NASA Astrophysics Data System (ADS)
Ortleb, Sigrun; Seidel, Christian
2017-07-01
In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.
Thermal noise in space-charge-limited hole current in silicon
NASA Technical Reports Server (NTRS)
Shumka, A.; Golder, J.; Nicolet, M.
1972-01-01
Present theories on noise in single-carrier space-charge-limited currents in solids have not been quantitatively substantiated by experimental evidence. To obtain such experimental verification, the noise in specially fabricated silicon structures is being measured and analyzed. The first results of this verification effort are reported.
NASA Technical Reports Server (NTRS)
Venuturmilli, Rajasekhar; Zhang, Yong; Chen, Lea-Der
2003-01-01
Enclosed flames are found in many industrial applications such as power plants, gas-turbine combustors and jet engine afterburners. A better understanding of the burner stability limits can lead to development of combustion systems that extend the lean and rich limits of combustor operations. This paper reports a fundamental study of the stability limits of co-flow laminar jet diffusion flames. A numerical study was conducted that used an adaptive mesh refinement scheme in the calculation. Experiments were conducted in two test rigs with two different fuels and diluted with three inert species. The numerical stability limits were compared with microgravity experimental data. Additional normal-gravity experimental results were also presented.
Experimental limits on weak annihilation contributions to decays.
Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; White, E J; Wiss, J; Shepherd, M R; Asner, D M; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Weinstein, A J; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E
2006-03-31
We present the first experimental limits on high-q2 contributions to charmless semileptonic decays of the form expected from the weak annihilation (WA) decay mechanism. Such contributions could bias determinations of /Vub/ from inclusive measurements of B-->Xulupsilon. Using a wide range of models based on available theoretical input we set a limit of GammaWA/Gammab-->u<7.4% (90% confidence level) on the WA fraction, and assess the impact on previous inclusive determinations of /Vub/.
2013-12-01
experimental studies and analyses performed and the resulting recommendations. Results from the present effort indicated that a minimum use limit of... experimental studies performed and the resulting recommendations regarding the minimum on-board use limit of FSII while maintaining safe operability...sumping. A detailed summary of the experimental efforts and results are provided in a separate report (Balster et al., 2010). For the ATCC
Experimental Estimation of Entanglement at the Quantum Limit
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander
2010-03-01
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.
An Improvement of the Anisotropy and Formability Predictions of Aluminum Alloy Sheets
NASA Astrophysics Data System (ADS)
Banabic, D.; Comsa, D. S.; Jurco, P.; Wagner, S.; Vos, M.
2004-06-01
The paper presents an yield criterion for orthotropic sheet metals and its implementation in a theoretical model in order to calculate the Forming Limit Curves. The proposed yield criterion has been validated for two aluminum alloys: AA3103-0 and AA5182-0, respectively. The biaxial tensile test of cross specimens has been used for the determination of the experimental yield locus. The new yield criterion has been implemented in the Marciniak-Kuczynski model for the calculus of limit strains. The calculated Forming Limit Curves have been compared with the experimental ones, determined by frictionless test: bulge test, plane strain test and uniaxial tensile test. The predicted Forming Limit Curves using the new yield criterion are in good agreement with the experimental ones.
Comparison of two methods for detection of strain localization in sheet forming
NASA Astrophysics Data System (ADS)
Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy
2018-05-01
This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.
Statistical behavior of ten million experimental detection limits
NASA Astrophysics Data System (ADS)
Voigtman, Edward; Abraham, Kevin T.
2011-02-01
Using a lab-constructed laser-excited fluorimeter, together with bootstrapping methodology, the authors have generated many millions of experimental linear calibration curves for the detection of rhodamine 6G tetrafluoroborate in ethanol solutions. The detection limits computed from them are in excellent agreement with both previously published theory and with comprehensive Monte Carlo computer simulations. Currie decision levels and Currie detection limits, each in the theoretical, chemical content domain, were found to be simply scaled reciprocals of the non-centrality parameter of the non-central t distribution that characterizes univariate linear calibration curves that have homoscedastic, additive Gaussian white noise. Accurate and precise estimates of the theoretical, content domain Currie detection limit for the experimental system, with 5% (each) probabilities of false positives and false negatives, are presented.
Resolution enhancement in digital holography by self-extrapolation of holograms.
Latychevskaia, Tatiana; Fink, Hans-Werner
2013-03-25
It is generally believed that the resolution in digital holography is limited by the size of the captured holographic record. Here, we present a method to circumvent this limit by self-extrapolating experimental holograms beyond the area that is actually captured. This is done by first padding the surroundings of the hologram and then conducting an iterative reconstruction procedure. The wavefront beyond the experimentally detected area is thus retrieved and the hologram reconstruction shows enhanced resolution. To demonstrate the power of this concept, we apply it to simulated as well as experimental holograms.
Experimental Investigation of the Flow on a Simple Frigate Shape (SFS)
Mora, Rafael Bardera
2014-01-01
Helicopters operations on board ships require special procedures introducing additional limitations known as ship helicopter operational limitations (SHOLs) which are a priority for all navies. This paper presents the main results obtained from the experimental investigation of a simple frigate shape (SFS) which is a typical case of study in experimental and computational aerodynamics. The results obtained in this investigation are used to make an assessment of the flow predicted by the SFS geometry in comparison with experimental data obtained testing a ship model (reduced scale) in the wind tunnel and on board (full scale) measurements performed on a real frigate type ship geometry. PMID:24523646
X-ray natural widths, level widths and Coster-Kronig transition probabilities
NASA Astrophysics Data System (ADS)
Papp, T.; Campbell, J. L.; Varga, D.
1997-01-01
A critical review is given for the K-N7 atomic level widths. The experimental level widths were collected from x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy (XES), x-ray spectra fluoresced by synchrotron radiation, and photoelectrons from x-ray absorption (PAX). There are only limited atomic number ranges for a few atomic levels where data are available from more than one source. Generally the experimental level widths have large scatter compared to the reported error bars. The experimental data are compared with the recent tabulation of Perkins et al. and of Ohno et al. Ohno et al. performed a many body approach calculation for limited atomic number ranges and have obtained reasonable agreement with the experimental data. Perkins et al. presented a tabulation covering the K-Q1 shells of all atoms, based on extensions of the Scofield calculations for radiative rates and extensions of the Chen calculations for non-radiative rates. The experimental data are in disagreement with this tabulation, in excess of a factor of two in some cases. A short introduction to the experimental Coster-Kronig transition probabilities is presented. It is our opinion that the different experimental approaches result in systematically different experimental data.
Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1993-01-01
Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.
ERIC Educational Resources Information Center
Perrett, Jamis J.
2012-01-01
This article demonstrates how textbooks differ in their description of the term "experimental unit". Advanced Placement Statistics teachers and students are often limited in their statistical knowledge by the information presented in their classroom textbook. Definitions and descriptions differ among textbooks as well as among different…
True detection limits in an experimental linearly heteroscedastic system.. Part 2
NASA Astrophysics Data System (ADS)
Voigtman, Edward; Abraham, Kevin T.
2011-11-01
Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( YC and XC) and true Currie detection limits ( YD and XD). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were YC = 56.0 mV, YD = 125. mV, XC = 0.132 μg/mL and XD = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were YD = 158 . mV and XD = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( yC and xC) and detection limits ( yD and xD). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.
Joint surface modeling with thin-plate splines.
Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D
1999-10-01
Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.
Reaching quantum limits for phase-shift detection with semiclassical states
NASA Astrophysics Data System (ADS)
Luis, Alfredo
2004-01-01
We present two measuring strategies reaching the Heisenberg limit for phase-shift measurements using semiclassical coherent states exclusively. We examine their performance by assuming practical experimental conditions such as losses and nonideal detectors.
Pan, Cheng-Chen; Feng, Qi; Zhao, Ha-Lin; Liu, Lin-De; Li, Yu-Lin; Li, Yu-Qiang; Zhang, Tong-Hui; Yu, Xiao-Ya
2017-06-05
In animal pollinated plants, phenological shifts caused by climate change may have important ecological consequences. However, no empirical evidence exists at present on the consequences that flowering phenology shifts have on the strength of pollen limitation under experimental warming. Here, we investigated the effects of experimental warming on flowering phenology, flower density, reproductive success, and pollen limitation intensity in Caragana microphylla and evaluated whether earlier flowering phenology affected plant reproduction and the level of pollen limitation using warmed and unwarmed open top chambers in the Horqin Sandy Land of Inner Mongolia, northern China. The results of this study indicated that artificial warming markedly advanced flower phenology rather than extending the duration of the flowering. Additionally, warming was found to significantly reduce flower density which led to seed production reduction, since there were insignificant effects observed on fruit set and seed number per fruit. Experimental floral manipulations showed that warming did not affect pollen limitation. These results revealed the negative effects of advanced phenology induced by warming on flower density and reproductive output, as well as the neutral effects on reproductive success and pollen limitation intensity of long surviving plants.
Using Experimental Methods in Higher Education Research
ERIC Educational Resources Information Center
Ross, Steven M.; Morrison, Gary R.; Lowther, Deborah L.
2005-01-01
Experimental methods have been used extensively for many years to conduct research in education and psychology. However, applications of experiments to investigate technology and other instructional innovations in higher education settings have been relatively limited. The present paper examines ways in which experiments can be used productively…
Moriond QCD 2013 Experimental Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri
2013-06-28
The article presents experimental highlights of Moriond 2013 QCD conference. This was fantastic conference and the first Moriond QCD since the discovery of the Higgs boson. Many new results about its properties have been presented at the conference with Higgs-like particle becoming a Higgs as it properties match expected for the Higgs boson pretty well. There were many new results presented in all experimental areas including QCD, elecroweak, studies of the top, bottom and charm quarks, searches for physics beyond Standard Model as well as studies of the heavy ion collisions. 56 experimental talks have been presented at the conferencemore » and it is impossible to cover each result in the summary, so highlights are limited to what I was able to present in my summary talk presented on March 16 2013. The proceedings of the conference cover in depth all talks presented and I urge you to get familiar with all of them. Theoretical Summary of the conference was given by Michelangelo Mangano, so theory talks are not covered in the article.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Growden, Tyler A.; Berger, Paul R., E-mail: pberger@ieee.org; Brown, E. R.
An experimental determination is presented of the effect the quantum-well lifetime has on a large-signal resonant tunneling diode (RTD) switching time. Traditional vertical In{sub 0.53}Ga{sub 0.47}As/AlAs RTDs were grown, fabricated, and characterized. The switching time was measured with a high-speed oscilloscope and found to be close to the sum of the calculated RC-limited 10%–90% switching time and the quantum-well quasibound-state lifetime. This method displays experimental evidence that the two intrinsic resonant-tunneling characteristic times act independently, and that the quasibound-state lifetime then serves as a quantum-limit on the large-signal speed of RTDs.
NASA Astrophysics Data System (ADS)
Chen, Xianfeng; Lin, Zhongqin; Yu, Zhongqi; Chen, Xinping; Li, Shuhui
2011-08-01
This study establishes the forming limit diagram (FLD) for QSTE340 seamed tube hydroforming by finite element method (FEM) simulation. FLD is commonly obtained from experiment, theoretical calculation and FEM simulation. But for tube hydroforming, both of the experimental and theoretical means are restricted in the application due to the equipment costs and the lack of authoritative theoretical knowledge. In this paper, a novel approach of predicting forming limit using thickness gradient criterion (TGC) is presented for seamed tube hydroforming. Firstly, tube bulge tests and uniaxial tensile tests are performed to obtain the stress-strain curve for tube three parts. Then one FE model for a classical tube free hydroforming and another FE model for a novel experimental apparatus by applying the lateral compression force and the internal pressure are constructed. After that, the forming limit strain is calculated based on TGC in the FEM simulation. Good agreement between the simulation and experimental results is indicated. By combining the TGC and FEM, an alternative way of predicting forming limit with enough accuracy and convenience is provided.
DOT National Transportation Integrated Search
2015-01-01
This report is the second of three volumes and presents detailed data and test summaries of the experimental portion of the work. In total : 30 large scale reinforced concrete bridge columns are reported in this volume. Recommendations for design and...
Stereoscopy in Astronomical Visualizations to Support Learning at Informal Education Settings
NASA Astrophysics Data System (ADS)
Price, Aaron; Lee, Hee-Sun
2015-08-01
Stereoscopy has been used in science education for 100 years. Recent innovations in low cost technology as well as trends in the entertainment industry have made stereoscopy popular among educators and audiences alike. However, experimental studies addressing whether stereoscopy actually impacts science learning are limited. Over the last decade, we have conducted a series of quasi-experimental and experimental studies on how children and adult visitors in science museums and planetariums learned about the structure and function of highly spatial scientific objects such as galaxies, supernova, etc. We present a synthesis of the results from these studies and implications for stereoscopic visualization development. The overall finding is that the impact of stereoscopy on perceptions of scientific objects is limited when presented as static imagery. However, when presented as full motion films, a significantly positive impact was detected. To conclude, we present a set of stereoscopic design principles that can help design astronomical stereoscopic films that support deep and effective learning. Our studies cover astronomical content such as the engineering of and imagery from the Mars rovers, artistic stereoscopic imagery of nebulae and a high-resolution stereoscopic film about how astronomers measure and model the structure of our galaxy.
Theoretical and experimental research on the phenomenon of stick-slip at traction railway vehicles
NASA Astrophysics Data System (ADS)
Sebesan, Ioan; Manea, Ion; Spiroiu, Marius Adrian; Arsene, Sorin
2018-01-01
The stick-slip phenomenon may occur when the limit adhesion force is exceeded at one of the motor axles of the vehicle. In the present paper is analysed the physical phenomenon stick-slip, the conditions for its occurrence and the mechanical model recommended for the study of the phenomenon. Regarding the experimental research, it is presented the stand built in the laboratory of the Rolling Stock Department at Politehnica University of Bucharest.
Observations of diffusion-limited aggregation-like patterns by atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Chiu, Ching-Yang; Chu, Hong-Yu
2017-11-01
We report on the observations of diffusion-limited aggregation-like patterns during the thin film removal process by an atmospheric plasma jet. The fractal patterns are found to have various structures like dense branching and tree-like patterns. The determination of surface morphology reveals that the footprints of discharge bursts are not as random as expected. We propose a diffusion-limited aggregation model with a few extra requirements by analogy with the experimental results, and thereby present the beauty of nature. We show that the model simulates not only the shapes of the patterns similar to the experimental observations, but also the growing sequences of fluctuating, oscillatory, and zigzag traces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V.
2007-01-15
The experimental data are presented for the features of formation and manifestation of the acoustic-emission and deformation memory effects in specimens of anthracite at different stages of the triaxial cyclic deformation by the Karman scheme in the pre-limiting and post-limiting zones.
Customized data container for improved performance in optical cryptosystems
NASA Astrophysics Data System (ADS)
Vélez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto
2016-12-01
Coherent optical encryption procedures introduce speckle noise to the output, limiting many practical applications. Until now the only method available to avoid this noise is to codify the information to be processed into a container that is encrypted instead of the original data. Although the decrypted container presents the noise due to the optical processing, their features remain recognizable enough to allow decoding, bringing the original information free of any kind of degradation. The first adopted containers were the quick response (QR) codes. However, the limitations of optical encryption procedures and the features of QR codes imply that in practice only simple codes containing small amounts of data can be processed without large experimental requirements. In order to overcome this problem, we introduce the first tailor made container to be processed in optical cryptosystems, ensuring larger noise tolerance and the ability to process more information with less experimental requirements. We present both simulations and experimental results to demonstrate the advantages of our proposal.
Thermal desorption of metals from tungsten single crystal surfaces
NASA Technical Reports Server (NTRS)
Bauer, E.; Bonczek, F.; Poppa, H.; Todd, G.
1975-01-01
After a short review of experimental methods used to determine desorption energies and frequencies the assumptions underlying the theoretical analysis of experimental data are discussed. Recent experimental results on the flash desorption of Cu, Ag, and Au from clean, well characterized W (110) and (100) surfaces are presented and analyzed in detail with respect to the coverage dependence. The results obtained clearly reveal the limitations of previous analytical methods and of the experimental technique per se (such as structure and phase changes below and in the temperature region in which desorption occurs).
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
Duro, Francisco Rodrigo; Blas, Javier Garcia; Isaila, Florin; ...
2016-10-06
The increasing volume of scientific data and the limited scalability and performance of storage systems are currently presenting a significant limitation for the productivity of the scientific workflows running on both high-performance computing (HPC) and cloud platforms. Clearly needed is better integration of storage systems and workflow engines to address this problem. This paper presents and evaluates a novel solution that leverages codesign principles for integrating Hercules—an in-memory data store—with a workflow management system. We consider four main aspects: workflow representation, task scheduling, task placement, and task termination. As a result, the experimental evaluation on both cloud and HPC systemsmore » demonstrates significant performance and scalability improvements over existing state-of-the-art approaches.« less
Experimental verification of Pyragas-Schöll-Fiedler control.
von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram
2010-09-01
We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.
Electrical coupled Morris-Lecar neurons: From design to pattern analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binczak, S.; Behdad, R.; Rossé, M.
2016-06-08
In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. A weak coupling of such neurons under Multisim Software can generate clusters based on the boundary conditions of the neurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles. In this region two limit cycles exist, one of the cycles is stable and another one is unstable.
Oscillatory/chaotic thermocapillary flow induced by radiant heating
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon
1994-01-01
The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Microscale optical cryptography using a subdiffraction-limit optical key
NASA Astrophysics Data System (ADS)
Ogura, Yusuke; Aino, Masahiko; Tanida, Jun
2018-04-01
We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.
Time-Limited, Structured Youth Mentoring and Adolescent Problem Behaviors
ERIC Educational Resources Information Center
Weiler, Lindsey M.; Haddock, Shelley A.; Zimmerman, Toni S.; Henry, Kimberly L.; Krafchick, Jennifer L.; Youngblade, Lise M.
2015-01-01
Youth mentoring can have a profound impact on the lives of high-risk youth. This study presents the Campus Corps program, a time-limited (12-week), structured mentoring program for high-risk youth (ages 11--18), and results from a quasi-experimental pilot evaluation. Baseline and post-intervention problem behavior data from 315 offending youth…
Simple proof of the quantum benchmark fidelity for continuous-variable quantum devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namiki, Ryo
2011-04-15
An experimental success criterion for continuous-variable quantum teleportation and memory is to surpass the limit of the average fidelity achieved by classical measure-and-prepare schemes with respect to a Gaussian-distributed set of coherent states. We present an alternative proof of the classical limit based on the familiar notions of state-channel duality and partial transposition. The present method enables us to produce a quantum-domain criterion associated with a given set of measured fidelities.
Theoretical Prediction of the Forming Limit Band
NASA Astrophysics Data System (ADS)
Banabic, D.; Vos, M.; Paraianu, L.; Jurco, P.
2007-04-01
Forming Limit Band (FLB) is a very useful tool to improve the sheet metal forming simulation robustness. Until now, the study of the FLB was only experimental. This paper presents the first attempt to model the FLB. The authors have established an original method for predicting the two margins of the limit band. The method was illustrated on the AA6111-T43 aluminum alloy. A good agreement with the experiments has been obtained.
Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Grassellino, Anna; Martinello, Martina
2016-06-01
The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q 0 at high gradients.
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
NASA Astrophysics Data System (ADS)
Vedartham, Padmaja B.
Snap-through buckling provides an intricate force-displacement relationship for study. With the possibility for multiple limit points and pitchfork bifurcations and large regions of instability, experimental validation of numerical analysis can become difficult. This requires stabilization of unstable static equilibria, for which limited prior research exists. For all but the simplest cases, more than one actuator is needed, increasing the complexity of the experiment to the point of intractability without a control system. In this thesis, the necessary conditions for stabilization of a buckled beam with pinned boundaries under transverse loading were determined. By combining various nonlinear solution methods, a control system was created that could stabilize any branch of the force-displacement response. Experimental traversal of an unstable branch are presented along with other unstable static equilibrium configurations. The control system had numerical limitations, losing convergence near singular points. The groundwork for experimental stabilization was validated and demonstrated.
Mueller, Mario J; Stevenson, Graham R
2005-01-01
Increasing projected values of the circulating beam intensity in the Super Proton Synchrotron (SPS) and decreasing limits to radiation exposure, taken with the increasing non-acceptance of unjustified and unoptimised radiation exposures, have led to the need to re-assess the shielding between the ECX and ECA5 underground experimental areas of the SPS. Twenty years ago, these experimental areas at SPS-Point 5 housed the UA1 experiment, where Carlo Rubbia and his team verified the existence of W and Z bosons. The study reported here describes such a re-assessment based on simulations using the multi-purpose FLUKA radiation transport code. This study concludes that while the main shield which is made of concrete blocks and is 4.8 m thick satisfactorily meets the current design limits even at the highest intensities presently planned for the SPS, dose rates calculated for liaison areas on both sides of the main shield significantly exceed the design limits. Possible ways of improving the shielding situation are discussed.
Computer assisted holographic moire contouring
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.
2000-01-01
Theoretical analyses and experimental results on holographic moire contouring on diffusely reflecting objects are presented. The sensitivity and limitations of the method are discussed. Particular emphasis is put on computer-assisted data retrieval, processing, and recording.
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.; Acernese, F.; Romano, R.
2018-03-01
In this paper, we present some innovative and general strategies for the control of benches and platforms, that the introduction of the new class of monolithic UNISA Folded Pendulum is now making it possible, also in terms of environmental conditions, like ultra-high-vacuum (UHV), cryogenics and harsh environments. In particular, we present and discuss a parametric analysis of the control models in connection with the sensors limitations in terms of sensitivity and band. Finally, we present and discuss some experimental laboratory tests on a laboratory platform, underlining the present advantages and the expected future improvements.
Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames
NASA Astrophysics Data System (ADS)
Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas
2017-05-01
Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.
Experimental datasets on engineering properties of expansive soil treated with common salt.
Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E
2018-06-01
Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.
NASA Technical Reports Server (NTRS)
Sanders, B. W.; Mitchell, G. A.
1973-01-01
The results of an experimental investigation to increase the stable airflow range of a super sonic mixed-compression inlet are presented. Various throat-bypass bleeds were located on the inlet cowl. The bleed types were distributed porous normal holes, a forward slanted slot, or distributed educated slots. Large inlet stability margins were obtained with the inlet throat bleed systems if a constant pressure was maintained in the throat-bypass bleed plenum. Stability limits were determined for steady-state and limited transient internal air flow changes. Limited unstart angle-of-attack data are presented.
Limits of quantitation - Yet another suggestion
NASA Astrophysics Data System (ADS)
Carlson, Jill; Wysoczanski, Artur; Voigtman, Edward
2014-06-01
The work presented herein suggests that the limit of quantitation concept may be rendered substantially less ambiguous and ultimately more useful as a figure of merit by basing it upon the significant figure and relative measurement error ideas due to Coleman, Auses and Gram, coupled with the correct instantiation of Currie's detection limit methodology. Simple theoretical results are presented for a linear, univariate chemical measurement system with homoscedastic Gaussian noise, and these are tested against both Monte Carlo computer simulations and laser-excited molecular fluorescence experimental results. Good agreement among experiment, theory and simulation is obtained and an easy extension to linearly heteroscedastic Gaussian noise is also outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahk, S.-W.
2008-06-17
The analytic frequency responses of the traditional wavefront reconstructors of Hudgin, Fried, and Southwell are presented, which exhibit amplification or attenuation of the original signal at high spatial frequencies. To overcome this problem, a reconstructor with unity frequency response is developed based on a band-limited derivative calculation. The algorithm is both numerically and experimentally confirmed.
Intracavity adaptive optics. 1: Astigmatism correction performance.
Spinhirne, J M; Anafi, D; Freeman, R H; Garcia, H R
1981-03-15
A detailed experimental study has been conducted on adaptive optical control methodologies inside a laser resonator. A comparison is presented of several optimization techniques using a multidither zonal coherent optical adaptive technique system within a laser resonator for the correction of astigmatism. A dramatic performance difference is observed when optimizing on beam quality compared with optimizing on power-in-the-bucket. Experimental data are also presented on proper selection criteria for dither frequencies when controlling phase front errors. The effects of hardware limitations and design considerations on the performance of the system are presented, and general conclusions and physical interpretations on the results are made when possible.
NASA Astrophysics Data System (ADS)
Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold
1999-07-01
We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.
Crowdsourcing for Cognitive Science – The Utility of Smartphones
Brown, Harriet R.; Zeidman, Peter; Smittenaar, Peter; Adams, Rick A.; McNab, Fiona; Rutledge, Robb B.; Dolan, Raymond J.
2014-01-01
By 2015, there will be an estimated two billion smartphone users worldwide. This technology presents exciting opportunities for cognitive science as a medium for rapid, large-scale experimentation and data collection. At present, cost and logistics limit most study populations to small samples, restricting the experimental questions that can be addressed. In this study we investigated whether the mass collection of experimental data using smartphone technology is valid, given the variability of data collection outside of a laboratory setting. We presented four classic experimental paradigms as short games, available as a free app and over the first month 20,800 users submitted data. We found that the large sample size vastly outweighed the noise inherent in collecting data outside a controlled laboratory setting, and show that for all four games canonical results were reproduced. For the first time, we provide experimental validation for the use of smartphones for data collection in cognitive science, which can lead to the collection of richer data sets and a significant cost reduction as well as provide an opportunity for efficient phenotypic screening of large populations. PMID:25025865
Crowdsourcing for cognitive science--the utility of smartphones.
Brown, Harriet R; Zeidman, Peter; Smittenaar, Peter; Adams, Rick A; McNab, Fiona; Rutledge, Robb B; Dolan, Raymond J
2014-01-01
By 2015, there will be an estimated two billion smartphone users worldwide. This technology presents exciting opportunities for cognitive science as a medium for rapid, large-scale experimentation and data collection. At present, cost and logistics limit most study populations to small samples, restricting the experimental questions that can be addressed. In this study we investigated whether the mass collection of experimental data using smartphone technology is valid, given the variability of data collection outside of a laboratory setting. We presented four classic experimental paradigms as short games, available as a free app and over the first month 20,800 users submitted data. We found that the large sample size vastly outweighed the noise inherent in collecting data outside a controlled laboratory setting, and show that for all four games canonical results were reproduced. For the first time, we provide experimental validation for the use of smartphones for data collection in cognitive science, which can lead to the collection of richer data sets and a significant cost reduction as well as provide an opportunity for efficient phenotypic screening of large populations.
Experimental pretesting of public health campaigns: a case study.
Whittingham, Jill; Ruiter, Robert A C; Zimbile, Filippo; Kok, Gerjo
2008-01-01
The aim of the present study is to demonstrate the merits of evaluating new public health campaign materials in the developmental phase using an experimental design. This is referred to as experimental pretesting. In practice, most new materials are tested only after they have been distributed using nonexperimental or quasiexperimental designs. In cases where materials are pretested prior to distribution, pretesting is usually done using qualitative research methods such as focus groups. Although these methods are useful, they cannot reliably predict the effectiveness of new campaign materials in a developmental phase. Therefore, we suggest when pretesting new materials, not only qualitative research methods but also experimental research methods must be used. The present study discusses an experimental pretest study of new campaign materials intended for distribution in a national sexually transmitted infection (STI) AIDS prevention campaign in the Netherlands. The campaign material tested was the storyline of a planned television commercial on safe sex. A storyboard that consisted of drawings and text was presented to members of the target population, namely, students between the ages of 14 and 16 enrolled in vocational schools. Results showed positive effects on targeted determinants of safe sexual behavior. The advantages, practical implications, and limitations of experimental pretesting are discussed.
Organic/inorganic-doped aromatic derivative crystals: Growth and properties
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Ionita, I.; Stanculescu, A.
2014-09-01
Results of a comparative study on the growth from melt by the Bridgman-Stockbarger method of meta-dinitrobenzene (m-DNB) and benzil (Bz) crystals in the same experimental set-up and the same experimental conditions are presented. The incorporation of an inorganic (iodine) dopant in m-DNB was analyzed in the given experimental conditions from the point of view of the solid-liquid interface stability. The limits for a stable growth and the conditions that favor the generation of morphological instability are emphasized. These limits for m-DNB are compatible with those previously determined for Bz, and therefore, even for a high gradient concentration at the growth interface, it is possible to grow m-DNB and Bz crystals in the same experimental conditions characterized by a high ΔT and v. The optical properties were investigated in relation with the dopant incorporation in the crystal in the mentioned experimental conditions. Effects of the dopant (m-DNB/iodine in Bz and iodine in m-DNB) on the optical band gap and optical non-linear properties of the crystals are discussed.
Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments
NASA Technical Reports Server (NTRS)
Skala, R.; Lnagenhorst, F.; Hoerz, F.
2004-01-01
Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.
NASA Astrophysics Data System (ADS)
Muthukumaran, Packirisamy; Stiharu, Ion G.; Bhat, Rama B.
2003-10-01
This paper presents and applies the concept of micro-boundary conditioning to the design synthesis of microsystems in order to quantify the influence of inherent limitations of the fabrication process and the operating conditions on both static and dynamic behavior of microsystems. The predicted results on the static and dynamic behavior of a capacitive MEMS device, fabricated through MUMPs process, under the influence of the fabrication limitation and operating environment are presented along with the test results. The comparison between the predicted and experimental results shows a good agreement.
A model of mesons in finite extra-dimension
NASA Astrophysics Data System (ADS)
Lahkar, Jugal; Choudhury, D. K.; Roy, S.; Bordoloi, N. S.
2018-05-01
Recently,problem of stability of H-atom has been reported in extra-finite dimension,and found out that it is stable in extra-finite dimension of size,$R\\leq\\frac{a_0}{4}$,where,$a_0$ is the Bohr radius.Assuming that,the heavy flavoured mesons have also such stability controlled by the scale of coupling constant,we obtain corresponding QCD Bohr radius and it is found to be well within the present theoretical and experimental limit of higher dimension.We then study its consequences in their masses using effective string inspired potential model in higher dimension pursued by us.Within the uncertainty of masses of known Heavy Flavoured mesons the allowed range of extra dimension is $L\\leq10^{-16}m$,which is well below the present theoretical and experimental limit,and far above the Planck length $\\simeq1.5\\times10^{-35}$ m.
Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells
NASA Astrophysics Data System (ADS)
Paquin, Mathieu; Fréchette, Luc G.
An analysis of water management in air breathing small polymer electrolyte membrane fuel cells (PEMFCs) is presented. Comprehensive understanding of flooding and dry-out limiting phenomena is presented through a combination of analytical modeling and experimental investigations using a small PEMFC prototype. Configurations of the fuel cell with different heat and mass transfer properties are experimentally evaluated to assess the impact of thermal resistance and mass transport resistance on water balance. Manifestation of dry-out and flooding problems, as limiting phenomena, are explained through a ratio between these two resistances. Main conclusions are that decreasing the ratio between thermal and mass transport resistance under a certain point leads to flooding problems in air breathing PEMFC. Increasing this ratio leads to dry-out of the polymer electrolyte membrane. However, too high thermal resistance or too low mass transport resistance reduces the limiting current by pushing forward the dry-out problem. This work provides a framework to achieve the proper balance between thermal rejection and mass transport to optimize the maximum current density of free convection fuel cells.
A model of the human in a cognitive prediction task.
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1973-01-01
The human decision maker's behavior when predicting future states of discrete linear dynamic systems driven by zero-mean Gaussian processes is modeled. The task is on a slow enough time scale that physiological constraints are insignificant compared with cognitive limitations. The model is basically a linear regression system identifier with a limited memory and noisy observations. Experimental data are presented and compared to the model.
Standard of reporting animal-based experimental research in Indian Journal of Pharmacology.
Aiman, Umme; Rahman, Syed Ziaur
2015-01-01
The objective of present study was to survey and determine the reporting standards of animal studies published during three years from 2012 to 2014 in the Indian Journal of Pharmacology (IJP). All issues of IJP published in the year 2012, 2013 and 2014 were reviewed to identify animal studies. Each animal study was searched for 15 parameters specifically designed to review standards of animal experimentation and research methodology. All published studies had clearly defined aims and objectives while a statement on ethical clearance about the study protocol was provided in 97% of papers. Information about animal strain and sex was given in 91.8% and 90% of papers respectively. Age of experimental animals was mentioned by 44.4% papers while source of animals was given in 50.8% papers. Randomization was reported by 37.4% while 9.9% studies reported blinding. Only 3.5% studies mentioned any limitations of their work. Present study demonstrates relatively good reporting standards in animal studies published in IJP. The items which need to be improved are randomization, blinding, sample size calculation, stating the limitations of study, sources of support and conflict of interest. The knowledge shared in the present paper could be used for better reporting of animal based experiments.
Models for Experimental High Density Housing
NASA Astrophysics Data System (ADS)
Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia
2017-10-01
The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.
NASA Astrophysics Data System (ADS)
Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem
2004-10-01
Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Nanoparticle-assisted STED, theory, and experimental demonstration (presentation video)
NASA Astrophysics Data System (ADS)
Sonnefraud, Yannick; Sivan, Yonatan; Sinclair, Hugo G.; Dunsby, Christopher W.; Neil, Mark A.; French, Paul M.; Maier, Stefan A.
2014-08-01
We show that metal nanoparticles can be used to improve the performance of super-resolution fluorescence nanoscopes based on stimulated-emission-depletion (STED). Compared with a standard STED nanoscope, we show theoretically a resolution improvement by more than an order of magnitude, or equivalently, depletion intensity reductions by more than 2 orders of magnitude and an even stronger photostabilization. Moreover, we present experimental evidence that an optimum resolution, limited by the sizes of the particles used, can be reached for the hybrid NPs for a power of the STED beam one order of magnitude smaller than for the bare cores.
Optimal Limited Contingency Planning
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Smith, David E.
2003-01-01
For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.
Animals from the Outside In, Science (Experimental): 5314.01.
ERIC Educational Resources Information Center
Kleinman, David Z.
Presented is an outline of a basic course (low level) in biology for students whose interest and background are very limited. The study and dissection of earthworm, crayfish, perch, and bird are included. A detailed study of the frog is undertaken as a representative of the animal kingdom. Performance objectives are presented, as well as a course…
A Model For the Limiting Time in Vortex Ring Formation
NASA Technical Reports Server (NTRS)
Shariff, Karim; Gharib, Morteza; Rambod, Edmond; Merriam, Marshal (Technical Monitor)
1997-01-01
In another presentation, Gharib et at provide experimental results to show that when a vortex ring is created from a pipe by a piston, there is a limiting time or piston stroke length beyond which multiple rings appear. This time appeared to be insensitive to piston velocity history and Reynolds number. Nature might exploit such a. limit in different contexts to coherently deliver mass or momentum flux with the least number of strokes. Here, a simple hypothesis is considered: the limiting time occurs when the apparatus is no longer able to deliver energy at a rate compatible with the requirement, due to Kelvin, that a steady vortex ring have maximum energy given circulation and impulse. More specifically, the limit is expected to occur when the quantity alpha = E/square root of Gamma(sup 3)I delivered by the piston drops below the value, alpha(sub lim) for a limiting steady vortex ring solution. The resulting predictions agree very well with the experiments (after using alpha(sub lim) measured using the experimental flow fields). The insensitivity to piston history also emerges from the model. Finally, piston histories are designed that may extend the limiting time somewhat.
New Modelling of Localized Necking in Sheet Metal Stretching
NASA Astrophysics Data System (ADS)
Bressan, José Divo
2011-01-01
Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.
A Primer on Bayesian Analysis for Experimental Psychopathologists
Krypotos, Angelos-Miltiadis; Blanken, Tessa F.; Arnaudova, Inna; Matzke, Dora; Beckers, Tom
2016-01-01
The principal goals of experimental psychopathology (EPP) research are to offer insights into the pathogenic mechanisms of mental disorders and to provide a stable ground for the development of clinical interventions. The main message of the present article is that those goals are better served by the adoption of Bayesian statistics than by the continued use of null-hypothesis significance testing (NHST). In the first part of the article we list the main disadvantages of NHST and explain why those disadvantages limit the conclusions that can be drawn from EPP research. Next, we highlight the advantages of Bayesian statistics. To illustrate, we then pit NHST and Bayesian analysis against each other using an experimental data set from our lab. Finally, we discuss some challenges when adopting Bayesian statistics. We hope that the present article will encourage experimental psychopathologists to embrace Bayesian statistics, which could strengthen the conclusions drawn from EPP research. PMID:28748068
2015-06-01
that strengthen the porcelain and limit crack propagation (Apel & colleauges, 2008). Research on lithium-disilicate was first presented to the American...properties. This experimental ceramic showed no cracks with increasing wear cycles and demonstrated less wear upon opposing tooth structure than the...other all-ceramic materials tested (Etman, 2009). Etman concluded that the experimental lithium disilicate showed the highest resistance to crack
Spectroscopic Factors From the Single Neutron Pickup Reaction ^64Zn(d,t)
NASA Astrophysics Data System (ADS)
Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Wirth, H.-F.; Herten-Berger, R.
2008-10-01
A great deal of attention has recently been paid towards high precision superallowed β-decay Ft values. With the availability of extremely high precision (<0.1%) experimental data, the precision on Ft is now limited by the ˜1% theoretical corrections.ootnotetextI.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008). This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking correction calculations become more difficult due to the truncated model space. Experimental data is needed to help constrain input parameters for these calculations, and thus experimental spectroscopic factors for these nuclei are important. Preliminary results from the single-nucleon-transfer reaction ^64Zn(d,t)^63Zn will be presented, and the implications for calculations of isospin-symmetry breaking in the superallowed &+circ; decay of ^62Ga will be discussed.
Sound production on a "coaxial saxophone".
Doc, J-B; Vergez, C; Guillemain, P; Kergomard, J
2016-11-01
Sound production on a "coaxial saxophone" is investigated experimentally. The coaxial saxophone is a variant of the cylindrical saxophone made up of two tubes mounted in parallel, which can be seen as a low-frequency analogy of a truncated conical resonator with a mouthpiece. Initially developed for the purposes of theoretical analysis, an experimental verification of the analogy between conical and cylindrical saxophones has never been reported. The present paper explains why the volume of the cylindrical saxophone mouthpiece limits the achievement of a good playability. To limit the mouthpiece volume, a coaxial alignment of pipes is proposed and a prototype of coaxial saxophone is built. An impedance model of coaxial resonator is proposed and validated by comparison with experimental data. Sound production is also studied through experiments with a blowing machine. The playability of the prototype is then assessed and proven for several values of the blowing pressure, of the embouchure parameter, and of the instrument's geometrical parameters.
A multiscale strength model for tantalum over an extended range of strain rates
NASA Astrophysics Data System (ADS)
Barton, N. R.; Rhee, M.
2013-09-01
A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].
Jonker, Michiel T O
2016-06-01
Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.
Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; Kisslinger, Kim; Stach, Eric A; Shahrjerdi, Davood
2017-07-25
Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). Here, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. These findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.
NASA Astrophysics Data System (ADS)
Mathews, A. J.; Gang, G.; Levinson, R.; Zbijewski, W.; Kawamoto, S.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Acquisition of CT images with comparable diagnostic power can potentially be achieved with lower radiation exposure than the current standard of care through the adoption of hardware-based fluence-field modulation (e.g. dynamic bowtie filters). While modern CT scanners employ elements such as static bowtie filters and tube-current modulation, such solutions are limited in the fluence patterns that they can achieve, and thus are limited in their ability to adapt to broad classes of patient morphology. Fluence-field modulation also enables new applications such as region-of-interest imaging, task specific imaging, reducing measurement noise or improving image quality. The work presented in this paper leverages a novel fluence modulation strategy that uses "Multiple Aperture Devices" (MADs) which are, in essence, binary filters, blocking or passing x-rays on a fine scale. Utilizing two MAD devices in series provides the capability of generating a large number of fluence patterns via small relative motions between the MAD filters. We present the first experimental evaluation of fluence-field modulation using a dual-MAD system, and demonstrate the efficacy of this technique with a characterization of achievable fluence patterns and an investigation of experimental projection data.
Experimental studies on coherent synchrotron radiation at an emittance exchange beam line
NASA Astrophysics Data System (ADS)
Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.
2012-11-01
One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.
Square wave voltammetry at the dropping mercury electrode: Experimental
Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.
1977-01-01
Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.
On the Limitations of Biological Knowledge
Dougherty, Edward R; Shmulevich, Ilya
2012-01-01
Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understanding limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as opposed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of limiting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human intellectual capacity. PMID:23633917
Helgason, Benedikt; Viceconti, Marco; Rúnarsson, Tómas P; Brynjólfsson, Sigurour
2008-01-01
Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.
Superconducting fault current limiter for railway transport
NASA Astrophysics Data System (ADS)
Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.
2015-12-01
A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.
The use of experimental data in an MTR-type nuclear reactor safety analysis
NASA Astrophysics Data System (ADS)
Day, Simon E.
Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.
The theoretical tools of experimental gravitation
NASA Technical Reports Server (NTRS)
Will, C. M.
1972-01-01
Theoretical frameworks for testing relativistic gravity are presented in terms of a system for analyzing theories of gravity invented as alternatives to Einstein. The parametrized post-Newtonian (PPN) formalism, based on the Dicke framework and the Eotvos-Dicke-Braginsky experiment, is discussed in detail. The metric theories of gravity, and their post-Newtonian limits are reviewed, and PPN equations of motion are derived. These equations are used to analyze specific effects and experimental tests in the solar system.
A computer-aided movement analysis system.
Fioretti, S; Leo, T; Pisani, E; Corradini, M L
1990-08-01
Interaction with biomechanical data concerning human movement analysis implies the adoption of various experimental equipments and the choice of suitable models, data processing, and graphical data restitution techniques. The integration of measurement setups with the associated experimental protocols and the relative software procedures constitutes a computer-aided movement analysis (CAMA) system. In the present paper such integration is mapped onto the causes that limit the clinical acceptance of movement analysis methods. The structure of the system is presented. A specific CAMA system devoted to posture analysis is described in order to show the attainable features. Scientific results obtained with the support of the described system are also reported.
The Performance of a Vaneless Diffuser Fan
NASA Technical Reports Server (NTRS)
Polikovsky, V.; Nevelson, M.
1942-01-01
The present paper is devoted to the theoretical and experimental investigation of one of the stationary elements of a fan, namely, the vaneless diffuser. The method of computation is based on the principles developed by Pfleiderer (Forschungsarbeiten No. 295). The practical interest of this investigation arises from the fact that the design of the fan guide elements - vaneless diffusers, guide vanes, spiral casing - is far behind the design of the impeller as regards accuracy and. reliability. The computations conducted by the method here presented have shown sufficiently good agreement with the experimental data and indicate the limits within which the values of the coefficient of friction lie.
Rarefaction effects on Galileo probe aerodynamics
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.
1996-01-01
Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.
A study of roll attractor and wing rock of delta wings at high angles of attack
NASA Technical Reports Server (NTRS)
Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.
1993-01-01
Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.
New limits for the 2 νββ decay of 96Zr to excited nuclear states of 96Mo
NASA Astrophysics Data System (ADS)
Finch, Sean; Tornow, Werner
2015-10-01
The final results from our search for the 2 νββ decay of 96Zr to excited 0+ and 2+ states of 96Mo are presented. Such measurements provide valuable test cases for 2 νββ -decay nuclear matrix element calculations, which in turn are used to tune 0 νββ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the 2 νββ decay of 100Mo and 150Nd to excited nuclear states. Experimental limits on the T1 / 2 and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96Zr. Supported by DOE Grant: DE-FG02-97ER41033.
NASA Technical Reports Server (NTRS)
Kania, Michael
1991-01-01
A discussion on coated particle fuel performance from a modular High Temperature Gas Reactor (HTGR) is presented along with experimental results. The following topics are covered: (1) the coated particle fuel concept; (2) the functional requirements; (3) performance limiting mechanisms; (4) fuel performance; and (5) methods/techniques for characterizing performance.
First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
NASA Astrophysics Data System (ADS)
Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET
2017-12-01
ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
This paper describes the design considerations and experimental verification of an LIM rail brake armature. In order to generate power and maximize the braking force density despite the limited area between the armature and the rail and the limited space available for installation, we studied a design method that is suitable for designing an LIM rail brake armature; we considered adoption of a ring winding structure. To examine the validity of the proposed design method, we developed a prototype ring winding armature for the rail brakes and examined its electromagnetic characteristics in a dynamic test system with roller rigs. By repeating various tests, we confirmed that unnecessary magnetic field components, which were expected to be present under high speed running condition or when a ring winding armature was used, were not present. Further, the necessary magnetic field component and braking force attained the desired values. These studies have helped us to develop a basic design method that is suitable for designing the LIM rail brake armatures.
Temporal flow instability for Magnus-Robins effect at high rotation rates
NASA Astrophysics Data System (ADS)
Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.
2003-06-01
The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.
Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Slobozhanin, Lev A.; Resnick, Andrew H.; Ramus, Jean-Francois; Delafontaine, Sylvie
1999-01-01
Liquid bridges have been the focus of numerous theoretical and experimental investigations since the early work by Plateau more than a century ago. More recently, motivated by interest in their physical behavior and their occurrence in a variety of technological situations, there has been a resurgence of interest in the static and dynamic behavior of liquid bridges. Furthermore, opportunities to carry out experiments in the near weightless environment of a low-Earth-orbit spacecraft have also led to a number of low-gravity experiments involving large liquid bridges. In this paper, we present selected results from our work concerning the stability of nonaxisymmetric liquid bridges, the bifurcation of weightless bridges in the neighborhood of the maximum volume stability limit, isorotating axisymmetric bridges contained between equidimensional disks, and bridges contained between unequal disks. For the latter, we discuss both theoretical and experimental results. Finally, we present results concerning the stability of axisymmetric equilibrium configurations for a capillary liquid partly contained in a closed circular cylinder.
Experimental investigation of criteria for continuous variable entanglement.
Bowen, W P; Schnabel, R; Lam, P K; Ralph, T C
2003-01-31
We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR paradox and inseparability criteria, with both results clearly beating the standard quantum limit. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.
Equation of state and electron localisation in fcc lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Equation of state and electron localisation in fcc lithium
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...
2018-02-14
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
NASA Astrophysics Data System (ADS)
Rieger, G.; Pinnington, E. H.; Ciubotariu, C.
2000-12-01
Absolute photon emission cross sections following electron capture reactions have been measured for C2+, N3+, N4+ and O3+ ions colliding with Li(2s) atoms at keV energies. The results are compared with calculations using the extended classical over-the-barrier model by Niehaus. We explore the limits of our experimental method and present a detailed discussion of experimental errors.
Theoretical and experimental characterization of the first hyperpolarizability
NASA Astrophysics Data System (ADS)
Perez-Moreno, Javier
We present a theoretical and experimental study of the molecular susceptibilities. The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear response of organic chromophores in terms of fundamental parameters. The nonlinear optical performance of real molecules is evaluated from the calculation of the quantum limits and Hyper-Rayleigh scattering measurements. Different strategies for the enhancement of nonlinear behavior at the molecular and supramolecular level are evaluated and new paradigms for de design of more efficient nonlinear molecules are proposed.
The unrealized potential for heavy balloon payloads
NASA Astrophysics Data System (ADS)
Winker, J. A.
1993-02-01
Knowing that properties of new polyethylene films are superior to previous types, one would believe that heavier payloads can now be safely carried. Some experimentation has already been done to verify that assumption. Future expectations are discussed. We believe that with present-day materials, and with only limited changes in design philosophies, maximum payload weights can be increased by 50 to 75% from presently accepted maxima.
Fibre-Reinforced Adhesive for Structure Anchoring
NASA Astrophysics Data System (ADS)
Barnat, J.; Bajer, M.
2015-11-01
The topic of this paper is the glue-concrete interface of bonded anchors loaded by tension force. The paper is closely focused on bond strength experiments using high strength concrete up to class C50/60 or higher together with pure epoxy resin and fibre-reinforced resin. The goal of this research is to find the limits of the effective use of such glue types in high performance concrete, and also to verify the most commonly used design methods for bonded anchors. The presented research includes experimental analysis of the glue-concrete interface and the influence of its parameters on anchor behaviour. The presented analysis shows some problems of the 'separated failure modes' approach and also presents experimentally verified bond strength values obtained for the currently most widespread glue types. Results of fibre reinforced epoxy resin are also presented in this paper.
Laser-Based Lighting: Experimental Analysis and Perspectives
Yushchenko, Maksym; Buffolo, Matteo; Meneghini, Matteo; Zanoni, Enrico
2017-01-01
This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes. PMID:29019958
Pawelko, R. J.; Shimada, M.; Katayama, K.; ...
2015-11-28
This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curceanu, C.; Bragadireanu, M.; Sirghi, D.
The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. We present an experimental test of the validity of the Pauli Exclusion Principle for electrons based on a straightforward idea put forward a few years ago by Ramberg and Snow (E. Ramberg and G. A. Snow 1990 Phys. Lett. B 238 438). We performed a very accurate search ofmore » X-rays from the Pauli-forbidden atomic transitions of electrons in the already filled 1S shells of copper atoms. Although the experiment has a very simple structure, it poses deep conceptual and interpretational problems. Here we describe the experimental method and recent experimental results interpreted as an upper limit for the probability to violate the Pauli Exclusion Principle. We also present future plans to upgrade the experimental apparatus.« less
Approaching the Limit in Atomic Spectrochemical Analysis.
ERIC Educational Resources Information Center
Hieftje, Gary M.
1982-01-01
To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…
Sensory Integration and the Perceptual Experience of Persons with Autism
ERIC Educational Resources Information Center
Iarocci, Grace; McDonald, John
2006-01-01
Research studies on sensory issues in autism, including those based on questionnaires, autobiographical accounts, retrospective video observations and early experimental approaches are reviewed in terms of their strengths and limitations. We present a cognitive neuroscience theoretical perspective on multisensory integration and propose that this…
Single-Molecule Electronic Measurements with Metal Electrodes
ERIC Educational Resources Information Center
Lindsay, Stuart
2005-01-01
A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.
DOT National Transportation Integrated Search
2015-01-01
This report is the first of three volumes and presents interpretation of all experimental and numerical data and recommendations. In : total, 30 large scale reinforced concrete columns tests were conducted under a variety of loading conditions. Using...
Recent Developments in the Formability of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Banabic, Dorel; Cazacu, Oana; Paraianu, Liana; Jurco, Paul
2005-08-01
The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.
Recent Developments in the Formability of Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banabic, Dorel; Paraianu, Liana; Jurco, Paul
The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have beenmore » compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.« less
Optimizing Experimental Design for Comparing Models of Brain Function
Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas
2011-01-01
This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485
Synchronization in counter-rotating oscillators.
Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K
2011-09-01
An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.
Efficacy of an enterovaccine in recurrent episodes of diarrhea in the dog: a pilot study.
Cerquetella, Matteo; Laus, Fulvio; Speranzini, Fabiana; Carnevali, Cristina; Spaterna, Andrea; Battaglia, Edda; Bassotti, Gabrio
2012-02-01
Recurrent episodes of self-limiting diarrhea in the dog, due to sudden dietary changes and to stressful or exciting situations, are conditions sometimes difficult to treat. Colifagina(®), a commercially available bacterial enterovaccine, showed, in previous studies performed on experimentally induced colitis in mice, to be able to improve both disease activity index and histological appearance, increase colonic secretion of IgA, and reduce inflammatory chemokine secretion. In the present study Colifagina(®) was administered to five dogs presenting recurrent episodes of self-limiting diarrhea and to one dog presenting chronic diarrhea. During the follow-up period, almost all patients decreased the number of episodes of abnormal defecation and the fecal score of such episodes improved in five out of six dogs. Even if further studies are needed to understand the exact potential of the compound, in dogs presenting recurrent episodes of self-limiting diarrhea due to sudden dietary changes and/or stressing or exciting situations, Colifagina(®) seems to be helpful in managing most of these patients.
NASA Astrophysics Data System (ADS)
Nespoli, F.; Labit, B.; Furno, I.; Theiler, C.; Sheikh, U. A.; Tsui, C. K.; Boedo, J. A.; TCV Team
2018-05-01
In inboard-limited plasmas, foreseen to be used in future fusion reactor start-up and ramp down phases, the Scrape-Off Layer (SOL) exhibits two regions: the "near" and "far" SOL. The steep radial gradient of the parallel heat flux associated with the near SOL can result in excessive thermal loads onto the solid surfaces, damaging them and/or limiting the operational space of a fusion reactor. In this article, leveraging the results presented in the study by F. Nespoli et al. [Nucl. Fusion 57, 126029 (2017)], we propose a technique for the mitigation and suppression of the near SOL heat flux feature by impurity seeding. The first successful experimental results from the TCV tokamak are presented and discussed.
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun
2018-06-01
This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.
Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.
1996-07-01
The authors explore several practical experimental issues in measuring ultrashort laser pulses using the technique of frequency-resolved optical gating (FROG). They present a simple method for checking the consistency of experimentally measured FROG data with the independently measured spectrum and autocorrelation of the pulse. This method is a powerful way of discovering systematic errors in FROG experiments. They show how to determine the optimum sampling rate for FROG and show that this satisfies the Nyquist criterion for the laser pulse. They explore the low- and high-power limits to FROG and determine that femtojoule operation should be possible, while the effectsmore » of self-phase modulation limit the highest signal efficiency in FROG to 1%. They also show quantitatively that the temporal blurring due to a finite-thickness medium in single-shot geometries does not strongly limit the FROG technique. They explore the limiting time-bandwidth values that can be represented on a FROG trace of a given size. Finally, they report on a new measure of the FROG error that improves convergence in the presence of noise.« less
Cruz-Garza, Jesus G; Hernandez, Zachery R; Tse, Teresa; Caducoy, Eunice; Abibullaev, Berdakh; Contreras-Vidal, Jose L
2015-10-04
Understanding typical and atypical development remains one of the fundamental questions in developmental human neuroscience. Traditionally, experimental paradigms and analysis tools have been limited to constrained laboratory tasks and contexts due to technical limitations imposed by the available set of measuring and analysis techniques and the age of the subjects. These limitations severely limit the study of developmental neural dynamics and associated neural networks engaged in cognition, perception and action in infants performing "in action and in context". This protocol presents a novel approach to study infants and young children as they freely organize their own behavior, and its consequences in a complex, partly unpredictable and highly dynamic environment. The proposed methodology integrates synchronized high-density active scalp electroencephalography (EEG), inertial measurement units (IMUs), video recording and behavioral analysis to capture brain activity and movement non-invasively in freely-behaving infants. This setup allows for the study of neural network dynamics in the developing brain, in action and context, as these networks are recruited during goal-oriented, exploration and social interaction tasks.
Performance limitations of bilateral force reflection imposed by operator dynamic characteristics
NASA Technical Reports Server (NTRS)
Chapel, Jim D.
1989-01-01
A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.
Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; ...
2017-06-21
Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi
Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less
Graphene-Based Liquid-Gated Field Effect Transistor for Biosensing: Theory and Experiments
Reiner-Rozman, Ciril; Larisika, Melanie; Nowak, Christoph; Knoll, Wolfgang
2015-01-01
We present an experimental and theoretical characterization for reduced Graphene-Oxide (rGO) based FETs used for biosensing applications. The presented approach shows a complete result analysis and theoretically predictable electrical properties. The formulation was tested for the analysis of the device performance in the liquid gate mode of operation with variation of the ionic strength and pH-values of the electrolytes in contact with the FET. The dependence on the Debye length was confirmed experimentally and theoretically, utilizing the Debye length as a working parameter and thus defining the limits of applicability for the presented rGO-FETs. Furthermore, the FETs were tested for the sensing of biomolecules (bovine serum albumin (BSA) as reference) binding to gate-immobilized anti-BSA antibodies and analyzed using the Langmuir binding theory for the description of the equilibrium surface coverage as a function of the bulk (analyte) concentration. The obtained binding coefficients for BSA are found to be same as in results from literature, hence confirming the applicability of the devices. The FETs used in the experiments were fabricated using wet-chemically synthesized graphene, displaying high electron and hole mobility (μ) and provide the strong sensitivity also for low potential changes (by change of pH, ion concentration, or molecule adsorption). The binding coefficient for BSA-anti-BSA interaction shows a behavior corresponding to the Langmuir adsorption theory with a Limit of Detection (LOD) in the picomolar concentration range. The presented approach shows high reproducibility and sensitivity and a good agreement of the experimental results with the calculated data. PMID:25791463
NASA Technical Reports Server (NTRS)
Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.
1979-01-01
Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.
NASA Astrophysics Data System (ADS)
Bressan, José Divo; Liewald, Mathias; Drotleff, Klaus
2017-10-01
Forming limit strain curves of conventional aluminium alloy AA6014 sheets after loading with non-linear strain paths are presented and compared with D-Bressan macroscopic model of sheet metal rupture by critical shear stress criterion. AA6014 exhibits good formability at room temperature and, thus, is mainly employed in car body external parts by manufacturing at room temperature. According to Weber et al., experimental bi-linear strain paths were carried out in specimens with 1mm thickness by pre-stretching in uniaxial and biaxial directions up to 5%, 10% and 20% strain levels before performing Nakajima testing experiments to obtain the forming limit strain curves, FLCs. In addition, FLCs of AA6014 were predicted by employing D-Bressan critical shear stress criterion for bi-linear strain path and comparisons with the experimental FLCs were analyzed and discussed. In order to obtain the material coefficients of plastic anisotropy, strain and strain rate hardening behavior and calibrate the D-Bressan model, tensile tests, two different strain rate on specimens cut at 0°, 45° and 90° to the rolling direction and also bulge test were carried out at room temperature. The correlation of experimental bi-linear strain path FLCs is reasonably good with the predicted limit strains from D-Bressan model, assuming equivalent pre-strain calculated by Hill 1979 yield criterion.
Emergence of Lying in Very Young Children
ERIC Educational Resources Information Center
Evans, Angela D.; Lee, Kang
2013-01-01
Lying is a pervasive human behavior. Evidence to date suggests that from the age of 42 months onward, children become increasingly capable of telling lies in various social situations. However, there is limited experimental evidence regarding whether very young children will tell lies spontaneously. The present study investigated the emergence of…
ERIC Educational Resources Information Center
Walker, Laurens; Goldstein, Burton
1976-01-01
Noting the limitations of clinical legal education when it focuses only on the learning of practical skills outside the classroom, the authors describe an experimental course in civil procedure designed to adapt clinical methods to the classroom by placing each student in the role of the lawyer in a specific case with class presentations and…
Mass properties measurement system: Dynamics and statics measurements
NASA Technical Reports Server (NTRS)
Doty, Keith L.
1993-01-01
This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... once. Experimental permit or permit means an authorization by the FAA to a person to launch or reenter... designed to limit or restrict the hazards to public health and safety and the safety of property presented... vehicle and includes pre- and post-flight ground operations as follows: (1) Beginning of launch. (i) Under...
Code of Federal Regulations, 2014 CFR
2014-01-01
... once. Experimental permit or permit means an authorization by the FAA to a person to launch or reenter... designed to limit or restrict the hazards to public health and safety and the safety of property presented... vehicle and includes pre- and post-flight ground operations as follows: (1) Beginning of launch. (i) Under...
Language Non-Selective Syntactic Activation in Early Bilinguals: The Role of Verbal Fluency
ERIC Educational Resources Information Center
Sanoudaki, Eirini; Thierry, Guillaume
2015-01-01
Numerous studies have shown that bilinguals presented with words in one of their languages spontaneously and automatically activate lexical representations from their other language. However, such effects, found in varied experimental contexts, both in behavioural and psychophysiological investigations, have been essentially limited to the…
Experimental investigation on consistency limits of cement and lime-stabilized marine sediments.
Wang, DongXing; Zentar, Rachid; Abriak, Nor Edine; Xu, WeiYa
2012-06-01
This paper presents the effects of treatments with cement and lime on the consistency limits of marine sediments dredged from Dunkirk port. The Casagrande percussion test and the fall cone test were used to determine the liquid limits of raw sediments and treated marine sediments. For the evaluation of the plastic limits, the results of the fall cone test were compared with those obtained by the rolling test method. The relationship between the water contents and the penetration depths for the determination of the liquid limit and the plastic limit was explored. Liquid limits at 15.5 mm and plastic limits at 1.55 mm seem to be a more appropriate choice for the studied marine sediments compared with the limits determined by other used prediction methods. Finally, the effect of cement treatment and lime treatment on the Casagrande classification of the studied sediments was investigated according to the different prediction results.
Sinclair, Thomas R; Manandhar, Anju; Shekoofa, Avat; Rosas-Anderson, Pablo; Bagherzadi, Laleh; Schoppach, Remy; Sadok, Walid; Rufty, Thomas W
2017-04-01
Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.
NASA Technical Reports Server (NTRS)
Anderson, David J.; Lambert, Heather H.; Mizukami, Masashi
1992-01-01
Experimental results from a wind tunnel test conducted to investigate propulsion/airframe integration (PAI) effects are presented. The objectives of the test were to examine rough order-of-magnitude changes in the acoustic characteristics of a mixer/ejector nozzle due to the presence of a wing and to obtain limited wing and nozzle flow-field measurements. A simple representative supersonic transport wing planform, with deflecting flaps, was installed above a two-dimensional mixer/ejector nozzle that was supplied with high-pressure heated air. Various configurations and wing positions with respect to the nozzle were studied. Because of hardware problems, no acoustics and only a limited set of flow-field data were obtained. For most hardware configurations tested, no significant propulsion/airframe integration effects were identified. Significant effects were seen for extreme flap deflections. The combination of the exploratory nature of the test and the limited flow-field instrumentation made it impossible to identify definitive propulsion/airframe integration effects.
Optically induced metastability in Cu(In,Ga)Se 2
Jensen, S. A.; Kanevce, A.; Mansfield, L. M.; ...
2017-10-23
Cu(In,Ga)Se 2 (CIGS) is presently the most efficient thin-film photovoltaic technology with efficiencies exceeding 22%. An important factor impacting the efficiency is metastability, where material changes occur over timescales of up to weeks during light exposure. A previously proposed (V Se -V Cu ) divacancy model presents a widely accepted explanation. We present experimental evidence for the optically induced metastability transition and expand the divacancy model with first-principles calculations. Using photoluminescence excitation spectroscopy, we identify a sub-bandgap optical transition that severely deteriorates the carrier lifetime. This is in accordance with the expanded divacancy model, which predicts that states below themore » conduction band are responsible for the metastability change. We determine the density–capture cross-section product of the induced lifetime-limiting states and evaluate their impact on device performance. The experimental and theoretical findings presented can allow assessment of metastability characteristics of leading thin-film photovoltaic technologies.« less
NASA Astrophysics Data System (ADS)
Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Busch, M.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Eyser, K. O.; Felden, O.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Langkau, R.; Lindlein, J.; Maier, R.; Mosel, F.; Prasuhn, D.; von Rossen, P.; Scheid, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Trelle, H.-J.; Ulbrich, K.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.
2006-04-01
Recently published excitation functions in proton-proton ( pp) elastic scattering observables in the laboratory energy range 0.5-2.5GeV provide an excellent data base to establish firm upper limits on the elasticities ηel = Γel/Γtot of possible isovector resonant contributions to the nucleon-nucleon ( NN) system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between 2.1-2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range 2.05-2.85GeV/c2 and total widths of 10-100MeV/c2 in the partial waves 1 S 0, 1 D 2, 3 P 0, 3 P 1, and 3 F 3 are presented and discussed.
Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit
NASA Astrophysics Data System (ADS)
Mohapatra, Abhishek Ray; Sepehrirahnama, Shahrokh; Lim, Kian-Meng
2018-05-01
Acoustophoresis is a form of contact-free particle manipulation in microfluidic devices. The precision of manipulation can be enhanced with better understanding of the acoustic radiation force. In this paper we present the measurements of interparticle radiation force between a pair of polystyrene beads in the Rayleigh limit. The study is conducted for three different sizes of beads and the experimental results are of the same order of magnitude when compared with theoretical predictions. However, the experimental values are larger than the theoretical values. The trend of a decrease in the magnitude of the interparticle radiation force with decreasing particle size and increasing center-to-center distance between the particles is also observed experimentally. The experiments are conducted in the specific scenario where the pair of beads are in close proximity, but not in contact with each other, and the beads are approaching the pressure nodal plane with the center-to-center line aligned perpendicular to the incident wave. This scenario minimizes the presence of the primary radiation force, allowing accurate measurement of the interparticle force. The attractive nature of the interparticle force is observed, consistent with theoretical predictions.
Finding viable models in SUSY parameter spaces with signal specific discovery potential
NASA Astrophysics Data System (ADS)
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
NASA Technical Reports Server (NTRS)
Ousterhout, D. S.
1972-01-01
An experimental program was undertaken to determine the pressure distribution induced on aerodynamic bodies by a subsonic cold jet exhausting normal to the body surface and into a subsonic free stream. The investigation was limited to two bodies with single exhaust jets a flat plate at zero angle of attack with respect to the free-stream flow and a cylinder, fitted with a conical nose, with the longitudinal axis alined with the free-stream flow. Experimental data were obtained for free-stream velocity to jet velocity ratios between 0.3 and 0.5. The experimental data are presented in tabular form with appropriate graphs to indicate pressure coefficient contours, pressure coefficient decay, pitching-moment characteristics, and lift characteristics.
Experimental study of forced convection heat transport in porous media
NASA Astrophysics Data System (ADS)
Pastore, Nicola; Cherubini, Claudia; Rapti, Dimitra; Giasi, Concetta I.
2018-04-01
The present study is aimed at extending this thematic issue through heat transport experiments and their interpretation at laboratory scale. An experimental study to evaluate the dynamics of forced convection heat transfer in a thermally isolated column filled with porous medium has been carried out. The behavior of two porous media with different grain sizes and specific surfaces has been observed. The experimental data have been compared with an analytical solution for one-dimensional heat transport for local nonthermal equilibrium condition. The interpretation of the experimental data shows that the heterogeneity of the porous medium affects heat transport dynamics, causing a channeling effect which has consequences on thermal dispersion phenomena and heat transfer between fluid and solid phases, limiting the capacity to store or dissipate heat in the porous medium.
14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...
14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...
14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...
14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...
14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy
Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.
Coherence properties and quantum state transportation in an optical conveyor belt.
Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D
2003-11-21
We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.
Outer planet Grand Tour missions photometry/polarimetry experiment critical components study
NASA Technical Reports Server (NTRS)
Pellicori, S. F.; Russell, E. E.; Watts, L. A.
1972-01-01
Work performed during this effort was limited to two primary areas of technical concern: optical design optimization, and sensor selection. An optical system concept was established, and various system components were evaluated through experimental test sequences. Photodetectors were investigated for the applicability in meeting OPGT requirements as constrained by the photometry/polarimetry team directives. The most promising (gallium arsenide PMT) was further experimentally tested to ascertain its behavior with respect to anticipated environmental conditions. Results of testing and summary of the preceding tradeoff study effort are presented.
NASA Technical Reports Server (NTRS)
Short, J. S.; Hyer, M. W.; Bowles, D. E.; Tompkins, S. S.
1982-01-01
The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design.
Nonlinear feedback method of robot control - A preliminary experimental study
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Ganguly, S.; Li, Z.; Bejczy, A. K.
1990-01-01
The nonlinear feedback method of robot control has been experimentally implemented on two PUMA 560 robot arms. The feasibility of the proposed controller, which was shown viable through simulation results earlier, is stressed. The servomechanism operates in task space, and the nonlinear feedback takes care of the necessary transformations to compute the necessary joint currents. A discussion is presented of the implementation with details of the experiments performed. The performance of the controller is encouraging but was limited to 100-Hz sampling frequency and to derived velocity information at the time of the experimentation. The setup of the lab, the software aspects, results, and the control hardware architecture that has recently been implemented are discussed.
Premixing quality and flame stability: A theoretical and experimental study
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.
1979-01-01
Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.
Biowaste home composting: experimental process monitoring and quality control.
Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo
2015-04-01
Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental composters, along with the evaluation of the parametric central tendencies in the sub-sets of controlled provincial composters, all indicate that 12-15 months is a suitable duration for the appropriate development of home composting in final and simultaneous compliance with typical reference limits. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Experimental Study of n-Heptane and JP-7 Extinction Limits in an Opposed Jet Burner
NASA Technical Reports Server (NTRS)
Convery, Janet L.; Pellett, Gerald L.; O'Brien, Walter F., Jr.; Wilson, Lloyd G.; Williams, John
2005-01-01
Propulsion engine combustor design and analysis requires experimentally verified data on the chemical kinetics of fuel. Among the important data is the combustion extinction limit as measured by observed maximum flame strain rate. The extinction limit relates to the ability to maintain a flame in a combustor during operation. Extinction limit data can be obtained for a given fuel by means of a laminar flame experiment using an opposed jet burner (OJB). Laminar extinction limit data can be applied to the turbulent application of a combustor via laminar flamelet modeling. The OJB consists of two axi-symmetric tubes (one for fuel and one for oxidizer), which produce a flat, disk-like counter-flow diffusion flame. This paper presents results of experiments to measure extinction limits for n-heptane and the military specification fuel JP-7, obtained from an OJB. JP-7 is an Air Force-developed fuel that continues to be important in the area of hypersonics. Because of its distinct properties it is currently the hydrocarbon fuel of choice for use in Scramjet engines. This study provides much-desired data for JP-7, for which very little information previously existed. The interest in n-heptane is twofold. First, there has been a significant amount of previous extinction limit study and resulting data with this fuel. Second, n-heptane (C7H16) is a pure substance, and therefore does not vary in composition as does JP-7, which is a mixture of several different hydrocarbons. These two facts allow for a baseline to be established by comparing the new OJB results to those previously taken. Additionally, the data set for n-heptane, which previously existed for mixtures up to 26 mole percent in nitrogen, is completed up to 100% n-heptane. The extinction limit data for the two fuels are compared, and complete experimental results are included.
Laser-Induced Ultrafast Demagnetization: Femtomagnetism, a New Frontier?
NASA Astrophysics Data System (ADS)
Zhang, Guoping; Huebner, Wolfgang; Beaurepaire, Eric; Bigot, Jean-Yves
The conventional demagnetization process (spin precession, magnetic domain motion and rotation) is governed mainly by spin-lattice, magnetic dipole and Zeeman, and spin-spin interactions. It occurs on a timescale of nanoseconds. Technologically, much faster magnetization changes are always in great demand to improve data processing speed. Unfortunately, the present speed of magnetic devices is already at the limit of the conventional mechanism with little room left. Fortunately and unprecedentedly, recent experimental investigations have evidenced much faster magnetization dynamics which occurs on a femtosecond time scale: femtomagnetism. This novel spin dynamics has not been well-understood until now. This article reviews the current status of ultrafast spin dynamics and presents a perspective for future experimental and theoretical investigations.Present address: Department of Physics and Astronomy, The University of Tennessee at Knoxville, TN 37996-1200, USA; gpzhang@utk.edu
HANFORD WASTE MINEROLOGY REFERENCE REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
DISSELKAMP RS
2010-06-18
This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.
Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.
2015-01-01
Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duro, Francisco Rodrigo; Blas, Javier Garcia; Isaila, Florin
The increasing volume of scientific data and the limited scalability and performance of storage systems are currently presenting a significant limitation for the productivity of the scientific workflows running on both high-performance computing (HPC) and cloud platforms. Clearly needed is better integration of storage systems and workflow engines to address this problem. This paper presents and evaluates a novel solution that leverages codesign principles for integrating Hercules—an in-memory data store—with a workflow management system. We consider four main aspects: workflow representation, task scheduling, task placement, and task termination. As a result, the experimental evaluation on both cloud and HPC systemsmore » demonstrates significant performance and scalability improvements over existing state-of-the-art approaches.« less
Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS
NASA Astrophysics Data System (ADS)
Decker, Glenn; Rosenbaum, Gerd; Singh, Om
2006-11-01
Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik
2017-11-03
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz
2017-01-01
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791
Experimental Evidence on Iterated Reasoning in Games
Grehl, Sascha; Tutić, Andreas
2015-01-01
We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486
Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C
2013-12-06
An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15) W/cm2, or short pulses with intensities up to 5×10(16) W/cm2 as well as with 2D particle-in-cell simulations.
Catalytic ignition of hydrogen and oxygen propellants
NASA Technical Reports Server (NTRS)
Zurawski, Robert L.; Green, James M.
1988-01-01
An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.
Catalytic ignition of hydrogen and oxygen propellants
NASA Technical Reports Server (NTRS)
Zurawski, Robert L.; Green, James M.
1988-01-01
An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.
New trends in the nucleation research
NASA Astrophysics Data System (ADS)
Anisimov, M. P.; Hopke, P. K.
2017-09-01
During the last half of century the most of efforts have been directed towards small molecule system modeling using intermolecular potentials. Summarizing the nucleation theory, it can be concluded that the nowadays theory is far from complete. The vapor-gas nucleation theory can produce values that deviate from the experimental results by several orders of magnitude currently. Experiments on the vapor-gas nucleation rate measurements using different devices show significant inconsistencies in the measured rates as well. Theoretical results generally are quite reasonable for sufficiently low vapor nucleation rates where the capillary approximation is applicable. In the present research the advantages and current problems of the vapor-gas nucleation experiments are discussed briefly and a view of the future studies is presented. Using the brake points of the first derivative for the nucleation rate surface as markers of the critical embryos phase change is fresh idea to show the gas-pressure effect for the nucleating vapor-gas systems. To test the accuracy of experimental techniques, it is important to have a standard system that can be measured over a range of nucleation conditions. Several results illustrate that high-pressure techniques are needed to study multi-channel nucleation. In practical applications, parametric theories can be used for the systems of interest. However, experimental measurements are still the best source of information on nucleation rates. Experiments are labor intensive and costly, and thus, it is useful to extend the value of limited experimental measurements to a broader range of nucleation conditions. Only limited experimental data one needs for use in normalizing the slopes of the linearized nucleation rate surfaces. The nucleation rate surface is described in terms of steady-state nucleation rates. It is supposed that several new measuring systems, such as High Pressure Flow Diffusion Chamber for pressure limit up to 150 bar will be created soon in the frame of the Russian Ministry of Science & Education project under Contract № 14.Z50.31.0041 issued by February 13th of 2017. The Project will provide the nucleation studies for basic problems of theoretical and practical applications. Published under licence in Journal Title by IOP Publishing Ltd.
Experimentally Observed Electrical Durability of 4H-SiC JFET ICs Operating from 500 C to 700 C
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.
2016-01-01
This ECSCRM 2016 submission presents further electrical testing and microscopic post-failure studies aimed at more comprehensive understanding of the durability limits of this extreme temperature IC technology. The results summarized represent an unprecedented combination of T 500 C semiconductor IC durability and functionality.
The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores th...
Overload retardation due to plasticity-induced crack closure
NASA Technical Reports Server (NTRS)
Fleck, N. A.; Shercliff, H. R.
1989-01-01
Experiments are reported which show that plasticity-induced crack closure can account for crack growth retardation following an overload. The finite element method is used to provide evidence which supports the experimental observations of crack closure. Finally, a simple model is presented which predicts with limited success the retardation transient following an overload.
Your World and Welcome To It, Science (Experimental): 5314.03.
ERIC Educational Resources Information Center
Kleinman, David Z.
Presented is a beginning course in biology with emphasis on ecology for students with limited interest and few experiences in science. These students most likely will not take many more science courses. Included are the basic ecological concepts of communities, population, societies and the effects humans have on the environment. Like all other…
Media Research Techniques. 2nd Edition.
ERIC Educational Resources Information Center
Berger, Arthur Asa
Suggesting it is a good idea for students to try their hands at doing media research themselves, this book presents a number of research projects that students will find interesting and that they can do with minimum experience in a limited amount of time. The second edition has added chapters on experimentation, historical research, comparative…
Effects of a growth check on daily age estimates of age-0 alligator gar
Snow, Richard A.; Long, James M.
2016-01-01
Accurate age and growth information is essential for a complete knowledge of life history, growth rates, age at sexual maturity, and average life span in fishes. Alligator gar are becoming increasingly managed throughout their range and because this species spawns in backwater flooded areas, their offspring are prone to stranding in areas with limited prey, potentially affecting their growth. Because fish growth is tightly linked with otolith growth and annulus formation, the ability to discern marks not indicative of annuli (age checks) in alligator gar would give managers some insight when estimating ages. Previous studies have suggested that checks are often present prior to the first annulus in otoliths of alligator gar, affecting age estimates. We investigated check formation in otoliths of alligator gar in relation to growth and food availability. Sixteen age-0 alligator gar were marked with oxytetracycline (OTC) to give a reference point and divided equitably into two groups: a control group with abundant prey and an experimental group with limited prey. The experimental group was given 2 g of food per week for 20 days and then given the same prey availability as the control group for the next 20 days. After 40 days, the gar were measured, sacrificed, and their sagittae removed to determine if checks were present. Checks were visible on 14 of the 16 otoliths in the experimental group, associated with low growth during the first 20 days when prey was limited and accelerated growth after prey availability was increased. No checks were observed on otoliths of the control group, where growth and prey availability were consistent. Age estimates of fish in the control group were more accurate than those in the experimental group, showing that fish growth as a function of prey availability likely induced the checks by compressing daily ring formation.
Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac).
Sacco, Pasquale; Furlani, Franco; Cok, Michela; Travan, Andrea; Borgogna, Massimiliano; Marsich, Eleonora; Paoletti, Sergio; Donati, Ivan
2017-12-11
The present paper explores the effect of boric acid on Chitlac, a lactose-modified chitosan which had previously shown interesting biological and physical-chemical features. The herewith-reported experimental evidences demonstrated that boric acid binds to Chitlac, producing conformational and association effects on the chitosan derivative. The thermodynamics of boric acid binding to Chitlac was explored by means of 11 B NMR, circular dichroism (CD), and UV-vis spectroscopy, while macromolecular effects were investigated by means of viscometry and dynamic light scattering (DLS). The experimental results revealed a chain-chain association when limited amounts of boric acid were added to Chitlac. However, upon exceeding a critical boric acid limit dependent on the polysaccharide concentration, the soluble aggregates disentangle. The rheological behavior of Chitlac upon treatment with boric acid was explored showing a dilatant behavior in conditions of steady flow. An uncommonly high dependence in the scaling law between the zero-shear viscosity and the concentration of Chitlac was found, i.e., η 0 ∝ C CTL 5.8 , pointing to interesting potential implications of the present system in biomaterials development.
Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.
Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal
2014-05-15
We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doering, D.; McDonald, G.; Debs, J. E.
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less
NASA Technical Reports Server (NTRS)
Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete;
2017-01-01
This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.
Study of a coronagraphic mask using evanescent waves.
Buisset, Christophe; Rabbia, Yves; Lepine, Thierry; Alagao, Mary-Angelie; Ducrot, Elsa; Poshyachinda, Saran; Soonthornthum, Boonrucksar
2017-04-03
The evanescent wave coronagraph (EvWaCo) is a specific kind of band-limited coronagraph using the frustrated total internal reflection phenomenon to produce the coronagraphic effect (removing starlight from the image plane in order to make the stellar environment detectable). In this paper, we present a theoretical and experimental study of the EvWaCo coronagraphic mask. First, we calculate the theoretical transmission and we show that this mask is partially achromatic. Then, we present the experimental results obtained in unpolarized light at the wavelength λ≈900 nm and relative spectral bandwidth Δλ/λ≈6%. In particular, we show that the coronagraph provides a contrast down to a few 10-6 at an angular distance of about ten Airy radii.
NASA Astrophysics Data System (ADS)
Berge, Bruno; Broutin, Jérôme; Gaton, Hilario; Malet, Géraldine; Simon, Eric; Thieblemont, Florent
2013-03-01
This paper presents experimental results on several liquid lenses based on Electrowetting which are commercially available. It will be shown that larger aperture lenses are basically of the same optical quality than smaller lenses, sometimes reaching the diffraction limit, then opening new kind of applications areas for variable lenses in laser science. Regarding response time, actual performances of liquids lenses based on Electrowetting are presented and compared to a model simulating the internal fluid reorganization, seen as the main source of delay between electrical actuation and optical evolution of the lens. This simplified analytical model is supporting experimental results in various situations (focus and tilt variations), in static and dynamic regimes.
Fission in the landscape of heaviest elements: Some recent examples
NASA Astrophysics Data System (ADS)
Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; Ackermann, D.; Andersson, L.-L.; Block, M.; Brand, H.; Even, J.; Forsberg, U.; Hartmann, W.; Herzberg, R.-D.; Heßberger, F. P.; Hoffmann, J.; Hübner, A.; Jäger, E.; Jeppsson, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kurz, N.; Lommel, B.; Maiti, M.; Minami, S.; Rudolph, D.; Runke, J.; Sarmiento, L. G.; Schädel, M.; Schausten, B.; Steiner, J.; Heidenreich, T. Torres De; Uusitalo, J.; Wiehl, N.; Yakusheva, V.
2016-12-01
The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10-19-1024 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10-5-103 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254-256Rf and 266Lr are presented and corresponding factors for retarding the fission process are discussed.
State variable theories based on Hart's formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, M.A.; Hannula, S.P.; Li, C.Y.
In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and futuremore » developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.« less
Molenaar, Heike; Glawe, Martin; Boehm, Robert; Piepho, Hans-Peter
2017-01-01
Ornamental plant variety improvement is limited by current phenotyping approaches and neglected use of experimental designs. The present study was conducted to show the benefits of using an experimental design and corresponding analysis in ornamental breeding regarding simulated response to selection in Pelargonium zonale for production-related traits. This required establishment of phenotyping protocols for root formation and stem cutting counts, with which 974 genotypes were assessed in a two-phase experimental design. The present paper evaluates this protocol. The possibility of varietal improvement through indirect selection on secondary traits such as branch count and flower count was assessed by genetic correlations. Simulated response to selection varied greatly, depending on the genotypic variances of the breeding population and traits. A varietal improvement of over 20% is possible for stem cutting count, root formation, branch count and flower count. In contrast, indirect selection of stem cutting count by branch count or flower count was found to be ineffective. The established phenotypic protocols and two-phase experimental designs are valuable tools for breeding of P. zonale. PMID:28243453
Molenaar, Heike; Glawe, Martin; Boehm, Robert; Piepho, Hans-Peter
2017-01-01
Ornamental plant variety improvement is limited by current phenotyping approaches and neglected use of experimental designs. The present study was conducted to show the benefits of using an experimental design and corresponding analysis in ornamental breeding regarding simulated response to selection in Pelargonium zonale for production-related traits. This required establishment of phenotyping protocols for root formation and stem cutting counts, with which 974 genotypes were assessed in a two-phase experimental design. The present paper evaluates this protocol. The possibility of varietal improvement through indirect selection on secondary traits such as branch count and flower count was assessed by genetic correlations. Simulated response to selection varied greatly, depending on the genotypic variances of the breeding population and traits. A varietal improvement of over 20% is possible for stem cutting count, root formation, branch count and flower count. In contrast, indirect selection of stem cutting count by branch count or flower count was found to be ineffective. The established phenotypic protocols and two-phase experimental designs are valuable tools for breeding of P. zonale .
Experimental characterization of the perceptron laser rangefinder
NASA Technical Reports Server (NTRS)
Kweon, I. S.; Hoffman, Regis; Krotkov, Eric
1991-01-01
In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.
Step Permeability on the Pt(111) Surface
NASA Astrophysics Data System (ADS)
Altman, Michael
2005-03-01
Surface morphology will be affected, or even dictated, by kinetic limitations that may be present during growth. Asymmetric step attachment is recognized to be an important and possibly common cause of morphological growth instabilities. However, the impact of this kinetic limitation on growth morphology may be hindered by other factors such as the rate limiting step and step permeability. This strongly motivates experimental measurements of these quantities in real systems. Using low energy electron microscopy, we have measured step flow velocities in growth on the Pt(111) surface. The dependence of step velocity upon adjacent terrace width clearly shows evidence of asymmetric step attachment and step permeability. Step velocity is modeled by solving the diffusion equation simultaneously on several adjacent terraces subject to boundary conditions at intervening steps that include asymmetric step attachment and step permeability. This analysis allows a quantitative evaluation of step permeability and the kinetic length, which characterizes the rate limiting step continuously between diffusion and attachment-detachment limited regimes. This work provides information that is greatly needed to set physical bounds on the parameters that are used in theoretical treatments of growth. The observation that steps are permeable even on a simple metal surface should also stimulate more experimental measurements and theoretical treatments of this effect.
Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation
NASA Astrophysics Data System (ADS)
Doru, Zdrenghea
2017-10-01
The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater than that obtained in the experimental tests. Experimental and numerical studies are used to establish the residual characteristic flexural tensile strength minimum guaranteed and limits of applicability of concrete pipes reinforced with steel fibres used in various field and loading situations.
Heisenberg limit for displacements with semiclassical states
NASA Astrophysics Data System (ADS)
Luis, Alfredo
2004-04-01
We analyze the quantum limit to the sensitivity of the detection of small displacements. We focus on the case of free particles and harmonic oscillators as the systems experiencing the displacement. We show that the minimum displacement detectable is proportional to the inverse of the square root of the mean value of the energy in the state experiencing the displacement (Heisenberg limit). We present a measuring scheme that reaches this limit using semiclassical states. We examine the performance of this strategy under realistic practical conditions by computing the effect of imperfections such as losses and nonunit detection efficiencies. This analysis confirms the robustness of this measuring strategy by showing that the experimental imperfections can be suitably compensated by increasing the mean energy of the input state.
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Christiansen, Eric L.; Fleming, Michael L.
1990-01-01
A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüler, Emil; Trovati, Stefania; King, Gregory
Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlomore » and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.« less
Numerical and experimental investigations of human swimming motions
Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H.
2016-01-01
ABSTRACT This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer’s potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m2 area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency. PMID:26699925
Numerical and experimental investigations of human swimming motions.
Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H
2016-08-01
This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer's potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m(2) area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Peck, Jeffrey A.
1992-01-01
Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.
A series-resonant silicon-controlled-rectifier power processor for ion thrusters
NASA Technical Reports Server (NTRS)
Shumaker, H. A.; Biess, J. J.; Goldin, D. S.
1973-01-01
A program to develop a power processing system for ion thrusters is presented. Basic operation of the silicon controlled rectifier series inverter circuitry is examined. The approach for synthesizing such circuits into a system which limits the electrical stress levels on the power source, semiconductor switching elements, and the ion thruster load is described. Experimental results are presented for a 2.5-kW breadboard system designed to operate a 20-cm ion thruster.
NASA Astrophysics Data System (ADS)
Hirabayashi, Atsumu; Nambu, Yoshihiro; Fujimoto, Takashi
1986-10-01
The problem of excitation anisotropy in laser-induced-fluorescence spectroscopy (LIFS) was investigated for the intense excitation case under the broad-line condition. The depolarization coefficient for the fluorescence light was derived in the intense-excitation limit (linearly-polarized or unpolarized light excitation) and the results are presented in tables. In the region of intermediate intensity, between the weak and intense-excitation limits, the master equation was solved for a specific example of atomic transitions and its result is compared with experimental results.
NASA Astrophysics Data System (ADS)
Cerchiari, G.; Croccolo, F.; Cardinaux, F.; Scheffold, F.
2012-10-01
We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benwell, Andrew; Kemp, Mark; Burkhart, Craig
2010-06-11
An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.
Higher-Order Spectral Analysis of F-18 Flight Flutter Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Dunn, Shane
2005-01-01
Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Determination of chlorine in atmosphere by kinetic spectrophotometry.
Meng, Jian-Xin; Wang, Xiao-Bo; Ruan, Ge-Lan; Li, Guo-Qiang; Deng, Zhao-Xia
2005-03-01
A kinetic method for determination of chlorine in air was described in the present work. The method based on fading of methyl orange (MO) containing solution in air absorption process. A determination limit of 2.64 microg L(-1) was found. With the present method, chlorine concentration could be determined in several minutes with convenient manipulation. As concentration variation of methyl orange in the absorption solution did not affect the experimental results, fabrication and preservation of the stock absorption is also convenient. The present method is promising in monitoring chlorine concentration in atmosphere.
Determination of chlorine in atmosphere by kinetic spectrophotometry
NASA Astrophysics Data System (ADS)
Meng, Jian-Xin; Wang, Xiao-Bo; Ruan, Ge-Lan; Li, Guo-Qiang; Deng, Zhao-Xia
2005-03-01
A kinetic method for determination of chlorine in air was described in the present work. The method based on fading of methyl orange (MO) containing solution in air absorption process. A determination limit of 2.64 μg L -1 was found. With the present method, chlorine concentration could be determined in several minutes with convenient manipulation. As concentration variation of methyl orange in the absorption solution did not affect the experimental results, fabrication and preservation of the stock absorption is also convenient. The present method is promising in monitoring chlorine concentration in atmosphere.
Michel Lange, Violaine; Laganaro, Marina
2014-01-01
The literature on advance phonological planning in adjective-noun phrases (NPs) presents diverging results: while many experimental studies suggest that the entire NP is encoded before articulation, other results favor a span of encoding limited to the first word. Although cross-linguistic differences in the structure of adjective-NPs may account for some of these contrasting results, divergences have been reported even among similar languages and syntactic structures. Here we examined whether inter-individual differences account for variability in the span of phonological planning in the production of French NPs, where previous results indicated encoding limited to the first word. The span of phonological encoding is tested with the picture-word interference (PWI) paradigm using phonological distractors related to the noun or to the adjective of the NPs. In Experiment 1, phonological priming effects were limited to the first word in adjective NPs whichever the position of the adjective (pre-nominal or post-nominal). Crucially, phonological priming effects on the second word interacted with speakers' production speed suggesting different encoding strategies for participants. In Experiment 2, we tested this hypothesis further with a larger group of participants. Results clearly showed that slow and fast initializing participants presented different phonological priming patterns on the last element of adjective-NPs: while the first word was primed by a distractor for all speakers, only the slow speaker group presented a priming effect on the second element of the NP. These results show that the span of phonological encoding is modulated by inter-individual strategies: in experimental paradigms some speakers plan word by word whereas others encode beyond the initial word. We suggest that the diverging results reported in the literature on advance phonological planning may partly be reconciled in light of the present results.
Serial and parallel power equipment with high-temperature superconducting elements
NASA Technical Reports Server (NTRS)
Bencze, Laszlo; Goebl, Nandor; Palotas, Bela; Vajda, Istvan
1995-01-01
One of the prospective, practical applications of high-temperature superconductors is the fault-current limitation in electrical energy networks. The development and testing of experimental HTSC serial current limiters have been reported in the literature. A Hungarian electric power company has proposed the development of a parallel equipment for arc suppressing both in the industrial and customers' networks. On the basis of the company's proposal the authors have outlined the scheme of a compound circuit that can be applied both for current limitation and arc suppressing. In this paper the design principles and methods of the shunt equipment are presented. These principles involve the electrical, mechanical and cryogenic aspects with the special view on the electrical and mechanical connection between the HTSC material and the current lead. Preliminary experiments and tests have been carried out to demonstrate the validity of the design principles developed. The results of the experiments and of the technological investigations are presented.
Design of an occulter testbed at flight Fresnel numbers
NASA Astrophysics Data System (ADS)
Sirbu, Dan; Kasdin, N. Jeremy; Kim, Yunjong; Vanderbei, Robert J.
2015-01-01
An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we are designing and building a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. Here, we present a sample design operating at a flight Fresnel number and is thus representative of a realistic space mission. We present calculations of experimental limits arising from the finite size and propagation distance available in the testbed, limitations due to manufacturing feature size, and non-ideal input beam. We demonstrate how the testbed is designed to be feature-size limited, and provide an estimation of the expected performance.
Dithering Digital Ripple Correlation Control for Photovoltaic Maximum Power Point Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, C; Pilawa-Podgurski, RCN
This study demonstrates a new method for rapid and precise maximum power point tracking in photovoltaic (PV) applications using dithered PWM control. Constraints imposed by efficiency, cost, and component size limit the available PWM resolution of a power converter, and may in turn limit the MPP tracking efficiency of the PV system. In these scenarios, PWM dithering can be used to improve average PWM resolution. In this study, we present a control technique that uses ripple correlation control (RCC) on the dithering ripple, thereby achieving simultaneous fast tracking speed and high tracking accuracy. Moreover, the proposed method solves some ofmore » the practical challenges that have to date limited the effectiveness of RCC in solar PV applications. We present a theoretical derivation of the principles behind dithering digital ripple correlation control, as well as experimental results that show excellent tracking speed and accuracy with basic hardware requirements.« less
Review of the Frontier Workshop and Q-slope results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati
Over the last few years, significant progress has been made to produce field emission free niobium surfaces. Nowadays, the major limitation towards achieving the critical field in radio-frequency (rf) superconducting cavities made of bulk niobium of high purity is represented by the so-called ''high field Q-slope'' or ''Q-drop''. This phenomenon is characterized by a sharp decrease of the cavity quality factor, in absence of field emission, starting at a peak surface magnetic field of the order of 100 mT. It has been observed that these losses are usually reduced by a low-temperature ''in-situ'' baking, typically at 100-120 C for 24-48more » h. Several models have been proposed to explain the high field Q-slope and many experiments have been conducted in different laboratories to validate such models. A three-day workshop was held in Argonne in September 2004 to present and discuss experimental and theoretical results on the present limitations of superconducting rf cavities. In this paper, we will focus on the high field Q-slope by reviewing the results presented at the workshop along with other experimental data. In order to explain the Q-drop and the baking effect we will discuss an improved version of the oxygen diffusion model.« less
Novel Approach for Prediction of Localized Necking in Case of Nonlinear Strain Paths
NASA Astrophysics Data System (ADS)
Drotleff, K.; Liewald, M.
2017-09-01
Rising customer expectations regarding design complexity and weight reduction of sheet metal components alongside with further reduced time to market implicate increased demand for process validation using numerical forming simulation. Formability prediction though often is still based on the forming limit diagram first presented in the 1960s. Despite many drawbacks in case of nonlinear strain paths and major advances in research in the recent years, the forming limit curve (FLC) is still one of the most commonly used criteria for assessing formability of sheet metal materials. Especially when forming complex part geometries nonlinear strain paths may occur, which cannot be predicted using the conventional FLC-Concept. In this paper a novel approach for calculation of FLCs for nonlinear strain paths is presented. Combining an interesting approach for prediction of FLC using tensile test data and IFU-FLC-Criterion a model for prediction of localized necking for nonlinear strain paths can be derived. Presented model is purely based on experimental tensile test data making it easy to calibrate for any given material. Resulting prediction of localized necking is validated using an experimental deep drawing specimen made of AA6014 material having a sheet thickness of 1.04 mm. The results are compared to IFU-FLC-Criterion based on data of pre-stretched Nakajima specimen.
Using road markings as a continuous cue for speed choice.
Charlton, Samuel G; Starkey, Nicola J; Malhotra, Neha
2018-08-01
The potential for using road markings to indicate speed limits was investigated in a driving simulator over the course of two sessions. Two types of experimental road markings, an "Attentional" set designed to provide visually distinct cues to indicate speed limits of 60, 80 and 100 km/h, and a "Perceptual" set designed to also affect drivers' perception of speed, were compared to a standard undifferentiated set of markings. Participants (n = 20 per group) were assigned to one of four experimental groups (Attentional-Explicit, Attentional-Implicit, Perceptual-Explicit, Perceptual-Implicit) or a Control group (n = 22; standard road markings). The Explicit groups were instructed about the meaning of the road markings while those in the Implicit and Control groups did not receive any explanation. Participants drove five 10 km simulated roads containing three speed zones (60, 80 and 100 km/h) during the first session. The participants returned to the laboratory approximately 3 days later to drive five more trials including roads they had not seen before, a trial that included a secondary task, and a trial where speed signs were removed and only markings were present. The findings indicated that both types of road markings improved drivers' compliance with speed limits compared to the control group, but that explicit instruction as to the meaning of the markings was needed to realise their full benefit. Although previous research has indicated the benefit of road markings used as warnings to indicate speed reductions in advance of horizontal or vertical curves, the findings of the present experiment also suggest that systematically associating road markings with specific speed limits may be a useful way to improve speed limit compliance and increase speed homogeneity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
NASA Astrophysics Data System (ADS)
Kittell, D. E.; Yarrington, C. D.; Hobbs, M. L.; Abere, M. J.; Adams, D. P.
2018-04-01
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. This higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.
USDA-ARS?s Scientific Manuscript database
This volume of the Advances in Agricultural Systems Modeling series presents 14 different case studies of model applications to help make the best use of limited water in agriculture. These examples show that models have tremendous potential and value in enhancing site-specific water management for ...
ERIC Educational Resources Information Center
Klin, Ami; Jones, Warren
2008-01-01
Mounting clinical evidence suggests that abnormalities of social engagement in children with autism are present even during infancy. However, direct experimental documentation of these abnormalities is still limited. In this case report of a 15-month-old infant with autism, we measured visual fixation patterns to both naturalistic and ambiguous…
A theoretical and experimental investigation of propeller performance methodologies
NASA Technical Reports Server (NTRS)
Korkan, K. D.; Gregorek, G. M.; Mikkelson, D. C.
1980-01-01
This paper briefly covers aspects related to propeller performance by means of a review of propeller methodologies; presentation of wind tunnel propeller performance data taken in the NASA Lewis Research Center 10 x 10 wind tunnel; discussion of the predominent limitations of existing propeller performance methodologies; and a brief review of airfoil developments appropriate for propeller applications.
NASA Technical Reports Server (NTRS)
Applin, Z. T.; Coe, P. L., Jr.
1986-01-01
A limited experimental investigation was conducted in the Langley 4- by 7-Meter Tunnel to explore the effects of aft-fuselage-mounted advanced turboprop installations on the low-speed stability and control characteristics of a representative transport aircraft in a landing configuration. In general, the experimental results indicate that the longitudinal and lateral-directional stability characteristics for the aft-fuselage-mounted single-rotation tractor and counter-rotation pusher propeller configurations tested during this investigation are acceptable aerodynamically. For the single-rotation tractor configuration, the propeller-induced aerodynamics are significantly influenced by the interaction of the propeller slipstream with the pylon and nacelle. The stability characteristics for the counter-rotation pusher configuration are strongly influenced by propeller normal forces. The longitudinal and directional control effectiveness, engine-out characteristics, and ground effects are also presented. In addition, a tabulated presentation of all aerodynamic data presented in this report is included as an appendix.
Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka
2012-01-01
In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.
Efficiency limits for photoelectrochemical water-splitting
Fountaine, Katherine T.; Lewerenz, Hans Joachim; Atwater, Harry A.
2016-12-02
Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community’s focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance andmore » catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.« less
Destruction of tungsten limiters in the T-10 Tokamak under high plasma heat loads
NASA Astrophysics Data System (ADS)
Grashin, S. A.; Arkhipov, I. I.; Budaev, V. P.; Giniyatulin, R. N.; Karpov, A. V.; Klyuchnikov, L. A.; Krupin, V. A.; Litunovskiy, N. V.; Masul, I. V.; Makhankov, F. N.; Martynenko, Yu V.; Sarytchev, D. V.; Solomatin, R. Yu; Khimchenko, L. N.
2017-10-01
Tungsten limiters were tested in the T-10 tokamak. The limiters were made from the ITER-grade WMP “POLEMA” tungsten. The influence of the edge tokamak plasma on tungsten limiters leads to significant cracking of tungsten. The heat load of up to 2 MW · m-2 leads to the micro-crack development at the grain boundaries accompanied by the loss of grains. The heat loads that exceed 5 MW · m-2 lead to the macro crack development. Under the present T-10 tokamak conditions, the heat and particle fluxes in the edge plasma lead to the significant destruction of tungsten limiters during the experimental campaign. During the disruption and runaway electron formation, extreme heat loads of more than 1 GW/m2 cause strong melting of tungsten on the inner and outer part of the ring limiter.
Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Rovang, D. C.; Wilbur, P. J.
1984-01-01
An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.
NASA Astrophysics Data System (ADS)
Renson, Ludovic; Barton, David A. W.; Neild, Simon A.
Control-based continuation (CBC) is a means of applying numerical continuation directly to a physical experiment for bifurcation analysis without the use of a mathematical model. CBC enables the detection and tracking of bifurcations directly, without the need for a post-processing stage as is often the case for more traditional experimental approaches. In this paper, we use CBC to directly locate limit-point bifurcations of a periodically forced oscillator and track them as forcing parameters are varied. Backbone curves, which capture the overall frequency-amplitude dependence of the system’s forced response, are also traced out directly. The proposed method is demonstrated on a single-degree-of-freedom mechanical system with a nonlinear stiffness characteristic. Results are presented for two configurations of the nonlinearity — one where it exhibits a hardening stiffness characteristic and one where it exhibits softening-hardening.
Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels
NASA Astrophysics Data System (ADS)
Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.
2015-04-01
Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.
Catalytic ignition of hydrogen/oxygen
NASA Technical Reports Server (NTRS)
Green, James M.; Zurawski, Robert L.
1988-01-01
An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.
Experiments with Lasers and Frequency Doublers
NASA Technical Reports Server (NTRS)
Bachor, H.-A.; Taubman, M.; White, A. G.; Ralph, T.; McClelland, D. E.
1996-01-01
Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser light of high power with unprecedented stability and low noise performance. In these lasers most of the technical sources of noise can be eliminated allowing them to be operated close to the theoretical noise limit set by the quantum properties of light. The next step of reducing the noise below the standard limit is known as squeezing. We present experimental progress in generating reliably squeezed light using the process of frequency doubling. We emphasize the long term stability that makes this a truly practical source of squeezed light. Our experimental results match noise spectra calculated with our recently developed models of coupled systems which include the noise generated inside the laser and its interaction with the frequency doubler. We conclude with some observations on evaluating quadrature squeezed states of light.
Boolean network inference from time series data incorporating prior biological knowledge.
Haider, Saad; Pal, Ranadip
2012-01-01
Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.
Application of a Laplace transform pair model for high-energy x-ray spectral reconstruction.
Archer, B R; Almond, P R; Wagner, L K
1985-01-01
A Laplace transform pair model, previously shown to accurately reconstruct x-ray spectra at diagnostic energies, has been applied to megavoltage energy beams. The inverse Laplace transforms of 2-, 6-, and 25-MV attenuation curves were evaluated to determine the energy spectra of these beams. The 2-MV data indicate that the model can reliably reconstruct spectra in the low megavoltage range. Experimental limitations in acquiring the 6-MV transmission data demonstrate the sensitivity of the model to systematic experimental error. The 25-MV data result in a physically realistic approximation of the present spectrum.
NASA Technical Reports Server (NTRS)
Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.
1991-01-01
Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.
Online optimization of storage ring nonlinear beam dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2015-08-01
We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1987-01-01
To promote the evaluation of existing and emerging unsteady aerodynamic codes and methods for applying them to aeroelastic problems, especially for the transonic range, a limited number of aerodynamic configurations and experimental dynamic response data sets are to be designated by the AGARD Structures and Materials Panel as standards for comparison. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. This report presents the information needed to perform flutter calculations for the first candidate standard configuration for dynamic response along with the related experimental flutter data.
NASA Astrophysics Data System (ADS)
Winterfeldt, M.; Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.
2014-08-01
GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPPlat) at high power. An experimental study of the factors limiting BPPlat is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910 nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPPlat is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPPlat, whose influence on total BPPlat remains small, provided the overall polarization purity is >95%.
NASA Astrophysics Data System (ADS)
Fumagalli, P.; Borghini, G.; Rampone, E.; Poli, S.
2017-06-01
The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5-10 kbar, 1050-1150 °C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO = 0.08-0.13; X Cr = Cr/(Cr + Al) = 0.07-0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100 °C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO = 0.08, it occurs between 8 and 9 kbar at 1100 °C. This study provides, together with previous experimental results, a consistent database, covering a wide range of P- T conditions (3-9 kbar, 1000-1150 °C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium: Mg_{2}SiO_{4}^Ol\\limits_{Forsterite} + CaAl_{2}Si_{2}O_{8}^{Pl\\limits_{Anorthite} = CaAl_{2}SiO_{6}^{Cpx}\\limits_{Ca-Tschermak} + Mg_{2}Si_{2}O_{6}^{Opx}\\limits_{Enstatite}, has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation: P=7.2( ± 2.9)+0.0078( ± 0.0021)T{{ }}+0.0022( ± 0.0001)T ln K, {R^2}=0.93, where P is expressed in kbar and T in kelvin. K is the equilibrium constant K = a CaTs × a en/ a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.
NASA Technical Reports Server (NTRS)
Banse, Karl
1991-01-01
This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.
Selective attention in multi-chip address-event systems.
Bartolozzi, Chiara; Indiveri, Giacomo
2009-01-01
Selective attention is the strategy used by biological systems to cope with the inherent limits in their available computational resources, in order to efficiently process sensory information. The same strategy can be used in artificial systems that have to process vast amounts of sensory data with limited resources. In this paper we present a neuromorphic VLSI device, the "Selective Attention Chip" (SAC), which can be used to implement these models in multi-chip address-event systems. We also describe a real-time sensory-motor system, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present experimental results from each component in the system, and demonstrate how the complete system implements a real-time stimulus-driven selective attention model.
NASA Technical Reports Server (NTRS)
Gustafson, F B; Myers, G C , Jr
1946-01-01
Theoretical studies have predicted that operation of helicopter rotor beyond certain combinations of thrust, forward speed, and rotational speed might be prevented by rapidly increasing stalling of the retreating blade. The same studies also indicate that the efficiency of the rotor will increase until these limits are reached or closely approached, so that it is desirable to design helicopter rotors for operation close to the limits imposed by blade stalling. Inasmuch as the theoretical predictions of blade stalling involve numerous approximations and assumptions, an experimental investigation was needed to determine whether, in actual practice, the stall did occur and spread as predicted and to establish the amount of stalling that could be present without severe vibration or control difficulties being introduced. This report presents the results of such an investigation.
Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes
NASA Technical Reports Server (NTRS)
Hochen, R.; Justie, B.
1976-01-01
The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.
NASA Astrophysics Data System (ADS)
Boemer, Dominik; Ponthot, Jean-Philippe
2017-01-01
Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.
Multiple-reason decision making based on automatic processing.
Glöckner, Andreas; Betsch, Tilmann
2008-09-01
It has been repeatedly shown that in decisions under time constraints, individuals predominantly use noncompensatory strategies rather than complex compensatory ones. The authors argue that these findings might be due not to limitations of cognitive capacity but instead to limitations of information search imposed by the commonly used experimental tool Mouselab (J. W. Payne, J. R. Bettman, & E. J. Johnson, 1988). The authors tested this assumption in 3 experiments. In the 1st experiment, information was openly presented, whereas in the 2nd experiment, the standard Mouselab program was used under different time limits. The results indicate that individuals are able to compute weighted additive decision strategies extremely quickly if information search is not restricted by the experimental procedure. In a 3rd experiment, these results were replicated using more complex decision tasks, and the major alternative explanations that individuals use more complex heuristics or that they merely encode the constellation of cues were ruled out. In sum, the findings challenge the fundaments of bounded rationality and highlight the importance of automatic processes in decision making. (c) 2008 APA, all rights reserved.
Absolute Paleointensity Estimates using Combined Shaw and Pseudo-Thellier Experimental Protocols
NASA Astrophysics Data System (ADS)
Foucher, M. S.; Smirnov, A. V.
2016-12-01
Data on the long-term evolution of Earth's magnetic field intensity have a great potential to advance our understanding of many aspects of the Earth's evolution. However, paleointensity determination is one of the most challenging aspects of paleomagnetic research so the quantity and quality of existing paleointensity data remain limited, especially for older epochs. While the Thellier double-heating method remains to be the most commonly used paleointensity technique, its applicability is limited for many rocks that undergo magneto-mineralogical alteration during the successive heating steps required by the method. In order to reduce the probability of alteration, several alternative methods that involve a limited number of or no heating steps have been proposed. However, continued efforts are needed to better understand the physical foundations and relative efficiency of reduced/non-heating methods in recovering the true paleofield strength and to better constrain their calibration factors. We will present the results of our investigation of synthetic and natural magnetite-bearing samples using a combination of the LTD-DHT Shaw and pseudo-Thellier experimental protocols for absolute paleointensity estimation.
A network model of successive partitioning-limited solute diffusion through the stratum corneum.
Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon
2010-02-07
As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.
Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments†
Nir, Eyal; Michalet, Xavier; Hamadani, Kambiz M.; Laurence, Ted A.; Neuhauser, Daniel; Kovchegov, Yevgeniy; Weiss, Shimon
2011-01-01
We describe a simple approach and present a straightforward numerical algorithm to compute the best fit shot-noise limited proximity ratio histogram (PRH) in single-molecule fluorescence resonant energy transfer diffusion experiments. The key ingredient is the use of the experimental burst size distribution, as obtained after burst search through the photon data streams. We show how the use of an alternated laser excitation scheme and a correspondingly optimized burst search algorithm eliminates several potential artifacts affecting the calculation of the best fit shot-noise limited PRH. This algorithm is tested extensively on simulations and simple experimental systems. We find that dsDNA data exhibit a wider PRH than expected from shot noise only and hypothetically account for it by assuming a small Gaussian distribution of distances with an average standard deviation of 1.6 Å. Finally, we briefly mention the results of a future publication and illustrate them with a simple two-state model system (DNA hairpin), for which the kinetic transition rates between the open and closed conformations are extracted. PMID:17078646
Data for Room Fire Model Comparisons
Peacock, Richard D.; Davis, Sanford; Babrauskas, Vytenis
1991-01-01
With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system. PMID:28184121
Data for Room Fire Model Comparisons.
Peacock, Richard D; Davis, Sanford; Babrauskas, Vytenis
1991-01-01
With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.
Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Jadhav, Amol G; Shinde, Suvidha S; Lanke, Sandip K; Sekar, Nagaiyan
2017-03-05
Synthesis of novel benzophenone-based chemosensor is presented for the selective sensing of Sn 2+ ion. Screening of competitive metal ions was performed by competitive experiments. The specific cation recognition ability of chemosensor towards Sn 2+ was investigated by experimental (UV-visible, fluorescence spectroscopy, 1 H NMR, 13 C NMR, FTIR and HRMS) methods and further supported by Density Functional Theory study. The stoichiometric binding ratio and binding constant (K a ) for complex is found to be 1:1 and 1.50×10 4 , respectively. The detection limit of Sn 2+ towards chemosensor was found to be 0.3898ppb. Specific selectivity and superiority of chemosensor over another recently reported chemosensor is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves
NASA Astrophysics Data System (ADS)
Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2017-06-01
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6 ×10-41 cm2 (σp=5 ×10-40 cm2 ) at 35 GeV c-2 , almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Canonical angular momentum compression near the Brillouin limit
NASA Astrophysics Data System (ADS)
Jeong, E.; Gilson, E.; Fajans, J.
2000-10-01
Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.
Nubia's mother: being pregnant in the time of experimental vaccines and therapeutics for Ebola.
Caluwaerts, Séverine
2017-12-14
During the 2014-2016 Ebola epidemic, Médecins Sans Frontières (MSF) treated Ebola-positive pregnant women in its Ebola Treatment Centers (ETCs). For pregnant women with confirmed Ebola virus disease, inclusion in clinical vaccine/drug/therapeutic trials was complicated. Despite their extremely high Ebola-related mortality in previous epidemics (89-93%) and a neonatal mortality of 100%, theoretical concerns about safety of vaccines and therapeutics in pregnancy were invoked, limiting pregnant women's access to an experimental live attenuated vaccine and brincidofovir, an experimental antiviral. Favipiravir, another experimental antiviral, was made available to pregnant women only after extensive negotiations and under a 'Monitored Emergency Use of Unregistered and Experimental Interventions' (MEURI) protocol. This paper describes the case of a pregnant woman who presented to the ETCs near the end of the Ebola epidemic in Guinea. The pregnant patient was admitted with confirmed Ebola disease. She was previously denied access to potentially protective vaccination due to pregnancy, and access to experimental ZMapp was only possible through a randomized clinical trial (presenting a 50% chance of not receiving ZMapp). She received favipiravir, but died of Ebola-related complications. The infant, born in the ETC, tested positive for Ebola at birth. The infant received ZMapp (under MEURI access outside of the clinical trial), an experimental drug GS5734, and a buffy coat of an Ebola survivor, and survived. Though the infant did have access to experimental therapeutics within 24 h of birth, access to other experimental compounds for her mother was denied, raising serious ethical concerns.
Francesconi, Carlos Fernando de Magalhães; Machado, Marta Brenner; Steinwurz, Flavio; Nones, Rodrigo Bremer; Quilici, Flávio Antonio; Catapani, Wilson Roberto; Miszputen, Sender Jankiel; Bafutto, Mauro
2016-01-01
Primary hypolactasia is a common condition where a reduced lactase activity in the intestinal mucosa is present. The presence of abdominal symptoms due to poor absorption of lactose, which are present in some cases, is a characteristic of lactose intolerance. Evaluate the efficacy of a product containing exogenous lactase in tablet form compared to a reference product with proven effectiveness in patients with lactose intolerance. Multicentre, randomized, parallel group, single-blind, comparative non-inferiority study. One hundred twenty-nine (129) adult lactose intolerance patients with hydrogen breath test results consistent with a diagnosis of hypolactasia were randomly assigned to receive the experimental product (Perlatte(r) - Eurofarma Laboratórios S.A.) or the reference product (Lactaid(r) - McNeilNutritionals, USA) orally (one tablet, three times per day) for 42 consecutive days. Data from 128 patients who actually received the studied treatments were analysed (66 were treated with the experimental product and 62 with the reference product). The two groups presented with similar baseline clinical and demographic data. Mean exhaled hydrogen concentration tested at 90 minutes after the last treatment (Day 42) was significantly lower in the experimental product treated group (17±18 ppm versus 34±47 ppm) in the per protocol population. The difference between the means of the two groups was -17 ppm (95% confidence interval [95% CI]: -31.03; -3.17). The upper limit of the 95% CI did not exceed the a priori non-inferiority limit (7.5 ppm). Secondary efficacy analyses confirmed that the treatments were similar (per protocol and intention to treat population). The tolerability was excellent in both groups, and there were no reports of serious adverse events related to the study treatment. The experimental product was non-inferior to the reference product, indicating that it was an effective replacement therapy for endogenous lactase in lactose intolerance patients.
A cascaded Schwarz converter for high frequency power distribution
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Stuart, Thomas A.
1988-01-01
It is shown that two Schwarz converters in cascade provide a very reliable 20-kHz source that features zero current commutation, constant frequency, and fault-tolerant operation, meeting requirements for spacecraft applications. A steady-state analysis of the converter is presented, and equations for the steady-state performance are derived. Fault-current limiting is discussed. Experimental results are presented for a 900-W version, which has been successfully tested under no-load, full-load, and short-circut conditions.
Handheld computing in pathology
Park, Seung; Parwani, Anil; Satyanarayanan, Mahadev; Pantanowitz, Liron
2012-01-01
Handheld computing has had many applications in medicine, but relatively few in pathology. Most reported uses of handhelds in pathology have been limited to experimental endeavors in telemedicine or education. With recent advances in handheld hardware and software, along with concurrent advances in whole-slide imaging (WSI), new opportunities and challenges have presented themselves. This review addresses the current state of handheld hardware and software, provides a history of handheld devices in medicine focusing on pathology, and presents future use cases for such handhelds in pathology. PMID:22616027
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.
This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit inmore » glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.« less
High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations
NASA Astrophysics Data System (ADS)
Neal, William; Garasi, Christopher
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
NASA Astrophysics Data System (ADS)
Wesendonk, F. S.; Terrazzan, E. A.
2016-12-01
In this article, we presented a characterization of the recent academic and scientific literature on experiments in Physics Education in terms of focus and research intentions and results built through these investigations. For this, we used as a source of information 10 national Academic and Scientific Journals available on websites. By consulting these journals, we identified that 147 papers published from 2009 to 2013 had as their main focus the experimental research. We classified the Works in categories established a priori and subcategories established a posteriori. At the end, we found out that few articles deal with this issue (9%). Moreover, in most productions there is a superficial discussion of theoretical studies on the use of experimentation in teaching. This makes the contribution of these productions for the development of conceptual discussions about the potential and limited use of experimentation in Physics Education to be relatively small.
LEPER: Library of Experimental PhasE Relations
NASA Astrophysics Data System (ADS)
Davis, F.; Gordon, S.; Mukherjee, S.; Hirschmann, M.; Ghiorso, M.
2006-12-01
The Library of Experimental PhasE Relations (LEPER) seeks to compile published experimental determinations of magmatic phase equilibria and provide those data on the web with a searchable and downloadable interface. Compiled experimental data include the conditions and durations of experiments, the bulk compositions of experimental charges, and the identity, compositions and proportions of phases observed, and, where available, estimates of experimental and analytical uncertainties. Also included are metadata such as the type of experimental device, capsule material, and method(s) of quantitative analysis. The database may be of use to practicing experimentalists as well as the wider Earth science community. Experimentalists may find the data useful for planning new experiments and will easily be able to compare their results to the full body of previous experimentnal data. Geologists may use LEPER to compare rocks sampled in the field with experiments performed on similar bulk composition or with experiments that produced similar-composition product phases. Modelers may use LEPER to parameterize partial melting of various lithologies. One motivation for compiling LEPER is for calibration of updated and revised versions of MELTS, however, it is hoped that the availability of LEPER will facilitate formulation and calibration of additional thermodynamic or empirical models of magmatic phase relations and phase equilibria, geothermometers and more. Data entry for LEPER is occuring presently: As of August, 2006, >6200 experiments have been entered, chiefly from work published between 1997 and 2005. A prototype web interface has been written and beta release on the web is anticipated in Fall, 2006. Eventually, experimentalists will be able to submit their new experimental data to the database via the web. At present, the database contains only data pertaining to the phase equilibria of silicate melts, but extension to other experimental data involving other fluids or sub-solidus phase equilibria may be contemplated. Also, the data are at present limited to natural or near-natural systems, but in the future, extension to synthetic (i.e., CMAS, etc.) systems is also possible. Each would depend in part on whether there is community demand for such databases. A trace element adjunct to LEPER is presently in planning stages.
NASA Astrophysics Data System (ADS)
Huang, Ding Wei; Yen, Edward
1989-08-01
We propose a detailed model, combining the concepts from a partition temperature model and wounded nucleon model, to describe high-energy nucleus-nucleus collisions. One partition temperature is associated with collisions at a fixed wounded nucleon number. The (pseudo-) rapidity distributions are calculated and compared with experimental data. Predictions at higher energy are also presented.
Nonlinear Dynamics of a Helicopter Model in Ground Resonance
NASA Technical Reports Server (NTRS)
Tang, D. M.; Dowell, E. H.
1985-01-01
An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.
Mutagens and carcinogens in foods. Epidemiologic review.
Hislop, T. G.
1993-01-01
Evidence that diet contributes to the development of cancer is strengthening. This paper examines mutagens and carcinogens, such as naturally occurring substances, products of cooking and food processing, intentional and unintentional additives, and contaminants, found in foods. Such substances are present in minute quantities in the diets of average Canadians. Indication of health risk is largely limited to experimental laboratory evidence. PMID:8499796
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Trumpis, B. D.; Udalov, S.
1975-01-01
Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.
Joseph, Paul; Tretsiakova-McNally, Svetlana
2015-01-01
Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions. PMID:28793746
Joseph, Paul; Tretsiakova-McNally, Svetlana
2015-12-15
Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.
Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage
NASA Technical Reports Server (NTRS)
Merchant, Ali; Kerrebrock, Jack L.; Adamczyk, John J.; Braunscheidel, Edward
2004-01-01
The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 ft/sec is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the three-dimensional viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5 percent of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The sensitivity of the stage performance and operability to reduced aspiration flow rates at design and off design conditions are also discussed.
Grisk, Olaf
2017-05-01
Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shulgina, N. B.; Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.
2018-06-01
An unusually large value of the 22C matter radius, extracted by Tanaka et al. [Phys. Rev. Lett. 104, 062701 (2010), 10.1103/PhysRevLett.104.062701] from measured reaction cross sections, attracted great attention of scientific community. Since that time, several experimental works related to the 22C nucleus have appeared in the literature. Some of the experimental data, measured with high accuracy, allow us to fix 22C structure more reliably. Two limiting models reproducing 22C nuclear structure within the three-body cluster approach, that allow us to describe all existing experimental data, are presented. The 22C ground state, continuum structure, and geometry are obtained. With fixed 22C wave function, the prediction for the soft dipole mode in 22C, which is studied in the process of Coulomb fragmentation, is performed.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data
NASA Astrophysics Data System (ADS)
White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.
2017-01-01
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.
White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A
2017-01-28
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
Experimental animal studies of radon and cigarette smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, F.T.; Dagle, G.E.; Gies, R.A.
Cigarette-smoking is a dominant cause of lung cancer and confounds risk assessment of exposure to radon decay products. Evidence in humans on the interaction between cigarette-smoking and exposure to radon decay products, although limited, indicates a possible synergy. Experimental animal data, in addition to showing synergy, also show a decrease or no change in risk with added cigarette-smoke exposures. This article reviews previous animal data developed at Compagnie Generale des Matieres Nucleaires and Pacific Northwest Laboratory (PNL) on mixed exposures to radon and cigarette smoke, and highlights new initiation-promotion-initiation (IPI) studies at PNL that were designed within the framework ofmore » a two-mutation carcinogenesis model. Also presented are the PNL exposure system, experimental protocols, dosimetry, and biological data observed to date in IPI animals.« less
Temperature prediction of space flight experiments by computer thermal analysis
NASA Technical Reports Server (NTRS)
Birdsong, M. B.; Luttges, M. W.
1994-01-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commerical-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
Temperature prediction of space flight experiments by computer thermal analysis.
Birdsong, M B; Luttges, M W
1995-02-01
Life sciences experiments are especially sensitive to temperature. A small temperature difference between otherwise identical samples can cause various differences in biological reaction rates. Knowledge of experimental temperatures and temperature histories help to distinguish the effects of microgravity and temperature on spaceflight experiments compared to ground based studies, and allow appropriate controls and sensitivity tests. Up to the present time, the Orbiter (Space Shuttle) has not generally provided temperature measurement instrumentation inside ambient lockers located in the Mid-deck of the Orbiter, or inside similar facilities such as Spacehab and Spacelab, but many pieces of hardware do have temperature recording capability. Most of these temperatures, however, have only been roughly measured or estimated. Such reported experimental temperatures, while accurate within a range of several degrees Celsius, are of limited utility to biological researchers. The temperature controlled lockers used in spaceflight, such as Commercial-Refrigeration Incubation Modules (C-R/IMs), severely reduce the mass and volume available for test samples and do not necessarily provide uniform thermal environments. While these test carriers avoid some of the experimental temperature variations of the ambient lockers, the number of samples which can be accommodated in these temperature controlled units is limited. In the present work, improved models of thermal prediction and control were sought. Temperatures are predicted by thermal analysis software using empirical temperatures recorded during STS-57. These temperatures are compared to data recorded throughout the mission using Ambient Temperature Recorders (ATRs) located within several payload lockers. Additional test cases are undertaken using controlled ground experiments to more precisely determine the reliability of the thermal model. The approach presented should increase the utility of various spaceflight carriers in the support of biological and material science research and ground control studies done in preparation for flight.
NASA Astrophysics Data System (ADS)
Lee, Hee-Seung; Tuckerman, Mark E.
2007-04-01
Dynamical properties of liquid water were studied using Car-Parrinello [Phys. Rev. Lett. 55, 2471 (1985)] ab initio molecular dynamics (AIMD) simulations within the Kohn-Sham (KS) density functional theory employing the Becke-Lee-Yang-Parr exchange-correlation functional for the electronic structure. The KS orbitals were expanded in a discrete variable representation basis set, wherein the complete basis set limit can be easily reached and which, therefore, provides complete convergence of ionic forces. In order to minimize possible nonergodic behavior of the simulated water system in a constant energy (NVE) ensemble, a long equilibration run (30ps) preceded a 60ps long production run. The temperature drift during the entire 60ps trajectory was found to be minimal. The diffusion coefficient [0.055Å2/ps] obtained from the present work for 32 D2O molecules is a factor of 4 smaller than the most up to date experimental value, but significantly larger than those of other recent AIMD studies. Adjusting the experimental result so as to match the finite-sized system used in the present study brings the comparison between theory and experiment to within a factor of 3. More importantly, the system is not observed to become "glassy" as has been reported in previous AIMD studies. The computed infrared spectrum is in good agreement with experimental data, especially in the low frequency regime where the translational and librational motions of water are manifested. The long simulation length also made it possible to perform detailed studies of hydrogen bond dynamics. The relaxation dynamics of hydrogen bonds observed in the present AIMD simulation is slower than those of popular force fields, such as the TIP4P potential, but comparable to that of the TIP5P potential.
Lee, Hee-Seung; Tuckerman, Mark E
2007-04-28
Dynamical properties of liquid water were studied using Car-Parrinello [Phys. Rev. Lett. 55, 2471 (1985)] ab initio molecular dynamics (AIMD) simulations within the Kohn-Sham (KS) density functional theory employing the Becke-Lee-Yang-Parr exchange-correlation functional for the electronic structure. The KS orbitals were expanded in a discrete variable representation basis set, wherein the complete basis set limit can be easily reached and which, therefore, provides complete convergence of ionic forces. In order to minimize possible nonergodic behavior of the simulated water system in a constant energy (NVE) ensemble, a long equilibration run (30 ps) preceded a 60 ps long production run. The temperature drift during the entire 60 ps trajectory was found to be minimal. The diffusion coefficient [0.055 A2/ps] obtained from the present work for 32 D2O molecules is a factor of 4 smaller than the most up to date experimental value, but significantly larger than those of other recent AIMD studies. Adjusting the experimental result so as to match the finite-sized system used in the present study brings the comparison between theory and experiment to within a factor of 3. More importantly, the system is not observed to become "glassy" as has been reported in previous AIMD studies. The computed infrared spectrum is in good agreement with experimental data, especially in the low frequency regime where the translational and librational motions of water are manifested. The long simulation length also made it possible to perform detailed studies of hydrogen bond dynamics. The relaxation dynamics of hydrogen bonds observed in the present AIMD simulation is slower than those of popular force fields, such as the TIP4P potential, but comparable to that of the TIP5P potential.
Linear optical pulse compression based on temporal zone plates.
Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José
2013-07-15
We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.
Enhancing vehicle cornering limit through sideslip and yaw rate control
NASA Astrophysics Data System (ADS)
Lu, Qian; Gentile, Pierangelo; Tota, Antonio; Sorniotti, Aldo; Gruber, Patrick; Costamagna, Fabio; De Smet, Jasper
2016-06-01
Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.
Experimentally Observed Electrical Durability of 4H-SiC JFET ICs Operating from 500 C to 700 C
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.
2016-01-01
Prolonged 500 degrees Celsius to 700 degrees Celsius electrical testing data from 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) are combined with post-testing microscopic studies in order to gain more comprehensive understanding of the durability limits of the present version of NASA Glenn's extreme temperature microelectronics technology. The results of this study support the hypothesis that T = 500 degrees Celsius durability-limiting IC failure initiates with thermal-stress-related crack formation where dielectric passivation layers overcoat micron-scale vertical features including patterned metal traces.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patommel, Jens; Klare, Susanne; Hoppe, Robert
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
NASA Technical Reports Server (NTRS)
Barnett, Henry C
1948-01-01
Charts are presented that permit the estimation of F-3 and F-4 knock-limited performance ratings for certain ternary and quaternary fuel blends. Ratings for various ternary and quaternary blends estimated from these charts compare favorably with experimental F-3 and F-4 ratings. Because of the unusual behavior of some of the aromatic blends in the F-3 engine, the charts for aromatic-paraffinic blends are probably less accurate than the charts for purely paraffinic blends.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
Patommel, Jens; Klare, Susanne; Hoppe, Robert; ...
2017-03-06
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval'chuk, L V; Grezev, A N; Niz'ev, V G
2015-10-31
Experimental results are presented on the development of a radiation source emitting at a wavelength of 4.775 μm with a pulse energy up to 50 mJ and an average power up to several watts in short pulse trains. A TEA CO{sub 2} laser and a nonlinear converter based on a ZnGeP{sub 2} crystal, which are specially designed for these experiments, are described. The main limitations of nonlinear conversion and possible ways to overcome these limitations are considered. (lasers)
Changes of instability thresholds of rotor due to bearing misalignments
NASA Technical Reports Server (NTRS)
Springer, H.; Ecker, H.; Gunter, E. J.
1985-01-01
The influence of bearing misalignment upon the dynamic characteristics of statistically indeterminant rotor bearing systems is investigated. Both bearing loads and stability speed limits of a rotor may be changed significantly by magnitude and direction of bearing misalignment. The useful theory of short journal bearings is introduced and simple analytical expressions, governing the misalignment problem, are carried out. Polar plots for the bearing load capacities and stability maps, describing the speed limit in terms of misalignment, are presented. These plots can be used by the designer to estimate deviations between calculation and experimental data due to misalignment effects.
Nonequilibrium optical conductivity: General theory and application to transient phases
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.
2017-08-01
A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldanov, B. B., E-mail: baibat@mail.ru
2016-01-15
Results of studies of a spark discharge initiated in argon in a point–plane electrode gap with limitation of the discharge current by a large ballast resistance are presented. It is shown that the current flowing through the plasma channel of such a low-current spark has the form of periodic pulses. It is experimentally demonstrated that, when a low-current spark transforms into a constricted glow discharge, current pulses disappear, the spatial structure of the cathode glow changes abruptly, and a brightly glowing positive plasma column forms in the gap.
DNA in the material world: electrical properties and nano-applications.
Triberis, Georgios P; Dimakogianni, Margarita
2009-01-01
Contradictory experimental findings and theoretical interpretations have spurred intense debate over the electrical properties of the DNA double helix. In the present review article the various factors responsible for these divergences are discussed. The enlightenment of this issue could improve long range chemistry of oxidative DNA damage and repair processes, monitoring protein-DNA interactions and possible applications in nano-electronic circuit technology. The update experimental situation concerning measurements of the electrical conductivity is given. The character of the carriers responsible for the electrical conductivity measured in DNA is investigated. A theoretical model for the temperature dependence of the electrical conductivity of DNA is presented, based on microscopic models and percolation theoretical arguments. The theoretical results, excluding or including correlation effects, are applied to recent experimental findings for DNA, considering it as a one dimensional molecular wire. The results indicate that correlation effects are probably responsible for large hopping distances in DNA samples. Other theoretical conductivity models proposed for the interpretation of the responsible transport mechanism are also reviewed. Some of the most known and pioneering works on DNA's nano-applications, future developments and perspectives along with current technological limitations and patents are presented and discussed.
A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kittell, David E.; Yarrington, Cole D.; Hobbs, M. L.
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quenchmore » limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.« less
A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
Kittell, David E.; Yarrington, Cole D.; Hobbs, M. L.; ...
2018-04-14
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quenchmore » limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.« less
Fluid Flow Nozzle Energy Harvesters
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkenmeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-01-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
Estimation of the lower flammability limit of organic compounds as a function of temperature.
Rowley, J R; Rowley, R L; Wilding, W V
2011-02-15
A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Punit; Nestmann, Franz
2010-09-15
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less
Experimental realization of a terahertz all-dielectric metasurface absorber.
Liu, Xinyu; Fan, Kebin; Shadrivov, Ilya V; Padilla, Willie J
2017-01-09
Metamaterial absorbers consisting of metal, metal-dielectric, or dielectric materials have been realized across much of the electromagnetic spectrum and have demonstrated novel properties and applications. However, most absorbers utilize metals and thus are limited in applicability due to their low melting point, high Ohmic loss and high thermal conductivity. Other approaches rely on large dielectric structures and / or a supporting dielectric substrate as a loss mechanism, thereby realizing large absorption volumes. Here we present a terahertz (THz) all dielectric metasurface absorber based on hybrid dielectric waveguide resonances. We tune the metasurface geometry in order to overlap electric and magnetic dipole resonances at the same frequency, thus achieving an experimental absorption of 97.5%. A simulated dielectric metasurface achieves a total absorption coefficient enhancement factor of FT=140, with a small absorption volume. Our experimental results are well described by theory and simulations and not limited to the THz range, but may be extended to microwave, infrared and optical frequencies. The concept of an all-dielectric metasurface absorber offers a new route for control of the emission and absorption of electromagnetic radiation from surfaces with potential applications in energy harvesting, imaging, and sensing.
Schoth, Daniel E; Liossi, Christina
2017-01-01
Interpretation biases have been extensively explored in a range of populations, including patients with anxiety and depressive disorders where they have been argued to influence the onset and maintenance of such conditions. Other populations in which interpretation biases have been explored include patients with chronic pain, anorexia nervosa, and alcohol dependency among others, although this literature is more limited. In this research, stimuli with threatening/emotional and neutral meanings are presented, with participant responses indicative of ambiguity resolution. A large number of paradigms have been designed and implemented in the exploration of interpretation biases, some varying in minor features only. This article provides a review of experimental paradigms available for exploring interpretation biases, with the aim to stimulate and inform the design of future research exploring cognitive biases across a range of populations. A systematic search of the experimental literature was conducted in Medline, PsychINFO, Web of Science, CINAHL, and Cochrane Library databases. Search terms were information, stimuli , and ambiguous intersected with the terms interpretation and bias * . Forty-five paradigms were found, categorized into those using ambiguous words, ambiguous images, and ambiguous scenarios. The key features, strengths and limitations of the paradigms identified are discussed.
Experimental study of transient paths to the extinction in sonoluminescence.
Urteaga, Raúl; Dellavale, Damián; Puente, Gabriela F; Bonetto, Fabián J
2008-09-01
An experimental study of the extinction threshold of single bubble sonoluminescence in an air-water system is presented. Different runs from 5% to 100% of air concentrations were performed at room pressure and temperature. The intensity of sonoluminescence (SL) and time of collapse (t(c)) with respect to the driving were measured while the acoustic pressure was linearly increased from the onset of SL until the bubble extinction. The experimental data were compared with theoretical predictions for shape and position instability thresholds. It was found that the extinction of the bubble is determined by different mechanisms depending on the air concentration. For concentrations greater than approximately 30%-40% with respect to the saturation, the parametric instability limits the maximum value of R(0) that can be reached. On the other hand, for lower concentrations, the extinction appears as a limitation in the time of collapse. Two different mechanisms emerge in this range, i.e., the Bjerknes force and the Rayleigh-Taylor instability. The bubble acoustic emission produces backreaction on the bubble itself. This effect occurs in both mechanisms and is essential for the correct prediction of the extinction threshold in the case of low air dissolved concentration.
Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2010-10-01
We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8×10-17 cm-2 s-1 sr-1 (for monopoles moving at the vacuum speed of light) and 8.8×10-16 cm-2 s-1 sr-1 (for monopoles moving at a speed β= v/ c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth.
Research on electrodischarge drilling of polycrystalline diamond with increased gap voltage
NASA Astrophysics Data System (ADS)
Skoczypiec, Sebastian; Bizoń, Wojciech; Żyra, Agnieszka
2018-05-01
This paper presents an experimental investigation of the machining characteristics of polycrystalline diamond (PCD). Machining of PCD by conventional technologies is not an effective solution. Due to presence of cobalt this material can be machined by application of electrical discharges. On the other side, electrical conductivity of PCD is on the limit of electrodischarge machining (EDM) possibilities. Proposed paper reports experimental investigation on electrodischarge drilling of PCD samples. The test were carried out with application on of high-voltage (up to 550 V) pulse power unit for two kinds of dielectrics: carbon based (Exxsol D80) and de-ionized water. As output parameters machining accuracy (side gap), material removal rate were selected. Also, based on SEM photographs and energy dispersive X-ray spectroscopy (EDS) analysis, a qualitative evaluation of the obtained results was presented.
NASA Technical Reports Server (NTRS)
Johnson, R. J.
1972-01-01
An experimental and analytical program was conducted to evaluate catalytic igniter operational limits, igniter scaling criteria, and delivered performance of cooled, flightweight gaseous hydrogen-oxygen reaction control thrusters. Specific goals were to: (1) establish operating life and environmental effects for both Shell 405-ABSG and Engelhard MFSA catalysts, (2) provide generalized igniter design guidelines for high response without flashback, and (3) to determine overall performance of thrusters at chamber pressures of 15 and 300 psia (103 and 2068 kN/sq m) and thrust levels of 30 and 1500 lbf, respectively. The experimental results have demonstrated the feasibility of reliable, high response catalytic ignition and the effectiveness of ducted chamber cooling for a high performance flightweight thruster. This volume presents the results of the catalytic igniter and low pressure thruster evaluations are presented.
Common path in-line holography using enhanced joint object reference digital interferometers
Kelner, Roy; Katz, Barak; Rosen, Joseph
2014-01-01
Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)24322115]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated. PMID:24663838
Expansion of transient operating data
NASA Astrophysics Data System (ADS)
Chipman, Christopher; Avitabile, Peter
2012-08-01
Real time operating data is very important to understand actual system response. Unfortunately, the amount of physical data points typically collected is very small and often interpretation of the data is difficult. Expansion techniques have been developed using traditional experimental modal data to augment this limited set of data. This expansion process allows for a much improved description of the real time operating response. This paper presents the results from several different structures to show the robustness of the technique. Comparisons are made to a more complete set of measured data to validate the approach. Both analytical simulations and actual experimental data are used to illustrate the usefulness of the technique.
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-07-17
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.
Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi
A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.
Yang, Ping; Ning, Yu; Lei, Xiang; Xu, Bing; Li, Xinyang; Dong, Lizhi; Yan, Hu; Liu, Wenjing; Jiang, Wenhan; Liu, Lei; Wang, Chao; Liang, Xingbo; Tang, Xiaojun
2010-03-29
We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.
Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.
Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong
2013-01-14
We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.
Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-06-23
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ n = 1.6 × 10 –41 cm 2 (σ p = 5 × 10 –40 cm 2) at 35 GeV c –2, almost a sixfold improvement over the previous LUX spin-dependent results. Finally, the spin-dependent WIMP-neutron limit is the most sensitivemore » constraint to date.« less
Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure.
Akerib, D S; Alsum, S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Brás, P; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fallon, S R; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solmaz, M; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W C; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Velan, V; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Xu, J; Yazdani, K; Young, S K; Zhang, C
2017-06-23
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=1.6×10^{-41} cm^{2} (σ_{p}=5×10^{-40} cm^{2}) at 35 GeV c^{-2}, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Unjamming a granular hopper by vibration
NASA Astrophysics Data System (ADS)
Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.
2009-07-01
We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.
Successful Beam-Beam Tuneshift Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishofberger, Kip Aaron
2005-01-01
The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (T EL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operationsmore » with inclusion of the T EL are presented and analyzed. It is shown that the T EL provides a way to shatter the previously inescapable beam-beam limit.« less
Vibration compensation for high speed scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Croft, D.; Devasia, S.
1999-12-01
Low scanning speed is a fundamental limitation of scanning tunneling microscopes (STMs), making real time imaging of surface processes and nanofabrication impractical. The effective scanning bandwidth is currently limited by the smallest resonant vibrational frequency of the piezobased positioning system (i.e., scanner) used in the STM. Due to this limitation, the acquired images are distorted during high speed operations. In practice, the achievable scan rates are much less than 1/10th of the resonant vibrational frequency of the STM scanner. To alleviate the scanning speed limitation, this article describes an inversion-based approach that compensates for the structural vibrations in the scanner and thus, allows STM imaging at high scanning speeds (relative to the smallest resonant vibrational frequency). Experimental results are presented to show the increase in scanning speeds achievable by applying the vibration compensation methods.
Modeling of Transient Flow Mixing of Streams Injected into a Mixing Chamber
NASA Technical Reports Server (NTRS)
Voytovych, Dmytro M.; Merkle, Charles L.; Lucht, Robert P.; Hulka, James R.; Jones, Gregg W.
2006-01-01
Ignition is recognized as one the critical drivers in the reliability of multiple-start rocket engines. Residual combustion products from previous engine operation can condense on valves and related structures thereby creating difficulties for subsequent starting procedures. Alternative ignition methods that require fewer valves can mitigate the valve reliability problem, but require improved understanding of the spatial and temporal propellant distribution in the pre-ignition chamber. Current design tools based mainly on one-dimensional analysis and empirical models cannot predict local details of the injection and ignition processes. The goal of this work is to evaluate the capability of the modern computational fluid dynamics (CFD) tools in predicting the transient flow mixing in pre-ignition environment by comparing the results with the experimental data. This study is a part of a program to improve analytical methods and methodologies to analyze reliability and durability of combustion devices. In the present paper we describe a series of detailed computational simulations of the unsteady mixing events as the cold propellants are first introduced into the chamber as a first step in providing this necessary environmental description. The present computational modeling represents a complement to parallel experimental simulations' and includes comparisons with experimental results from that effort. A large number of rocket engine ignition studies has been previously reported. Here we limit our discussion to the work discussed in Refs. 2, 3 and 4 which is both similar to and different from the present approach. The similarities arise from the fact that both efforts involve detailed experimental/computational simulations of the ignition problem. The differences arise from the underlying philosophy of the two endeavors. The approach in Refs. 2 to 4 is a classical ignition study in which the focus is on the response of a propellant mixture to an ignition source, with emphasis on the level of energy needed for ignition and the ensuing flame propagation issues. Our focus in the present paper is on identifying the unsteady mixing processes that provide the propellant mixture in which the ignition source is to be placed. In particular, we wish to characterize the spatial and temporal mixture distribution with a view toward identifying preferred spatial and temporal locations for the ignition source. As such, the present work is limited to cold flow (pre-ignition) conditions
Experimental and numerical investigation of hydro power generator ventilation
NASA Astrophysics Data System (ADS)
Jamshidi, H.; Nilsson, H.; Chernoray, V.
2014-03-01
Improvements in ventilation and cooling offer means to run hydro power generators at higher power output and at varying operating conditions. The electromagnetic, frictional and windage losses generate heat. The heat is removed by an air flow that is driven by fans and/or the rotor itself. The air flow goes through ventilation channels in the stator, to limit the electrical insulation temperatures. The temperature should be kept limited and uniform in both time and space, avoiding thermal stresses and hot-spots. For that purpose it is important that the flow of cooling air is distributed uniformly, and that flow separation and recirculation are minimized. Improvements of the air flow properties also lead to an improvement of the overall efficiency of the machine. A significant part of the windage losses occurs at the entrance of the stator ventilation channels, where the air flow turns abruptly from tangential to radial. The present work focuses exclusively on the air flow inside a generator model, and in particular on the flow inside the stator channels. The generator model design of the present work is based on a real generator that was previously studied. The model is manufactured taking into consideration the needs of both the experimental and numerical methodologies. Computational Fluid Dynamics (CFD) results have been used in the process of designing the experimental setup. The rotor and stator are manufactured using rapid-prototyping and plexi-glass, yielding a high geometrical accuracy, and optical experimental access. A special inlet section is designed for accurate air flow rate and inlet velocity profile measurements. The experimental measurements include Particle Image Velocimetry (PIV) and total pressure measurements inside the generator. The CFD simulations are performed based on the OpenFOAM CFD toolbox, and the steady-state frozen rotor approach. Specific studies are performed, on the effect of adding "pick-up" to spacers, and the effects of the inlet fan blades on the flow rate through the model. The CFD results capture the experimental flow details to a reasonable level of accuracy.
Net growth rate of continuum heterogeneous biofilms with inhibition kinetics.
Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B
2018-01-01
Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analytical approaches are either lacking or consider effective diffusivity of the substrate and the biofilm density to remain constant. To address this obvious knowledge gap an analytical procedure to estimate the effectiveness factor (dimensionless substrate mass flux at the biofilm-fluid interface) was developed for a continuum heterogeneous biofilm with multiple limiting-substrate Monod kinetics to different types of inhibition kinetics. The simple perturbation technique, previously validated to quantify biofilm activity, was applied to systems where either the substrate or the inhibitor is the limiting component, and cases where the inhibitor is a reaction product or the substrate also acts as the inhibitor. Explicit analytical equations are presented for the effectiveness factor estimation and, therefore, the calculation of biomass growth rate or limiting substrate/inhibitor consumption rate, for a given biofilm thickness. The robustness of the new biofilm model was tested using kinetic parameters experimentally determined for the growth of Pseudomonas putida CCRC 14365 on phenol. Several additional cases have been analyzed, including examples where the effectiveness factor can reach values greater than unity, characteristic of systems with inhibition kinetics. Criteria to establish when the effectiveness factor can reach values greater than unity in each of the cases studied are also presented.
Integrated tokamak modeling: when physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca
2017-10-01
Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.
Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar; Curreri, Peter A. (Technical Monitor)
2002-01-01
Experimental evidence indicates a dominant role of solution phase interactions in nucleating and growing tetragonal lysozyme crystals. These interactions are extensive, even at saturation, and may be a primary cause of misoriented regions in crystals grown on Earth. Microgravity, by limiting interfacial concentrations to diffusion-controlled levels, may benefit crystal quality by also reducing the extent of associated species present at the interface.
Vascularized nerve graft: a clinical contribution.
Luchetti, R; De Santis, G; Soragni, O; Deluca, S; Pederzini, L; Alfarano, M; Landi, A
1990-01-01
The authors present 4 cases of vascularized nerve graft. The results were better than those obtained with traditional grafting. The indication is a rare one, and the experimental results are contradictory. Indications are limited to Volkmann ischemic syndromes, post-actinic lesions of the brachial plexus, infections and finally, post-burning scarring. Nevertheless, traditional nerve grafts remain the treatment of choice for peripheral nerve lesions which cannot undergo direct suturing.
An assessment of the Space Station Freedom program's leakage current requirement
NASA Technical Reports Server (NTRS)
Nagy, Michael
1991-01-01
The Space Station Freedom Program requires leakage currents to be limited to less than human perception level, which NASA presently defines as 5 mA for dc. The origin of this value is traced, and the literature for other dc perception threshold standards is surveyed. It is shown that while many varying standards exist, very little experimental data is available to support them.
MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control
NASA Technical Reports Server (NTRS)
Birur, G. C.; Shakkottai, P.; Sur, T. W.
2000-01-01
The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.
ERIC Educational Resources Information Center
Steinmetz, Jean-Paul; Brunner, Martin; Loarer, Even; Houssemand, Claude
2010-01-01
The Wisconsin Card Sorting Test (WCST) assesses executive and frontal lobe function and can be administered manually or by computer. Despite the widespread application of the 2 versions, the psychometric equivalence of their scores has rarely been evaluated and only a limited set of criteria has been considered. The present experimental study (N =…
Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frederking, T. H. K.
1989-01-01
Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.
Experimental research on the friction of pivots
NASA Technical Reports Server (NTRS)
Jaquerod, A; Defossez, L; Mugeli, H
1930-01-01
In horology the friction between solids is of the greatest importance; one limited, however, to the application of the laws of Coulomb which, do not at all correspond with reality. This report presents a review of the subject and some general conclusions. The choice of lubricant is discussed as well as the pressure between frictional surfaces. The gears in a watch are used extensively as examples.
NASA Technical Reports Server (NTRS)
Yamaki, Y.; Rooker, J. R.
1972-01-01
Limited data on the bursting of circular, initially flat, grooved and plain steel diaphragms opening into a 30.5-cm-square section are presented in tabular form. In addition, these data were used to determine values of an empirical constant to be used in a design equation for predicting diaphragm bursting pressures and opening times.
[Neuropsychological changes in schizophrenia and its modification].
Penadés, R; Boget, T; Salamero, M; Catarineu, S; Bernardo, M
2000-12-01
The main experimental works about neuropsychological impairments of schizophrenia are reviewed. The underlying mechanisms of the cognitive deficits are set in a framework of the limited capacity model. In second point, the current status of the modificability of the cognitive deficits and the clinical and psychosocial consequences of this deficits are presented. At least, neuropsychological rehabilitation programs are reviewed from a clinical point of view.
Stochastic gravitational wave background from light cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePies, Matthew R.; Hogan, Craig J.
2007-06-15
Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less
Latychevskaia, T; Chushkin, Y; Fink, H-W
2016-10-01
In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
The search for neutrinoless double beta decay in 130Te with CUORE-0
NASA Astrophysics Data System (ADS)
Ouellet, Jonathan Loren
This thesis describes the design, operation and results of an experimental search for neutrinoless double beta decay (0nubetabeta) of 130 Te using the CUORE-0 detector. The discovery of 0nubetabeta would have profound implications for particle physics and our understanding of the Universe. Its discovery would demonstrate the violation of lepton number and imply that neutrinos are Majorana fermions and therefore their own anti-particles. Combined with other experimental results, the discovery of 0nubetabeta could also have implications for understanding the absolute neutrino mass scale as well as the presently unknown neutrino mass hierarchy. The CUORE experiment is a ton-scale search for 0nubetabeta in 130Te expected to begin operation in late 2015. The first stage of this experiment is a smaller 39-kg active-mass detector called CUORE-0. This detector contains 11~kg of 130Te and operates in the Laboratori Nazionali del Gran Sasso lab in Italy from 2013--2015. The results presented here are based on a natTeO 2 exposure of 35.2 kg·yr, or 9.8 kg·yr exposure of 130Te collected between 2013 -- 2015. We see no evidence of 0nubetabeta and place an upper limit on the 0nubetabeta decay rate of Gamma 0nubetabeta 2.8 x 1024 yr (90% C.L.). We combine the present result with the results of previous searches in 130Te. Combining it with the 1.2 kg·yr 130Te exposure from the Three Towers Test run we place a half-life limit of T 0nu1/2 >3.3 x 1024 yr (90% C.L.). And combining these results with the 19.75 kg·yr 130Te exposure from Cuoricino, we place the strongest limit on the 0nubetabeta half-life of 130Te to date, at T0nu1/2 > 4.5 x 1024 yr (90% C.L.). Using the present nuclear matrix element calculations for 130Te, this result corresponds to a 90% upper limit range on the effective Majorana mass of m betabeta < 250--710 meV.
Statistical mechanics of few-particle systems: exact results for two useful models
NASA Astrophysics Data System (ADS)
Miranda, Enrique N.
2017-11-01
The statistical mechanics of small clusters (n ˜ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B , as in the thermodynamic case, while within the microcanonical formalism the limit value is k B (1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.
Lepton-flavor universality limits in warped space
NASA Astrophysics Data System (ADS)
Megías, Eugenio; Quirós, Mariano; Salas, Lindber
2017-10-01
We explore the limits on lepton-flavor universality (LFU) violation in theories where the hierarchy problem is solved by means of a warped extra dimension. In those theories, LFU violation, in fermion interaction with Kaluza-Klein modes of gauge bosons, is provided ab initio when different flavors of fermions are differently localized along the extra dimension. As this fact arises from the mass pattern of quarks and leptons, LFU violation is natural in this class of theories. We analyze the experimental data pointing toward LFU violation, as well as the most relevant electroweak and flavor observables, and the LFU tests in the μ /e and τ /μ sectors. We find agreement with RK(*) and RD(*) data at 95% C.L., provided the third-generation left-handed fermions are composite (0.14
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1991-01-01
The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.
Wood, F L; Houston, J B; Hallifax, D
2017-11-01
Although prediction of clearance using hepatocytes and liver microsomes has long played a decisive role in drug discovery, it is widely acknowledged that reliably accurate prediction is not yet achievable despite the predominance of hepatically cleared drugs. Physiologically mechanistic methodology tends to underpredict clearance by several fold, and empirical correction of this bias is confounded by imprecision across drugs. Understanding the causes of prediction uncertainty has been slow, possibly reflecting poor resolution of variables associated with donor source and experimental methods, particularly for the human situation. It has been reported that among published human hepatocyte predictions there was a tendency for underprediction to increase with increasing in vivo intrinsic clearance, suggesting an inherent limitation using this particular system. This implied an artifactual rate limitation in vitro, although preparative effects on cell stability and performance were not yet resolved from assay design limitations. Here, to resolve these issues further, we present an up-to-date and comprehensive examination of predictions from published rat as well as human studies (where n = 128 and 101 hepatocytes and n = 71 and 83 microsomes, respectively) to assess system performance more independently. We report a clear trend of increasing underprediction with increasing in vivo intrinsic clearance, which is similar both between species and between in vitro systems. Hence, prior concerns arising specifically from human in vitro systems may be unfounded and the focus of investigation in the future should be to minimize the potential in vitro assay limitations common to whole cells and subcellular fractions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Non--Local Approach to the Analysis of the Stress Distribution in Granular Systems.
NASA Astrophysics Data System (ADS)
Scott, J. E.; Kenkre, V. M.; Hurd, A. J.
1998-03-01
A continuum mechanical theory of the stress distribution in granular materials is presented, where the transformation of the vertical spatial coordinate into a formal time variable converts the study of the static stress distribution into a generally non--Markoffian, i.e., memory-possessing (non-local) propagation analysis. Previous treatments (J. -P). Bouchaud, M. E. Cates, and P. Claudin, J. Phys. I France 5, 639 (1995). (C. -h). Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, and T. A. Witten, Science 269, 513 (1995). are shown to be particular cases of our theory corresponding to, respectively, wave-like and dif fusive limits of the general evolution. Calculations are presented for the example of ceramic or metal powder compaction in dies, with emphasis on the understanding of previously unexplained features as seen in experimental data found in the literature o ver the past 50 years. Specific proposals for new experimental investigations are presented.
Modeling of dielectric elastomer oscillators for soft biomimetic applications.
Henke, E-F M; Wilson, Katherine E; Anderson, I A
2018-06-26
Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.
Stray light rejection in giant externally-occulted solar coronagraphs: experimental developments
NASA Astrophysics Data System (ADS)
Venet, M.; Bazin, C.; Koutchmy, S.; Lamy, P.
2017-11-01
The advent of giant, formation-flight, externally-occulted solar coronagraphs such as ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire [1,2,3,4]) selected by the European Space Agency (ESA) for its third PROBA (Project for On-Board Autonomy) mission of formation flying demonstration (presently in phase B) and Hi-RISE proposed in the framework of ESA Cosmic Vision program, presents formidable challenges for the study and calibration of instrumental stray light. With distances between the external occulter (EO) and the optical pupil (OP) exceeding hundred meters and occulter sizes larger than a meter, it becomes impossible to perform tests at the real scale. The requirement to limit the over-occultation to less than 1.05 Rsun, orders of magnitude to what has been achieved so far in past coronagraphs, further adds to the challenge. We are approaching the problem experimentally using reduced scale simulators and present below a progress report of our work.
Hypersonic Magneto-Fluid-Dynamic Compression in Cylindrical Inlet
NASA Technical Reports Server (NTRS)
Shang, Joseph S.; Chang, Chau-Lyan
2007-01-01
Hypersonic magneto-fluid-dynamic interaction has been successfully performed as a virtual leading-edge strake and a virtual cowl of a cylindrical inlet. In a side-by-side experimental and computational study, the magnitude of the induced compression was found to be depended on configuration and electrode placement. To better understand the interacting phenomenon the present investigation is focused on a direct current discharge at the leading edge of a cylindrical inlet for which validating experimental data is available. The present computational result is obtained by solving the magneto-fluid-dynamics equations at the low magnetic Reynolds number limit and using a nonequilibrium weakly ionized gas model based on the drift-diffusion theory. The numerical simulation provides a detailed description of the intriguing physics. After validation with experimental measurements, the computed results further quantify the effectiveness of a magnet-fluid-dynamic compression for a hypersonic cylindrical inlet. At a minuscule power input to a direct current surface discharge of 8.14 watts per square centimeter of electrode area produces an additional compression of 6.7 percent for a constant cross-section cylindrical inlet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi
2008-04-21
Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less
Turbulent flow in a 180 deg bend: Modeling and computations
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
1989-01-01
A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.
Ruel, Jean; Lachance, Geneviève
2010-01-01
This paper presents an experimental study of three bioreactor configurations. The bioreactor is intended to be used for the development of tissue-engineered heart valve substitutes. Therefore it must be able to reproduce physiological flow and pressure waveforms accurately. A detailed analysis of three bioreactor arrangements is presented using mathematical models based on the windkessel (WK) approach. First, a review of the many applications of this approach in medical studies enhances its fundamental nature and its usefulness. Then the models are developed with reference to the actual components of the bioreactor. This study emphasizes different conflicting issues arising in the design process of a bioreactor for biomedical purposes, where an optimization process is essential to reach a compromise satisfying all conditions. Two important aspects are the need for a simple system providing ease of use and long-term sterility, opposed to the need for an advanced (thus more complex) architecture capable of a more accurate reproduction of the physiological environment. Three classic WK architectures are analyzed, and experimental results enhance the advantages and limitations of each one. PMID:21977286
A two-scale roughness model for the gloss of coated paper
NASA Astrophysics Data System (ADS)
Elton, N. J.
2008-08-01
A model for gloss is developed for surfaces with two-scale random roughness where one scale lies in the wavelength region (microroughness) and the other in the geometrical optics limit (macroroughness). A number of important industrial materials such as coated and printed paper and some paints exhibit such two-scale rough surfaces. Scalar Kirchhoff theory is used to describe scattering in the wavelength region and a facet model used for roughness features much greater than the wavelength. Simple analytical expressions are presented for the gloss of surfaces with Gaussian, modified and intermediate Lorentzian distributions of surface slopes, valid for gloss at high angle of incidence. In the model, gloss depends only on refractive index, rms microroughness amplitude and the FWHM of the surface slope distribution, all of which may be obtained experimentally. Model predictions are compared with experimental results for a range of coated papers and gloss standards, and found to be in fair agreement within model limitations.
Nevmerzhitskiy, N V; Sotskov, E A; Sen'kovskiy, E D; Krivonos, O L; Polovnikov, A A; Levkina, E V; Frolov, S V; Abakumov, S A; Marmyshev, V V
2014-09-01
The results of the experimental study of the Reynolds number effect on the process of the Rayleigh-Taylor (R-T) instability transition into the turbulent stage are presented. The experimental liquid layer was accelerated by compressed gas. Solid particles were scattered on the layer free surface to specify the initial perturbations in some experiments. The process was recorded with the use of a high-speed motion picture camera. The following results were obtained in experiments: (1) Long-wave perturbation is developed at the interface at the Reynolds numbers Re < 10 4 . If such perturbation growth is limited by a hard wall, the jet directed in gas is developed. If there is no such limitation, this perturbation is resolved into the short-wave ones with time, and their growth results in gas-liquid mixing. (2) Short-wave perturbations specified at the interface significantly reduce the Reynolds number Re for instability to pass into the turbulent mixing stage.
Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue
2015-01-01
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191
NASA Astrophysics Data System (ADS)
Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue
2015-09-01
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.
Leong, H M; Carter, Mark; Stephenson, Jennifer
2015-12-01
Sensory integration therapy (SIT) is a controversial intervention that is widely used for people with disabilities. Systematic analysis was conducted on the outcomes of 17 single case design studies on sensory integration therapy for people with, or at-risk of, a developmental or learning disability, disorder or delay. An assessment of the quality of methodology of the studies found most used weak designs and poor methodology, with a tendency for higher quality studies to produce negative results. Based on limited comparative evidence, functional analysis-based interventions for challenging behavior were more effective that SIT. Overall the studies do not provide convincing evidence for the efficacy of sensory integration therapy. Given the findings of the present review and other recent analyses it is advised that the use of SIT be limited to experimental contexts. Issues with the studies and possible improvements for future research are discussed including the need to employ designs that allow for adequate demonstration of experimental control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamics and statics of nonaxisymmetric liquid bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Resnick, Andy; Zhang, Yiqiang; Fedoseyev, A.
1994-01-01
We finished the construction of the experimental apparatus and the design and testing of some of the visualization and data acquisition techniques. Experimental work focused on three areas: force measurements, loss of stability to nonaxisymmetric bridges, and vibration behavior. The experimental work is summarized in section 2. Selected results from our force measurement experiments are outlined in section 3. In addition we worked on the theory of the dynamic stability of axisymmetric bridges and undertook numerical simulation of the effects of inclined gravity vectors on the minimum volume stability limit for static bridges. The results and status of our theoretical work and numerical simulation are described in section 4. Papers published and in preparation, conference presentations, etc., are described in section 5. Work planned for the third year is discussed in section 6. References cited in the report are listed in section 7.
Performance analysis of hybrid vibrational energy harvesters with experimental verification
NASA Astrophysics Data System (ADS)
Sriramdas, Rammohan; Pratap, Rudra
2018-07-01
In the present work, performance indices for a hybrid energy harvester (HEH) that is composed of piezoelectric and electrodynamic or electromagnetic mechanisms of energy conversion are analyzed. Performance of a HEH is defined in terms of Q-normalized power factor and efficiency of conversion. They are observed to acutely depend on coupling strength or figures of merit in both piezoelectric and electrodynamic domains. The influence of figures of merit on the Q-normalized power factor, and the limits of conversion efficiency are explored. Based on the studies, a suitable range for figures of merit that would maximize both Q-normalized power factor and conversion efficiency in hybrid harvesters is proposed. The proposed idea is verified experimentally for the appropriate values of figures of merit and efficiencies by fabricating and testing four experimental models of the HEHs.
Mathematical modelling of flow in disc friction LVAD pump
NASA Astrophysics Data System (ADS)
Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.
2017-10-01
The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.
Numerical and experimental investigation of turbine blade film cooling
NASA Astrophysics Data System (ADS)
Berkache, Amar; Dizene, Rabah
2017-12-01
The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
2012-10-15
Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with opticalmore » shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.« less
Experimental and Modeling Damage Limits Study for Straight Ti-3A1-2.5V Tubes
2007-05-15
Titanium Tubes used in V-22 Osprey Tilt-rotor Aircraft ………………………………………………………………………………………..60 Appendix A. Project Presentation Slides – 1. Summary of...removed from the aircraft. By laboratory testing, finite element analysis and fracture mechanics study, damage limit curves of the titanium tubes have...OD) and 0.032” tube wall thickness (TWT) were studied, the impulse pressure test results for laser micromachining notched straight titanium tubes
Experimental test of the variability of G using Viking lander ranging data
NASA Technical Reports Server (NTRS)
Hellings, R. W.; Adams, P. J.; Anderson, J. D.; Keesey, M. S.; Lau, E. L.; Standish, E. M.; Canuto, V. M.; Goldman, I.
1983-01-01
Results are presented from the analysis of solar-system astrometric data, notably the range data to the Viking landers on Mars. A least-squares fit of the parameters of the solar system model to these data limits a simple time variation in the effective Newtonian gravitational constant to (2 + or - 4) x 10 to the -12th/yr and a rate of drift of atomic clocks relative to the implicit clock of relativistic dynamics to (1 + or - 8) x 10 to the -12th/yr. The error limits quoted are the result of uncertainties in the masses of the asteroids.
The WEIZMASS spectral library for high-confidence metabolite identification
NASA Astrophysics Data System (ADS)
Shahaf, Nir; Rogachev, Ilana; Heinig, Uwe; Meir, Sagit; Malitsky, Sergey; Battat, Maor; Wyner, Hilary; Zheng, Shuning; Wehrens, Ron; Aharoni, Asaph
2016-08-01
Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.
Protection of autonomous microgrids using agent-based distributed communication
Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.
2016-04-06
This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less
Transonic flow about a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Mcdevitt, J. B.; Levy, L. L., Jr.; Deiwert, G. S.
1975-01-01
An experimental and theoretical study of transonic flow over a thick airfoil, prompted by a need for adequately documented experiments that could provide rigorous verification of viscous flow simulation computer codes, is reported. Special attention is given to the shock-induced separation phenomenon in the turbulent regime. Measurements presented include surface pressures, streamline and flow separation patterns, and shadowgraphs. For a limited range of free-stream Mach numbers the airfoil flow field is found to be unsteady. Dynamic pressure measurements and high-speed shadowgraph movies were taken to investigate this phenomenon. Comparisons of experimentally determined and numerically simulated steady flows using a new viscous-turbulent code are also included. The comparisons show the importance of including an accurate turbulence model. When the shock-boundary layer interaction is weak the turbulence model employed appears adequate, but when the interaction is strong, and extensive regions of separation are present, the model is inadequate and needs further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paroubek, J.; Cyrus, V.; Kyncl, J.
1995-10-01
Some results of a research and development program for centrifugal compressors are presented. Six-stage configurations with low flow coefficient were tested. The stages had channel width parameter b{sub 2}/D{sub 2} = 0.01 and 0.03. For each value of the width parameter, three different impellers with inlet hub to outlet diameter ratio d{sub 0}/D{sub 2} = 0.3, 0.4, and 0.5 were designed. Test rig, instrumentation, and data analysis are described. Special attention was devoted to probe calibrations and to evaluation of the leakage, bearing, and disk friction losses. Aerodynamic performance of all tested stages is presented. Slip factors of impellers obtainedmore » experimentally and theoretically are compared. Losses in both vaneless diffuser and return channel with deswirl vanes are discussed. Rotating stall was also investigated. Criteria for stall limit were tested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki, W.H.
1987-07-01
This is an experimental review of light quark spectroscopy from e/sup +/e/sup -/ production and ..gamma gamma.. collision results presented at the 2nd International Conference on Hadron Spectroscopy at KEK, Japan. The recent results in ..gamma gamma.. production have evidence for the J/sup PC/ = 1/sup + +/, E/f/sub 1/(1420) and D/f/sub 1/(1285), mesons from the TPC and Mark II collaborations and upper limits for pseudoscalar resonances from the Crystal Ball collaboration. The results in J/psi reactions include D/f/sub 1/(1285) meson production in radiative decays and a complete measurement of the hadronic decays into pseudoscalar-vector pairs from the DM2 collaborationmore » and evidence for phi phi production in radiative decays and a study of the iota line shape from the Mark III collaboration. A short review of simple theoretical ideas is presented.« less
The application of multilayer elastic beam in MEMS safe and arming system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guozhong, E-mail: liguozhong-bit@bit.edu.cn; Shi, Gengchen; Sui, Li
In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of themore » multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.« less
On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.
Louarroudi, E; Sanchez, B
2017-02-01
When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.
Protection of autonomous microgrids using agent-based distributed communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.
This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less
[Human milk for neonatal pain relief during ophthalmoscopy].
Ribeiro, Laiane Medeiros; Castral, Thaíla Corrêa; Montanholi, Liciane Langona; Daré, Mariana Firmino; Silva, Aline Carolina de Araújo; Antonini, Sonir Roberto Rauber; Scochi, Carmen Gracinda Silvan
2013-10-01
Ophthalmoscopy performed for the early diagnosis of retinopathy of prematurity (ROP) is painful for preterm infants, thus necessitating interventions for minimizing pain. The present study aimed to establish the effectiveness of human milk, compared with sucrose, for pain relief in premature infants subjected to ophthalmoscopy for the early diagnosis of ROP. This investigation was a pilot, quasi-experimental study conducted with 14 premature infants admitted to the neonatal intensive care unit (NICU) of a university hospital. Comparison between the groups did not yield a statistically significant difference relative to the crying time, salivary cortisol, or heart rate (HR). Human milk appears to be as effective as sucrose in relieving acute pain associated with ophthalmoscopy. The study's limitations included its small sample size and lack of randomization. Experimental investigations with greater sample power should be performed to reinforce the evidence found in the present study.
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2007-01-01
The purpose of this study is to design a constructivist learning environment that helps learning the limit concept. The study is a pretest-posttest quasi-experimental research. The control and the experimental groups were chosen from the students attending a calculus course. Worksheets were used to assess students' learning of the limit concept.…
Scott R. Abella
2008-01-01
Seed availability and leaf litter limit plant establishment in some ecosystems. To evaluate the hypothesis that these factors limit understory plant recruitment in Pinus ponderosa forests, I conducted a seeding and litter removal experiment at six thinned sites in the Fort Valley Experimental Forest, northern Arizona. Experimental seeding of four native species (...
Scott R. Abella
2008-01-01
Seed availability and leaf litter limit plant establishment in some ecosystems. To evaluate the hypothesis that these factors limit understory plant recruitment in Pinus ponderosa forests, I conducted a seeding and litter removal experiment at six thinned sites in the Fort Valley Experimental Forest, northern Arizona. Experimental seeding of four native species (
Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.
Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E
2017-01-31
The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.
NASA Astrophysics Data System (ADS)
Cambridge, M.; Breeman, A. M.; van Oosterwijk, R.; van den Hoek, C.
1984-09-01
The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genus Cladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1) C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2) C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3) C. dalmatica, as for C. vagabunda. (4) C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data for C. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species, C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.
Experimental investigation into infrasonic emissions from atmospheric turbulence.
Shams, Qamar A; Zuckerwar, Allan J; Burkett, Cecil G; Weistroffer, George R; Hugo, Derek R
2013-03-01
Clear air turbulence (CAT) is the leading cause of in-flight injuries and in severe cases can result in fatalities. The purpose of this work is to design and develop an infrasonic array network for early warning of clear air turbulence. The infrasonic system consists of an infrasonic three-microphone array, compact windscreens, and data management system. Past experimental efforts to detect acoustic emissions from CAT have been limited. An array of three infrasonic microphones, operating in the field at NASA Langley Research Center, on several occasions received signals interpreted as infrasonic emissions from CAT. Following comparison with current lidar and other past methods, the principle of operation, the experimental methods, and experimental data are presented for case studies and confirmed by pilot reports. The power spectral density of the received signals was found to fit a power law having an exponent of -6 to -7, which is found to be characteristics of infrasonic emissions from CAT, in contrast to findings of the past.
High fidelity studies of exploding foil initiator bridges, Part 1: Experimental method
NASA Astrophysics Data System (ADS)
Bowden, Mike; Neal, William
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage and in the case of EFIs, flyer velocity. Correspondingly, experimental methods have in general been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, predicting a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately validated. In this first paper of a three part study, the experimental method for determining the current, voltage, flyer velocity and multi-dimensional profile of detonator components is presented. This improved capability, along with high fidelity simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
Simulation of the photodetachment spectrum of HHfO- using coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Mok, Daniel K. W.; Dyke, John M.; Lee, Edmond P. F.
2016-12-01
The photodetachment spectrum of HHfO- was simulated using restricted-spin coupled-cluster single-double plus perturbative triple {RCCSD(T)} calculations performed on the ground electronic states of HHfO and HHfO-, employing basis sets of up to quintuple-zeta quality. The computed RCCSD(T) electron affinity of 1.67 ± 0.02 eV at the complete basis set limit, including Hf 5s25p6 core correlation and zero-point energy corrections, agrees well with the experimental value of 1.70 ± 0.05 eV from a recent photodetachment study [X. Li et al., J. Chem. Phys. 136, 154306 (2012)]. For the simulation, Franck-Condon factors were computed which included allowances for anharmonicity and Duschinsky rotation. Comparisons between simulated and experimental spectra confirm the assignments of the molecular carrier and electronic states involved but suggest that the experimental vibrational structure has suffered from poor signal-to-noise ratio. An alternative assignment of the vibrational structure to that suggested in the experimental work is presented.
Andersen, Kristian; Pedersen, Thomas Klit; Hauge, Ellen Margrethe; Schou, Søren; Nørholt, Sven Erik
2014-04-01
The present systematic review aimed to test the hypothesis of no effect of mandibular distraction osteogenesis on the temporomandibular joint. Animal experimental studies from January 1985 to August 2013 were included. Studies were searched in PubMed, Embase, Scopus, and the Cochrane Library. A total of 289 articles were identified, and 17 were included. Included studies were characterized by a high risk of bias and by inhomogeneity related to animal species, experimental procedures, and evaluation methods. Mandibular distraction osteogenesis within physiologic limits may be followed by adaptive changes in bone, disk, and cartilage. Increased daily rates and total activation length may influence the severity of the adaptive changes. Animal experimental studies indicate that mandibular distraction osteogenesis may induce adaptive changes in the temporomandibular joint. Adaptive changes may be influenced by increased daily rates and total length of distraction osteogenesis. Well-designed studies are needed before final conclusions can be drawn. Copyright © 2014 Elsevier Inc. All rights reserved.
Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens
2018-04-03
While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.
A high-frequency servosystem for fuel control in hypersonic engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.
1991-01-01
A hydrogen fuel-flow valve with an electrohydraulic servosystem is described. An analysis of the servosystem is presented along with a discussion of the limitations imposed on system performance by nonlinearities. The response of the valve to swept-frequency inputs is experimentally determined and compared with analytical results obtained from a computer model. The valve is found to perform favorably for frequencies up to 200 Hz.
Porosity Evolution in a Creeping Single Crystal (Preprint)
2012-08-01
1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni
A low-dissipation monotonicity-preserving scheme for turbulent flows in hydraulic turbines
NASA Astrophysics Data System (ADS)
Yang, L.; Nadarajah, S.
2016-11-01
The objective of this work is to improve the inherent dissipation of the numerical schemes under the framework of a Reynolds-averaged Navier-Stokes (RANS) simulation. The governing equations are solved by the finite volume method with the k-ω SST turbulence model. Instead of the van Albada limiter, a novel eddy-preserving limiter is employed in the MUSCL reconstructions to minimize the dissipation of the vortex. The eddy-preserving procedure inactivates the van Albada limiter in the swirl plane and reduces the artificial dissipation to better preserve vortical flow structures. Steady and unsteady simulations of turbulent flows in a straight channel and a straight asymmetric diffuser are demonstrated. Profiles of velocity, Reynolds shear stress and turbulent kinetic energy are presented and compared against large eddy simulation (LES) and/or experimental data. Finally, comparisons are made to demonstrate the capability of the eddy-preserving limiter scheme.
Re-evaluation of the reported experimental values of the heat of vaporization of N-methylacetamide
MacKerell, Alexander D.; Shim, Ji Hyun; Anisimov, Victor M.
2010-01-01
The accuracy of empirical force fields is inherently related to the quality of the target data used for optimization of the model. With the heat of vaporization (ΔHvap) of N-methylacetamide (NMA), a range of values have been reported as target data for optimization of the nonbond parameters associated with the peptide bond in proteins. In the present work, the original experimental data and Antoine constants used for the determination of the ΔHvap of NMA are reanalyzed. Based on this analysis, the wide range of ΔHvap values reported in the literature are shown to be due to incorrect reporting of the temperatures at which the original values were extracted and limitations in the quality of experimental vapor pressure-temperature data over a wide range of temperatures. Taking these problems into account, a consistent ΔHvap value is extracted from three studies for which experimental data are available. This analysis suggests that the most reliable value for ΔHvap is 13.0±0.1 at 410 K for use in force field optimization studies. The present results also indicate that similar analyses, including analysis of Antoine constants alone, may be of utility when reported ΔHvap values are not consistent for a given neat liquid. PMID:20445813
Relevance of deprivation studies in understanding rapid eye movement sleep
Mehta, Rachna; Khan, Shafa; Mallick, Birendra N
2018-01-01
Rapid eye movement sleep (REMS) is a unique phenomenon essential for maintaining normal physiological processes and is expressed at least in species higher in the evolution. The basic scaffold of the neuronal network responsible for REMS regulation is present in the brainstem, which may be directly or indirectly influenced by most other physiological processes. It is regulated by the neurons in the brainstem. Various manipulations including chemical, elec-trophysiological, lesion, stimulation, behavioral, ontogenic and deprivation studies have been designed to understand REMS genesis, maintenance, physiology and functional significance. Although each of these methods has its significance and limitations, deprivation studies have contributed significantly to the overall understanding of REMS. In this review, we discuss the advantages and limitations of various methods used for REMS deprivation (REMSD) to understand neural regulation and physiological significance of REMS. Among the deprivation strategies, the flowerpot method is by far the method of choice because it is simple and convenient, exploits physiological parameter (muscle atonia) for REMSD and allows conducting adequate controls to overcome experimental limitations as well as to rule out nonspecific effects. Notwithstanding, a major criticism that the flowerpot method faces is that of perceived stress experienced by the experimental animals. Nevertheless, we conclude that like most methods, particularly for in vivo behavioral studies, in spite of a few limitations, given the advantages described above, the flowerpot method is the best method of choice for REMSD studies. PMID:29881316
Relevance of deprivation studies in understanding rapid eye movement sleep.
Mehta, Rachna; Khan, Shafa; Mallick, Birendra N
2018-01-01
Rapid eye movement sleep (REMS) is a unique phenomenon essential for maintaining normal physiological processes and is expressed at least in species higher in the evolution. The basic scaffold of the neuronal network responsible for REMS regulation is present in the brainstem, which may be directly or indirectly influenced by most other physiological processes. It is regulated by the neurons in the brainstem. Various manipulations including chemical, elec-trophysiological, lesion, stimulation, behavioral, ontogenic and deprivation studies have been designed to understand REMS genesis, maintenance, physiology and functional significance. Although each of these methods has its significance and limitations, deprivation studies have contributed significantly to the overall understanding of REMS. In this review, we discuss the advantages and limitations of various methods used for REMS deprivation (REMSD) to understand neural regulation and physiological significance of REMS. Among the deprivation strategies, the flowerpot method is by far the method of choice because it is simple and convenient, exploits physiological parameter (muscle atonia) for REMSD and allows conducting adequate controls to overcome experimental limitations as well as to rule out nonspecific effects. Notwithstanding, a major criticism that the flowerpot method faces is that of perceived stress experienced by the experimental animals. Nevertheless, we conclude that like most methods, particularly for in vivo behavioral studies, in spite of a few limitations, given the advantages described above, the flowerpot method is the best method of choice for REMSD studies.
Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Ma, Jin Shi; Yang, Guoqiang
2015-10-05
A series of triazine-linked mono-, bis- and tris-phthalocyanines are synthesized, intramolecular aggregation is found in bis- and tris-phthalocyanines via π-π stacking interaction. Theoretical and experimental studies reveal the formation of the intramolecular aggregation. The spectrographic, photophysical and nonlinear optical properties of these compounds are adjusted for the formation of the intramolecular aggregation. The bis-phthalocyanine dimer presents smaller fluorescence quantum yield, lower triplet formation yield and the triplet-minus-ground state extinction coefficient, which causes poorer optical limiting performance. It is interesting that the tris-phthalocyanine is composed of a mono-phthalocyanine part and a bis-phthalocyanine part, the optical limiting property of the tris-phthalocyanine is similar to that of mono-phthalocyanine. Copyright © 2015 Elsevier B.V. All rights reserved.
Mining Deployment Optimization
NASA Astrophysics Data System (ADS)
Čech, Jozef
2016-09-01
The deployment problem, researched primarily in the military sector, is emerging in some other industries, mining included. The principal decision is how to deploy some activities in space and time to achieve desired outcome while complying with certain requirements or limits. Requirements and limits are on the side constraints, while minimizing costs or maximizing some benefits are on the side of objectives. A model with application to mining of polymetallic deposit is presented. To obtain quick and immediate decision solutions for a mining engineer with experimental possibilities is the main intention of a computer-based tool. The task is to determine strategic deployment of mining activities on a deposit, meeting planned output from the mine and at the same time complying with limited reserves and haulage capacities. Priorities and benefits can be formulated by the planner.
NASA Astrophysics Data System (ADS)
Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang
2017-04-01
Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.
Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer
NASA Technical Reports Server (NTRS)
Romalis, Michael; Komack, Tom; Ghost, Rajat
2008-01-01
An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-01-01
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891
Bias error reduction using ratios to baseline experiments. Heat transfer case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.; Taylor, R.P.; Coleman, H.W.
1993-10-01
Employing a set of experiments devoted to examining the effect of surface finish (riblets) on convective heat transfer as an example, this technical note seeks to explore the notion that precision uncertainties in experiments can be reduced by repeated trials and averaging. This scheme for bias error reduction can give considerable advantage when parametric effects are investigated experimentally. When the results of an experiment are presented as a ratio with the baseline results, a large reduction in the overall uncertainty can be achieved when all the bias limits in the variables of the experimental result are fully correlated with thosemore » of the baseline case. 4 refs.« less
Discontinuity stresses in metallic pressure vessels
NASA Technical Reports Server (NTRS)
1971-01-01
The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.
1981-01-01
A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.
Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increased role in the future for nondestructive evaluation in order to better understand the physics of the inspection process and help explain the experimental results. It will also help to prove or disprove the feasibility for an inspection method or inspection scenario, help optimize inspections, and allow to a first approximation limits of detectability. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles.
Study of curved and planar frequency-selective surfaces with nonplanar illumination
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Webb, Kevin J.
1991-01-01
A locally planar technique (LPT) is investigated for determining the forward-scattered field from a generally shaped inductive frequency-selective surface (FSS) with nonplanar illumination. The results of an experimental study are presented to assess the LPT accuracy. The effects of a nonplanar incident field are determined by comparing the LPT numerical results with a series of experiments with the feed source placed at varying distances from the planar FSS. The limitations of the LPT model due to surface curvature are investigated in an experimental study of the scattered fields from a set of hyperbolic cylinders of different curvatures. From these comparisons, guidelines for applying the locally planar technique are developed.
Experimental observation of carrier-envelope-phase effects by multicycle pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Pankaj K.; Scully, Marlan O.; Mechanical and Aerospace Engineering and the Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544
2011-03-15
We present an experimental and theoretical study of carrier-envelope-phase (CEP) effects on the population transfer between two bound atomic states interacting with pulses consisting of many cycles. Using intense radio-frequency pulse with Rabi frequency of the order of the atomic transition frequency, we investigate the influence of the CEP on the control of phase-dependent multiphoton transitions between the Zeeman sublevels of the ground state of {sup 87}Rb. Our scheme has no limitation on the duration of the pulses. Extending the CEP control to longer pulses creates interesting possibilities to generate pulses with accuracy that is better than the period ofmore » optical oscillations.« less
All-optical switching in silicon-on-insulator photonic wire nano-cavities.
Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M
2010-01-18
We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.
NASA Astrophysics Data System (ADS)
Thorsson, Solver I.
Foreign object impact on composite materials continues to be an active field due to its importance in the design of load bearing composite aerostructures. The problem has been studied by many through the decades. Extensive experimental studies have been performed to characterize the impact damage and failure mechanisms. Leaders in aerospace industry are pushing for reliable, robust and efficient computational methods for predicting impact response of composite structures. Experimental and numerical investigations on the impact response of fiber reinforced polymer matrix composite (FRPC) laminates are presented. A detailed face-on and edge-on impact experimental study is presented. A novel method for conducting coupon-level edge-on impact experiments is introduced. The research is focused on impact energy levels that are in the vicinity of the barely visible impact damage (BVID) limit of the material system. A detailed post-impact damage study is presented where non-destructive inspection (NDI) methods such as ultrasound scanning and computed tomography (CT) are used. Detailed fractography studies are presented for further investigation of the through-the-thickness damage due to the impact event. Following the impact study, specimens are subjected to compression after impact (CAI) to establish the effect of BVID on the compressive strength after impact (CSAI). A modified combined loading compression (CLC) test method is proposed for compression testing following an edge-on impact. Experimental work on the rate sensitivity of the mode I and mode II inter-laminar fracture toughness is also investigated. An improved wedge-insert fracture (WIF) method for conducting mode I inter-laminar fracture at elevated loading rates is introduced. Based on the experimental results, a computational modeling approach for capturing face-on impact and CAI is developed. The model is then extended to edge-on impact and CAI. Enhanced Schapery Theory (EST) is utilized for modeling the full field damage and failure present in a unidirectional (UD) lamina within a laminate. Schapery Theory (ST) is a thermodynamically based work potential material model which captures the pre-peak softening due to matrix micro-cracking such as hackling, micro fissures, etc. The Crack Band (CB) method is utilized to capture macroscopic matrix and fiber failure modes such as ply splitting and fiber rupture. Discrete Cohesive Zone Method (DCZM) elements are implemented for capturing inter-laminar delaminations, using discrete nodal traction-separation governed interactions. The model is verified against the impact experimental results and the associated CAI procedures. The model results are in good agreement with experimental findings. The model proved capable of predicting the representative experimental failure modes.
Determination of full piezoelectric complex parameters using gradient-based optimization algorithm
NASA Astrophysics Data System (ADS)
Kiyono, C. Y.; Pérez, N.; Silva, E. C. N.
2016-02-01
At present, numerical techniques allow the precise simulation of mechanical structures, but the results are limited by the knowledge of the material properties. In the case of piezoelectric ceramics, the full model determination in the linear range involves five elastic, three piezoelectric, and two dielectric complex parameters. A successful solution to obtaining piezoceramic properties consists of comparing the experimental measurement of the impedance curve and the results of a numerical model by using the finite element method (FEM). In the present work, a new systematic optimization method is proposed to adjust the full piezoelectric complex parameters in the FEM model. Once implemented, the method only requires the experimental data (impedance modulus and phase data acquired by an impedometer), material density, geometry, and initial values for the properties. This method combines a FEM routine implemented using an 8-noded axisymmetric element with a gradient-based optimization routine based on the method of moving asymptotes (MMA). The main objective of the optimization procedure is minimizing the quadratic difference between the experimental and numerical electrical conductance and resistance curves (to consider resonance and antiresonance frequencies). To assure the convergence of the optimization procedure, this work proposes restarting the optimization loop whenever the procedure ends in an undesired or an unfeasible solution. Two experimental examples using PZ27 and APC850 samples are presented to test the precision of the method and to check the dependency of the frequency range used, respectively.
Digital signal processing techniques for coherent optical communication
NASA Astrophysics Data System (ADS)
Goldfarb, Gilad
Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.
NASA Technical Reports Server (NTRS)
Resnick, Andrew Howard
1997-01-01
A liquid bridge is a volume of liquid held between two or more solid supports. In the case of small disk supports with a sharp edge, the contact line between the bridge and the support disk will be anchored along the edge of the disk. For these cases the solid presents a geometrical singularity and the contact angle is indeterminate within a given range. This dissertation presents research conducted on liquid bridges with anchored contact lines. The three major topics covered are: determining the role of support geometry on static equilibria, liquid bridge dynamical behavior, and forces exerted by a liquid bridge on a support structure. The work was primarily experimental and conducted in a "Plateau tank" that allowed for the simulation of equivalent low-gravity conditions. The main thrust of the experimental work involved the use of a high resolution optical measurement system for imaging the dynamic zone shape, measurement of the static and dynamic contact angles and non-invasive analysis of excited surface modes. The liquid bridge was manipulated by computer controlled linear actuators which allowed precise control over the physical characteristics of the bridge. Experiments have been carried out to locate a bifurcation point along the maximum volume axisymmetric stability margin. Below the critical slenderness the bifurcation from an axisymmetric to a stable nonaxisymmetric configuration is supercritical. However, above this critical slenderness, the bifurcation is subcritical. A series of experiments analyzed the effect on axisymmetric bridge stability by using support disks of different radii, The shape behavior as transition points were approached, as well as the limiting case of a vanishing support radius was investigated. Experiments were performed to determine the resonant frequencies of axisymmetric bridges subject to lateral vibrations. Anomolous results led to a series of experiments to characterize nonlinearities present in the dynamic bridge shape. Finally, an attempt was made to experimentally measure the force exerted by the bridge on the lower support disk. This was done through use of a force balance apparatus. Particular attention was paid to the behavior of the bridge as the minimum volume stability limit was approached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean Patrick
A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less
Kearney, Sean Patrick
2014-07-01
A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less
Hughes, M. S.; McCarthy, J. E.; Wickerhauser, M. V.; Marsh, J. N.; Arbeit, J. M.; Fuhrhop, R. W.; Wallace, K. D.; Thomas, T.; Smith, J.; Agyem, K.; Lanza, G. M.; Wickline, S. A.
2009-01-01
Previously a new method for ultrasound signal characterization using entropy Hf was reported, and it was demonstrated that in certain settings, further improvements in signal characterization could be obtained by generalizing to Renyi entropy-based signal characterization If(r) with values of r near 2 (specifically r=1.99) [M. S. Hughes et al., J. Acoust. Soc. Am. 125, 3141–3145 (2009)]. It was speculated that further improvements in sensitivity might be realized at the limit r→2. At that time, such investigation was not feasible due to excessive computational time required to calculate If(r) near this limit. In this paper, an asymptotic expression for the limiting behavior of If(r) as r→2 is derived and used to present results analogous to those obtained with If(1.99). Moreover, the limiting form If,∞ is computable directly from the experimentally measured waveform f(t) by an algorithm that is suitable for real-time calculation and implementation. PMID:19894818
Non-climatic constraints on upper elevational plant range expansion under climate change
Brown, Carissa D.; Vellend, Mark
2014-01-01
We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion. PMID:25253462
Schoth, Daniel E.; Liossi, Christina
2017-01-01
Interpretation biases have been extensively explored in a range of populations, including patients with anxiety and depressive disorders where they have been argued to influence the onset and maintenance of such conditions. Other populations in which interpretation biases have been explored include patients with chronic pain, anorexia nervosa, and alcohol dependency among others, although this literature is more limited. In this research, stimuli with threatening/emotional and neutral meanings are presented, with participant responses indicative of ambiguity resolution. A large number of paradigms have been designed and implemented in the exploration of interpretation biases, some varying in minor features only. This article provides a review of experimental paradigms available for exploring interpretation biases, with the aim to stimulate and inform the design of future research exploring cognitive biases across a range of populations. A systematic search of the experimental literature was conducted in Medline, PsychINFO, Web of Science, CINAHL, and Cochrane Library databases. Search terms were information, stimuli, and ambiguous intersected with the terms interpretation and bias*. Forty-five paradigms were found, categorized into those using ambiguous words, ambiguous images, and ambiguous scenarios. The key features, strengths and limitations of the paradigms identified are discussed. PMID:28232813
Serón, P; Riedemann, P; Muñoz, S; Doussoulin, A; Villarroel, P; Cea, X
2005-11-01
Chronic airflow limitation (CAL) is a significant cause of illness and death. Inspiratory muscle training has been described as a technique for managing CAL. The aim of the present study was to evaluate the effectiveness of inspiratory muscle training on improving physiological and functional variables. Randomized controlled trial in which 35 patients with CAL were assigned to receive either an experimental (n=17) or control (n=18) intervention. The experimental intervention consisted of 2 months of inspiratory muscle training using a device that administered a resistive load of 40% of maximal static inspiratory mouth pressure (PImax). Inspiratory muscle strength, exercise tolerance, respiratory function, and quality of life were assessed. Significant improvement in inspiratory muscle strength was observed in the experimental training group (P=.02). All patients improved over time in both groups (P<.001). PImax increased by 8.9 cm H2O per month of training. Likewise, the health-related quality of life scores improved by 0.56 points. Use of a threshold loading device is effective for strengthening inspiratory muscles as measured by PImax after the first month of training in patients with CAL. The long-term effectiveness of such training and its impact on quality of life should be studied in a larger number of patients.
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Pol, M. E.; Rebello Teles, P.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Yang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. b.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Rurua, L.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krämer, M.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Stein, M.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Gosselink, M.; Haller, J.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Martschei, D.; Mozer, M. U.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dewanjee, R. K.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Ventura, S.; Zotto, P.; Zucchetta, A.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kim, T. Y.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Palencia Cortezon, E.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.; Asavapibhop, B.; Simili, E.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.; CMS Collaboration
2014-08-01
A search for WVγ triple vector boson production is presented based on events containing a W boson decaying to a muon or an electron and a neutrino, a second V (W or Z) boson, and a photon. The data correspond to an integrated luminosity of 19.3 fb-1 collected in 2012 with the CMS detector at the LHC in pp collisions at √s =8 TeV. An upper limit of 311 fb on the cross section for the WVγ production process is obtained at 95% confidence level for photons with a transverse energy above 30 GeV and with an absolute value of pseudorapidity of less than 1.44. This limit is approximately a factor of 3.4 larger than the standard model predictions that are based on next-to-leading order QCD calculations. Since no evidence of anomalous WWγγ or WWZγ quartic gauge boson couplings is found, this paper presents the first experimental limits on the dimension-eight parameter fT,0 and the CP-conserving WWZγ parameters κ0W and κCW. Limits are also obtained for the WWγγ parameters a0W and aCW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nauman, A F
1979-01-01
The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies aremore » the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.« less
Children's difficulties handling dual identity.
Apperly, I A; Robinson, E J
2001-04-01
Thirty-nine 6-year-old children participated in a longitudinal study using tasks that required handling of dual identity. Pre- and posttest sessions employed tasks involving a protagonist who was partially informed about an object or person; for example, he knew an item as a ball but not as a present. Children who judged correctly that the protagonist did not know the ball was a present (thereby demonstrating some understanding of the consequences of limited information access), often judged incorrectly (1) that he knew that there was a present in the box, and (2) that he would search as if fully informed. Intervening sessions added contextual support and tried to clarify the experimenter's communicative intentions in a range of ways. Despite signs of general improvement, the distinctive pattern of errors persisted in every case. These findings go beyond previous studies of children's handling of limited information access, and are hard to accommodate within existing accounts of developing understanding of the mind. Copyright 2001 Academic Press.
Search for a Scalar Component in the Weak Interaction
NASA Astrophysics Data System (ADS)
Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal
Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.
Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.
2010-01-01
Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524
The limit of detection for explosives in spectroscopic differential reflectometry
NASA Astrophysics Data System (ADS)
Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.
2011-05-01
In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.
Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.
2014-01-01
Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251
Damping measurements in flowing water
NASA Astrophysics Data System (ADS)
Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.
2012-11-01
Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.
Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers
Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.
2010-01-01
The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435
High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results
NASA Astrophysics Data System (ADS)
Neal, William; Bowden, Mike
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.
Exploiting single-cell variability to infer the dynamics of immune responses
NASA Astrophysics Data System (ADS)
Höfer, Thomas
Cell division, differentiation, migration and death determine the dynamics of immune responses. These processes are regulated by a multitude of biochemical signals which, at present, cannot faithfully be reconstituted outside the living organism. However, quantitative measurements in living organisms have been limited. In recent years experimental techniques for the ``fate mapping'' of single immune cells have been developed that allow performing parallel single-cell experiments in an experimental animal. The resulting data are more informative about underlying biological processes than traditional measurements. I will show how the theory of stochastic dynamical systems can be used to infer the topology and dynamics of cell differentiation pathways from such data. The focus will be on joint theoretical and experimental work addressing: (i) the development of immune cells during hematopoiesis, and (ii) T cell responses to diverse pathogens. I will discuss questions on the nature of cellular variability that are posed by these new findings.
Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling
NASA Astrophysics Data System (ADS)
Li, Yuhang; Gao, Shiyou; Dong, Rongmei; Ding, Xuebing; Duan, Xiaoxi
2018-02-01
As one of the most popular additive manufacturing techniques, fused deposition modeling (FDM) is successfully applied in aerospace, automotive, architecture, and other fields to fabricate thermoplastic parts. Unfortunately, as a result of the limited nature of the mechanical properties and mass in raw materials, there is a pressing need to improve mechanical properties and reduce weight for FDM parts. Therefore, this paper presents an experiment of a special polylactic acid (PLA) and carbon fiber (CF)/PLA-laminated experimental specimen fabricated using the FDM process. The mechanical properties and mass analysis of the new composites for the PLA and CF/PLA binding layer specimen are investigated experimentally. Through the experimental analysis, one can conclude that the mass of laminated specimen is lighter than the CF/PLA specimen, and the tensile and flexural mechanical properties are higher than the pure PLA specimen.
Experimental methods and transport models for drug delivery across the blood-brain barrier.
Fu, Bingmei M
2012-06-01
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.
Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier
Fu, Bingmei M
2017-01-01
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587
Study regarding the spline interpolation accuracy of the experimentally acquired data
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Danisor, Alin; Tamas, Razvan
2016-12-01
Experimental data processing is an issue that must be solved in almost all the domains of science. In engineering we usually have a large amount of data and we try to extract the useful signal which is relevant for the phenomenon under investigation. The criteria used to consider some points more relevant then some others may take into consideration various conditions which may be either phenomenon dependent, or general. The paper presents some of the ideas and tests regarding the identification of the best set of criteria used to filter the initial set of points in order to extract a subset which best fits the approximated function. If the function has regions where it is either constant, or it has a slow variation, fewer discretization points may be used. This means to create a simpler solution to process the experimental data, keeping the accuracy in some fair good limits.
Aladko, E Ya; Dyadin, Yu A; Fenelonov, V B; Larionov, E G; Manakov, A Yu; Mel'gunov, M S; Zhurko, F V
2006-10-05
The experimental data on decomposition temperatures for the gas hydrates of ethane, propane, and carbon dioxide dispersed in silica gel mesopores are reported. The studies were performed at pressures up to 1 GPa. It is shown that the experimental dependence of hydrate decomposition temperature on the size of pores that limit the size of hydrate particles can be described on the basis of the Gibbs-Thomson equation only if one takes into account changes in the shape coefficient that is present in the equation; in turn, the value of this coefficient depends on a method of mesopore size determination. A mechanism of hydrate formation in mesoporous medium is proposed. Experimental data providing evidence of the possibility of the formation of hydrate compounds in hydrophobic matrixes under high pressure are reported. Decomposition temperature of those hydrate compounds is higher than that for the bulk hydrates of the corresponding gases.
Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan
2018-05-16
Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review. Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria. The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon. Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.
Field Validation of the Stability Limit of a Multi MW Turbine
NASA Astrophysics Data System (ADS)
Kallesøe, Bjarne S.; Kragh, Knud A.
2016-09-01
Long slender blades of modern multi-megawatt turbines exhibit a flutter like instability at rotor speeds above a critical rotor speed. Knowing the critical rotor speed is crucial to a safe turbine design. The flutter like instability can only be estimated using geometrically non-linear aeroelastic codes. In this study, the estimated rotor speed stability limit of a 7 MW state of the art wind turbine is validated experimentally. The stability limit is estimated using Siemens Wind Powers in-house aeroelastic code, and the results show that the predicted stability limit is within 5% of the experimentally observed limit.
NASA Astrophysics Data System (ADS)
Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut
2018-05-01
Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
NASA Astrophysics Data System (ADS)
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).
The study of high-speed surface dynamics using a pulsed proton beam
NASA Astrophysics Data System (ADS)
Buttler, William T.; Oro, David M.; Preston, Dean; Mikaelian, Karnig O.; Cherne, Frank J.; Hixson, Robert S.; Mariam, Fesseha G.; Morris, Christopher L.; Stone, Joseph B.; Terrones, Guillermo; Tupa, Dale
2012-03-01
We present experimental results supporting physics based ejecta model development, where we assume ejecta form as a special limiting case of a Richtmyer-Meshkov (RM) instability with Atwood number A = -1. We present and use data to test established RM spike and bubble growth rate theory through application of modern laser Doppler velocimetry techniques applied in a novel manner to coincidentally measure bubble and spike velocities from shocked metals. We also explore the link of ejecta formation from a solid material to its plastic flow stress at high-strain rates (107/s) and high strains (700%).
Quasi-Static Analysis of Round LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
Quasi-Static Analysis of LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
An Incidence Loss Model for Wave Rotors with Axially Aligned Passages
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1998-01-01
A simple mathematical model is described to account for the losses incurred when the flow in the duct (port) of a wave rotor is not aligned with the passages. The model, specifically for wave rotors with axially aligned passages, describes a loss mechanism which is sensitive to incident flow angle and Mach number. Implementation of the model in a one-dimensional CFD based wave rotor simulation is presented. Comparisons with limited experimental results are consistent with the model. Sensitivity studies are presented which highlight the significance of the incidence loss relative to other loss mechanisms in the wave rotor.
Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan
2004-03-19
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.
1974-01-01
A theoretical formulation of differential and composite OMEGA error is presented to establish hypotheses about the functional relationships between various parameters and OMEGA navigational errors. Computer software developed to provide for extensive statistical analysis of the phase data is described. Results from the regression analysis used to conduct parameter sensitivity studies on differential OMEGA error tend to validate the theoretically based hypothesis concerning the relationship between uncorrected differential OMEGA error and receiver separation range and azimuth. Limited results of measurement of receiver repeatability error and line of position measurement error are also presented.
NASA Technical Reports Server (NTRS)
Kussoy, Marvin I.; Horstman, Clifford C.
1989-01-01
Experimental data for a series of two- and three-dimensional shock wave/turbulent boundary layer interaction flows at Mach 7 are presented. Test bodies, composed of simple geometric shapes, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure and heat-transfer distributions as well as limited mean-flow-field surveys in both the undisturbed and the interaction regimes. The data are presented in a convenient form for use in validating existing or future computational models of these generic hypersonic flows.
Laser-Compton photon radiography for nondestructive test of bulk materials
NASA Astrophysics Data System (ADS)
Toyokawa, Hiroyuki; Ohgaki, Hideaki; Kudo, Katshuhisa; Takeda, Naoto; Mikado, Tomohisa; Yamada, Kawakatsu
2001-12-01
Experimental results of transmission photon radiography of bulk materials using the laser-Compton photon beam in the energy range of 2-20 MeV are given. The purpose of this work is to demonstrate the effectiveness and to survey a potential need and a technical limit of the present method for industrial application, such as nondestructive test of bulk materials. Several radiographs of metals, ceramics, and concrete were measured with the present method. Position resolution of the system was measured with using 10 MeV photon beam and slit. It was less than 1 mm.
Experimental evidence for herbivore limitation of the treeline.
Speed, James D M; Austrheim, Gunnar; Hester, Alison J; Mysterud, Atle
2010-11-01
The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.
2017-04-01
commercial designs . The Navy planned to experiment with these ships to determine its preferred design variant. This experimentation strategy was...utilizing other non -LCS designs .6 When presented with this conclusion, senior Navy leadership directed the task force to explore what capabilities... compared to the LCS. Since the frigate will be based on an LCS design , it will likely carry forward some LCS design limitations. For example, LCS is
HANFORD WASTE MINERALOGY REFERENCE REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
DISSELKAMP RS
2010-06-29
This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.
Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.
Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram
2015-11-06
We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.
Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures
NASA Technical Reports Server (NTRS)
Webeler, R.; Bedard, F.
1961-01-01
The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.
NASA Astrophysics Data System (ADS)
Doerr, S. E.
1984-06-01
Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.
Ahsan, Muhammad; Younis, Adnan; Jaskani, Muhammad Jafar; Tufail, Aasma; Riaz, Atif; Schwinghamer, Timothy; Tariq, Usman; Nawaz, Fahim
2018-09-15
Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and stems of roses were below the WHO limits, under all of the experimental irrigation conditions. Rosa centifolia contained higher heavy metals content than the other experimental species, and heavy metals content was associated with anatomical changes due to the treatments. We conclude that, under conditions of wastewater irrigation, R. Gruss-an-Teplitz was highly resistant; R. damascena was moderately resistant while R. bourboniana and R. centifolia were the most susceptible to irrigation with marginal quality water. This is the first report of plant tissue responses to wastewater irrigation by the experimental species. Regarding the accumulation of heavy metals in rose plant tissues, the results confirm that untreated wastewater must be treated to grow Rosa species where water is scarce. Copyright © 2018 Elsevier Inc. All rights reserved.
Velarde, Luis; Wang, Hong-Fei
2013-12-14
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
Flow and Force Equations for a Body Revolving in a Fluid
NASA Technical Reports Server (NTRS)
Zahm, A. F.
1979-01-01
A general method for finding the steady flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle is described. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. The application of the steady flow method for calculating the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms is presented and graphs those quantities for the latter forms. In some useful cases experimental pressures are plotted for comparison with theoretical. The pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight are calculated. General equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid are derived. Formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms are presented.
Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.
Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less
Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar
2016-10-01
The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media
Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.; ...
2017-10-16
Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less
Possible nutrient limiting factor in long term operation of closed aquatic ecosystem
NASA Astrophysics Data System (ADS)
Hao, Zongjie; Li, Yanhui; Cai, Wenkai; Wu, Peipei; Liu, Yongding; Wang, Gaohong
2012-03-01
To investigate nutrient limitation effect on the community metabolism of closed aquatic ecosystem and possible nutrient limiting factors in the experimental food chains, depletion of inorganic chemicals including carbon, nitrogen and phosphorous was tested. A closed aquatic ecosystem lab module consisting of Chlorella pyrenoidosa and Chlamydomonas reinhardtii, Daphnia magna and associated unidentified microbes was established. Closed ecological systems receive no carbon dioxide; therefore, we presumed carbon as a first limiting factor. The results showed that the algae population in the nutrient saturated group was statistically higher than that in the nutrient limited groups, and that the chlorophyll a content of algae in the phosphorus limited group was the highest among the limited groups. However, the nitrogen limited group supported the most Daphnia, followed by the carbon limited group, the nutrient saturated group and the phosphorus limited group. Redundancy analysis showed that the total phosphorus contents were correlated significantly with the population of algae, and that the amount of soluble carbohydrate as feedback of nutrient depletion was correlated with the number of Daphnia. Thus, these findings suggest that phosphorus is the limiting factor in the operation of closed aquatic ecosystem. The results presented herein have important indications for the future construction of long term closed ecological system.
NASA Astrophysics Data System (ADS)
Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.
2012-04-01
The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Hung, Kuohsing E.; Vu, Giao T.; Yeong, Hsiung Wei; Bidwell, Colin S.; Breer, Martin D.; Bencic, Timothy J.
2002-01-01
Validation of trajectory computer codes, for icing analysis, requires experimental water droplet impingement data for a wide range of aircraft geometries as well as flow and icing conditions. This report presents improved experimental and data reduction methods for obtaining water droplet impingement data and provides a comprehensive water droplet impingement database for a range of test geometries including an MS(1)-0317 airfoil, a GLC-305 airfoil, an NACA 65(sub 2)-415 airfoil, a commercial transport tail section, a 36-inch chord natural laminar flow NLF(1)-0414 airfoil, a 48-inch NLF(1)-0414 section with a 25 percent chord simple flap, a state-of-the-art three-element high lift system, a NACA 64A008 finite span swept business jet tail, a full-scale business jet horizontal tail section, a 25 percent-scale business jet empennage, and an S-duct turboprop engine inlet. The experimental results were obtained at the NASA Glenn Icing Research Tunnel (IRT) for spray clouds with median volumetric diameter (MVD) of 11, 11.5, 21, 92, and 94 microns and for a range of angles of attack. The majority of the impingement experiments were conducted at an air speed of 175 mph corresponding to a Reynolds number of approximately 1.6 million per foot. The maximum difference of repeated tests from the average ranged from 0.24 to 12 percent for most of the experimental results presented. This represents a significant improvement in test repeatability compared to previous experimental studies. The increase in test repeatability was attributed to improvements made to the experimental and data reduction methods. Computations performed with the LEWICE-2D and LEWICE-3D computer codes for all test configurations are presented in this report. For the test cases involving median volumetric diameters of 11 and 21 microns, the correlation between the analytical and experimental impingement efficiency distributions was good. For the median volumetric diameters of 92 and 94-micron cases, however, the analysis produced higher impingement efficiencies and larger impingement limits than the experiment. It is speculated that this discrepancy is due to droplet splashing and breakup experienced by large droplets during impingement.
NASA Astrophysics Data System (ADS)
Bin Hassan, M. F.; Bonello, P.
2017-05-01
Recently-proposed techniques for the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems have been limited to a simple bump foil model in which the individual bumps were modelled as independent spring-damper (ISD) subsystems. The present paper addresses this limitation by introducing a modal model of the bump foil structure into the simultaneous solution scheme. The dynamics of the corrugated bump foil structure are first studied using the finite element (FE) technique. This study is experimentally validated using a purpose-made corrugated foil structure. Based on the findings of this study, it is proposed that the dynamics of the full foil structure, including bump interaction and foil inertia, can be represented by a modal model comprising a limited number of modes. This full foil structure modal model (FFSMM) is then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD model. Preliminary results using the FFSMM under static and unbalance excitation conditions are proven to be reliable by comparison against the corresponding ISD foil model results and by cross-correlating different methods for computing the deflection of the full foil structure. The rotor-bearing model is also validated against experimental and theoretical results in the literature.
NASA Astrophysics Data System (ADS)
Laesecke, Arno; Muzny, Chris D.
2017-12-01
A wide-ranging formulation for the viscosity of methane in the limit of zero density is presented. Using ab initio calculated data of Hellmann et al. (J Chem Phys 129, 064302, 2008) from 80 K to 1500 K, the functional form was developed by guided symbolic regression with the constraints of correct extrapolation to T → 0 and in the high-temperature limit. The formulation was adjusted to the recalibrated experimental data of May et al. (Int J Thermophys 28, 1085-1110, 2007) so that these are represented within their estimated expanded uncertainty of 0.053 % (k = 2) in their temperature range from 210.756 K to 391.551 K. Based on comparisons with original data and recalibrated viscosity ratio measurements, the expanded uncertainty of the new correlation is estimated outside this temperature range to be 0.2 % to 700 K, 0.5 % to 1100 K, 1 % to 1500 K, and physically correct at higher temperatures. At temperatures below 210 K, the new correlation agrees with recalibrated experimental data within 0.3 % down to 150 K. Hellmann et al. estimated the expanded uncertainty of their calculated data at 1 % to 80 K. The new formulation extrapolates without a singularity to T→ 0.
Experimental scarcity increases the relative reinforcing value of food in food insecure adults.
Crandall, Amanda K; Temple, Jennifer L
2018-05-29
People with fewer financial resources are at greater risk for obesity, but the mechanisms of this relationship are not fully understood. One factor that is related, both cross-sectionally and prospectively, to obesity is the relative reinforcing value of food. It is possible that the experience of scarcity increases this reinforcing value. To date, no studies have examined this potential relationship experimentally in humans. The purpose of the studies presented here was to test the hypothesis that experimental manipulations of perceived scarcity would impact the relative reinforcing value of food. A secondary hypothesis was that individuals who report experiencing food insecurity would be more sensitive to these experimental manipulations. In order to test these hypotheses, we investigated the effects of experimentally manipulated scarcity on the relative reinforcing value of food in a laboratory setting. Study 1 had a within-subjects design and included 25 adults. Scarcity was manipulated by placing time and resource limits on the relative reinforcing value task and examining responding for a high calorie snack food versus that of an alternative reinforcer. Study 1 showed a tendency for food insecure participants to respond more for all reinforcers across conditions and have a higher proportional response for food when resources were limited. Study 2 also made use of a within-subjects design with 30 adults and primed scarcity by creating financial gains and losses on the Iowa Gambling Task. We observed higher relative reinforcing values of food among food insecure participants in the control condition, which decreased in the financial gain condition. When taken together, these two studies suggest that individuals who report experiencing food insecurity respond to acute manipulations of scarcity by increasing their reinforcing value of snack food. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trevors, J T
2010-06-01
Methods to research the origin of microbial life are limited. However, microorganisms were the first organisms on the Earth capable of cell growth and division, and interactions with their environment, other microbial cells, and eventually with diverse eukaryotic organisms. The origin of microbial life and the supporting scientific evidence are both an enigma and a scientific priority. Numerous hypotheses have been proposed, scenarios imagined, speculations presented in papers, insights shared, and assumptions made without supporting experimentation, which have led to limited progress in understanding the origin of microbial life. The use of the human imagination to envision the origin of life events, without supporting experimentation, observation and independently replicated experiments required for science, is a significant constraint. The challenge remains how to better understand the origin of microbial life using observations and experimental methods as opposed to speculation, assumptions, scenarios, envisioning events and un-testable hypotheses. This is not an easy challenge as experimental design and plausible hypothesis testing are difficult. Since past approaches have been inconclusive in providing evidence for the origin of microbial life mechanisms and the manner in which genetic instructions was encoded into DNA/RNA, it is reasonable and logical to propose that progress will be made when testable, plausible hypotheses and methods are used in the origin of microbial life research, and the experimental observations are, or are not reproduced in independent laboratories. These perspectives will be discussed in this article as well as the possibility that a pre-biotic film preceded a microbial biofilm as a possible micro-location for the origin of microbial cells capable of growth and division. 2010 Elsevier B.V. All rights reserved.
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Swarm formation control utilizing elliptical surfaces and limiting functions.
Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P
2009-12-01
In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).
Enhanced compressed sensing for visual target tracking in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Qiang, Guo
2017-11-01
Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.
NASA Astrophysics Data System (ADS)
Schacherer, C.; Kudymow, A.; Noe, M.
2008-02-01
Coated conductors are suitable for many power applications like motors, magnets and superconducting fault current limiters (SCFCLs). For their use in resistive SCFCLs main requirements are quench stability and resistance development above Tc. Several coated conductors are available with different kinds of stabilization like thickness or material of cap-layer and additional stabilization. The stabilization can vary and has a great influence on the quench stability and quench behaviour of a coated conductor. Thus, for the dimensioning of a superconducting current limiting element there is a need of reliable and universal design parameters. This paper presents experimental quench test results on several coated conductor types with different stabilization and geometry. The test results show that the dissipated energy during a quench is a very useful parameter for the SCFCL design.
Designs towards improved coherence times in superconducting qubits
NASA Astrophysics Data System (ADS)
Corcoles, Antonio; Chow, Jerry; Gambetta, Jay; Rigetti, Chad; Rozen, Jim; Keefe, George; Rothwell, Mary Beth; Poletto, Stefano; Ketchen, Mark; Steffen, Matthias
2012-02-01
Coherence times for superconducting qubits in a planar geometry have increased drastically over the past 10 years with improvements exceeding a factor of 1000. However, recently these appeared to have reached a plateau around 1-2 microseconds, the limits of which were not well understood. Here, we present experimental data showing that one limit is due to infra-red radiation, confirming observations from other groups. We observe increased coherence times after appropriate IR shielding. Further improvements are shown to be possible by increasing the feature size of the interdigitated shunting capacitor, strongly indicating that surface losses at the metal/substrate interface are limiting qubit coherence times. In our experiments we kept the ratio of line width to gap size constant, but increased the overall feature size. We will discuss this and other similar design approaches towards better coherence in superconducting qubits.
Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery
NASA Astrophysics Data System (ADS)
Prasad, S.; Yu, Z.
The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
An Approach for Improvement of Carbon Fiber Technique to Study Cardiac Cell Contractility
NASA Astrophysics Data System (ADS)
Myachina, T.; Khokhlova, A.; Antsygin, I.; Lookin, O.
2018-05-01
The technologies to study cardiac cell mechanics in near-physiological conditions are limited. Carbon fiber (CF) technique is a unique tool to study single cardiomyocyte contractility. However, the CF adhesion to a cell is limited and it is difficult to control CF sliding occurred due to inappropriate adhesion. In this study, we present a CF adhesion quality index – a linear coefficient (slope) derived from “end-diastolic cell length - end-diastolic sarcomere length” relationship. Potential applicability of this index is demonstrated on isolated rat and guinea pig ventricular cardiomyocytes. Further improvement of the approach may help to increase the quality of the experimental data obtained by CF technique.
First Dark Matter Constraints from SuperCDMS Single-Charge Sensitive Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnese, R.; et al.
We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/more » $$\\mathrm{c^2}$$. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.« less
Trusov, K K
1994-02-20
A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.
Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K
2013-03-11
Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.
NASA Technical Reports Server (NTRS)
Stumpf, R.; Neumann, H. E.; Giamati, C. C.
1983-01-01
An experimental investigation of the time varying distortion at the diffuser exit of a subscale HiMAT forebody and inlet was conducted at Mach 0.9 in the Lewis 8 by 6 foot Supersonic Wind Tunnel. A transitory separation was detected within the subsonic diffuser. Vortex generators were installed to eliminate the flow separation. Results from a study of the instantaneous pressure variations at the diffuser exit are presented. The time unsteady total pressures at the diffuser exit are computer interpolated and presented in the form of a movie showing the transitory separation. Limited data showing the instantaneous distortion levels is also presented.
Structural properties of liquid lanthanides using charge hard sphere reference system
NASA Astrophysics Data System (ADS)
Thakora, P. B.; Sonvane, Y. A.; Patel, H. P.; Gajjar, P. N.; Jani, A. R.
2012-06-01
In the present paper Charge Hard Sphere (CHS) system is employed to investigate the structural properties like long wavelength limit S(0), isothermal compressibility (χT) and coordination number n for some liquid lanthanides viz.: La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Our well established parameter free model potential is used to describe the electron-ion interaction alongwith sarkar et al. dielectric function. From the present results, it is seen that good agreement between present results and available experimental data have been achieved. At last, we establish the applicability of our parameter free model potential and CHS method to account such structural properties.
Simulation and parametric study of a film-coated controlled-release pharmaceutical.
Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders
2002-04-23
Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.
Nuclear physics experiments with low cost instrumentation
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz
2016-11-01
One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.
A polychromatic adaption of the Beer-Lambert model for spectral decomposition
NASA Astrophysics Data System (ADS)
Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.
2017-03-01
We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.
BETA (Bitter Electromagnet Testing Apparatus)
NASA Astrophysics Data System (ADS)
Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.
2017-10-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.
Antimatter Past, Present and Future
NASA Astrophysics Data System (ADS)
Zichichi, Antonino
2001-11-01
In order to have matter we need fundamental fermions (quarks and leptons), particles (mesons and baryons) and nuclei. For antimatter to exist, the antifundamental fermions, as well as the antiparticles and the antinuclei, are needed. The masses associated with these components of matter are the "intrinsic" (quarks and leptons), the "confinement" (mesons and baryons) and the "binding" [either nuclear (nuclei), or electromagnetic (atoms)]. The first two are positive, the two "binding" ones are negative. These masses have different origins. No one has been able to establish the origin of the "intrinsic" masses (it could be the Higgs mechanism, but this lacks experimental confirmation so far). The "confinement" masses are QCD non-perturbative effects. The nuclear "binding" masses are QCD-induced colour neutral effects; the electromagnetic "binding" is due to QED and, since QED is the best experimentally checked RQFT, its validity in terms of the CPT symmetry cannot easily be questioned and this is why the electromagnetic "binding" is not included in this review. If CPT were theoretically well established as it was when discovered, all mass differences, between any matter and its antimatter partner, should be zero. The best limits for the validity of CPT invariance in the field of masses are two: i) the determination of a very small upper limit on Δ {m}{{Kbar K}} (the mass difference between a meson and an antimeson) derived from the mass difference between the long- and the short-lived K-mesons, Δm
Microelectromechanical systems for experimental physics and optical telecommunications
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir Anatolyevich
1999-12-01
Micro-Electro-Mechanical Systems (MEMS) are an emerging technology, which, when applied to the field of physical sensors, offers not only an obvious advantage of being small and cheap, but more importantly, provides some unique experimental opportunities. These are based on the way physical properties scale with decreasing size. This thesis discusses these basic principles and corresponding advantages and limitations of MEMS technology and presents several experiments in which micromachines are used to do physical measurements that could not be done before. Three types of micromechanical magnetometers are demonstrated. When compared to the state of the art traditional techniques they show greater sensitivity, faster response and can be applied over a wider range of experimental conditions. The high-Q micromechanical torsional oscillator magnetometer is used to observe mesoscopic vortex physics, including single flux lines penetrating into a type-II superconductor just above the first critical field. The Faraday balance ``Trampoline'' magnetometer combines high sensitivity, high bandwidth and can be operated in a wide temperature range. It is used in both high pulsed magnetic fields to record deHaas-vanAlphen oscillations and in DC magnetic fields for magnetization measurements at temperatures down to 100mK. The high sensitivity DC torque magnetometer offers yet higher sensitivity and can be used for a variety of magnetization measurements. Several other MEMS devices for physics and telecommunications applications are presented, including a micromachined near field scanning optical microscope, MEMS fiberoptic switches and large-area large-angle scanners. They provide examples of complex functionality that can be achieved with micromechanics by combining sensors with inherently low-power electrostatic actuators. The optically powered optical power limiter demonstrates the possibility of operating MEMS with optical rather than electrical power.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Fasanella, Edwin L.; Melis, Matthew; Carney, Kelly; Gabrys, Jonathan
2004-01-01
The Space Shuttle Columbia Accident Investigation Board (CAIB) made several recommendations for improving the NASA Space Shuttle Program. An extensive experimental and analytical program has been developed to address two recommendations related to structural impact analysis. The objective of the present work is to demonstrate the application of probabilistic analysis to assess the effect of uncertainties on debris impacts on Space Shuttle Reinforced Carbon-Carbon (RCC) panels. The probabilistic analysis is used to identify the material modeling parameters controlling the uncertainty. A comparison of the finite element results with limited experimental data provided confidence that the simulations were adequately representing the global response of the material. Five input parameters were identified as significantly controlling the response.
Torsion Tests of Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1944-01-01
The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)
A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.
1999-01-01
A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.
Opto-electronic characterization of third-generation solar cells.
Neukom, Martin; Züfle, Simon; Jenatsch, Sandra; Ruhstaller, Beat
2018-01-01
We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC 70 BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified.
Principle, system, and applications of tip-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia
2012-08-01
Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.
Brodeur, Mathieu B.; Dionne-Dostie, Emmanuelle; Montreuil, Tina; Lepage, Martin
2010-01-01
There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli. PMID:20532245
High-throughput density-functional perturbation theory phonons for inorganic materials
NASA Astrophysics Data System (ADS)
Petretto, Guido; Dwaraknath, Shyam; P. C. Miranda, Henrique; Winston, Donald; Giantomassi, Matteo; van Setten, Michiel J.; Gonze, Xavier; Persson, Kristin A.; Hautier, Geoffroy; Rignanese, Gian-Marco
2018-05-01
The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
Brodeur, Mathieu B; Dionne-Dostie, Emmanuelle; Montreuil, Tina; Lepage, Martin
2010-05-24
There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli.
Features and characterization needs of rubber composite structures
NASA Technical Reports Server (NTRS)
Tabaddor, Farhad
1989-01-01
Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.
NASA Astrophysics Data System (ADS)
Bocca, Cleverson C.; Rittner, Roberto; Höehr, Nelci F.; Pinheiro, Glaucia M. S.; Abiko, Layara A.; Basso, Ernani A.
2010-11-01
This work presents a detailed theoretical and experimental study on the inhibitory properties of 2- N,N-dimethylaminecyclohexyl 1- N',N'-dimethylcarbamate isomers and their methylsulfate salts against the cholinesterases enzymes. The in vitro inhibition test performed by the Ellman's method showed that the salt form compounds were more active than the neutral ones in cholinesterases inhibition. The trans salt showed good selectivity towards the inhibition of erythrocyte cholinesterase with a maximum limit around 90% and 55% for the plasma cholinesterase inhibition. Molecular modeling, docking and experimental results performed in this study showed to be important initial steps toward the development of a novel pharmaceuticals in the fight against Alzheimer's disease.
Banaszek, Konrad; Dragan, Andrzej; Wasilewski, Wojciech; Radzewicz, Czesław
2004-06-25
We present an experiment demonstrating the entanglement enhanced capacity of a quantum channel with correlated noise, modeled by a fiber optic link exhibiting fluctuating birefringence. In this setting, introducing entanglement between two photons is required to maximize the amount of information that can be encoded into their joint polarization degree of freedom. We demonstrated this effect using a fiber-coupled source of entangled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement. The obtained experimental classical capacity with entangled states is equal to 0.82+/-0.04 per a photon pair, and it exceeds approximately 2.5 times the theoretical upper limit when no quantum correlations are allowed.
Detection of Single Molecules Illuminated by a Light-Emitting Diode
Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian
2011-01-01
Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610
Effect of an entrained air bubble on the acoustics of an ink channel.
Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2008-05-01
Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.
Calculation of residual principal stresses in CVD boron on carbon filaments
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1980-01-01
A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.
Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam
2014-01-01
We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350
Bechtold, Joan E.; Swider, Pascal; Goreham-Voss, Curtis; Soballe, Kjeld
2016-01-01
This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical, material, and surgical features to influence implant–bone healing, using a selection of results from two decades of coordinated experimental and numerical work and (b) discuss limitations of such models and the implications for research reproducibility. Focusing model conditions toward the clinical scenario to be studied, and limiting conclusions to the conditions of a particular model can increase clinical relevance and research reproducibility. PMID:26720312
Quantum and classical properties of soliton propagation in optical fibers
NASA Astrophysics Data System (ADS)
Krylov, Dmitriy
2001-05-01
Quantum and classical aspects of nonlinear optical pulse propagation in optical fibers are studied with the emphasis on temporal solitons. The theoretical and experimental investigation focuses on phenomena that can fundamentally limit transmission and detection of optical signals in fiber-optic communication systems that employ solitons. In transmission experiments the first evidence is presented that a pre-chirped high-order soliton pulse propagating in a low anomalous dispersion optical fiber will irreversibly break up into an ordered train of fundamental (N = 1) solitons. The experimental results confirm previous analytical predictions and show excellent agreement with numerical simulations. This phenomenon presents a fundamental limitation on systems that utilize dispersion-management or pre-chirping of optical pulses, and has to be taken into consideration when designing such systems. The experiments also show that the breakup process can be repeated by cascading two independent breakup stages. Each stage accepts a single input pulse and produces two independent pulses. The stages are cascaded to produce a one-to-four breakup. Solitons are also shown to be ideally suited for investigating non-classical properties of light. Based on the general quantum theory of optical pulse propagation, a new scheme for generating amplitude-squeezed solitons is designed and implemented in a highly asymmetric fiber Sagnac interferometer. A record reduction of 5.7dB (73%) and, with correction for linear losses, 7.0dB (81%) in photon-number fluctuations below the shot-noise level is measured by direct detection. The same scheme is also shown to generate significant classical noise reduction and is limited by Raman effects in fiber. Such large squeezing levels can be employed in practical fiber optic communication systems to achieve noiseless amplification and better signal to noise ratios in direct detection. The photon number states can also be used in quantum non- demolition measurements and quantum communications. Amplitude squeezing is shown to be present in the normal- dispersion regime where no soliton formation is possible. In this case, a noise reduction of 1.7dB (33%) and, with correction for linear losses, 2.5dB (47%) below the shot- noise level is measured. The dependence of noise behavior on dispersion is investigated both experimentally and theoretically.
Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Yong
2016-05-01
Lean blowout (LBO) limits is critical to the operational performance of combustion systems in propulsion and power generation. The swirl cup plays an important role in flame stability and has been widely used in aviation engines. Therefore, the effects of swirl cup geometry and flow dynamics on LBO limits are significant. An experiment was conducted for studying the lean blowout limits of a single dome rectangular model combustor with swirl cups. Three types of swirl cup (dual-axial swirl cup, axial-radial swirl cup, dual-radial swirl cup) were employed in the experiment which was operated with aviation fuel (Jet A-1) and methane under the idle condition. Experimental results showed that, with using both Jet A-1 and methane, the LBO limits increase with the air flow of primary swirler for dual-radial swirl cup, while LBO limits decrease with the air flow of primary swirler for dual-axial swirl cup. In addition, LBO limits increase with the swirl intensity for three swirl cups. The experimental results also showed that the flow dynamics instead of atomization poses a significant influence on LBO limits. An improved semi-empirical correlation of experimental data was derived to predict the LBO limits for gas turbine combustors.
Directional Auger Electron Spectroscopy — Physical Foundations and Applications
NASA Astrophysics Data System (ADS)
Mróz, S.
Experimental data about the dependence of the Auger signal from crystalline samples on the primary beam direction are presented and discussed. It is shown that, for Auger electrons and elastically and inelastically backscattered electrons, maxima of the signal in its dependence on the polar and azimuth angles of the primary beam (in polar and azimuth profiles, respectively) appear when the primary beam is parallel either to one of the close-packed rows of atoms or to one of the densely packed atomic planes in the sample. This indicates that the diffraction of the primary electron beam is responsible for the dependence mentioned above. Mechanisms proposed for simple explanation of this dependence (channeling and forward focusing of primary electrons) are presented and results of their application are discussed. It is shown that both those mechanisms play an important role in the creation of the Auger signal contrast. The possibilities and limitations of the application of polar and azimuth Auger emission profiles in the determination of the surface layer crystalline structure (directional Auger electron spectroscopy — DAES) are presented and discussed. It is shown that the thickness of the investigated surface layer can be decreased up to a few monolayers. Results obtained with DAES are similar to those provided by X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED), but the DAES experimental equipment is simple and inexpensive and measurements are fast. Finally, experimental systems for DAES are described and examples of DAES applications are presented.
Multiphoton microscopy of antigen presenting cells in experimental cancer therapies
NASA Astrophysics Data System (ADS)
Watkins, Simon C.; Papworth, Glenn D.; Spencer, Lori A.; Larregina, Adriana T.; Hackstein, Holger
2002-06-01
The absence of effective conventional therapy for most cancer patients justifies the application of novel, experimental approaches. One alternative to conventional cytotoxic agents is a more defined molecular approach for cancer immune treatment; promotion of the immune system specifically to target and eliminate tumor cells on the basis of expression of tumor-associated antigens (TAA). TAA could be presented to T-cells by professional antigen-presenting cells (APC) that generate a more efficient and effective anti-tumor immune response. In fact, it has been well documented that dendritic cells, the most immunologically potent APC, are capable of recognizing, processing and presenting TAA, in turn initiating a specific antitumor immune response. Results from several laboratories and clinical trials suggested significant but still limited efficacy of TAA-pulsed dendritic cells administered to tumor-bearing hosts. Following such delivery, it is fundamentally necessary to dynamically assess cell abundance within the microenvironment of the tumor in the presence of the appropriate therapeutic agent. Multiphoton microscopy was used to assess the trafficking of pulsed dendritic cells and other APC in skin, lymph nodes and brain of several animal tumor models, following different routes of administration.
Subjective Quality Assessment of Underwater Video for Scientific Applications
Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Díaz-del-Río, Víctor; Otero, Pablo
2015-01-01
Underwater video services could be a key application in the better scientific knowledge of the vast oceanic resources in our planet. However, limitations in the capacity of current available technology for underwater networks (UWSNs) raise the question of the feasibility of these services. When transmitting video, the main constraints are the limited bandwidth and the high propagation delays. At the same time the service performance depends on the needs of the target group. This paper considers the problems of estimations for the Mean Opinion Score (a standard quality measure) in UWSNs based on objective methods and addresses the topic of quality assessment in potential underwater video services from a subjective point of view. The experimental design and the results of a test planned according standardized psychometric methods are presented. The subjects used in the quality assessment test were ocean scientists. Video sequences were recorded in actual exploration expeditions and were processed to simulate conditions similar to those that might be found in UWSNs. Our experimental results show how videos are considered to be useful for scientific purposes even in very low bitrate conditions. PMID:26694400
Positional Accuracy in Optical Trap-Assisted Nanolithography
NASA Astrophysics Data System (ADS)
Arnold, Craig B.; McLeod, Euan
2009-03-01
The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.
Vlasova, Anastasia N.; Kandasamy, Sukumar; Chattha, Kuldeep S.; Rajashekara, Gireesh; Saif, Linda J.
2016-01-01
Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates. PMID:26809484
Linear RNA amplification for the production of microarray hybridization probes.
Klebes, Ansgar; Kornberg, Thomas B
2008-01-01
To understand Drosophila development and other genetically controlled processes, it is often desirable to identify differences in gene expression levels. An experimental approach to investigate these processes is to catalog the transcriptome by hybridization of mRNA to DNA microbar-rays. In these experiments mRNA-derived hybridization probes are produced and hybridized to an array of DNA spots on a solid support. The labeled cDNAs of the complex hybridization probe will bind to their complementary sequences and provide quantification of the relative concentration of the corresponding transcript in the starting material. However, such approaches are often limited by the scarcity of the experimental sample because standard methods of probe preparation require microgram quantities of mRNA template. Linear RNA amplification can alleviate such limitations to support the generation of microarray hybridization probes from a few 100 pg of mRNA. These smaller quantities can be isolated from a few 100 cells. Here, we present a linear amplification protocol designed to preserve both the relative abundance of transcripts as well as their sequence complexity.
NASA Astrophysics Data System (ADS)
Ayarcı Kuruoğlu, Neslihan; Özdemir, Orhan; Bozkurt, Kutsal; Sundaram, Suresh; Salvestrini, Jean-Paul; Ougazzaden, Abdallah; Gaimard, Quentin; Belahsene, Sofiane; Merghem, Kamel; Ramdane, Abderrahim
2017-12-01
The electrical response of gallium nitride (GaN), produced through metal-organic chemical vapor deposition in a p-i-n structure was investigated through temperature-dependent current-voltage (I-V) and admittance measurement. The I-V curves showed double diode behavior together with several distinct regions in which trap-assisted tunnelling current has been identified at low and moderate forward/reverse direction and space charge limited current (SCLC) at large forward/reverse bias. The value of extracted energy (˜200 meV in forward and ˜70 meV in reverse direction) marked the tunnelling entity as electron and heavy hole in the present structure. These values were also obtained in space charge limited regime and considered as minority carriers which might originate the experimentally observed negative capacitance issue at low frequencies over the junction under both forward and reverse bias directions. Analytically derived expression for the admittance in the revised versions of SCLC model was also applied to explain the inductance effect, yielding good fits to the experimentally measured admittance data.
Subjective Quality Assessment of Underwater Video for Scientific Applications.
Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Díaz-del-Río, Víctor; Otero, Pablo
2015-12-15
Underwater video services could be a key application in the better scientific knowledge of the vast oceanic resources in our planet. However, limitations in the capacity of current available technology for underwater networks (UWSNs) raise the question of the feasibility of these services. When transmitting video, the main constraints are the limited bandwidth and the high propagation delays. At the same time the service performance depends on the needs of the target group. This paper considers the problems of estimations for the Mean Opinion Score (a standard quality measure) in UWSNs based on objective methods and addresses the topic of quality assessment in potential underwater video services from a subjective point of view. The experimental design and the results of a test planned according standardized psychometric methods are presented. The subjects used in the quality assessment test were ocean scientists. Video sequences were recorded in actual exploration expeditions and were processed to simulate conditions similar to those that might be found in UWSNs. Our experimental results show how videos are considered to be useful for scientific purposes even in very low bitrate conditions.
Lee, Ping-Tzu; Dakin, Emily; McLure, Merinda
2016-05-01
Equine-assisted psychotherapy (EAP) is an innovative emerging approach to mental health treatment. This narrative synthesis explores the current state of knowledge and areas for future research in EAP. Specifically reviewed are qualitative and quantitative empirical studies, including both articles published in peer-reviewed journals and research presented in theses and dissertations. We selected 24 studies for final inclusion in this study, dating between 2005 and 2013, and including the first EAP empirical research completed in 2005. Four of these studies are peer-reviewed journal articles, while 20 are master's theses or doctoral dissertations. The reviewed qualitative research provides initial evidence for the value of EAP for enhancing adolescents' communication and relationship skills. The reviewed experimental and quasi-experimental research provides initial evidence for the value of EAP for enhancing children's and adolescents' emotional, social and behavioural functioning. Yet, conclusions about the effectiveness of EAP must still be considered preliminary due to various methodological limitations in the reviewed research. The narrative review describes these methodological limitations and concludes with recommendations for future research. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Romeu, João Gabriel Farias; Belinassi, Antonio Ricardo; Ornellas, Fernando R.
2018-05-01
A manifold of electronic states of ScS was investigated with special emphasis on the low-lying states X 2Σ+, A´ 2Δ, A 2Π, and B 2Σ+. For all states, potential energy curves were constructed covering internuclear distances from the equilibrium region through the dissociation limit. For the above states, besides providing the most accurate set of theoretical spectroscopic parameters to date, we have also computed dipole moment functions, transitions dipole moment functions, the associated radiative transition probabilities, and radiative lifetimes. For the states known experimentally, X 2Σ+, A 2Π, and B 2Σ+, our results significantly expand our present knowledge of the energetic profile of these states thus providing a new perspective for understanding the limited spectral data for this species known so far. For the new state, A´ 2Δ, yet unobserved experimentally, our results are sufficiently reliable and accurate to guide spectroscopists on further studies of this species.
Gas Bubble Dynamics under Mechanical Vibrations
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Elbing, Brian
2017-11-01
The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.
Modulation bandwidth of spin torque oscillators under current modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble
2014-10-13
For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less
Study of a GaAs:Cr-based Timepix detector using synchrotron facility
NASA Astrophysics Data System (ADS)
Smolyanskiy, P.; Kozhevnikov, D.; Bakina, O.; Chelkov, G.; Dedovich, D.; Kuper, K.; Leyva Fabelo, A.; Zhemchugov, A.
2017-11-01
High resistivity gallium arsenide compensated by chromium fabricated by Tomsk State University has demonstrated a good suitability as a sensor material for hybrid pixel detectors used in X-ray imaging systems with photon energies up to 60 keV. The material is available with a thickness up to 1 mm and due to its Z number a high absorption efficiency in this energy region is provided. However, the performance of thick GaAs:Cr-based detectors in spectroscopic applications is limited by readout electronics with relatively small pixels due to the charge sharing effect. In this paper, we present the experimental investigation of the charge sharing effect contribution in the GaAs:Cr-based Timepix detector. By means of scanning the detector with a pencil photon beam generated by the synchrotron facility, the geometrical mapping of pixel sensitivity is obtained, as well as the energy resolution of a single pixel. The experimental results are supported by numerical simulations. The observed limitation of the GaAs:Cr-based Timepix detector for the high flux X-ray imaging is discussed.
Integrated amplifying nanowire FET for surface and bulk sensing
NASA Astrophysics Data System (ADS)
Chui, Chi On; Shin, Kyeong-Sik
2011-10-01
For over one decade, numerous research have been performed on field-effect transistor (FET) sensors with a quasi-onedimensional (1D) nanostructure channel demonstrating highly sensitive surface and bulk sensing. The high surface and bulk sensing sensitivity respectively arises from the inherently large surface area-to-volume ratio and tiny channel volume. The generic nanowire FET sensors, however, have limitations such as impractically low output current levels especially near the limit of detection (LOD) that would require downstream remote amplification with an appreciable amount of added noise. We have recently proposed and experimentally demonstrated an innovative amplifying nanowire FET sensor structure that seamlessly integrates therein a sensing nanowire and a nanowire FET amplifier. This novel sensor structure embraces the same geometrical advantage in quasi-1D nanostructure yet it offers unprecedented closeproximity signal amplification with the lowest possible added noise. In this paper, we review the device operating principle and amplification mechanism. We also present the prototype fabrication procedures, and surface and bulk sensing experimental results showing significantly enhanced output current level difference as predicted.
Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A
2018-02-06
Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.
Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.
2018-01-01
Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration. PMID:29415468
Generation of forming limit bands for ultra-high-strength steels in car body structures
NASA Astrophysics Data System (ADS)
Bayat, Hamid Reza; Sarkar, Sayantan; Italiano, Francesco; Bach, Aleksandar; Wulfinghoff, Stephan; Reese, Stefanie
2018-05-01
The application of ultra-high-strength steels in safety-related automotive components has led to higher safety levels as well as weight reduction. Nevertheless, this class of advanced high-strength steels (AHSS) show material scatter due to its manufacturing processes. To address this problem in advance, it is of significance not only to model the failure of the sheet metal but also to specify a band for the necking regime. The former is described by a forming limit curve (FLC), whereas a forming limit band (FLB) introduces the upper and lower bounds for the permissible strains. The objective of the present work is to generate a robust prediction of the strain-based failure of the sheet metal during a car crash. The FLCs are generated numerically applying a modified Marciniak-Kuczynski (MK) model, where the existence of an angled groove is mandatory. This assures to obtain the maximum admissible strain. In addition, a zero extension angle is utilized for the left hand side of the FLC (tension-compression). The material scatter is captured in experiments and applied in the hardening relations. Necking strains are recorded experimentally by a digital image correlation based system (ARAMIS). Later, they are fit into the FLC based on an inhomogeneity parameter fi from the MK model. In order to generate a theoretical FLB, first a statistical approach is exploited to take the experimental data into consideration. Eventually, the forming limit band distinguishes between safe, necking and failed regions.
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.
Method for improving the limit of detection in a data signal
Synovec, Robert E.; Yueng, Edward S.
1989-10-17
A method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal.
Method for improving the limit of detection in a data signal
Synovec, R.E.; Yueng, E.S.
1989-10-17
Disclosed is a method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal. 8 figs.
Spatiotemporal dynamics and optical vortices in a photorefractive phase-conjugate resonator
NASA Technical Reports Server (NTRS)
Liu, Siuying Raymond; Indebetouw, Guy
1992-01-01
A truncated modal expansion approach is used to study the spatiotemporal dynamics of a phase-conjugate resonator as a function of Bragg detuning. The numerical results reveal a rich variety of behaviors. Emphasis is given to the spatial distribution of optical vortices, their trajectories and their relationship to the beam's spatial coherence. The limitations of the model are discussed and experimental results are presented for comparison with the model's predictions and assessment of its soundness.
The Shock and Vibration Digest. Volume 12, Number 12,
1980-12-01
accelerations is presented. R.G. Schwarz It is shown that while the technique is theoretically cor- Fortschritt-Berichte der VDI -Zt., Series 8, No. 30, rect, it...is subject to experimental limitations due to in- 188 pp, 22 figs, 7 tables (1980). Summary in VDI -Z accuracies in current accelerometer technology...relationship of the so- better understanding of the fatigue life of wind turbine called K-value of the proposed standard VDI 2057 to the pal blades
Numerical description of cavitation on axisymmetric bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.
1988-01-01
This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.
Geometrical accuracy improvement in flexible roll forming lines
NASA Astrophysics Data System (ADS)
Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.
2011-01-01
The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.
Arca, Elisabetta; Fioretti, Angela; Lany, Stephan; ...
2017-12-07
ZnSnN 2 (ZTN) has been proposed as a new earth abundant absorber material for PV applications. While carrier concentration has been reduced to values suitable for device implementation, other properties such as ionization potential, electron affinity and work function are not known. Here, we experimentally determine the value of ionization potential (5.6 eV), electron affinity (4.1 eV) and work function (4.4 eV) for ZTN thin film samples with Zn cation composition Zn/(Zn+Sn) = 0.56 and carrier concentration n = 2x10 19cm -3. Using both experimental and theoretical results, we build a model to simulate the device performance of a ZTN/Mg:CuCrOmore » 2 solar cell, showing a potential efficiency of 23% in the limit of no defects present. We also investigate the role of band tails and recombination centers on the cell performance. In particular device simulations show that band tails are highly detrimental to the cell efficiency, and recombination centers are a major limitation if present in concentration comparable to the net carrier density. The effect of the position of the band edges of the p-type junction partner was assessed too. Through this study, we determine the major bottlenecks for the development of ZTN-based solar cell and identify avenues to mitigate them.« less
Carlson, Ross; Srienc, Friedrich
2004-04-20
We have previously shown that the metabolism for most efficient cell growth can be realized by a combination of two types of elementary modes. One mode produces biomass while the second mode generates only energy. The identity of the four most efficient biomass and energy pathway pairs changes, depending on the degree of oxygen limitation. The identification of such pathway pairs for different growth conditions offers a pathway-based explanation of maintenance energy generation. For a given growth rate, experimental aerobic glucose consumption rates can be used to estimate the contribution of each pathway type to the overall metabolic flux pattern. All metabolic fluxes are then completely determined by the stoichiometries of involved pathways defining all nutrient consumption and metabolite secretion rates. We present here equations that permit computation of network fluxes on the basis of unique pathways for the case of optimal, glucose-limited Escherichia coli growth under varying levels of oxygen stress. Predicted glucose and oxygen uptake rates and some metabolite secretion rates are in remarkable agreement with experimental observations supporting the validity of the presented approach. The entire most efficient, steady-state, metabolic rate structure is explicitly defined by the developed equations without need for additional computer simulations. The approach should be generally useful for analyzing and interpreting genomic data by predicting concise, pathway-based metabolic rate structures. Copyright 2004 Wiley Periodicals, Inc.
Gene therapy in liver diseases: state-of-the-art and future perspectives.
Domvri, Kalliopi; Zarogoulidis, Paul; Porpodis, Konstantinos; Koffa, Maria; Lambropoulou, Maria; Kakolyris, Stylianos; Kolios, George; Zarogoulidis, Konstantinos; Chatzaki, Ekaterini
2012-12-01
Gene therapy is a fundamentally novel therapeutic approach that involves introducing genetic material into target cells in order to fight or prevent disease. A number of different strategies of gene therapy are tested at experimental and clinical levels, including: a) replacing a mutated gene that causes disease with a healthy copy of the gene, b) inactivating a mutated gene that its improper function causes pathogenesis, c) introducing a new gene coding a therapeutic compound to fight a disease, d) introducing to the target organ an enzyme converting an inactive pro-drug to its cytotoxic metabolite. In gene therapy, the transcriptional machinery of the patient is used to produce the active factor that exerts the intended therapeutic effect, ideally in a permanent, tissue-specific and manageable way. The liver is a major target for gene therapy, presenting inherited metabolic defects of single-gene etiology, but also severe multifactorial pathologies with limited therapeutic options such as hepatocellular carcinoma. The initial promising results from gene therapy strategies in liver diseases were followed by skepticism on the actual clinical value due to specificity, efficacy, toxicity and immune limitations, but are recently re-evaluated due to progress in vector technology and monitoring techniques. The significant amount of experimental data along with the available information from clinical trials are systematically reviewed here and presented per pathological entity. Finally, future perspectives of gene therapy protocols in hepatology are summarized.