The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.
ERIC Educational Resources Information Center
Hearsey, Paul K.
This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…
Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism
NASA Astrophysics Data System (ADS)
Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad
2018-01-01
Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.
Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S
2013-10-01
A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Integration of a high-NA light microscope in a scanning electron microscope.
Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P
2013-10-01
We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Designs for a quantum electron microscope.
Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K
2016-05-01
One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Design and performance of a beetle-type double-tip scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard
2006-09-15
A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.
Characterization of quantum well structures using a photocathode electron microscope
NASA Technical Reports Server (NTRS)
Spencer, Michael G.; Scott, Craig J.
1989-01-01
Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).
Development of a miniature scanning electron microscope for in-flight analysis of comet dust
NASA Technical Reports Server (NTRS)
Conley, J. M.; Bradley, J. G.; Giffin, C. E.; Albee, A. L.; Tomassian, A. D.
1983-01-01
A description is presented of an instrument which was developed with the original goal of being flown on the International Comet Mission, scheduled for a 1985 launch. The Scanning Electron Microscope and Particle Analyzer (SEMPA) electron miniprobe is a miniaturized electrostatically focused electron microscope and energy dispersive X-ray analyzer for in-flight analysis of comet dust particles. It was designed to be flown on board a comet rendezvous spacecraft. Other potential applications are related to asteroid rendezvous and planetary lander missions. According to the development objectives, SEMPA miniprobe is to have the capability for imaging and elemental analysis of particles in the size range of 0.25 microns and larger.
Electron beam assisted field evaporation of insulating nanowires/tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.
2015-05-11
We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.
NASA Astrophysics Data System (ADS)
Hu, Yuan; Wang, Joseph
2017-03-01
This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.
Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.
Rahaman, Badiur; Saha-Dasgupta, T
2007-07-25
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.
Vibrational spectroscopy in the electron microscope.
Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A
2014-10-09
Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.
In situ electronic probing of semiconducting nanowires in an electron microscope.
Fauske, V T; Erlbeck, M B; Huh, J; Kim, D C; Munshi, A M; Dheeraj, D L; Weman, H; Fimland, B O; Van Helvoort, A T J
2016-05-01
For the development of electronic nanoscale structures, feedback on its electronic properties is crucial, but challenging. Here, we present a comparison of various in situ methods for electronically probing single, p-doped GaAs nanowires inside a scanning electron microscope. The methods used include (i) directly probing individual as-grown nanowires with a sharp nano-manipulator, (ii) contacting dispersed nanowires with two metal contacts and (iii) contacting dispersed nanowires with four metal contacts. For the last two cases, we compare the results obtained using conventional ex situ litho-graphy contacting techniques and by in situ, direct-write electron beam induced deposition of a metal (Pt). The comparison shows that 2-probe measurements gives consistent results also with contacts made by electron beam induced deposition, but that for 4-probe, stray deposition can be a problem for shorter nanowires. This comparative study demonstrates that the preferred in situ method depends on the required throughput and reliability. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Micro-buffy coats of whole blood: a method for the electron microscopic study of mononuclear cells.
Nunes, J F; Soares, J O; Alves de Matos, A P
1979-09-01
A method for the electron microscopic study of human peripheral lymphocytes by which very small buffy coats are obtained through centrifugation of heparinized whole blood in glass or plastic microhematocrit tubes is presented. This method is time saving and efficient, yielding well preserved material and a comparatively large number of mononuclear cells (mainly lymphocytes) in each thin section.
Simulation of transmission electron microscope images of biological specimens.
Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O
2011-09-01
We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft
NASA Astrophysics Data System (ADS)
Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.
Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.
Science 101: How Does an Electron Microscope Work?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…
Two Further Experiments on Electron Interference
ERIC Educational Resources Information Center
Matteucci, G.; Pozzi, G.
1978-01-01
Presents the results of two experiments concerning the phenomena of the interference of probabilities and of the so called Aharonov-Bohm effect. An electron biprism and a standard electron microscope have been used for the experiments. (Author/GA)
de Winter, D A Matthijs; Mesman, Rob J; Hayles, Michael F; Schneijdenberg, Chris T W M; Mathisen, Cliff; Post, Jan A
2013-07-01
Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument. Copyright © 2013 Elsevier Inc. All rights reserved.
Microscopic investigation of cavitation erosion damage in metals
NASA Technical Reports Server (NTRS)
Hackworh, J. V.; Adler, W. F.
1974-01-01
The results of research to identify the cavitation erosion damage mechanisms at the microscopic level for three metals (aluminum, stainless steel, and titanium) representing a range of properties and microstructure are presented. The metals were exposed to cavitation generated in distilled water by a 20-kHz ultrasonic facility operating at a vibration amplitude of 2 mils. Representative properties of the metals and experimental details are summarized. Replicas of the eroded surfaces of the specimens obtained periodically during exposure were examined with a transmission electron microscope to follow progression of the erosion damage and identify dominant erosion mechanisms as a function of exposure time. Eroded surfaces of selected specimens were also examined with a scanning electron microscope to assist in the interpretation.
Technologies and Designs for Electronic Nanocomputers
NASA Technical Reports Server (NTRS)
Montemerlo, Michael S.; Love, J. Christopher; Opiteck, Gregory J.; Goldhaber, David J.; Ellenbogen, James C.
1995-01-01
Diverse space-related applications have been proposed for microscopic and sub-microscopic structures, mechanisms, and 'organisms'. To govern their functions, many of these tiny systems will require even smaller, nanometer-scale programmable computers, i.e. 'nanocomputers' on-board. This paper provides an overview of the results of a nearly two-year study of the technologies and designs that presently are in development for electronic nanocomputers. Strengths and weaknesses of the various technologies and designs are discussed, as well as promising directions for remedying some of the present research issues in this area. The presentation is a synopsis of a longer MITRE review article on the same subject.
Moore, Jayma A; Payne, Scott A
2012-01-01
Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.
NASA Astrophysics Data System (ADS)
Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.
1997-04-01
A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.
Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J
2015-11-01
In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Comparative study of image contrast in scanning electron microscope and helium ion microscope.
O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C
2017-12-01
Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Electronic holographic moire in the micron range
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Sciammarella, Federico M.
2001-06-01
The basic theory behind microscopic electronic holographic moire is presented. Conditions of observation are discussed, and optimal parameters are established. An application is presented as an example where experimental result are statistically analyzed and successfully correlated with an independent method of measurement of the same quantity.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, Eve L.
2014-01-01
The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques
Applications of the Analytical Electron Microscope to Materials Science
NASA Technical Reports Server (NTRS)
Goldstein, J. I.
1992-01-01
In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.
Electric field stimulation setup for photoemission electron microscopes.
Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F
2015-08-01
Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
Beier, K; Fahimi, H D
1987-01-01
The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semithin (0.25 and 1 micron) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for light-microscopic analysis may account for the differences. The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
Hair follicle nevus occurring in frontonasal dysplasia: an electron microscopic observation.
Kuwahara, H; Lao, L M; Kiyohara, T; Kumakiri, M; Igawa, H
2001-06-01
We report a rare hair follicle nevus that occurred in a three-month-old Japanese boy with mild frontonasal dysplasia. It had been present since birth. Histologically, numerous tiny vellus hair follicles were found within the dermis. The constituent cells of these follicles showed the features of follicular germ cells under the electron microscope. The fibroblasts around the follicles were active and merged with the colloid substance. Many myofibroblasts were found in a collagenous stroma in the atrophic lesion of the frontonasal dysplasia.
Electronic structure and microscopic model of CoNb2O6
NASA Astrophysics Data System (ADS)
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
Discovering the Puzzling Behaviour of Electrons with the Grimaldi-Young Experiment
ERIC Educational Resources Information Center
Matteucci, Giorgio; Castaneda, Roman; Serna, Samuel; Medina, Francisco; Garcia-Sucerquia, Jorge
2010-01-01
An experiment analogous to that devised by Grimaldi and subsequently repeated by Young to study the nature of light has been realized with electrons. Following the Grimaldi and Young line of thought, an original approach is presented to introduce undergraduate physics students to the wave behaviour of electrons. An electron microscope equipped…
76 FR 65696 - Battelle Energy Alliance, et al.;
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... of Texas at Austin, Austin, TX 78712. Instrument: Electron Microscope. Manufacturer: FEI Company, the... research or scientific educational uses requiring an electron microscope. We know of no electron microscope...
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Electron microscopic evaluation of a gold glaucoma micro shunt after explantation.
Berk, Thomas A; Tam, Diamond Y; Werner, Liliana; Mamalis, Nick; Ahmed, Iqbal Ike K
2015-03-01
We present a case of an explanted gold glaucoma micro shunt (GMS Plus) and the subsequent light and electron microscopic analyses. The shunt was implanted in a patient with medically refractive glaucoma. The intraocular pressure (IOP) was stable at 12 mm Hg 6 months postoperatively but spiked to 26 mm Hg 6 months later; membranous growth was visible on the implant gonioscopically. A second gold micro shunt was placed 2 years after the first. The IOP was 7 mm Hg 1 week postoperatively but increased to 23 mm Hg 3 weeks later; similar membranous growth was visible on this implant. One of the shunts was explanted, and light and scanning electron microscopic analyses revealed encapsulation around the shunt exterior and connective tissue invasion of the microstructure. This represents the first electron microscopic analysis of an explanted gold glaucoma micro shunt and the first unequivocal images of the fibrotic pseudo-capsule traversing its microchannels and fenestrations. Dr. Ahmed is a consultant to and has received research grants from Solx, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori
2016-01-26
Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.
Electron microscopy study of the iron meteorite Santa Catharina
NASA Technical Reports Server (NTRS)
Zhang, J.; Williams, D. B.; Goldstein, J. I.; Clarke, R. S., Jr.
1990-01-01
A characterization of the microstructural features of Santa Catharina (SC) from the millimeter to submicron scale is presented. The same specimen was examined using an optical microscope, a scanning electron microscope, an electron probe microanalyzer, and an analytical electron microscope. Findings include the fact that SC metal nodules may have different bulk Ni values, leading to different microstructures upon cooling; that SC USNM 6293 is the less corroded sample, as tetrataenite exists as less than 10 nm ordered domains throughout the entire fcc matrix (it is noted that this structure is the same as that of the Twin City meteorite and identical to clear taenite II in the retained taenite regions of the octahedrites); that SC USNM 3043 has a more complicated microstructure due to corrosion; and that the low Ni phase of the cloudy zone was selectively corroded in some areas and formed the dark regions, indicating that the SC meteorite corrosion process was electrochemical in nature and may involve Cl-containing akaganeite.
Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...
2017-07-07
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thorsten; Foucar, Lutz; Jahnke, Till
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
Fixation methods for electron microscopy of human and other liver
Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter
2010-01-01
For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Low-voltage electron microscopy of polymer and organic molecular thin films.
Drummy, Lawrence F; Yang, Junyan; Martin, David C
2004-06-01
We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. Copyright 2004 Elsevier B.V.
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...
2018-02-05
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, V.; Chawla, G.; Kumar, V.
1987-04-01
Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.
NASA Technical Reports Server (NTRS)
Flat, A.; Milnes, A. G.
1978-01-01
In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.
An automatic chip structure optical inspection system for electronic components
NASA Astrophysics Data System (ADS)
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
NASA Astrophysics Data System (ADS)
Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.
2014-06-01
Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.
Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P
2018-01-01
We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Onouchi, Takanori; Shiogama, Kazuya; Mizutani, Yasuyoshi; Takaki, Takashi; Tsutsumi, Yutaka
2016-01-01
Neutrophil extracellular traps (NETs) released from dead neutrophils at the site of inflammation represent webs of neutrophilic DNA stretches dotted with granule-derived antimicrobial proteins, including lactoferrin, and play important roles in innate immunity against microbial infection. We have shown the coexistence of NETs and fibrin meshwork in varied fibrinopurulent inflammatory lesions at both light and electron microscopic levels. In the present study, correlative light and electron microscopy (CLEM) employing confocal laser scanning microscopy and scanning electron microscopy was performed to bridge light and electron microscopic images of NETs and fibrin fibrils in formalin-fixed, paraffin-embedded, autopsied lung sections of legionnaire’s pneumonia. Lactoferrin immunoreactivity and 4'-6-diamidino-2-phenylindole (DAPI) reactivity were used as markers of NETs, and fibrin was probed by fibrinogen gamma chain. Of note is that NETs light microscopically represented as lactoferrin and DAPI-colocalized dots, 2.5 μm in diameter. CLEM gave super-resolution images of NETs and fibrin fibrils: “Dotted” NETs were ultrastructurally composed of fine filaments and masses of 58 nm-sized globular materials. A fibrin fibril consisted of clusters of smooth-surfaced filaments. NETs filaments (26 nm in diameter) were significantly thinner than fibrin filaments (295 nm in diameter). Of note is that CLEM was applicable to formalin-fixed, paraffin-embedded sections of autopsy material. PMID:27917008
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?
ERIC Educational Resources Information Center
Hostounsky, Zdenek; Pelc, Radek
2007-01-01
In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…
Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.
Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon
2017-07-01
Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... University, One Waterfront Place, PO Box 6024, Morgantown, WV 26506. Instrument: Electron Microscope.... Justification for Duty-Free Entry: There are no domestic manufacturers of this type of electron microscope.... Lawrence University, 23 Romoda Drive, Canton, NY 13617. Instrument: Electron Microscope. Manufacturer: FEI...
Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.
Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C
2017-04-03
The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
de Brot, Simone; Sydler, Titus; Nufer, Lisbeth; Ruetten, Maja
2015-09-01
A dwarf bearded dragon (Pogona henrylawsoni) was presented with a white subcutaneous mandibular mass and multiple nodules in the oral mucosa, heart, liver, kidney, intestine, and visceral fat. Histologically, the tumor consisted of densely packed spindle-shaped cells with brow intracytoplasmic pigment that exhibited white-blue birefringence with polarized light. Immunohistochemical staining was negative for S-100 and weakly positive with melan A. Electron microscopic examination revealed cytoplasmic irregular and oblong empty spaces, laminated and often arranged into short stacks, compatible with reflecting platelet profiles typically seen in iridophores. However, in unstained ultrathin sections, electron-dense crystalline material was present, which filled the empty spaces described for stained sections before. Based on histology, immunohistochemistry, and biologic behavior, a malignant iridophoroma was diagnosed. To the authors' knowledge, iridophoromas in lizards have rarely been characterized by using electronic microscopy. Moreover, this is the first description of an iridophoroma in a dwarf bearded dragon.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... decision consolidated pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials... 07470. Instrument: Electron Microscope. Manufacturer: Hitachi High Technologies America, Inc., Japan... educational uses requiring an electron microscope. We know of no electron microscope, or any other instrument...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a..., Morgantown, WV 26506. Instrument: Electron Microscope. Manufacturer: JEOL, Japan. Intended Use: See notice at... Agency, Cincinnati, OH 45268. Instrument: Electron Microscope. Manufacturer: JEOL, Japan. Intended Use...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
....; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a..., Richland, WA 99354. Instrument: Electron Microscope. Manufacturer: FEI Company, the Netherlands. Intended... Rico, San Juan, PR 00936-5067. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd., Japan...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
....; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a... Collins, CO 80523. Instrument: Electron Microscope. Manufacturer: JEOL Ltd., Japan. Intended Use: See... 97401-3753. Instrument: Electron Microscope. Manufacturer: FEI Company, Czech Republic. Intended Use...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a decision... 43210. Instrument: Electron Microscope. Manufacturer: FEI Company, Czech Republic. Intended Use: See..., San Antonio, TX 78239-5166. Instrument: Electron Microscope. Manufacturer: FEI Company, Czech Republic...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a decision... 37235. Instrument: Electron Microscope. Manufacturer: FEI Company, the Netherlands. Intended Use: See... Lafayette, IN 47907-2024. Instrument: Electron Microscope. Manufacturer: FEI Company, the Netherlands...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a... Business Affairs, Fayetteville, AR 72701-1201. Instrument: Electron Microscope. Manufacturer: JEOL Ltd...: Brookhaven National Laboratory, Upton, NY 11973. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd...
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-12-01
During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.
Secondary electron imaging of monolayer materials inside a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo
2015-08-10
A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1990-01-01
The Microvax 2 computer, the basic software in VMS, and the Mitsubishi High Speed Disk were received and installed. The digital scanning tunneling microscope is fully installed and operational. A new technique was developed for pseudocolor analysis of the line plot images of a scanning tunneling microscope. Computer studies and mathematical modeling of the empirical data associated with many of the film calibration studies were presented. A gas can follow-up experiment which will be launched in September, on the Space Shuttle STS-50, was prepared and loaded. Papers were presented on the structure of the human hair strand using scanning electron microscopy and x ray analysis and updated research on the annual rings produced by the surf clam of the ocean estuaries of Maryland. Scanning electron microscopic work was conducted by the research team for the study of the Mossbauer and Magnetic Susceptibility Studies on NmNi(4.25)Fe(.85) and its Hydride.
Diffusion length measurement using the scanning electron microscope. [for silicon solar cell
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1975-01-01
The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Shatrov, A B
2003-01-01
The history of the electron microscope investigations in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences and progress in scanning and transmission electron microscope investigations in this field of biology to the moment are briefly accounted.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a decision... 30322. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd., Japan. Intended Use: See notice at 75... Department of Health, Menands, NY 12204-2719. Instrument: Electron Microscope. Manufacturer: JEOL Ltd., Japan...
Yuan, Weimin; Wu, Xiaoqin; Ye, Jianren; Tian, Xiaojing
2011-08-01
The pine wood nematode, Bursaphlenchus xylophilus, morphologically similar to B. mucronatus, is the pathogen of pine wilt disease. This study was focused on the endophytic bacteria present in these nematodes. Detailed observations were made on sections of all parts of the two types of nematodes by transmission electron microscope. The nematodes were surface-sterilized by soaking in 1% mercuric chloride and antibiotic mixture, and then ground and cultured on nutrient agar plate. The physiological and biochemical characteristics combined with molecular characterization of bacteria were analyzed and identified. Endophytic bacteria were found in intestines of the two nematodes by transmission electron microscope observations. On the basis of surface sterilization, total three bacteria strains were obtained from B. xylophilus and B. mucronatus. These bacteria belong to Stenotrophomonas and Ewingella. It confirms the presence of endophytic bacteria in Bursaphelenchus xylophilus and B. mucronatus and these bacteria may play a physical and ecological roles in nematodes.
Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří
2016-05-01
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Horne, R W; Wildy, P
1979-09-01
A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.
Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images
NASA Astrophysics Data System (ADS)
Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua
2018-04-01
Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D
2015-01-01
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
Extensions of the Theory of the Electron-Phonon Interaction in Metals: A Collection.
1983-11-03
accepted The measured zero -field susceptibility is given 50 . . . . 26 GENERALIZATION OF THE THEORY OF THE ELECTRON-... 1199 JP by X.P_ IM T V.IM 0... Generalization of the Theory of the Electron-Phonon Inter- action: Thermodynamic Formulation of Superconducting- and Normal-State Properties...A microscopic treatment of the consequences for supercon- ductivity of a nonconstant electronic density of states is presented. Generalized
Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan
2015-12-01
The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G
2017-02-01
Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Atomic Structure of Interface States in Silicon Heterojunction Solar Cells
NASA Astrophysics Data System (ADS)
George, B. M.; Behrends, J.; Schnegg, A.; Schulze, T. F.; Fehr, M.; Korte, L.; Rech, B.; Lips, K.; Rohrmüller, M.; Rauls, E.; Schmidt, W. G.; Gerstmann, U.
2013-03-01
Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.
Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás
2014-02-01
The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis
NASA Technical Reports Server (NTRS)
Nozawa, Y.; Kitajima, Y.
1984-01-01
A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
An electron microscope for the aberration-corrected era.
Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W
2008-02-01
Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.
Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.
Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing
2014-09-16
The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.
Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A
2018-05-01
Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.
A new apparatus for electron tomography in the scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.
2015-06-23
The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less
Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady
2018-06-01
Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae
2011-03-01
Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.
Scanning electron microscope observation of dislocations in semiconductor and metal materials.
Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki
2010-08-01
Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.
Effect of Silicon in U-10Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, Elizabeth J.; Devaraj, Arun; Kovarik, Libor
2017-08-31
This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showedmore » that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.« less
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Flexible high-voltage supply for experimental electron microscope
NASA Technical Reports Server (NTRS)
Chapman, G. L.; Jung, E. A.; Lewis, R. N.; Van Loon, L. S.; Welter, L. M.
1969-01-01
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms.
Contributed review: Review of integrated correlative light and electron microscopy.
Timmermans, F J; Otto, C
2015-01-01
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva; Czaplicka, Anna
2017-02-27
In this paper, a study of the morphology of the pupa and male imago of Glyptotendipes (G.) glaucus (Meigen 1818) was carried out, with the aid of a scanning electron microscope (SEM). The SEM provided additional valuable information on the morphology of the species. Adult male head, antenna, wing, leg, abdomen, hypopygium, pupal cephalothorax and abdomen were examined. It is emphasized that SEM was not often used in Chironomidae studies. The present results confirm SEM as a suitable approach in carrying out morphological and taxonomical descriptions of Chironomidae species.
Sargon, Mustafa F; Denk, C Cem; Celik, H Hamdi; Surucu, H Selcuk; Aldur, M Mustafa
2007-07-01
In this study, the myelinated axons of parts of the corpus callosums of young and old rats were examined under the electron microscope and a grading system was performed for quantitating the ultrastructural pathological changes of these axons. Except the old splenium group, the only ultrastructural pathological change, observed in the myelinated axons was the separation in myelin configuration. In addition to this finding, in the old splenium group, in some of the myelinated axons, an interruption was observed in the myelin configuration. Additionally, these ultrastructural pathological findings were present in the larger sized myelinated axons of the corpus callosum.
Pratebha, B; Jaikumar, N D; Sudhakar, R
2014-01-01
The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
Eljarrat, A; López-Conesa, L; Estradé, S; Peiró, F
2016-05-01
In this work, we present characterization methods for the analysis of nanometer-sized devices, based on silicon and III-V nitride semiconductor materials. These methods are devised in order to take advantage of the aberration corrected scanning transmission electron microscope, equipped with a monochromator. This set-up ensures the necessary high spatial and energy resolution for the characterization of the smallest structures. As with these experiments, we aim to obtain chemical and structural information, we use electron energy loss spectroscopy (EELS). The low-loss region of EELS is exploited, which features fundamental electronic properties of semiconductor materials and facilitates a high data throughput. We show how the detailed analysis of these spectra, using theoretical models and computational tools, can enhance the analytical power of EELS. In this sense, initially, results from the model-based fit of the plasmon peak are presented. Moreover, the application of multivariate analysis algorithms to low-loss EELS is explored. Finally, some physical limitations of the technique, such as spatial delocalization, are mentioned. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
Brugerolle, G; Silva-Neto, I D; Pellens, R; Grandcolas, P
2003-06-01
Flagellate protozoa of the hindgut of the xylophagous blattid Parasphaeria boleiriana were examined by light and electron microscopy. This species harbours two oxymonad species of the genera Monocercomonoides and Polymastix, the latter bearing Fusiformis bacteria on its surface. A diplomonad was present and has features of the genus Hexamita rather than Spironucleus. In addition, two trichomonads of the genera Monocercomonas and Tetratrichomastix were identified. A precise comparison with species of blattids and other insects was difficult because most of these flagellates have been described only by light microscopy after cell staining and there are few electron microscope studies and no molecular studies. None of the flagellates contained wood fragments in their food vacuoles and so evidently do not participate in the digestion of wood or cellulose.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Rickmann, M; Siklós, L; Joó, F; Wolff, J R
1990-09-01
An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.
Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki
2011-06-01
Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.
Trevethan, Thomas; Shluger, Alexander
2009-07-01
We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.
Brodusch, N; Demers, H; Gauvin, R
2013-04-01
A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.
2017-11-01
In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.
Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G
2017-10-01
A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy
Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.
2013-01-01
Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024
Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.; Daradkeh, Samer
2018-02-01
Recent investigations that are presented here illustrate the initial results that were obtained from a modified technique for holding the CNT on a W clean blunt tip. Field Electron Emission (FEE) has been investigated for single walled carbon nanotube (SWCNT) mounted on tungsten tip under (~10-8 mbar) vacuum conditions. The measurements recorded presented results showed that the CNT mounted on the W tip could emit electron current of at (0.7 V/μm) and reach up to (24 μA) of emission current at normal emission conditions. Such electron field emission tip was fabricated by electrolytically etching the high purity tungsten wire of (0.1 mm) in diameter in NaOH of (0.1) Molar solution, then mounting the single-walled carbon nanotube on the tip to be nearest to the tin oxide-coated and phosphorus glass anode. Such process was possible to be carried out under the microscope. A field electron microscope with a tip-screen separation at (~10mm) was used to characterize the electron emitter. The system was evacuated to an ultra-high vacuum level obtained after initial backing the system at up to (~180 °C) overnight. The emission characteristic has been investigated employing the I-V characteristics with Fowler-Nordheim plots and recording the emission images
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.
2017-10-01
Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.
This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less
Attur, Kailash; Joy, Mathew T; Karim, Riyas; Anil Kumar, V J; Deepika, C; Ahmed, Haseena
2016-08-01
The aim of the present study was to evaluate the efficiency of different endodontic irrigants in the removal of smear layer through scanning electron microscopic image analysis. The present in vitro study was carried out on 45 single-rooted extracted human mandibular premolar teeth with single canal and complete root formation. Teeth were randomly assigned to three groups with 15 teeth in each group. Group I samples were irrigated with 17% ethylenediaminetetraacetic (EDTA) irrigation, Group II with 7% maleic acid irrigation, and Group III with 2% chlorhexidine irrigation. Scanning electron microscope evaluation was done for the assessment of smear layer removal in the coronal, middle, and apical thirds. Comparison of the smear layer removal between the three different groups was done by Kruskal-Wallis test, followed by Mann-Whitney U test for comparing individual groups. A P value less than 0.05 was considered to be statistically significant. Statistically significant difference was seen between the two test groups (17% EDTA vs. 7% maleic acid and 17% EDTA vs. 2% chlorhexidine) in smear layer removal at coronal, middle, and apical thirds of the root canal. The most efficient smear layer removal was seen in Group I with 17% EDTA irrigation compared with other groups (P < 0.05) and the least by 2% chlorhexidine. The present study shows that 17% EDTA efficiently removes the smear layer from root canal walls.
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
Purchase of a Transmission Electron Microscope for Xavier University of Louisiana
2015-05-15
imaging facility on the second floor of the Pharmacy Addition at Xavier University that already includes two scanning electron microscopes. The new TEM...is now in use. Xavier University has formally pledged to provide funds for the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...for Public Release; Distribution Unlimited Final Report: Purchase of a Transmission Electron Microscope for Xavier University of Louisiana The views
Immunoelectron microscopy in embryos.
Sierralta, W D
2001-05-01
Immunogold labeling of proteins in sections of embryos embedded in acrylate media provides an important analytical tool when the resolving power of the electron microscope is required to define sites of protein function. The protocol presented here was established to analyze the role and dynamics of the activated protein kinase C/Rack1 regulatory system in the patterning and outgrowth of limb bud mesenchyme. With minor changes, especially in the composition of the fixative solution, the protocol should be easily adaptable for the postembedding immunogold labeling of any other antigen in tissues of embryos of diverse species. Quantification of the labeling can be achieved by using electron microscope systems capable of supporting digital image analysis. Copyright 2001 Academic Press.
Microstructures and properties of rapidly solidified alloys
NASA Technical Reports Server (NTRS)
Shechtman, D.; Horowitz, E.
1984-01-01
The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm.
Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert
2012-03-01
We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or scanning electron microscopy in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called KoalaDrive. The compactness of the KoalaDrive allows building a four-tip STM as small as a single-tip STM with a drift of less than 0.2 nm/min at room temperature and lowest resonance frequencies of 2.5 kHz (xy) and 5.5 kHz (z). We present as examples of the performance of the multitip STM four point measurements of silicide nanowires and graphene.
Electron Microscope Center Opens at Berkeley.
ERIC Educational Resources Information Center
Robinson, Arthur L.
1981-01-01
A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)
Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.
Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki
2014-01-01
Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.
Specimen Holder for Analytical Electron Microscopes
NASA Technical Reports Server (NTRS)
Clanton, U. S.; Isaacs, A. M.; Mackinnon, I.
1985-01-01
Reduces spectral contamination by spurious X-ray. Specimen holder made of compressed carbon, securely retains standard electron microscope grid (disk) 3 mm in diameter and absorbs backscattered electrons that otherwise generate spurious X-rays. Since holder inexpensive, dedicated to single specimen when numerous samples examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.
2001-01-01
We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHVmore » flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmermans, F. J.; Otto, C.
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less
NASA Astrophysics Data System (ADS)
Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal
2015-02-01
The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.
Bongianni, Wayne L.
1984-01-01
A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.
Simultaneous specimen and stage cleaning device for analytical electron microscope
Zaluzec, Nestor J.
1996-01-01
An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.
Bongianni, W.L.
1984-04-17
A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.
Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru
2018-05-01
A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.
Sheng, Zhigao; Feng, Qiyuan; Zhou, Haibiao; Dong, Shuai; Xu, Xueli; Cheng, Long; Liu, Caixing; Hou, Yubin; Meng, Wenjie; Sun, Yuping; Nakamura, Masao; Tokura, Yoshinori; Kawasaki, Masashi; Lu, Qingyou
2018-06-13
Constituent atoms and electrons determine matter properties together, and they can form long-range ordering respectively. Distinguishing and isolating the electronic ordering out from the lattice crystal is a crucial issue in contemporary materials science. However, the intrinsic structure of a long-range electronic ordering is difficult to observe because it can be easily affected by many external factors. Here, we present the observation of electronic multiple ordering (EMO) and its dynamics at the micrometer scale in a manganite thin film. The strong internal couplings among multiple electronic degrees of freedom in the EMO make its morphology robust against external factors and visible via well-defined boundaries along specific axes and cleavage planes, which behave like a multiple-ordered electronic crystal. A strong magnetic field up to 17.6 T is needed to completely melt such EMO at 7 K, and the corresponding formation, motion, and annihilation dynamics are imaged utilizing a home-built high-field magnetic force microscope. The EMO is parasitic within the lattice crystal house, but its dynamics follows its own rules of electronic correlation, therefore becoming distinguishable and isolatable as the electronic ordering. Our work provides a microscopic foundation for the understanding and control of the electronic ordering and the designs of the corresponding devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... Research, et al.; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron...: National Center for Toxicological Research, (USFDA), Jefferson, AK 72079. Instrument: Electron Microscope.... Applicant: University of Virginia, Charlottesville, VA 22903. Instrument: Electron Microscope. Manufacturer...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com
The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of researchmore » results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.« less
1981-06-01
sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING
Electron microscope aperture system
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1976-01-01
An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.
Miura, Naoto; Mori, Yuki; Yoshino, Masabumi; Suga, Norihiro; Kitagawa, Wataru; Yamada, Harutaka; Nishikawa, Kazuhiro; Imai, Hirokazu
2008-12-01
A 53-year-old Japanese man with systemic lupus erythematosus developed proteinuria and hematuria after a urinary stone episode. A light microscopic study of a kidney biopsy specimen demonstrated a bubbling appearance and spike formation of the basement membrane. Immunofluorescent studies revealed that there were no significant depositions of immunoglobulins, such as IgG (-), IgA (-), IgM (+/-), kappa light chain (+/-), lambda light chain (+/-), or C3 (-) in the glomerular capillary wall, though C1q was present as one-plus positive staining in mesangial areas. Electron microscopic studies showed that the thickness of the basement membrane varied from thin to thick without electron dense deposits, and that the cellular components of the podocyte were irregularly present in the basement membrane. Urinary protein decreased after the usage of prednisolone and mizoribine; however, proteinuria aggravated after an episode of urinary stone during the same treatment.
Huo, Junfeng; Dong, Aiguo; Wang, Yonghui; Lee, Shaochin; Ma, Cungen; Wang, Lan
2017-11-01
The study investigated the histopathological and ultrastructural lesions of liver of freshwater turtle Chinemys reevesii exposed to Cadmium (Cd). The animals were exposed to 0 mg kg -1 (0.85% normal saline (NS)), 7.5 mg kg -1 , 15 mg kg -1 , 30 mg kg -1 Cd chloride separately by intraperitoneal injection. Liver samples were collected for examination of lesions under light and electronic microscopes. Results showed that liver tissues from Cd -treated animals presented various degrees of histopathological lesions. Liver cells showed swollen, degeneration and necrosis with dose-dependent manner. Under electronic microscope, nucleus, mitochondria and rough endoplasmic reticulum presented various degrees of lesions with dose-dependent manner. In conclusion, Cd has significant toxicity on liver tissue of the freshwater turtle, which occurs in a dose-dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Choice and maintenance of equipment for electron crystallography.
Mills, Deryck J; Vonck, Janet
2013-01-01
The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.
Ultrastructural Study of Some Pollen Grains of Prairie Flowers
ERIC Educational Resources Information Center
Kozar, Frank
1973-01-01
Discusses the importance of the electron microscope, and in particular the scanning electron microscope, in studying the surface topography, sectional substructures, and patterns of development of pollen grains. The production, dispersal methods, and structure of pollen grains are described and illustrated with numerous electron micrographs. (JR)
Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)
NASA Astrophysics Data System (ADS)
Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June
2009-04-01
Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.
Phase-space foundations of electron holography
NASA Astrophysics Data System (ADS)
Lubk, A.; Röder, F.
2015-09-01
We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.
Development of Scanning Ultrafast Electron Microscope Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less
In-situ study of discontinuous precipitation in Al-15 at.% Zn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdou, S.; El-Boragy, M.; Solorzano, G.
1996-05-01
In the present study, attention was focused on in-situ work on discontinuous precipitation in Al-15.0 at.% Zn in a high voltage electron microscope using a hot stage and a video system. The microscope was an AEI instrument with a maximum voltage of 1.25 MV. The voltage used was 500 kV. The scope of the present study was to check if the grain boundary migration in the discontinuous precipitation reaction proceeds in a stop-and-go fashion. From all the observations reported here it can be concluded that the stop-and-go type of grain boundary migration seems to be a very general one. Butmore » in many cases it cannot easily experimentally be proved. In case of discontinuous precipitation in Al-15.0 at.% Zn it has been clearly demonstrated by in-situ observations in a high-voltage electron microscope that the reaction front migration occurs in a stop-and-go fashion. Consequently, there is a drastic difference between the average velocity and the instantaneous velocity. The only quantity, which can be determined in traditional experiments, is the average velocity to which the Petermann-Hornbogen equation is adequate.« less
Microscopic models for bridging electrostatics and currents
NASA Astrophysics Data System (ADS)
Borghi, L.; DeAmbrosis, A.; Mascheretti, P.
2007-03-01
A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.
Kubota, Y; Leung, E; Vincent, S R
1992-01-01
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.
Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope
NASA Astrophysics Data System (ADS)
Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter
2010-03-01
Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable
Atom Chips on Direct Bonded Copper Substrates (Postprint)
2012-01-19
joining of a thin sheet of pure copper to a ceramic substrate14 and is commonly used in power electronics due to its high current handling and heat...Squires et al. Rev. Sci. Instrum. 82, 023101 (2011) FIG. 1. A scanning electron micrograph of the top view of test chip A. the photolithographically...the etching pro- cesses and masking methods were quantified using a scanning electron microscope. Two test chips (A and B) are presented below and are
Brilhante, Raimunda Sâmia Nogueira; Correia, Edmilson Emanuel Monteiro; Guedes, Glaucia Morgana de Melo; Pereira, Vandbergue Santos; Oliveira, Jonathas Sales de; Bandeira, Silviane Praciano; Alencar, Lucas Pereira de; Andrade, Ana Raquel Colares de; Castelo-Branco, Débora de Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pinheiro, Adriana de Queiroz; Chaves, Lúcio Jackson Queiroz; Pereira Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2017-07-01
The aim of this study was to evaluate the in vitro and ex vivo biofilm-forming ability of dermatophytes on a nail fragment. Initially, four isolates of Trichophyton rubrum, six of Trichophyton tonsurans, three of Trichophyton mentagrophytes, ten of Microsporum canis and three of Microsporum gypseum were tested for production biomass by crystal violet assay. Then, one strain per species presenting the best biofilm production was chosen for further studies by optical microscopy (Congo red staining), confocal laser scanning (LIVE/DEAD staining) and scanning electron (secondary electron) microscopy. Biomass quantification by crystal violet assay, optical microscope images of Congo red staining, confocal microscope and scanning electron microscope images revealed that all species studied are able to form biofilms both in vitro and ex vivo, with variable density and architecture. M. gypseum, T. rubrum and T. tonsurans produced robust biofilms, with abundant matrix and biomass, while M. canis produced the weakest biofilms compared to other species. This study sheds light on biofilms of different dermatophyte species, which will contribute to a better understanding of the pathophysiology of dermatophytosis. Further studies of this type are necessary to investigate the processes involved in the formation and composition of dermatophyte biofilms.
Devi, Th Babita; Ahmaruzzaman, M
2016-09-01
In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a decision... Stocker Center, Athens, OH 45701. Instrument: Electron Microscope. Manufacturer: JEOL Ltd., Japan... North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915. Instrument: Electron...
Influence of mechanical noise inside a scanning electron microscope.
de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe
2015-04-01
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.
Amemiya, T; Nomura, S
1975-01-01
Clinical, laboratory and pathological findings of a patient in bronchial carcinoma with choroidal metastasis were presented. X-ray examination of the chest suggested the tumor shadow in the posterior segmental bronchus of the right upper lobe of the lung (r-B2b), while funduscopy and fluorescein angiography revealed the presence of choroidal tumor. ACTH levels in tumor tissues at autopsy and in serum were measured and definitely demonstrated and elevated. Histopathologically, the primary lesion was r-B2b and diagnosed as a mucocellular type of adenocarcinoma. The choroidal lesion was metastatic carcinoma. Electron microscopic examination of the choroidal lesion reembedded for electron microscopy from celloidin-embedded materials for light microscopy could reveal the presence of characteristic cytoplasmic granules referred to as neurosecretory-type granules. It is extremely rare that a hormone-producing metastatic carcinoma of the choroid from the bronchus has been proved.
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
Microcircuit testing and fabrication, using scanning electron microscopes
NASA Technical Reports Server (NTRS)
Nicolas, D. P.
1975-01-01
Scanning electron microscopes are used to determine both user-induced damages and manufacturing defects subtle enough to be missed by conventional light microscopy. Method offers greater depth of field and increased working distances.
Method of forming aperture plate for electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1974-01-01
An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.
Development of scanning electron and x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp
We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less
Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation.
Samateh, Malick; Pottackal, Neethu; Manafirasi, Setareh; Vidyasagar, Adiyala; Maldarelli, Charles; John, George
2018-05-09
Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.
NASA Technical Reports Server (NTRS)
Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.
1987-01-01
Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.
Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe
NASA Technical Reports Server (NTRS)
Chodos, A. A.; Devaney, J. R.; Evens, K. C.
1972-01-01
Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.
A scanning electron microscope technique for studying the sclerites of Cichlidogyrus.
Fannes, Wouter; Vanhove, Maarten P M; Huyse, Tine; Paladini, Giuseppe
2015-05-01
The genus Cichlidogyrus (Monogenea: Ancyrocephalidae) includes more than 90 species, most of which are gill parasites of African cichlid fishes. Cichlidogyrus has been studied extensively in recent years, but scanning electron microscope (SEM) investigations of the isolated hard parts have not yet been undertaken. In this paper, we describe a method for isolating and scanning the sclerites of individual Cichlidogyrus worms. Twenty-year-old, formol-fixed specimens of Cichlidogyrus casuarinus were subjected to proteinase K digestion in order to release the sclerites from the surrounding soft tissues. SEM micrographs of the haptoral sclerites and the male copulatory organ are presented. The ability to digest formol-fixed specimens makes this method a useful tool for the study of historical museum collections.
Density-matrix approach for the electroluminescence of molecules in a scanning tunneling microscope.
Tian, Guangjun; Liu, Ji-Cai; Luo, Yi
2011-04-29
The electroluminescence (EL) of molecules confined inside a nanocavity in the scanning tunneling microscope possesses many intriguing but unexplained features. We present here a general theoretical approach based on the density-matrix formalism to describe the EL from molecules near a metal surface induced by both electron tunneling and localized surface plasmon excitations simultaneously. It reveals the underlying physical mechanism for the external bias dependent EL. The important role played by the localized surface plasmon on the EL is highlighted. Calculations for porphyrin derivatives have reproduced corresponding experimental spectra and nicely explained the observed unusual large variation of emission spectral profiles. This general theoretical approach can find many applications in the design of molecular electronic and photonic devices.
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Analysis of the interaction of an electron beam with back surface field solar cells
NASA Technical Reports Server (NTRS)
Von Roos, O.; Luke, K. L.
1983-01-01
In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.
Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope.
Urban, K W; Mayer, J; Jinschek, J R; Neish, M J; Lugg, N R; Allen, L J
2013-05-03
Newly developed achromatic electron optics allows the use of wide energy windows and makes feasible energy-filtered transmission electron microscopy (EFTEM) at atomic resolution. In this Letter we present EFTEM images formed using electrons that have undergone a silicon L(2,3) core-shell energy loss, exhibiting a resolution in EFTEM of 1.35 Å. This permits elemental mapping beyond the nanoscale provided that quantum mechanical calculations from first principles are done in tandem with the experiment to understand the physical information encoded in the images.
Adrenoleukodystrophy. Electron microscopic findings.
Powell, H; Tindall, R; Schultz, P; Paa, D; O'Brien, J; Lampert, P
1975-04-01
Ultrastructural and neurochemical studies were done on three male patients with adrenoleukodystrophy. In each case, the affected white matter contained enlarged glial cells filled with pathognomic intracytoplasmic inclusions consisting of electron-lucent spicules bounded by 25-Angstrom wide membranes. Similar inclusions were present in adrenocortical cells. These findings and a review of 47 reported cases indicate that adrenoleukodystrophy is a storage disorder caused by a sex-linked recessive error of metabolism.
A Simulation of the Topographic Contrast in the SEM
NASA Astrophysics Data System (ADS)
Kotera, Masatoshi; Fujiwara, Takafumi; Suga, Hiroshi; Wittry, David B.
1990-10-01
A simulation model is presented to analyze the topographic contast in the scanning electron microscope (SEM). This simulation takes into account all major mechanisms from signal generation to signal detection in the SEM. The calculated result shows that the resolution of the secondary electron image is better than that of the backscattered electron image for 1 and 3 keV primary electrons incident on an Al target. An asymmetric intensity profile of a signal at a topographic pattern, usually found in the SEM equipped with the Everhart-Thornley detector, is mainly due to the asymmetric profile of the backscattered electron signal.
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Marovitz, W F; Khan, K M
1977-01-01
A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; ...
2017-12-20
The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. Here, these results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prange, Micah P.; Xie, YuLong; Campbell, Luke W.
2017-12-21
The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira
2012-01-01
The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.
A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1-50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.
Using the scanning electron microscope on the production line to assure quality semiconductors
NASA Technical Reports Server (NTRS)
Adolphsen, J. W.; Anstead, R. J.
1972-01-01
The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.
Influence of mechanical noise inside a scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... 94305. Instrument: Titan 80-300 Environmental Transmission Electron Microscope. Manufacturer: FEI Co.../Scanning Electron Microscope. Manufacturer: FEI Co., the Netherlands. Intended Use: See notice at 77 FR...
Lunar sample analysis. [Allende meteorite
NASA Technical Reports Server (NTRS)
Housley, R. M.
1985-01-01
Recent results on the antarctic meteorite ALPHA 77003 which contribute to understanding the alteration processes which produced matrix in unequilibrated chondrites are presented. Also included are additional scanning electron microscope results confirming that the matrix in Allende was formed by in situ alteration.
Akerman, M; Willén, H; Carlén, B; Mandahl, N; Mertens, F
1996-06-01
A retrospective study of 25 FNAs (11 aspirates from primary tumours and 14 from recurrencies and metastases) from 15 synovial sarcomas was performed. The cytological findings were correlated with the histopathology and the value of immunohistochemical and electron microscopic examination as well as DNA-ploidy and cytogenetic analysis for diagnosis were assessed. A reproducible cellular pattern with a reliable diagnosis of spindle cell sarcoma was possible provided that the aspirates were cell rich. However, a true biphasic pattern indicative of synovial sarcoma was only seen in one of the 25 specimens. Electron microscopic examination of the aspirates was a valuable adjunctive diagnostic method, whereas immunocytochemistry and DNA-ploidy analysis were not. Immunohistochemical, electron microscopic and cytogenetic analysis were all valuable ancillary methods when performed on surgical specimens. Malignant haemangiopericytoma and fibrosarcoma were the most important differential diagnoses in the FNA specimens.
A two-dimensional Dirac fermion microscope
NASA Astrophysics Data System (ADS)
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-01-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots. PMID:28598421
A unifying approach to lattice dynamical and electronic properties of solids
NASA Astrophysics Data System (ADS)
Falter, C.
1988-06-01
A unified analysis of lattice dynamical and electronic properties of solids with special emphasis on the interaction between electrons and phonons is presented. The article is roughly divided into two parts reflecting different points of view. The density response of the electrons provides the link between these parts. In the first part, the microscopic theory in terms of the density response in crystals is discussed. Relations are pointed out between the density response approach and the density functional theory. The latter is used for a representation of the exchange-correlation interaction and the microscopic force constants. Relevant methods, as recently proposed by various authors for the calculation of the density response in inhomogeneous solids are discussed. Particular attention is paid to the development of a renormalized response description. Applications of this method to lattice dynamical and electronic properties are presented. In the second part an alternative physical concept, the quasi-ion approach, is outlined. This concept is shown to provide a microscopic basis for electronic charge localization in crystals and proves the importance of the correlation between crystal symmetry and many-body effects. Is is derived that within linear response theory an appropriate decomposition of the valence charge density leads uniquely to a spatially localized density contribution at the individual ion which follows its motion rigidly. The composite consisting of this partial density and the ion core is taken to be an individual entity, denoted as quasi-ion, from which the crystal is built up. In a certain sense this is a generalization of Ziman's concept of neutral pseudo-atoms being approximately valid in simple metals. New insight into the bonding mechanism and charge relaxation processes is shown to follow from this concept. In particular, we discuss the covalent, ionic and metallic bonding mechanisms, using the localized picture provided by the partial densities, on the same basis. The quasi-ion approach is also applied to the calculation of phonon-induced charge density redistributions and to the construction of a simplified formulation of microscopic lattice dynamics. Investigations of the phonon dispersion for different bonding types are given within a rigid quasi-ion model and extensions of this model are outlined. Among other things, these calculations indicate that bonding dynamics of (covalent) molecules and crystals can be described by relative rotations of the quasi-ions under the condition of rotational invariance of the system. Finally, possible applications of the quasi-ion concept to an approximate formulation of anharmonic lattice dynamics and the interaction between electrons and phonons are discussed. A numerical investigation of this interaction is presented and compared with the results from the rigid-ion model. As a consequence of the quasi-ion concept a consistent calculation of the phonon dispersion, the electronic band structure and the electron-phonon interaction becomes possible.
Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies
NASA Astrophysics Data System (ADS)
Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.
2018-04-01
Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.
Scanning Microscopes Using X Rays and Microchannels
NASA Technical Reports Server (NTRS)
Wang, Yu
2003-01-01
Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Development of the field of structural physiology
FUJIYOSHI, Yoshinori
2015-01-01
Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835
Development of an environmental high-voltage electron microscope for reaction science.
Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo
2013-02-01
Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy.
Mankos, Marian; Persson, Henrik H J; N'Diaye, Alpha T; Shadman, Khashayar; Schmid, Andreas K; Davis, Ronald W
2016-01-01
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.
Veress, B; Löfberg, R; Bergman, L
1995-01-01
The colorectal biopsy specimens from 30 patients with chronic watery diarrhoea but normal endoscopic and radiographic findings were studied by light microscopy, morphometry, immunohistochemistry, and two patients with electron microscopy. The histological changes in the colorectum were originally diagnosed in six patients as lymphocytic colitis and in 24 patients as collagenous colitis. The analysis of the specimens for this study could delineate three distinct groups of microscopic colitis: lymphocytic colitis (six patients), collagenous colitis without lymphocytic attack on the surface epithelium (seven patients), and a mixed form presenting with both thickening of the collagen plate and increased number of intraepithelial lymphocytes (17 patients). No transformation was seen from one type to another during follow up of six patients for four to seven years. Increased numbers of active pericryptal myofibroblasts were found with the electron microscope in one patient with mixed microscopic colitis showing also myofibroblasts entrapped within the collagen layer. Hitherto undescribed flat mucosa of the ileum was found in one patient with lymphocytic colitis and both flat mucosa and thickening of the collagen plate in the ileum were seen in one patient with the mixed form of the disease. In another patient with mixed microscopic colitis, normalisation of the colorectal morphology occurred after temporary loop ileostomy, followed by the reappearance of both diarrhoea, inflammation, and thickening of the collagen plate after the ileostomy was reversed. No association was found between non-steroid anti-inflammatory drug (NSAID) consumption and collagenous or mixed microscopic colitis. The primary cause of microscopic colitis is probably an immunological reaction to luminal antigen/s, perhaps of ileal origin. The engagement of the pericryptal myofibroblasts in the disease process might result in the development of the various forms of microscopic colitis. An inverse relation between intraepithelial lymphocyte count and collagen thickness may indicate that microscopic colitis is a spectral disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7615277
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
75 FR 9867 - University of Pittsburgh, et al
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... DEPARTMENT OF COMMERCE International Trade Administration University of Pittsburgh, et al.; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a...: University of Pittsburgh, Pittsburgh, PA 15260. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd...
Profiling with the electron microscope.
NASA Technical Reports Server (NTRS)
Vedder, J. F.; Lem, H. Y.
1972-01-01
Discussion of a profiling technique using a scanning electron microscope for obtaining depth information on a single micrograph of a small specimen. A stationary electron beam is used to form a series of contamination spots in a line across the specimen. Micrographs obtained by this technique are useful as a means of projection and display where stereo viewers are not practical.
Bridges, Christy C.; El-Sherbeny, Amira; Roon, Penny; Ola, M. Shamsul; Kekuda, Ramesh; Ganapathy, Vadivel; Cameron, Richard S.; Cameron, Patricia L.
2015-01-01
Summary Caveolae are flask-shaped membrane invaginations present in most mammalian cells. They are distinguished by the presence of a striated coat composed of the protein, caveolin. Caveolae have been implicated in numerous cellular processes, including potocytosis in which caveolae are hypothesized to co-localize with folate receptor α and participate in folate uptake. Our laboratory has recently localized folate receptor α to the basolateral surface of the retinal pigment epithelium (RPE). It is present also in many other cells of the retina. In the present study, we asked whether caveolae were present in the RPE, and if so, whether their pattern of distribution was similar to folate receptor α. We also examined the distribution pattern of caveolin-1, which can be a marker of caveolae. Extensive electron microscopical analysis revealed caveolae associated with endothelial cells. However, none were detected in intact or cultured RPE. Laser scanning confocal microscopical analysis of intact RPE localized caveolin-1 to the apical and basal surfaces, a distribution unlike folate receptor α. Western analysis confirmed the presence of caveolin-1 in cultured RPE cells and laser scanning confocal microscopy localized the protein to the basal plasma membrane of the RPE, a distribution like that of folate receptor α. This distribution was confirmed by electron microscopic immunolocalization. The lack of caveolae in the RPE suggests that these structures may not be essential for folate internalization in the RPE. PMID:11508338
Length measurement and spatial orientation reconstruction of single nanowires.
Prestopino, Giuseppe; Orsini, Andrea; Falconi, Christian; Bietti, Sergio; Verona-Rinati, Gianluca; Caselli, Federica; Bisegna, Paolo
2018-06-27
The accurate determination of the geometrical features of quasi one-dimensional nanostructures is mandatory for reducing errors and improving repeatability in the estimation of a number of geometry-dependent properties in nanotechnology. In this paper a method for the reconstruction of length and spatial orientation of single nanowires is presented. Those quantities are calculated from a sequence of scanning electron microscope images taken at different tilt angles using a simple 3D geometric model. The proposed method is evaluated on a collection of scanning electron microscope images of single GaAs nanowires. It is validated through the reconstruction of known geometric features of a standard reference calibration pattern. An overall uncertainty of about 1% in the estimated length of the nanowires is achieved. © 2018 IOP Publishing Ltd.
A simplified focusing and astigmatism correction method for a scanning electron microscope
NASA Astrophysics Data System (ADS)
Lu, Yihua; Zhang, Xianmin; Li, Hai
2018-01-01
Defocus and astigmatism can lead to blurred images and poor resolution. This paper presents a simplified method for focusing and astigmatism correction of a scanning electron microscope (SEM). The method consists of two steps. In the first step, the fast Fourier transform (FFT) of the SEM image is performed and the FFT is subsequently processed with a threshold to achieve a suitable result. In the second step, the threshold FFT is used for ellipse fitting to determine the presence of defocus and astigmatism. The proposed method clearly provides the relationships between the defocus, the astigmatism and the direction of stretching of the FFT, and it can determine the astigmatism in a single image. Experimental studies are conducted to demonstrate the validity of the proposed method.
Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.
Mroczka, K; Dutkiewicz, J; Pietras, A
2010-03-01
The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.
Duda, V I; Suzina, N E; Dmitriev, V V
2001-01-01
Anaerobacter polyendosporus cells do not have typical mesosomes. However, the analysis of this anaerobic multispore bacterium by electron microscopic cryofractography showed that its cytoplasmic membrane contains specific intramembrane structures in the form of flat lamellar inverted lipid membranes tenths of nanometers to several microns in size. It was found that these structures are located in the hydrophobic interior between the outer and inner leaflets of the cytoplasmic membrane and do not contain intramembrane particles that are commonly present on freeze-fracture replicas. The flat inverted lipid membranes were revealed in bacterial cells cultivated under normal growth conditions, indicating the existence of a complex-type compartmentalization in biological membranes, which manifests itself in the formation of intramembrane compartments having the appearance of vesicles and inverted lipid membranes.
Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D
2013-03-01
We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.
Comparative study of electronic structure and microscopic model of SrMn3P4O14 and Sr3Cu3(PO4)4
NASA Astrophysics Data System (ADS)
Khanam, Dilruba; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the comparative study of the underlying spin model SrMn3P4O14 and Sr3Cu3(PO4)4. We explicitly discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings for both compounds. A microscopic modeling based on analysis of the electronic structure of both systems puts them in the interesting class of weakly coupled trimer units, which makes chains S=5/2 for SrMn3P4O14 and S=1/2 for Sr3Cu3(PO4)4 that are in turn weakly coupled to each other.
Classification of Streptomyces Spore Surfaces into Five Groups
Dietz, Alma; Mathews, John
1971-01-01
Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607
COLONIAL GROWTH OF MYCOPLASMA GALLISEPTICUM OBSERVED WITH THE ELECTRON MICROSCOPE
Shifrine, Moshe; Pangborn, Jack; Adler, Henry E.
1962-01-01
Shifrine, Moshe (University of California, Davis), Jack Pangborn, and Henry E. Adler. Colonial growth of Mycoplasma gallisepticum observed with the electron microscope. J. Bacteriol. 83:187–192. 1962.—Mycoplasma gallisepticum strain S6 was grown on collodion film on solid medium. Samples were removed every few hours, fixed, washed, shadowed, and observed with the electron microscope. Three distinct forms of growth were observed: elementary cells (hexagonally shaped), platycytes, and exoblasts. A tentative mode of growth was postulated. The significance of the angular morphology to the relation between mycoplasmas and L-forms of bacteria is discussed. Images PMID:13911868
Hinova-Palova, Dimka; Edelstein, Lawrence; Paloff, Adrian; Hristov, Stanislav; Papantchev, Vassil; Ovtscharoff, Wladimir
2008-08-01
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless there are little data about the neuronal Nitric Oxide Synthase immunoreactive (nNOS-ir) neurons and fibers in the dorsal claustrum (DC) of a cat. In this respect the aims of this study were: (1) to demonstrate nNOS-ir in the neurons and fibers of the DC; (2) to describe their light microscopic morphology and distribution; (3) to investigate and analyze the ultrastructure of the nNOS-ir neurons, fibers and synaptic terminals; (4) to verify whether the nNOS-ir neurons consist a specific subpopulation of claustral neurons; (5) to verify whether the nNOS-ir neurons have a specific pattern of organization throughout the DC. For demonstration of the nNOS-ir the Avidin-Biotin-Peroxidase Complex method was applied. Immunopositive for nNOS neurons and fibers were present in all parts of DC. On the light microscope level nNOS-ir neurons were different in shape and size. According to the latter they were divided into three groups-small (with diameter under 15 microm), medium-sized (with diameter from 16 to 20 microm) and large (with diameter over 21 microm). Some of nNOS-ir neurons were lightly-stained while others were darkly-stained. On the electron microscope level the immunoproduct was observed in neurons, dendrites and terminal boutons. Different types of nNOS-ir neurons differ according to their ultrastructural features. Three types of nNOS-ir synaptic boutons were found. As a conclusion we hope that the present study will contribute to a better understanding of the functioning of the DC in cat and that some of the data presented could be extrapolated to other mammals, including human.
You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong
2012-10-01
Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
Liu, Baoshun
2016-04-28
In photocatalysis, it is known that light intensity, organic concentration, and temperature affect the photocatalytic activity by changing the microscopic kinetics of holes and electrons. However, how the microscopic kinetics of holes and electrons relates to the photocatalytic activity was not well known. In the present research, we developed a Monte-Carlo random walking model that involved all of the charge kinetics, including the photo-generation, the recombination, the transport, and the interfacial transfer of holes and electrons, to simulate the overall photocatalytic reaction, which we called a "computer experiment" of photocatalysis. By using this model, we simulated the effect of light intensity, temperature, and organic surface coverage on the photocatalytic activity and the density of the free electrons that accumulate in the simulated system. It was seen that the increase of light intensity increases the electron density and its mobility, which increases the probability for a hole/electron to find an electron/hole for recombination, and consequently led to an apparent kinetics that the quantum yield (QY) decreases with the increase of light intensity. It was also seen that the increase of organic surface coverage could increase the rate of hole interfacial transfer and result in the decrease of the probability for an electron to recombine with a hole. Moreover, the increase of organic coverage on the nano-material surface can also increase the accumulation of electrons, which enhances the mobility for electrons to undergo interfacial transfer, and finally leads to the increase of photocatalytic activity. The simulation showed that the temperature had a more complicated effect, as it can simultaneously change the activation of electrons, the interfacial transfer of holes, and the interfacial transfer of electrons. It was shown that the interfacial transfer of holes might play a main role at low temperature, with the temperature-dependence of QY conforming to the Arrhenius model. The activation of electrons from the traps to the conduction band might become important at high temperature, which accelerates the electron movement for recombination and leads to a temperature dependence of QY that deviates from the Arrhenius model.
2017-06-29
Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai
2016-01-01
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578
Damage-free vibrational spectroscopy of biological materials in the electron microscope.
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; ...
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
Damage-free vibrational spectroscopy of biological materials in the electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rez, Peter; Aoki, Toshihiro; March, Katia
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-10-01
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-03-30
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
A Student-Built Scanning Tunneling Microscope
ERIC Educational Resources Information Center
Ekkens, Tom
2015-01-01
Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…
NASA Astrophysics Data System (ADS)
Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo
2018-03-01
Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.
Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim
2016-04-01
The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hahn, Marc Benjamin; Meyer, Susann; Kunte, Hans-Jörg; Solomun, Tihomir; Sturm, Heinz
2017-05-01
The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1 /2=6 ±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells.
78 FR 2659 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
..., 2201 West End Ave., Nashville, TN 37235. Instrument: Electron Microscope. Manufacturer: FEI Company... St., West Lafayette, IN 47907-2024. Instrument: Electron Microscope. Manufacturer: FEI Company, the..., microorganisms, nanomaterials, and chemical compounds. Justification for Duty-Free Entry: There are no...
Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy
NASA Astrophysics Data System (ADS)
Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.
2014-06-01
Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.
Detecting Phase Boundaries in Hard-Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Rogers, Richard B.; Gray, Elizabeth
2009-01-01
A special image-data-processing technique has been developed for use in experiments that involve observation, via optical microscopes equipped with electronic cameras, of moving boundaries between the colloidal-solid and colloidal-liquid phases of colloidal suspensions of monodisperse hard spheres. During an experiment, it is necessary to adjust the position of a microscope to keep the phase boundary within view. A boundary typically moves at a speed of the order of microns per hour. Because an experiment can last days or even weeks, it is impractical to require human intervention to keep the phase boundary in view. The present image-data-processing technique yields results within a computation time short enough to enable generation of automated-microscope-positioning commands to track the moving phase boundary
Wang, Zhen; Xiao, Zhiyu; Huang, Chuanshou; Wen, Liping; Zhang, Weiwen
2017-01-01
The present article studied the effect of ultrasonic surface rolling process (USRP) on the microstructure and wear behavior of a selective laser melted Ti-6Al-4V alloy. Surface characteristics were investigated using optical microscope, nano-indentation, scanning electron microscope, transmission electron microscope and laser scanning confocal microscope. Results indicated that the thickness of pore-free surfaces increased to 100~200 μm with the increasing ultrasonic surface rolling numbers. Severe work hardening occurred in the densified layer, resulting in the formation of refined grains, dislocation walls and deformation twins. After 1000 N 6 passes, about 15.5% and 14.1% increment in surficial Nano-hardness and Vickers-hardness was obtained, respectively. The hardness decreased gradually from the top surface to the substrate. Wear tests revealed that the friction coefficient declined from 0.74 (polished surface) to 0.64 (USRP treated surface) and the wear volume reduced from 0.205 mm−3 to 0.195 mm−3. The difference in wear volume between USRP treated and polished samples increased with sliding time. The enhanced wear resistance was concluded to be associated with the improvement of hardness and shear resistance and also the inhibition of delamination initiation. PMID:29048344
Demonstration of bacterial biofilms in culture-negative silicone stent and jones tube.
Parsa, Kami; Schaudinn, Christoph; Gorur, Amita; Sedghizadeh, Parish P; Johnson, Thomas; Tse, David T; Costerton, John W
2010-01-01
To demonstrate the presence of bacterial biofilms on a dacryocystorhinostomy silicone stent and a Jones tube. One dacryocystorhinostomy silicone stent and one Jones tube were removed from 2 patients who presented with an infection of their respective nasolacrimal system. Cultures were obtained, and the implants were processed for scanning electron microscopy and confocal laser scanning microscopy, advanced microscopic methods that are applicable for detection of uncultivable biofilm organisms. Routine bacterial cultures revealed no growth, but bacterial biofilms on outer and inner surfaces of both implants were confirmed by advanced microscopic techniques. To the authors' knowledge, this is the first article that documents the presence of biofilms on a Crawford stent or a Jones tube on patients who presented with infections involving the nasolacrimal system. Although initial cultures revealed absence of any bacterial growth, confocal laser scanning microscopy and scanning electron microscopy documented bacterial colonization. Clinicians should consider the role of biofilms and the limitation of our standard culturing techniques while treating patients with device- or implant-related infections.
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
Cathodoluminescence in the scanning transmission electron microscope.
Kociak, M; Zagonel, L F
2017-05-01
Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Cathodoluminescence in the scanning transmission electron microscope.
Kociak, M; Zagonel, L F
2016-12-19
Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Hao; MacLaren, Ian; Jones, Lewys; ...
2017-04-01
Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Thus coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light andmore » heavy elements at atomic resolution. Here, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Our experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.« less
Rickman, John M; Smith, Martin J
2014-11-01
Recent years have seen increasing involvement by forensic anthropologists in the interpretation of skeletal trauma. With regard to ballistic injuries, there is now a large literature detailing gross features of such trauma; however, less attention has been given to microscopic characteristics. This article presents analysis of experimentally induced gunshot trauma in animal bone (Bos taurus scapulae) using full metal jacket (FMJ), soft point (SP), and captive bolt projectiles. The results were examined using scanning electron microscopy (SEM). Additional analysis was conducted on a purported parietal gunshot lesion in a human cranial specimen. A range of features was observed in these samples suggesting that fibrolamellar bone response to projectile impact is analogous to that observed in synthetic composite laminates. The results indicate that direction of bullet travel can be discerned microscopically even when it is ambiguous on gross examination. It was also possible to distinguish SP from FMJ lesions. SEM analysis is therefore recommended as a previously underexploited tool in the analysis of ballistic trauma. © 2014 American Academy of Forensic Sciences.
Ball, A D; Job, P A; Walker, A E L
2017-08-01
The method we present here uses a scanning electron microscope programmed via macros to automatically capture dozens of images at suitable angles to generate accurate, detailed three-dimensional (3D) surface models with micron-scale resolution. We demonstrate that it is possible to use these Scanning Electron Microscope (SEM) images in conjunction with commercially available software originally developed for photogrammetry reconstructions from Digital Single Lens Reflex (DSLR) cameras and to reconstruct 3D models of the specimen. These 3D models can then be exported as polygon meshes and eventually 3D printed. This technique offers the potential to obtain data suitable to reconstruct very tiny features (e.g. diatoms, butterfly scales and mineral fabrics) at nanometre resolution. Ultimately, we foresee this as being a useful tool for better understanding spatial relationships at very high resolution. However, our motivation is also to use it to produce 3D models to be used in public outreach events and exhibitions, especially for the blind or partially sighted. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.
1997-05-01
With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
The microscopic world: A demonstration of electron microscopy for younger students
NASA Technical Reports Server (NTRS)
Horton, Linda L.
1992-01-01
The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.; ...
2016-05-05
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
A next generation positron microscope and a survey of candidate samples for future positron studies
NASA Astrophysics Data System (ADS)
Dull, Terry Lou
A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify the Point Defect Model, a detailed, but as yet microscopically unconfirmed, theory of the corrosive breakdown of passive films. DBS results supportive of the PDM were observed. Graphitic carbon fibers were also studied and DBS indicated the presence of a 200 nm thick outer fiber skin possibly characterized by a high degree of graphitic crystallite alignment.
Novel scanning electron microscope bulge test technique integrated with loading function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn
2014-10-15
Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less
Alsafy, M A M; El-Gendy, S A A
2012-03-01
The aim of this study was to cast a spotlight on the topography and to point out the clinical importance of the gastroesophageal junction (GEJ) in Anatolian Shepherd dogs. Nine Anatolian Shepherd dogs were used to study the morphology of the GEJ. The esophagus was appeared has a portion within the thoracic cavity while no portion of the esophagus presented within the abdominal cavity that documented the absence of the intra-abdominal portion in all studied dogs. The topographic anatomy, scanning electron and light microscopic examinations revealed that the gastroesophageal junction was located at the level of the phrenico-esophageal ligament (PEL) inside the esophageal hiatus. Our results were distinguished the morphology of the esophageal and gastric cardiac mucosa at the level of the gastroesophageal junction by the scanning electron micrographs. The light microscopical examination was explained the PEL attached to the esophageal side in one dog and to the gastric cardiac side in three dogs.
Investigation of argon ion sputtering on the secondary electron emission from gold samples
NASA Astrophysics Data System (ADS)
Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai
2016-09-01
Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.
An analytical model for scanning electron microscope Type I magnetic contrast with energy filtering
NASA Astrophysics Data System (ADS)
Chim, W. K.
1994-02-01
In this article, a theoretical model for type I magnetic contrast calculations in the scanning electron microscope with energy filtering is presented. This model uses an approximate form of the secondary electron (SE) energy distribution by Chung and Everhart [M. S. Chung and T. E. Everhart, J. Appl. Phys. 45, 707 (1974). Closed form analytical expressions for the contrast and quality factors, which take into consideration the work function and field-distance integral of the material being studied, are obtained. This analytical model is compared with that of a more accurate numerical model. Results showed that the contrast and quality factors for the analytical model differed by not more than 20% from the numerical model, with the actual difference depending on the range of filtered SE energies considered. This model has also been extended to the situation of a two-detector (i.e., detector A and B) configuration, in which enhanced magnetic contrast and quality factor can be obtained by operating in the ``A-B'' mode.
Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo
2018-01-17
Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.
Pre-microscope tunnelling — Inspiration or constraint?
NASA Astrophysics Data System (ADS)
Walmsley, D. G.
1987-03-01
Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.
Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J
2002-01-01
Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
Miniature self-contained vacuum compatible electronic imaging microscope
Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.
2001-01-01
A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.
Börrnert, Felix; Renner, Julian; Kaiser, Ute
2018-05-21
The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).
An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha, E-mail: schaefer@ph4.physik.uni-goettingen.de
We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.
NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.
Marko, Michael; Rose, Harald
2010-08-01
Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.
Automated particle correspondence and accurate tilt-axis detection in tilted-image pairs
Shatsky, Maxim; Arbelaez, Pablo; Han, Bong-Gyoon; ...
2014-07-01
Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a singlemore » optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar.« less
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2014-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2007-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semithick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
Boevé, M H; Vrensen, G F; Willekens, B L; Stades, F C; van der Linde-Sipman, J S
1993-01-01
This study provides scanning electron microscopic observations on the early morphogenesis of persistent hyperplastic tunica vasculosa lentis and primary vitreous (PHTVL/PHPV) in canine fetuses at days 28 35 postcoitum (D28 and D35). From previous studies regarding PHTVL/PHPV it is known that a retrolental plaque of fibrovascular tissue is present in eyes of affected canine fetuses from the D33 stage. The contribution of vitreous cells to the formation of the plaque is supported by the results of this study. The lens capsules at the stages described were not found to contain abnormalities such as transparent (thinner) parts or rents, as have been described for postnatal cases of PHTVL/PHPV. These findings support the hypothesis that the capsular anomalies observed in postnatal patients are secondary entities.
NASA Astrophysics Data System (ADS)
Rogala, Eric W.; Bankman, Isaac N.
2008-04-01
The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.
The application of scanning electron microscopy to fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.R.; McGill, B.L.
1994-10-01
Many failures involve fracture, and determination of the fracture process is a key factor in understanding the failure. This is frequently accomplished by characterizing the topography of the fracture surface. Scanning electron microscopy has a prominent role in fractography due to three features of the scanning electron microscope (SEM): high resolution, great depth of field, and the ability to obtain chemical information via analysis of the X-rays generated by the electrons. A qualitative treatment is presented of the interaction of electrons with a sample and the effect of the SEM operating parameters on image formation, quality, and X-ray analysis. Fractographsmore » are presented to illustrate these features of scanning electron microscopy and to illustrate the limitations and precautions in obtaining fractographs and x-ray analyses. The review is concluded with examples of fracture surface features of metallic, ceramic, and polymeric materials.« less
Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath
2014-09-30
The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less
Generation of a spin-polarized electron beam by multipole magnetic fields.
Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico
2014-03-01
The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. Copyright © 2013 Elsevier B.V. All rights reserved.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J
2012-09-28
This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor
NASA Astrophysics Data System (ADS)
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.
2012-09-01
This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Steiner, M; Schöfer, C; Mosgoeller, W
1994-12-01
A simple and reliable method has been developed for the in situ LR White embedding of cell monolayers grown on glass cover-slips. Combined with cytochemical or immunological procedures, this technique allows light and/or electron microscopy investigations of a large number of cells in the same horizontal plane within a relatively short period of time. It can be applied to cells grown on microgrid finder cover-slips which allows a distinct site of even an individual cell of a monolayer to be studied at first at the light microscope level and subsequently at the electron microscope level. Hence, it is also suitable for controlling manipulation of single cells, followed by their serial sectioning after relocation in the electron microscope.
Mars Life? - Microscopic Tubular Structures
1996-08-09
This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00285
Mars Life? - Microscopic Egg-shaped Structures
1996-08-09
This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996. http://photojournal.jpl.nasa.gov/catalog/PIA00286
CHARACTERISTICS OF INDIVIDUAL PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES
To determine the nature of aerosol particles in a rural area of the eastern United States, aerosol samples were collected at Deep Creek Lake, Maryland, on various substrates and analyzed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). SEM ana...
Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes
USDA-ARS?s Scientific Manuscript database
Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... DEPARTMENT OF COMMERCE International Trade Administration The Regents of the University of...: Washington University in St. Louis, Saint Louis, MO 63130. Instrument: Electron Microscope. Manufacturer: FEI.... Applicant: The Regents of the University of California, Berkeley, CA 94720. Instrument: Electron Microscope...
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
Itakura, Masaru; Kuwano, Noriyuki; Sato, Kaoru; Tachibana, Shigeaki
2010-08-01
Image contrasts of Si-based semiconducting materials have been investigated by using the latest scanning electron microscope with various detectors under a range of experimental conditions. Under a very low accelerating voltage (500 V), we obtained a good image contrast between crystalline SiGe whiskers and the amorphous matrix using an in-lens secondary electron (SE) detector, while the conventional topographic SE image and the compositional backscattered electron (BSE) image gave no distinct contrast. By using an angular-selective BSE (AsB) detector for wide-angle scattered BSE, on the other hand, the crystal grains in amorphous matrix can be clearly visualized as 'channelling contrast'. The image contrast is very similar to that of their transmission electron microscope image. The in-lens SE (true SE falling dots SE1) and the AsB (channelling) contrasts are quite useful to distinguish crystalline parts from amorphous ones.
Dynamic imaging with electron microscopy
Campbell, Geoffrey; McKeown, Joe; Santala, Melissa
2018-02-13
Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.
Grzelakowski, Krzysztof P
2016-05-01
Since its introduction the importance of complementary k||-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800eV electron beam from an "in-lens" electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered kǁ-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jones, C. L.; Brearley, A. J.
2000-01-01
Samples of Allende have been altered hydrothermally under oxidizing conditions at 200 C. TEM studies show that within 30 days evidence of replacement of matrix olivines by fine-grained serpentine is present and by 90 days complete alteration of many grains has occurred.
Theory of superconductivity and spin excitations in cuprates
NASA Astrophysics Data System (ADS)
Plakida, Nikolay M.
2018-06-01
A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.
Development of a secondary electron energy analyzer for a transmission electron microscope.
Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke
2018-04-01
A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.
An investigation of nitride precipitates in archaeological iron artefacts from Poland.
Kedzierski, Z; Stepiński, J; Zielińska-Lipiec, A
2010-03-01
The paper describes the investigations of nitride precipitates in a spearhead and a sword found in the territory of Poland, in cremation graveyards of the Przeworsk Culture, dated to the Roman Period. Three different techniques of the examination of nitride precipitates were employed: optical microscope, scanning electron microscope (scanning electron microscope with energy dispersive X-ray spectrometer) and transmission electron microscope. Two types of precipitates have been observed, and their plate-like shape was demonstrated. The large precipitate has been confirmed to be gamma'-Fe(4)N, whereas the small one has been identified as alpha''-Fe(16)N(2). The origin of nitride precipitates in archaeological iron artefacts from Poland is probably a result of the manufacturing process or cremation as part of burial rites. An examination of available iron artefacts indicates that nitride precipitates (have only limited effect on mechanical properties) influence the hardness of metal only to a very limited degree.
Micromachined Electron-Tunneling Infrared Detectors
NASA Technical Reports Server (NTRS)
Kenny, Thomas W.; Kaiser, William J.; Waltman, Stephen B.
1993-01-01
Pneumatic/thermal infrared detectors based partly on Golay-cell concept, but smaller and less fragile. Include containers filled with air or other gas trapped behind diaphragms. Infrared radiation heats sensors, causing gas to expand. Resulting deflections of diaphragms measured by displacement sensors based on principle of electron-tunneling transducers of scanning tunneling microscopes. Exceed sensitivity of all other miniature, uncooled infrared sensors presently available. Expected to include low consumption of power, broadband sensitivity, room-temperature operation, and invulnerability to ionizing radiation.
Microscopic observations of self-healing products in calcareous fly ash mortars.
Jóźwiak-Niedźwiedzka, Daria
2015-01-01
The results of microstructural characterization of mortars containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation of the microstructure was performed using scanning electron microscope, optical, and confocal microscope. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process of crack healing. The addition of HCFA, at both 30% and 60%, speeds up the self-healing process in cracks and particularly in micro-cracks. In the research, the completely filling up of the cracks by new phases has not been observed, only the beginning of such process has been noticed. © 2014 Wiley Periodicals, Inc.
CW laser use in biomedical research and practice
NASA Astrophysics Data System (ADS)
Matthopoulos, D. P.
2003-04-01
The communication of humans with their surrouding is achieved through their senses and the related organs. Visual communication using the eyes is made possible because the various sources of light, natural i.e. the sun or the lightning, or artificial such as Lasers, emit electromagnetic radiation which is either reflected or scattered by surfaces. This radiation received by eyes is processed in the brain where the images of the environment are developed. The luminous processing can be either macro- or microscopic. The macroscopic processing is the result of light coming from the sun or from wide range lamps, while the microscopic results from light coming from wide range lamps, mercury lamps, lasers or electron beam. The microscopic processing is the subject we are dealing with in this presentation.
NASA Astrophysics Data System (ADS)
He, Zheng-Hua; Chen, Jun; Wu, Qiang; Ji, Guang-Fu
2017-11-01
We present the density functional theory (DFT) calculations for microscopic electron properties of β-HMX under shock loading. The metallization pressure is determined to be within 30-55 GPa. The frontier molecular orbitals mainly localize on N-NO2 groups initially and disperse with pressure increase, while HOMO and LUMO orbitals trend to aggregate with each other. The deformation of N-NO2 groups and enhanced hydrogen-bonding interactions cause the electron delocalization and lower the band gap, inducing the reaction initiation finally. Our results show that using the electron properties can reliably predict the initial decomposition of energetic materials under shock loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com
2015-02-16
Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.
Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes
NASA Astrophysics Data System (ADS)
Guo, Qiang; Fu, Xidan; Guo, Xiaolei; Liu, Zhiying; Shi, Yan; Zhang, Di
2018-04-01
Indentation-enabled micro/nanomechanical characterization of small-scale specimens provides powerful new tools for probing materials properties that were once unattainable by conventional experimental methods. Recent advancement in instrumentation further allows mechanical testing to be carried out in situ in electron microscopes, with high spatial and temporal resolution. This review discusses the recent development of nanoindentation-enabled in situ mechanical testing in electron microscopes, with an emphasis on the study of micro/nanopillars. Focus is given to novel applications beyond simple compressive and tensile testing that have been developed in the past few years, and limitations and possible future research directions in this field are proposed and discussed.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P; Flom, Z; Heinselman, K
2011-08-04
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and themore » team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.« less
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
NASA Astrophysics Data System (ADS)
Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu
2017-03-01
In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.
Understanding Imaging and Metrology with the Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András E.; Ming, Bin
2009-09-01
One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.
Scanning electron microscope view of iron crystal growing on pyroxene crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.
Arc-melting preparation of single crystal LaB.sub.6 cathodes
Gibson, Edwin D.; Verhoeven, John D.
1977-06-21
A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).
Deciphering the physics and chemistry of perovskites with transmission electron microscopy.
Polking, Mark J
2016-03-28
Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.
Electron tomography of whole cultured cells using novel transmission electron imaging technique.
Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi
2018-01-01
Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Contour metrology using critical dimension atomic force microscopy
NASA Astrophysics Data System (ADS)
Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.
2012-03-01
The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).
Walther, Paul; Schmid, Eberhard; Höhn, Katharina
2013-01-01
Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.
Transmission environmental scanning electron microscope with scintillation gaseous detection device.
Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios
2015-03-01
A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.
Single-photon counting multicolor multiphoton fluorescence microscope.
Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C
2005-01-01
We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis with electron microscope of multielement samples using pure element standards
King, Wayne E.
1987-01-01
A method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons, simultaneously measuring the electron dosage and x-ray intensities for each sample of element to determine a "K.sub.AB " value to be used in the equation ##EQU1## where I is intensity and C is concentration for elements A and B, and exposing the multielement sample to determine the concentrations of the elements in the sample.
Three-dimensional study of the vector potential of magnetic structures.
Phatak, Charudatta; Petford-Long, Amanda K; De Graef, Marc
2010-06-25
The vector potential is central to a number of areas of condensed matter physics, such as superconductivity and magnetism. We have used a combination of electron wave phase reconstruction and electron tomographic reconstruction to experimentally measure and visualize the three-dimensional vector potential in and around a magnetic Permalloy structure. The method can probe the vector potential of the patterned structures with a resolution of about 13 nm. A transmission electron microscope operated in the Lorentz mode is used to record four tomographic tilt series. Measurements for a square Permalloy structure with an internal closure domain configuration are presented.
Angularly-selective transmission imaging in a scanning electron microscope.
Holm, Jason; Keller, Robert R
2016-08-01
This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.
Time-resolved scanning electron microscopy with polarization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frömter, Robert, E-mail: rfroemte@physik.uni-hamburg.de; Oepen, Hans Peter; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg
2016-04-04
We demonstrate the feasibility of investigating periodically driven magnetization dynamics in a scanning electron microscope with polarization analysis based on spin-polarized low-energy electron diffraction. With the present setup, analyzing the time structure of the scattering events, we obtain a temporal resolution of 700 ps, which is demonstrated by means of imaging the field-driven 100 MHz gyration of the vortex in a soft-magnetic FeCoSiB square. Owing to the efficient intrinsic timing scheme, high-quality movies, giving two components of the magnetization simultaneously, can be recorded on the time scale of hours.
Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
2012-12-01
Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.
Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C
2015-08-01
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials
den Engelsen, Daniel; Fern, George R.; Harris, Paul G.; Ireland, Terry G.; Silver, Jack
2017-01-01
Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images. PMID:28772671
NASA Astrophysics Data System (ADS)
Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel
2016-12-01
In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva
2016-09-21
Larvae belonging to the family Chironomidae are difficult to identify. The aim of the present study was to describe the larval morphology of G. (G.) glaucus with the aid of a Scanning Electron Microscope (SEM), the karyotype and biology based on materials obtained from laboratory culture. Describing the morphology of larvae, special attention was paid to rarely or never described structures like the maxilla (lacinia and maxillary palp), the long plate situated below the ventromental plate, and plate X situated between lacinia and mentum. The use of SEM allowed also to obtain better images of labrum and ventromental plate. Morphological features of this species have been supplemented by karyotype and biology of larvae in laboratory conditions. Under controlled experimental conditions we found non-synchronous development of G. (G.) glaucus larvae hatched from one egg mass reflected in different lengths of larvae and emerged imagoes.
Electron microscope study of the vitelline body of some spider oocytes.
SOTELO, J R; TRUJILLO-CENOZ, O
1957-03-25
THE STRUCTURE OF THE VITELLINE NUCLEI OF LYCOSIDAE AND THOMISIDAE WAS DESCRIBED AS FOLLOWS: Vitelline nuclei are constituted of two parts: (a) a peripheral layer (vitelline body cortex), and (b) a central core. The vitelline body cortex is demonstrated to be formed by many cisternae of the endoplasmic reticulum among which mitochondria and Golgi elements are intermingled. The central core is made up mainly of a special type of body described under the name of "capsulated body." Capsulated bodies comprise a capsular layer, limited by a membrane, and two central masses called "geminated masses," each one limited by a double membrane. Irregular masses of closely packed vesicles are found in some cases among the capsulated bodies and free vesicles are present in large numbers. The optical properties of the vitelline body cortex compared with the electron microscope findings lead us to the concept that this layer is a "composite body" according to Weiner's theory.
Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix
NASA Astrophysics Data System (ADS)
Phan, Bich T. N.; Nguyen, Hanh T.; Đao, Huong Q.; Pham, Lam V.; Quan, Trang T. T.; Nguyen, Duong B.; Nguyen, Huong T. L.; Vu, Thuan T.
2017-02-01
In this study, we report the direct precipitation of nano-HA in the present of maltodextrins with the different dextrose equivalent (DE) values in the range of 10-30. Characterization of the obtained samples, using X-ray diffraction and Fourier transform infrared spectrophotometry, indicated that the presence of maltodextrins, with the different DE values, does not affect the phase composition and structure of the obtained composites. Morphology studies of the samples, using field emission scanning electron microscope and transmission electron microscope, revealed that maltodextrin has obvious effect on the size, shape, and morphology of hydroxyapatite nanoparticles. In particular, in studied DE range, maltodextrin DE 28-30 with dominant structure of debranched chain is the most preferable choice to obtain the composite with highly dispersed nanoparticles. In vitro assay on pre-osteoblast MC3T3-E1 cells demonstrated the ability of the composites to stimulate alkaline phosphatase activity and mineralization during differentiation of the cells.
SQCRAMscope imaging of transport in an iron-pnictide superconductor
NASA Astrophysics Data System (ADS)
Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin
2017-04-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.
Color-tunable properties of Eu3+- and Dy3+-codoped Y2O3 phosphor particles
2012-01-01
Rare-earth phosphors are commonly used in display panels, security printing, and fluorescent lamps, and have potential applications in lasers and bioimaging. In the present study, Eu3+- and Dy3+-codoped uniform-shaped Y2O3 submicron particles were prepared using the urea homogeneous precipitation method. The structure and morphology of the resulting particles were characterized by X-ray diffraction, field emission scanning electron microscope, and field emission transmission electron microscope, whereas their optical properties were monitored by photoluminescence spectroscopy. The room-temperature luminescence color emission of the synthesized particles can be tuned from red to yellow by switching the excitation wavelength from 254 to 350 nm. The luminescence intensities of red and yellow emissions could be altered by varying the dopant concentration. Strong quenching was observed at high Eu3+ and Dy3+ concentrations in the Y2O3 host lattice. PMID:23043645
Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R
2011-07-15
We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.
Intrinsic instability of aberration-corrected electron microscopes.
Schramm, S M; van der Molen, S J; Tromp, R M
2012-10-19
Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an "instability budget" which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
Li, Nan; Wang, Jiangwei; Mao, Scott; ...
2016-04-01
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Wang, Jiangwei; Mao, Scott
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
NASA Technical Reports Server (NTRS)
Ochoa, Ozden O.
2004-01-01
Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.
An electromagnetic/electrostatic dual cathode system for electron beam instruments
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Wittry, D. B.; Albee, A. L.
1986-01-01
A method of providing cathode redundancy which consists of two fixed cathodes and uses electromagnetic and/or electrostatic fields to direct the electron beam to the electron optical axis is presented, with application to the cathode system of the Scanning Electron Microscope and Particle Analyzer proposed for NASA's Mariner Mark II Comet Rendezvous/Asteroid Flyby projected for the 1990s. The symmetric double deflection system chosen has the optical property that the image of the effective electron source is formed above the magnet assembly near the apparent position of the effective source, and it makes the transverse positions of the electron sources independent of the electron beam energy. Good performance of the system is found, with the sample imaging resolution being the same as for the single-axis cathode.
Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.
Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F
2016-12-01
High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.
Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy
Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.
2016-01-01
We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231
Light propagation and interaction observed with electrons.
Word, Robert C; Fitzgerald, J P S; Könenkamp, R
2016-01-01
We discuss possibilities for a microscopic optical characterization of thin films and surfaces based on photoemission electron microscopy. We show that propagating light with wavelengths across the visible range can readily be visualized, and linear and non-linear materials properties can be evaluated non-invasively with nanometer spatial resolution. While femtosecond temporal resolution can be achieved in pump-probe-type experiments, the interferometric approach presented here has typical image frame times of ~200 fs. Copyright © 2015 Elsevier B.V. All rights reserved.
Preparation of high-quality planar FeRh thin films for in situ TEM investigations
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen
2017-10-01
The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.
Ceramic Translations. Volume 41. Grain Boundaries and Interfacial Phenomena in Electronic Ceramics
1994-01-01
will be dealt with below. EXPERIMENTAL PROCEDURE Two BaTiO 3 powders were examined. The first was a commercially prepared hydrothermal powder whilst...the second was hydrothermally grown in the present work to an average particle size (0.28 To the extent authorized under the laws of the United States...program [14]. Particle sizes were determined with a JEOL JXA-840 scanning electron microscope running at 15 keV. Fresh commercial hydrothermal BaTiO 3
Santoro, T.; Stotzky, G.; Rem, L. T.
1967-01-01
Microscopic, respirometric, and electronic sizing methods for measuring germination of fungal spores were compared. With the electronic sizing method, early stages of germination (i.e., spore swelling) were detected long before germ tube emergence or significant changes in respiratory rates were observed. This method, which is rapid, easy, sensitive, and reproducible, also permits measuring the germination of spores when similar-size particles are present in concentrations considerably in excess of the number of spores. PMID:6069161
Garcés-Ortíz, Maricela; Ledesma-Montes, Constantino; Reyes-Gasga, José
2013-05-01
The aim of this report is to present the results of a scanning electron microscopic study on the presence of matrix vesicles (MVs) found in human dentine. Dentin tissue from 20 human bicuspids was analyzed by means of scanning electron microscopy. MVs were found as outgrowths of the cellular membrane of the odontoblastic body, the more proximal portion of the odontoblastic process before entering the dentinal tubule and in the odontoblastic process within the inner third of the dentin. Size of MVs varied depending on location. In the inner third of dentin, they were seen in diverse positions; as membranal outgrowths, deriving from the odontoblastic process, lying free in the intratubular space and attached to the dentinal wall. Sometimes, they were seen organized forming groups of different sizes and shapes or as multivesicular chains running from the surface of the odontoblastic process to the tubular wall. MVs were present in places never considered: 1) the body of odontoblasts; 2) the most proximal part of the odontoblastic processes before entering the circumpulpal dentine and also: 3) in the inner third of dentinal tissue. According to our results, MVs not only participate during mantle dentin mineralization during early dentinogenesis, they also contribute during the mineralization process of the inner dentin.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.
Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A
2016-11-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.
2016-01-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265
Apparatus and methods for controlling electron microscope stages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duden, Thomas
Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a pluralitymore » of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.« less
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Boundary migration and disappearance of voids in Alpha-Al2O3 at 2000 deg C
NASA Technical Reports Server (NTRS)
Komatsu, M.; Fujita, H.
1984-01-01
A series of photographs taken with Osaka University's high temperature 3MV electron microscope of alpha-A1(z)O(3) at 2000 C is presented. The dynamic study shows grain boundary migration in progress and demonstrates that disappearance of voids is controlled by boundary migration.
ATLAS of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia)
NASA Technical Reports Server (NTRS)
Zhengallo, Elena A.; Rozanov, Alexei Yu.; Ushatinskaya, Galina T.; Hoover, Richard B.; Gerasimenko, Ludmila M.; Ragozina, Alla L.
2000-01-01
A photographic atlas of scanning electron microscope (SEM) images of Cambrian (Tommotian) microfossils from the phosphorites of Khubsugul Mongolia is presented. SEM images of modern cyanobacteria and bacteria are provided for comparison. The importance of bacterial fossils and morphological biomarkers to astrobiology and the understanding of the origin of phosphorites is considered.
Synthesis of di-functional ligand and fluorescently labeling SiO2 microspheres
NASA Astrophysics Data System (ADS)
Chen, Kexu; Kang, Ming; Liu, Min; Shen, Simin; Sun, Rong
2018-05-01
In order to complete the fluorescent labeling of SiO2 microspheres, a kind of di-functional ligand was synthesized and purified, which could not only coordinate rare earth ions but also react with the active groups to bond host materials with an alkoxysilane groups. Fourier transform infrared spectroscopy (FT-IR), 1H NMR spectra, MS spectra, field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and luminescence spectrophotometer were used to study the structure of di-functional ligand and properties of fluorescent coupling agent and fluorescent labeled SiO2 microspheres. The optimal experiment conditions were acquired as follows: molar ratio as 1: 4 (MDBM: MICPTES), reaction time at 6 h and reaction temperature as 65 °C (yield up to 40%) through the orthogonal experiment and purification process. The results indicated that fluorescent coupling agent presented red photoluminesence of Eu3+ ions at 610 nm, and the absolute quantum yield was 11%. On the other hand, the hydrolysis of the coupling agent reacted on the surface of SiO2 microspheres and presented fluorescent labeling homogeneously.
NASA Astrophysics Data System (ADS)
Rajendiran, N.; Mohandoss, T.; Sankaranarayanan, R. K.
2015-02-01
Inclusion complexation behavior of procainamide (PCA) with two cyclodextrins (α-CD and β-CD) were analyzed by absorption, fluorescence, scanning electron microscope (SEM), transmission electron microscope (TEM), Raman image, FT-IR, differential scanning colorimeter (DSC), Powder X ray diffraction (XRD) and 1H NMR. Blue shift was observed in β-CD whereas no significant spectral shift observed in α-CD. The inclusion complex formation results suggest that water molecules also present in the inside of the CD cavity. The present study revealed that the phenyl ring of the PCA drug is entrapped in the CD cavity. Cyclodextrin studies show that PCA forms 1:2 inclusion complex with α-CD and β-CD. PCA:α-CD complex form nano-sized particles (46 nm) and PCA:β-CD complex form self-assembled to micro-sized tubular structures. The shape-shifting of 2D nanosheets into 1D microtubes by simple rolling mechanism were analysed by micro-Raman and TEM images. Thermodynamic parameters (ΔH, ΔG and ΔS) of inclusion process were determined from semiempirical PM3 calculations.
[Microscopic investigation of vessel wall after endovascular catheter atherectomy].
Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M
2014-01-01
Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
Isotope analysis in the transmission electron microscope.
Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani
2016-10-10
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study
Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna
2015-01-01
The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511
ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application
NASA Astrophysics Data System (ADS)
Ashok, CH.; Venkateswara Rao, K.
2014-12-01
The nanocomposite rods shows well known properties compared with nano structured materials for various applications like light-emitting diodes, electron field emitters, solar cells, optoelectronics, sensors, transparent conductors and fabrication of nano devices. Present paper investigates the properties of ZnO/TiO2 nanocomposite rods. The bi component of ZnO/TiO2 nanocomposite rods was synthesized by microwave-assisted method which is very simple, rapid and uniform in heating. The frequency of microwaves 2.45 GHz was used and temperature maintained 180 °C. Zinc acetate and titanium isopropoxide precursors were used in the preparation. The obtained ZnO/TiO2 nanocomposite rods were annealed at 500 °C and 600 °C. ZnO/TiO2 nanocomposite rods have been characterized by X-ray Diffraction (XRD) for average crystallite size and phase of the composite material, Particle Size Analyser (PSA) for average particle size, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) for morphology study, Energy Dispersive X-ray Spectrometry (EDX) for elemental analysis, and Thermal Gravimetric and Differential Thermal Analysis (TG-DTA) for thermal property.
Serial sectioning methods for 3D investigations in materials science.
Zankel, Armin; Wagner, Julian; Poelt, Peter
2014-07-01
A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M
2018-04-26
Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Biermann, U; Herbst, W; Krauss, H; Schliesser, T
1989-12-01
During 1988 fecal and gut samples of 641 dogs, 198 cats, 576 calves, 108 piglets and 64 foals with diarrhoea were investigated for virus infections by electron microscopy. In samples of dogs and cats parvovirus was detected at a proportion of 21.9% and 16.7%, respectively; rotavirus alone or together with coronavirus was found only in 0.3-1.5% of the specimens. In samples of calves rotavirus, as well as coronavirus dominated with a detection rate amounting to 17.4% and 26.6% respectively (including 4.5% of mixed infections); parvovirus was present in a ratio of 0.5%. Specimens of piglets mainly contained coronavirus (25.0%), and in lower percentages rotavirus (2.8%), rota- and coronaviruses (0.9%) and parvovirus (0.9%). In feces of foals rotavirus was detected in 6.3% and particles resembling picornavirus in 4.7% of cases. Not identifiable virus particles resembling corona-or picornaviruses were rarely found (between 0.6-2.5) also in specimens of the other animal species.
Diabetic choroidopathy. Light and electron microscopic observations of seven cases.
Hidayat, A A; Fine, B S
1985-04-01
The choroid of seven young patients (ages 20-29 years), who had had diabetes mellitus for many years (14-23 years) was studied by light and electron microscopy. The eight enucleated eyes were blind and painful as a complication of diabetes mellitus. Histopathologically, the choriocapillaris and other small choroidal blood vessels disclosed marked basement membrane thickening of their walls. Periodic acid-Schiff-positive homogeneous acellular nodules were present and resembled those of diabetic glomerulosclerosis (Kimmelsteil-Wilson disease). Some choroidal arteries were arteriosclerotic. Choroidal compromise was suggested by luminal narrowing of the capillaries, capillary dropout, and focal scarring. Choroidal neovascularization with subretinal fibrovascular membranes occurred in two patients at the midperiphery and periphery, and resembled those of retinitis proliferans. Leakage of proteinaceous fluid into the choroidal stroma and beneath the focally detached pigment epithelium was suggested by the electron microscopic observations. Choroidal vasculopathy in diabetes mellitus is similar to much of what has been described in other tissues of the eye and body, and suggests an important role in the pathogenesis of diabetic retinopathy since the outer retinal layers are largely dependent on the choroid for their nutrition and oxygenation.
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Electron microscope phase enhancement
Jin, Jian; Glaeser, Robert M.
2010-06-15
A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.
Mars Life? - Microscopic Structures
1996-08-09
In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00283
Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Mayer, Joachim
In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).
Low-energy electron point projection microscopy/diffraction study of suspended graphene
NASA Astrophysics Data System (ADS)
Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Chang, Mu-Tung; Hsieh, Chia-Tso; Wang, Chang-Ran; Lee, Wei-Li; Hwang, Ing-Shouh
2017-11-01
In this work, we present our study of suspended graphene with low-energy electrons based on a point projection microscopic/diffractive imaging technique. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. This method allows imaging of individual adsorbates at the nanometer scale and characterizing graphene layers, graphene lattice orientations, ripples on graphene membranes, etc. We found that long-duration exposure to low-energy electron beams induced aggregation of adsorbates on graphene when the electron dose rate was above a certain level. We also discuss the potential of this technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules adsorbed on suspended graphene.
Concurrent in situ ion irradiation transmission electron microscope
Hattar, K.; Bufford, D. C.; Buller, D. L.
2014-08-29
An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.
Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.
1985-01-01
The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers.
Stollenwerk, A. J.; Hurley, N.; Beck, B.; ...
2015-03-19
In this study, we present evidence that subsurface carbon nanoparticles in Bi₂Sr₂CaCu₂O 8+δ can be manipulated with nanometer precision using a scanning tunneling microscope. High resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface.
Synthesis of gold nanoparticles with graphene oxide.
Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng
2014-05-01
Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.
3D Diffraction Microscope Provides a First Deep View
NASA Astrophysics Data System (ADS)
Miao, Jianwei
2005-03-01
When a coherent diffraction pattern is sampled at a spacing sufficiently finer than the Bragg peak frequency (i.e. the inverse of the sample size), the phase information is in principle encoded inside the diffraction pattern, and can be directly retrieved by using an iterative process. In combination of this oversampling phasing method with either coherent X-rays or electrons, a novel form of diffraction microscopy has recently been developed to image nanoscale materials and biological structures. In this talk, I will present the principle of the oversampling method, discuss the first experimental demonstration of this microscope, and illustrate some applications in nanoscience and biology.
Confirmation of thalamosubthalamic projections by electron microscopic autoradiography.
Sugimoto, T; Hattori, T
1983-05-16
Direct projections from the centre median-parafascicular complex (CM-Pf) to the subthalamic nucleus(STN) were confirmed by electron microscopic autoradiography. [3H]Leucine injections into the rat CM-Pf produced preferential labeling of Gray's type I boutons containing round vesicles in the ipsilateral STN. Further results strongly suggested the existence of some common CM-Pf projections to both the striatum and STN.
Collection and Analysis of Aircraft Emitted Particles
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1999-01-01
The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.
Foucault imaging by using non-dedicated transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken
2012-08-27
An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.
Review of current progress in nanometrology with the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Archie, Charles; Ming, Bin
2011-02-01
Scanning electron microscopy has been employed as an imaging and measurement tool for more than 50 years and it continues as a primary tool in many research and manufacturing facilities across the world. A new challenger to this work is the helium ion microscope (HIM). The HIM is a new imaging and metrology technology. Essentially, substitution of the electron source with a helium ion source yields a tool visually similar in function to the scanning electron microscope, but very different in the fundamental imaging and measurement process. The imaged and measured signal originates differently than in the scanning electron microscope and that fact and its single atom source diameter may be able to push the obtainable resolution lower, provide greater depth-of-field and ultimately improve the metrology. Successful imaging and metrology with this instrument entails understanding and modeling of new ion beam/specimen interaction physics. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanometrology has yet to be fully exploited. This paper discusses some of the progress made at NIST in collaboration with IBM to understand the science behind this new technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.
The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less
Preparation of polymeric Janus particles by directional UV-induced reactions.
Liu, Lianying; Ren, Mingwei; Yang, Wantai
2009-09-15
Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.
Interaction of electrons with light metal hydrides in the transmission electron microscope.
Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei
2014-12-01
Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; ...
2015-12-09
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Lo, T Y; Sim, K S; Tso, C P; Nia, M E
2014-01-01
An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.
2007-05-01
First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).
Xiao, Bin; Xu, Chang; Liu, Min; Ji, Yi; Yang Li-xun; Li, Tai-ming; Jiang, Jun; He, Tao-zhen
2016-03-01
To investigate the effects of Tetrandrine (TET) prenatal intervention on the differentiation of alveolar epithelial cells type I (AEC I) in rat model of Nitrofen-induced congenital diaphragmatic hernia (CDH). Timed-pregnant Sprague-Dawley rats were divided into three groups, namely control, CDH and TET group on day 9.5 of gestation. The rats in TET group and CDH group were given 125 mg of Nitrofen by gavage one time, while the rats in control group were given the same dose of seed fat. After that, the rats in TET group was given 30 mg/kg of TET by gavage once a day for three days from day 18.5 of gestation, while the rats in CDH and control group were given the same dose of normal saline. On day 21.5 of gestation, all fetuses were delivered by cesarean, the lungs of fetuses were histologically evaluated by microscope and electron microscope. The expressions of type I cell-specific protein (RT140) and thyroid transcription factor 1 (TTF1) in alveolar fluid content were analyzed by RT-PCR and immunohistochemistry staining. To detect the number of AEC I and AEC II of each group by transmission electron microscopy and calculate the percentage of AEC I and AEC II (I/II%). The microscope and electron microscope study found the lungs of fetuses in CDH group showed marked hypoplasia, in contrast to the improvement of hypoplasia in TET fetuses. The pulmonary alveolar area had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. I/II% had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. The expression level of TTF1 was up-regulated in both CDH and TET groups, and it was higher in CDH group (P < 0.01). The expression level of RT140 were down-regulated in CDH and TET groups, which was lower in CDH group (P < 0.01). The development of AEC I was interfered in CDH rat model, TET prenatal treatment could improve the lung development of CDH.
SEM, optical, and Moessbauer studies of submicrometer chromite in Allende
NASA Technical Reports Server (NTRS)
Housley, R. M.
1982-01-01
New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.
Memtily, Nassirhadjy; Okada, Tomoko; Ebihara, Tatsuhiko; Sato, Mari; Kurabayashi, Atsushi; Furihata, Mutsuo; Suga, Mitsuo; Nishiyama, Hidetoshi; Mio, Kazuhiro; Sato, Chikara
2015-05-01
In the atmospheric scanning electron microscope (ASEM), a 2- to 3-µm layer of the sample resting on a silicon nitride-film window in the base of an open sample dish is imaged, in liquid, at atmospheric pressure, from below by an inverted SEM. Thus, the time-consuming pretreatments generally required for biological samples to withstand the vacuum of a standard electron microscope are avoided. In the present study, various mouse tissues (brain, spinal cord, muscle, heart, lung, liver, kidney, spleen and stomach) were fixed, stained with heavy metals, and visualized in radical scavenger D-glucose solution using the ASEM. While some stains made the nuclei of cells very prominent (platinum-blue, phosphotungstic acid), others also emphasized cell organelles and membranous structures (uranium acetate or the NCMIR method). Notably, symbiotic bacteria were sometimes observed on stomach mucosa. Furthermore, kidney tissue could be stained and successfully imaged in <30 min. Lung and spinal cord tissue from normal mice and mice metastasized with breast cancer cells was also examined. Cancer cells present in lung alveoli and in parts of the spine tissue clearly had larger nuclei than normal cells. The results indicate that the ASEM has the potential to accelerate intraoperative cancer diagnosis, the diagnosis of kidney diseases and pathogen detection. Importantly, in the course of the present study it was possible to increase the observable tissue area by using a new multi-windowed ASEM sample dish and sliding the tissue across its eight windows.
Compositional redistribution in alloy films under high-voltage electron microscope irradiation
NASA Astrophysics Data System (ADS)
Lam, Nghi Q.; Leaf, O. K.; Minkoff, M.
1983-10-01
The problem of nonequilibrium segregation in alloy films under high-voltage electron microscope (HVEM) irradiation at elevated temperatures is re-examined in the present work, taking into account the damage-rate gradients caused by radial variation in the electron flux. Axial and radial compositional redistributions in model solid solutions, representative of concentrated Ni-Cu, Ni-Al and Ni-Si alloys, were calculated as a function of time, temperature, and film thickness, using a kinetic theory of segregation in binary alloys. The numerical results were achieved by means of a new software package (DISPL2) for solving convection-diffusion-kinetics problems with general orthogonal geometries. It was found that HVEM irradiation-induced segregation in thin films consists of two stages. Initially, due to the proximity of the film surfaces as sinks for point defects, the usual axial segregation (to surfaces) occurs at relatively short irradiation times, and rapidly attains quasi-steady state. Then, radial segregation becomes more and more competitive, gradually affecting the kinetics of axial segregation. At a given temperature, the buildup time to steady state is much longer in the present situation than in the simple case of one-dimensional segregation with uniform defect production. Changes in the alloy composition occur in a much larger zone than the irradiated volume. As a result, the average alloy composition within the irradiated region can differ greatly from that of the unirradiated alloy. The present calculations may be useful in the interpretation of the kinetics of certain HVEM irradiation-induced processes in alloys.
Generation of dense statistical connectomes from sparse morphological data
Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel
2014-01-01
Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033
Colloidal Synthesis and Thermoelectric Properties of CuFeSe2 Nanocrystals
Zhang, Bing-Qian; Zuo, Yong; Chen, Jing-Shuai; Niu, He-Lin; Mao, Chang-Jie
2017-01-01
Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly elements, are excellent materials for numerous energy conversion applications, such as photocatalysis, photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily studied after ligand removal by means of hydrazine and hexane solution. The TE performances of the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated to show a promising TE materialand makes it a possible p-type candidate for medium-temperature TE applications. PMID:29278381
Semeshin, F; Belyaeva, S; Zhimulev, F
2001-12-01
Breaks and ectopic contacts in the heterochromatic regions of Drosophila melanogaster polytene chromosomes are the manifestations of the cytological effects of DNA underreplication. Their appearance makes these regions difficult to map. The Su(UR)ES gene, which controls the phenomenon, has been described recently. Mutation of this locus gives rise to new blocks of material in the pericentric heterochromatic regions and causes the disappearance of breaks and ectopic contacts in the intercalary heterochromatic regions, thereby making the banding pattern distinct and providing better opportunities for mapping of the heterochromatic regions in polytene chromosomes. Here, we present the results of an electron microscope study of the heterochromatic regions. In the wild-type salivary glands, the pericentric regions correspond to the beta-heterochromatin and do not show the banding pattern. The most conspicuous cytological effect of the Su(UR)ES mutation is the formation of a large banded chromosome fragment comprising at least 25 bands at the site where the 3L and 3R proximal arms connect. In the other pericentric regions, 20CF, 40BF and 41BC, 15, 12 and 9 new bands were revealed, respectively. A large block of densely packed material appears in the most proximal part of the fourth chromosome. An electron microscope analysis of 26 polytene chromosome regions showing the characteristic features of intercalary heterochromatin was also performed. Suppression of DNA underreplication in the mutant transforms the bands with weak spots into large single bands.
Kuruvilla, Aby; Jaganath, Bharath Makonahalli; Krishnegowda, Sahadev Chickmagaravalli; Ramachandra, Praveen Kumar Makonahalli; Johns, Dexton Antony; Abraham, Aby
2015-01-01
Aim: The purpose of this study is to evaluate and compare the efficacy of 17% EDTA, 18% etidronic acid, and 7% maleic acid in smear layer removal using scanning electron microscopic image analysis. Materials and Methods: Thirty, freshly extracted mandibular premolars were used. The teeth were decoronated to obtain working length of 17mm and instrumentation up to 40 size (K file) with 2.5% NaOCl irrigation between each file. The samples were divided into Groups I (17% ethylenediaminetetraacetic acid (EDTA)), II (18% etidronic acid), and III (7% maleic acid) containing 10 samples each. Longitudinal sectioning of the samples was done. Then the samples were observed under scanning electron microscope (SEM) at apical, middle, and coronal levels. The images were scored according to the criteria: 1. No smear layer, 2. moderate smear layer, and 3 heavy smear layer. Statistical Analysis: Data was analyzed statistically using Kruskal–Wallis analysis of variance (ANOVA) followed by Mann-Whitney U test for individual comparisons. The level for significance was set at 0.05. Results: The present study showed that all the three experimental irrigants removed the smear layer from different tooth levels (coronal, middle, and apical). Final irrigation with 7% maleic acid is more efficient than 17% EDTA and 18% etidronic acid in the removal of smear layer from the apical third of root canal. PMID:26069414
Revealing the 1 nm/s extensibility of nanoscale amorphous carbon in a scanning electron microscope.
Zhang, Wei
2013-01-01
In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have positive implications to explore some amorphous carbon as electron field emission device. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong
2017-05-01
Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.
Ippolitov, E V; Didenko, L V; Tzarev, V N
2015-12-01
The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).
Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald
2013-01-01
Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.
Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A
2018-03-01
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A
2013-10-01
We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.
NASA Technical Reports Server (NTRS)
Luke, K. L.; Cheng, L.-J.
1984-01-01
A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.
Investigation of low-loss spectra and near-edge fine structure of polymers by PEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckmann, W.
Transmission electron microscopy has changed from a purely imaging method to an analytical method. This has been facilitated particularly by equipping electron microscopes with energy filters and with parallel electron energy loss spectrometers (PEELS). Because of their relatively high energy resolution (1 to 2 eV) they provide information not only on the elements present but also on the type of bonds between the molecular groups. Polymers are radiation sensitive and the molecular bonds change as the spectrum is being recorded. This can be observed with PEEL spectrometers that are able to record spectra with high sensitivity and in rapid succession.
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
NASA Astrophysics Data System (ADS)
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.
Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun
2016-08-01
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idrobo Tapia, Juan Carlos; Zhou, Wu
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
Idrobo Tapia, Juan Carlos; Zhou, Wu
2017-03-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
Automated in-chamber specimen coating for serial block-face electron microscopy.
Titze, B; Denk, W
2013-05-01
When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Optical properties of the magnetic monopole field applied to electron microscopy and spectroscopy
NASA Astrophysics Data System (ADS)
Kruit, P.; Lenc, M.
1992-11-01
An analytical treatment of the electron's motion in a magnetic monopole field results in useful expressions for both the lens action and the mirror action of the field. Using an appropriate definition of the magnetic moment of the electron, it is shown that there is an exact conservation of this parameter in the monopole field, implying that the motion is perfectly adiabatic. This property is important when the field is used for directing Auger electrons from a target to a detector; that is, when it is used as a parallelizer in a through-the-lens detection scheme. Regarding the monopole field as an electron lens, the image position and magnification are derived for an arbitrary object position. Expressions for both the axial aberrations (chromatic and spherical) and the image aberrations (coma, field curvature, astigmatism, distortion, and transverse chromatic) are derived for an arbitrary number of intermediate images between object and final image. The chromatic aberration turns out to be independent of the number of intermediate images and the spherical aberration decreases slightly with this number. This property is important when an electron beam must be focused to a small probe in a strong magnetic field. It is shown that if a certain combination of deflectors is used in conjunction with the monopole field, an ideal swinging objective lens is obtained: All image aberrations except field curvature disappear. Designs are presented in which the monopole field is used in the objective lenses of a transmission electron microscope and a scanning electron microscope.
Tailoring Dirac Fermions in Molecular Graphene
NASA Astrophysics Data System (ADS)
Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.
2012-02-01
The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.
Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe
NASA Astrophysics Data System (ADS)
Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao
2017-10-01
Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.
Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2011-08-01
We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.
Highly Sophisticated Virtual Laboratory Instruments in Education
NASA Astrophysics Data System (ADS)
Gaskins, T.
2006-12-01
Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.
Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging
Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John
2014-01-01
Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234
Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin
2017-06-01
We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.
An investigation into vascular prosthesis modified with an electron beam.
Lowkis, B; Szymonowicz, M; Rutkowski, J
1997-01-01
The present paper shows the results of an investigation into the effect of implanted electric charge on blood platelet adhesion to woven surfaces of "Dallon" polyester vascular prosthesis. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed on the basis of microscopic studies. It was shown that an implanted negative electric charge remarkably suppresses thrombocyte adhesion to the prosthesis surface. The electret effect was found to play a significant role in the process of preparing nonthrombogenic surfaces.
Theory of few photon dynamics in light emitting quantum dot devices
NASA Astrophysics Data System (ADS)
Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas
2009-10-01
We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.
Disentangling specific versus generic doping mechanisms in oxide heterointerfaces
NASA Astrophysics Data System (ADS)
Gabel, J.; Zapf, M.; Scheiderer, P.; Schütz, P.; Dudy, L.; Stübinger, M.; Schlueter, C.; Lee, T.-L.; Sing, M.; Claessen, R.
2017-05-01
More than a decade after the discovery of the two-dimensional electron system (2DES) at the interface between the band insulators LaAlO3 (LAO) and SrTiO3 (STO) its microscopic origin is still under debate. Several explanations have been proposed, the main contenders being electron doping by oxygen vacancies and electronic reconstruction, i.e., the redistribution of electrons to the interface to minimize the electrostatic energy in the polar LAO film. However, no experiment thus far could provide unambiguous information on the microscopic origin of the interfacial charge carriers. Here we utilize a novel experimental approach combining photoelectron spectroscopy (PES) with highly brilliant synchrotron radiation and apply it to a set of samples with varying key parameters that are thought to be crucial for the emergence of interfacial conductivity. Based on microscopic insight into the electronic structure, we obtain results tipping the scales in favor of polar discontinuity as a generic, robust driving force for the 2DES formation. Likewise, other functionalities such as magnetism or superconductivity might be switched in all-oxide devices by polarity-driven charge transfer.
Iwasaki, S; Asami, T; Wanichanon, C
1996-04-01
Various species of turtles are adapted to different environments, such as freshwater, seawater, and terrestrial habitats. Comparisons of histological and ultrastructural features of the tongue of the juvenile Hawksbill turtle, Eretmochelys imbricata bissa, with those of freshwater turtles should reveal some aspects of the relationship between the structure of the lingual epithelium and the environment. The light microscope, scanning electron microscope and transmission electron microscope were used. Light microscopy revealed that the mucosal epithelium of the tongue was of the keratinized, stratified squamous type. Under the scanning electron microscope, no lingual papillae were visible on the dorsal surface of the tongue. Micropits and the thickening of cell margins were clearly seen on the surface of cells located on the outermost side. The transmission electron microscope revealed that the cells in the intermediate layer were gradually flattened from the basal side to the surface side, as were their nuclei. In the shallow intermediate layer, the cells were significantly flattened, and their nuclei were condensed or had disappeared. The cytoplasm contained keratohyalin granules, tonofibrils, free ribosomes, mitochondria, and rough endoplasmic reticulum. Numerous free ribosomes were attached to the surface of small keratohyalin granules. The cells of the keratinized layer were significantly flattened, and their nuclei had completely disappeared. Most of cytoplasm was filled with keratin fibers of high electron density. Keratin fibers of the shedding cells, which were located on the outermost side of the keratinized layer, appeared looser, and each fiber, which was somewhat thicker than the tonofibrils and tonofilaments, was clearly distinguishable. The lingual epithelium of the juvenile Hawksbill turtle differs significantly from that of the adult freshwater turtle, in spite of the similarity in gross morphology of the tongues of these species.
Terrestrial Clay under Microscope
2008-09-30
A scanning electron microscope captured this image of terresterial soil containing a phyllosilicate mineral from Koua Bocca, Ivory Coast, West Africa. This soil shares some similarities with Martian soil scooped by NASA Phoenix Lander.
The free-electron laser - Maxwell's equations driven by single-particle currents
NASA Technical Reports Server (NTRS)
Colson, W. B.; Ride, S. K.
1980-01-01
It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.
Analysis with electron microscope of multielement samples using pure element standards
King, W.E.
1986-01-06
This disclosure describes a method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons. Simultaneously the electron dosage and x-ray intensities are measured for each sample of element to determine a ''K/sub AB/'' value to be used in the equation (I/sub A/I/sub B/) = K/sub AB/ (C/sub A//C/sub B/), where I is intensity and C is concentration for elements A and B. The multielement sample is exposed to determine the concentrations of the elements in the sample.
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.
Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik
2014-05-20
Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.
Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M
2017-09-01
We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Thiéry, Vincent; Trincal, Vincent; Davy, Catherine A
2017-10-01
Ettringite, Ca 6 Al 2 (SO 4 ) 3 (OH) 12 .26H 2 O, or C 6 AS¯ 3 H 32 as it is known in cement chemistry notation, is a major phase of interest in cement science as an hydration product and in polluted soil treatment since its structure can accommodate with many hazardous cations. Beyond those anthropogenic features, ettringite is first of all a naturally occurring mineral (although rare). An example of its behaviour under the scanning electron microscope and during energy dispersive spectroscopy (EDS) qualitative analysis is presented, based on the study of natural ettringite crystals from the N'Chwaning mine in South Africa. Monte Carlo modelling of the electron-matter interaction zone at various voltages is presented and confronted with actual, observed beam damage on crystals, which burst at the analysis spot. Finally, theoretical energy dispersive spectroscopy spectra for all the ettringite group minerals have been computed as well as Monte Carlo modelling of the electron-matter interaction zone. The knowledge of the estimation of the size of this zone may thus be helpful for the understanding of energy dispersive spectroscopy analysis in cement pastes or ettringite-remediated soils. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Oxidation of Carbon Nanotubes in an Ionizing Environment.
Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert
2016-02-10
In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.
Solid state photomultiplier for astronomy, phase 2
NASA Technical Reports Server (NTRS)
Besser, P. J.; Hays, K. M.; Laviolette, R. A.
1989-01-01
Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations.
Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate
NASA Astrophysics Data System (ADS)
Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng
2018-03-01
High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
NASA Technical Reports Server (NTRS)
Nittler, Larry R.
2003-01-01
This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.
Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, A. A.; Feng, J.; DeMello, A.
2007-01-19
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A.; Feng, J.; DeMello, A.
2006-05-20
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Grief, C; Galler, R; Côrtes, L M; Barth, O M
1997-01-01
Non-isotopic in situ hybridisation was used at the electron microscope level to determine the localisation of viral RNA in dengue-2 infected mosquito cells at 14, 24, 48 and 72 h post-infection. In situ hybridisation was carried out on sections of dengue-2 infected mosquito cells using a digoxigenin-labelled DNA probe to the envelope protein gene sequence of the virus. Viral RNA was consistently localised over the rough endoplasmic reticulum and the virus-induced smooth membrane structures which form within the endoplasmic reticulum. During the later stages of infection electron-dense areas were observed to develop in close proximity to the smooth membrane structures. Electron microscopic in situ hybridisation showed that these denser areas contained both viral RNA and virus particles. Our results show that in dengue-2 infected mosquito cells the smooth membrane structures are an important site for the concentration of dengue viral RNA and its possible subsequent encapsidation into virus particles.
A spherical electron-channelling pattern map for use in quartz petrofabric analysis
Lloyd, G.E.; Ferguson, C.C.
1986-01-01
Electron channelling patterns (ECP's) are formed in the scanning electron microscope (SEM) by the interaction between the incident electrons and the lattice of crystalline specimens. The patterns are unique for a particular crystallographic orientation and are therefore of considerable potential in petrofabric studies provided they can be accurately indexed. Indexing requires an ECP-map of the crystallographic stereogram or unit triangle covering all possible orientations and hence ECP patterns. Due to the presence of long-range distortions in planar ECP-maps, it is more convenient to construct the maps over a spherical surface. This also facilitates the indexing of individual ECP's. A spherical ECP-map for quartz is presented together with an example of its use in petrofabric analysis. ?? 1986.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
NASA Astrophysics Data System (ADS)
Xu, M.; Yang, J. Y.; Liu, L. H.
2016-07-01
The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.
Surface topography characterization using 3D stereoscopic reconstruction of SEM images
NASA Astrophysics Data System (ADS)
Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.
2018-06-01
A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.
Cao, Mingjing; Li, Jiayang; Tang, Jinglong; Chen, Chunying; Zhao, Yuliang
2016-10-01
Establishment of analytical methods of engineered nanomaterials in consumer products for their human and environmental risk assessment becomes urgent for both academic and industrial needs. Owing to the difficulties and challenges around nanomaterials in complex media, proper chemical separation and biological assays of nanomaterials from nanoproducts needs to be firstly developed. Herein, a facile and rapid method to separate and analyze gold nanomaterials in cosmetics is reported. Gold nanomaterials are successfully separated from different facial or eye creams and their physiochemical properties are analyzed by quantitative and qualitative state-of-the art techniques with high sensitivity or high spatial resolution. In turn, a protocol including quantification of gold by inductively coupled plasma mass spectrometry and thorough characterization of morphology, size distribution, and surface property by electron microscopes, atomic force microscope, and X-ray photoelectron spectroscope is developed. Subsequently, the preliminary toxicity assessment indicates that gold nanomaterials in cosmetic creams have no observable toxicity to human keratinocytes even after 24 h exposure up to a concentration of 200 μg mL -1 . The environmental scanning electron microscope reveals that gold nanomaterials are mostly attached on the cell membrane. Thus, the present study provides a full analysis protocol for toxicity assessment of gold nanomaterials in consumer products (cosmetic creams). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, X J; Wang, W M; Song, F
2011-08-01
With 3 figures and 1 table Topmouth culter (Culter alburnus), a freshwater carnivorous fish of the Cyprinidae, is one of the most popular fish species in aquatic market in China. The anatomy and histology features of fish intestine are very useful for understanding digestive physiology, diagnosing some intestinal diseases and formulating suitable feeds. Thus, here we first characterize topmouth culter intestine via light microscope, transmission electron microscope and scan electron microscope. The 'Z' shaped intestine can be divided into three parts (e.g. the anterior intestine, middle intestine and posterior intestine), with an intestinal coefficient of 0.68. The anterior intestine possessed the longest mucosa folds and thickest muscularis among the three intestinal parts, and microvilli were very well-developed whilst many mitochondria, endoplasmic reticulums and lysosomes were found in which. This indicated the anterior intestine was a main region for digestion and absorption of food in the topmouth culter. While the vacuoles observed in the posterior intestine may be closely related to the intracellular digestion. Neutral and acid mucus were strongly present throughout the intestine. This detailed descriptive paper will be very helpful for studies of topmouth culter related to its digestive physiology, intestinal disease control and feed nutrient. © 2011 Blackwell Verlag GmbH.
Ye, Xuan; Cui, Zhiguo; Fang, Huajun; Li, Xide
2017-01-01
We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system’s capabilities are demonstrated by in-situ OM and SEM testing of the system’s performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented. PMID:28777341
Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite
NASA Technical Reports Server (NTRS)
Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.
1998-01-01
Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.
The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance
Aballe, Lucia; Foerster, Michael; Pellegrin, Eric; Nicolas, Josep; Ferrer, Salvador
2015-01-01
The spectroscopic LEEM-PEEM experimental station at the CIRCE helical undulator beamline, which started user operation at the ALBA Synchrotron Light Facility in 2012, is presented. This station, based on an Elmitec LEEM III microscope with electron imaging energy analyzer, permits surfaces to be imaged with chemical, structural and magnetic sensitivity down to a lateral spatial resolution better than 20 nm with X-ray excited photoelectrons and 10 nm in LEEM and UV-PEEM modes. Rotation around the surface normal and application of electric and (weak) magnetic fields are possible in the microscope chamber. In situ surface preparation capabilities include ion sputtering, high-temperature flashing, exposure to gases, and metal evaporation with quick evaporator exchange. Results from experiments in a variety of fields and imaging modes will be presented in order to illustrate the ALBA XPEEM capabilities. PMID:25931092
Scanning electron microscope view of iron crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Scanning electron microscope view of iron crystal
1972-11-10
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Electron microscope evidence of virus infection in cultured marine fish
NASA Astrophysics Data System (ADS)
Sun, Xiu-Qin; Zhang, Jin-Xing; Qu, Ling-Yun
2000-09-01
Electron microscope investigation on the red sea bream ( Pagrosomus major), bastard halibut ( Paralichthys olivaceus) and stone flounder ( Kareius bicoloratus) in North China revealed virus infection in the bodies of the dead and diseased fish. These viruses included the lymphocystis disease virus (LDV), parvovirus, globular virus, and a kind of baculavirus which was not discovered and reported before and is now tentatively named baculavirus of stone flounder ( Kareius bicoloratus).
Murphy's law-if anything can go wrong, it will: Problems in phage electron microscopy.
Ackermann, Hans-W; Tiekotter, Kenneth L
2012-04-01
The quality of bacteriophage electron microscopy appears to be on a downward course since the 1980s. This coincides with the introduction of digital electron microscopes and a general lowering of standards, possibly due to the disappearance of several world-class electron microscopists The most important problem seems to be poor contrast. Positive staining is frequently not recognized as an undesirable artifact. Phage parts, bacterial debris, and aberrant or damaged phage particles may be misdiagnosed as bacterial viruses. Digital electron microscopes often seem to be operated without magnification control because this is difficult and inconvenient. In summary, most phage electron microscopy problems may be attributed to human failure. Journals are a last-ditch defense and have a heavy responsibility in selecting competent reviewers and rejecting, or not, unsatisfactory articles.
Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.
2017-01-01
In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.
NASA Astrophysics Data System (ADS)
Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman
2006-10-01
Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.
Conception on the Cell Mechanisms of Bone Tissue Loss
NASA Astrophysics Data System (ADS)
Rodionova, N. V.
2008-06-01
Basing on the analysis of available literature, the results of our own electron microscopic and radioautographic researches the data are presented about the morphofunctional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures after exposure of animals (rats, monkeys) to microgravity (station SLS-2, Bion-11). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered.
Localised corrosion in aluminium alloy 2024-T3 using in situ TEM.
Malladi, Sairam; Shen, Chenggang; Xu, Qiang; de Kruijff, Tom; Yücelen, Emrah; Tichelaar, Frans; Zandbergen, Henny
2013-11-28
An approach to carry out chemical reactions using aggressive gases in situ in a transmission electron microscope (TEM), at ambient pressures of 1.5 bar using a windowed environmental cell, called a nanoreactor, is presented here. The nanoreactor coupled with a specially developed holder with platinum tubing permits the usage of aggressive chemicals like hydrochloric acid (HCl).
Structure and optical properties of TiO2 thin films deposited by ALD method
NASA Astrophysics Data System (ADS)
Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz
2017-12-01
This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.
Nanofabrication with a helium ion microscope
NASA Astrophysics Data System (ADS)
Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul
2010-03-01
The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.
Phase study of titanium dioxide nanoparticle prepared via sol-gel process
NASA Astrophysics Data System (ADS)
Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan
2018-03-01
In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori
2012-12-01
The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2more » has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori
2012-12-01
The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO 2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compactmore » 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less
Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)
NASA Astrophysics Data System (ADS)
Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang
1994-09-01
Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.
A new approach to preparing Bi2Zr2O7 photocatalysts for dye degradation
NASA Astrophysics Data System (ADS)
Luo, Yijia; Cao, Liyun; Huang, Jianfeng; Feng, Liangliang; Yao, Chunyan
2018-01-01
A new synthetic route is presented to prepared pure Bi2Zr2O7 material, in which a NaNO3/KNO3 molten salt is used to obtain the resulting Bi2Zr2O7 at a relatively low temperature of 400 °C under atmospheric pressure. Powder x-ray diffraction confirmed the structure type and purity of the as-prepared sample, and further revealed that a single-source Bi(OH)3 · Zr(OH)4 · nH2O complex precursor plays a crucial role to synthesize Bi2Zr2O7 nanocrystals. Scanning electron microscope and transmission electron microscope show the morphologies and sizes of Bi2Zr2O7 crystal in detail, and UV-vis diffuse reflectance measurements evidenced the wide light absorption range. Furthermore, the as-synthesized Bi2Zr2O7 with smaller particle size and larger specific surface area exhibit superior photocatalytic activities compared with the sample obtained without adding molten salts.
Contact detection for nanomanipulation in a scanning electron microscope.
Ru, Changhai; To, Steve
2012-07-01
Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.
Davis, Richard; Koelle, George B.
1967-01-01
By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization. PMID:6033530
Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys
NASA Astrophysics Data System (ADS)
Minárik, P.; Král, R.; Janeček, M.
2013-09-01
Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.
Lu, Mao; Ran, Yuping; Dai, Yaling; Lei, Song; Zhang, Chaoliang; Zhuang, Kaiwen; Hu, Wenying
2016-01-01
This study was aimed to explain the formation mechanisms of corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis. In the present work, the ultrastructure of the involved hairs collected from a girl with tinea capitis caused by Trichophyton violaceum was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM observation of the corkscrew hair revealed bent hair shaft and asymmetrically disrupted cuticle layer. TEM findings demonstrated the hair shaft became weak. The corkscrew hairs closely covered by scales on the scalp were observed under dermoscopy. We speculate that the formation of corkscrew hairs is a result of a combination of internal damage due to hair degradation by T. violaceum and external resistance due to scales covering the hair. SEM observation of the cigarette-ash-shaped hair revealed irregularly disrupted and incompact end, which might represent the stump of the broken corkscrew hair after treatment. © Wiley Periodicals, Inc.
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.
The in-situ growth of CuO nanowires was studied by Energy Dispersive X-ray Diffraction (EDXRD) to observe the mechanism of growth. The study was carried out for comparison at two temperatures—at 500 °C, the optimum temperature of the nanowires growth, and at 300 °C just below the temperature range of the growth. The in situ observation revealed the successive oxidation of Cu foil to Cu{sub 2}O layer and finally to CuO layer. Further analysis showed the presence of a compressive stress in CuO layer due to interface at CuO and Cu{sub 2}O layers. The compressive stress was found to increase withmore » the growth of the nanowires at 500 °C while it relaxed with the growth of CuO layer at 300 °C. The present results do not support the existing model of stress relaxation induced growth of nanowires. Based on the detailed Transmission Electron Microscope, Scanning Electron Microscope, and EDXRD results, a microstructure based growth model has been suggested.« less
New molecular imprinted voltammetric sensor for determination of ochratoxin A.
Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip
2016-04-01
In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100mM phenol as monomer in the presence of phosphate buffer solution (pH6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10(-11) - 1.5 × 10(-9)M and 1.6 × 10(-11) M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. Copyright © 2015 Elsevier B.V. All rights reserved.
Microscopy of semiconducting materials
NASA Astrophysics Data System (ADS)
Pennycook, S. J.
1991-04-01
The purpose of the trip was to present an invited talk at the 7th Oxford Conference on Microscopy of Semiconducting Materials entitled, High-Resolution Z-Contrast Imaging of Heterostructures and Superlattices, (Oxford, United Kingdom) and to visit VG Microscopes, East Grinstead, for discussions on the progress of the Oak Ridge National Laboratory (ORNL) 300-kV high-resolution scanning transmission electron microscope (STEM), which is currently on order. The traveler also visited three other institutions with 100-kV STEMs that either have or intend to purchase the necessary modifications to provide Z-contrast capability similar to that of the existing ORNL machine. Specifically, Max-Planck Institut fuer Metallforschung (Stuttgart, Germany); Cambridge University, Department of Materials Science and Metallurgy (Cambridge, United Kingdom); and Cavendish Laboratory, Cambridge University (Cambridge, United Kingdom) were visited. In addition, discussions were held with C. Humphreys on the possibility of obtaining joint funding for collaborative research involving electron beam writing and Z-contrast imaging in the Cambridge and Oak Ridge STEMs, respectively.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less
Field modeling and ray-tracing of a miniature scanning electron microscope beam column.
Loyd, Jody S; Gregory, Don A; Gaskin, Jessica A
2017-08-01
A miniature scanning electron microscope (SEM) focusing column design is introduced and its potential performance assessed through an estimation of parameters that affect the probe radius, to include source size, spherical and chromatic aberration, diffraction and space charge broadening. The focusing column, a critical component of any SEM capable of operating on the lunar surface, was developed by the NASA Marshall Space Flight Center and Advanced Research Systems. The ray-trace analysis presented uses a model of the electrostatic field (within the focusing column) that is first calculated using the boundary element method (BEM). This method provides flexibility in modeling the complex electrode shapes of practical electron lens systems. A Fourier series solution of the lens field is then derived within a cylindrical domain whose boundary potential is provided by the BEM. Used in this way, the Fourier series solution is an accuracy enhancement to the BEM solution, allowing sufficient precision to assess geometric aberrations through direct ray-tracing. Two modes of operation with distinct lens field solutions are described. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko
2016-01-01
Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327
Vise holds specimens for microscope
NASA Technical Reports Server (NTRS)
Greule, W. N.
1980-01-01
Convenient, miniature, spring-loaded clamp holds specimens for scanning electron microscope. Clamp is made out of nesting sections of studded angle-aluminum. Specimens are easier to mount and dismount with vise than with conductive adhesive or paint.
Mars Life? - Microscopic Tubular Structures
1996-08-09
This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. http://photojournal.jpl.nasa.gov/catalog/PIA00287
Clinical Investigation Program Report Control Symbol MED 300.
1983-10-01
13 Agent Induced Delay of Gastric Emptying. (0) (PR) (P) 1979 The Experimental Fat Embolism Syndrome: An Electron 15 Microscopic Study of Lung in...1981 Investigation of Chronic Phantom Pain. (0) (PR) (P) 25 v Year Page Initiated 1981 Experimental Fat Embolism Syndrome: Basic Studies and 26...14 Detail Summary Sheet Date 3 Oct 83 Prot No.: 79-21 Status: Ongoing Title: The Experimental Fat Embolism Syndrome: An Electron Microscopic Study of
High-resolution, cryogenic, side-entry type specimen stage
King, Wayne E.; Merkle, Karl L.
1979-01-01
A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.
The Enhanced Driver’s License: Collateral Gains or Collateral Damage?
2012-12-01
fact, are only detectible under a high- powered electron microscope. The indication, thus, is that the improvements made to the driver’s license...security environment, say airport security, there is no time to analyze driver’s licenses under a high- powered electron microscope to ensure they are...95 Advancements in recent decades have reduced the size and cost of RFID technology and as such, have increased the number of purposes ( supply
Low Voltage Electron Beam Lithography
1994-01-01
September 1970 (Societe Franaise do Microscopic Elecuouique, Plaris, 1970) Vol. 2, p. 55. [31 H . C. Pfeiffer, "Basic limitations of probefonning systems...USA (editors: 0. Jobari and I. Corvin). [4) T. Groves, D. L Hunmond, H . Kuo, ’Elecmnm-beam broadening effct caused by discreteness of space charge...Electron Microscope Gun". Br. J. Appi. Phys.. February 1952, pp. 40-46. M. E. Haine, P. A. Einstein, and P. H . Brocherd. "Resistance Bias
Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus
Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi
1971-01-01
Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
A densitometric analysis of commercial 35mm films
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Ruffin, Christopher, III
1989-01-01
IIaO films have been subjected to various sensitometric tests. The have included thermal and aging effects and reciprocity failure studies. In order to compare the special IIaO film with popular brands of 35 mm films and their possible use in astrophotography, Agfa, Fuji and Kodak print and slide formats, as well as black and white and color formats, were subjected to sensitometric, as well as densitometric analysis. A scanning electron microscope was used to analyze grain structure size, and shape as a function of both speed and brand. Preliminary analysis of the grain structure using an ISI-SS40 scanning electron microscope indicates that the grain sizes for darker densities are much larger than the grain size for lighter densities. Researchers analyze the scanning electron microscope findings of the various grains versus densities as well as enhancement of the grains, using the IP-8500 Digital Image Processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhanwei; Xie Huimin; Fang Daining
2007-03-15
In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less
Guinel, M J-F; Brodusch, N; Verde-Gómez, Y; Escobar-Morales, B; Gauvin, R
2013-10-01
Carbon nanotubes (CNTs) decorated with platinum (Pt) nanoparticles (NPs) have been characterized using a cold field-emission scanning electron microscope (SEM) and a high resolution field-emission transmission electron microscope (TEM). With this particular composite material, the complementary nature of the two instruments was demonstrated. Although the long CNTs were found to be mostly bent and defective in some parts, the nucleation of Pt occurred randomly and uniformly covered the CNTs. The NPs displayed a large variation in size, were sometimes defective with twins and stacking faults, and were found to be faceted with the presence of surface steps. The shape and size of the NPs and the presence of defects may have significant consequences on the activity of the Pt catalyst material. Also, thin layers of platinum oxide were identified on the surface of some NPs. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An
2010-09-27
The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring formore » the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.« less
Zhuang, Kaiwen; Ran, Xin; Lei, Song; Zhang, Chaoliang; Lama, Jebina; Ran, Yuping
2014-01-01
Trichophyton violaceum is a pathogen of tinea capitis and usually cause infection of scalp and hair in children. To investigate the parasitic form of T. violaceum in the human hair tissue, the infected hair strands were collected from a 9-year-old boy with tinea capitis due to T. violaceum and observed under both the scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM and TEM findings revealed that T. violaceum parasitically lives in the hair shaft in various forms and the morphological transformation of the fungus from hyphae into arthrospores was noted. The involved hair shaft was damaged to the great extent and its ultrastructural changes were evident. Those morphological characteristics of T. violaceum and the three-dimensional ultastructure changes of infected hairs give a better knowledge about the host-fungus relationship in tinea capitis. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubic, Rick; Butt, Darryl; Windes, William
2014-03-13
An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
NASA Astrophysics Data System (ADS)
Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.
2016-06-01
MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.
Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2011-03-22
We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.
Structure of IgG and IgY molecules in ribosome-antibody complexes as studied by electron microscopy.
Noll, F; Lutsch, G; Bielka, H
1982-03-01
The overall shape and dimensions of IgG (rabbit) and IgY (chicken) antibodies against ribosomal proteins have been studied in electron micrographs of ribosome-antibody complexes. The antibodies appear as Y-shaped molecules with an angle of about 90 degrees between their Fab arms. The length of one Fab arm amounts to about 10 nm. No differences between the IgG and IgY molecules could be detected electron microscopically. The data obtained on the shape of IgG and IgY correlate with those of earlier electron microscopic studies while the determined size of the Fab arms is in the range found by scattering methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorut, F.; Imbert, G.; Roggero, A.
In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, withmore » a densification of the layer and a loss of carbon and hydrogen elements being observed.« less
The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory
NASA Astrophysics Data System (ADS)
Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark
2011-06-01
Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.
Yu, Shang-Ming; Ko, Tsui-Ling; Lin, Kwan-Hwa
2011-09-01
We investigated the postnatal formation and origin of the microcyst, which are not fully elucidated at present, in the cochlear nucleus of gerbils. Sixty-six Mongolian gerbils were investigated at the light microscope level, and 35 of them were observed at the electron microscopic level. Foamy structures were evidently found at 2 days of age and remained unchanged through 4-8 days. The first small vacuole, presumably the former microcyst, appeared at 8 days. Myelin sheath bundles first appeared at 13 days. Electron-dense bodies were frequently found in the junction of the superficial layer and the deep layer at 2 days. The medium-sized vacuole was found in close association with the spherical bushy cells in the anteroventral cochlear nucleus (AVCN) as early as 5 weeks. Various large and small vacuoles were presumably coalesced to form a large vacuole at 3 and 6 months. Membranous structures and red blood cells were in the budding-like vacuoles at 6 months. In addition to membranous structures, the microcyst contained distorted mitochondria and parts of myelin sheaths. The vacuole was interposed between spherical bushy cells at age of 10 months. Small vacuoles were mainly located in the flame-shaped neurons at 14 months. An internal detachment and an external protrusion of the myelin sheath into the adjacent microcyst were found. Thus, this study suggests the first appearance of microcysts at 8 days. Also, the microcyst and the blood vessel may exchange their contents through a leakage in the anteroventral cochlear nucleus.
NASA Astrophysics Data System (ADS)
Sung, Baeckkyoung; Kim, Min Su; Lee, Byung-Cheon; Yoo, Jung Sun; Lee, Sang-Hee; Kim, Youn-Joong; Kim, Ki-Woo; Soh, Kwang-Sup
2008-02-01
There have been several reports on novel threadlike structures (NTSs) on the surfaces of the internal organs of rats and rabbits since their first observation by Bonghan Kim in 1963. To confirm this novel circulatory function, it is necessary to observe the flow of liquid through the NTS as well as the structurally corroborating channels in the NTS. In this article, we report on the measurement of the flow speed of Alcian blue solution in the NTSs on the organ surfaces of rabbits, and we present electron microscopic images depicting the cribrous cross-section with channels. The speed was measured as 0.3 ± 0.1 mm/s, and the flow distance was up to 12 cm. The flow was unidirectional, and the phase contrast microscopic images showed that the NTSs were strongly stained with Alcian blue. The ultrastructure of the NTSs revealed by cryo-scanning electron microscopy and high-voltage electron microscopy showed that (1) there were cell-like bodies and globular clumps of matter inside the sinus of the channel with thin strands of segregated zones which is a microscopic evidence of the liquid flow, (2) the sinuses have wall structures surrounded with extracellular matrices of collagenous fibers, and (3) there exists a cribriform structure of sinuses. To understand the mechanism for the circulation, a quantitative analysis of the flow speed has been undertaken applying a simplified windkessel model. In this analysis, it was shown that the liquid flow through the NTSs could be due to peristaltic motion of the NTS itself.
The PC9A Filter Screening Tool
2016-02-01
conjunction with an optical microscope for identification of other important debris such as glass beads. The FST has now been installed at RAAF East...conservative screening limits need to be sent for detailed laboratory analysis. Laboratory analysis has traditionally involved a manual microscopic ...Electron Microscope with Energy Dispersive Spectroscopy (SEM EDS) to determine the composition and likely source. The Engine Maintenance Manual
Song, Dongsheng; Tavabi, Amir H.; Li, Zi-An; Kovács, András; Rusz, Ján; Huang, Wenting; Richter, Gunther; Dunin-Borkowski, Rafal E.; Zhu, Jing
2017-01-01
Electron energy-loss magnetic chiral dichroism is a powerful technique that allows the local magnetic properties of materials to be measured quantitatively with close-to-atomic spatial resolution and element specificity in the transmission electron microscope. Until now, the technique has been restricted to measurements of the magnetic circular dichroism signal in the electron beam direction. However, the intrinsic magnetization directions of thin samples are often oriented in the specimen plane, especially when they are examined in magnetic-field-free conditions in the transmission electron microscope. Here, we introduce an approach that allows in-plane magnetic signals to be measured using electron magnetic chiral dichroism by selecting a specific diffraction geometry. We compare experimental results recorded from a cobalt nanoplate with simulations to demonstrate that an electron magnetic chiral dichroism signal originating from in-plane magnetization can be detected successfully. PMID:28504267
Electron beam analysis of particulate cometary material
NASA Technical Reports Server (NTRS)
Bradley, John
1989-01-01
Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).
Microscopy with slow electrons: from LEEM to XPEEM
Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States
2017-12-09
The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.
Phase contrast in high resolution electron microscopy
Rose, H.H.
1975-09-23
This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)
Kitamura, Yukichi; Takenaka, Norio; Koyano, Yoshiyuki; Nagaoka, Masataka
2014-08-12
We have proposed a new theoretical methodology to clarify the microscopic nature of the vibrational properties in solution, which consists of a combination of the vibrational frequency analyses (VFAs) with two kinds of Hessian matrices, that is, the effective Hessian on the free energy surface (free energy Hessian: "FE-Hessian") and the instantaneous one (instantaneous normal mode Hessian: "INM-Hessian") within QM/MM framework. In these VFAs, the Hessians were obtained by the analytical approach, having the advantages from the aspect of both the computational efficiency and accuracy in comparison to those obtained by the numerical one. In the present study, we have applied them to the glycine aqueous solution. First, by using the VFA with the FE-Hessian (VFA-FEH), we estimated the vibrational frequency shifts induced by solvent water molecules. The calculated values were quantitatively in agreement with experimental ones. It was clearly demonstrated that such vibrational shifts are attributed to not only the structural relaxation but also the explicit solute-solvent interactions (i.e., interatomic interactions). Second, by using the VFA with the INM-Hessian (VFA-INMH), the vibrational spectra in solution were investigated through the vibrational INM densities of states (DOS). By the comparison between the spectroscopic features and the microscopic solvation structure around glycine molecule, it was found that the frequency shifts and bandwidths in IR spectra are closely correlated with the hydrogen bonding (HB) network formations. In particular, the instantaneous changes of vibrational states of the hydroxyl group and carbonyl one, showing apparently inverse tendency on the strength of the HB interaction, can be explained very well on the basis of two different mechanisms, that is, the direct change of electron density in the bonding orbitals and the indirect one due to hyperconjugation between the lone electron pair and the antibonding orbitals, respectively. In conclusion, the present dual VFA approach is a quite useful strategy to interpret the microscopic origin of the experimental vibrational spectra.
A versatile atomic force microscope integrated with a scanning electron microscope.
Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J
2017-05-01
A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.
KLASS: Kennedy Launch Academy Simulation System
NASA Technical Reports Server (NTRS)
Garner, Lesley C.
2007-01-01
Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005
Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.
Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique
2011-01-01
Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.
Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software
Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique
2011-01-01
Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus
2017-05-01
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A Monte Carlo model of hot electron trapping and detrapping in SiO2
NASA Astrophysics Data System (ADS)
Kamocsai, R. L.; Porod, W.
1991-02-01
High-field stressing and oxide degradation of SiO2 are studied using a microscopic model of electron heating and charge trapping and detrapping. Hot electrons lead to a charge buildup in the oxide according to the dynamic trapping-detrapping model by Nissan-Cohen and co-workers [Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985)]. Detrapping events are modeled as trap-to-band impact ionization processes initiated by high energy conduction electrons. The detailed electronic distribution function obtained from Monte Carlo transport simulations is utilized for the determination of the detrapping rates. We apply our microscopic model to the calculation of the flat-band voltage shift in silicon dioxide as a function of the electric field, and we show that our model is able to reproduce the experimental results. We also compare these results to the predictions of the empirical trapping-detrapping model which assumes a heuristic detrapping cross section. Our microscopic theory accounts for the nonlocal nature of impact ionization which leads to a dark space close to the injecting cathode, which is unaccounted for in the empirical model.
Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.
Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin
2018-06-25
Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.
3D-measurement using a scanning electron microscope with four Everhart-Thornley detectors
NASA Astrophysics Data System (ADS)
Vynnyk, Taras; Scheuer, Renke; Reithmeier, Eduard
2011-06-01
Due to the emerging degree of miniaturization in microstructures, Scanning-Electron-Microscopes (SEM) have become important instruments in the quality assurance of chip manufacturing. With a two- or multiple detector system for secondary electrons, a SEM can be used for the reconstruction of three dimensional surface profiles. Although there are several projects dealing with the reconstruction of three dimensional surfaces using electron microscopes with multiple Everhart-Thornley detectors (ETD), there is no profound knowledge of the behaviour of emitted electrons. Hence, several values, which are used for reconstruction algorithms, such as the photometric method, are only estimates; for instance, the exact collection efficiency of the ETD, which is still unknown. This paper deals with the simulation of electron trajectories in a one-, two- and four-detector system with varying working distances and varying grid currents. For each detector, the collection efficiency is determined by taking the working distance and grid current into account. Based on the gathered information, a new collection grid, which provides a homogenous emission signal for each detector of a multiple detector system, is developed. Finally, the results of the preceding tests are utilized for a reconstruction of a three dimensional surface using the photometric method with a non-lambert intensity distribution.
Zhang, Hai-Bo; Zhang, Xiang-Liang; Wang, Yong; Takaoka, Akio
2007-01-01
The possibility of utilizing high-energy electron tomography to characterize the micron-scale three dimensional (3D) structures of integrated circuits has been demonstrated experimentally. First, electron transmission through a tilted SiO(2) film was measured with an ultrahigh-voltage electron microscope (ultra-HVEM) and analyzed from the point of view of elastic scattering of electrons, showing that linear attenuation of the logarithmic electron transmission still holds valid for effective specimen thicknesses up to 5 microm under 2 MV accelerating voltages. Electron tomography of a micron-order thick integrated circuit specimen including the Cu/via interconnect was then tried with 3 MeV electrons in the ultra-HVEM. Serial projection images of the specimen tilted at different angles over the range of +/-90 degrees were acquired, and 3D reconstruction was performed with the images by means of the IMOD software package. Consequently, the 3D structures of the Cu lines, via and void, were revealed by cross sections and surface rendering.
Back-scattered electron imaging of skeletal tissues.
Boyde, A; Jones, S J
The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.