, Yusuke; Tada, Ryuji; Nakagawa, Takeshi
2012-10-19
Radiocarbon ((14)C) provides a way to date material that contains carbon with an age up to ~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of a comprehensive record reflecting atmospheric (14)C prior to 12.5 thousand years before the present (kyr B.P.) has limited the application of radiocarbon dating of samples from the Last Glacial period. Here, we report (14)C results from Lake Suigetsu, Japan (35°35'N, 135°53'E), which provide a comprehensive record of terrestrial radiocarbon to the present limit of the (14)C method. The time scale we present in this work allows direct comparison of Lake Suigetsu paleoclimatic data with other terrestrial climatic records and gives information on the connection between global atmospheric and regional marine radiocarbon levels.
Auerbach, Judith G; Zilberman-Hayun, Yael; Atzaba-Poria, Naama; Berger, Andrea
2017-04-01
Children of mothers with attention-deficit/hyperactivity disorder (ADHD) have an increased genetic and environmental risk for ADHD. The unique and interactive contributions of a maternal dopamine receptor gene (DAT1), maternal ADHD symptoms (hyperactive- impulsive, inattentive), and home atmosphere to the prediction of ADHD symptoms (hyperactive- impulsive, inattentive) in 7- year-old boys (N = 96) were examined using data from a longitudinal study of familial risk for ADHD. During the first 6 months of the study, mothers and their spouses completed a questionnaire about the mother's ADHD symptoms. Home atmosphere questionnaire data were collected 4 years later. At the 7-year assessment, mothers reported on their child's ADHD symptoms. Negative home atmosphere was significantly associated with child hyperactive-impulsive and inattentive symptoms. Maternal inattentive symptoms were significantly correlated with both child symptom dimensions. Regression models, with child genotype and maternal education controlled, showed main effects for maternal inattentive symptoms, maternal DAT1 10/10 genotype, and home atmosphere in the prediction of child inattentive symptoms. Only home atmosphere predicted child hyperactive-impulsive symptoms. There was a significant home atmosphere x maternal hyperactive-impulsive symptoms interaction in the prediction of child hyperactive-impulsive symptoms. Boys with higher levels of symptoms came from homes characterized by higher levels of negative atmosphere and had mothers with higher levels of hyperactive-impulsive symptoms. There was also a trend (p = 0.075) for a maternal DAT1 x home atmosphere interaction. Boys with higher levels of inattentive symptoms came from homes with higher levels of negative atmosphere and had mothers with the homozygous 10/10 genotype. The maternal heterozygous 9/10 genotype did not predict child symptoms.
Laser Experiments with ARTEMIS Satellite in Cloudy Conditions
NASA Astrophysics Data System (ADS)
Kuzkov, Volodymyr; Sodnik, Zoran; Kuzkov, Sergii; Caramia, Vincenzo
2014-05-01
In July 2001, the ARTEMIS satellite with laser communication terminal OPALE on board was launched. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. In addition ESA's Optical Ground Station (OGS) performed laser communication experiments with OPALE in various atmospheric conditions. Since the launch of ARTEMIS, the amount of information handled by geostationary telecommunication satellites has increased dramatically and so has the demand for data rate that needs to be transmitted from ground. With limited bandwidth allocations in the radio frequency bands interest has grown for laser communication feeder link technology. In this respect there is interest to compare the influence of atmosphere conditions in different atmospheric regions with respect to laser transmission. Two locations are being compared, namely ESA's OGS (located in an altitude of 2400 m above sea level) and the Main Astronomical Observatory of Ukraine (MAO) (located at an altitude of 190 m above sea level). In 2002 MAO started the development of a ground laser communication system for the AZT-2 telescope. The MAO developed compact laser communication system is called LACES (Laser Atmosphere and Communication Experiments with Satellites) [1] and the work was supported by the National Space Agency of Ukraine and by ESA. The beacon laser from OPALE was occasionally detected even in cloudy conditions and an anomalous atmospheric refraction at low elevation angles was observed. The main results of laser experiments with ARTEMIS through clouds are presented in the paper.
NASA Astrophysics Data System (ADS)
Ratola, N.; Jiménez-Guerrero, P.
2015-09-01
Biomonitoring data available on levels of atmospheric polycyclic aromatic hydrocarbons (PAHs) in pine needles from the Iberian Peninsula was used to estimate air concentrations of benzo[a]pyrene (BaP) and, at the same time, fuelled the comparison with chemistry transport model representations. Simulations with the modelling system WRF + CHIMERE were validated against data from the European Monitoring and Evaluation Programme (EMEP) air sampling network and using modelled atmospheric concentrations as a consistent reference in order to compare the performance of vegetation-to-air estimating methods. A spatial and temporal resolution of 9 km and 1 h was implemented. The field-based database relied on a pine needles sampling scheme comprising 33 sites in Portugal and 37 sites in Spain complemented with the BaP measurements available from the EMEP sites. The ability of pine needles to act as biomonitoring markers for the atmospheric concentrations of BaP was estimated converting the levels obtained in pine needles into air concentrations by six different approaches, one of them presenting realistic concentrations when compared to the modelled atmospheric values. The justification for this study is the gaps still existing in the knowledge of the life cycles of semi-volatile organic compounds (SVOCs), particularly the partition processes between air and vegetation. The strategy followed in this work allows the definition of the transport patterns (e.g. dispersion) established by the model for atmospheric concentrations and the estimated values in vegetation.
Meili, Markus; Bishop, Kevin; Bringmark, Lage; Johansson, Kjell; Munthe, John; Sverdrup, Harald; de Vries, Wim
2003-03-20
Mercury (Hg) is regarded as a major environmental concern in many regions, traditionally because of high concentrations in freshwater fish, and now also because of potential toxic effects on soil microflora. The predominant source of Hg in most watersheds is atmospheric deposition, which has increased 2- to >20-fold over the past centuries. A promising approach for supporting current European efforts to limit transboundary air pollution is the development of emission-exposure-effect relationships, with the aim of determining the critical level of atmospheric pollution (CLAP, cf. critical load) causing harm or concern in sensitive elements of the environment. This requires a quantification of slow ecosystem dynamics from short-term collections of data. Aiming at an operational tool for assessing the past and future metal contamination of terrestrial and aquatic ecosystems, we present a simple and flexible modelling concept, including ways of minimizing requirements for computation and data collection, focusing on the exposure of biota in forest soils and lakes to Hg. Issues related to the complexity of Hg biogeochemistry are addressed by (1) a model design that allows independent validation of each model unit with readily available data, (2) a process- and scale-independent model formulation based on concentration ratios and transfer factors without requiring loads and mass balance, and (3) an equilibration concept that accounts for relevant dynamics in ecosystems without long-term data collection or advanced calculations. Based on data accumulated in Sweden over the past decades, we present a model to determine the CLAP-Hg from standardized values of region- or site-specific synoptic concentrations in four key matrices of boreal watersheds: precipitation (atmospheric source), large lacustrine fish (aquatic receptor and vector), organic soil layers (terrestrial receptor proxy and temporary reservoir), as well as new and old lake sediments (archives of response dynamics). Key dynamics in watersheds are accounted for by quantifying current states of equilibration in both soils and lakes based on comparison of contamination factors in sediment cores. Future steady-state concentrations in soils and fish in single watersheds or entire regions are then determined by corresponding projection of survey data. A regional-scale application to southern Sweden suggests that the response of environmental Hg levels to changes in atmospheric Hg pollution is delayed by centuries and initially not proportional among receptors (atmosphere > soils not equal sediments>fish; clearwater lakes > humic lakes). This has implications for the interpretation of common survey data as well as for the implementation of pollution control strategies. Near Hg emission sources, the pollution of organic soils and clearwater lakes deserves attention. Critical receptors, however, even in remote areas, are humic waters, in which biotic Hg levels are naturally high, most likely to increase further, and at high long-term risk of exceeding the current levels of concern: =0.5 mg (kg fw)(-1) in freshwater fish, and 0.5 mg (kg dw)(-1) in soil organic matter. If environmental Hg concentrations are to be reduced and kept below these critical limits, virtually no man-made atmospheric Hg emissions can be permitted.
Leitao, Louis; Maoret, Jean-José; Biolley, Jean-Philippe
2007-01-01
We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR. Foliar pigment content, PEPc and Rubisco protein amounts were simultaneously determined. Two experiments were performed to study the ozone response of the 5th and the 10th leaf. For each experiment, three ozone concentrations were tested in open-top chambers: non-filtered air (NF, control) and non-filtered air containing 40 (+40) and 80 nL L-1 (+80) ozone. Regarding the 5th leaf, +40 atmosphere induced a loss in pigmentation, PEPc and Rubisco activase mRNAs. However, it was unable to notably depress carboxylase protein amounts and mRNAs encoding Rubisco. Except for Rubisco mRNAs, all other measured parameters from 5th leaf were depressed by +80 atmosphere. Regarding the 10th leaf, +40 atmosphere increased photosynthetic pigments and transcripts encoding Rubisco and Rubisco activase. Rubisco and PEPc protein amounts were not drastically changed, even if they tended to be increased. Level of C4-PEPc mRNA remained almost stable. In response to +80 atmosphere, pigments and transcripts encoding PEPc were notably decreased. Rubisco and PEPc protein amounts also declined to a lesser extent. Conversely, the level of transcripts encoding both Rubisco subunits and Rubisco activase that were not consistently disturbed tended to be slightly augmented. So, the present study suggests that maize leaves can respond differentially to a similar ozone stress.
Screening the Hanford tanks for trapped gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.
1995-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less
The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions
NASA Astrophysics Data System (ADS)
Gildor, H.; Biton, E.; Peltier, W. R.
2006-12-01
The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).
NASA Astrophysics Data System (ADS)
Jiang, S.; Cole-Dai, J.; Li, Y.; An, C.
2016-12-01
Snow deposition and accumulation on the Antarctic ice sheet preserve records of climatic change, as well as those of chemical characteristics of the environment. Chemical composition of snow and ice cores can be used to track the sources of important substances including pollutants and to investigate relationships between atmospheric chemistry and climatic conditions. Recent development in analytical methodology has enabled the determination of ultra-trace levels of perchlorate in polar snow. We have measured perchlorate concentrations in surface snow samples collected along a traverse route from Zhongshan Station to Dome A in East Antarctica to determine the level of atmospheric perchlorate in East Antarctica and to assess the spatial variability of perchlorate along the traverse route. Results show that the perchlorate concentrations vary between 32 and 200 ng kg-1, with an average of 104.3 ng kg-1. And perchlorate concentration profile presents regional variation patterns along the traverse route. In the coastal region, perchlorate concentration displays an apparent decreasing relationship with increasing distance inland; it exhibits no apparent trend in the intermediate region from 200 to 1000 km. The inland region from 1000 to 1244 km presents a generally increasing trend of perchlorate concentration approaching the dome. Different rates of atmospheric production, dilution by snow accumulation and re-deposition of snow-emitted perchlorate (post-depositional change) are the three possible factors influencing the spatial variability of perchlorate over Antarctica.
Method and Apparatus for Measuring Surface Air Pressure
NASA Technical Reports Server (NTRS)
Lin, Bing (Inventor); Hu, Yongxiang (Inventor)
2014-01-01
The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.
Carbon sequestration in wood and paper products
Kenneth E. Skog; Geraldine A. Nicholson
2000-01-01
Recognition that increasing levels of CO2 in the atmosphere will affect the global climate has spurred research into reduction global carbon emissions and increasing carbon sequestration. The main nonhuman sources of atmospheric CO2 are animal respiration and decay of biomass. However, increases in atmospheric levels are...
NASA Astrophysics Data System (ADS)
O'ishi, R.; Abe-Ouchi, A.
2013-07-01
When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.
The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.
Data on total and spectral solar irradiance
NASA Technical Reports Server (NTRS)
Mecherikunnel, A. T.; Gatlin, J. A.; Richmond, J. C.
1983-01-01
This paper presents a brief survey of the data available on solar constant and extraterrestrial solar spectral irradiance. The spectral distribution of solar radiation at ground surface, computed from extraterrestrial solar spectral irradiance for several air mass values and for four levels of atmospheric pollution, is also presented. The total irradiance at ground level is obtained by integration of the area under the spectral irradiance curves. It is significant that, as air mass increases or as turbidity increases, the amount of energy in the infrared relative to the total increases and that the energy in the UV and visible decreases.
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team
2016-10-01
The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.
NASA Astrophysics Data System (ADS)
Vicent, Jorge; Alonso, Luis; Sabater, Neus; Miesch, Christophe; Kraft, Stefan; Moreno, Jose
2015-09-01
The uncertainties in the knowledge of the Instrument Spectral Response Function (ISRF), barycenter of the spectral channels and bandwidth / spectral sampling (spectral resolution) are important error sources in the processing of satellite imaging spectrometers within narrow atmospheric absorption bands. The exhaustive laboratory spectral characterization is a costly engineering process that differs from the instrument configuration in-flight given the harsh space environment and harmful launching phase. The retrieval schemes at Level-2 commonly assume a Gaussian ISRF, leading to uncorrected spectral stray-light effects and wrong characterization and correction of the spectral shift and smile. These effects produce inaccurate atmospherically corrected data and are propagated to the final Level-2 mission products. Within ESA's FLEX satellite mission activities, the impact of the ISRF knowledge error and spectral calibration at Level-1 products and its propagation to Level-2 retrieved chlorophyll fluorescence has been analyzed. A spectral recalibration scheme has been implemented at Level-2 reducing the errors in Level-1 products below the 10% error in retrieved fluorescence within the oxygen absorption bands enhancing the quality of the retrieved products. The work presented here shows how the minimization of the spectral calibration errors requires an effort both for the laboratory characterization and for the implementation of specific algorithms at Level-2.
Rayne, Sierra; Forest, Kaya
2014-09-19
The air-water partition coefficient (Kaw) of perfluoro-2-methyl-3-pentanone (PFMP) was estimated using the G4MP2/G4 levels of theory and the SMD solvation model. A suite of 31 fluorinated compounds was employed to calibrate the theoretical method. Excellent agreement between experimental and directly calculated Kaw values was obtained for the calibration compounds. The PCM solvation model was found to yield unsatisfactory Kaw estimates for fluorinated compounds at both levels of theory. The HENRYWIN Kaw estimation program also exhibited poor Kaw prediction performance on the training set. Based on the resulting regression equation for the calibration compounds, the G4MP2-SMD method constrained the estimated Kaw of PFMP to the range 5-8 × 10(-6) M atm(-1). The magnitude of this Kaw range indicates almost all PFMP released into the atmosphere or near the land-atmosphere interface will reside in the gas phase, with only minor quantities dissolved in the aqueous phase as the parent compound and/or its hydrate/hydrate conjugate base. Following discharge into aqueous systems not at equilibrium with the atmosphere, significant quantities of PFMP will be present as the dissolved parent compound and/or its hydrate/hydrate conjugate base.
Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.
Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad
2015-08-18
Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.
NASA Technical Reports Server (NTRS)
Saiidi, M. J.; Duffy, R. E.; Mclaughlin, T. D.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
NASA Astrophysics Data System (ADS)
Nozawa, T.
2016-12-01
Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.
NASA Astrophysics Data System (ADS)
Lora, Juan M.; Mitchell, Jonathan L.; Risi, Camille; Tripati, Aradhna E.
2017-01-01
Southwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ˜1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Moiseenko, K. B.; Malik, N. A.
2015-11-01
Intensive volcanic eruptions of an explosive type are accompanied by release of a great amount of ash particles into the atmosphere. These particles are finely dispersed (<2 mm in size) products of magmatic melt fermentation, and their precipitation on the underlying surface is largely controlled by atmospheric transport. The present work proposes an approach to estimate the total released mass (TRM) of ash at minimal a priori data on dynamics of explosive process, on the basis of, first, direct numerical modeling of atmospheric transport and gravity precipitation of ash particles and, second, field observation data. To exemplify, the case study of the strong explosive eruption of Bezymyanny volcano on December 24, 2006 is considered (TRM > 3.8 Mt, height of eruptive column is 13-15 km above sea level). The results of the model calculations for this event are compared to independent TRM estimates by using standard methods based on the counting of precipitation areas.
The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.
Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R
2012-06-01
Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.
NASA Technical Reports Server (NTRS)
Achakulwisut, P.; Mickley, L. J.; Murray, Lee; Tai, A.P.K.; Kaplan, J.O.; Alexander, B.
2015-01-01
Current understanding of the factors controlling biogenic isoprene emissions and of the fate of isoprene oxidation products in the atmosphere has been evolving rapidly. We use a climate-biosphere-chemistry modeling framework to evaluate the sensitivity of estimates of the tropospheric oxidative capacity to uncertainties in isoprene emissions and photochemistry. Our work focuses on trends across two time horizons: from the Last Glacial Maximum (LGM, 21 000 years BP) to the preindustrial (1770s); and from the preindustrial to the present day (1990s). We find that different oxidants have different sensitivities to the uncertainties tested in this study, with OH being the most sensitive: changes in the global mean OH levels for the LGM-to-preindustrial transition range between -29 and +7, and those for the preindustrial-to-present day transition range between -8 and +17, across our simulations. Our results suggest that the observed glacial-interglacial variability in atmospheric methane concentrations is predominantly driven by changes in methane sources as opposed to changes in OH, the primary methane sink. However, the magnitudes of change are subject to uncertainties in the past isoprene global burdens, as are estimates of the change in the global burden of secondary organic aerosol (SOA) relative to the preindustrial. We show that the linear relationship between tropospheric mean OH and tropospheric mean ozone photolysis rates, water vapor, and total emissions of NOx and reactive carbon first reported in Murray et al. (2014) does not hold across all periods with the new isoprene photochemistry mechanism. Our results demonstrate that inadequacies in our understanding of present-day OH and its controlling factors must be addressed in order to improve model estimates of the oxidative capacity of past and present atmospheres.
Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Lu, Xinghai; Xuan, Li
2009-09-28
A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors (DLCWFCs) for atmospheric turbulence correction is reported. A simple formula which describes the relationship between pixel number, DLCWFC aperture, quantization level, and atmospheric coherence length was derived based on the calculated atmospheric turbulence wavefronts using Kolmogorov atmospheric turbulence theory. It was found that the pixel number across the DLCWFC aperture is a linear function of the telescope aperture and the quantization level, and it is an exponential function of the atmosphere coherence length. These results are useful for people using DLCWFCs in atmospheric turbulence correction for large-aperture telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
In the present study, CO{sub 2} enrichment has been applied to sweet potatoes and cowpeas in order to investigate its effect on their growth, physiology, and yield under field condition. Objectives were: (1) to establish at Tuskegee Institute the facilities for growing crops in the field under enriched CO{sub 2} atmospheric conditions; (2) to obtain field data on the morphological, physiological, biochemical, growth and yield responses of sweet potatoes and cowpeas to elevated levels of CO{sub 2}; (3) to determine the effects of elevated CO{sub 2} in the rate of nitrogen fixation of cowpeas; (4) to provide data for amore » generalized crop growth model for predicting yield of both sweet potatoes and cowpeas as a function of atmospheric CO{sub 2} enrichment.« less
NASA Technical Reports Server (NTRS)
Wang, J.-T.; Gates, W. L.; Kim, J.-W.
1984-01-01
A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.
Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets
NASA Astrophysics Data System (ADS)
Zhang, Xi; Showman, Adam P.
2017-02-01
Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, ranging from low molecular mass atmospheres of H2 to higher molecular atmospheres of water, CO2, N2, or other species. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized 3D general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve, and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower, and the “jet core” region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher molecular weight atmosphere. We also present analytical theories that quantitatively explain the above trends and shed light on the underlying dynamical mechanisms. Those trends might be used to indirectly determine the atmospheric compositions on tidally locked sub-Jupiter-sized planets. The effects of the molar heat capacity are generally small. But if the vertical temperature profile is close to adiabatic, molar heat capacity will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.
Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.
Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev
2017-07-12
Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.
Dispersion of aerosol particles in the atmosphere: Fukushima
NASA Astrophysics Data System (ADS)
Haszpra, Tímea; Lagzi, István; Tél, Tamás
2013-04-01
Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.
Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)
NASA Astrophysics Data System (ADS)
Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.
2015-06-01
The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.
Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)
NASA Technical Reports Server (NTRS)
Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.
2014-01-01
The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.
Detection and monitoring of pollutant sources with Lidar/Dial techniques
NASA Astrophysics Data System (ADS)
Gaudio, P.; Gelfusa, M.; Malizia, A.; Parracino, S.; Richetta, M.; De Leo, L.; Perrimezzi, C.; Bellecci, C.
2015-11-01
It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas. The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules. The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign.
Progress on Passive Sensor for Ultra-Precise Measurement of Carbon Dioxide from Space
NASA Technical Reports Server (NTRS)
Heaps, William S.; Kawa, S. Randolph
2002-01-01
Global measurements of atmospheric carbon dioxides (CO2) are needed to resolve significant discrepancies that exist in our understanding of the global carbon budget and, therefore, man's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision c .3%) No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise required to measure column CO2 at the target specification. We are presently engaged in the construction of a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. In the first 6 months we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also undertaking some measurements of signal and noise levels for actual sunlight reflecting from the ground. We shall present results from some of these ground based studies and discuss their implications for a space based system.
Sulfur Chemistry in the Early and Present Atmosphere of Mars
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Summers, M. E.
2011-01-01
Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.
NASA Astrophysics Data System (ADS)
Trudinger, Cathy; Etheridge, David; Sturges, William; Vollmer, Martin; Miller, Benjamin; Worton, David; Rigby, Matt; Krummel, Paul; Martinerie, Patricia; Witrant, Emmanuel; Rayner, Peter; Battle, Mark; Blunier, Thomas; Fraser, Paul; Laube, Johannes; Mani, Frances; Mühle, Jens; O'Doherty, Simon; Schwander, Jakob; Steele, Paul
2015-04-01
Perfluorocarbons are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production, electronic chip manufacture and refrigeration. Mühle et al. (2010) presented records of the concentration and inferred emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from the 1970s up to 2008, using measurements from the Cape Grim Air Archive and a suite of tanks with old Northern Hemisphere air, and the AGAGE in situ network. Mühle et al. (2010) also estimated pre-industrial concentrations of these compounds from a small number of polar firn and ice core samples. Here we present measurements of air from polar firn at four sites (DSSW20K, EDML, NEEM and South Pole) and from air bubbles trapped in ice at two sites (DE08 and DE08-2), along with recent atmospheric measurements to give a continuous record of concentration from preindustrial levels up to the present. We estimate global emissions (with uncertainties) consistent with the concentration records. The uncertainty analysis takes into account uncertainties in characterisation of the age of air in firn and ice by the use of two different (independently-calibrated) firn models (the CSIRO and LGGE-GIPSA firn models). References Mühle, J., A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L. P. Steele, C.M. Trudinger, P.B. Krummel, S. O'Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.
Climate: Is the past the key to the future?
NASA Astrophysics Data System (ADS)
Hay, W. W.; DeConto, R. M.; Wold, C. N.
The climate of the Holocene is not well suited to be the baseline for the climate of the planet. It is an interglacial, a state typical of only 10% of the past few million years. It is a time of relative sea-level stability after a rapid 130-m rise from the lowstand during the last glacial maximum. Physical geologic processes are operating at unusual rates and much of the geochemical system is not in a steady state. During most of the Phanerozoic there have been no continental ice sheets on the earth, and the planet's meridional temperature gradient has been much less than it is presently. Major factors influencing climate are insolation, greenhouse gases, paleogeography, and vegetation; the first two are discussed in this paper. Changes in the earth's orbital parameters affect the amount of radiation received from the sun at different latitudes over the course of the year. During the last climate cycle, the waxing and waning of the northern hemisphere continental ice sheets closely followed the changes in summer insolation at the latitude of the northern hemisphere polar circle. The overall intensity of insolation in the northern hemisphere is governed by the precession of the earth's axis of rotation, and the precession and ellipticity of the earth's orbit. At the polar circle a meridional minimum of summer insolation becomes alternately more and less pronounced as the obliquity of the earth's axis of rotation changes. Feedback processes amplify the insolation signal. Greenhouse gases (H2O, CO2, CH4, CFCs) modulate the insolation-driven climate. The atmospheric content of CO2 during the last glacial maximum was approximately 30% less than during the present interglacial. A variety of possible causes for this change have been postulated. The present burning of fossil fuels, deforestation, and cement manufacture since the beginning of the industrial revolution have added CO2 to the atmosphere when its content due to glacial-interglacial variation was already at a maximum. Anthropogenic activity has increased the CO2 content of the atmosphere to 130% of its previous Holocene level, probably higher than at any time during the past few million years. During the Late Cretaceous the atmospheric CO2 content was probably about four times that of the present, the level to which it may rise at the end of the next century. The results of a Campanian (80 Ma) climate simulation suggest that the positive feedback between CO2 and another important greenhouse gas, H2O, raised the earth's temperature to a level where latent heat transport became much more significant than it is presently, and operated efficiently at all latitudes. Atmospheric high- and low-pressure systems were as much the result of variations in the vapor content of the air as of temperature differences. In our present state of knowledge, future climate change is unpredictable because by adding CO2 to the atmosphere we are forcing the climate toward a ``greenhouse'' mode when it is accustomed to moving between the glacial-interglacial ``icehouse'' states that reflect the waxing and waning of ice sheets. At the same time we are replacing freely transpiring C3 plants with water-conserving C4 plants, producing a global vegetation complex that has no past analog. The past climates of the earth cannot be used as a direct guide to what may occur in the future. To understand what may happen in the future we must learn about the first principles of physics and chemistry related to the earth's system. The fundamental mechanisms of the climate system are best explored in simulations of the earth's ancient extreme climates.
NASA Astrophysics Data System (ADS)
Taylan, Osman
2017-02-01
High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.
NASA Astrophysics Data System (ADS)
Hajdas, Irka
2017-04-01
Radiocarbon (14C) is a naturally produced radioactive isotope of carbon (T1/2=5700 yrs), which is continuously produced in the atmosphere. This occur in a reaction of thermal neutrons, which are secondary particles, products of cosmic rays reactions with the atmosphere, with nitrogen that is commonly present in the atmosphere. Until the mid 19th century the natural concentration showed temporal variability around the mean value (14C / 12C ratio =1.8 x 10-12). However anthropogenic activity created 2 types effects that are changing the 14C concentration of the atmosphere. Industrial revolution triggered adding 14C free (old) carbon that originates from the burning of fossil fuels (Suess effect). This in the late 19th century and early 20th century atmosphere was becoming older. The nuclear tests in the 1950ties caused additional production of radiocarbon atoms (artificial). The effect has been almost double of the natural production and created an excess 14C activity in the atmosphere and in terrestrial carbon bearing materials. The bomb produced 14C has been identified soon after the tests started but the peak (ca. 100% above the normal levels) reached its maximum in 1963 in the northern Hemisphere where most of the tests took place. In the southern Hemisphere the bomb peak reached lower values (ca. 80 % of normal level) and was delayed by ca. 2 years. After the ban on nuclear tests the atmospheric 14C content began to decrease mainly due to the uptake by the ocean but also due to the above mentioned addition old carbon. Continuous monitoring of the atmospheric 14C ratio during the years that followed the nuclear tests, provide basis for environmental studies. Applications range from studies of ocean circulation, CO2 uptake, carbon storage in soils and peat, root turn over time to the medical, forensic and detection of forgeries. However, the so called ' 14C bomb peak' nearly disappeared due to the combined effect of ocean uptake of CO2 and an input to the atmosphere of the '14C-free' carbon dioxide. This paper will discuss effects that the ongoing change in atmospheric 14C has on geochronologies of the most recent deposits and future anthropogenic records.
Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life
NASA Astrophysics Data System (ADS)
Sholes, Steven F.; Smith, Megan L.; Claire, Mark W.; Zahnle, Kevin J.; Catling, David C.
2017-07-01
Mars today has no active volcanism and its atmosphere is oxidizing, dominated by the photochemistry of CO2 and H2O. Mars experienced widespread volcanism in the past and volcanic emissions should have included reducing gases, such as H2 and CO, as well as sulfur-bearing gases. Using a one-dimensional photochemical model, we consider whether plausible volcanic gas fluxes could have switched the redox-state of the past martian atmosphere to reducing conditions. In our model, the total quantity and proportions of volcanic gases depend on the water content, outgassing pressure, and oxygen fugacity of the source melt. We find that, with reasonable melt parameters, the past martian atmosphere (∼3.5 Gyr to present) could have easily reached reducing and anoxic conditions with modest levels of volcanism, >0.14 km3 yr-1, which are well within the range of estimates from thermal evolution models or photogeological studies. Counter-intuitively we also find that more reducing melts with lower oxygen fugacity require greater amounts of volcanism to switch a paleo-atmosphere from oxidizing to reducing. The reason is that sulfur is more stable in such melts and lower absolute fluxes of sulfur-bearing gases more than compensate for increases in the proportions of H2 and CO. These results imply that ancient Mars should have experienced periods with anoxic and reducing atmospheres even through the mid-Amazonian whenever volcanic outgassing was sustained at sufficient levels. Reducing anoxic conditions are potentially conducive to the synthesis of prebiotic organic compounds, such as amino acids, and are therefore relevant to the possibility of life on Mars. Also, anoxic reducing conditions should have influenced the type of minerals that were formed on the surface or deposited from the atmosphere. We suggest looking for elemental polysulfur (S8) as a signature of past reducing atmospheres. Finally, our models allow us to estimate the amount of volcanically sourced atmospheric sulfate deposited over Mars' history, approximately ∼106-109 Tmol, with a spread depending on assumed outgassing rate history and magmatic source conditions.
The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling.
Easlon, Hsien Ming; Bloom, Arnold J
2013-01-01
Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot-root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source-sink interactions.
The Solar-Terrestrial Environment
NASA Astrophysics Data System (ADS)
Hargreaves, John Keith
1995-05-01
The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.
The effects of climate change on storm surges around the United Kingdom.
Lowe, J A; Gregory, J M
2005-06-15
Coastal flooding is often caused by extreme events, such as storm surges. In this study, improved physical models have been used to simulate the climate system and storm surges, and to predict the effect of increased atmospheric concentrations of greenhouse gases on the surges. In agreement with previous studies, this work indicates that the changes in atmospheric storminess and the higher time-average sea-level predicted for the end of the twenty-first century will lead to changes in the height of water levels measured relative to the present day tide. However, the details of these projections differ somewhat from earlier assessments. Uncertainty in projections of future extreme water levels arise from uncertainty in the amount and timing of future greenhouse gas emissions, uncertainty in the physical models used to simulate the climate system and from the natural variability of the system. The total uncertainty has not yet been reliably quantified and achieving this should be a priority for future research.
NASA Technical Reports Server (NTRS)
Singh, H. B.; Herlth, D.; O'Hara, D.; Salas, L.; Torres, A. L.; Gregory, G. L.; Sachse, G. W.
1990-01-01
An analysis is presented on the distribution and variability of PAN as well as its relationship with measured chemical and meteorological parameters. The chemicals of most interest for which measurements were available are PAN, NO(x), O3, CO, and C2Cl4. PAN was measured by the electron capture gas chromatographic technique, and the technique for calibrations and measurements are detailed. Data show that significant concentrations of PAN (5-125 ppt) are present during the wet season and this PAN is 1-5 times more abundant than NO(x). PAN levels at different atmospheric locations are discussed, and it is noted that PAN shows evidence of a possible latitudinal gradient in the free troposphere, with values falling rapidly from the northern midlatitudes toward the equator. High correlations between O3 and PAN levels suggest that nonmethane hydrocarbons may contribute significantly to high O3 in the free troposphere. Evidence indicates that virtually all of the NO(x) above 4 km could result from PAN decomposition.
Transport of extraterrestrial biomolecules to the Earth: problem of thermal stability.
Basiuk, V A; Douda, J; Navarro-Gonzalez, R
1999-01-01
The idea of extraterrestrial delivery of organic matter to the early Earth is especially attractive at present and is strongly supported by the detection of a large variety of organic compounds, including amino acids and nucleobases, in carbonaceous chondrites. Whether these compounds can be delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. In the present study we estimated survivability of simple amino acids (alpha-aminoisobutyric acid, L-alanine, L-valine and L-leucine), purines (adenine and guanine) and pyrimidines (uracil and cytosine) under rapid heating to temperatures of 400 to 1000 degrees C under N2 or CO2 atmosphere. We have found that most of the compounds studied cannot survive the temperatures substantially higher than 700 degrees C; however at 500-600 degrees C, the recovery can be at a per cent level (or even 10%-level for adenine, uracil, alanine, and valine). Implications of the data for extraterrestrial delivery of the biomolecules are discussed.
Biomonitoring of air pollution as exemplified by recent IAEA programs.
Smodis, B; Parr, R M
1999-01-01
Biomonitoring is an appropriate tool for assessing the levels of atmospheric pollution, having several advantages compared with the use of direct measurements of contaminants (e.g., in airborne particulate matter, atmospheric deposition, precipitation), related primarily to the permanent and common occurrence of the chosen organisms in the field, the ease of sampling, and trace element accumulation. Furthermore, biomonitors may provide a measure of integrated exposure over an extended period of time and are present in remote areas and no expensive technical equipment is involved in collecting them. They accumulate contaminants over the exposure time and concentrate them, thus facilitating analytical measurements. Based on large-scale biomonitoring surveys, polluted areas can be identified, and by applying appropriate statistical tools, information can be obtained on the type of pollution sources and on the transboundary transport of atmospheric pollutants. The International Atomic Energy Agency is including the research on biomonitors in its projects on health-related environmental studies. Biomonitoring activities from several coordinated research projects on air pollution are presented, and results from an international workshop are discussed. In addition, activities in supporting improvement quality in the participating laboratories are outlined.
Cooke, K M; Simmonds TPG; Nickless, G; Makepeace, A P
2001-09-01
A sensitive and selective technique for the quantitative measurement of atmospheric perfluorocarbon trace species at the sub part per quadrillion (10(-15)) levels is presented. The method utilizes advances in adsorbent enrichment techniques coupled with benchtop capillary gas chromatography and negative ion-chemical ionization mass spectrometry. The development and enhancement of sampling technology for tracer experiments is described, and the results from background measurements and a preliminary field experiment are presented. The overall precision of the analytical method with respect to the preferred tracer for these atmospheric transport studies, perfluoromethylcyclohexane, was +/-1.7%. The background concentrations of perfluorodimethylcyclobutane, perfluoromethylcyclopentane, and perfluoromethylcyclohexane at a remote coastal location (Mace Head, Ireland, 53 degrees N, 10 degrees W) were found to be 2.5 (+/-0.4), 6.8 (+/-1.0), and 5.2 fL L(-1) (+/-1.3), respectively. Background concentrations within an urban conurbation (Bristol, U.K.) were slightly greater at 3.0 (+/-1.5), 8.1 (+/-1.8), and 6.3 fL L(-1) (+/-1.1), respectively.
Geo-Engineering Climate Change with Sulfate Aerosol
NASA Astrophysics Data System (ADS)
Rasch, P. J.; Crutzen, P. J.
2006-12-01
We explore the impact of injecting a precursor of sulfate aerosols into the middle atmosphere where they would act to increase the planetary albedo and thus counter some of the effects of greenhouse gase forcing. We use an atmospheric general circulation model (CAM, the Community Atmosphere Model) coupled to a slab ocean model for this study. Only physical effects are examined, that is we ignore the biogeochemical and chemical implications of changes to greenhouse gases and aerosols, and do not explore the important ethical, legal, and moral issues that are associated with deliberate geo-engineering efforts. The simulations suggest that the sulfate aerosol produced from the SO2 source in the stratosphere is sufficient to counterbalance most of the warming associated with the greenhouse gas forcing. Surface temperatures return to within a few tenths of a degree(K) of present day levels. Sea ice and precipitation distributions are also much closer to their present day values. The polar region surface temperatures remain 1-3 degrees warm in the winter hemisphere than present day values. This study is very preliminary. Only a subset of the relevant effects have been explored. The effect of such an injection of aerosols on middle atmospheric chemistry, and the effect on cirrus clouds are obvious missing components that merit scrutiny. There are probably others that should be considered. The injection of such aerosols cannot help in ameliorating the effects of CO2 changes on ocean PH, or other effects on the biogeochemistry of the earth system.
NASA Technical Reports Server (NTRS)
Johansson, Sveneric; Carpenter, Kenneth G.
1988-01-01
Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Amzajerdian, Farzin; Ismail, Syed; Emmitt, David
2005-01-01
2-micron lidar technology has been in use and under continued improvement for many years toward wind measurements. But the 2-micron wavelength region is also rich in absorption lines of CO2 (and H2O to a lesser extent) that can be exploited with the differential absorption lidar (DIAL) technique to make species concentration measurements. A coherent detection receiver offers the possibility of making combined wind and DIAL measurements with wind derived from frequency shift of the backscatter spectrum and species concentration derived from power of the backscatter spectrum. A combined wind and CO2 measurement capability is of interest for applications on both Earth and Mars. CO2 measurements in the Earth atmosphere are of importance to studies of the global carbon cycle. Data on vertically-resolved CO2 profiles over large geographical observations areas are of particular interest that could potentially be made by deploying a lidar on an aircraft or satellite. By combining CO2 concentration with wind measurements an even more useful data product could be obtained in the calculation of CO2 flux. A challenge to lidar in this application is that CO2 concentration measurements must be made with a high level of precision and accuracy to better than 1%. The Martian atmosphere also presents wind and CO2 measurement problems that could be met with a combined DIAL/Doppler lidar. CO2 concentration in this scenario would be used to calculate atmospheric density since the Martian atmosphere is composed of 95% CO2. The lack of measurements of Mars atmospheric density in the 30-60 km range, dust storm formation and movements, and horizontal wind patterns in the 0-20 km range pose significant risks to aerocapture, and entry, descent, and landing of future robotic and human Mars missions. Systematic measurement of the Mars atmospheric density and winds will be required over several Mars years, supplemented with day-of-entry operational measurements. To date, there have been 5 successful robotic landings on Mars. Atmospheric density and wind reconstruction has been performed for 3 of these entries (the two Viking landers and Mars Pathfinder). At present, all Mars atmospheric density and wind models have these 3 entries (at widely scattered positions and seasons) as their basis, supplemented by coarse orbital measurements of atmospheric opacity and temperature. This lack of data leads to a large uncertainty in prediction of the Mars atmospheric density and winds in the altitude regime where deceleration of landers will occur. This uncertainty will have a dramatically large impact on mass, cost and risk. The precision and accuracy for application to Mars is not as stringent as Earth, but Mars does pose a challenge in needing a high level of wavelength stability and control in order to reference wavelength to the narrow linewidths found in the low atmospheric pressure of Mars, as illustrated in Figure 1.
Xiao, Xiao; Hu, Jianfang; Chen, Pei; Chen, Deyi; Huang, Weilin; Peng, Ping'an; Ren, Man
2014-03-01
The present study investigated the impact of typical electronic waste (e-waste) dismantling activities on the distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the adjacent atmospheric environment. The target areas included the town of Longtang, a well known e-waste recycling site, and 2 affected neighborhoods, all of which were within the city of Qingyuan,Guangdong Province, China. Air samples were collected from the 3 locations and analyzed following the standard methods. The results showed that the atmospheric PCDD/F level in Longtang was 159.41 pg m(-3), which was approximately 16 to 17 times higher than its neighborhoods and 2 to 4 orders of magnitude higher than baseline levels reported for urban cities of the world. The homologue profiles were quite different from the typical urban air patterns, as de novo synthesis was likely to be the dominant formation pathway of the detected PCDD/Fs. The seasonal variations were minor, and the concentration change of PCDD/Fs between day and night did not follow a clear pattern. Given the unique atmospheric PCDD/F concentrations, similar homologue profiles, and the elemental carbon/organic carbon relationships of the 3 sampling sites, the relatively high dioxin levels in its 2 neighborhoods were most likely the result of the primitive e-waste dismantling activities undertaken in the town of Longtang. A simple risk assessment also showed that the residents of Qingyuan were at high risk of exposure to PCDD/Fs.
LAGO: The Latin American giant observatory
NASA Astrophysics Data System (ADS)
Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration
2017-12-01
The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.
NASA Astrophysics Data System (ADS)
Lee, Bing-Sun; Chiou, Chung-Biau; Lin, Chung-Yi
2014-12-01
Hourly atmospheric measurements of halocarbons and chlorofluorocarbon (CFC) replacements were conducted at an urban site of Lukang, Changhua, in central Taiwan from May to August, 2013. The temporal distribution of different groups of halocarbons in the Lukang urban atmosphere, including chlorofluorocarbons (CFCs), Chlorodifluoromethane (HCFC-22), Bromochlorodifluoromethane (Halon-1211), and other chlorinated compounds, is presented and discussed. The concentrations (mixing ratios) of HCFC-22, Dichlorodifluoromethane (CFC-12), Halon-1211, Trichlorofluoromethane (CFC-11), Dichloromethane (CH2Cl2), and Trichloroethylene (TCE) were enhanced with respect to the local background levels; the atmospheric mixing ratio of carbon tetrachloride (CCl4) was slightly higher than its local background level; on the other hand, 1,1,2-Trichlorotrifluoroethane (CFC-113) was relatively uniform and not very different from background atmospheric level in non-urban areas. Among these compounds, HCFC-22, Halon-1211 and the halogenated compounds, CH2Cl2 and TCE, used as solvents were strongly enhanced. The average mixing ratio of Halon-1211 was higher than the local background of ∼4.5 ppt by ∼60% although Halon-1211 production had been phased out by 1996. Hourly average mixing ratios of halocarbons (HCFC-22, CFC-12, Halon-1211, CFC-11, CH2Cl2, and TCE) illustrated a distinct diurnal cycle characterized with a pattern of elevated mixing ratio and large mixing ratio variability amplitude at night relative to that in daytime. Although emission sources of these halocarbons were complex, hourly average mixing ratios for most of these high variability halocarbons peaked at ∼5:00 AM when the hourly average wind speed reached the minimum value of the day; by contrast, the hourly average mixing ratio of CO peaked at ∼8:30 AM when the ambient atmospheric wind condition was strongly influenced by sea breezes during the traffic rush hours. This phenomenon revealed that meteorological factors predominated the distribution of halocarbon mixing ratio in the urban atmosphere and the traffic emission of CFC-12 derived from old vehicles manufactured before 1994 was insignificant to the CFC-12 mixing ratio in the urban atmosphere. The meteorological condition of nighttime atmospheric temperature inversion and low wind speed facilitated the accumulation of terrestrial airborne pollutants near the ground; consequently the hourly average mixing ratios at night were higher than those in daytime by up to ∼2% (CFC-11), ∼7% (CFC-12), ∼75% (HCFC-22), ∼72% (Halon-1211), ∼280% (CH2Cl2), and ∼155% (TCE).
Source of atmospheric heavy metals in winter in Foshan, China.
Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen
2014-09-15
Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most important source of atmospheric heavy metals. The present paper suggests a control policy on the four heavy metals Cd, Pb, Zn, and Cu, and suggests the inclusion of As in the ceramic industry emission standard in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Papers Presented to the Workshop on the Evolution of the Martian Atmosphere
NASA Technical Reports Server (NTRS)
1992-01-01
This volume contains papers that have been accepted for the Workshop on the Evolution of the Martian Atmosphere. The abstracts presented in the paper cover such topics as: modeling of the mars atmosphere from early development to present including specific conditions affecting development; studies of various atmospheric gases such as O2, SO2, CO2, NH3, and nitrogen; meteorite impacts and their effects on the atmosphere; and water inventories and cycles.
NASA Astrophysics Data System (ADS)
Hedelius, Jacob K.; Viatte, Camille; Wunch, Debra; Roehl, Coleen M.; Toon, Geoffrey C.; Chen, Jia; Jones, Taylor; Wofsy, Steven C.; Franklin, Jonathan E.; Parker, Harrison; Dubey, Manvendra K.; Wennberg, Paul O.
2016-08-01
Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON). However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO
Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.
2014-01-01
Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.
A Lab Based Method for Exoplanet Cloud and Aerosol Characterization
NASA Astrophysics Data System (ADS)
Johnson, A. V.; Schneiderman, T. M.; Bauer, A. J. R.; Cziczo, D. J.
2017-12-01
The atmospheres of some smaller, cooler exoplanets, like GJ 1214b, lack strong spectral features. This may suggest the presence of a high, optically thick cloud layer and poses great challenges for atmospheric characterization, but there is hope. The study of extraterrestrial atmospheres with terrestrial based techniques has proven useful for understanding the cloud-laden atmospheres of our solar system. Here we build on this by leveraging laboratory-based, terrestrial cloud particle instrumentation to better understand the microphysical and radiative properties of proposed exoplanet cloud and aerosol particles. The work to be presented focuses on the scattering properties of single particles, that may be representative of those suspended in exoplanet atmospheres, levitated in an Electrodynamic Balance (EDB). I will discuss how we leverage terrestrial based cloud microphysics for exoplanet applications, the instruments for single and ensemble particle studies used in this work, our investigation of ammonium nitrate (NH4NO3) scattering across temperature dependent crystalline phase changes, and the steps we are taking toward the collection of scattering phase functions and polarization of scattered light for exoplanet cloud analogs. Through this and future studies we hope to better understand how upper level cloud and/or aerosol particles in exoplanet atmospheres interact with incoming radiation from their host stars and what atmospheric information may still be obtainable through remote observations when no spectral features are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, G.; Abarbanel, H.; Carruthers, P.
If the current growth rate in the use of fossil fuels continues at 4.3% per year, then the CO/sub 2/ concentration in the atmosphere can be expected to double by about 2035 provided the current partition of CO/sub 2/ between the atmosphere, biosphere, and oceans is maintained as is the current mix of fuels. Slower rates of anticipated growth of energy use lead to a doubling of the carbon content of the atmosphere sometime in the period 2040 to 2060. This report addresses the questions of the sources of atmospheric CO/sub 2/; considers distribution of the present CO/sub 2/ amongmore » the atmospheric, oceanic, and biospheric reservoir; and assesses the impact on climate as reflected by the average ground temperature at each latitude of significant increases in atmospheric CO/sub 2/. An analytic model of the atmosphere was constructed (JASON Climate Model). Calculation with this zonally averaged model shows an increase of average surface temperature of 2.4/sup 0/ for a doubling of CO/sub 2/. The equatorial temperature increases by 0.7/sup 0/K, while the poles warm up by 10 to 12/sup 0/K. The warming of climate will not necessarily lead to improved living conditions everywhere. Changes in sea level, in agricultural productivity, and in water availability can be anticipated, but the dimensions of their economic, political, or social consequences can not.« less
NASA Astrophysics Data System (ADS)
Goldman, S. D.; Kasting, J. F.
2005-12-01
The presence of mass-independent fractionation (MIF) of sulfur isotopes in Archean sedimentary provides evidence for a low-O2 atmosphere prior to 2.4 Ga (1). Recent data hints at the possibility that S-MIF vanished transiently some time between 3.4 and 2.7 Ga (2). The absence of S-MIF after 2.4 Ga is commonly attributed to the rise of O2 in the atmosphere, since the presence of free O2 would have oxidized all sulfur before removal from the atmosphere, thereby erasing any MIF that had existed between reservoirs (3). However, if free O2 did not appear in the atmosphere until 2.4 Ga, then why did S-MIF disappear for hundreds of millions of year prior to 2.7 Ga? Could S-MIF have been eliminated from the rock record without the presence of free O2 in the atmosphere? Two different mechanisms will be discussed. The first possibility is that H2 levels decreased sufficiently to oxidize all MIF, but were still high enough to prevent free O2 from building up to appreciable levels in the atmosphere. Stabilization of H2 at these intermediate levels could have been triggered by a number of mechanisms controlling the H2 budget, the most promising of which is changes in the biogeochemical processing of sulfur itself (4). Before the advent of bacterial sulfate reduction (BSR), seawater sulfate would have reacted with Fe in basalts, removing sulfur from the surface in oxidized form. As removing sulfur from the surface as sulfate requires oxidation of SO2, this implies that H2 must have been generated by the geochemical S cycle. After the advent of BSR sulfur would be buried in reduced form as pyrite. Burial of sulfur as pyrite would require reduction of SO2, thus the biogeochemical S cycle would have consumed H2. This change in S cycling likely would have impacted the H2 budget more than any other change in element cycling, other than direct changes in the H2 fluxes into and out of the system. The second possibility is that the atmosphere was reduced with respect to the sulfur system and all sulfur was removed from the atmosphere in reduced form, which would have prevented the sulfur from being deposited in separate reservoirs that could have preserved the S-MIF signal. This can be explained by recent calculations that suggest that H escape from the top of the atmosphere was diffusion limited, and therefore much slower than previously believed (5). As long as methanogens were not present to draw H2 levels down, H2 could have grown been a major component of Earth's early atmosphere. We are currently testing these hypotheses by running 1-D photochemical models of the Archean atmosphere over a wide range of H2 concentrations to see which H2 boundary conditions can cause the elimination of S-MIF of sulfur isotopes. If these boundary conditions can be explained by phenomena that could have been contemporaneous to the cessation of S-MIF, then the absence of S-MIF does not necessarily imply the presence of free O2 in the atmosphere. 1. Farquhar, J., Bao, H., and Thiemans, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756-758 (2000). 2 Y. Watanabe and H. Ohmoto, Early Earth Symposium. Tokyo, May, 2005. 3. Holland, H.D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811-3826 (2002). 4. Pavlov, A.A. and Kasting, J.F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27-41 (2002). 5. Tian, F., Toon, O.B., Pavlov, A.A., and De Sterck, H. A hydrogen rich early Earth atmosphere. Science 308, 1014-1017 (2005).
Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.
Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.
Bennett, Burton G
2002-05-01
Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.
Sulfur during the Transition from Anoxic to Oxic Atmospheres
NASA Technical Reports Server (NTRS)
Zahnle, Kevin; Catling, David; Claire, Mark
2006-01-01
The invention of oxygenic photosynthesis was likely accompanied by the introduction of large amounts of O2 and complementary reduced gases (chiefly CH4) into the atmosphere. To first approximation the venting of O2 and CH4 are stochiometrically linked. We therefore present a suite of numerical photochemical models that address the anoxic-oxic transition in an atmosphere driven by large linked inputs of biogenic 02 and CH4. We find in general that, in steady state, there are two solutions, one oxic and the other anoxic. The anoxic solution appears to be linearly stable. If volcanic SO2 fluxes are large, S disproportionates into oxidized (H2S04) and reduced (S8) exit channels. As elemental sulfur is insoluble it provides a means of preserving photochemical mass-independent fractionation (MIF). On the other hand, if the source of volcanic SO2 is smaller than today, all S can leave the atmosphere as S8. Under these conditions there would be no MIF signal. The oxic solution appears to be linearly unstable. In the oxic solutions S is invariably oxidized to sulfate, and the MIF signal would be absent. The transitional atmosphere is relatively unstable and is also the most photochemically active. Consequently it is the transitional atmosphere, not the oxic or anoxic atmospheres, that has the lowest CH4 levels and weakest greenhouse warming. As a practical matter we expect the transitional atmospheres to vary strongly in response to diurnal and seasonal biological forcing.
The possible evolution and future of CO2-concentrating mechanisms.
Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia
2017-06-01
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Measurement of high altitude air quality using aircraft
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Perkins, P. J.
1973-01-01
The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.
Measurement of high-altitude air quality using aircraft.
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Perkins, P. J.
1973-01-01
The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.
Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs
Wetherbee, Gregory A.; Lehmann, Christopher M.B.
2008-01-01
The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.
Influence of land-surface evapotranspiration on the earth's climate
NASA Technical Reports Server (NTRS)
Shukla, J.; Mintz, Y.
1982-01-01
Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.
Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma
NASA Astrophysics Data System (ADS)
Yeung, Laurence Y.
2017-12-01
The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso-Proterozoic, followed by extensive degassing in the late Neoproterozoic or early Cambrian, before returning to a relatively quiescent state by the Devonian. This two-step structure resembles that for the evolution of atmospheric O2, hinting at a common driving force from the deep Earth. Some caution is warranted, however, because still more enigmatic contaminations than the ones presented here may be relevant. Gases trapped in minerals may offer important constraints on the evolution of Earth's surface, climate, and atmosphere, but potential contaminations and other confounding factors need to be considered carefully before these records can be considered quantitative.
The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992
NASA Technical Reports Server (NTRS)
Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)
1994-01-01
The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.
An expert system shell for inferring vegetation characteristics: Atmospheric techniques (Task G)
NASA Technical Reports Server (NTRS)
Harrison, P. Ann; Harrison, Patrick R.
1993-01-01
The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG Subgoals have been reorganized into categories. A new subgoal category 'Atmospheric Techniques' containing two new subgoals has been implemented. The subgoal Atmospheric Passes allows the scientist to take reflectance data measured at ground level and predict what the reflectance values would be if the data were measured at a different atmospheric height. The subgoal Atmospheric Corrections allows atmospheric corrections to be made to data collected from an aircraft or by a satellite to determine what the equivalent reflectance values would be if the data were measured at ground level. The report describes the implementation and testing of the basic framework and interface for the Atmospheric Techniques Subgoals.
Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmonds, J.A.; Reilly, J.; Trabalka, J.R.
1984-09-01
This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructedmore » using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.« less
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Ortega, John; Huang, Yuanlong; Shertz, Stephen; Tyndall, Geoffrey S.; Orlando, John J.
2018-05-01
Experiments performed in laboratory chambers have contributed significantly to the understanding of the fundamental kinetics and mechanisms of the chemical reactions occurring in the atmosphere. Two chemical regimes, classified as high-NO
vs. zero-NO
conditions, have been extensively studied in previous chamber experiments. Results derived from these two chemical scenarios are widely parameterized in chemical transport models to represent key atmospheric processes in urban and pristine environments. As the anthropogenic NOx emissions in the United States have decreased remarkably in the past few decades, the classic high-NO
and zero-NO
conditions are no longer applicable to many regions that are constantly impacted by both polluted and background air masses. We present here the development and characterization of the NCAR Atmospheric Simulation Chamber, which is operated in steady-state continuous flow mode for the study of atmospheric chemistry under intermediate NO
conditions. This particular chemical regime is characterized by constant sub-ppb levels of NO and can be created in the chamber by precise control of the inflow NO concentration and the ratio of chamber mixing to residence timescales. Over the range of conditions achievable in the chamber, the lifetime of peroxy radicals (RO2), a key intermediate from the atmospheric degradation of volatile organic compounds (VOCs), can be extended to several minutes, and a diverse array of reaction pathways, including unimolecular pathways and bimolecular reactions with NO and HO2, can thus be explored. Characterization experiments under photolytic and dark conditions were performed and, in conjunction with model predictions, provide a basis for interpretation of prevailing atmospheric processes in environments with intertwined biogenic and anthropogenic activities. We demonstrate the proof of concept of the steady-state continuous flow chamber operation through measurements of major first-generation products, methacrolein (MACR) and methyl vinyl ketone (MVK), from OH- and NO3-initiated oxidation of isoprene.
Modeling Separate and Combined Atmospheres in BIO-Plex
NASA Technical Reports Server (NTRS)
Jones, Harry; Finn, Cory; Kwauk, Xianmin; Blackwell, Charles; Luna, Bernadette (Technical Monitor)
2000-01-01
We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. Incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing storage and control is needed if more food is grown.
NASA Astrophysics Data System (ADS)
He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang
2016-07-01
The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.
Modeling Separate and Combined Atmospheres in BIO-Plex
NASA Technical Reports Server (NTRS)
Jones, Harry; Finn, Cory; Kwauk, Xian-Min; Blackwell, Charles; Luna, Bernadette (Technical Monitor)
2000-01-01
We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing, storage, and control is needed if more food is grown.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong
2012-01-01
The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.
Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination.
Fogwill, C J; Turney, C S M; Golledge, N R; Etheridge, D M; Rubino, M; Thornton, D P; Baker, A; Woodward, J; Winter, K; van Ommen, T D; Moy, A D; Curran, M A J; Davies, S M; Weber, M E; Bird, M I; Munksgaard, N C; Menviel, L; Rootes, C M; Ellis, B; Millman, H; Vohra, J; Rivera, A; Cooper, A
2017-01-05
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved 'horizontal ice core' from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise.
Direct Monitoring of Trace Atmospheric Species via Ion Trap Mass Spectrometry
NASA Technical Reports Server (NTRS)
Palmer, P. T.; Pearson, Richard; Saimonson, Jay D.; Wong, Carla M.; Lawless, James G. (Technical Monitor)
1994-01-01
There is an ever-increasing emphasis on the part of government agencies, academia, and industry on enhancing our understanding of atmospheric processes and assessing the impact of human activities on these processes. While issues such as the ozone hole and rising levels of greenhouse gases have received major attention. relatively little is known about the types, concentrations, sources, and sinks of hydrocarbons in the troposphere and stratosphere. Such information would be of tremendous utility in assessing the roles of various anthropogenic and biogenic processes on global carbon cycles. An ion trap mass spectrometer has been developed for monitoring trace levels of hydrocarbons in the atmosphere on NASA's DC-8 "flying laboratory". This aircraft is used to provide measurements in support of a number of "Mission to Planet Earth" activities and tropospheric chemistry experiments. In past missions, specific compounds have been monitored via highly specialized instrumentation, fast GO, or collection of whole air samples for subsequent ground-based analysis. The ion trap has several features. including small size. excellent sensitivity, and broad applicability, which make it highly atttrat:ive for atmospheric monitoring. The design of this instrument, its air sampling interface. and the various complications associated with aircraft-deployment will be described. Data showing the sensitivity of the instrument for detecting hydrocarbons at mixing ratios below one part-per-billion, and the use of MS/MS for direct, on-line, real-time monitoring will be presented.
NASA Astrophysics Data System (ADS)
Garate-Lopez, Itziar; Lebonnois, Sébastien
2017-04-01
A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.
A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations
NASA Astrophysics Data System (ADS)
Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.
2016-12-01
Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field campaigns in California, and we will give an outlook for future development of the technique in California.
Ouidir, Marion; Lepeule, Johanna; Siroux, Valérie; Malherbe, Laure; Meleux, Frederik; Rivière, Emmanuel; Launay, Ludivine; Zaros, Cécile; Cheminat, Marie; Charles, Marie-Aline; Slama, Rémy
2017-10-01
Exposure to atmospheric pollutants is a danger for the health of pregnant mother and children. Our objective was to identify individual (socioeconomic and behavioural) and contextual factors associated with atmospheric pollution pregnancy exposure at the nationwide level. Among 14 921 women from the French nationwide ELFE (French Longitudinal Study of Children) mother-child cohort recruited in 2011, outdoor exposure levels of PM 2.5 , PM 10 (particulate matter <2.5 µm and <10 µm in diameter) and NO 2 (nitrogen dioxide) were estimated at the pregnancy home address from a dispersion model with 1 km resolution. We used classification and regression trees (CART) and linear regression to characterise the association of atmospheric pollutants with individual (maternal age, body mass index, parity, education level, relationship status, smoking status) and contextual (European Deprivation Index, urbanisation level) factors. Patterns of associations were globally similar across pollutants. For the CART approach, the highest tertile of exposure included mainly women not in a relationship living in urban and socially deprived areas, with lower education level. Linear regression models identified different determinants of atmospheric pollutants exposure according to the residential urbanisation level. In urban areas, atmospheric pollutants exposure increased with social deprivation, while in rural areas a U-shaped relationship was observed. We highlighted social inequalities in atmospheric pollutants exposure according to contextual characteristics such as urbanisation level and social deprivation and also according to individual characteristics such as education, being in a relationship and smoking status. In French urban areas, pregnant women from the most deprived neighbourhoods were those most exposed to health-threatening atmospheric pollutants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Middle Atmosphere Program. Handbook for MAP, volume 11
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1984-01-01
An overview is presented of the research activities and objectives of the middle atmosphere program (MAP). Status reports are presented of projects underway in the area of middle atmosphere climatology and atmospheric chemistry condensed minutes of MAP steering committee meetings are contained in this volume. Research recommendations for increased U.S. participation in the middle atmosphere program are given.
NASA Astrophysics Data System (ADS)
Li, Xiang; Chen, Minxuan; Le, Hoa Phuoc; Wang, Fengwen; Guo, Zhigang; Iinuma, Yoshiteru; Chen, Jianmin; Herrmann, Hartmut
2016-10-01
In an effort to more fully understand atmospheric outflow of PM2.5-associated saccharide species, we investigated primary saccharides (fructose, glucose, sucrose, and trehalose), saccharide alcohols (arabitol and mannitol), and anhydrosaccharides (levoglucosan and mannosan) in atmospheric aerosols at both a megacity site, Shanghai, and a sea background site, Huaniao Island. The results showed that the saccharide species presented pronounced temporal and spatial variability in the outflow from the megacity to the East China Sea, and varied widely with a total concentration range of 8.6-2400 ng m-3 (283 ng m-3 mean) in Shanghai and 0-1050 ng m-3 (51 ng m-3 mean) in Huaniao Island. Both saccharide species (e.g., levoglucosan and sucrose) showed higher concentrations and a noticeable seasonal gradient during the study period ― there was a high level of levoglucosan in the cold season (161 ng m-3 in winter and 229 ng m-3 in autumn) due to elevated biomass burning activities, and a high level of sucrose in the warm seasons (146 ng m-3 in summer and 145 ng m-3 in spring) due to elevated levels of intense biological aerosols including fungal spores and pollen. The calculated levoglucosan/mannosan (L/M) ratio, which may represent the signature of aerosol particles at the two sites, ranged from 5.2 to 10.9 during the cold season. Back-trajectory analysis results indicated that the saccharides originated from regional sources in East and North China before being transported to the sampling site. Emissions due to biomass burning were estimated to correspond to 46% (mass) of the saccharides quantified in the haze particle samples, whereas biogenic emissions corresponded to 18%, indicating that biomass burning was a considerable aerosol source to the regional atmosphere throughout the year. The results presented here support the theory that levoglucosan could be utilized as a molecular marker for East Asian biomass burning outflow, and sucrose as a molecular marker for airborne pollen grains. The results of this study may help future researchers clarify the aerosol sources, as well as their atmospheric transport pathways over East Asia to the western Pacific Ocean.
Bio-Medical Factors and External Hazards in Space Station Design
NASA Technical Reports Server (NTRS)
Olling, Edward H.
1966-01-01
The design of space-station configurations is influenced by many factors, Probably the most demanding and critical are the biomedical and external hazards requirements imposed to provide the proper environment and supporting facilities for the crew and the adequate protective measures necessary to provide a configuration in which the crew can live and work efficiently in relative comfort and safety. The major biomedical factors, such as physiology, psychology, nutrition, personal hygiene, waste management, and recreation, all impose their own peculiar requirements. The commonality and integration of these requirements demand the utmost ingenuity and inventiveness be exercised in order to achieve effective configuration compliance. The relationship of biomedical factors for the internal space-station environment will be explored with respect to internal atmospheric constituency, atmospheric pressure levels, oxygen positive pressure, temperature, humidity, CO2 concentration, and atmospheric contamination. The range of these various parameters and the recommended levels for design use will be analyzed. Requirements and criteria for specific problem areas such as zero and artificial gravity and crew private quarters will be reviewed and the impact on the design of representative solutions will be presented. In the areas of external hazards, the impact of factors such as meteoroids, radiation, vacuum, temperature extremes, and cycling on station design will be evaluated. Considerations with respect to operational effectiveness and crew safety will be discussed. The impact of such factors on spacecraft design to achieve acceptable launch and reentry g levels, crew rotation intervals, etc., will be reviewed. Examples of configurations, subsystems, and internal a arrangement and installations to comply with such biomedical factor requirements will ber presented. The effects of solutions to certain biomedical factors on configuration weight, operational convenience, and program costs will be compared.
Rios, José Luiz Magalhães; Boechat, José Laerte; Sant'Anna, Clemax Couto; França, Alfeu Tavares
2004-06-01
Air pollutants have been associated with the exacerbation of respiratory diseases. They may intensify the inflammatory allergic response and airways reactivity to inhaled allergens. However, it is still not clear if air pollution contributes to the increased prevalence of asthma. To investigate if different levels of air pollution exposure can be related to differences in the prevalence of asthma. The International Study of Asthma and Allergies in Childhood (ISAAC) protocol was used to determine and compare the prevalence of asthma among schoolchildren in 2 cities of the metropolitan region of Rio de Janeiro, Brazil, Duque de Caxias (DC) and Seropédica (SR), which have different levels of atmospheric pollution. The research involved 4,064 students aged 13 to 14 years from 49 schools in DC and 1,129 from 17 schools in SR. Air pollution was evaluated by the concentration of inhalable particulate matter (PM10). ISAAC's written questionnaire was answered by 4,040 students aged 13 to 14 years in DC and 1,080 in SR. Between 1998 and 2000, the PM10 annual arithmetic mean was 124 microg/m3 in DC and 35 microg/m3 in SR (acceptable level is up to 50 microg/m3). The prevalence of wheezing ever was 35.1% in DC and 29.9% in SR (P = .001), and the prevalence of wheezing in the last 12 months was 19.0% in DC and 15.0% in SR (P = .002). In DC, 14.5% of the adolescents presented 1 to 3 crises of wheezing in the last year, whereas in SR only 11.0% presented 1 to 3 crises (P = .003). In this study, the prevalence of asthma in adolescents was directly related to atmospheric pollution.
Advanced Space Shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1982-01-01
A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.
Quality of Golden papaya stored under controlled atmosphere conditions.
Martins, Derliane Ribeiro; de Resende, Eder Dutra
2013-10-01
This work evaluated physicochemical parameters of Golden papaya stored under refrigeration in controlled atmospheres. The fruits were kept at 13 in chambers containing either 3 or 6% O2 combined with 6%, 10% or 15% CO2. Moreover, a normal atmosphere was produced with 20.8% O2 and 0.03% CO2 with ethylene scrubbing, and a control treatment was used with ambient conditions. Evaluations were performed at the following times: before storage, after 30 days of storage in controlled atmosphere, and after removal from controlled atmosphere and storage for 7 days in the cold room. At the lower O2 levels and higher CO2 levels, the ripening rate was decreased. The drop in pulp acidity was avoided after 30 days of storage at 3% O2, but the fruits reached normal acidity after removal from controlled atmosphere and storage for 7 days in the cold room. The reducing sugars remained at a higher concentration after 30 days under 3% O2 and 15% CO2 even 7 days after removal from controlled atmosphere and storage in the cold room. This atmosphere also preserved the content of ascorbic acid at a higher level.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
Validation of NH3 satellite observations by ground-based FTIR measurements
NASA Astrophysics Data System (ADS)
Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem
2016-04-01
Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.
Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration
NASA Astrophysics Data System (ADS)
Mills, B.; Belcher, C.; Lenton, T. M.
2017-12-01
During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2016-03-30
sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde measurements of atmospheric properties...aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity...reflectance, skin temperature, visible imagery AXCTD= Air Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric
Atmospheric carbon reduction by urban trees
David J. Nowak
1993-01-01
Trees, because they sequester atmospheric carbon through their growth process and conserve energy in urban areas, have been suggested as one means to combat increasing levels of atmospheric carbon. Analysis of the urban forest in Oakland, California (21% tree cover), reveals a tree carbon storage level of 11.0 metric tons/hectare. Trees in the area of the 1991 fire in...
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
Associations Between Subjective Symptoms and Serum Immunoglobulin E Levels During Asian Dust Events
Otani, Shinji; Onishi, Kazunari; Mu, Haosheng; Hosoda, Takenobu; Kurozawa, Youichi; Ikeguchi, Masahide
2014-01-01
Asian dust is a seasonal meteorological phenomenon caused by the displacement of atmospheric pollutants from the Mongolian and Chinese deserts. Although the frequency of Asian dust events and atmospheric dust levels have steadily increased in the eastern Asia region, the effects on human health remain poorly understood. In the present study, the impact of Asian dust on human health was determined in terms of allergic reactions. A total of 25 healthy volunteers were tested for a relationship between serum immunoglobulin E (IgE) levels and subjective symptoms during a 3-day Asian dust event recorded in April 2012. They filled daily questionnaires on the severity of nasal, pharyngeal, ocular, respiratory, and skin symptoms by a self-administered visual analog scale. Serum levels of non-specific IgE and 33 allergen-specific IgE molecules were analyzed. Spearman rank-correlation analysis revealed significant positive associations between nasal symptom scores and 2 microbial-specific IgE levels (Penicillium and Cladosporium). Microbes migrate vast distances during Asian dust events by attaching themselves to dust particles. Therefore, some of these symptoms may be associated with type 1 allergic reactions to certain type of microbes. PMID:25075882
Sea ice and polar climate in the NCAR CSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weatherly, J.W.; Briegleb, B.P.; Large, W.G.
The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity. The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from themore » European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data. The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2--4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.« less
NASA Technical Reports Server (NTRS)
Pallmann, A. J.; Dannevik, W. P.; Frisella, S. P.
1973-01-01
Radiative-conductive heat transfer has been investigated for the ground-atmosphere system of the planet Mars. The basic goal was the quantitative determination of time dependent vertical distributions of temperature and static stability for Southern-Hemispheric summer season and middle and polar latitudes, for both dust-free and dust-laden atmospheric conditions. The numerical algorithm which models at high spatial and temporal resolution the thermal energy transports in the dual ground-atmosphere system, is based on solution of the applicable heating rate equation, including radiative and molecular-conductive heat transport terms. The two subsystems are coupled by an internal thermal boundary condition applied at the ground-atmosphere interface level. Initial data and input parameters are based on Mariner 4, 6, 7, and 9 measurements and the JPL Mars Scientific Model. Numerical experiments were run for dust-free and dust-laden conditions in the midlatitudes, as well as ice-free and ice-covered polar regions. Representative results and their interpretation are presented. Finally, the theoretical framework of the generalized problem with nonconservative Mie scattering and explicit thermal-convective heat transfer is formulated, and applicable solution algorithms are outlined.
Effects of atmospheric and climate change at the timberline of the Central European Alps
Wieser, Gerhard; Matyssek, Rainer; Luzian, Roland; Zwerger, Peter; Pindur, Peter; Oberhuber, Walter; Gruber, Andreas
2011-01-01
This review considers potential effects of atmospheric change and climate warming within the timberline ecotone of the Central European Alps. After focusing on the impacts of ozone (O3) and rising atmospheric CO2 concentration, effects of climate warming on the carbon and water balance of timberline trees and forests will be outlined towards conclusions about changes in tree growth and treeline dynamics. Presently, ambient ground-level O3 concentrations do not exert crucial stress on adult conifers at the timberline of the Central European Alps. In response to elevated atmospheric CO2 Larix decidua showed growth increase, whereas no such response was found in Pinus uncinata. Overall climate warming appears as the factor responsible for the observed growth stimulation of timberline trees. Increased seedling re-establishment in the Central European Alps however, resulted from invasion into potential habitats rather than upward migration due to climate change, although seedlings will only reach tree size upon successful coupling with the atmosphere and thus loosing the beneficial microclimate of low stature vegetation. In conclusion, future climate extremes are more likely than the gradual temperature increase to control treeline dynamics in the Central European Alps. PMID:21379395
Web technologies for rapid assessment of pollution of the atmosphere of the industrial city
NASA Astrophysics Data System (ADS)
Shaparev, N.; Tokarev, A.; Yakubailik, O.; Soldatov, A.
2018-05-01
The functionality, architectural features, the user interface of the geoinformation web-system of environmental monitoring of Krasnoyarsk is discussed. This system is created in service-oriented architecture. Data collection from the automated stations to monitor the state of atmospheric air has been implemented. An original device to measure the level of contamination of the atmosphere by fine dust PM2.5 has developed. Assessment of the level of air pollution is based on the quality index AQI atmosphere.
F100 Engine Emissions Tested in NASA Lewis' Propulsion Systems Laboratory
NASA Technical Reports Server (NTRS)
Wey, Chowen C.
1998-01-01
Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc. Tunable Diode Laser System to measure the concentrations of SO2, SO3, NO, NO2, CO2, and H2O. By September 1997, an F100 engine operating at several power levels at sea level and up to six simulated altitudes had been tested with commercial jet fuels with three levels of sulfur content and one military jet fuel. The data are being vigorously analyzed. A complete report is anticipated for the 1998 Atmospheric Effects of Aviation Project Annual Conference.
NASA Astrophysics Data System (ADS)
Harada, M.; Ozaki, K.; Tajika, E.; Sekine, Y.
2014-12-01
Rise of atmospheric oxygen in the Paleoproterozoic has been long recognized as a unidirectional, stepwise oxidation event. However, recent geochemical studies have reported the occurrences of deep-water oxygenation and sulfate accumulation in the Paleoproterozoic oceans [e.g., 1], suggesting that the oxidation was a dynamic transition associated with an overshoot of oxygen (so called, 'the Great Oxygen Transition' or GOT) [2]. During the GOT, the oxygen levels might have achieved 0.1-1 Present Atmospheric Level (PAL) over ~108 years [2]. Such an intense long-term oxygen overshoot appears to require some specific mechanism and strong oxidative forcing as a trigger. In this study, we provide the first numerical model that is capable of explaining the dynamics of the atmospheric oxygen during the GOT. We focus on a climate jump at the end of the Paleoproterozoic snowball glaciation as a trigger, and constrain the magnitude and duration of the snowball-induced oxygenation by using a biogeochemical cycle model. The results show that super greenhouse condition after the glaciation causes an increase in nutrient input from the continent to the oceans, which lead to a high rate of organic carbon burial in the oceans. This triggers a rapid jump in oxygen levels from low (<10-5 PAL) to high (~0.01 PAL) steady states within <104 years after deglaciation. The jump in oxygen levels is followed by the massive deposition of carbonate minerals, which corresponds to the "cap-carbonates". The elevated rate of organic carbon burial is prolonged over ~106 years, which results in an overshoot of atmospheric oxygen by up to ~0.1-1 PAL. The overshoot lasts for ~107-108 years because net consumption of oxygen accumulated in the atmosphere does not proceed efficiently. Such an extensive overshoot causes the oxygenation of the deep-water, and lead to the accumulation of sulfate ions by up to 1-10 mM and the deposition of sulfate minerals in the oceans. These results are in good agreement with the geological and geochemical data in the Paleoproterozoic [2, 3], implying that the Paleoproterozoic snowball glaciation would have been a sufficiently strong forcing to trigger the GOT. [1] Canfield et al. 2013, Pros. Natl. Acad. Sci. U.S.A., 110, 16736. [2] Lyons et al. 2014, Nature, 506, 307. [3] Schröder et al. 2008, Terra Nova, 20, 108.
Results on Jupiter's Atmosphere from the Juno Microwave Radiometer
NASA Astrophysics Data System (ADS)
Janssen, M. A.; Bolton, S. J.; Levin, S.; Adumitroaie, V.; Allison, M. D.; Arballo, J. K.; Atreya, S. K.; Bellotti, A.; Brown, S. T.; Gulkis, S.; Ingersoll, A. P.; Li, C.; Li, L.; Lunine, J. I.; Misra, S.; Orton, G. S.; Oyafuso, F. A.; Santos-Costa, D.; Sarkissian, E.; Steffes, P. G.; Zhang, Z.
2017-12-01
The Juno Microwave Radiometer (MWR) was designed to investigate Jupiter's atmosphere and radiation belts as one of a suite of instruments on the Juno mission. The MWR's main objective is to investigate the composition and dynamics of Jupiter's neutral atmosphere. Juno has now completed eight perijove passes that sample the atmosphere approximately every 45° in longitude, and the MWR has completed its main collection of data pertaining to the composition and structure of Jupiter's atmosphere. The primary results for atmospheric structure elaborate on the original discovery that the concentration of ammonia is far from uniformly mixed beneath its saturation level in the atmosphere and that deep atmospheric circulations control its distribution. Conversely, features of the deep circulation may be inferred from this distribution. Distinct circulation patterns are seen for three latitudinal regions: 1) Equatorial, where a column of increased ammonia concentration associated with the equatorial zone is sandwiched by off-equatorial regions of depleted ammonia in the north and south equatorial belts, with structure apparent to approximately the 100-bar pressure level, 2) Midlatitudes, where a stratified ammonia concentration appears stable, and 3) Polar, dominated by deep vertical structures associated with the observed surface vortices. Longitudinal structure is seen in the equatorial region primarily above the level of the water cloud around the 8-bar level, while significant structure appears small or absent outside and below this region. The ability of the MWR to detect lightning at its longest wavelengths was unexpected but sheds light on the presence of water and the distribution of strong convective regions in the atmosphere. The implications of these results for atmospheric dynamics and composition will be discussed.
Atmosphere-Ionosphere Electrodynamic Coupling
NASA Astrophysics Data System (ADS)
Sorokin, V. M.; Chmyrev, V. M.
Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.
Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore
NASA Astrophysics Data System (ADS)
Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.
2013-12-01
Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.
Does air-sea coupling influence model projections of the effects of the Paris Agreement?
NASA Astrophysics Data System (ADS)
Klingaman, Nicholas; Suckling, Emma; Sutton, Rowan; Dong, Buwen
2017-04-01
The 2015 Paris Agreement includes the long-term goal to hold global-mean temperature to "well below 2°C above pre-industrial levels", with the further stated aim of limiting the global-mean warming to 1.5°C, in the belief that this would "significantly reduce the risks and impacts of climate change". However, it is not clear which risks and impacts would be avoided, or reduced, by achieving a 1.5°C warming instead of a 2.0°C warming. Initial efforts to quantify changes in risk have focused on analysis of existing CMIP5 simulations at levels of global-mean warming close to 1.5°C or 2.0°C, by taking averages over ≈20 year periods. This framework suffers from several drawbacks, however, including the effect of model internal multi-decadal variability, the influence of coupled-model systematic errors on regional circulation patterns, and the presence of a warming trend across the averaging period (i.e., the model is not in steady state). To address these issues, the "Half a degree Additional warming, Prognosis and Projected Impacts" (HAPPI) project is performing large ensembles of atmosphere-only experiments with prescribed sea-surface temperatures (SSTs) for present-day and 1.5°C and 2.0°C scenarios. While these experiments reduce the complications from a limited dataset and coupled-model systematic errors, the use of atmosphere-only models neglects feedbacks between the atmosphere and ocean, which may have substantial effects on the representation of local and regional extremes, and hence on the response of these extremes to global-mean warming. We introduce a set of atmosphere-ocean coupled simulations that incorporate much of the HAPPI experiment design, yet retain a representation of air-sea feedbacks. We use the Met Office Unified Model Global Ocean Mixed Layer (MetUM-GOML) model, which comprises the MetUM atmospheric model coupled to many columns of the one-dimensional K Profile Parameterization mixed-layer ocean. Critically, the MetUM-GOML ocean mean state can be controlled by prescribed, seasonally varying corrections to temperature and salinity, which substantially reduce SST biases without damping variability. This allows the present-day MetUM-GOML experiment to have a ocean mean state very close to the observed climatology (global RMSE ≈ 0.25°C). We perform three 150-year experiments with MetUM-GOML for (a) present-day (1976-2005 climatology) and for future scenarios with global-mean temperatures (b) 1.5°C and (c) 2.0°C above pre-industrial levels. For (b) and (c), we achieve these warming levels by increasing the CO2 concentrations in MetUM-GOML, as well as by adjusting the prescribed sea ice using change factors derived from a transient simulation with the fully coupled Met Office model. We analyse projected global and regional changes in temperature, precipitation and atmospheric circulation in our MetUM-GOML simulations, focusing on seasonal means, multi-annual persistence of seasonal extremes (e.g., the probability of consecutive wet summers) and intra-seasonal extremes (e.g., heatwaves, droughts, floods). To identify the influence of air-sea coupling on these projections, we compare the MetUM-GOML simulations to 150-year atmosphere-only simulations with prescribed daily SSTs from the corresponding MetUM-GOML runs. This comparison demonstrates whether atmosphere-ocean feedbacks influence the projections of changes hydro-meteorological extremes in a warmer world, as well as whether these feedbacks affect the assessment of the impacts avoided by limiting global-mean temperature change to 1.5°C. Our results will inform the choice of model framework for, and hence the experiment design of, further efforts to characterise the response to a fixed global-mean temperature increase, as well as future climate-change attribution experiments.
Jacques-Joseph Ébelmen, the founder of earth system science
NASA Astrophysics Data System (ADS)
Berner, Robert A.
2012-11-01
The fundamental principles of the factors affecting the global carbon cycle, the global sulfur cycle and the levels of atmospheric CO2 and O2 over long-term (multimillion year) time scales were first elucidated by Jacques-Joseph Ébelmen in 1845. He covered all major processes in such a correct manner that no appreciable changes in them have been elucidated since then. Unfortunately, his ideas were forgotten and were independently deduced by others only 100 to 150 years later. In this article, his reasoning is shown in detail, via a number of original quotations, and the results of a mathematical model by the author for CO2 and O2 over the Phanerozoic Eon (past 542 million years) are presented. In agreement with Ébelmen's predictions, there apparently have been large changes in the levels of atmospheric CO2 and O2 over geologic time.
Ammonium and nitrate tolerance in lichens.
Hauck, Markus
2010-05-01
Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen. Copyright 2010 Elsevier Ltd. All rights reserved.
IASI Satellite Observation and Forecast of Pollutants
NASA Astrophysics Data System (ADS)
Clerbaux, C.; Boynard, A.; George, M.; Hadji-Lazaro, J.; Safieddine, S.; Viatte, C.; Clarisse, L.; Pierre-Francois, C.; Hurtmans, D.; van Damme, M.; Wespes, C.; Whitburn, S.
2017-12-01
The IASI family of instruments has been sounding the atmosphere since 2006 onboard the Metop satellite series. Using the radiance data recorded in the thermal infrared spectral range, concentrations for atmospheric pollutants such as carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2) and ammonia (NH3) can be derived. IASI CO and O3 fields are assimilated in regional and global models in order to predict air quality over Europe. Enhanced levels of pollutants are detected in near-real time, and can be followed at city, country and continent levels. This talk will present the findings for an extended time period (2008-2017), and will review the IASI capability to observe exceptional events both at the local and regional scales, as well as seasonal variations due other dynamic patterns (monsoon, ENSO, …). Progresses and current limitations to derive long term trends will also be discussed.
Development of a three-man preprototype CO2 collection subsystem for spacecraft application
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.
1977-01-01
Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.
An Exact Solvable Model of Rocket Dynamics in Atmosphere
ERIC Educational Resources Information Center
Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.
2009-01-01
In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…
Effective, Safe, and Inexpensive Microscale Ultrasonic Setup for Teaching and Research Laboratories.
ERIC Educational Resources Information Center
Montana, Angel M.; Grima, Pedro M.
2000-01-01
Presents a homemade, safe, effective, and inexpensive reactor vessel for ultrasonic horns with applications in microscale experiments in teaching and research laboratories. The reactor vessel is designed for an ultrasonic probe that allows reactions to be run at the microscale level at a wide range of temperatures and under inert atmosphere.…
Three probes for diagnosing photochemical dynamics are presented and applied to specialized ambient surface-level observations and to a numerical photochemical model to better understand rates of production and other process information in the atmosphere and in the model. Howeve...
ERIC Educational Resources Information Center
Buth, Jeffrey M.
2016-01-01
Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…
NASA Technical Reports Server (NTRS)
Wilson, J. W. (Editor); Jones, I. W. (Editor); Maiden, D. L. (Editor); Goldhagen, P. (Editor)
2003-01-01
The United States initiated a program to assess the technology required for an environmentally safe and operationally efficient High Speed Civil Transport (HSCT) for entrance on the world market after the turn of the century. Due to the changing regulations on radiation exposures and the growing concerns over uncertainty in our knowledge of atmospheric radiations, the NASA High Speed Research Project Office (HSRPO) commissioned a review of "Radiation Exposure and High-Altitude Flight" by the National Council on Radiation Protection and Measurements (NCRP). On the basis of the NCRP recommendations, the HSRPO funded a flight experiment to resolve the environmental uncertainty in the atmospheric ionizing radiation levels as a step in developing an approach to minimize the radiation impact on HSCT operations. To minimize costs in this project, an international investigator approach was taken to assure coverage with instrument sensitivity across the range of particle types and energies to allow unique characterization of the diverse radiation components. The present workshop is a result of the flight measurements made at the maximum intensity of the solar cycle modulated background radiation levels during the month of June 1997.
Distinguishing base-level change and climate signals in a Cretaceous alluvial sequence
White, T.; Witzke, B.; Ludvigson, G. A.; Brenner, R.
2005-01-01
We present the results of oxygen isotope and electron-microprobe analyses of sphaerosiderites obtained from Cretaceous paleosols in Iowa. The sphaerosiderite ??18O values record Cretaceous meteoric groundwater chemistry and an overall waning of brackish groundwater inundation during alluvial-plain aggradation and soil genesis. We focus on horizons that precipitated from freshwater, in which ??18O values ranging from -3.30??? to -6.8??? relative to the Peedee belemnite standard are interpreted to record variations in the Cretaceous atmospheric hydrologic cycle. During relative sea-level highstands, moisture was derived from the Cretaceous Western Interior Seaway, whereas during lowstands, when the seaway narrowed and occasionally withdrew from the Midcontinent, the dominance of hemispheric-scale atmospheric moisture transport initiated in the tropical Tethys Ocean led to decreased precipitation rates. These processes did not operate like a switch, but rather as a continuum of competing moisture sources and mechanisms of transport between the nearby epicontinental sea and the distant tropics. The sphaerosiderite data demonstrate (1) temporal variation in the intensity of hemispheric-scale atmospheric moisture transport and (2) long-term amplification of the global hydrologic cycle marked by extreme 18O depletion at the Albian-Cenomanian boundary. ?? 2005 Geological Society of America.
Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.
Kiehl, Jeffrey T; Shields, Christine A
2013-10-28
The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.
NASA Astrophysics Data System (ADS)
Main-Knorn, Magdalena; Pflug, Bringfried; Louis, Jerome; Debaecker, Vincent; Müller-Wilm, Uwe; Gascon, Ferran
2017-10-01
In the frame of the Copernicus programme, ESA has developed and launched the Sentinel-2 optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. The Sentinel-2 mission is the constellation of two polar orbiting satellites Sentinel-2A and Sentinel-2B, each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23rd, 2015 and Sentinel-2B followed on March 7th, 2017. With the beginning of the operational phase the constellation of both satellites enable image acquisition over the same area every 5 days or less. To use unique potential of the Sentinel-2 data for land applications and ensure the highest quality of scientific exploitation, accurate correction of satellite images for atmospheric effects is required. Therefore the atmospheric correction processor Sen2Cor was developed by Telespazio VEGA Deutschland GmbH on behalf of ESA. Sen2Cor is a Level-2A processor which main purpose is to correct single-date Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) products from the effects of the atmosphere in order to deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SCL) map with Quality Indicators for cloud and snow probabilities. Telespazio France and DLR have teamed up in order to provide the calibration and validation of the Sen2Cor processor. Here we provide an overview over the Sentinel-2 data, processor and products. It presents some processing examples of Sen2Cor applied to Sentinel-2 data, provides up-to-date information about the Sen2Cor release status and recent validation results at the time of the SPIE Remote Sensing 2017.
Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time
NASA Astrophysics Data System (ADS)
Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos
2016-04-01
High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m-3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.
NASA Astrophysics Data System (ADS)
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.
Effects of ocean acidification and sea-level rise on coral reefs
Yates, K.K.; Moyer, R.P.
2010-01-01
U.S. Geological Survey (USGS) scientists are developing comprehensive records of historical and modern coral reef growth and calcification rates relative to changing seawater chemistry resulting from increasing atmospheric CO2 from the pre-industrial period to the present. These records will provide the scientific foundation for predicting future impacts of ocean acidification and sea-level rise on coral reef growth. Changes in coral growth rates in response to past changes in seawater pH are being examined by using cores from coral colonies.
Atmospheric Fragmentation of the Canyon Diablo Meteoroid
NASA Technical Reports Server (NTRS)
Pierazzo, E.; Artemieva, N. A.
2005-01-01
About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.
Skilful multi-year predictions of tropical trans-basin climate variability
Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei
2015-01-01
Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation. PMID:25897996
Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven
2014-07-16
The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.
Controls of multi-modal wave conditions in a complex coastal setting
Hegermiller, Christie; Rueda, Ana C.; Erikson, Li H.; Barnard, Patrick L.; Antolinez, J.A.A.; Mendez, Fernando J.
2017-01-01
Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.
Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars
NASA Astrophysics Data System (ADS)
Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan
2018-06-01
Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.
Controls of Multimodal Wave Conditions in a Complex Coastal Setting
NASA Astrophysics Data System (ADS)
Hegermiller, C. A.; Rueda, A.; Erikson, L. H.; Barnard, P. L.; Antolinez, J. A. A.; Mendez, F. J.
2017-12-01
Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.
Skilful multi-year predictions of tropical trans-basin climate variability.
Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei
2015-04-21
Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation.
Expanding NASA's Land, Atmosphere Near Real-Time Capability for EOS (LANCE)
NASA Technical Reports Server (NTRS)
Davies, Diane; Michael, Karen; Masuoka, Ed; Ye, Gang; Schmaltz, Jeffrey; Harrison, Sherry; Ziskin, Daniel; Durbin, Phil B; Protack, Steve; Rinsland, Pamela Livingstone;
2017-01-01
NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time data and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere), the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood, and Black Marble products. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year.
Expanding NASA's Land, Atmosphere Near real-time Capability for EOS
NASA Astrophysics Data System (ADS)
Davies, D.; Michael, K.; Masuoka, E.; Ye, G.; Schmaltz, J. E.; Harrison, S.; Ziskin, D.; Durbin, P. B.; Protack, S.; Rinsland, P. L.; Slayback, D. A.; Policelli, F. S.; Olsina, O.; Fu, G.; Ederer, G. A.; Ding, F.; Braun, J.; Gumley, L.; Prins, E. M.; Davidson, C. C.; Wong, M. M.
2017-12-01
NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time products and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere) have been added; the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood product. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year. For more information visit: https://earthdata.nasa.gov/lance
Origin and evolution of the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Pollack, J. B.
1983-01-01
Implications for the origin and evolution of the terrestrial planets are drawn from a comparison of the Venus, earth and Mars atmosphere volatile inventories. Attention is given to the possible loss of an appreciable amount of water from Venus, in light of recent evidence for a 100-fold deuterium enrichment. Ar-40 and He-4 abundances suggest that outgassing has been inefficient for much of Venus's lifetime, in keeping with evidence for a lower level of tectonic activity on Venus than on the earth. Attention is also given to Venus's CO2 geochemistry. The picture now emerging is that of a Venus that began to evolve along a path similar to that of the earth, but suffered a catastrophic, runaway greenhouse effect early in its lifetime. How early the castastrophe occurred may be suggested by the presently low inventories of radiogenic argon and helium in its atmosphere.
NASA Astrophysics Data System (ADS)
McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.
2014-12-01
Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.
Improved reference models for middle atmosphere ozone
NASA Technical Reports Server (NTRS)
Keating, G. M.; Pitts, M. C.; Chen, C.
1990-01-01
This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.
NASA Technical Reports Server (NTRS)
Nalette, Tim; Reiss, Julie; Filburn, Tom; Seery, Thomas; Smith, Fred; Perry, Jay
2005-01-01
A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). System volume is competitive with existing technologies. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated. Progress pertaining to defining system requirements and identifying alternative amine formulations and substrates is presented.
USDA-ARS?s Scientific Manuscript database
Projected increases in atmospheric carbon dioxide concentration, [CO2] may lead to differential selection and competition between weeds and crops. Yet, the current level of atmospheric [CO2] already reflects a rapid rise (~25%) from mid-20th century levels. To assess whether this increase could ha...
NASA Astrophysics Data System (ADS)
Boyd, K.; Balgopal, M.; Birner, T.
2015-12-01
Educational outreach programs led by scientists or scientific organizations can introduce participants to science content, increase their interest in science, and help them understand the nature of science (NOS). Much of atmospheric science (AS) educational outreach to date has concentrated on teacher professional development programs, but there is still a need to study how students react to classroom programs led by scientists. The purpose of this research project is to examine student engagement with AS and NOS content when presented by a university atmospheric scientist or an Earth system science teacher. The guiding research question was: how do students interact with science experts in their classrooms compared to their teachers when learning about Earth science and NOS? The outreach program was developed by an AS faculty member and was implemented in a local 10th grade Earth Science class. The presenter used historical stories of discoveries to introduce concepts about the middle atmosphere and climate circulations, reinforcing the NOS in his interactive presentations. On a separate day the teacher implemented a lesson on plate tectonics grounded in NOS. A case study analysis is being conducted using videotaped presentations on Earth science and NOS by the teacher and the scientist, pre- and post- questionnaires, and teacher and scientist interviews in order to determine patterns in student-presenter discourse, the levels of presenters' inquiry-based questioning, and the depth of student responses around Earth science content and NOS. Preliminary results from video analysis indicate that the scientist used higher inquiry-based questioning strategies compared to the teacher; however the teacher was able to go into more depth on a topic with the lesson. Scientists must consider whether the trade-offs warrant focusing their outreach efforts on content professional development for teachers or content outreach for K-12 students.
Calibrating Laser Gas Measurements by Use of Natural CO2
NASA Technical Reports Server (NTRS)
Webster, Chris
2003-01-01
An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves continuously as a calibration standard for every measurement point. Figure 1 depicts simulated spectral transmission measurements in a wavenumber range that contains two absorption lines of N2O and one of CO2. The simulations were performed for two different upper-atmospheric pressures for an airborne instrument that has a path length of 80 m. The relative abundance of CO2 in air was assumed to be 360 parts per million by volume (approximately its natural level in terrestrial air). In applying the present method to measurements like these, one could average the signals from the two N2O absorption lines and normalize their magnitudes to that of the CO2 absorption line. Other gases with which this calibration method can be used include H2O, CH4, CO, NO, NO2, HOCl, C2H2, NH3, O3, and HCN. One can also take advantage of this method to eliminate an atmospheric-pressure gauge and thereby reduce the mass of the instrument: The atmospheric pressure can be calculated from the temperature, the known relative abundance of CO2, and the concentration of CO2 as measured by spectral absorption. Natural CO2 levels on Mars provide an ideal calibration standard. Figure 2 shows a second example of the application of this method to Mars atmospheric gas measurements. For sticky gases like H2O, the method is particularly powerful, since water is notoriously difficult to handle at low concentrations in pre-flight calibration procedures.
Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.
Ranjan, Sukrit; Sasselov, Dimitar D
2017-03-01
The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO 2 , fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO 2 also means that the UV surface fluence is insensitive to plausible levels of CH 4 , O 2 , and O 3 . At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO 2 levels. However, if SO 2 and/or H 2 S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H 2 O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H 2 O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H 2 O and CO 2 levels. Key Words: Radiative transfer-Origin of life-Planetary environments-UV radiation-Prebiotic chemistry. Astrobiology 17, 169-204.
Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry
NASA Astrophysics Data System (ADS)
Ranjan, Sukrit; Sasselov, Dimitar D.
2017-03-01
The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of NCO2, meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels.
MAX-DOAS measurements of aerosol, HCHO, and NO2 over Los Angeles from an elevated mountaintop site
NASA Astrophysics Data System (ADS)
Cheung, Ross
MAX-DOAS measurements of aerosol, HCHO, and NO2 over Los Angeles from an elevated mountaintop site. By. Ross Cheung. Doctor of Philosophy in Atmospheric and Oceanic Sciences. University of California, Los Angeles, 2016. Professor Jochen Stutz, Chair. Differential Optical Absorption Spectroscopy (DOAS) has become a popular technique for measuring atmospheric trace gases using UV/Vis narrow-band absorption features along a light path through the atmosphere. The UCLA Multi-Axis DOAS instrument (MAX-DOAS) is a ground-based spectrometer currently located at Mt. Wilson, California (1700 meters above sea level) that measures solar scattered light at various viewing elevation angles. Since May of 2010, it has been taking regular measurements of atmospheric pollutants in the boundary layer of the atmosphere in and above the Los Angeles Basin. This thesis presents the experimental setup and spectral retrievals, as well as results of our observations of measurements of NO2 and HCHO from Mt. Wilson. Radiative transfer modeling efforts of the deployment at Mt. Wilson will be presented, as well as our efforts to model and account for the effects of clouds and aerosols on MAX-DOAS measurements. Because of the unique challenges presented by aerosols in the ultraviolet and visible light region in a polluted urban boundary layer, new techniques were developed to account for and quantify these effects. Observations of path-integrated NO2 and HCHO, some of the primary precursors to ozone formation in the lower troposphere, as well as aerosol extinctions using the UCLA MAX-DOAS will be presented, and the advantages of a mountaintop measurement strategy will be discussed in light of the amount of vertical information that can be retrieved from this approach. The techniques developed to improve the optimal estimation of vertical aerosol extinction profiles and trace gas concentration profiles will be discussed. Finally, an application of these observations uses the ratio of HCHO/NO2 to study the dependency of ozone formation on nitrogen oxides and VOCs will be presented.
NASA Technical Reports Server (NTRS)
Chamberlain, D. M.; Elliot, J. L.
1997-01-01
We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.
Effect of Geomagnetic Storms on Ocean-Atmospheric Interactions over the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Reddy, S.; Karim, R.
There is accumulated evidence from recent past literature to show the possible relation between solar and geomagnetic activity, and meteorological parameters (Pittock, 1978; Reddy et.al. 1979; Bhalme et.al. 1979; Reddy and Karim, 2003). Not many studies have been reported on the relationship between geomagnetic activity and terrestrial weather including ocean-atmospheric interactions that have significant impacts over the large-scale atmospheric circulations. Between the ocean surface and the atmosphere, there is an exchange of heat and moisture that depend in part, on temperature differences between water and air. In winter, when air-water temperature contrasts are greatest, there is a substantial transfer of sensible and latent heat from the ocean surface into the atmosphere. This energy helps to maintain the global airflow. Previous studies (Reddy and Miller, 1997; Reddy et.al. 1998, 1999) have established the relationship between ocean-atmospheric interactions and tropical cyclones/hurricanes over the Gulf of Mexico. In the present study, we investigate the relationship between Geomagnetic Storms and ocean-atmospheric interactions including heat, momentum and moisture fluxes over the Gulf of Mexico during the winter (December to February) for the period, 2001-2003.The data used in this study include, (i) Geomagnetic storms, and (ii) Buoy data (sea surface temperature, air temperature, sea level pressure and wind speed) obtained from National Data Buoy Center (NDBC). The fluxes were computed using standard bulk formulae. The statistical techniques used for data analysis include superposed epoch analysis and student test .The result of the study has pointed out a significant increase in the fluxes 1-3 days after the storm occurrence. The effect of these fluxes on Gulf coast weather is noticed. The study is important for further understanding the climate variability of large-scale circulations including ElNino/Southern Oscillation (ENSO). The results and the possible physical mechanisms for the observed relationships will be presented and discussed. NOAA/Howard University NCAS Grant supports the work
Kepler-1649b: An Exo-Venus in the Solar Neighborhood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelo, Isabel; Rowe, Jason F.; Huber, Daniel
The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergencemore » of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.« less
A massive early atmosphere on Triton
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.; Nolan, Michael C.
1992-01-01
The idea of an early greenhouse atmosphere for Triton is presented and the conditions under which it may have been sustained are quantified. The volatile content of primordial Triton is modeled, and tidal heating rates are assessed to set bounds on the available energy. The atmospheric model formalism is presented, and it is shown how a massive atmosphere could have been raised by modest tidal heating fluxes. The implications of the model atmospheres for the atmospheric escape rates, the chemical evolution, and the cratering record are addressed.
Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks
NASA Astrophysics Data System (ADS)
Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.
2012-05-01
A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.
Rich, Alisa L; Orimoloye, Helen T
2016-01-01
The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.
NASA Astrophysics Data System (ADS)
Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Konaka, A.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration
2016-09-01
A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric νe+ν¯ e and νμ+ν¯μ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the νe and νμ samples at 8.0 σ and 6.0 σ significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 σ level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 σ level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 σ level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen.
NASA Astrophysics Data System (ADS)
Versick, S.
2009-04-01
H, OH and HO2 (collectively called HOx) are fast-reacting radicals in the middle atmosphere. These radicals are efficient catalysts for destroying ozone and play an important role in atmospheric chemistry. An important reservoir gas for HOx is Hydrogen Peroxide (H2O2). For all these important species at the moment only few measurements exist, e.g. in-situ measurements in the troposphere, balloon and rocket measurements, few HOx measurements by aircraft, and global satellite measurements of OH and HO2 by Aura/MLS since 2005. We present results for H2O2 for global day and night measurements with the MIPAS instrument on the ESA satellite ENVISAT. We find is a strong annual cycle with high values for H2O2 in polar summer consitent with the strong coupling to HOx chemistry. We investigated in more detail the Solar Proton Event (SPE) that occurred in October/November 2003. During SPEs, precipitation of energetic protons into the polar atmosphere produces ions in the middle atmosphere which form, partly via ion-cluster-reactions, odd hydrogen (HOx ) and odd nitrogen (NOx ). Increased levels of HOx and NOx, in turn, depletes the ozone in the polar stratosphere and mesosphere. We present the results of our retrievals of H2O2 for this event and compare the observations with results of the KASIMA model which has been upgraded to handle the ionization of the atmosphere due to the SPE and subsequent chemical reactions due to the NOx/HOx enhancements.
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
NASA Astrophysics Data System (ADS)
Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros
2012-11-01
Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.
Observing the Spectra of MEarth and TRAPPIST Planets with JWST
NASA Astrophysics Data System (ADS)
Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.
2017-10-01
During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.
On the use of infrasound for constraining global climate models
NASA Astrophysics Data System (ADS)
Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David
2017-11-01
Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.
Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols
Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël
2017-01-01
Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170
Spanos, Dimitrios; Christensen, Mette; Tørngren, Mari Ann; Baron, Caroline P
2016-03-01
The storage conditions of fresh meat are known to impact its colour and microbial shelf life. In the present study, visible spectroscopy was evaluated as a method to assess meat storage conditions and its optimisation. Fresh pork steaks (longissimus thoracis et lumborum and semimembranosus) were placed in modified atmosphere packaging using gas mixtures containing 0, 40, 50, and 80% oxygen, and stored with or without light for up to 9days. Principal component analysis of visible reflectance spectra (400-700nm) showed that the colour of the different meat cuts was affected by presence of oxygen, illumination, and storage time. Differences in the oxygen levels did not contribute to the observed variance. Predictive models based on partial least squares regression-discriminant analysis exhibited high potency in the classification of the storage parameters of meat cuts packaged in modified atmosphere. The study demonstrates the applicability of visible spectroscopy as a tool to assess the storage conditions of meat cuts packaged in modified atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.
D'Amore, Francesco; Bencardino, Mariantonia; Cinnirella, Sergio; Sprovieri, Francesca; Pirrone, Nicola
2015-08-01
The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.
Non-LTE Line-Blanketed Model Atmospheres of B-type Stars
NASA Astrophysics Data System (ADS)
Lanz, T.; Hubeny, I.
2005-12-01
We present an extension of our OSTAR2002 grid of NLTE model atmospheres to B-type stars. We have calculated over 1,300 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to B stars. The grid covers 16 effective temperatures from 15,000 to 30,000 K, with 1000 K steps, 13 surface gravities, log g≤ 4.75 down to the Eddington limit, and 5 compositions (2, 1, 0.5, 0.2, and 0.1 times solar). We have adopted a microturbulent velocity of 2 km/s for all models. In the lower surface gravity range (log g≤ 3.0), we supplemented the main grid with additional model atmospheres accounting for higher microtutbulent velocity (10 km/s) and for alterated surface composition (He and N-rich, C-deficient), as observed in B supergiants. The models incorporate basically all known atomic levels of 46 ions of H, He, C, N, O, Ne, Mg, Al, Si, S, and Fe, which are grouped into 1127 superlevels. Models and spectra will be available at our Web site, http://nova.astro.umd.edu.
Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Lukin, Igor P.
2017-11-01
In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.
Formation and Evolution of the Atmosphere on Early Titan
NASA Astrophysics Data System (ADS)
Marounina, N.; Tobie, G.; Carpy, S.; Monteux, J.; Charnay, B.; Grasset, O.
2014-12-01
The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In a recent study, we investigated its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. We examine the emergence of an atmosphere as well as the evolution of a primitive atmosphere of various sizes and compositions. By considering an impactor population characteristic of the LHB, we showed that an atmosphere with a mass equivalent to the present-day one cannot be formed during the LHB era. Our calculations indicated that the high-velocity impacts during the LHB led to a strong atmospheric erosion, so that the pre-LHB atmosphere should be 5 to 7 times more massive than at present (depending mostly on the albedo), in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.To investigate the primitive atmosphere of the satellite, we consider chemical exchanges of volatils between a global water ocean at Titan's surface, generated by impact heating during the accretion and an atmosphere. We are currently developing a liquid-vapor equilibrium model for various initial oceanic composition to investigate how a massive atmosphere may be generated during the satellite growth and how it may evolve toward a composition dominated by N2. More generally, our model address how atmosphere may be generated in water-rich objects, which may be common around other stars.
Atmospheric composition - Influence of biology
NASA Technical Reports Server (NTRS)
Mcelroy, M. B.
1983-01-01
The variability of atmospheric constituents influenced by biological organisms over various time scales is examined, together with the human contribution to atmospheric sulfur. The biogeochemistry of nitrogen is discussed, with an emphasis on N2O, NO, and microbially mediated reactions in soil and water. Carbon species are bound up mainly in sediments and the deep ocean, but human activities involving combustion may cause a doubling of the atmospheric levels of CO2 in the near future, which could produce a general low-level atmospheric warming. Longer term measurements are required to assess the effects of CH4 augmentation in the atmosphere through fuel combustion. Coal burning effectively doubles the amount of SO2 produced by natural sources, and reduces the pH of rainwater, thus posing hazards to fish, plankton, and mollusc life.
Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis.
Lalonde, Stefan V; Konhauser, Kurt O
2015-01-27
The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10(-5) times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE.
Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S
2012-11-01
During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.
Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis
Konhauser, Kurt O.
2015-01-01
The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10−5 times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE. PMID:25583484
NASA Astrophysics Data System (ADS)
Möller, Jens; Heinrich, Hartmut
2017-04-01
As a consequence of climate change atmospheric and oceanographic extremes and their potential impacts on coastal regions are of growing concern for governmental authorities responsible for the transportation infrastructure. Highest risks for shipping as well as for rail and road traffic originate from combined effects of extremes of storm surges and heavy rainfall which sometimes lead to insufficient dewatering of inland waterways. The German Ministry of Transport and digital Infrastructure therefore has tasked its Network of Experts to investigate the possible evolutions of extreme threats for low lands and especially for Kiel Canal, which is an important shortcut for shipping between the North and Baltic Seas. In this study we present results of a comparison of an Extreme Value Analysis (EVA) carried out on gauge observations and values derived from a coupled Regional Ocean-Atmosphere Climate Model (MPI-OM). High water levels at the coasts of the North and Baltic Seas are one of the most important hazards which increase the risk of flooding of the low-lying land and prevents such areas from an adequate dewatering. In this study changes in the intensity (magnitude of the extremes) and duration of extreme water levels (above a selected threshold) are investigated for several gauge stations with data partly reaching back to 1843. Different methods are used for the extreme value statistics, (1) a stationary general Pareto distribution (GPD) model as well as (2) an instationary statistical model for better reproduction of the impact of climate change. Most gauge stations show an increase of the mean water level of about 1-2 mm/year, with a stronger increase of the highest water levels and a decrease (or lower increase) of the lowest water levels. Also, the duration of possible dewatering time intervals for the Kiel-Canal was analysed. The results for the historical gauge station observations are compared to the statistics of modelled water levels from the coupled atmosphere-ocean climate model MPI-OM for the time interval from 1951 to 2000. We demonstrate that for high water levels the observations and MPI-OM results are in good agreement, and we provide an estimate on the decreasing dewatering potential for Kiel Canal until the end of the 21st century.
Evolution of Titan's atmosphere during the Late Heavy Bombardment
NASA Astrophysics Data System (ADS)
Marounina, Nadejda; Tobie, Gabriel; Carpy, Sabrina; Monteux, Julien; Charnay, Benjamin; Grasset, Olivier
2015-09-01
The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In the present study, we investigate its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. For surface albedos ranging between 0.1 and 0.7, we examine the emergence of an atmosphere during the LHB as well as the evolution of a primitive atmosphere with various masses and compositions prior to this event, accounting for impact-induced crustal NH3-N2 conversion and subsequent outgassing as well as impact-induced atmospheric erosion. By considering an impactor population characteristic of the LHB, we show that the generation of a N2-rich atmosphere with a mass equivalent to the present-day one requires ammonia mass fraction of 2-5%, depending on surface albedos, in an icy layer of at least 50 km below the surface, implying an undifferentiated interior at the time of LHB. Except for high surface albedos (AS ⩾ 0.7) where most of the released N2 remain frozen at the surface, our calculations indicate that the high-velocity impacts led to a strong atmospheric erosion. For a differentiated Titan with a thin ammonia-enriched crust (⩽5 km) and AS < 0.6 , any atmosphere preexisting before the LHB should be more than 5 times more massive than at present, in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.
Radioactive pollution of the waters of the baltic sea during 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarev, L.N.; Kuznetsov, Yu.V.; Gedeonov, L.I.
Results are presented from an investigation of radioactive pollution of the waters of the Baltic Sea during 1986. Inhomogeneities in the pollution of this area of water, due to varying density of atmospheric radioactive fallout, are detected. It is found that among the radionuclides entering the surface of the Baltic Sea in 1986 as a result of atmospheric transport, the main one in terms of radiation dose is cesium-137. Comparisons are made of the level of cesium-137 content in the waters of the Baltic Sea in 1986 and in preceding years. It is noted that even in the most pollutedmore » regions of the sea the cesium-137 content was 500 times less than the maximum allowable concentration (MAC) in the USSR for drinking water. The first results of the determination of plutonium-239 and 240 in the Baltic Sea are presented.« less
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooth, R.A.; Verhage, A.J.L.; Wouters, L.W.
1990-09-01
The photoacoustic determination of the ammonia concentration in atmospheric air by absorption of CO{sub 2} laser radiation at 9.22 {mu}m is influenced by the presence of H{sub 2}O and CO{sub 2}. Kinetic cooling due to the coupling of excited CO{sub 2} and N{sub 2} levels causes important changes in phase and amplitude of the photoacoustic signal. Theoretical background is presented to deduce the correct NH{sub 3} concentration from the signal. The experimental setup used to perform field measurements is described. Adhesion of NH{sub 3} to the walls of the resonant photoacoustic cell was investigated. Temperature effects are treated. Field datamore » of NH{sub 3} and H{sub 2}O concentrations are presented. Key words: Photoacoustics, ammonia, kinetic cooling, trace gas measurements, ammonia adhesion, acoustic resonance, CO{sub 2} laser radiation, water vapor absorption, carbon dioxide absorption.« less
Wavelet imaging cleaning method for atmospheric Cherenkov telescopes
NASA Astrophysics Data System (ADS)
Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.
2002-07-01
We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.
MSDS sky reference and preamplifier study
NASA Technical Reports Server (NTRS)
Larsen, L.; Stewart, S.; Lambeck, P.
1974-01-01
The major goals in re-designing the Multispectral Scanner and Data System (MSDS) sky reference are: (1) to remove the sun-elevation angle and aircraft-attitude angle dependence from the solar-sky illumination measurement, and (2) to obtain data on the optical state of the atmosphere. The present sky reference is dependent on solar elevation and provides essentially no information on important atmospheric parameters. Two sky reference designs were tested. One system is built around a hyperbolic mirror and the reflection approach. A second approach to a sky reference utilizes a fish-eye lens to obtain a 180 deg field of view. A detailed re-design of the present sky reference around the fish-eye approach, even with its limitations, is recommended for the MSDS system. A preamplifier study was undertaken to find ways of improving the noise-equivalent reflectance by reducing the noise level for silicon detector channels on the MSDS.
A New Look at Triton's Atmosphere
NASA Astrophysics Data System (ADS)
Person, Michael
When it was first examined with stellar occultations in the 1990s, Triton's atmosphere was seen to undergo global expansion during the period from 1993 to 1997. This expansion was confirmed as a continuing phenomenon with a stellar occultation observation in 2001 . Unfortunately, as Triton started to pass through a fairly sparse star field, occultation observations have been much more difficult to make. There have been no published occultation data on Triton's atmosphere since the 2001 event, and reported observations in early 2007 had too low of a signal-to-noise ratio to say anything about the atmospheric profile. Thus, it has been over 15 years since the last direct measurement of Triton's expanding atmosphere was made, leaving wide open the question of Triton's current atmospheric state. Is the atmosphere still expanding or is it now collapsing? Are the haze layers seen by Voyager still present? Are the variations seen in the 1990s seasonal or cyclic on shorter time scales due to Triton surface processes? The observation of stellar occultations remains the only way to gain current data on Triton's atmosphere from Earth, and SOFIA's unique ability to be reliably placed in the central flash region of occultation events where the richest dataset is available, and its immunity to low-level weather disturbances make it the ideal platform for updating our knowledge on Triton and beginning to answer these many outstanding questions. We therefore propose to use SOFIA with HIPO, FLITECAM (FLIPO), and the FPI+ to measure temperature, pressure, and particulate haze radial profiles of Triton's atmosphere by observing a stellar occultation which will be visible over the eastern portion of North America in October of 2017. We expect to use FLITECAM/HIPO (FLIPO) Guaranteed Time Observing (GTO) hours for the included observations with the agreement of the FLITECAM and HIPO instrument teams.
Physics-based approach to color image enhancement in poor visibility conditions.
Tan, K K; Oakley, J P
2001-10-01
Degradation of images by the atmosphere is a familiar problem. For example, when terrain is imaged from a forward-looking airborne camera, the atmosphere degradation causes a loss in both contrast and color information. Enhancement of such images is a difficult task because of the complexity in restoring both the luminance and the chrominance while maintaining good color fidelity. One particular problem is the fact that the level of contrast loss depends strongly on wavelength. A novel method is presented for the enhancement of color images. This method is based on the underlying physics of the degradation process, and the parameters required for enhancement are estimated from the image itself.
On possible interconnections between Climate Change and Earth rotation
NASA Astrophysics Data System (ADS)
Zotov, Leonid; Christian, Bizouard; Sidorenkov, Nikolay
The question of interconnections between rotation of the Earth and Climate Change raised more, then 30 years ago. In Lambeck’s, Sidorenkov’s and others books the correlation between the secular changes of temperature and rotation velocity of the Earth was found. Since Climate Change brings to the redistribution of water and ice mass, ocean currents and atmospheric circulation, it also influences the angular momentum and moment of inertia of the Earth system, what causes variations in its rotation. We present the results of analysis of global temperature, sea level, Chandler wobble, atmospheric winds, and length of day (LOD) changes with arguments testifying possible interrelations between these processes and their dependence on space factors.
Sentinel-4: the geostationary component of the GMES atmosphere monitoring missions
NASA Astrophysics Data System (ADS)
Bazalgette Courrèges-Lacoste, G.; Arcioni, M.; Meijer, Y.; Bézy, J.-L.; Bensi, P.; Langen, J.
2017-11-01
The implementation of operational atmospheric composition monitoring missions is foreseen in the context of the Global Monitoring for Environment and Security (GMES) initiative. Sentinel-4 will address the geostationary observations and Sentinel-5 the low Earth orbit ones. The two missions are planned to be launched on-board Eumetsat's Meteosat Third Generation (MTG) and Post-EPS satellites, respectively. This paper presents an overview of the GMES Sentinel- 4 mission, which has been assessed at Phase-0 level. It describes the key requirements and outlines the main aspects of the candidate implementation concepts available at completion of Phase-0. The paper will particularly focus on the observation mode, the estimated performance and the related technology developments.
Halogen occultation experiment intergrated test plan
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Butterfield, A. J.
1986-01-01
The test program plan is presented for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in-house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This comprehensive test program was developed to demonstrate that the HALOE instrument meets its performance requirements and maintains integrity through UARS flight environments. Each component, subsystem, and system level test is described in sufficient detail to allow development of the necessary test setups and test procedures. Additionally, the management system for implementing this test program is given. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HC1, HF, NO, CH4, H2O, NO2, and CO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuc, T.; Rozanski, K.; Zimnoch, M.
2007-07-01
Time series are presented of radiocarbon and C-13 contents in atmospheric carbon dioxide over eastern Europe (southern Poland), covering the periods 1983-1994 and 2000-2004. The carbon isotope composition was measured in biweekly composite samples of atmospheric CO{sub 2}, collected about 20 m above the local ground level. The data for 2 observational sites are presented: I) city of Krakow (50{sup o} 04'N, 19{sup o} 55'E; 220 m asl; for 1983-1994 and 2000-2004); and ii) Kasprowy Wierch, Tatra Mountains (49{sup o} 14'N, 19{sup o} 56'E; 1989 m asl; for 2000-2004). The latter site is considered a regional reference station, relatively freemore » of anthropogenic influences. During the period 1983-1994, observations in the Krakow area revealed a gradual decrease of C-14 content with a broad minimum around 1991 and a small increase by about 10 parts per thousand in the subsequent years. {delta}C-13 also changes with time, showing a decreasing trend from approximately -9.6 parts per thousand in 1983, with a slope of -0.02 parts per thousand/yr. The observed trends for both isotopes coincide well with a substantial reduction of coal consumption in Poland and partial replacement of coal by natural gas, especially in urban regions. After 2000, the {delta}C-13 slightly increases, reaching a mean value of -10 parts per thousand in 2004, while {delta}C-14 is below the reference level by similar to 3.5 parts per thousand. Observations at Kasprowy Wierch (regional reference station) also reflect a diminishing input of fossil carbon into the regional atmosphere. The fossil component in atmospheric CO{sub 2}, calculated with the aid of C-14 data available for the 2 study periods, shows a reduction of anthropogenic input by a factor of 2, which is confirmed by annual statistics of coal consumption.« less
Seager, S; Bains, W; Petkowski, J J
2016-06-01
Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth's atmospheric spectrum (O2, CH4, N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl). Life on Earth produces thousands of different gases (although most in very small quantities). Some might be produced and/or accumulate in an exo-Earth atmosphere to high levels, depending on the exo-Earth ecology and surface and atmospheric chemistry. To maximize our chances of recognizing biosignature gases, we promote the concept that all stable and potentially volatile molecules should initially be considered as viable biosignature gases. We present a new approach to the subject of biosignature gases by systematically constructing lists of volatile molecules in different categories. An exhaustive list up to six non-H atoms is presented, totaling about 14,000 molecules. About 2500 of these are CNOPSH compounds. An approach for extending the list to larger molecules is described. We further show that about one-fourth of CNOPSH molecules (again, up to N = 6 non-H atoms) are known to be produced by life on Earth. The list can be used to study classes of chemicals that might be potential biosignature gases, considering their accumulation and possible false positives on exoplanets with atmospheres and surface environments different from Earth's. The list can also be used for terrestrial biochemistry applications, some examples of which are provided. We provide an online community usage database to serve as a registry for volatile molecules including biogenic compounds. Astrobiology-Atmospheric gases-Biosignatures-Exoplanets. Astrobiology 16, 465-485.
Independet Component Analyses of Ground-based Exoplanetary Transits
NASA Astrophysics Data System (ADS)
Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro
2016-10-01
Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806; Morello et al. 2016 ApJ, 820, 86; Hyvarinen, A., and Oja, E. 2000 IEEE Transactions on Neural Networks, 13, 411.
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.
2014-01-01
The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer
Model of carbon fixation in microbial mats from 3,500 Myr ago to the present
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Mancinelli, Rocco L.
1990-01-01
Using modern microbial mats as analogs for ancient stromatolites, it is shown that the rate of carbon fixation is higher at the greater levels of atmospheric CO2 that were probably present in the past. It is suggested that carbon fixation in microbial mats was not carbon-limited during the early Precambrian, but became carbon-limited as the supply of inorganic carbon decreased. Carbon limitation led to a lower rate of carbon fixation, especially towards the end of the Precambrian.
Telemetric measurement system of beehive environment conditions
NASA Astrophysics Data System (ADS)
Walendziuk, Wojciech; Sawicki, Aleksander
2014-11-01
This work presents a measurement system of beehive environmental conditions. The purpose of the device is to perform measurements of parameters such as ambient temperature, atmospheric pressure, internal temperature, humidity and sound level. The measured values were transferred to the MySQL database, which is located on an external server, with the use of GPRS protocol. A website presents the measurement data in the form of tables and graphs. The study also shows exemplary results of environmental conditions measurements recorded in the beehive by hour cycle.
NASA Astrophysics Data System (ADS)
Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.
2017-11-01
CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.
NASA Astrophysics Data System (ADS)
François, S.; Sowka, I.; Poulain, L.; Monod, A.; Wortham, H.
2003-04-01
Hydroperoxides and aldehydes are considered as atmospheric reservoirs of OH, HO_2 and RO_2 radicals and can reflect the oxidizing levels of the atmosphere. They are considered as important gas phase photo-oxidants present in the atmosphere. However, the atmospheric role of these compounds can vary from one species to another, therefore it is essential to investigate their measurement and speciation in the atmosphere. Atmospheric measurements were realized during two different field campaigns in the Marseilles area (France). Hydroperoxides were trapped in aqueous phase, with a glass coil and analyzed by HPLC/fluorescence detector with post column derivatization. Aldehydes were trapped in a liquid phase containing 2-4 DNPH, with a mist chamber and analyzed by HPLC/UV. The analytical techniques provided individual separation and quantification of seven hydroperoxides (hydrogen peroxide, hydroxymethyl hydroperoxide, bis(hydroxymethyl) peroxide, 1-hydroxyethyl hydroperoxide, methyl hydroperoxide, ethyl hydroperoxide and peroxyacetic acid) and eleven volatile aldehydes (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, benzaldehyde, glyoxal, valeraldehyde and methylglyoxal). The first field campaign was part of the ESCOMPTE project (June 4th to July 16th 2001). During this campaign five different sampling sites, at low altitudes (<= 285 m), were investigated (maritime, urban, sub-industrial, biogenic and rural sites) and atmospheric measurements were realized during photochemical air pollution events. The second field campaign was part of the BOND project (July 2nd to July 14th 2002). Atmospheric measurements of hydroperoxides were carried out on one biogenic site, at altitude 690 m. The measurement system was improved allowing online sampling and analysis. During these field campaigns collection efficiencies were better than 96% for hydroperoxides, and from 78% to 96% for aldehydes. Detection limits were between 7,3× 10-3 μg.m-3 and 2,4× 10-1 μg.m-3 with standard deviations from 4% to 22% for hydroperoxides and between 0,55 μg.m-3 and 2,5 μg.m-3 with standard deviation from 8% to 29% for aldehydes. The results show that hydroperoxide concentrations were high, when the levels of NOx were low. Aldehyde concentrations were very high during photochemical events and both primary and secondary aldehydes were identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel; ...
2016-06-10
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
NASA Astrophysics Data System (ADS)
Brandt, Jørgen; Silver, Jeremy David; Heile Christensen, Jesper; Skou Andersen, Mikael; Geels, Camilla; Gross, Allan; Buus Hansen, Ayoe; Mantzius Hansen, Kaj; Brandt Hedegaard, Gitte; Ambelas Skjøth, Carsten
2010-05-01
Air pollution has significant negative impacts on human health and well-being, which entail substantial economic consequences. We have developed an integrated model system, EVA (External Valuation of Air pollution), to assess health-related economic externalities of air pollution resulting from specific emission sources/sectors. The EVA system was initially developed to assess externalities from power production, but in this study it is extended to evaluate costs at the national level. The EVA system integrates a regional-scale atmospheric chemistry transport model (DEHM), address-level population data, exposure-response functions and monetary values applicable for Danish/European conditions. Traditionally, systems that assess economic costs of health impacts from air pollution assume linear approximations in the source-receptor relationships. However, atmospheric chemistry is non-linear and therefore the uncertainty involved in the linear assumption can be large. The EVA system has been developed to take into account the non-linear processes by using a comprehensive, state-of-the-art chemical transport model when calculating how specific changes to emissions affect air pollution levels and the subsequent impacts on human health and cost. Furthermore, we present a new "tagging" method, developed to examine how specific emission sources influence air pollution levels without assuming linearity of the non-linear behaviour of atmospheric chemistry. This method is more precise than the traditional approach based on taking the difference between two concentration fields. Using the EVA system, we have estimated the total external costs from the main emission sectors in Denmark, representing the ten major SNAP codes. Finally, we assess the impacts and external costs of emissions from international ship traffic around Denmark, since there is a high volume of ship traffic in the region.
Prudic, David E.
1980-01-01
Among the facilities at the Western New York Nuclear Service Center, near the hamlet of West Valley in the northern part of Cattaraugus County, N.Y., is a State-licensed burial ground for commercial low-level radioactive wastes. The 11-acre burial ground contains a series of trenches excavated in a silty-clay till of low permeability that contains scattered pods of silt, sand, and gravel. Gas pressure in the unsaturated parts of radioactive waste burial trenches responds to fluctuations in atmospheric pressure. Measurements of atmospheric pressure and the differential pressure between the trench gas and the atmosphere on several dates in 1977-78 were used to calculate hydraulic conductivity of the reworked silty-clay till that covers the trenches. Generally the hydraulic conductivity of covers over trenches that had a history of rapidly rising water levels are higher, at least seasonally, than covers over trenches in which the water level remained low. This supports the hypothesis that recharge occurs through the cover, presumably through fractures caused by desiccation and (or) subsidence. Hydraulic conductivities of the cover as calculated from gas- and air-pressure measurements at several trenches were 100 to 1,000 times greater than those calculated from the increase in water levels in the trenches. This difference suggests that the values obtained from the air- and gas-pressure measurements need to be adjusted and at present are not directly usable in ground-water flux calculations. The difference in magnitude of values may be caused by rapidly decreasing hydraulic conductivity during periods of recharge or by the clogging of fractures with sediment washed in by runoff. (USGS)
Isotopic constraints on methane's global sources and ENSO-dependence
NASA Astrophysics Data System (ADS)
Schaefer, Hinrich; Mikaloff Fletcher, Sara; Veidt, Cora; Lassey, Keith; Brailsford, Gordon; Bromley, Tony; Dlugokencky, Ed; Englund Michel, Sylvia; Miller, John; Levin, Ingeborg; Lowe, Dave; Martin, Ross; Vaughn, Bruce; White, James; Nichol, Sylvia
2017-04-01
Atmospheric levels of the potent greenhouse gas methane (CH4) have been rising since the industrial revolution, except for a plateau during the early 2000s. Stable carbon isotopes in methane (delta-13CH4) provide constraints on the budget changes associated with the plateau's onset and its end. We present a reconstruction of annual global delta-13CH4 averages based on a global network of stations, whose trends are indicative of global methane source and sink activity. A box model analysis shows that from the mid-1990s methane emissions with the characteristic thermogenic delta-13CH4 signature reduced, implying persistently lower emissions from fossil fuel productions as the cause of the plateau. However, variations in hydroxyl, the main CH4 sink, provide an equably plausible explanation for the plateau onset that may also account for strong variability in emission-vs-removal rates during the plateau period. In contrast, the renewed CH4 rise since 2006 can only be explained by increasing emissions with a biogenic isotope signature, i.e. agriculture or wetlands. We present correlation studies that test whether ENSO activity controls atmospheric delta-13CH4, and by extension methane levels, through tropical wetland emissions.
Hst Observations Of The Extended Hydrogen Corona Of Mars
NASA Astrophysics Data System (ADS)
Clarke, John T.; Bertaux, J.; Chaufray, J.; Gladstone, R.; Quemerais, E.; Wilson, J. K.
2009-09-01
HST ACS/SBC UV images of the extended H Ly alpha emission from the Martian hydrogen corona have been obtained over Oct/Nov 2007, with coincident measurements of the altitude profile of the Lyman alpha emission by the SPICAM instrument on Mars Express in orbit about Mars. Careful measurement of the geocoronal emission background permit the measurement of the martian emission to a low level (less than 1 kilo-Rayleigh) out to 4 mars radii from the planet. Similar angular distributions of the emission were seen on 3 days of observations, reflecting the radiative transfer in the optically thick atmosphere, while the overall level of emission was seen to steadily decrease in both data sets over 4 weeks time. The altitude distribution of the emission out to large distances is compared with the results of a radiative transfer model that includes an exospheric population of cold and hot H atoms. In general, the dominant population of H atoms close to the planet is consistent with the measured temperature of the upper atmosphere, while far from the planet one has the highest sensitivity to a superthermal component of the exospheric H. The results will be presented with discussion of the escape rate of H from the martian atmosphere, and how this varied over 4 weeks in Fall 2007. This has implications for the rate of escape of water from the martian atmosphere, and how this can vary with time. These observations were supported by STScI grant GO-11170-01 to Boston University.
NASA Technical Reports Server (NTRS)
Dellacorte, Chris; Sliney, Harold E.
1986-01-01
The effect of atmosphere on the tribological properties of a plasma-sprayed chromium carbide based self-lubricating coating is reported. The coating contains bonded chromium carbide as the wear resistant base stock to which the lubricants silver and barium fluoride/calcium fluoride eutectic are added. It has been denoted as NASA PS200. Potential applications for the PS200 coating are cylinder wall/piston ring couples for Stirling engines and foil bearing journal lubrication. Friction and wear studies were performed in helium, hydrogen, and moist air at temperatures from 25 to 760 C. In general, the atmosphere had a significant effect on both the friction and the wear of the coating and counterface material. Specimens tested in hydrogen, a reducing environment, exhibited the best tribological properties. Friction and wear increased in helium and air but are still within acceptable limits for intended applications. A variety of X-ray analyses was performed on the test specimens in an effort to explain the results. The following conclusions are made: (1) As the test atmosphere becomes less reducing, the coating experiences a higher concentration level of chromic oxide at the sliding interface which increases both the friction and wear. (2) Beneficial silver transfer from the parent coating to the counter-face material is less effective in air than in helium or hydrogen. (3) There may be a direct relationship between chromic oxide level present at the sliding interface and the friction coefficient.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Sliney, Harold E.
1988-01-01
The effect of atmosphere on the tribological properties of a plasma-sprayed chromium carbide based self-lubricating coating is reported. The coating contains bonded chromium carbide as the wear resistant base stock to which the lubricants silver and barium fluoride/calcium fluoride eutectic are added. It has been denoted as NASA PS200. Potential applications for the PS200 coating are cylinder wall/piston ring couples Stirling engines and foil bearing journal lubrication. Friction and wear studies were performed in helium, hydrogen, and moist air at temperatures from 25 to 760 C. In general, the atmosphere had a significant effect on both the friction and the wear of the coating and counterface material. Specimens tested in hydrogen, a reducing environment, exhibited the best tribological properties. Friction and wear increased in helium and air but are still within acceptable limits for intended applications. A variety of X-ray analyses was performed on the test specimens in an effort to explain the results. The following conclusions are made: (1) As the test atmosphere becomes less reducing, the coating experiences a higher concentration level of chromic oxide at the sliding interface which increases both the friction and wear. (2) Beneficial silver transfer from the parent coating to the counter-face material is less effective in air than in helium or hydrogen. (3) There may be a direct relationship between chromic oxide level present at the sliding interface and the friction coefficient.
Sa, Renna; Zhong, Ruqing; Xing, Huan; Zhang, Hongfu
2016-01-01
Atmospheric ammonia is a common problem in poultry industry. High concentrations of aerial ammonia cause great harm to broilers' health and production. For the consideration of human health, the limit exposure concentration of ammonia in houses is set at 25 ppm. Previous reports have shown that 25 ppm is still detrimental to livestock, especially the gastrointestinal tract and respiratory tract, but the negative relationship between ammonia exposure and the tissue of breast muscle of broilers is still unknown. In the present study, 25 ppm ammonia in poultry houses was found to lower slaughter performance and breast yield. Then, high-throughput RNA sequencing was utilized to identify differentially expressed genes in breast muscle of broiler chickens exposed to high (25 ppm) or low (3 ppm) levels of atmospheric ammonia. The transcriptome analysis showed that 163 genes (fold change ≥ 2 or ≤ 0.5; P-value < 0.05) were differentially expressed between Ammonia25 (treatment group) and Ammonia3 (control group), including 96 down-regulated and 67 up-regulated genes. qRT-PCR analysis validated the transcriptomic results of RNA sequencing. Gene Ontology (GO) functional annotation analysis revealed potential genes, processes and pathways with putative involvement in growth and development inhibition of breast muscle in broilers caused by aerial ammonia exposure. This study facilitates understanding of the genetic architecture of the chicken breast muscle transcriptome, and has identified candidate genes for breast muscle response to atmospheric ammonia exposure. PMID:27611572
NASA Astrophysics Data System (ADS)
Yagüe, C.; Maqueda, G.; Ramos, D.; Sastre, M.; Viana, S.; Serrano, E.; Morales, G.; Ayarzagüena, B.; Viñas, C.; Sánchez, E.
2009-04-01
An Atmospheric Boundary Layer campaign was developed in Spain along June 2008 at the CIBA (Research Centre for the Lower Atmosphere) site which is placed on a fairly homogeneous terrain in the centre of an extensive plateau (41°49' N, 4°56' W). Different instrumentation at several levels was available on a new 10m meteorological mast, including temperature and humidity sensors, wind vanes and cup anemometers, as well as one sonic anemometer. Besides, two quartz-based microbarometers were installed at 50 and 100m on the main permanent 100m tower placed at CIBA. Three additional microbarometers were deployed on the surface on a triangular array of approximately 200 m side, and a tethered balloon was used in order to record vertical profiles of temperature, wind and humidity up to 1000m. Finally, a GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was deployed at 1.5m. This work will show some preliminary results from the campaign CIBA 2008, analysing the main physical processes present in the atmospheric Nocturnal Boundary Layer (NBL), the different stability periods observed and the corresponding turbulent parameters, as well as the coherent structures detected. The pressure perturbations measured from the surface and tower levels make possible to study the main wave parameters from wavelet transform, and compared the structures detected by the microbarometers with those detected in the wind and particles records.
Detection of (133)Xe from the Fukushima nuclear power plant in the upper troposphere above Germany.
Simgen, Hardy; Arnold, Frank; Aufmhoff, Heinfried; Baumann, Robert; Kaether, Florian; Lindemann, Sebastian; Rauch, Ludwig; Schlager, Hans; Schlosser, Clemens; Schumann, Ulrich
2014-06-01
After the accident in the Japanese Fukushima Dai-ichi nuclear power plant in March 2011 large amounts of radioactivity were released and distributed in the atmosphere. Among them were also radioactive noble gas isotopes which can be used as tracers to test global atmospheric circulation models. This work presents unique measurements of the radionuclide (133)Xe from Fukushima in the upper troposphere above Germany. The measurements involve air sampling in a research jet aircraft followed by chromatographic xenon extraction and ultra-low background gas counting with miniaturized proportional counters. With this technique a detection limit of the order of 100 (133)Xe atoms in liter-scale air samples (corresponding to about 100 mBq/m(3)) is achievable. Our results provide proof that the (133)Xe-rich ground level air layer from Fukushima was lifted up to the tropopause and distributed hemispherically. Moreover, comparisons with ground level air measurements indicate that the arrival of the radioactive plume at high altitude over Germany occurred several days before the ground level plume. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leung, C. W. S.; Rafkin, S. C.; McEwen, A. S.
2015-12-01
Extensive recurring slope lineae (RSL) activity has been detected in Valles Marineris on Mars and coincides with regions where water ice fogs appear [1]. The origin of the water driving RSL flow is not well understood, but observational evidence suggests atmospheric processes play a crucial role [2]. Provided the atmospheric vapor concentration is high enough, water ice fogs can form overnight if the surface temperature cools below the condensation temperature. Correlations between dust storms and flow rates suggest that atmospheric dust opacity, and its influence on air temperature, also has a significant effect on RSL activity. We investigate planetary boundary layer processes that govern the hydrological cycle and dust cycle on Mars using a mesoscale atmospheric model to simulate the distribution of water and dust with respect to regional atmospheric circulations. Our simulations in Valles Marineris show a curious temperature structure, where the inside of the canyon appears warmer relative to the plateaus immediately outside. For a well-mixed atmosphere, this temperature structure indicates that when the atmosphere inside the canyon is saturated and fog is present within Valles Marineris, fog and low-lying clouds should also be present on the cooler surrounding plateaus as well. However, images taken with the Mars Express High Resolution Stereo Camera (HRSC) show instances where water ice fog appeared exclusively inside the canyon. These results have important implications for the origin and concentration of water vapor in Valles Marineris, with possible connections to RSL. The potential temperatures from our simulations show a high level of stability inside the canyon produced dynamically by sinking air. However, afternoon updrafts along the canyon walls indicate that over time, water vapor within the chasm would escape along the sides of the canyon. Again, this suggests a local source or mechanism to concentrate water vapor is needed to explain the fog phenomenon appearing within the confines of the canyon in Valles Marineris. [1] Möhlmann et al. (2009) Planet Space Sci. 57, 1987-1992. [2] McEwen et al. (2015) EPSC abstract. Vol. 10, 786-1.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1980-01-01
An analysis of the potential capabilities of a spectrally diversified DIAL technique for monitoring atmospheric species is presented assuming operation from an earth-orbiting platform. Emphasis is given to the measurement accuracies and spatial and temporal resolutions required to meet present atmospheric science objectives. The discussion points out advantages of spectral diversity to perform comprehensive studies of the atmosphere; in general it is shown that IR systems have an advantage in lower atmospheric measurements, while UV systems are superior for middle and upper atmospheric measurements.
Relationship between sea level and climate forcing by CO2 on geological timescales
Foster, Gavin L.; Rohling, Eelco J.
2013-01-01
On 103- to 106-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO2 and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO2 in determining Earth’s climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO2 and sea level we describe portrays the “likely” (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO2 stabilized at 400–450 ppm (as required for the frequently quoted “acceptable warming” of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO2 should be reduced to levels similar to those of preindustrial times. PMID:23292932
Io. [history of studies and current level of understanding of this satellite
NASA Technical Reports Server (NTRS)
Nash, Douglas B.; Yoder, Charles F.; Carr, Michael H.; Gradie, Jonathan; Hunten, Donald M.
1986-01-01
The present work reviews the history of Io studies and describes the current level of understanding of Io's physics, chemistry, geology, orbital dynamics, and geophysics. Consideration is given to the satellite's internal, superficial, atmospheric, plasma, and magnetospheric properties and how they interrelate. A pictorial map of Io's surface based on Voyager 1 and 2 images is presented. It is found that Io's surface color and spectra are dominated by sulfur compounds which may include various sulfur allotropes. Volcanic processes yielding three kinds of surface features (vent regions, plains, and mountains) dominate Io's surface geology. The Io plasma torus corotates with Jupiter's magnetic field in the plane of Jupiter's centrifugal equator centered at Io's orbital radius.
Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.
Walker, J C; Kasting, J F
1992-01-01
We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the formulation of the rock cycle and to the dissolution of deep sea carbonate sediments. Atmospheric carbon dioxide continues to increase as long fossil fuel is burned at a significant rate, because the rate of fossil fuel production of carbon dioxide far exceeds the rates at which geochemical processes can remove carbon dioxide from the atmosphere. The maximum concentration of carbon dioxide achieved in the atmosphere depends on the total amount of fossil fuel burned, but only weakly on the rate of burning. The future course of atmospheric carbon dioxide is, however, very sensitive to the fate of the forests in this simulation because of the important role assigned to carbon dioxide fertilization of plant growth rate. Forest clearance drives up atmospheric carbon dioxide not only by converting biomass into atmospheric carbon dioxide but more importantly by reducing the capacity of the biota to sequester fossil fuel carbon dioxide. In this simulation, atmospheric carbon dioxide levels could be sustained indefinitely below 500 parts per million (ppm) if fossil fuel combustion rates were immediately cut from their present value of 5 x 10(14) m/y to 0.2 x 10(14) m/y (a factor of 25 reduction) and if further forest clearance were halted. If neither of these conditions is met and if we consume most of the world's fossil fuel reserves, peak carbon dioxide concentrations of 1000-2000 ppm are probable within the next few centuries.
Numerical simulation of large-scale ocean-atmosphere coupling and the ocean's role in climate
NASA Technical Reports Server (NTRS)
Gates, W. L.
1983-01-01
The problem of reducing model generated sigma coordinate data to pressure levels is considered. A mass consistent scheme for performing budget analyses is proposed, wherein variables interpolated to a given pressure level are weighted according to the mass between a nominal pressure level above and either a nominal pressure level below or the Earth's surface, whichever is closer. The method is applied to the atmospheric energy cycle as simulated by the OSU two level atmospheric general circulation model. The results are more realistic than sigma coordinate analyses with respect to eddy decomposition, and are in agreement with the sigma coordinate evaluation of the numerical energy sink. Comparison with less sophisticated budget schemes indicates superiority locally, but not globally.
The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview
NASA Astrophysics Data System (ADS)
Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup
2016-04-01
The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.
Monitoring Phenology of Coastal Marshes in Louisiana using the Landsat Archive
NASA Astrophysics Data System (ADS)
Mo, Y.; Kearney, M.
2016-12-01
Coastal marshes are important sinks for blue carbon—carbon sequestered by coastal and marine ecosystems. Remote sensing phenology of the marshes is a good indicator for their ability to sequester carbon, which, however, is seldom addressed in the literature. This study aims to better understand phenology of coastal marshes in Louisiana using NDVI derived from a compilation the Landsat TM, ETM+, and OLI archive (30 m resolution) since 1984 to present. The environmental variables (i.e. annual temperature, sea level, and atmospheric CO2 concentration) of the study area all increased significantly overtime, showing that the study area is subject to climate change. However, marsh phenological parameters, including its peak NDVI, show no significant trend over time. This finding contrasts with the reported increase in summer photosynthetic activity of vegetation in the Northern Hemisphere, which is attributed to the increase in global temperature and atmospheric CO2 concentration. Such differences might be due to marsh physiological characteristics and the local environmental alterations. Coastal marshes in Louisiana contain many C4 species. The C4 photosynthesis pathway is less responsive to atmospheric CO2 concentration compared to the C3 photosynthesis. Coastal marshes thus respond to the elevated atmospheric CO2 differently compared to other ecosystems at middle to higher latitudes in the Northern Hemisphere. Another possible reason is that, while benefiting from the increased atmospheric CO2, coastal marshes are also undergoing significant stresses caused by sea level rise (e.g. submergence, and storm-induced floods and surges), which can offset the positive effects resulted from the increased temperature and atmospheric CO2 on photosynthesis. Our results suggest that coastal marshes might respond to climate change much differently from other ecosystems, but further investigation is required in order to better protect the ecosystem and its carbon storage under the changing climate.
Simulation of tracer dispersion from elevated and surface releases in complex terrain
NASA Astrophysics Data System (ADS)
Hernández, J. F.; Cremades, L.; Baldasano, J. M.
A new version of an advanced mesoscale dispersion modeling system for simulating passive air pollutant dispersion in the real atmospheric planetary boundary layer (PBL), is presented. The system comprises a diagnostic mass-consistent meteorological model and a Lagrangian particle dispersion model (LADISMO). The former version of LADISMO, developed according to Zannetti (Air pollution modelling, 1990), was based on the Monte Carlo technique and included calculation of higher-order moments of vertical random forcing for convective conditions. Its ability to simulate complex flow dispersion has been stated in a previous paper (Hernández et al. 1995, Atmospheric Environment, 29A, 1331-1341). The new version follows Thomson's scheme (1984, Q. Jl Roy. Met. Soc.110, 1107-1120). It is also based on Langevin equation and follows the ideas given by Brusasca et al. (1992, Atmospheric Environment26A, 707-723) and Anfossi et al. (1992, Nuovo Cemento 15c, 139-158). The model is used to simulate the dispersion and predict the ground level concentration (g.l.c.) of a tracer (SF 6) released from both an elevated source ( case a) and a ground level source ( case b) in a highly complex mountainous terrain during neutral and synoptically dominated conditions ( case a) and light and apparently stable conditions ( case b). The last case is considered as being a specially difficult task to simulate. In fact, few works have reported situations with valley drainage flows in complex terrains and real stable atmospheric conditions with weak winds. The model assumes that nearly calm situations associated to strong stability and air stagnation, make the lowest layers of PBL poorly diffusive (Brusasca et al., 1992, Atmospheric Environment26A, 707-723). Model results are verified against experimental data from Guardo-90 tracer experiments, an intensive field campaign conducted in the Carrion river valley (Northern Spain) to study atmospheric diffusion within a steep walled valley in mountainous terrain (Ibarra, 1992, Energia, No. 1, 74-85).
TES/Aura L2 Atmospheric Temperatures Nadir V6 (TL2ATMTN)
Atmospheric Science Data Center
2018-01-18
TES/Aura L2 Atmospheric Temperatures Nadir (TL2ATMTN) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 5.3 x 8.5 km nadir ... Contact User Services Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
TES/Aura L2 Atmospheric Temperatures Limb V6 (TL2TLS)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Atmospheric Temperatures Limb (TL2TLS) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 27 x 23 km Limb ... OPeNDAP Access: OPeNDAP Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
TES/Aura L2 Atmospheric Temperatures Limb V6 (TL2ATMTL)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Atmospheric Temperatures Limb (TL2ATMTL) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 27 x 23 km Limb ... OPeNDAP Access: OPeNDAP Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
NASA Astrophysics Data System (ADS)
Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.
2015-12-01
Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer, Hagit
2015-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be highlighted. References: N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure- the future of fog monitoring?", BAMS, (in press, 2015). N. David, P. Alpert and H. Messer, "The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions", Atmospheric Research, 131, 13-21, 2013.
Health effects of atmospheric particulates: a medical geology perspective.
Duzgoren-Aydin, Nurdan S
2008-01-01
In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.
Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality
NASA Astrophysics Data System (ADS)
Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian
2016-03-01
Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.
Non-hydrostatic general circulation model of the Venus atmosphere
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay
We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... chemical reactions in the atmosphere. The level of impact a new source can have on ozone levels is... condensing outside the stack or through chemical reactions with pollutants already in the atmosphere...
Direct Detection of Polarized, Scattered Light from Exoplanets
NASA Astrophysics Data System (ADS)
Laughlin, Gregory
We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the super-Earth with the highest expected polarimetric signal-to- noise ratio. These exoplanets should all produce detectable polarization, and they present unique opportunities to study the atmospheres of wildly different exoplanets. Extending the PI s (Laughlin) Monte Carlo ray-tracing code, and utilizing the Co-I s (Fortney) experience in modeling exoplanet atmospheres, we propose to fund a graduate student to model the polarization data obtained from POLISH2 and invert the above variables. This is because they affect the amplitude and shape of the periodic variability in the polarization state of light from the system. Indeed, the discovery of spherical, sulfuric acid droplets suspended in the Venusian atmosphere was made forty years ago with Mie scattering models to fit polarimetric measurements. The PI s ray-tracing code, which has been used to model the rapid heating of the eccentric HD 80606b exoplanet, currently includes Rayleigh scattering and alkali metal absorption in a self-consistent manner. The direct detection of exoplanets as well as characterization of their atmospheric compositions and structure is directly related to the goals of the Origins program and to the NASA 2010 Science Plan, which emphasizes exploration of exoplanets and exoplanetary systems.
Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing
Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho
2009-01-01
The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531
Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.
Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho
2009-01-01
The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.
Effect of atmospheric turbulence on wind turbine wakes: An LES study
NASA Astrophysics Data System (ADS)
Wu, Y. T.; Porté-Agel, F.
2012-04-01
A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.
NASA Astrophysics Data System (ADS)
Osterwalder, Stefan; Fritsche, Johannes; Nilsson, Mats B.; Alewell, Christine; Bishop, Kevin
2015-04-01
The fate of anthropogenic emissions to the atmosphere is influenced by the exchange of elemental mercury (Hg0) with the earth surface. However, it remains challenging to quantify these exchanges which hold the key to a better understanding of mercury cycling at different scales, from the entire earth to specific environments. To better test hypotheses about land-atmosphere Hg interactions, we applied dynamic flux chambers (DFCs) for short term measurements and developed a novel Relaxed Eddy Accumulation (REA) design for continuous flux monitoring. Accurate determination of Hg0 fluxes has proven difficult due to the technical challenges presented by the small concentration differences (< 1 ng m-3) between updrafts and downdrafts. To address this we present a dual-intake, single analyzer REA system including a calibration module for periodic quality-control measurements with reference gases. To demonstrate the system performance, we present results from two contrasting environments: In February 2012 REA monitored a heterogeneous urban surface in the center of Basel, Switzerland where an average flux of 14 ng m-2 h-1 was detected with a distinct diurnal pattern. In May 2012, the REA monitored a boreal mire in northern Sweden with different turbulence regimes and Hg0 sink/source characteristics. During the snowmelt period in May 2012 the Hg0 flux averaged at 2 ng m-2 h-1. In order to better quantify inputs and outputs of Hg from boreal landscapes, we subsequently monitored the land-atmosphere exchange of Hg0 during a course of a year and compared the fluxes occasionally with DFC measurements. The amount of Hg0 volatilized from boreal mires was at a similar level as the annual export of Hg in stream water, identifying the mire as net source of Hg to neighboring environments. We believe that this dual-inlet, single detector approach is a significant innovation which can help realize the potential of REA for continuous, long-term determination of land-atmosphere Hg0 exchange.
An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts
NASA Technical Reports Server (NTRS)
Grannas, A. M.; Jones, A. E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H. J.; Bergin, M.; Bottenheim, J.; Boxe, C. S.; Carver, G.;
2007-01-01
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively small boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
Aerosol Size and Chemical Composition in the Canadian High Arctic
NASA Astrophysics Data System (ADS)
Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.
2015-12-01
Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.
NASA Astrophysics Data System (ADS)
Lopez-Valverde, M. A.; Lopez-Puertas, M.
1994-06-01
A radiative transfer model to study the infrared (1-20 micrometer) emissions of the CO and CO2 molecules in the atmosphere of Mars has been developed. The model runs from the planet's surface up to 180 km and has been especially elaborated to study non-local thermodynamic equilibrium (non-LTE) situations. it includes the most important energy levels and vibration-rotation bands able to give a significant atmospheric emission or produce a significant cooling/heating rate. Exchanges of energy in thermal and nonthermal (vibrational-vibrational) collisions as well as by radiative processes have been included. An exhaustive review of the rate constants for vibrational-thermal and vibrational-vibrational collisional exchanges has been carried out. Radiative transfer processes have been treated by using a modified Curtis matrix formulation. The populations of the excited vibrational levels for nighttime conditions are presented along with a sensitivity study of their variations to the kinetic temperature profile and to collisional rate constants. The populations of the CO2(0, nu2, 0) levels follow LTE up to about 85 km with the radiative transfer processes playing a very important role in maintaining this situation above the tropopause. This result is pratically insensitive to plausible variations in the kinetic temperature of the troposphere. The uncertainties in the rate constants play an important role in determining the populations of the levels at thermospheric altitudes, but they are of little significance for the heights where they start departing from LTE. The CO2(0, 00, 1) level breaks down from LTE at about 60 km, the laser bands at 10 micrometers giving a significant contribution to its population in the Martian mesosphere. The CO(1) level stars departing around 50 km and is noticeably enhanced in the upper thermosphere by absorption of upwelling flux from the planets' surface.
Acute and Chronic Exposure to CO2 in Space Flight
NASA Technical Reports Server (NTRS)
Alexander, D.; Wu, J.; Barr, Y. R.; Watkins, S. D.
2010-01-01
Spacecraft and space stations, similar to other habitable confined spaces such as submarines, need to provide a breathable atmosphere for their inhabitants. The inevitable production of CO2 during respiration necessitates life support systems that "scrub" the atmosphere and lower CO2 levels. Due to operational limitations associated with space flight (limited mass, volume, power, and consumables) CO2 is not scrubbed down to its terrestrial equivalent of 0.03% CO2 (ppCO2 of 0.23 mmHg), but is kept below 0.7% (ppCO2 of 5.3 mmHg), a level established in NASA s 180-day mission Spacecraft Maximum Allowable Concentration (SMAC) to be safe and unlikely to cause symptoms. Reports of space flight crewmembers becoming symptomatic with headaches, fatigue, and malaise at levels below those known to cause such symptoms terrestrially has prompted studies measuring the levels of CO2 on both the space shuttle and the space station. Data from cabin atmosphere sampling were collected on space shuttle missions STS-113, STS-122, STS-123, and International Space Station Expeditions 12-15 and 17, and the measured CO2 levels were then correlated to symptoms reported by the crew. The results indicate that a correlation exists between CO2 levels and symptomatology, however causality cannot be established at this time. While the short-term effects of elevated CO2 exposure are well known terrestrially, less is known regarding potential long-term effects of prolonged exposure to a CO2-rich environment or how the physiological changes caused by microgravity may interact with such exposures. Other challenges include limitations in the CO2 monitors used, lack of convection in the microgravity environment, and formation of localized CO2 pockets. As it is unclear if the unique environment of space increases sensitivity to CO2 or if other confounding factors are present, further research is planned to elucidate these points. At the same time, efforts are underway to update the SMAC to a lower level
Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths
NASA Technical Reports Server (NTRS)
Deepak, A.; Kent, G.; Yue, G. K.
1982-01-01
The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.
NASA Astrophysics Data System (ADS)
Douglass, D. H.; Kalnay, E.; Li, H.; Cai, M.
2005-05-01
Carbon monoxide (CO) is present in the troposphere as a product of fossil fuel combustion, biomass burning and the oxidation of volatile hydrocarbons. It is the principal sink of the hydroxyl radical (OH), thereby affecting the concentrations of greenhouse gases such as CH4 and O3. In addition, CO has a lifetime of 1-3 months, making it a good tracer for studying the long range transport of pollution. Satellite observations present a valuable tool in the investigation of tropospheric CO. The Atmospheric InfraRed Sounder (AIRS), onboard the Aqua satellite, is sensitive to tropospheric CO in a number of its 2378 channels. This sensitivity to CO, combined with the daily global coverage provided by AIRS, makes AIRS a potentially useful instrument for observing CO sources and transport. A maximum a posteriori (MAP) retrieval scheme (Rodgers 2000) has been developed for AIRS, to provide CO profiles from near-surface altitudes to around 150 hPa. An extensive validation data set, consisting of over 50 in-situ aircraft CO profiles, has been constructed. This data set combines CO data from a number of independent aircraft campaigns. Results from this validation study and comparisons with the AIRS level 2 CO product will be presented. Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding : Theory and Practice, World Scientific, Singapore.
Measurements of ethane in Antarctic ice cores
NASA Astrophysics Data System (ADS)
Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.
2011-12-01
Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears likely that a paleoatmospheric ethane record can be obtained from polar ice cores.