Sample records for present genetic analysis

  1. Genetic analysis in Bartter syndrome from India.

    PubMed

    Sharma, Pradeep Kumar; Saikia, Bhaskar; Sharma, Rachna; Ankur, Kumar; Khilnani, Praveen; Aggarwal, Vinay Kumar; Cheong, Hae

    2014-10-01

    Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling.

  2. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  3. Computer Simulation Is an Undervalued Tool for Genetic Analysis: A Historical View and Presentation of SHIMSHON – A Web-Based Genetic Simulation Package

    PubMed Central

    Greenberg, David A.

    2011-01-01

    Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467

  4. [Diabetes and predictive medicine--parallax of the present time].

    PubMed

    Rybka, J

    2010-04-01

    Predictive genetics uses genetic testing to estimate the risk in asymptomatic persons. Since in the case of multifactorial diseases predictive genetic analysis deals with findings which allow wider interpretation, it has a higher predictive value in expressly qualified diseases (monogenous) with high penetration compared to multifactorial (polygenous) diseases with high participation of environmental factors. In most "civilisation" (multifactorial) diseases including diabetes, heredity and environmental factors do not play two separate, independent roles. Instead, their interactions play a principal role. The new classification of diabetes is based on the implementation of not only ethiopathogenetic, but also genetic research. Diabetes mellitus type 1 (DM1T) is a polygenous multifactorial disease with the genetic component carrying about one half of the risk, the non-genetic one the other half. The study of the autoimmune nature of DM1T in connection with genetic analysis is going to bring about new insights in DM1T prediction. The author presents new pieces of knowledge on molecular genetics concerning certain specific types of diabetes. Issues relating to heredity in diabetes mellitus type 2 (DM2T) are even more complex. The disease has a polygenous nature, and the phenotype of a patient with DM2T, in addition to environmental factors, involves at least three, perhaps even tens of different genetic variations. At present, results at the genom-wide level appear to be most promising. The current concept of prediabetes is a realistic foundation for our prediction and prevention of DM2T. A multifactorial, multimarker approach based on our understanding of new pathophysiological factors of DM2T, tries to outline a "map" of prediabetes physiology, and if these tests are combined with sophisticated methods of genetic forecasting of DM2T, this may represent a significant step in our methodology of diabetes prediction. So far however, predictive genetics is limited by the interpretation of genetic predisposition and individualisation of the level of risk. There is no doubt that interpretation calls for co-operation with clinicians, while results of genetic analyses should presently be not uncritically overestimated. Predictive medicine, however, unquestionably fulfills the preventive focus of modern medicine, and genetic analysis is a perspective diagnostic method.

  5. Use of Simple Sequence Repeat (SSR) markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp.) cultivars resistant and susceptible to red rot

    USDA-ARS?s Scientific Manuscript database

    In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...

  6. Potential of SNP markers for the characterization of Brazilian cassava germplasm.

    PubMed

    de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte

    2014-06-01

    High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.

  7. A Bayesian network coding scheme for annotating biomedical information presented to genetic counseling clients.

    PubMed

    Green, Nancy

    2005-04-01

    We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.

  8. Analysis and design of a genetic circuit for dynamic metabolic engineering.

    PubMed

    Anesiadis, Nikolaos; Kobayashi, Hideki; Cluett, William R; Mahadevan, Radhakrishnan

    2013-08-16

    Recent advances in synthetic biology have equipped us with new tools for bioprocess optimization at the genetic level. Previously, we have presented an integrated in silico design for the dynamic control of gene expression based on a density-sensing unit and a genetic toggle switch. In the present paper, analysis of a serine-producing Escherichia coli mutant shows that an instantaneous ON-OFF switch leads to a maximum theoretical productivity improvement of 29.6% compared to the mutant. To further the design, global sensitivity analysis is applied here to a mathematical model of serine production in E. coli coupled with a genetic circuit. The model of the quorum sensing and the toggle switch involves 13 parameters of which 3 are identified as having a significant effect on serine concentration. Simulations conducted in this reduced parameter space further identified the optimal ranges for these 3 key parameters to achieve productivity values close to the maximum theoretical values. This analysis can now be used to guide the experimental implementation of a dynamic metabolic engineering strategy and reduce the time required to design the genetic circuit components.

  9. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis.

    PubMed

    Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B; Fisman, David; Lang, Anthony E; Kleiner-Fisman, Galit

    2016-01-01

    Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. The mean age at onset was earlier in those with MAPT mutations compared to PGRN (p<0.001) and C9orf72 (p = 0.024). 66.5% of subjects had an initial non-movement presentation that was most likely a behavioral syndrome (35.7%). At any point during the disease, parkinsonism was the most common movement syndrome reported in 79.8% followed by progressive supranuclear palsy (PSPS) and corticobasal (CBS) syndromes in 12.2% and 10.7%, respectively. The prevalence of movement disorder as initial presentation was higher in MAPT subjects (35.8%) compared to PGRN subjects (10.1). In those with a non-movement presentation, language disorder was more common in PGRN subjects (18.7%) compared to MAPT subjects (5.4%). This represents the first systematic review and meta-analysis of the occurrence of movement disorder phenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation.

  10. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis

    PubMed Central

    Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B.; Fisman, David; Lang, Anthony E.; Kleiner-Fisman, Galit

    2016-01-01

    Background Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. Objective We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Methods Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. Results The mean age at onset was earlier in those with MAPT mutations compared to PGRN (p<0.001) and C9orf72 (p = 0.024). 66.5% of subjects had an initial non-movement presentation that was most likely a behavioral syndrome (35.7%). At any point during the disease, parkinsonism was the most common movement syndrome reported in 79.8% followed by progressive supranuclear palsy (PSPS) and corticobasal (CBS) syndromes in 12.2% and 10.7%, respectively. The prevalence of movement disorder as initial presentation was higher in MAPT subjects (35.8%) compared to PGRN subjects (10.1). In those with a non-movement presentation, language disorder was more common in PGRN subjects (18.7%) compared to MAPT subjects (5.4%). Summary This represents the first systematic review and meta-analysis of the occurrence of movement disorder phenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation. PMID:27100392

  11. Current genetic methodologies in the identification of disaster victims and in forensic analysis.

    PubMed

    Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał

    2012-02-01

    This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).

  12. Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter-simple sequence repeats.

    PubMed

    Pissard, A; Ghislain, M; Bertin, P

    2006-01-01

    The Andean tuber-bearing species, Oxalis tuberosa Mol., is a vegetatively propagated crop cultivated in the uplands of the Andes. Its genetic diversity was investigated in the present study using the inter-simple sequence repeat (ISSR) technique. Thirty-two accessions originating from South America (Argentina, Bolivia, Chile, and Peru) and maintained in vitro were chosen to represent the ecogeographic diversity of its cultivation area. Twenty-two primers were tested and 9 were selected according to fingerprinting quality and reproducibility. Genetic diversity analysis was performed with 90 markers. Jaccard's genetic distance between accessions ranged from 0 to 0.49 with an average of 0.28 +/- 0.08 (mean +/- SD). Dendrogram (UPGMA (unweighted pair-group method with arithmetic averaging)) and factorial correspondence analysis (FCA) showed that the genetic structure was influenced by the collection site. The two most distant clusters contained all of the Peruvian accessions, one from Bolivia, none from Argentina or Chile. Analysis by country revealed that Peru presented the greatest genetic distances from the other countries and possessed the highest intra-country genetic distance (0.30 +/- 0.08). This suggests that the Peruvian oca accessions form a distinct genetic group. The relatively low level of genetic diversity in the oca species may be related to its predominating reproduction strategy, i.e., vegetative propagation. The extent and structure of the genetic diversity of the species detailed here should help the establishment of conservation strategies.

  13. Exome Sequencing in the Clinical Diagnosis of Sporadic or Familial Cerebellar Ataxia

    PubMed Central

    Fogel, Brent L.; Lee, Hane; Deignan, Joshua L.; Strom, Samuel P.; Kantarci, Sibel; Wang, Xizhe; Quintero-Rivera, Fabiola; Vilain, Eric; Grody, Wayne W.; Perlman, Susan; Geschwind, Daniel H.; Nelson, Stanley F.

    2015-01-01

    IMPORTANCE Cerebellar ataxias are a diverse collection of neurologic disorders with causes ranging from common acquired etiologies to rare genetic conditions. Numerous genetic disorders have been associated with chronic progressive ataxia and this consequently presents a diagnostic challenge for the clinician regarding how to approach and prioritize genetic testing in patients with such clinically heterogeneous phenotypes. Additionally, while the value of genetic testing in early-onset and/or familial cases seems clear, many patients with ataxia present sporadically with adult onset of symptoms and the contribution of genetic variation to the phenotype of these patients has not yet been established. OBJECTIVE To investigate the contribution of genetic disease in a population of patients with predominantly adult- and sporadic-onset cerebellar ataxia. DESIGN, SETTING, AND PARTICIPANTS We examined a consecutive series of 76 patients presenting to a tertiary referral center for evaluation of chronic progressive cerebellar ataxia. MAIN OUTCOMES AND MEASURES Next-generation exome sequencing coupled with comprehensive bioinformatic analysis, phenotypic analysis, and clinical correlation. RESULTS We identified clinically relevant genetic information in more than 60% of patients studied (n = 46), including diagnostic pathogenic gene variants in 21% (n = 16), a notable yield given the diverse genetics and clinical heterogeneity of the cerebellar ataxias. CONCLUSIONS AND RELEVANCE This study demonstrated that clinical exome sequencing in patients with adult-onset and sporadic presentations of ataxia is a high-yield test, providing a definitive diagnosis in more than one-fifth of patients and suggesting a potential diagnosis in more than one-third to guide additional phenotyping and diagnostic evaluation. Therefore, clinical exome sequencing is an appropriate consideration in the routine genetic evaluation of all patients presenting with chronic progressive cerebellar ataxia. PMID:25133958

  14. Mitochondrial DNA heritage of Cres Islanders--example of Croatian genetic outliers.

    PubMed

    Jeran, Nina; Havas Augustin, Dubravka; Grahovac, Blaienka; Kapović, Miljenko; Metspalu, Ene; Villems, Richard; Rudan, Pavao

    2009-12-01

    Diversity of mitochondrial DNA (mtDNA) lineages of the Island of Cres was determined by high-resolution phylogenetic analysis on a sample of 119 adult unrelated individuals from eight settlements. The composition of mtDNA pool of this Island population is in contrast with other Croatian and European populations. The analysis revealed the highest frequency of haplogroup U (29.4%) with the predominance of one single lineage of subhaplogroup U2e (20.2%). Haplogroup H is the second most prevalent one with only 27.7%. Other very interesting features of contemporary Island population are extremely low frequency of haplogroup J (only 0.84%), and much higher frequency of haplogroup W (12.6%) comparing to other Croatian and European populations. Especially interesting finding is a strikingly higher frequency of haplogroup N1a (9.24%) presented with African/south Asian branch almost absent in Europeans, while its European sister-branch, proved to be highly prevalent among Neolithic farmers, is present in contemporary Europeans with only 0.2%. Haplotype analysis revealed that only five mtDNA lineages account for almost 50% of maternal genetic heritage of this island and they present supposed founder lineages. All presented findings confirm that genetic drift, especially founder effect, has played significant role in shaping genetic composition of the isolated population of the Island of Cres. Due to presented data contemporary population of Cres Island can be considered as genetic "outlier" among Croatian populations.

  15. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  16. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    NASA Astrophysics Data System (ADS)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  17. A Balanced Accuracy Fitness Function Leads to Robust Analysis Using Grammatical Evolution Neural Networks in the Case of Class Imbalance

    EPA Science Inventory

    The identification and characterization of genetic and environmental factors that predict common, complex disease is a major goal of human genetics. The ubiquitous nature of epistatic interaction in the underlying genetic etiology of such disease presents a difficult analytical ...

  18. Genetic analysis without replications: Model evaluation and application in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Genetic data collected from plant breeding and genetic studies may not be replicated in field designs even though field variation is present. In this study, we addressed this problem using spring wheat (Triticum eastivum L.) trial data collected from two locations. There were no intra-location repl...

  19. Variable-number-of-tandem-repeats analysis of genetic diversity in Pasteuria ramosa.

    PubMed

    Mouton, L; Ebert, D

    2008-05-01

    Variable-number-of-tandem-repeats (VNTR) markers are increasingly being used in population genetic studies of bacteria. They were recently developed for Pasteuria ramosa, an endobacterium that infects Daphnia species. In the present study, we genotyped P. ramosa in 18 infected hosts from the United Kingdom, Belgium, and two lakes in the United States using seven VNTR markers. Two Daphnia species were collected: D. magna and D. dentifera. Six loci showed length polymorphism, with as many as five alleles identified for a single locus. Similarity coefficient calculations showed that the extent of genetic variation between pairs of isolates within populations differed according to the population, but it was always less than the genetic distances among populations. Analysis of the genetic distances performed using principal component analysis revealed strong clustering by location of origin, but not by host Daphnia species. Our study demonstrated that the VNTR markers available for P. ramosa are informative in revealing genetic differences within and among populations and may therefore become an important tool for providing detailed analysis of population genetics and epidemiology.

  20. Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources

    PubMed Central

    Monteiro, Filipa; Vidigal, Patrícia; Barros, André B.; Monteiro, Ana; Oliveira, Hugo R.; Viegas, Wanda

    2016-01-01

    Rye (Secale cereale L.) is a cereal crop of major importance in many parts of Europe and rye breeders are presently very concerned with the restrict pool of rye genetic resources available. Such narrowing of rye genetic diversity results from the presence of “Petkus” pool in most modern rye varieties as well as “Petkus” × “Carsten” heterotic pool in hybrid rye breeding programs. Previous studies on rye's genetic diversity revealed moreover a common genetic background on landraces (ex situ) and cultivars, regardless of breeding level or geographical origin. Thus evaluation of in situ populations is of utmost importance to unveil “on farm” diversity, which is largely undervalued. Here, we perform the first comprehensive assessment of rye's genetic diversity and population structuring using cultivars, ex situ landraces along a comprehensive sampling of in situ accessions from Portugal, through a molecular-directed analysis using SSRs markers. Rye genetic diversity and population structure analysis does not present any geographical trend but disclosed marked differences between genetic backgrounds of in situ accessions and those of cultivars/ex situ collections. Such genetic distinctiveness of in situ accessions highlights their unexplored potential as new genetic resources, which can be used to boost rye breeding strategies and the production of new varieties. Overall, our study successfully demonstrates the high prospective impact of comparing genetic diversity and structure of cultivars, ex situ, and in situ samples in ascertaining the status of plant genetic resources (PGR). PMID:27630658

  1. Do researchers have an obligation to actively look for genetic incidental findings?

    PubMed

    Gliwa, Catherine; Berkman, Benjamin E

    2013-01-01

    The rapid growth of next-generation genetic sequencing has prompted debate about the responsibilities of researchers toward genetic incidental findings. Assuming there is a duty to disclose significant incidental findings, might there be an obligation for researchers to actively look for these findings? We present an ethical framework for analyzing whether there is a positive duty to look for genetic incidental findings. Using the ancillary care framework as a guide, we identify three main criteria that must be present to give rise to an obligation to look: high benefit to participants, lack of alternative access for participants, and reasonable burden on researchers. Our analysis indicates that there is no obligation to look for incidental findings today, but during the ongoing translation of genomic analysis from research to clinical care, this obligation may arise.

  2. Do Researchers Have an Obligation to Actively Look for Genetic Incidental Findings?

    PubMed Central

    Gliwa, Catherine; Berkman, Benjamin E.

    2014-01-01

    The rapid growth of next-generation genetic sequencing has prompted debate about the responsibilities of researchers toward genetic incidental findings. Assuming there is a duty to disclose significant incidental findings, might there be an obligation for researchers to actively look for these findings? We present an ethical framework for analyzing whether there is a positive duty to look for genetic incidental findings. Using the ancillary care framework as a guide, we identify three main criteria that must be present to give rise to an obligation to look: high benefit to participants, lack of alternative access for participants, and reasonable burden on researchers. Our analysis indicates that there is no obligation to look for incidental findings today, but during the ongoing translation of genomic analysis from research to clinical care, this obligation may arise. PMID:23391059

  3. Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability.

    PubMed

    Vallejo-Cordoba, Belinda; González-Córdova, Aarón F

    2010-07-01

    This review presents an overview of the applicability of CE in the analysis of chemical and biological contaminants involved in emerging food safety issues. Additionally, CE-based genetic analyzers' usefulness as a unique tool in food traceability verification systems was presented. First, analytical approaches for the determination of melamine and specific food allergens in different foods were discussed. Second, natural toxin analysis by CE was updated from the last review reported in 2008. Finally, the analysis of prion proteins associated with the "mad cow" crises and the application of CE-based genetic analyzers for meat traceability were summarized.

  4. Epistasis analysis using artificial intelligence.

    PubMed

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  5. Exponential stability of impulsive stochastic genetic regulatory networks with time-varying delays and reaction-diffusion

    DOE PAGES

    Cao, Boqiang; Zhang, Qimin; Ye, Ming

    2016-11-29

    We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. Finally, an example is presented to illustrate our results of the mean-square exponential stability analysis.

  6. Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease.

    PubMed

    Xu, Yuejuan; Li, Tingting; Pu, Tian; Cao, Ruixue; Long, Fei; Chen, Sun; Sun, Kun; Xu, Rang

    2017-12-01

    Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.

  7. Web-Based Analysis for Student-Generated Complex Genetic Profiles

    ERIC Educational Resources Information Center

    Kass, David H.; LaRoe, Robert

    2007-01-01

    A simple, rapid method for generating complex genetic profiles using Alu-based markers was recently developed for students primarily at the undergraduate level to learn more about forensics and paternity analysis. On the basis of the Cold Spring Harbor Allele Server, which provides an excellent tool for analyzing a single Alu variant, we present a…

  8. Molecular Analysis Research at Community College of Philadelphia

    DTIC Science & Technology

    2015-09-21

    projects presented below fall under the category of "molecular genetics ", as presented in ARO Solicitation Number W911NF-12-R-0012-01. These projects...role of the GADD45 family of genes in innate immunity and sepsis. In addition to studying genetic components of the molecular response of myeloid...Equipment in left  column, procedure in right column.  kinetics of these molecular signaling pathways in genetic variants (gene KO models) has yet to

  9. Monogenic Mouse Models of Autism Spectrum Disorders: Common Mechanisms and Missing Links

    PubMed Central

    Hulbert, Samuel W.; Jiang, Yong-hui

    2016-01-01

    Autism Spectrum Disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral analysis with circuit-level analysis in genetically modified models with strong construct validity. PMID:26733386

  10. Analysis of Molecular Genetics Content in Spanish Secondary School Textbooks

    ERIC Educational Resources Information Center

    Martinez-Gracia, M. V.; Gil-Quilez, M. J.; Osada, J.

    2006-01-01

    The treatment of molecular biology in thirty-four Spanish high school biology textbooks has been analysed using a check-list made up of twenty-three items. The study showed a tendency to confuse the genetic code with genetic information. The treatment of DNA transcription, regulation of gene expression and translation were presented as masses of…

  11. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  12. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  13. Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties.

    PubMed

    Balasubramanian, Meena; Fratzl-Zelman, Nadja; O'Sullivan, Rory; Bull, Mary; Fa Peel, Nicola; Pollitt, Rebecca C; Jones, Rebecca; Milne, Elizabeth; Smith, Kath; Roschger, Paul; Klaushofer, Klaus; Bishop, Nicholas J

    2018-05-07

    Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation. © 2018 Wiley Periodicals, Inc.

  14. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds.

    PubMed

    Edea, Z; Bhuiyan, M S A; Dessie, T; Rothschild, M F; Dadi, H; Kim, K S

    2015-02-01

    Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69,903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.

  15. Short Communication: Genetic linkage map of Cucurbita maxima with molecular and morphological markers.

    PubMed

    Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P

    2015-05-22

    Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.

  16. Heritability of circulating growth factors involved in the angiogenesis in healthy human population.

    PubMed

    Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G

    2004-09-21

    The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P < 0.01) and explained between 20.1% and 32.6% of the variation. The present study additionally examined the covariations between these molecules and either transforming growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.

  17. Restoration over time and sustainability of Schinus terebinthifolius Raddi.

    PubMed

    Álvares-Carvalho, S V; Silva-Mann, R; Gois, I B; Melo, M F V; Oliveira, A S; Ferreira, R A; Gomes, L J

    2017-05-31

    The success of recovery programs on degraded areas is dependent on the genetic material to be used, which should present heterozygosity and genetic diversity in native and recovered populations. This study was carried out to evaluate the model efficiency to enable the recovery of a degraded area of the Lower São Francisco, Sergipe, Brazil. The target species for this study was Schinus terebinthifolius Raddi. Three populations were analyzed, the recovered area, seed-tree source population, and native tree population border established to the recovered area. The random amplified polymorphic DNA (RAPD) markers were used for diversity analysis. Genetic structure was estimated to evaluate the level of genetic variability existent in each population. There was no correlation between the spatial distribution and the genetic distances for all trees of the recovered area. The heterozygosity present in the recovered population was higher than the native tree population. The seed-tree source population presents genetic bottlenecks. Three clusters were suggested (ΔK = 3) with non-genetic structure. High intra-population genetic variability and inter-population differentiation are present. However, gene flow may also introduce potentially adaptive alleles in the populations of the recovered area, and the native population is necessary to ensure the sustainability and maintenance of the populations by allelic exchange.

  18. Genetic structure of Flores island (Azores, Portugal) in the 19th century and in the present day: evidence from surname analysis.

    PubMed

    Santos, Cristina; Abade, Augusto; Cantons, Jordi; Mayer, Francine M; Aluja, M Pilar; Lima, Manuela

    2005-06-01

    The island of Flores is the most westerly of the Azores archipelago (Portugal). Despite its marked geographic isolation and reduced population size, biodemographic and genetic studies conducted so far do not support the idea that its population constitutes a genetic isolate. In this study we conducted a surname analysis of the Flores population for two time periods: the second half of the 19th century and the present day. Our main purposes were (1) to biodemographically and genetically characterize the island, taking into account the strong reduction in population observed from the middle of the 19th century to the present day; and (2) to analyze the influence that the effective population size and geographic distance have on the genetic structure of populations. For both periods analyzed, all indicators of diversity revealed a high level of surname diversity. Our results are in accordance with the diversity estimates obtained from both monoparental genetic markers located in the Y chromosome and frequencies of mtDNA haplogroups. Contrary to what could be expected, considering the strong reduction of population in the last 150 years, we observed that diversity was maintained and that microdifferentiation decreased. Both observations support a higher openness of parishes as a consequence of the increase in communication routes. From the first to the second period analyzed, a change in surname composition is evident, although the more frequent surnames in Flores are almost the same for both periods and some of them are reported to be surnames present in the first settlers of Flores. This result testifies to the impact of founders on the present-day gene pool of Flores island and allows us to infer that the genetic characterization of the present-day population of Flores could provide reliable information about the history of the peopling of the Azores.

  19. Functional Characterization of Two Novel Human Prostate Cancer Metastasis Related Genes

    DTIC Science & Technology

    2007-02-01

    genomic investigation would be the ability to perform genetic subtractive analysis with in vivo-derived genetic material originating from a...different DNA sequences present in one complimentary (31) or genomic (32) DNA library but absent in another. The advent of suppressive hybridization...of control specimens different from the native tissue for subtractive genomic analysis in some studies has created many inconclusive results. Cell

  20. A 30-year history of MPAN case from Russia.

    PubMed

    Selikhova, M; Fedotova, E; Wiethoff, S; Schottlaender, L V; Klyushnikov, S; Illarioshkin, S N; Houlden, H

    2017-08-01

    We present a patient with progressive spastic ataxia, with dystonia and anarthria undiagnosed until detailed genetic analysis revealed an MPAN mutation. Highlighting the worldwide MPAN distribution, a 30year history of absent diagnosis and the impact and cost saving of an early but detailed genetic analysis in complex progressive movement disorders, particularly the anarthric NBIA group. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Different concepts and models of information for family-relevant genetic findings: comparison and ethical analysis.

    PubMed

    Lenk, Christian; Frommeld, Debora

    2015-08-01

    Genetic predispositions often concern not only individual persons, but also other family members. Advances in the development of genetic tests lead to a growing number of genetic diagnoses in medical practice and to an increasing importance of genetic counseling. In the present article, a number of ethical foundations and preconditions for this issue are discussed. Four different models for the handling of genetic information are presented and analyzed including a discussion of practical implications. The different models' ranges of content reach from a strictly autonomous position over self-governed arrangements in the practice of genetic counseling up to the involvement of official bodies and committees. The different models show a number of elements which seem to be very useful for the handling of genetic data in families from an ethical perspective. In contrast, the limitations of the standard medical attempt regarding confidentiality and personal autonomy in the context of genetic information in the family are described. Finally, recommendations for further ethical research and the development of genetic counseling in families are given.

  2. Genetic testing and the future of disability insurance: ethics, law & policy.

    PubMed

    Wolf, Susan M; Kahn, Jeffrey P

    2007-01-01

    Predictive genetic testing poses fundamental questions for disability insurance, a crucial resource funding basic needs when disability prevents income from work. This article, from an NIH-funded project, presents the first indepth analysis of the challenging issues: Should disability insurers be permitted to consider genetics and exclude predicted disability? May disabilities with a recognized genetic basis be excluded from coverage as pre-existing conditions? How can we assure that private insurers writing individual and group policies, employers, and public insurers deal competently and appropriately with genetic testing?

  3. Forensic genetics and genomics: Much more than just a human affair.

    PubMed

    Arenas, Miguel; Pereira, Filipe; Oliveira, Manuela; Pinto, Nadia; Lopes, Alexandra M; Gomes, Veronica; Carracedo, Angel; Amorim, Antonio

    2017-09-01

    While traditional forensic genetics has been oriented towards using human DNA in criminal investigation and civil court cases, it currently presents a much wider application range, including not only legal situations sensu stricto but also and, increasingly often, to preemptively avoid judicial processes. Despite some difficulties, current forensic genetics is progressively incorporating the analysis of nonhuman genetic material to a greater extent. The analysis of this material-including other animal species, plants, or microorganisms-is now broadly used, providing ancillary evidence in criminalistics in cases such as animal attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent food composition, among many others. Here, we explore how nonhuman forensic genetics is being revolutionized by the increasing variety of genetic markers, the establishment of faster, less error-burdened and cheaper sequencing technologies, and the emergence and improvement of models, methods, and bioinformatics facilities.

  4. Marital assortment for genetic similarity.

    PubMed

    Eckman, Ronael E; Williams, Robert; Nagoshi, Craig

    2002-10-01

    The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.

  5. Forensic genetics and genomics: Much more than just a human affair

    PubMed Central

    Oliveira, Manuela; Pinto, Nadia; Carracedo, Angel

    2017-01-01

    While traditional forensic genetics has been oriented towards using human DNA in criminal investigation and civil court cases, it currently presents a much wider application range, including not only legal situations sensu stricto but also and, increasingly often, to preemptively avoid judicial processes. Despite some difficulties, current forensic genetics is progressively incorporating the analysis of nonhuman genetic material to a greater extent. The analysis of this material—including other animal species, plants, or microorganisms—is now broadly used, providing ancillary evidence in criminalistics in cases such as animal attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent food composition, among many others. Here, we explore how nonhuman forensic genetics is being revolutionized by the increasing variety of genetic markers, the establishment of faster, less error-burdened and cheaper sequencing technologies, and the emergence and improvement of models, methods, and bioinformatics facilities. PMID:28934201

  6. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    PubMed

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  7. Population and genomic lessons from genetic analysis of two Indian populations.

    PubMed

    Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran

    2014-10-01

    Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.

  8. A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent

    PubMed Central

    Shahid, Muhammad Qasim; Çiftçi, Vahdettin; E. Sáenz de Miera, Luis; Aasim, Muhammad; Nadeem, Muhammad Azhar; Aktaş, Husnu; Özkan, Hakan; Hatipoğlu, Rüştü

    2017-01-01

    Until now, little attention has been paid to the geographic distribution and evaluation of genetic diversity of durum wheat from the Central Fertile Crescent (modern-day Turkey and Syria). Turkey and Syria are considered as primary centers of wheat diversity, and thousands of locally adapted wheat landraces are still present in the farmers’ small fields. We planned this study to evaluate the genetic diversity of durum wheat landraces from the Central Fertile Crescent by genotyping based on DArTseq and SNP analysis. A total of 39,568 DArTseq and 20,661 SNP markers were used to characterize the genetic characteristic of 91 durum wheat land races. Clustering based on Neighbor joining analysis, principal coordinate as well as Bayesian model implemented in structure, clearly showed that the grouping pattern is not associated with the geographical distribution of the durum wheat due to the mixing of the Turkish and Syrian landraces. Significant correlation between DArTseq and SNP markers was observed in the Mantel test. However, we detected a non-significant relationship between geographical coordinates and DArTseq (r = -0.085) and SNP (r = -0.039) loci. These results showed that unconscious farmer selection and lack of the commercial varieties might have resulted in the exchange of genetic material and this was apparent in the genetic structure of durum wheat in Turkey and Syria. The genomic characterization presented here is an essential step towards a future exploitation of the available durum wheat genetic resources in genomic and breeding programs. The results of this study have also depicted a clear insight about the genetic diversity of wheat accessions from the Central Fertile Crescent. PMID:28099442

  9. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.

    PubMed

    Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J

    2016-02-01

    A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.

  10. A patient with PMP22-related hereditary neuropathy and DBH-gene-related dysautonomia.

    PubMed

    Bartoletti-Stella, Anna; Chiaro, Giacomo; Calandra-Buonaura, Giovanna; Contin, Manuela; Scaglione, Cesa; Barletta, Giorgio; Cecere, Annagrazia; Garagnani, Paolo; Tieri, Paolo; Ferrarini, Alberto; Piras, Silvia; Franceschi, Claudio; Delledonne, Massimo; Cortelli, Pietro; Capellari, Sabina

    2015-10-01

    Recurrent focal neuropathy with liability to pressure palsies is a relatively frequent autosomal-dominant demyelinating neuropathy linked to peripheral myelin protein 22 (PMP22) gene deletions. The combination of PMP22 gene mutations with other genetic variants is known to cause a more severe phenotype than expected. We present the case of a patient with severe orthostatic hypotension since 12 years of age, who inherited a PMP22 gene deletion from his father. Genetic double trouble was suspected because of selective sympathetic autonomic disturbances. Through exome-sequencing analysis, we identified two novel mutations in the dopamine beta hydroxylase gene. Moreover, with interactome analysis, we excluded a further influence on the origin of the disease by variants in other genes. This case increases the number of unique patients presenting with dopamine-β-hydroxylase deficiency and of cases with genetically proven double trouble. Finding the right, complete diagnosis is crucial to obtain adequate medical care and appropriate genetic counseling.

  11. God and Genes in the Caring Professions: Clinician and Clergy Perceptions of Religion and Genetics

    PubMed Central

    Bartlett, Virginia L; Johnson, Rolanda L

    2013-01-01

    Little is known about how care providers’ perceptions of religion and genetics affect interactions with patients/parishioners. This study investigates clinicians’ and clergy’s perceptions of and experiences with religion and genetics in their clinical and pastoral interactions. An exploratory qualitative study designed to elicit care providers’ descriptions of experiences with religion and genetics in clinical or pastoral interactions. Thirteen focus groups were conducted with members of the caring professions: physicians, nurses, and genetics counselors (clinicians), ministers and chaplains (clergy). Preliminary analysis of qualitative data is presented here. Preliminary analysis highlights four positions in professional perceptions of the relationship between science and faith. Further, differences among professional perceptions appear to influence perceptions of needed or available resources for interactions with religion and genetics. Clinicians’ and clergy’s perceptions of how religion and genetics relate are not defined solely by professional affiliation. These non-role-defined perceptions may affect clinical and pastoral interactions, especially regarding resources for patients and parishioners. PMID:19170091

  12. Methods for the survey and genetic analysis of populations

    DOEpatents

    Ashby, Matthew

    2003-09-02

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  13. Population differentiation in the red-legged kittiwake (Rissa brevirostris) as revealed by mitochondrial DNA

    USGS Publications Warehouse

    Patirana, A.; Hatcher, S.A.; Friesen, Vicki L.

    2002-01-01

    Population decline in red-legged kittiwakes (Rissa brevirostris) over recent decades has necessitated the collection of information on the distribution of genetic variation within and among colonies for implementation of suitable management policies. Here we present a preliminary study of the extent of genetic structuring and gene flow among the three principal breeding locations of red-legged kittiwakes using the hypervariable Domain I of the mitochondrial control region. Genetic variation was high relative to other species of seabirds, and was similar among locations. Analysis of molecular variance indicated that population genetic structure was statistically significant, and nested clade analysis suggested that kittiwakes breeding on Bering Island maybe genetically isolated from those elsewhere. However, phylogeographic structure was weak. Although this analysis involved only a single locus and a small number of samples, it suggests that red-legged kittiwakes probably constitute a single evolutionary significant unit; the possibility that they constitute two management units requires further investigation.

  14. Computation of direct and inverse mutations with the SEGM web server (Stochastic Evolution of Genetic Motifs): an application to splice sites of human genome introns.

    PubMed

    Benard, Emmanuel; Michel, Christian J

    2009-08-01

    We present here the SEGM web server (Stochastic Evolution of Genetic Motifs) in order to study the evolution of genetic motifs both in the direct evolutionary sense (past-present) and in the inverse evolutionary sense (present-past). The genetic motifs studied can be nucleotides, dinucleotides and trinucleotides. As an example of an application of SEGM and to understand its functionalities, we give an analysis of inverse mutations of splice sites of human genome introns. SEGM is freely accessible at http://lsiit-bioinfo.u-strasbg.fr:8080/webMathematica/SEGM/SEGM.html directly or by the web site http://dpt-info.u-strasbg.fr/~michel/. To our knowledge, this SEGM web server is to date the only computational biology software in this evolutionary approach.

  15. Genetic Analysis of Oncorhynchus Nerka : Life History and Genetic Analysis of Redfish Lake Oncorhynchus Nerka, 1993-1994 Completion Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, E.L.; Thorgaard, G.H.; Cummings, S.A.

    1994-10-01

    The study has shown through life history examination and DNA analysis that three forms of O. nerka are present in Redfish Lake. The three forms are closely related, but may be sufficiently different to be considered three separate stocks. Fishhook Creek kokanee are temporally isolated from the beach spawners, and may represent the gene pool most similar to the historic sockeye population that once spawned there. Fishhook Creek offers the best spawning area available in the lake system, and should be considered for use in reestablishing an anadromous Fishhook Creek sockeye swain. The resident beach spawning strain of O. nerkamore » is likewise the most similar genetic form of the companion anadromous beach spawning O. nerka, and needs to be considered the most appropriate genetic source to help minimize reduced fitness of the sockeye from inbreeding.« less

  16. Genetic analysis of five sedentary fish species in middle Laranjinha River (upper Paraná River basin): A case study.

    PubMed

    Frantine-Silva, W; Ferreira, D G; Nascimento, R H C; Fracasso, J F; Conte, J E; Ramos, F P; Carvalho, S; Galindo, B A

    2015-12-29

    Most studies of diversity and genetic structure in neotropical fish have focused on commercial species from large rivers or their reservoirs. However, smaller tributaries have been identified as an important alternative migratory route, with independent pools of genetic diversity. In this context, the present study aimed to evaluate genetic diversity and structure in five neotropical fish species from a region of Laranjinha River in the upper Paraná River basin. PCR-RAPD (random amplified polymorphic DNA) markers were used to characterize around 40 individuals of each species distributed upstream and downstream of Corredeira Dam that interrupts the river. The descriptive index of genetic diversity (P = 30.5-82%; HE 0.122-0.312) showed that the populations have acceptable levels of genetic diversity. The values for Nei's genetic distance (DN min 0.0110 and max 0.0306) as well as the genetic structure index and the analysis of molecular variance (AMOVA, ϕST min 0.0132 and max 0.0385) demonstrated low, but significant levels of genetic structure. Bayesian analysis of assignment found two k clusters, including several individuals with mixed ancestry for all populations from the five species analyzed. These findings along with historical data on rainfall and the low dimensions of the dam studied here support the hypothesis that periodic floods enable the transit of individuals between different localities mitigating the differentiation process between populations.

  17. A Parallel Genetic Algorithm to Discover Patterns in Genetic Markers that Indicate Predisposition to Multifactorial Disease

    PubMed Central

    Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.

    2008-01-01

    This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558

  18. A set of autosomal multiple InDel markers for forensic application and population genetic analysis in the Chinese Xinjiang Hui group.

    PubMed

    Xie, Tong; Guo, Yuxin; Chen, Ling; Fang, Yating; Tai, Yunchun; Zhou, Yongsong; Qiu, Pingming; Zhu, Bofeng

    2018-07-01

    In recent years, insertion/deletion (InDel) markers have become a promising and useful supporting tool in forensic identification cases and biogeographic research field. In this study, 30 InDel loci were explored to reveal the genetic diversities and genetic relationships between Chinese Xinjiang Hui group and the 25 previously reported populations using various biostatistics methods such as forensic statistical parameter analysis, phylogenetic reconstruction, multi-dimensional scaling, principal component analysis, and STRUCTURE analysis. No deviations from Hardy-Weinberg equilibrium tests were found at all 30 loci in the Chinese Xinjiang Hui group. The observed heterozygosity and expected heterozygosity ranged from 0.1971 (HLD118) to 0.5092 (HLD92), 0.2222 (HLD118) to 0.5000 (HLD6), respectively. The cumulative probability of exclusion and combined power of discrimination were 0.988849 and 0.99999999999378, respectively, which indicated that these 30 loci could be qualified for personal identification and used as complementary genetic markers for paternity tests in forensic cases. The results of present research based on the different methods of population genetic analysis revealed that the Chinese Xinjiang Hui group had close relationships with most Chinese groups, especially Han populations. In spite of this, for a better understanding of genetic background of the Chinese Xinjiang Hui group, more molecular genetic markers such as ancestry informative markers, single nucleotide polymorphisms (SNPs), and copy number variations will be conducted in future studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Genetic Diversity and Phylogenetic Analysis of the Iranian Leishmania Parasites Based on HSP70 Gene PCR-RFLP and Sequence Analysis.

    PubMed

    Nemati, Sara; Fazaeli, Asghar; Hajjaran, Homa; Khamesipour, Ali; Anbaran, Mohsen Falahati; Bozorgomid, Arezoo; Zarei, Fatah

    2017-08-01

    Despite the broad distribution of leishmaniasis among Iranians and animals across the country, little is known about the genetic characteristics of the causative agents. Applying both HSP70 PCR-RFLP and sequence analyses, this study aimed to evaluate the genetic diversity and phylogenetic relationships among Leishmania spp. isolated from Iranian endemic foci and available reference strains. A total of 36 Leishmania isolates from almost all districts across the country were genetically analyzed for the HSP70 gene using both PCR-RFLP and sequence analysis. The original HSP70 gene sequences were aligned along with homologous Leishmania sequences retrieved from NCBI, and subjected to the phylogenetic analysis. Basic parameters of genetic diversity were also estimated. The HSP70 PCR-RFLP presented 3 different electrophoretic patterns, with no further intraspecific variation, corresponding to 3 Leishmania species available in the country, L. tropica, L. major, and L. infantum. Phylogenetic analyses presented 5 major clades, corresponding to 5 species complexes. Iranian lineages, including L. major, L. tropica, and L. infantum, were distributed among 3 complexes L. major, L. tropica, and L. donovani. However, within the L. major and L. donovani species complexes, the HSP70 phylogeny was not able to distinguish clearly between the L. major and L. turanica isolates, and between the L. infantum, L. donovani, and L. chagasi isolates, respectively. Our results indicated that both HSP70 PCR-RFLP and sequence analyses are medically applicable tools for identification of Leishmania species in Iranian patients. However, the reduced genetic diversity of the target gene makes it inevitable that its phylogeny only resolves the major groups, namely, the species complexes.

  20. Assessing genetic divergence in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism markers.

    PubMed

    Zhang, F; Ge, Y Y; Wang, W Y; Shen, X L; Yu, X Y

    2012-12-03

    Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.

  1. [Importance of family examination in juvenile X-linked retinoschisis].

    PubMed

    Kłosowska-Zawadka, A; Bernardczyk-Meller, J; Gotz-Wieckowska, A; Krawczyński, M

    2005-12-01

    Congenital (juvenile) retinoschisis belongs to the group of hereditary vitreoretinopathies. This disorder is inherited in an X-linked recessive pattern and its onset usually occurs in 5- to 10-year-old boys. Presenting clinical signs include decreased visual acuity due to maculopathy. The authors present a case of a 17-year-old boy with decreased visual acuity, hypermetropia, and bilateral retinoschisis with maculopathy upon fundus examination. In view of a 50% risk of the disorder occurring in the brothers of the affected male, they underwent full ophthalmological and electrophysiological examinations (until then asymptomatic). In one of them decreased visual acuity, mixed astigmatism, and maculopathy were present, without any changes of the peripheral retina. In the youngest brother decreased visual acuity, hypermetropia, and maculopathy were diagnosed. Genetic counseling and ophthalmological examination of family members at risk facilitated early recognition of the pathological changes in the siblings. Genetic counseling with pedigree analysis and genetic analysis, if possible, should be offered to all affected patients and family members.

  2. Genetic diversity analysis of nine chewing cane varieties (lines) and construction of their DNA fingerprints

    USDA-ARS?s Scientific Manuscript database

    In order to provide theoretical basis for variety identification and parental selection during sugarcane breeding process, the present study was conducted to analyze genetic diversity of nine chewing cane varieties (lines) and construct their DNA fingerprints. Combining twenty-one SSR molecular mark...

  3. Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide

    USDA-ARS?s Scientific Manuscript database

    Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide, yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis and...

  4. Genetics Home Reference: infantile neuroaxonal dystrophy

    MedlinePlus

    ... with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord. 2012 Jan;27(1):42-53. doi: 10.1002/mds.23971. Epub 2011 Oct 26. Review. ... Zhang Y, Xiao J, Wu X. Clinical study and PLA2G6 mutation screening analysis in Chinese ...

  5. Social stratification in the Sikh population of Punjab (India) has a genetic basis: evidence from serological and biochemical markers.

    PubMed

    Chahal, Sukh Mohinder Singh; Virk, Rupinder Kaur; Kaur, Sukhvir; Bansal, Rupinder

    2011-01-01

    The present study was planned to assess whether social stratification in the Sikh population inhabiting the northwest border Indian state of Punjab has any genetic basis. Blood samples were collected randomly from a total of 2851 unrelated subjects belonging to 21 groups of two low-ranking Sikh scheduled caste populations, viz. Mazhabi and Ramdasi, and a high-ranking Jat Sikh caste population of Punjab. The genetic profile of Sikh groups was investigated using a total of nine serobiochemical genetic markers, comprising two blood groups (ABO, RH(D)) and a battery of seven red cell enzyme polymorphisms (ADA, AK1, ESD, PGM1, GLO1, ACP1, GPI), following standard serological and biochemical laboratory protocols. Genetic structure was studied using original allele frequency data and statistical measures of heterozygosity, genic differentiation, genetic distance, and genetic admixture. Great heterogeneity was observed between Sikh scheduled caste and Jat Sikh populations, especially in the RH(D) blood group system, and distribution of ESD, ACP1, and PGM1 enzyme markers was also found to be significantly different between many of their groups. Genetic distance trees demonstrated little or no genetic affinities between Sikh scheduled caste and Jat Sikh populations; the Mazhabi and Ramdasi also showed little genetic relationship. Genetic admixture analysis suggested a higher element of autochthonous tribal extraction in the Ramdasi. The present study revealed much genetic heterogeneity in differently ranking Sikh caste populations of Punjab, mainly attributable to their different ethnic backgrounds, and provided a genetic basis to social stratification present in this religious community of Punjab, India.

  6. Lost in Translation? A Comparison of Cancer-Genetics Reporting in the Press Release and its Subsequent Coverage in Lay Press1

    PubMed Central

    Brechman, Jean M.; Lee, Chul-joo; Cappella, Joseph N.

    2014-01-01

    Understanding how genetic science is communicated to the lay public is of great import, given that media coverage of genetics is increasing exponentially and that the ways in which discoveries are presented in the news can have significant effects on a variety of health outcomes. To address this issue, this study examines the presentation of genetic research relating to cancer outcomes and behaviors (i.e., prostate cancer, breast cancer, colon cancer, smoking and obesity) in both the press release (N = 23) and its subsequent news coverage (N = 71) by using both quantitative content analysis and qualitative textual analysis. In contrast to earlier studies reporting that news stories often misrepresent genetics by presenting biologically deterministic and simplified portrayals (e.g., Mountcastle-Shah et al., 2003; Ten Eych & Williment, 2003), our data shows no clear trends in the direction of distortion toward deterministic claims in news articles. Also, other errors commonly attributed to science journalism, such as lack of qualifying details and use of oversimplified language (e.g., “fat gene”) are observed in press releases. These findings suggest that the intermediary press release rather than news coverage may serve as a source of distortion in the dissemination of science to the lay public. The implications of this study for future research in this area are discussed. PMID:25568611

  7. Genetic analysis of mitochondrial DNA control region variations in four tribes of Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Bhatti, Shahzad; Aslamkhan, M; Abbas, Sana; Attimonelli, Marcella; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva

    2017-09-01

    Due to its geo strategic position at the crossroad of Asia, Pakistan has gained crucial importance of playing its pivotal role in subsequent human migratory events, both prehistoric and historic. This human movement became possible through an ancient overland network of trails called "The Silk Route" linking Asia Minor, Middle East China, Central Asia and Southeast Asia. This study was conducted to analyze complete mitochondrial control region samples of 100 individuals of four major Pashtun tribes namely, Bangash, Khattak, Mahsuds and Orakzai in the province of Khyber Pakhtunkhwa, Pakistan. All Pashtun tribes revealed high genetic diversity which is comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis and phylogenetic analysis. The results revealed that Pashtun are the composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasive movements and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroups M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Moreover, we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) pointed to a genetic connection of Jewish conglomeration in Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

  8. Genomic diversity and population structure of three autochthonous Greek sheep breeds assessed with genome-wide DNA arrays.

    PubMed

    Michailidou, S; Tsangaris, G; Fthenakis, G C; Tzora, A; Skoufos, I; Karkabounas, S C; Banos, G; Argiriou, A; Arsenos, G

    2018-06-01

    In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (F GRM ) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.

  9. Eco-genetic modeling of contemporary life-history evolution.

    PubMed

    Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf

    2009-10-01

    We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by eco-genetic models can enable and guide evolutionarily sustainable resource management.

  10. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal.

    PubMed

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.

  11. Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal

    PubMed Central

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao. PMID:23112832

  12. GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer

    PubMed Central

    Chen, Maxine M.; O'Mara, Tracy A.; Thompson, Deborah J.; Painter, Jodie N.; Attia, John; Black, Amanda; Brinton, Louise; Chanock, Stephen; Chen, Chu; Cheng, Timothy HT; Cook, Linda S.; Crous-Bou, Marta; Doherty, Jennifer; Friedenreich, Christine M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gorman, Maggie; Haiman, Christopher; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hodgson, Shirley; Holliday, Elizabeth G.; Horn-Ross, Pamela L.; Hunter, David J.; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Long, Jirong; Lu, Lingeng; Magliocco, Anthony M.; Martin, Lynn; McEvoy, Mark; Olson, Sara H.; Orlow, Irene; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Rebbeck, Timothy R.; Risch, Harvey; Sacerdote, Carlotta; Schumacher, Frederick; Wendy Setiawan, Veronica; Scott, Rodney J.; Sheng, Xin; Shu, Xiao-Ou; Turman, Constance; Van Den Berg, David; Wang, Zhaoming; Weiss, Noel S.; Wentzensen, Nicholas; Xia, Lucy; Xiang, Yong-Bing; Yang, Hannah P.; Yu, Herbert; Zheng, Wei; Pharoah, Paul D.P.; Dunning, Alison M.; Tomlinson, Ian; Easton, Douglas F.; Kraft, Peter; Spurdle, Amanda B.; De Vivo, Immaculata

    2016-01-01

    Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 −8) at 6p22.3 (rs1740828; P = 2.29 × 10 −8, OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer. PMID:27008869

  13. Clinical relevance of cytogenetics to pediatric practice. Postnatal findings of Patau syndrome - Review of 5 cases.

    PubMed

    Plaiasu, Vasilica; Ochiana, Diana; Motei, Gabriela; Anca, Ioana; Georgescu, Adrian

    2010-07-01

    Patau syndrome (trisomy 13) is one of the most common chromosomal anomalies clinically characterized by the presence of numerous malformations with a limited survival rate for most cases. Babies are usually identified at birth and the diagnosis is confirmed with genetic testing. In this review we outline the clinical and cytogenetic aspects of trisomy 13 and associated phenotypes for 5 cases analyzed in the last 3 years, referred to our Clinical Genetics Department. For each child cytogenetic analysis was performed to determine the genetic variant; also, the patients were investigated for other associated malformations (cardiac, cerebral, renal, ocular anomalies). All 5 cases presented multiple malformations, including some but not all signs of the classical clinical triad suggestive of Patau syndrome. The cytogenetic investigation confirmed for each case the suspected diagnosis and also indicated the specific genetic variant, this being a valuable information for the genetic counselling of the families. The application of genetic analysis can increase diagnosis and prognosis accuracy and have an impact on clinical management.

  14. Copy number analysis reveals a novel multiexon deletion of the COLQ gene in congenital myasthenia.

    PubMed

    Wang, Wei; Wu, Yanhong; Wang, Chen; Jiao, Jinsong; Klein, Christopher J

    2016-12-01

    Congenital myasthenic syndrome (CMS) is genetically and clinically heterogeneous. 1 Despite a considerable number of causal genes discovered, many patients are left without a specific diagnosis after genetic testing. The presumption is that novel genes yet to be discovered will account for the majority of such patients. However, it is also possible that we are neglecting a type of genetic variation: copy number changes (>50 bp) as causal for some of these patients. Next-generation sequencing (NGS) can simultaneously screen all known causal genes 2 and is increasingly being validated to have a potential to identify copy number changes. 3 We present a CMS case who did not receive a genetic diagnosis from previous Sanger sequencing, but through a novel copy number analysis algorithm integrated into our targeted NGS panel, we discovered a novel copy number mutation in the COLQ gene and made a genetic diagnosis. This discovery expands the genotype-phenotype correlation of CMS, leads to improved genetic counsel, and allows for specific pharmacologic treatment. 1 .

  15. An overview of STRUCTURE: applications, parameter settings, and supporting software

    PubMed Central

    Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.

    2013-01-01

    Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071

  16. [Genetic mutation databases: stakes and perspectives for orphan genetic diseases].

    PubMed

    Humbertclaude, V; Tuffery-Giraud, S; Bareil, C; Thèze, C; Paulet, D; Desmet, F-O; Hamroun, D; Baux, D; Girardet, A; Collod-Béroud, G; Khau Van Kien, P; Roux, A-F; des Georges, M; Béroud, C; Claustres, M

    2010-10-01

    New technologies, which constantly become available for mutation detection and gene analysis, have contributed to an exponential rate of discovery of disease genes and variation in the human genome. The task of collecting and documenting this enormous amount of data in genetic databases represents a major challenge for the future of biological and medical science. The Locus Specific Databases (LSDBs) are so far the most efficient mutation databases. This review presents the main types of databases available for the analysis of mutations responsible for genetic disorders, as well as open perspectives for new therapeutic research or challenges for future medicine. Accurate and exhaustive collection of variations in human genomes will be crucial for research and personalized delivery of healthcare. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  17. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.

    PubMed

    Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle

    2018-06-25

    Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

  18. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    PubMed

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  19. Low Divergence of Clonorchis sinensis in China Based on Multilocus Analysis

    PubMed Central

    Sun, Jiufeng; Huang, Yan; Huang, Huaiqiu; Liang, Pei; Wang, Xiaoyun; Mao, Qiang; Men, Jingtao; Chen, Wenjun; Deng, Chuanhuan; Zhou, Chenhui; Lv, Xiaoli; Zhou, Juanjuan; Zhang, Fan; Li, Ran; Tian, Yanli; Lei, Huali; Liang, Chi; Hu, Xuchu; Xu, Jin; Li, Xuerong; XinbingYu

    2013-01-01

    Clonorchis sinensis, an ancient parasite that infects a number of piscivorous mammals, attracts significant public health interest due to zoonotic exposure risks in Asia. The available studies are insufficient to reflect the prevalence, geographic distribution, and intraspecific genetic diversity of C. sinensis in endemic areas. Here, a multilocus analysis based on eight genes (ITS1, act, tub, ef-1a, cox1, cox3, nad4 and nad5 [4.986 kb]) was employed to explore the intra-species genetic construction of C. sinensis in China. Two hundred and fifty-six C. sinensis isolates were obtained from environmental reservoirs from 17 provinces of China. A total of 254 recognized Multilocus Types (MSTs) showed high diversity among these isolates using multilocus analysis. The comparison analysis of nuclear and mitochondrial phylogeny supports separate clusters in a nuclear dendrogram. Genetic differentiation analysis of three clusters (A, B, and C) showed low divergence within populations. Most isolates from clusters B and C are geographically limited to central China, while cluster A is extraordinarily genetically diverse. Further genetic analyses between different geographic distributions, water bodies and hosts support the low population divergence. The latter haplotype analyses were consistent with the phylogenetic and genetic differentiation results. A recombination network based on concatenated sequences showed a concentrated linkage recombination population in cox1, cox3, nad4 and nad5, with spatial structuring in ITS1. Coupled with the history record and archaeological evidence of C. sinensis infection in mummified desiccated feces, these data point to an ancient origin of C. sinensis in China. In conclusion, we present a likely phylogenetic structure of the C. sinensis population in mainland China, highlighting its possible tendency for biogeographic expansion. Meanwhile, ITS1 was found to be an effective marker for tracking C. sinensis infection worldwide. Thus, the present study improves our understanding of the global epidemiology and evolution of C. sinensis. PMID:23825605

  20. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  1. Informed choice in direct-to-consumer genetic testing (DTCGT) websites: a content analysis of benefits, risks, and limitations.

    PubMed

    Singleton, Amanda; Erby, Lori Hamby; Foisie, Kathryn V; Kaphingst, Kimberly A

    2012-06-01

    An informed choice about health-related direct-to-consumer genetic testing (DTCGT) requires knowledge of potential benefits, risks, and limitations. To understand the information that potential consumers of DTCGT services are exposed to on company websites, we conducted a content analysis of 23 health-related DTCGT websites. Results revealed that benefit statements outweighed risk and limitation statements 6 to 1. The most frequently described benefits were: 1) disease prevention, 2) consumer education, 3) personalized medical recommendations, and 4) the ability to make health decisions. Thirty-five percent of websites also presented at least one risk of testing. Seventy-eight percent of websites mentioned at least one limitation of testing. Based on this information, potential consumers might get an inaccurate picture of genetic testing which could impact their ability to make an informed decision. Practices that enhance the presentation of balanced information on DTCGT company websites should be encouraged.

  2. Microsatellite marker-based genetic analysis of relatedness between commercial and heritage turkeys (Meleagris gallopavo).

    PubMed

    Kamara, D; Gyenai, K B; Geng, T; Hammade, H; Smith, E J

    2007-01-01

    The turkey is second only to the chicken in importance as an agriculturally important poultry species. Unlike the chicken, however, genetic studies of the turkey continue to be limited. For example, to date, many genomic investigations have been conducted to characterize genetic relationships between commercial (CO) and non-CO chicken breeds, whereas the nature of the genetic relatedness between CO and heritage turkeys remains unknown. The objective of the current research was to use microsatellites to analyze the genetic relatedness between CO and heritage domestic turkeys including Narragansett, Bourbon Red, Blue Slate, Spanish Black, and Royal Palm. Primer pairs specific for 10 previously described turkey microsatellite markers were used. The phylogenetic analysis showed that the Blue Slate, Bourbon Red, and Narragansett were genetically closely related to the CO strain, with a Nei distance of 0.30, and the Royal Palm and Spanish Black were the least related to the CO strain, with Nei distances of 0.41 and 0.40, respectively. The present work provides a foundation for the basis of using heritage turkeys to genetically improve CO populations by introgression.

  3. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars.

    PubMed

    Campoy, José Antonio; Lerigoleur-Balsemin, Emilie; Christmann, Hélène; Beauvieux, Rémi; Girollet, Nabil; Quero-García, José; Dirlewanger, Elisabeth; Barreneche, Teresa

    2016-02-24

    Depiction of the genetic diversity, linkage disequilibrium (LD) and population structure is essential for the efficient organization and exploitation of genetic resources. The objectives of this study were to (i) to evaluate the genetic diversity and to detect the patterns of LD, (ii) to estimate the levels of population structure and (iii) to identify a 'core collection' suitable for association genetic studies in sweet cherry. A total of 210 genotypes including modern cultivars and landraces from 16 countries were genotyped using the RosBREED cherry 6 K SNP array v1. Two groups, mainly bred cultivars and landraces, respectively, were first detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA). Further analyses identified nine subgroups using STRUCTURE and Discriminant Analysis of Principal Components (DAPC). Several sub-groups correspond to different eco-geographic regions of landraces distribution. Linkage disequilibrium was evaluated showing lower values than in peach, the reference Prunus species. A 'core collection' containing 156 accessions was selected using the maximum length sub tree method. The present study constitutes the first population genetics analysis in cultivated sweet cherry using a medium-density SNP (single nucleotide polymorphism) marker array. We provided estimations of linkage disequilibrium, genetic structure and the definition of a first INRA's Sweet Cherry core collection useful for breeding programs, germplasm management and association genetics studies.

  4. Identification of a Heterozygous SPG11 Mutation by Clinical Exome Sequencing in a Patient With Hereditary Spastic Paraplegia: A Case Report.

    PubMed

    Oh, Ja-Young; Do, Hyun Jung; Lee, Seungok; Jang, Ja-Hyun; Cho, Eun-Hae; Jang, Dae-Hyun

    2016-12-01

    Next-generation sequencing, such as whole-genome sequencing, whole-exome sequencing, and targeted panel sequencing have been applied for diagnosis of many genetic diseases, and are in the process of replacing the traditional methods of genetic analysis. Clinical exome sequencing (CES), which provides not only sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to genetic diagnosis. Sequencing of genes with clinical relevance rather than whole exome sequencing might be more suitable for the diagnosis of known hereditary disease with genetic heterogeneity. Here, we present the clinical usefulness of CES for the diagnosis of hereditary spastic paraplegia (HSP). We report a case of patient who was strongly suspected of having HSP based on her clinical manifestations. HSP is one of the diseases with high genetic heterogeneity, the 72 different loci and 59 discovered genes identified so far. Therefore, traditional approach for diagnosis of HSP with genetic analysis is very challenging and time-consuming. CES with TruSight One Sequencing Panel, which enriches about 4,800 genes with clinical relevance, revealed compound heterozygous mutations in SPG11 . One workflow and one procedure can provide the results of genetic analysis, and CES with enrichment of clinically relevant genes is a cost-effective and time-saving diagnostic tool for diseases with genetic heterogeneity, including HSP.

  5. Phylogeographic analysis reveals high genetic structure with uniform phenotypes in the paper wasp Protonectarina sylveirae (Hymenoptera: Vespidae).

    PubMed

    da Silva, Marjorie; Noll, Fernando Barbosa; E Castro, Adriana C Morales-Corrêa

    2018-01-01

    Swarm-founding wasps are endemic and common representatives of neotropical fauna and compose an interesting social tribe of vespids, presenting both complex social characteristics and uncommon traits for a eusocial group, such as the absence of castes with distinct morphology. The paper wasp Protonectarina sylveirae (Saussure) presents a broad distribution from Brazil, Argentina and Paraguay, occurring widespread in the Atlantic rainforest and arboreal Caatinga, being absent in the Amazon region. Given the peculiar distribution among swarm-founding wasps, an integrative approach to reconstruct the evolutionary history of P. sylveirae in a spatial-temporal framework was performed to investigate: the presence of genetic structure and its relationship with the geography, the evolution of distinct morphologic lineages and the possible historical event(s) in Neotropical region, which could explain the observed phylogeographic pattern. Individuals of P. sylveirae were obtained from populations of 16 areas throughout its distribution for DNA extraction and amplification of mitochondrial genes 12S, 16S and COI. Analysis of genetic diversity, construction of haplotype net, analysis of population structure and dating analysis of divergence time were performed. A morphometric analysis was also performed using 8 measures of the body of the adult (workers) to test if there are morphological distinction among populations. Thirty-five haplotypes were identified, most of them exclusively of a group and a high population structure was found. The possibility of genetic divergence because of isolation by distance was rejected. Morphological analysis pointed to a great uniformity in phenotypes, with only a small degree of differentiation between populations of south and the remaining. Divergence time analysis showed a Middle/Late Miocene origin, a period where an extensive marine ingression occurred in South America. Divergence of haplogroups began from the Plio/Pleistocene boundary and the last glacial maximum most likely modeled the current distribution of species, even though it was not the cause of genetic breaks.

  6. Phylogeographic analysis reveals high genetic structure with uniform phenotypes in the paper wasp Protonectarina sylveirae (Hymenoptera: Vespidae)

    PubMed Central

    2018-01-01

    Swarm-founding wasps are endemic and common representatives of neotropical fauna and compose an interesting social tribe of vespids, presenting both complex social characteristics and uncommon traits for a eusocial group, such as the absence of castes with distinct morphology. The paper wasp Protonectarina sylveirae (Saussure) presents a broad distribution from Brazil, Argentina and Paraguay, occurring widespread in the Atlantic rainforest and arboreal Caatinga, being absent in the Amazon region. Given the peculiar distribution among swarm-founding wasps, an integrative approach to reconstruct the evolutionary history of P. sylveirae in a spatial-temporal framework was performed to investigate: the presence of genetic structure and its relationship with the geography, the evolution of distinct morphologic lineages and the possible historical event(s) in Neotropical region, which could explain the observed phylogeographic pattern. Individuals of P. sylveirae were obtained from populations of 16 areas throughout its distribution for DNA extraction and amplification of mitochondrial genes 12S, 16S and COI. Analysis of genetic diversity, construction of haplotype net, analysis of population structure and dating analysis of divergence time were performed. A morphometric analysis was also performed using 8 measures of the body of the adult (workers) to test if there are morphological distinction among populations. Thirty-five haplotypes were identified, most of them exclusively of a group and a high population structure was found. The possibility of genetic divergence because of isolation by distance was rejected. Morphological analysis pointed to a great uniformity in phenotypes, with only a small degree of differentiation between populations of south and the remaining. Divergence time analysis showed a Middle/Late Miocene origin, a period where an extensive marine ingression occurred in South America. Divergence of haplogroups began from the Plio/Pleistocene boundary and the last glacial maximum most likely modeled the current distribution of species, even though it was not the cause of genetic breaks. PMID:29538451

  7. Genetic variation and population structure of maize inbred lines adapted to the mid-altitude sub-humid maize agro-ecology of Ethiopia using single nucleotide polymorphic (SNP) markers.

    PubMed

    Ertiro, Berhanu Tadesse; Semagn, Kassa; Das, Biswanath; Olsen, Michael; Labuschagne, Maryke; Worku, Mosisa; Wegary, Dagne; Azmach, Girum; Ogugo, Veronica; Keno, Tolera; Abebe, Beyene; Chibsa, Temesgen; Menkir, Abebe

    2017-10-12

    Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.

  8. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  9. Fully automated analysis of multi-resolution four-channel micro-array genotyping data

    NASA Astrophysics Data System (ADS)

    Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.

    2006-03-01

    We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.

  10. Study on Analysis of Variance on the indigenous wild and cultivated rice species of Manipur Valley

    NASA Astrophysics Data System (ADS)

    Medhabati, K.; Rohinikumar, M.; Rajiv Das, K.; Henary, Ch.; Dikash, Th.

    2012-10-01

    The analysis of variance revealed considerable variation among the cultivars and the wild species for yield and other quantitative characters in both the years of investigation. The highly significant differences among the cultivars in year wise and pooled analysis of variance for all the 12 characters reveal that there are enough genetic variabilities for all the characters studied. The existence of genetic variability is of paramount importance for starting a judicious plant breeding programme. Since introduced high yielding rice cultivars usually do not perform well. Improvement of indigenous cultivars is a clear choice for increase of rice production. The genetic variability of 37 rice germplasms in 12 agronomic characters estimated in the present study can be used in breeding programme

  11. Unwarranted optimism in media portrayals of genetic research on addiction overshadows critical ethical and social concerns.

    PubMed

    Ostergren, Jenny E; Dingel, Molly J; McCormick, Jennifer B; Koenig, Barbara A

    2015-01-01

    The cost of addiction in the United States, in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Because the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. The authors conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the United States and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. The authors raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. This analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research.

  12. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    PubMed

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  13. Unwarranted optimism in media portrayals of genetic research on addiction overshadows critical ethical and social concerns

    PubMed Central

    Ostergren, Jenny E.; Dingel, Molly J.; McCormick, Jennifer B.; Koenig, Barbara A.

    2015-01-01

    The cost of addiction in the U.S., in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Since the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. We conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the U.S., and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. We raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. Our analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research. PMID:25806781

  14. Genetic Variation within a Lotic Population of Janthinobacterium lividum

    PubMed Central

    Saeger, Jennifer L.; Hale, Alan B.

    1993-01-01

    An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (π) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested. PMID:16348995

  15. Genetic Variation within a Lotic Population of Janthinobacterium lividum.

    PubMed

    Saeger, J L; Hale, A B

    1993-07-01

    An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (pi) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested.

  16. Genetic affinities of the Siddis of South India: an emigrant population of East Africa.

    PubMed

    Gauniyal, Mansi; Chahal, S M S; Kshatriya, Gautam K

    2008-06-01

    Historical records indicate that the Portuguese brought the African Siddis to Goa, India, as slaves about 500 years ago. Subsequently, the Siddis moved into the interior regions of the state of Karnataka, India, and have remained there ever since. Over time the Siddis have experienced considerable cultural changes because of their proximity to neighboring population groups. To understand the biological consequences of these changes, we studied the Siddis to determine the extent of genetic variation and the contributions from the African, European, and Indian ancestral populations. In the present study we typed the Siddis for 20 polymorphic serological, red cell, and Alu insertion-deletion loci. The overall pattern of phenotype (and genotype) distribution is in accordance with Hardy-Weinberg expectations. Considering the ethnohistorical records and the availability of secondary-source genetic data, we used two data sets in the analysis: one comprising eight serological and red cell enzyme markers with eight population groups and another comprising six Alu insertion-deletion markers with seven tribal groups of South India. The dendrograms generated from these two data sets on the basis of genetic distance analysis between the selected populations of African, European, and Indian descent reveals that the Siddis are closer to the Africans than they are to the South Indian populations. Genetic admixture analysis using a dihybrid model (19 loci) and a trihybrid model (10 loci and 8 loci) shows that the predominant influence comes from the Africans, a lesser contribution from the South Indians, and a slight contribution from the Portuguese. Thus the original composition of the African genes among the Siddis has been diluted to some extent by the contribution from southern Indian population groups. There is no nonrandom association of alleles among a set of 10 genetic marker systems considered in the present study. The demonstration of genetic homogeneity of the Siddis, despite their admixed origin, suggests the utility of this population for genetic and epidemiological studies.

  17. Genetic variability in Jatropha curcas L. from diallel crossing.

    PubMed

    Ribeiro, D O; Silva-Mann, R; Alvares-Carvalho, S V; Souza, E M S; Vasconcelos, M C; Blank, A F

    2017-05-18

    Physic nut (Jatropha curcas L.) presents high oilseed yield and low production cost. However, technical-scientific knowledge on this crop is still limited. This study aimed to evaluate and estimate the genetic variability of hybrids obtained from dialell crossing. Genetic variability was carried out using ISSR molecular markers. For genetic variability, nine primers were used, and six were selected with 80.7% polymorphism. Genetic similarity was obtained using the NTSYS pc. 2.1 software, and cluster analysis was obtained by the UPGMA method. Mean genetic similarity was 58.4% among hybrids; the most divergent pair was H1 and H10 and the most similar pair was H9 and H10. ISSR PCR markers provided a quick and highly informative system for DNA fingerprinting, and also allowed establishing genetic relationships of Jatropha hybrids.

  18. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat.

    PubMed

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-03-28

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  19. Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.

    PubMed Central

    Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng

    2015-01-01

    Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice. PMID:26571372

  20. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis.

    PubMed

    Sakhanenko, Nikita A; Kunert-Graf, James; Galas, David J

    2017-12-01

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. We present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discrete variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis-that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. We illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.

  1. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data.

    PubMed

    Beaton, Derek; Dunlop, Joseph; Abdi, Hervé

    2016-12-01

    For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilised crop.

    PubMed

    Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K

    2010-01-15

    Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.

  3. From Genetics to Genomics: A Short Introduction for Pediatric Neurologists.

    PubMed

    Neubauer, Bernd A; Lemke, Johannes R

    2016-01-01

    It is estimated that in humans approximately 50% of all 22500 genes are needed for the development and maintenance of the nervous system. The introduction of high-throughput technology in genetic analysis has therefore major implications, not only for the investigation of specific disease entities but also for the diagnostic workup of single individuals with neurologic disorders of genetic origin. A short primer for clinicians is presented, addressing aspects of current developments in medical genomics. Significant findings of the last years are exemplified in an educational manner to provide a basic understanding of disease mechanisms that were unraveled by recent genomic analysis. Georg Thieme Verlag KG Stuttgart · New York.

  4. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  5. [Genetic tests in oncology: from identification of high risk groups to therapy].

    PubMed

    Sgambato, Alessandro; Ripani, Maurizio; Romano Spica, Vincenzo

    2010-01-01

    The development of genetic epidemiology in oncology has made possible more frequent analysis of high risk groups, allowing the development of promising susceptibility indicators. The main public health implications include screening and new perspectives for pharmacogenetics and nutrigenomics. The study of genetic variants allows the evaluation of individual risk of developing a disease and has important implications in primary and secondary prevention programs. The analysis of somatic mutations present in tumour cells may contribute to selecting the optimal treatment on an individual basis and to reducing the occurrence of adverse effects of chemotherapy. The authors give a summary of the state of the art of this field and analyze the potential applications of genetic tests in oncology, from identification of high risk groups to defining individualized therapies with particular emphasis on implications for prevention.

  6. The contributions of admixture and genetic drift to diversity among post-contact populations in the Americas.

    PubMed

    Koehl, Anthony J; Long, Jeffrey C

    2018-02-01

    We present a model that partitions Nei's minimum genetic distance between admixed populations into components of admixture and genetic drift. We applied this model to 17 admixed populations in the Americas to examine how admixture and drift have contributed to the patterns of genetic diversity. We analyzed 618 short tandem repeat loci in 949 individuals from 49 population samples. Thirty-two samples serve as proxies for continental ancestors. Seventeen samples represent admixed populations: (4) African-American and (13) Latin American. We partition genetic distance, and then calculate fixation indices and principal coordinates to interpret our results. A computer simulation confirms that our method correctly estimates drift and admixture components of genetic distance when the assumptions of the model are met. The partition of genetic distance shows that both admixture and genetic drift contribute to patterns of genetic diversity. The admixture component of genetic distance provides evidence for two distinct axes of continental ancestry. However, the genetic distances show that ancestry contributes to only one axis of genetic differentiation. The genetic distances among the 13 Latin American populations in this analysis show contributions from both differences in ancestry and differences in genetic drift. By contrast, the genetic distances among the four African American populations in this analysis owe mostly to genetic drift because these groups have similar fractions of European and African ancestry. The genetic structure of admixed populations in the Americas reflects more than admixture. We show that the history of serial founder effects constrains the impact of admixture on allele frequencies to a single dimension. Genetic drift in the admixed populations imposed a new level of genetic structure onto that created by admixture. © 2017 Wiley Periodicals, Inc.

  7. “Better Not to Know?”: Justifiable Limits on the Right to Information in the Realm of DTC Genetic Testing. An Analysis of the European and Spanish Legal Framework.

    PubMed

    Martínez Otero, Juan María

    2017-04-01

    The rapid advance of genetics increases the availability in the market of different genetic tests, which can be acquired directly by consumers without the intermediation of a healthcare professional. Both the European and the Spanish legal framework have restricted the access to these direct-to-consumer (DTC) genetic tests on the grounds of different reasons, such as the protection of consumers or the preservation of public health. The present article discusses these legal restrictions under the light of the right to information.

  8. Resolving the evolutionary paradox of genetic instability: a cost-benefit analysis of DNA repair in changing environments.

    PubMed

    Breivik, Jarle; Gaudernack, Gustav

    2004-04-09

    Loss of genetic stability is a critical phenomenon in cancer and antibiotic resistance, and the prevailing dogma is that unstable cells survive because instability provides adaptive mutations. Challenging this view, we have argued that genetic instability arises because DNA repair may be a counterproductive strategy in mutagenic environments. This paradoxical relationship has also been confirmed by explicit experiments, but the underlying evolutionary principles remain controversial. This paper aims to clarify the issue, and presents a model that explains genetic instability from the basic perspective of molecular evolution and information processing.

  9. Ten-year experiences on initial genetic examination in childhood acute lymphoblastic leukaemia in Hungary (1993-2002). Technical approaches and clinical implementation.

    PubMed

    Olah, Eva; Balogh, Erzsebet; Pajor, Laszlo; Jakab, Zsuzsanna

    2011-03-01

    A nationwide study was started in 1993 to provide genetic diagnosis for all newly diagnosed childhood ALL cases in Hungary using cytogenetic examination, DNA-index determination, FISH (aneuploidy, ABL/BCR, TEL/AML1) and molecular genetic tests (ABL/BCR, MLL/AF4, TEL/AML1). Aim of the study was to assess the usefulness of different genetic methods, to study the frequency of various aberrations and their prognostic significance. Results were synthesized for genetic subgrouping of patients. To assess the prognostic value of genetic aberrations overall and event-free survival of genetic subgroups were compared using Kaplan-Meier method. Prognostic role of aberrations was investigated by multivariate analysis (Cox's regression) as well in comparison with other factors (age, sex, major congenital abnormalities, initial WBC, therapy, immunophenotype). Five hundred eighty-eight ALL cases were diagnosed between 1993-2002. Cytogenetic examination was performed in 537 (91%) (success rate 73%), DNA-index in 265 (45%), FISH in 74 (13%), TEL/AML1 RT-PCR in 219 (37%) cases producing genetic diagnosis in 457 patients (78%). Proportion of subgroups with good prognosis in prae-B-cell ALL was lower than expected: hyperdiploidB 18% (73/400), TEL/AML1+ 9% (36/400). Univariate analysis showed significantly better 5-year EFS in TEL/AML1+ (82%) and hyperdiploidB cases (78%) than in tetraploid (44%) or pseudodiploid (52%) subgroups. By multivariate analysis main negative prognostic factors were: congenital abnormalities, high WBC, delay in therapy, specific translocations. Complementary use of each of genetic methods used is necessary for reliable genetic diagnosis according to the algorithm presented. Specific genetic alterations proved to be of prognostic significance.

  10. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD.

    PubMed

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro

    2013-11-01

    Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Comparative Analysis of Rank Aggregation Techniques for Metasearch Using Genetic Algorithm

    ERIC Educational Resources Information Center

    Kaur, Parneet; Singh, Manpreet; Singh Josan, Gurpreet

    2017-01-01

    Rank Aggregation techniques have found wide applications for metasearch along with other streams such as Sports, Voting System, Stock Markets, and Reduction in Spam. This paper presents the optimization of rank lists for web queries put by the user on different MetaSearch engines. A metaheuristic approach such as Genetic algorithm based rank…

  12. My Dog's Cheeks: A PBL Project on Collagen for Cell Biology and Genetics Courses

    ERIC Educational Resources Information Center

    Casla, Alberto Vicario; Zubiaga, Isabel Smith

    2010-01-01

    Students often have an oversimplified view of biological facts, which may hinder subsequent understanding when conceptual complexity gives rise to cognitive conflicts. To avoid this situation here, we present a PBL approach for the analysis of Ehlers-Danlos syndrome (EDS), which integrates a variety of topics in cell biology, genetics, and…

  13. Genetic diversity and population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Cowpea (Vigna unguiculata) is an important legume crop with diverse uses. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, a total of 200 genic and 100 genomic simple sequence repeat (SSR) markers were developed from cowpea unigene ...

  14. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    USDA-ARS?s Scientific Manuscript database

    Brassica napus (L.) is a crop of major economic importance that produces canola oil (seed), vegetables, fodder and animal meal. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this s...

  15. Clinical presentation and genetic analysis of a five generation Chinese family with isolated left ventricular noncompaction.

    PubMed

    Xia, Shudong; Wang, Hongxia; Zhang, Xiaoliang; Zhu, Jianhua; Tang, Xiaoli

    2008-01-01

    Isolated left ventricular noncompaction (ILVNC) is a rare congenital cardiomyopathy characterized by numerous excessive trabeculations and deep intertrabecular recesses. To date, the clinical features and genetic causes of ILVNC remain unclear. Here, we report the clinical presentation and genetic analysis of a five generation Chinese family with ILVNC. For this study, 21 living family members were recruited. Each individual underwent a detailed clinical examination for ILVNC. Peripheral blood samples were collected for direct gene sequencing to determine any mutations in the known disease-causing genes of ILVNC, which include the genes TAZ, DTNA, LDB3, LMNA and FKBP12. Classic echocardiographic presentation of ILVNC was identified in the proband who had his first onset of heart failure at age 52. His 28-year-old son and 26-year-old daughter showed similar heart anomalies as their father. Although they had no symptoms to date, depressed ventricular systolic function was noted in both of them. Pedigree analysis suggested an autosomal domain mode of inheritance. DNA sequencing found no mutation in the known disease-causing genes of ILVNC. Interestingly, two other members of the family, the proband's wife (also his first cousin) and her sister had classic echocardiographic presentation of hypertrophic cardiomyopathy (HCM). A single Chinese family with ILVNC associated with HCM is reported; no mutations in TAZ, DTNA, LDB3, LMNA and FKBP12 was found.

  16. Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone.

    PubMed

    Lopes, K V; Teodoro, P E; Silva, F A; Silva, M T; Fernandes, R L; Rodrigues, T C; Faria, T C; Corrêa, A M

    2017-05-18

    Estimating genetic parameters in plant breeding allows us to know the population potential for selecting and designing strategies that can maximize the achievement of superior genotypes. The objective of this study was to evaluate the genetic potential of a population of 20 cowpea genotypes by estimating genetic parameters and path analysis among the traits to guide the selection strategies. The trial was conducted in randomized block design with four replications. Its morphophysiological components, components of green grain production and dry grain yield were estimated from genetic use and correlations between the traits. Phenotypic correlations were deployed through path analysis into direct and indirect effects of morphophysiological traits and yield components on dry grain yield. There were significant differences (P < 0.01) between the genotypes for most the traits, indicating the presence of genetic variability in the population and the possibility of practicing selection. The population presents the potential for future genetic breeding studies and is highly promising for the selection of traits dry grain yield, the number of grains per pod, and hundred grains mass. A number of grains per green pod is the main determinant trait of dry grain yield that is also influenced by the cultivar cycle and that the selection for the dry grain yield can be made indirectly by selecting the green pod mass and green pod length.

  17. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    PubMed

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample handling, evidence testing, statistical analysis and reporting that meet the rules of scientific acceptance, reliability and human forensic identification standards. © 2015 Stichting International Foundation for Animal Genetics.

  18. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers

    PubMed Central

    Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels

    2015-01-01

    The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland. PMID:24801759

  19. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers.

    PubMed

    Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels

    2015-02-01

    The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.

  20. 2013 Review and Update of the Genetic Counseling Practice Based Competencies by a Task Force of the Accreditation Council for Genetic Counseling.

    PubMed

    Doyle, Debra Lochner; Awwad, Rawan I; Austin, Jehannine C; Baty, Bonnie J; Bergner, Amanda L; Brewster, Stephanie J; Erby, Lori A H; Franklin, Cathi Rubin; Greb, Anne E; Grubs, Robin E; Hooker, Gillian W; Noblin, Sarah Jane; Ormond, Kelly E; Palmer, Christina G; Petty, Elizabeth M; Singletary, Claire N; Thomas, Matthew J; Toriello, Helga; Walton, Carol S; Uhlmann, Wendy R

    2016-10-01

    The first practice based competencies (PBCs) for the field of genetic counseling were adopted by the American Board of Genetic Counseling (ABGC), 1996. Since that time, there has been significant growth in established and new work settings (clinical and non-clinical) and changes in service delivery models and the roles of genetic counselors. These changes prompted the ABGC to appoint a PBC Task Force in 2011 to review the PBCs with respect to their current relevance and to revise and update them as necessary. There are four domains in the revised PBCs: (I) Genetics Expertise and Analysis (II) Interpersonal, Psychosocial and Counseling Skills (III) Education and (IV) Professional Development and Practice. There are 22 competencies, each clarified with learning objectives or samples of activities and skills; a glossary is included. New competencies were added that address genomics, genetic testing and genetic counselors' roles in risk assessment, education, supervision, conducting research and presenting research options to patients. With PBCs serving as the pre-defined abilities or outcomes of training, graduating genetic counselors will be well prepared to enter the field with a minimum level of skills and abilities. A description of the Task Force's work, key changes and the 2013 PBCs are presented herein.

  1. Microsatellite diversity among the primitive tribes of India

    PubMed Central

    Mukherjee, Malay B.; Tripathy, V.; Colah, R. B.; Solanki, P. K.; Ghosh, K.; Reddy, B. M.; Mohanty, D.

    2009-01-01

    The present study was undertaken to determine the extent of diversity at 12 microsatellite short tandem repeat (STR) loci in seven primitive tribal populations of India with diverse linguistic and geographic backgrounds. DNA samples of 160 unrelated individuals were analyzed for 12 STR loci by multiplex polymerase chain reaction (PCR). Gene diversity analysis suggested that the average heterozygosity was uniformly high ( >0.7) in these groups and varied from 0.705 to 0.794. The Hardy-Weinberg equilibrium analysis revealed that these populations were in genetic equilibrium at almost all the loci. The overall GST value was high (GST = 0.051; range between 0.026 and 0.098 among the loci), reflecting the degree of differentiation/heterogeneity of seven populations studied for these loci. The cluster analysis and multidimensional scaling of genetic distances reveal two broad clusters of populations, besides Moolu Kurumba maintaining their distinct genetic identity vis-à-vis other populations. The genetic affinity for the three tribes of the Indo-European family could be explained based on geography and Language but not for the four Dravidian tribes as reflected by the NJT and MDS plots. For the overall data, the insignificant MANTEL correlations between genetic, linguistic and geographic distances suggest that the genetic variation among these tribes is not patterned along geographic and/or linguistic lines. PMID:21088716

  2. Clinical relevance of cytogenetics to pediatric practice. Postnatal findings of Patau syndrome – Review of 5 cases

    PubMed Central

    PLAIASU, Vasilica; OCHIANA, Diana; MOTEI, Gabriela; ANCA, Ioana; GEORGESCU, Adrian

    2010-01-01

    ABSTRACT Introduction: Patau syndrome (trisomy 13) is one of the most common chromosomal anomalies clinically characterized by the presence of numerous malformations with a limited survival rate for most cases. Babies are usually identified at birth and the diagnosis is confirmed with genetic testing. Materials and methods: In this review we outline the clinical and cytogenetic aspects of trisomy 13 and associated phenotypes for 5 cases analyzed in the last 3 years, referred to our Clinical Genetics Department. For each child cytogenetic analysis was performed to determine the genetic variant; also, the patients were investigated for other associated malformations (cardiac, cerebral, renal, ocular anomalies). Discussion: All 5 cases presented multiple malformations, including some but not all signs of the classical clinical triad suggestive of Patau syndrome. The cytogenetic investigation confirmed for each case the suspected diagnosis and also indicated the specific genetic variant, this being a valuable information for the genetic counselling of the families. Conclusion: The application of genetic analysis can increase diagnosis and prognosis accuracy and have an impact on clinical management. PMID:21977150

  3. Analysis of the genetic diversity of Chinese native Cannabis sativa cultivars by using ISSR and chromosome markers.

    PubMed

    Zhang, L G; Chang, Y; Zhang, X F; Guan, F Z; Yuan, H M; Yu, Y; Zhao, L J

    2014-12-12

    Hemp (Cannabis sativa) is an important fiber crop, and native cultivars exist widely throughout China. In the present study, we analyzed the genetic diversity of 27 important Chinese native hemp cultivars, by using inter-simple sequence repeats (ISSR) and chromosome markers. We determined the following chromosome formulas: 2n = 20 = 14m + 6sm; 2n = 20 = 20m; 2n = 20 = 18m + 2sm; 2n = 20 = 16m + 4sm; and 2n = 20 = 12m + 8sm. The results of our ISSR analysis revealed the genetic relationships among the 27 cultivars; these relationships were analyzed by using the unweighted pair-group method based on DNA polymorphism. Our results revealed that all of the native cultivars showed considerable genetic diversity. At a genetic distance of 0.324, the 27 varieties could be classified into five categories; this grouping corresponded well with the chromosome formulas. All of the investigated hemp cultivars represent relatively primitive types; moreover, the genetic distances show a geographical distribution, with a small amount of regional hybridity.

  4. Teaching Human Genetics with Mustard: Rapid Cycling Brassica rapa (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    PubMed Central

    Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling Brassica rapa, also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, B. rapa can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented here is a paternity exclusion project in which a child is born with a known mother but two possible alleged fathers. Students use DNA markers (microsatellites) to perform paternity exclusion on these subjects. Realistic DNA marker analysis can be challenging to implement within the limitations of an instructional lab, but we have optimized the experimental methods to work in a teaching lab environment and to maximize the “hands-on” experience for the students. The genetic individuality of each B. rapa plant, revealed by analysis of polymorphic microsatellite markers, means that each time students perform this project, they obtain unique results that foster independent thinking in the process of data interpretation. PMID:17548880

  5. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts.

    PubMed

    Jelenkovic, Aline; Sund, Reijo; Hur, Yoon-Mi; Yokoyama, Yoshie; Hjelmborg, Jacob V B; Möller, Sören; Honda, Chika; Magnusson, Patrik K E; Pedersen, Nancy L; Ooki, Syuichi; Aaltonen, Sari; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Freitas, Duarte L; Maia, José Antonio; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rebato, Esther; Busjahn, Andreas; Kandler, Christian; Saudino, Kimberly J; Jang, Kerry L; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; Gao, Wenjing; Yu, Canqing; Li, Liming; Corley, Robin P; Huibregtse, Brooke M; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Heikkilä, Kauko; Wardle, Jane; Llewellyn, Clare H; Fisher, Abigail; McAdams, Tom A; Eley, Thalia C; Gregory, Alice M; He, Mingguang; Ding, Xiaohu; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Tarnoki, Adam D; Tarnoki, David L; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Burt, S Alexandra; Klump, Kelly L; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Gatz, Margaret; Butler, David A; Bartels, Meike; van Beijsterveldt, Toos C E M; Craig, Jeffrey M; Saffery, Richard; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Swan, Gary E; Krasnow, Ruth; Tynelius, Per; Lichtenstein, Paul; Haworth, Claire M A; Plomin, Robert; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Harden, K Paige; Tucker-Drob, Elliot M; Spector, Timothy; Mangino, Massimo; Lachance, Genevieve; Baker, Laura A; Tuvblad, Catherine; Duncan, Glen E; Buchwald, Dedra; Willemsen, Gonneke; Skytthe, Axel; Kyvik, Kirsten O; Christensen, Kaare; Öncel, Sevgi Y; Aliev, Fazil; Rasmussen, Finn; Goldberg, Jack H; Sørensen, Thorkild I A; Boomsma, Dorret I; Kaprio, Jaakko; Silventoinen, Karri

    2016-06-23

    Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180,520 paired measurements at ages 1-19 years. The proportion of height variation explained by shared environmental factors was greatest in early childhood, but these effects remained present until early adulthood. Accordingly, the relative genetic contribution increased with age and was greatest in adolescence (up to 0.83 in boys and 0.76 in girls). Comparing geographic-cultural regions (Europe, North-America and Australia, and East-Asia), genetic variance was greatest in North-America and Australia and lowest in East-Asia, but the relative proportion of genetic variation was roughly similar across these regions. Our findings provide further insights into height variation during childhood and adolescence in populations representing different ethnicities and exposed to different environments.

  6. Genetic analysis of Melipona quadrifasciata LEP. (Hymenoptera: Apidae, Meliponinae) with RAPD markers.

    PubMed

    Waldschmidt, A M; Marco-Júnior, P; Barros, E G; Campos, L A O

    2002-11-01

    Melipona quadrifasciata ("mandaçaia") can be subdivided into two subspecies: M. q. anthidioides and M. q. quadrifasciata. In the present study we used RAPD markers to estimate intercolonial genetic variation among 69 colonies of Melipona quadrifasciata. Ten workers per colony were analyzed. The intercolony genetic distances based on RAPD markers ranged from 29.5% (colonies collected in the State of São Paulo vs colonies from the State of Minas Gerais) to 34.2% (São Paulo vs Santa Catarina). These results indicate a high genetic similarity among the colonies analyzed. According to the genetic distances two different groups could be distinguished. The first containing the samples from Santa Catarina region and the second, samples from Paraná, São Paulo, Minas Gerais, and Espírito Santo. Based on the molecular analysis, bees belonging to the different subspecies M. q. quadrifasciata (from Santa Catarina) and M. q. anthidiodes (from the other regions) were distinguished.

  7. Exertional rhabdomyolysis leading to acute kidney injury: when genetic defects are diagnosed in adult life.

    PubMed

    Cucchiari, David; Colombo, Irene; Amato, Ottavia; Podestà, Manuel Alfredo; Reggiani, Francesco; Valentino, Rossella; Faravelli, Irene; Testolin, Silvia; Moggio, Maurizio; Badalamenti, Salvatore

    2018-05-01

    Rhabdomyolysis is a common cause of acute kidney injury (AKI) that is usually triggered by trauma. However, less common causes of rhabdomyolysis may precipitate AKI as well, possibly representing a diagnostic challenge even for the experienced nephrologist. Genetic defects of muscle metabolism represent one of these causes and can be overlooked in adults, since these diseases usually become apparent in childhood. We present here a case in which an adult patient with severe exertional rhabdomyolysis leading to AKI was finally diagnosed with a genetic defect of lipid metabolism. A 41-year-old patient was brought to our attention because of AKI and pigmenturia after strenuous physical effort. At admission, the patient was over-hydrated with a weight increase of 3 kg in few days. Laboratory examination showed creatinine of 8.7 mg/dl, along with increased myoglobin and CPK. Urinalysis was positive for haemoglobin and proteins, while urinary sediment analysis did not demonstrate any red blood cell but rather "muddy-brown" casts and tubular cells. Urine output was forced and the patient completely recovered renal function. Genetic analysis later demonstrated the presence of a common mutation of Carnitine Palmitoyl-Transferase II (CPTII). When facing rhabdomyolysis of obscure origin, nephrologists must keep in mind the possibility that even adult patients may have a genetic defect of energy metabolism. In these cases, patients usually experience rhabdomyolysis during exertion, fasting, or infection. CPTII deficiency often has a subtle presentation and might be unrecognized until AKI develops. Therefore, it is important to consider a genetic defect of muscle metabolism even in adult patients when a history of rhabdomyolysis of unclear origin is present.

  8. AB117. An exploration of Australasian genetic counsellors’ attitudes towards compassion fatigue, mindfulness and genetic counselling

    PubMed Central

    Burgess, Matthew; Tai, Geneieve; Martinek, Nathalie; Menezes, Melody; Delatycki, Martin

    2015-01-01

    Genetic counselling is a caring profession. It has been known for some time that genetic counsellors are susceptible to clinical burnout and/or compassion fatigue. Recent studies have shown that mindfulness may help health care professionals with their experience of burnout. It is hypothesised that mindful awareness may be useful in ameliorating these symptoms of burnout in genetic counsellors. The present study aims to collect information about the experiences of Australasian genetic counsellors in relation to compassion fatigue and mindfulness. This study is an online questionnaire open to practicing Australasian genetic counsellors. The survey is in three parts. The first part collects demographic information about the genetic counsellor completing the questionnaire. The second part of the survey is the Professional Quality of Life Scale, Compassion Satisfaction and Fatigue Subscales-Revision IV. The final part of the questionnaire is the Mindful Attention Awareness Scale. Both scales are validated. Descriptive analyses will generate frequency data to elicit a description of participants and the responses obtained. Analysis of categorical measures will be undertaken using χ2 (chi-squared) analysis to determine if there are any differences in responses. For continuous variables, differences in means between groups will be assessed using t-tests. Qualitative content analysis (inductive approach) will be utilised to analyse open ended responses. The results of this questionnaire will provide important data about clinical burnout and compassion fatigue among genetic counsellors and will enable recommendations about the use of mindfulness to minimise the impact of these on those in this profession.

  9. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds.

    PubMed

    Beckett, Travis J; Morales, A Jason; Koehler, Klaus L; Rocheford, Torbert R

    2017-01-01

    The emergence of high-throughput, high-density genotyping methods combined with increasingly powerful computing systems has created opportunities to further discover and exploit the genes controlling agronomic performance in elite maize breeding populations. Understanding the genetic basis of population structure in an elite set of materials is an essential step in this genetic discovery process. This paper presents a genotype-based population analysis of all maize inbreds whose Plant Variety Protection certificates had expired as of the end of 2013 (283 inbreds) as well as 66 public founder inbreds. The results provide accurate population structure information and allow for important inferences in context of the historical development of North American elite commercial maize germplasm. Genotypic data was obtained via genotyping-by-sequencing on 349 inbreds. After filtering for missing data, 77,314 high-quality markers remained. The remaining missing data (average per individual was 6.22 percent) was fully imputed at an accuracy of 83 percent. Calculation of linkage disequilibrium revealed that the average r2 of 0.20 occurs at approximately 1.1 Kb. Results of population genetics analyses agree with previously published studies that divide North American maize germplasm into three heterotic groups: Stiff Stalk, Non-Stiff Stalk, and Iodent. Principal component analysis shows that population differentiation is indeed very complex and present at many levels, yet confirms that division into three main sub-groups is optimal for population description. Clustering based on Nei's genetic distance provides an additional empirical representation of the three main heterotic groups. Overall fixation index (FST), indicating the degree of genetic divergence between the three main heterotic groups, was 0.1361. Understanding the genetic relationships and population differentiation of elite germplasm may help breeders to maintain and potentially increase the rate of genetic gain, resulting in higher overall agronomic performance.

  10. DNA barcode of Acropora hyacinthus of Karimunjawa Archipelago

    NASA Astrophysics Data System (ADS)

    Wijayanti, D. P.; Indrayanti, E.; Nuryadi, H.; Rintiantono, S. A.; Sabdono, A.

    2018-03-01

    Karimunjawa is one of the earliest marine parks in Indonesia. Karimunjawa National Park (KNP) was designated as a marine conservation area to conserve marine resources from destructive fishing activities. Scleractinian corals in the genus Acropora are among the most dominant distributed in the KNPs, including the species of Acropora hyacinthus. Here, we present a comprehensive analysis of intra- and interspecific COI variabilities in A. hyacinthus to analyze genetic diversity and to describe the kinship relationship of the coral between 5 localities of the reefs. Genetic marker Cytochrome Oxidase I of the mitochondrial genome DNA (mtDNA) was used to analyze genetic diversity. Reconstruction of phylogenetic tree and genetic diversity were made by using software MEGA 5.05 (Molecular Evolutionary Genetics Analysis). The results indicate corals A. hyacinthus from five localities of Karimunjawa Archipelago are in the high category of genetic diversity. However, the five populations showed a close genetic relationship of kinship. This is likely due to the small size of the population and few numbers of samples that may not represent the population. The results may aid managers of the park in the selection of appropriate propagules sources which can help to restore important data for conservation and sustain coral reef resources.

  11. Genetic evidence for an East Asian origin of Chinese Muslim populations Dongxiang and Hui

    PubMed Central

    Yao, Hong-Bing; Wang, Chuan-Chao; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Zhu, Bofeng; Kang, Longli; Jin, Li; Li, Hui

    2016-01-01

    There is a long-going debate on the genetic origin of Chinese Muslim populations, such as Uygur, Dongxiang, and Hui. However, genetic information for those Muslim populations except Uygur is extremely limited. In this study, we investigated the genetic structure and ancestry of Chinese Muslims by analyzing 15 autosomal short tandem repeats in 652 individuals from Dongxiang, Hui, and Han Chinese populations in Gansu province. Both genetic distance and Bayesian-clustering methods showed significant genetic homogeneity between the two Muslim populations and East Asian populations, suggesting a common genetic ancestry. Our analysis found no evidence of substantial gene flow from Middle East or Europe into Dongxiang and Hui people during their Islamization. The dataset generated in present study are also valuable for forensic identification and paternity tests in China. PMID:27924949

  12. Development of novel SSR markers for evaluation of genetic diversity and population structure in Tribulus terrestris L. (Zygophyllaceae).

    PubMed

    Kaur, Kuljit; Sharma, Vikas; Singh, Vijay; Wani, Mohammad Saleem; Gupta, Raghbir Chand

    2016-12-01

    Tribulus terrestris L., commonly called puncture vine and gokhru, is an important member of Zygophyllaceae. The species is highly important in context to therapeutic uses and provides important active principles responsible for treatment of various diseases and also used as tonic. It is widely distributed in tropical regions of India and the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In present study, genetic diversity and structure of different populations of T. terrestris from north India was examined at molecular level using newly developed Simple Sequence Repeat (SSR) markers. In total, 20 primers produced 48 alleles in a size range of 100-500 bp with maximum (4) fragments amplified by TTMS-1, TTMS-25 and TTMS-33. Mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.368 and 1.01, respectively. Dendrogram showed three groups, one of which was purely containing accessions from Rajasthan while other two groups corresponded to Punjab and Haryana regions with intermixing of few other accessions. Analysis of molecular variance partitioned 76 % genetic variance within populations and 24 % among populations. Bayesian model based STRUCTURE analysis detected two genetic stocks for analyzed germplasm and also detected some admixed individuals. Different geographical populations of this species showed high level of genetic diversity. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  13. Robustness of meta-analyses in finding gene × environment interactions

    PubMed Central

    Shi, Gang; Nehorai, Arye

    2017-01-01

    Meta-analyses that synthesize statistical evidence across studies have become important analytical tools for genetic studies. Inspired by the success of genome-wide association studies of the genetic main effect, researchers are searching for gene × environment interactions. Confounders are routinely included in the genome-wide gene × environment interaction analysis as covariates; however, this does not control for any confounding effects on the results if covariate × environment interactions are present. We carried out simulation studies to evaluate the robustness to the covariate × environment confounder for meta-regression and joint meta-analysis, which are two commonly used meta-analysis methods for testing the gene × environment interaction or the genetic main effect and interaction jointly. Here we show that meta-regression is robust to the covariate × environment confounder while joint meta-analysis is subject to the confounding effect with inflated type I error rates. Given vast sample sizes employed in genome-wide gene × environment interaction studies, non-significant covariate × environment interactions at the study level could substantially elevate the type I error rate at the consortium level. When covariate × environment confounders are present, type I errors can be controlled in joint meta-analysis by including the covariate × environment terms in the analysis at the study level. Alternatively, meta-regression can be applied, which is robust to potential covariate × environment confounders. PMID:28362796

  14. Genetic diversity and geographical structure of the pitcher plant Nepenthes vieillardii in New Caledonia: A chloroplast DNA haplotype analysis.

    PubMed

    Kurata, Kaoruko; Jaffré, Tanguy; Setoguchi, Hiroaki

    2008-12-01

    Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.

  15. Teachers' Conceptions About the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    NASA Astrophysics Data System (ADS)

    Castéra, Jérémy; Clément, Pierre

    2014-02-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed teachers' conceptions. This illustrates that innatism is present in two distinct ways: in relation to individuals (e.g. genetic determinism to justify intellectual likeness between individuals such as twins) or in relation to groups of humans (e.g. genetic determinism to justify gender differences or the superiority of some human ethnic groups). A between-factor analysis discriminates between countries, showing very significant differences. There is more innatism among teachers' conceptions in African countries and Lebanon than in European countries, Brazil and Australia. Among the other controlled parameters, only two are significantly independent of the country: the level of training and the level of knowledge of biology. A co-inertia analysis shows a strong correlation between non-citizen attitudes towards and innatist conceptions of genetic determinism regarding human groups. We discuss these findings and their implications for education.

  16. Sporadic and genetic forms of paediatric somatotropinoma: a retrospective analysis of seven cases and a review of the literature

    PubMed Central

    2011-01-01

    Background Somatotropinoma, a pituitary adenoma characterised by excessive production of growth hormone (GH), is extremely rare in childhood. A genetic defect is evident in some cases; known genetic changes include: multiple endocrine neoplasia type 1 (MEN1); Carney complex; McCune-Albright syndrome; and, more recently identified, aryl hydrocarbon receptor-interacting protein (AIP). We describe seven children with somatotropinoma with a special focus on the differences between genetic and sporadic forms. Methods Seven children who presented in our regional network between 1992 and 2008 were included in this retrospective analysis. First-type therapy was somatostatin (SMS) analogues or transsphenoidal surgery. Control was defined as when insulin-like growth factor-1 (IGF-1) levels were within the normal range for the patient's age at 6 months after therapy, associated with decreasing tumour volume. Results Patients were aged 5-17 years and the majority (n = 6) were male. Four patients had an identified genetic mutation (McCune-Albright syndrome: n = 1; MEN1: n = 1; AIP: n = 2); the remaining three cases were sporadic. Accelerated growth rate was reported as the first clinical sign in four patients. Five patients presented with macroadenoma; invasion was noted in four of them (sporadic: n = 1; genetic: n = 3). Six patients were treated with SMS analogues; normalisation of IGF-1 occurred in one patient who had a sporadic intrasellar macroadenoma. Multiple types of therapy were necessary in all patients with an identified genetic mutation (4 types: n = 1; 3 types: n = 2; 2 types: n = 1), whereas two of the three patients with sporadic somatotropinoma required only one type of therapy. Conclusions This is the first series that analyzes the therapeutic response of somatotropinoma in paediatric patients with identified genetic defects. We found that, in children, genetic somatotropinomas are more invasive than sporadic somatotropinomas. Furthermore, SMS analogues appear to be less effective for treating genetic somatotropinoma than sporadic somatotropinoma. PMID:22024364

  17. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers.

    PubMed

    Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella; Yockteng, Roxana

    2017-01-01

    The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs.

  18. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers

    PubMed Central

    Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella

    2017-01-01

    The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs. PMID:28257509

  19. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers.

    PubMed

    Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming

    2017-05-15

    Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.

  20. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis

    DOE PAGES

    Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.

    2017-10-13

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less

  1. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less

  2. Genetic diversity of calcareous grassland plant species depends on historical landscape configuration.

    PubMed

    Reisch, Christoph; Schmidkonz, Sonja; Meier, Katrin; Schöpplein, Quirin; Meyer, Carina; Hums, Christian; Putz, Christina; Schmid, Christoph

    2017-04-24

    Habitat fragmentation is considered to be a main reason for decreasing genetic diversity of plant species. However, the results of many fragmentation studies are inconsistent. This may be due to the influence of habitat conditions, having an indirect effect on genetic variation via reproduction. Consequently we took a comparative approach to analyse the impact of habitat fragmentation and habitat conditions on the genetic diversity of calcareous grassland species in this study. We selected five typical grassland species (Primula veris, Dianthus carthusianorum, Medicago falcata, Polygala comosa and Salvia pratensis) occurring in 18 fragments of calcareous grasslands in south eastern Germany. We sampled 1286 individuals in 87 populations and analysed genetic diversity using amplified fragment length polymorphisms. Additionally, we collected data concerning habitat fragmentation (historical and present landscape structure) and habitat conditions (vegetation structure, soil conditions) of the selected study sites. The whole data set was analysed using Bayesian multiple regressions. Our investigation indicated a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. Bayesian analysis revealed a significant impact of the historical landscape structure, whereas habitat conditions played no important role for the present-day genetic variation of the studied plant species. Our study indicates that the historical landscape structure may be more important for genetic diversity than present habitat conditions. Populations persisting in abandoned grassland fragments may contribute significantly to the species' variability even under deteriorating habitat conditions. Therefore, these populations should be included in approaches to preserve the genetic variation of calcareous grassland species.

  3. Genetic Analysis of Japanese Children With Acute Recurrent and Chronic Pancreatitis.

    PubMed

    Saito, Nobutomo; Suzuki, Mitsuyoshi; Sakurai, Yumiko; Nakano, Satoshi; Naritaka, Nakayuki; Minowa, Kei; Sai, Jin K; Shimizu, Toshiaki

    2016-10-01

    Causes of acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP) are sometimes difficult to determine in children. In such patients, genetic analysis may prove helpful. The present study analyzed mutations of cationic trypsinogen (PRSS1), serine protease inhibitor Kazal type 1 (SPINK1), chymotrypsin C (CTRC), and carboxypeptidase A1 (CPA1) and investigated the clinical features of children with these mutations. Genetic analyses of mutations in these 4 genes were conducted in 128 patients with ARP or CP. Characteristics of the patients showing mutations were investigated using medical records. Fifty of the 128 (39.1%) subjects had at least 1 mutation (median age at onset, 7.6 years). Abdominal pain was the presenting symptom of pancreatitis in 48 of the 50 patients (96%). Fifteen of those 50 patients (30.0%) had a family history of pancreatitis. Gene mutations were present in PRSS1 in 26 patients, SPINK1 in 23, CTRC in 3, and CPA1 in 5. In the 31 patients with mutations in SPINK1, CTRC, or CPA1, 16 (51.6%) had homozygous or heterozygous mutations with other mutations. Three patients underwent surgery and another 4 patients underwent endoscopy to manage ARP or CP. Although 3 of the 7 patients complained of mild abdominal pain, none of those 7 patients experienced any obvious episode of ARP after treatment. In pediatric patients with idiopathic ARP and CP, genetic analysis is useful for identifying the cause of pancreatitis. Early endoscopic or surgical treatment prevents ARP by extending the interval between episodes of pancreatitis in this population.

  4. Cluster and principal component analysis based on SSR markers of Amomum tsao-ko in Jinping County of Yunnan Province

    NASA Astrophysics Data System (ADS)

    Ma, Mengli; Lei, En; Meng, Hengling; Wang, Tiantao; Xie, Linyan; Shen, Dong; Xianwang, Zhou; Lu, Bingyue

    2017-08-01

    Amomum tsao-ko is a commercial plant that used for various purposes in medicinal and food industries. For the present investigation, 44 germplasm samples were collected from Jinping County of Yunnan Province. Clusters analysis and 2-dimensional principal component analysis (PCA) was used to represent the genetic relations among Amomum tsao-ko by using simple sequence repeat (SSR) markers. Clustering analysis clearly distinguished the samples groups. Two major clusters were formed; first (Cluster I) consisted of 34 individuals, the second (Cluster II) consisted of 10 individuals, Cluster I as the main group contained multiple sub-clusters. PCA also showed 2 groups: PCA Group 1 included 29 individuals, PCA Group 2 included 12 individuals, consistent with the results of cluster analysis. The purpose of the present investigation was to provide information on genetic relationship of Amomum tsao-ko germplasm resources in main producing areas, also provide a theoretical basis for the protection and utilization of Amomum tsao-ko resources.

  5. Informed choice in direct-to-consumer genetic testing (DTCGT) websites: a content analysis of benefits, risks, and limitations

    PubMed Central

    Singleton, Amanda; Erby, Lori Hamby; Foisie, Kathryn V.; Kaphingst, Kimberly

    2012-01-01

    An informed choice about health-related direct-to-consumer genetic testing (DTCGT) requires knowledge of potential benefits, risks, and limitations. To understand the information that potential consumers of DTCGT services are exposed to on company websites, we conducted a content analysis of 23 health-related DTCGT websites. Results revealed that benefit statements outweighed risk and limitation statements 6 to 1. The most frequently described benefits were 1) disease prevention, 2) consumer education, 3) personalized medical recommendations, and 4) the ability to make health decisions. Thirty-five percent of websites also presented at least one risk of testing. Seventy-eight percent of websites mentioned at least one limitation of testing. Based on this information, potential consumers might get an inaccurate picture of genetic testing which could impact their ability to make an informed decision. Practices that enhance the presentation of balanced information on DTCGT company websites should be encouraged. PMID:22194036

  6. GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer.

    PubMed

    Chen, Maxine M; O'Mara, Tracy A; Thompson, Deborah J; Painter, Jodie N; Attia, John; Black, Amanda; Brinton, Louise; Chanock, Stephen; Chen, Chu; Cheng, Timothy Ht; Cook, Linda S; Crous-Bou, Marta; Doherty, Jennifer; Friedenreich, Christine M; Garcia-Closas, Montserrat; Gaudet, Mia M; Gorman, Maggie; Haiman, Christopher; Hankinson, Susan E; Hartge, Patricia; Henderson, Brian E; Hodgson, Shirley; Holliday, Elizabeth G; Horn-Ross, Pamela L; Hunter, David J; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Long, Jirong; Lu, Lingeng; Magliocco, Anthony M; Martin, Lynn; McEvoy, Mark; Olson, Sara H; Orlow, Irene; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Rebbeck, Timothy R; Risch, Harvey; Sacerdote, Carlotta; Schumacher, Frederick; Wendy Setiawan, Veronica; Scott, Rodney J; Sheng, Xin; Shu, Xiao-Ou; Turman, Constance; Van Den Berg, David; Wang, Zhaoming; Weiss, Noel S; Wentzensen, Nicholas; Xia, Lucy; Xiang, Yong-Bing; Yang, Hannah P; Yu, Herbert; Zheng, Wei; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Kraft, Peter; Spurdle, Amanda B; De Vivo, Immaculata

    2016-06-15

    Endometrial cancer is the most common gynecological malignancy in the developed world. Although there is evidence of genetic predisposition to the disease, most of the genetic risk remains unexplained. We present the meta-analysis results of four genome-wide association studies (4907 cases and 11 945 controls total) in women of European ancestry. We describe one new locus reaching genome-wide significance (P < 5 × 10 - 8 ) at 6p22.3 (rs1740828; P = 2.29 × 10 - 8 , OR = 1.20), providing evidence of an additional region of interest for genetic susceptibility to endometrial cancer. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  8. Genetic counselor perceptions of genetic counseling session goals: a validation study of the reciprocal-engagement model.

    PubMed

    Hartmann, Julianne E; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S

    2015-04-01

    Although some researchers have attempted to define genetic counseling practice goals, no study has obtained consensus about the goals from a large sample of genetic counselors. The Reciprocal-Engagement Model (REM; McCarthy Veach, Bartels & LeRoy, 2007) articulates 17 goals of genetic counseling practice. The present study investigated whether these goals could be generalized as a model of practice, as determined by a larger group of clinical genetic counselors. Accordingly, 194 genetic counselors were surveyed regarding their opinions about the importance of each goal and their perceptions of how frequently they achieve each goal. Mean importance ratings suggest they viewed every goal as important. Factor analysis of the 17 goals yielded four factors: Understanding and Appreciation, Support and Guidance, Facilitative Decision-Making, and Patient-Centered Education. Patient-Centered Education and Facilitative Decision-Making goals received the highest mean importance ratings. Mean frequency ratings were consistently lower than importance ratings, suggesting genetic counseling goals may be difficult to achieve and/or not applicable in all situations. A number of respondents provided comments about the REM goals that offer insight into factors related to implementing the goals in clinical practice. This study presents preliminary evidence concerning the validity of the goals component of the REM.

  9. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger.

    PubMed

    Deu, Monique; Sagnard, F; Chantereau, J; Calatayud, C; Vigouroux, Y; Pham, J L; Mariac, C; Kapran, I; Mamadou, A; Gérard, B; Ndjeunga, J; Bezançon, G

    2010-05-01

    The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger's agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976-2003). Global genetic differentiation between the two collections was very low (F (st) = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F (st), and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers' management has globally preserved sorghum genetic diversity in Niger.

  10. A protocol for chemical mutagenesis in Strongyloides ratti.

    PubMed

    Guo, Li; Chang, Zisong; Dieterich, Christoph; Streit, Adrian

    2015-11-01

    Genetic analysis using experimentally induced mutations has been a most valuable tool in the analysis of various organisms. However, genetic analysis of endoparasitic organisms tends to be difficult because of the limited accessibility of the sexually reproducing adults, which are normally located within the host. Nematodes of the genera Strogyloides and Parastrongyloides represent an exception to this because they can form facultative free-living sexually reproducing generations in between parasitic generations. Here we present a protocol for the chemical mutagenesis of Strongyloides ratti. Further we evaluate the feasibility of identifying the induced mutations by whole genome re-sequencing. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The importance of molecular analyses for understanding the genetic diversity of Histoplasma capsulatum: an overview.

    PubMed

    Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia

    2014-01-01

    Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    PubMed

    Uwineza, Annette; Hitayezu, Janvier; Murorunkwere, Seraphine; Ndinkabandi, Janvier; Kalala Malu, Celestin Kaputu; Caberg, Jean Hubert; Dideberg, Vinciane; Bours, Vincent; Mutesa, Leon

    2014-04-01

    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries.

  13. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  14. Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases

    PubMed Central

    Guerreiro, Rita; Escott-Price, Valentina; Darwent, Lee; Parkkinen, Laura; Ansorge, Olaf; Hernandez, Dena G.; Nalls, Michael A.; Clark, Lorraine; Honig, Lawrence; Marder, Karen; van der Flier, Wiesje; Holstege, Henne; Louwersheimer, Eva; Lemstra, Afina; Scheltens, Philip; Rogaeva, Ekaterina; St George-Hyslop, Peter; Londos, Elisabet; Zetterberg, Henrik; Ortega-Cubero, Sara; Pastor, Pau; Ferman, Tanis J.; Graff-Radford, Neill R.; Ross, Owen A.; Barber, Imelda; Braae, Anne; Brown, Kristelle; Morgan, Kevin; Maetzler, Walter; Berg, Daniela; Troakes, Claire; Al-Sarraj, Safa; Lashley, Tammaryn; Compta, Yaroslau; Revesz, Tamas; Lees, Andrew; Cairns, Nigel J.; Halliday, Glenda M.; Mann, David; Pickering-Brown, Stuart; Powell, John; Lunnon, Katie; Lupton, Michelle K.; Dickson, Dennis; Hardy, John; Singleton, Andrew; Bras, Jose

    2016-01-01

    The similarities between dementia with Lewy bodies (DLB) and both Parkinson's disease (PD) and Alzheimer's disease (AD) are many and range from clinical presentation, to neuropathological characteristics, to more recently identified, genetic determinants of risk. Because of these overlapping features, diagnosing DLB is challenging and has clinical implications since some therapeutic agents that are applicable in other diseases have adverse effects in DLB. Having shown that DLB shares some genetic risk with PD and AD, we have now quantified the amount of sharing through the application of genetic correlation estimates, and show that, from a purely genetic perspective, and excluding the strong association at the APOE locus, DLB is equally correlated to AD and PD. PMID:26643944

  15. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.)

    PubMed Central

    2009-01-01

    Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation between species allowed synteny comparisons to be made to sequenced genomes. This synteny analysis may support positional cloning of target genes in common bean through the use of genomic information from these other legumes. PMID:20030833

  16. Population genetic structure analysis and forensic evaluation of Xinjiang Uigur ethnic group on genomic deletion and insertion polymorphisms.

    PubMed

    Mei, Ting; Shen, Chun-Mei; Liu, Yao-Shun; Meng, Hao-Tian; Zhang, Yu-Dang; Guo, Yu-Xin; Dong, Qian; Wang, Xin-Xin; Yan, Jiang-Wei; Zhu, Bo-Feng; Zhang, Li-Ping

    2016-01-01

    The Uigur ethnic minority is the largest ethnic group in the Xinjiang Uygur Autonomous Region of China, and valuable resource for the study of ethnogeny. The objective of this study was to estimate the genetic diversities and forensic parameters of 30 insertion-deletion loci in Uigur ethnic group from Xinjiang Uigur Autonomous Region of China and to analyze the genetic relationships between Xinjiang Uigur group and other previously published groups based on population data of these loci. All the tested loci were conformed to Hardy-Weinberg equilibrium after Bonferroni correction. The observed and expected heterozygosity ranged from 0.3750 to 0.5515; and 0.4057 to 0.5037, respectively. The combined power of discrimination and probability of exclusion in the group were 0.99999999999940 and 0.9963, respectively. We analyzed the D A distance, interpopulation differentiations and population structure, conducted principal component analysis and neighbor-joining tree based on our studied group and 21 reference groups. The present results indicated that the studied Xinjiang Uigur group (represented our samples from the whole territory of Xinjiang Uigur Autonomous Region) had a close relationships with Urumchi Uigur (represented previously reported samples from Urumchi of Xinjiang) and Kazak groups. The present study may provide novel biological information for the study of population genetics, and can also increase our understanding of the genetic relationships between Xinjiang Uigur group and other groups.

  17. Evidence of a genetic link between endometriosis and ovarian cancer.

    PubMed

    Lee, Alice W; Templeman, Claire; Stram, Douglas A; Beesley, Jonathan; Tyrer, Jonathan; Berchuck, Andrew; Pharoah, Paul P; Chenevix-Trench, Georgia; Pearce, Celeste Leigh

    2016-01-01

    To evaluate whether endometriosis-associated genetic variation affects risk of ovarian cancer. Pooled genetic analysis. University hospital. Genetic data from 46,176 participants (15,361 ovarian cancer cases and 30,815 controls) from 41 ovarian cancer studies. None. Endometriosis-associated genetic variation and ovarian cancer. There was significant evidence of an association between endometriosis-related genetic variation and ovarian cancer risk, especially for the high-grade serous and clear cell histotypes. Overall we observed 15 significant burden statistics, which was three times more than expected. By focusing on candidate regions from a phenotype associated with ovarian cancer, we have shown a clear genetic link between endometriosis and ovarian cancer that warrants further follow-up. The functional significance of the identified regions and SNPs is presently uncertain, though future fine mapping and histotype-specific functional analyses may shed light on the etiologies of both gynecologic conditions. Copyright © 2016. Published by Elsevier Inc.

  18. Readiness of adolescents to use genetically modified organisms according to their knowledge and emotional attitude towards GMOs.

    PubMed

    Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata

    2017-06-07

    Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.

  19. Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.).

    PubMed

    Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech

    2015-01-01

    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

  20. Forensic molecular genetic diversity analysis of Chinese Hui ethnic group based on a novel STR panel.

    PubMed

    Fang, Yating; Guo, Yuxin; Xie, Tong; Jin, Xiaoye; Lan, Qiong; Zhou, Yongsong; Zhu, Bofeng

    2018-03-26

    In present study, the genetic polymorphisms of 22 autosomal short tandem repeat (STR) loci were analyzed in 496 unrelated Chinese Xinjiang Hui individuals. These autosomal STR loci were multiplex amplified and genotyped based on a novel STR panel. There were 246 observed alleles with the allele frequencies ranging from 0.0010 to 0.3609. All polymorphic information content values were higher than 0.7. The combined power of discrimination and the combined probability of exclusion were 0.999999999999999999999999999426766 and 0.999999999860491, respectively. Based on analysis of molecular variance method, genetic differentiation analysis between the Xinjiang Hui and other reported groups were conducted at these 22 loci. The results indicated that there were no significant differences in statistics between Hui group and Northern Han group (including Han groups from Hebei, Henan, Shaanxi provinces), and significant deviations with Southern Han group (including those from Guangdong, Guangxi provinces) at 7 loci, and Uygur group at 10 loci. To sum up, these 22 autosomal STR loci were high genetic polymorphic in Xinjiang Hui group.

  1. Aristaless-like homeobox protein 1 (ALX1) variant associated with craniofacial structure and frontonasal dysplasia in Burmese cats

    PubMed Central

    Lyons, Leslie A.; Erdman, Carolyn A.; Grahn, Robert A.; Hamilton, Michael J.; Carter, Michael J.; Helps, Christopher R.; Alhaddad, Hasan; Gandolfi, Barbara

    2015-01-01

    Frontonasal dysplasia (FND) can have severe presentations that are medically and socially debilitating. Several genes are implicated in FND conditions, including Aristaless-Like Homeobox 1 (ALX1), which is associated with FND3. Breeds of cats are selected and bred for extremes in craniofacial morphologies. In particular, a lineage of Burmese cats with severe brachycephyla is extremely popular and is termed Contemporary Burmese. Genetic studies demonstrated that the brachycephyla of the Contemporary Burmese is a simple co-dominant trait, however, the homozygous cats have a severe craniofacial defect that is incompatible with life. The craniofacial defect of the Burmese was genetically analyzed over a 20 year period, using various genetic analysis techniques. Family-based linkage analysis localized the trait to cat chromosome B4. Genome-wide association studies and other genetic analyses of SNP data refined a critical region. Sequence analysis identified a 12 bp in frame deletion in ALX1, c.496delCTCTCAGGACTG, which is 100% concordant with the craniofacial defect and not found in cats not related to the Contemporary Burmese. PMID:26610632

  2. Acoustic, genetic and morphological variations within the katydid Gampsocleis sedakovii (Orthoptera, Tettigonioidea)

    PubMed Central

    Zhang, Xue; Wen, Ming; Li, Junjian; Zhu, Hui; Wang, Yinliang; Ren, Bingzhong

    2015-01-01

    Abstract In an attempt to explain the variation within this species and clarify the subspecies classification, an analysis of the genetic, calling songs, and morphological variations within the species Gampsocleis sedakovii is presented from Inner Mongolia, China. Recordings were compared of the male calling songs and analysis performed of selected acoustic variables. This analysis is combined with sequencing of mtDNA - COI and examination of morphological traits to perform cluster analyses. The trees constructed from different datasets were structurally similar, bisecting the six geographical populations studied. Based on two large branches in the analysis, the species Gampsocleis sedakovii was partitioned into two subspecies, Gampsocleis sedakovii sedakovii (Fischer von Waldheim, 1846) and Gampsocleis sedakovii obscura (Walker, 1869). Comparing all the traits, the individual of Elunchun (ELC) was the intermediate type in this species according to the acoustic, genetic, and morphological characteristics. This study provides evidence for insect acoustic signal divergence and the process of subspeciation. PMID:26692795

  3. Genetics of human body size and shape: body proportions and indices.

    PubMed

    Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E

    2002-01-01

    The study of the genetic component in morphological variables such as body height and weight, head and chest circumference, etc. has a rather long history. However, only a few studies investigated body proportions and configuration. The major aim of the present study was to evaluate the extent of the possible genetic effects on the inter-individual variation of a number of body configuration indices amenable to clear functional interpretation. Two ethnically different pedigree samples were used in the study: (1) Turkmenians (805 individuals) from Central Asia, and (2) Chuvasha (732 individuals) from the Volga riverside, Russian Federation. To achieve the aim of the present study we proposed three new indices, which were subjected to a statistical-genetic analysis using modified version of "FISHER" software. The proposed indices were: (1) an integral index of torso volume (IND#1), an index reflecting a predisposition of body proportions to maintain a balance in a vertical position (IND#2), and an index of skeletal extremities volume (IND#3). Additionally, the first two principal factors (PF1 and PF2) obtained on 19 measurements of body length and breadth were subjected to genetic analysis. Variance decomposition analysis that simultaneously assess the contribution of gender, age, additive genetic effects and effects of environment shared by the nuclear family members, was applied to fit variation of the above three indices, and PF1 and PF2. The raw familial correlation of all study traits and in both samples showed: (1) all marital correlations did not differ significantly from zero; (2) parent-offspring and sibling correlations were all positive and statistically significant. The parameter estimates obtained in variance analyses showed that from 40% to 75% of inter-individual variation of the studied traits (adjusted for age and sex) were attributable to genetic effects. For PF1 and PF2 in both samples, and for IND#2 (in Chuvasha pedigrees), significant common sib environmental effects were also detectable. Genetic factors substantially influence inter-individual differences in body shape and configuration in two studied samples. However, further studies are needed to clarify the extent of pleiotropy and epigenetic effects on various facets of the human physique.

  4. Genetic diversity trend in Indian rice varieties: an analysis using SSR markers.

    PubMed

    Singh, Nivedita; Choudhury, Debjani Roy; Tiwari, Gunjan; Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R K; Sharma, A D; Singh, N K; Singh, Rakesh

    2016-09-05

    The knowledge of the extent and pattern of diversity in the crop species is a prerequisite for any crop improvement as it helps breeders in deciding suitable breeding strategies for their future improvement. Rice is the main staple crop in India with the large number of varieties released every year. Studies based on the small set of rice genotypes have reported a loss in genetic diversity especially after green revolution. However, a detailed study of the trend of diversity in Indian rice varieties is lacking. SSR markers have proven to be a marker of choice for studying the genetic diversity. Therefore, the present study was undertaken with the aim to characterize and assess trends of genetic diversity in a large set of Indian rice varieties (released between 1940-2013), conserved in the National Gene Bank of India using SSR markers. A set of 729 Indian rice varieties were genotyped using 36 HvSSR markers to assess the genetic diversity and genetic relationship. A total of 112 alleles was amplified with an average of 3.11 alleles per locus with mean Polymorphic Information Content (PIC) value of 0.29. Cluster analysis grouped these varieties into two clusters whereas the model based population structure divided them into three populations. AMOVA study based on hierarchical cluster and model based approach showed 3 % and 11 % variation between the populations, respectively. Decadal analysis for gene diversity and PIC showed increasing trend from 1940 to 2005, thereafter values for both the parameters showed decreasing trend between years 2006-2013. In contrast to this, allele number demonstrated increasing trend in these varieties released and notified between1940 to 1985, it remained nearly constant during 1986 to 2005 and again showed an increasing trend. Our results demonstrated that the Indian rice varieties harbors huge amount of genetic diversity. However, the trait based improvement program in the last decades forced breeders to rely on few parents, which resulted in loss of gene diversity during 2006 to 2013. The present study indicates the need for broadening the genetic base of Indian rice varieties through the use of diverse parents in the current breeding program.

  5. A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus

    PubMed Central

    Rutkowski, Robert; Krofel, Miha; Giannatos, Giorgos; Ćirović, Duško; Männil, Peep; Volokh, Anatoliy M.; Lanszki, József; Heltai, Miklós; Szabó, László; Banea, Ovidiu C.; Yavruyan, Eduard; Hayrapetyan, Vahram; Kopaliani, Natia; Miliou, Anastasia; Tryfonopoulos, George A.; Lymberakis, Petros; Penezić, Aleksandra; Pakeltytė, Giedrė; Suchecka, Ewa; Bogdanowicz, Wiesław

    2015-01-01

    In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-pair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe’s native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components Analysis [PCA]), although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA), or possibly its connection with the Caucasus population (one analysis in STRUCTURE). We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is “non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health”. These insights into the genetic structure and ancestry of Baltic jackals have important implications for management and conservation of jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, considering also the results presented here, should be legally protected in all EU member states. PMID:26540195

  6. GDA, a web-based tool for Genomics and Drugs integrated analysis.

    PubMed

    Caroli, Jimmy; Sorrentino, Giovanni; Forcato, Mattia; Del Sal, Giannino; Bicciato, Silvio

    2018-05-25

    Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines. Genomic and pharmacological data are integrated through a modular architecture that allows users to identify compounds active towards cancer cell lines bearing a specific genomic background and, conversely, the mutational or transcriptional status of cells responding or not-responding to a specific compound. Results are presented through intuitive graphical representations and supplemented with information obtained from public repositories. As both personalized targeted therapies and drug-repurposing are gaining increasing attention, GDA represents a resource to formulate hypotheses on the interplay between genomic traits and drug response in cancer. GDA is freely available at http://gda.unimore.it/.

  7. Heritability of Nociception IV: Neuropathic pain assays are genetically distinct across methods of peripheral nerve injury

    PubMed Central

    Young, Erin E.; Costigan, Michael; Herbert, Teri A.; Lariviere, William R.

    2013-01-01

    Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified five genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional nine assays of nociception and hypersensitivity to: 1) replicate the previously identified five pain types; 2) test whether any of the newly added pain assays represent novel genetically distinct pain types; 3) test the level of genetic relatedness among nine commonly employed neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the two previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The four included mechanical hypersensitivity assays are genetically distinct, and do not comprise a single pain type as previously reported. Among the nine neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least four genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, two itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types. PMID:24071598

  8. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks

    PubMed Central

    Börner, Andreas

    2018-01-01

    Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration. PMID:29420661

  9. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks.

    PubMed

    Yousef, Eltohamy A A; Müller, Thomas; Börner, Andreas; Schmid, Karl J

    2018-01-01

    Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration.

  10. Molecular Study of the Amazonian Macabea Cattle History.

    PubMed

    Vargas, Julio; Landi, Vincenzo; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente

    2016-01-01

    Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed.

  11. Molecular Study of the Amazonian Macabea Cattle History

    PubMed Central

    Vargas, Julio; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente

    2016-01-01

    Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed. PMID:27776178

  12. Evaluation of Genetic Diversity of Candida spp. and Klebsiella spp. Isolated from the Denture Plaque of COPD Patients.

    PubMed

    Przybyłowska, D; Piskorska, K; Gołaś, M; Sikora, M; Swoboda-Kopeć, E; Kostrzewa-Janicka, J; Mierzwińska-Nastalska, E

    2017-01-01

    Yeast-like fungi and gram-negative bacilli are the most frequent potential pathogens of the respiratory tract isolated from the denture plaque of patients with chronic obstructive pulmonary disease (COPD). Dominant species among yeast-like fungi are Candida albicans and Candida tropicalis. Significant frequency is also exhibited by Klebsiella pneumoniae and Klebsiella oxytoca. The purpose of this study was to analyze genetic diversity of the strains of C. albicans, C. tropicalis, and Klebsiella spp. present in patients in stable phases of COPD. The analysis was conducted by the random amplified polymorphic DNA (RAPD) method on clinical strains isolated from patients with COPD and control patients in overall good health. Forty one strains of Candida albicans, 12 of Candida tropicalis, as well as 9 strains of K. pneumoniae and 7 of K. oxytoca were scrutinized. The dominant species in clinical material from COPD patients was Candida albicans with a substantial degree of variations of genetic profiles. On the basis of affinity analysis, 19 genetic types were identified within this strain. An analysis of the banding patterns among C. tropicalis strains indicated the existence of 6 genetic types. A considerable diversity of genetic profiles among Klebsiella spp. also was established. The genotype diversity of Klebsiella spp. strains may indicate the endogenic character of the majority of infections, regardless of the therapy applied for the underlying condition.

  13. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity

    PubMed Central

    Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa

    2016-01-01

    We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder. PMID:27093171

  14. WISARD: workbench for integrated superfast association studies for related datasets.

    PubMed

    Lee, Sungyoung; Choi, Sungkyoung; Qiao, Dandi; Cho, Michael; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2018-04-20

    A Mendelian transmission produces phenotypic and genetic relatedness between family members, giving family-based analytical methods an important role in genetic epidemiological studies-from heritability estimations to genetic association analyses. With the advance in genotyping technologies, whole-genome sequence data can be utilized for genetic epidemiological studies, and family-based samples may become more useful for detecting de novo mutations. However, genetic analyses employing family-based samples usually suffer from the complexity of the computational/statistical algorithms, and certain types of family designs, such as incorporating data from extended families, have rarely been used. We present a Workbench for Integrated Superfast Association studies for Related Data (WISARD) programmed in C/C++. WISARD enables the fast and a comprehensive analysis of SNP-chip and next-generation sequencing data on extended families, with applications from designing genetic studies to summarizing analysis results. In addition, WISARD can automatically be run in a fully multithreaded manner, and the integration of R software for visualization makes it more accessible to non-experts. Comparison with existing toolsets showed that WISARD is computationally suitable for integrated analysis of related subjects, and demonstrated that WISARD outperforms existing toolsets. WISARD has also been successfully utilized to analyze the large-scale massive sequencing dataset of chronic obstructive pulmonary disease data (COPD), and we identified multiple genes associated with COPD, which demonstrates its practical value.

  15. Genetic mutations in Gorlin-Goltz syndrome

    PubMed Central

    Daneswari, Muthumula; Reddy, Mutjumula Swamy Ranga

    2013-01-01

    Gorlin-Goltz syndrome is a rare multisystemic disease inherited in a dominant autosomal at a high level of penetrance and variable expressiveness. It is mainly characterized by basal cell carcinoma, odontogenic keratocyst and skeletal anomalies. Diagnosis is based upon established major and minor clinical and radiographic criteria and gene mutation analysis. This article presents a case of Gorlin-Goltz syndrome, its genetic predisposition, diagnosis and management. PMID:24339558

  16. Genetic mutations in Gorlin-Goltz syndrome.

    PubMed

    Daneswari, Muthumula; Reddy, Mutjumula Swamy Ranga

    2013-07-01

    Gorlin-Goltz syndrome is a rare multisystemic disease inherited in a dominant autosomal at a high level of penetrance and variable expressiveness. It is mainly characterized by basal cell carcinoma, odontogenic keratocyst and skeletal anomalies. Diagnosis is based upon established major and minor clinical and radiographic criteria and gene mutation analysis. This article presents a case of Gorlin-Goltz syndrome, its genetic predisposition, diagnosis and management.

  17. Genetic Influences on Language, Reading, and Mathematics Skills in a National Sample: An Analysis Using the National Longitudinal Survey of Youth

    ERIC Educational Resources Information Center

    Hart, Sara A.; Petrill, Stephen A.; Kamp Dush, Claire M.

    2010-01-01

    Purpose: The present study had two purposes: provide an illustration of use of the National Longitudinal Survey of Youth 1979 Children's (CNLSY; U.S. Department of Labor, 2009) database and use the database to seek convergent evidence regarding the magnitude and significance of genetic effects influencing low and typical performers on measures of…

  18. Use of the Photoactic Ability of a Bacterium to Teach the Genetic Principles of Random Mutagenesis & Mutant Screening

    ERIC Educational Resources Information Center

    Din, Neena; Bird, Terry H.; Berleman, James E.

    2007-01-01

    In this article, the authors present a laboratory activity that relies on the use of a very versatile bacterial system to introduce the concept of how mutagenesis can be used for molecular and genetic analysis of living organisms. They have used the techniques of random mutagenesis and selection/screening to obtain strains of the organism "R.…

  19. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer | Office of Cancer Genomics

    Cancer.gov

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways.

  20. Establishing an efficient way to utilize the drought resistance germplasm population in wheat.

    PubMed

    Wang, Jiancheng; Guan, Yajing; Wang, Yang; Zhu, Liwei; Wang, Qitian; Hu, Qijuan; Hu, Jin

    2013-01-01

    Drought resistance breeding provides a hopeful way to improve yield and quality of wheat in arid and semiarid regions. Constructing core collection is an efficient way to evaluate and utilize drought-resistant germplasm resources in wheat. In the present research, 1,683 wheat varieties were divided into five germplasm groups (high resistant, HR; resistant, R; moderate resistant, MR; susceptible, S; and high susceptible, HS). The least distance stepwise sampling (LDSS) method was adopted to select core accessions. Six commonly used genetic distances (Euclidean distance, Euclid; Standardized Euclidean distance, Seuclid; Mahalanobis distance, Mahal; Manhattan distance, Manhat; Cosine distance, Cosine; and Correlation distance, Correlation) were used to assess genetic distances among accessions. Unweighted pair-group average (UPGMA) method was used to perform hierarchical cluster analysis. Coincidence rate of range (CR) and variable rate of coefficient of variation (VR) were adopted to evaluate the representativeness of the core collection. A method for selecting the ideal constructing strategy was suggested in the present research. A wheat core collection for the drought resistance breeding programs was constructed by the strategy selected in the present research. The principal component analysis showed that the genetic diversity was well preserved in that core collection.

  1. Genetic diversity of Schizolobium parahyba var. amazonicum (Huber ex. Ducke) Barneby, in a forest area in Brazil.

    PubMed

    Júnior, A L Silva; Souza, L C; Pereira, A G; Caldeira, M V W; Miranda, F D

    2017-09-21

    Schizolobium parahyba var. amazonicum (Fabaceae) is an arboreal species, endemic to the Amazon Rainforest, popularly known as paricá. It is used on a commercial scale in the timber sector, pulp and paper production, reclamation projects in degraded and landscaped areas. However, there is no availability of genetically improved material selected for the environmental conditions of the State of Espírito Santo, Brazil. In this sense, the present study aimed to characterize the genetic diversity in a population of S. amazonicum, established in a forest area in the southern region of the State of Espírito Santo, using inter-simple sequence repeat (ISSR) molecular markers. DNA samples from 171 individuals were analyzed using 11 ISSR primers, which generated 79 polymorphic bands in a total of 136 fragments (58%). The polymorphic information content performed for the ISSR markers revealed a mean of 0.37, classifying them as moderately informative. The number of loci found (N = 79) was greater than that established as the optimal number (N = 69) for the analyses. High genetic diversity was found with the parameters, genetic diversity of Nei (H E = 0.375) and Shannon index (I = 0.554). The data demonstrated in the dendrogram, based on the UPGMA cluster analysis, corroborated by the Bayesian analysis performed by the STRUCTURE program, which indicated the formation of two distinct clusters (K = 2). One of the groups was formed with the majority of the individuals (153 genotypes) and the second with the minority (18 genotypes). The results revealed high genetic diversity in the population of S. amazonicum evaluated in the present study, determining the potential of the population to be used as an orchard for seed collection and production of seedlings with confirmed genetic variability.

  2. PCR/RFLP-based analysis of genetically distinct Plasmodium vivax population of Pvmsp-3α and Pvmsp-3β genes in Pakistan.

    PubMed

    Khan, Shahid Niaz; Khan, Asif; Khan, Sanaullah; Ayaz, Sultan; Attaullah, Sobia; Khan, Jabbar; Khan, Muhammad Asim; Ali, Ijaz; Shah, Abdul Haleem

    2014-09-09

    Plasmodium vivax is one of the widespread human malarial parasites accounting for 75% of malaria epidemics. However, there is no baseline information about the status and nature of genetic variation of Plasmodium species circulating in various parts of Pakistan. The present study was aimed at observing the molecular epidemiology and genetic variation of Plasmodium vivax by analysing its merozoite surface protein-3α (msp-3α) and merozoite surface protein-3β (msp-3β) genes, by using suballele, species-specific, combined nested PCR/RFLP detection techniques. A total of 230 blood samples from suspected subjects tested slide positive for vivax malaria were collected from Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan during the period May 2012 to December 2013. Combined nested PCR/RFLP technique was conducted using Pvmsp-3α and Pvmsp-3β genetic markers to detect extent of genetic variation in clinical isolates of P. vivax in the studied areas of Pakistan. By PCR, P. vivax, 202/230 (87.82%), was found to be widely distributed in the studied areas. PCR/RFLP analysis showed a high range of allelic variations for both msp-3α and msp-3β genetic markers of P. vivax, i.e., 21 alleles for msp-3α and 19 for msp-3β. Statistically a significant difference (p ≤ 0.05) was observed in the genetic diversity of the suballelic variants of msp-3α and msp-3β genes of P. vivax. It is concluded that P. vivax populations are highly polymorphic and diverse allelic variants of Pvmsp-3α and Pvmsp-3β are present in Pakistan.

  3. Molecular analysis of genetic diversity among vine accessions using DNA markers.

    PubMed

    da Costa, A F; Teodoro, P E; Bhering, L L; Tardin, F D; Daher, R F; Campos, W F; Viana, A P; Pereira, M G

    2017-04-13

    Viticulture presents a number of economic and social advantages, such as increasing employment levels and fixing the labor force in rural areas. With the aim of initiating a program of genetic improvement in grapevine from the State University of the state of Rio de Janeiro North Darcy Ribeiro, genetic diversity between 40 genotypes (varieties, rootstock, and species of different subgenera) was evaluated using Random amplified polymorphic DNA (RAPD) molecular markers. We built a matrix of binary data, whereby the presence of a band was assigned as "1" and the absence of a band was assigned as "0." The genetic distance was calculated between pairs of genotypes based on the arithmetic complement from the Jaccard Index. The results revealed the presence of considerable variability in the collection. Analysis of the genetic dissimilarity matrix revealed that the most dissimilar genotypes were Rupestris du Lot and Vitis rotundifolia because they were the most genetically distant (0.5972). The most similar were genotypes 31 (unidentified) and Rupestris du lot, which showed zero distance, confirming the results of field observations. A duplicate was confirmed, consistent with field observations, and a short distance was found between the variety 'Italy' and its mutation, 'Ruby'. The grouping methods used were somewhat concordant.

  4. An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria

    PubMed Central

    Cha, Eun Jung; Hwang, Won Min; Yun, Sung-Ro; Park, Moon Hyang

    2016-01-01

    Bartter syndrome (BS) I–IV is a rare autosomal recessive disorder affecting salt reabsorption in the thick ascending limb of the loop of Henle. This report highlights clinicopathological findings and genetic studies of classic BS in a 22-year-old female patient who presented with persistent mild proteinuria for 2 years. A renal biopsy demonstrated a mild to moderate increase in the mesangial cells and matrix of most glomeruli, along with marked juxtaglomerular cell hyperplasia. These findings suggested BS associated with mild IgA nephropathy. Focal tubular atrophy, interstitial fibrosis, and lymphocytic infiltration were also observed. A genetic study of the patient and her parents revealed a mutation of the CLCNKB genes. The patient was diagnosed with BS, type III. This case represents an atypical presentation of classic BS in an adult patient. Pathologic findings of renal biopsy combined with genetic analysis and clinicolaboratory findings are important in making an accurate diagnosis. PMID:26755355

  5. An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria.

    PubMed

    Cha, Eun Jung; Hwang, Won Min; Yun, Sung-Ro; Park, Moon Hyang

    2016-03-01

    Bartter syndrome (BS) I-IV is a rare autosomal recessive disorder affecting salt reabsorption in the thick ascending limb of the loop of Henle. This report highlights clinicopathological findings and genetic studies of classic BS in a 22-year-old female patient who presented with persistent mild proteinuria for 2 years. A renal biopsy demonstrated a mild to moderate increase in the mesangial cells and matrix of most glomeruli, along with marked juxtaglomerular cell hyperplasia. These findings suggested BS associated with mild IgA nephropathy. Focal tubular atrophy, interstitial fibrosis, and lymphocytic infiltration were also observed. A genetic study of the patient and her parents revealed a mutation of the CLCNKB genes. The patient was diagnosed with BS, type III. This case represents an atypical presentation of classic BS in an adult patient. Pathologic findings of renal biopsy combined with genetic analysis and clinicolaboratory findings are important in making an accurate diagnosis.

  6. Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers.

    PubMed

    Zhou, Chunhua; Jian, Shaoqing; Peng, Weidong; Li, Min

    2018-04-01

    The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris -endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho0). According to a genetic differentiation index (Fst=0.0593), there was a high-level of gene flow in the Ascaris populations. A hierarchical analysis on molecular variance revealed remarkably high levels of variation within the populations. Moreover, a population structure analysis indicated that Ascaris populations fell into 3 main genetic clusters, interpreted as A. suum , A. lumbricoides , and a hybrid of the species. We speculated that humans can be infected with A. lumbricoides , A. suum , and the hybrid, but pigs were mainly infected with A. suum . This study provided new information on the genetic diversity and population structure of Ascaris from human and pigs in China, which can be used for designing Ascaris control strategies. It can also be beneficial to understand the introgression of host affiliation.

  7. Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers.

    PubMed

    Roman, Fabiola; das Chagas Xavier, Samanta; Messenger, Louisa A; Pavan, Márcio G; Miles, Michael A; Jansen, Ana María; Yeo, Matthew

    2018-05-01

    Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species.

  8. Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers

    PubMed Central

    das Chagas Xavier, Samanta; Messenger, Louisa A.; Pavan, Márcio G.; Miles, Michael A.; Jansen, Ana María; Yeo, Matthew

    2018-01-01

    Background Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. Methodology/Principal findings In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. Conclusions/Significance The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species. PMID:29782493

  9. Landscape genomics and pathway analysis to understand genetic adaptation of South African indigenous goat populations.

    PubMed

    Mdladla, K; Dzomba, E F; Muchadeyi, F C

    2018-04-01

    In Africa, extensively raised livestock populations in most smallholder farming communities are exposed to harsh and heterogeneous climatic conditions and disease pathogens that they adapt to in order to survive. Majority of these livestock species, including goats, are of non-descript and uncharacterized breeds and their response to natural selection presented by heterogeneous environments is still unresolved. This study investigated genetic diversity and its association with environmental and geographic conditions in 194 South African indigenous goats from different geographic locations genotyped on the Illumina goat SNP50K panel. Population structure analysis revealed a homogeneous genetic cluster of the Tankwa goats, restricted to the Northern Cape province. Overall, the Boer, Kalahari Red, and Savanna showed a wide geographic spread of shared genetic components, whereas the village ecotypes revealed a longitudinal distribution. The relative importance of environmental factors on genetic variation of goat populations was assessed using redundancy analysis (RDA). Climatic and geographic variables explained 22% of the total variation while climatic variables alone accounted for 17% of the diversity. Geographic variables solitarily explained 1% of the total variation. The first axis (Model I) of the RDA analysis revealed 329 outlier SNPs. Landscape genomic approaches of spatial analysis method (SAM) identified a total of 843 (1.75%) SNPs, while latent factor mixed models (LFMM) identified 714 (1.48%) SNPs significantly associated with environmental variables. Significant markers were within genes involved in biological functions potentially important for environmental adaptation. Overall, the study suggested environmental factors to have some effect in shaping the genetic variation of South African indigenous goat populations. Loci observed to be significant and under selection may be responsible for the adaption of the goat populations to local production systems.

  10. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers.

    PubMed

    Zheng, Yiqi; Xu, Shaojun; Liu, Jing; Zhao, Yan; Liu, Jianxiu

    2017-01-01

    Bermudagrass [Cynodon dactylon (L.) Pers.], an important turfgrass used in public parks, home lawns, golf courses and sports fields, is widely distributed in China. In the present study, sequence-related amplified polymorphism (SRAP) markers were used to assess genetic diversity and population structure among 157 indigenous bermudagrass genotypes from 20 provinces in China. The application of 26 SRAP primer pairs produced 340 bands, of which 328 (96.58%) were polymorphic. The polymorphic information content (PIC) ranged from 0.36 to 0.49 with a mean of 0.44. Genetic distance coefficients among accessions ranged from 0.04 to 0.61, with an average of 0.32. The results of STRUCTURE analysis suggested that 157 bermudagrass accessions can be grouped into three subpopulations. Moreover, according to clustering based on the unweighted pair-group method of arithmetic averages (UPGMA), accessions were divided into three major clusters. The UPGMA dendrogram revealed that accessions from identical or adjacent areas were generally, but not entirely, clustered into the same cluster. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among accessions. Principal coordinate analysis (PCoA) with SRAP markers revealed a similar grouping of accessions to the UPGMA dendrogram and STRUCTUE analysis. Analysis of molecular variance (AMOVA) indicated that 18% of total molecular variance was attributed to diversity among subpopulations, while 82% of variance was associated with differences within subpopulations. Our study represents the most comprehensive investigation of the genetic diversity and population structure of bermudagrass in China to date, and provides valuable information for the germplasm collection, genetic improvement, and systematic utilization of bermudagrass.

  11. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers

    PubMed Central

    Xu, Shaojun; Liu, Jing; Zhao, Yan; Liu, Jianxiu

    2017-01-01

    Bermudagrass [Cynodon dactylon (L.) Pers.], an important turfgrass used in public parks, home lawns, golf courses and sports fields, is widely distributed in China. In the present study, sequence-related amplified polymorphism (SRAP) markers were used to assess genetic diversity and population structure among 157 indigenous bermudagrass genotypes from 20 provinces in China. The application of 26 SRAP primer pairs produced 340 bands, of which 328 (96.58%) were polymorphic. The polymorphic information content (PIC) ranged from 0.36 to 0.49 with a mean of 0.44. Genetic distance coefficients among accessions ranged from 0.04 to 0.61, with an average of 0.32. The results of STRUCTURE analysis suggested that 157 bermudagrass accessions can be grouped into three subpopulations. Moreover, according to clustering based on the unweighted pair-group method of arithmetic averages (UPGMA), accessions were divided into three major clusters. The UPGMA dendrogram revealed that accessions from identical or adjacent areas were generally, but not entirely, clustered into the same cluster. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among accessions. Principal coordinate analysis (PCoA) with SRAP markers revealed a similar grouping of accessions to the UPGMA dendrogram and STRUCTUE analysis. Analysis of molecular variance (AMOVA) indicated that 18% of total molecular variance was attributed to diversity among subpopulations, while 82% of variance was associated with differences within subpopulations. Our study represents the most comprehensive investigation of the genetic diversity and population structure of bermudagrass in China to date, and provides valuable information for the germplasm collection, genetic improvement, and systematic utilization of bermudagrass. PMID:28493962

  12. Fragman: an R package for fragment analysis.

    PubMed

    Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan

    2016-04-21

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.

  13. Phylogenetic relationship of Ornithobacterium rhinotracheale strains.

    PubMed

    DE Oca-Jimenez, Roberto Montes; Vega-Sanchez, Vicente; Morales-Erasto, Vladimir; Salgado-Miranda, Celene; Blackall, Patrick J; Soriano-Vargas, Edgardo

    2018-04-10

    The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease in wild birds and poultry. In this study, the phylogenetic analysis of nine reference strains of O. rhinotracheale belonging to serovars A to I, and eight Mexican isolates belonging to serovar A, was performed. The analysis was extended to include available sequences from another 23 strains available in the public domain. The analysis showed that the 40 sequences formed six clusters, I to VI. All eight Mexican field isolates were placed in cluster I. One of the reference strains appears to present genetic diversity not previously recognized and was placed in a new genetic cluster. In conclusion, the phylogenetic analysis of O. rhinotracheale strains, based on the 16S rRNA gene, is a suitable tool for epidemiologic studies.

  14. A high-throughput method for GMO multi-detection using a microfluidic dynamic array.

    PubMed

    Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J

    2014-02-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.

  15. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    PubMed

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  16. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts

    PubMed Central

    Jelenkovic, Aline; Sund, Reijo; Hur, Yoon-Mi; Yokoyama, Yoshie; Hjelmborg, Jacob v. B.; Möller, Sören; Honda, Chika; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Ooki, Syuichi; Aaltonen, Sari; Stazi, Maria A.; Fagnani, Corrado; D’Ippolito, Cristina; Freitas, Duarte L.; Maia, José Antonio; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rebato, Esther; Busjahn, Andreas; Kandler, Christian; Saudino, Kimberly J.; Jang, Kerry L.; Cozen, Wendy; Hwang, Amie E.; Mack, Thomas M.; Gao, Wenjing; Yu, Canqing; Li, Liming; Corley, Robin P.; Huibregtse, Brooke M.; Derom, Catherine A.; Vlietinck, Robert F.; Loos, Ruth J. F.; Heikkilä, Kauko; Wardle, Jane; Llewellyn, Clare H.; Fisher, Abigail; McAdams, Tom A.; Eley, Thalia C.; Gregory, Alice M.; He, Mingguang; Ding, Xiaohu; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Tarnoki, Adam D.; Tarnoki, David L.; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Burt, S. Alexandra; Klump, Kelly L.; Silberg, Judy L.; Eaves, Lindon J.; Maes, Hermine H.; Krueger, Robert F.; McGue, Matt; Pahlen, Shandell; Gatz, Margaret; Butler, David A.; Bartels, Meike; van Beijsterveldt, Toos C. E. M.; Craig, Jeffrey M.; Saffery, Richard; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Swan, Gary E.; Krasnow, Ruth; Tynelius, Per; Lichtenstein, Paul; Haworth, Claire M. A.; Plomin, Robert; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Harden, K. Paige; Tucker-Drob, Elliot M.; Spector, Timothy; Mangino, Massimo; Lachance, Genevieve; Baker, Laura A.; Tuvblad, Catherine; Duncan, Glen E.; Buchwald, Dedra; Willemsen, Gonneke; Skytthe, Axel; Kyvik, Kirsten O.; Christensen, Kaare; Öncel, Sevgi Y.; Aliev, Fazil; Rasmussen, Finn; Goldberg, Jack H.; Sørensen, Thorkild I. A.; Boomsma, Dorret I.; Kaprio, Jaakko; Silventoinen, Karri

    2016-01-01

    Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180,520 paired measurements at ages 1–19 years. The proportion of height variation explained by shared environmental factors was greatest in early childhood, but these effects remained present until early adulthood. Accordingly, the relative genetic contribution increased with age and was greatest in adolescence (up to 0.83 in boys and 0.76 in girls). Comparing geographic-cultural regions (Europe, North-America and Australia, and East-Asia), genetic variance was greatest in North-America and Australia and lowest in East-Asia, but the relative proportion of genetic variation was roughly similar across these regions. Our findings provide further insights into height variation during childhood and adolescence in populations representing different ethnicities and exposed to different environments. PMID:27333805

  17. Genetic analysis of a bacterial genetic exchange element: The gene transfer agent of Rhodobacter capsulatus

    PubMed Central

    Lang, Andrew S.; Beatty, J. T.

    2000-01-01

    An unusual system of genetic exchange exists in the purple nonsulfur bacterium Rhodobacter capsulatus. DNA transmission is mediated by a small bacteriophage-like particle called the gene transfer agent (GTA) that transfers random 4.5-kb segments of the producing cell's genome to recipient cells, where allelic replacement occurs. This paper presents the results of gene cloning, analysis, and mutagenesis experiments that show that GTA resembles a defective prophage related to bacteriophages from diverse genera of bacteria, which has been adopted by R. capsulatus for genetic exchange. A pair of cellular proteins, CckA and CtrA, appear to constitute part of a sensor kinase/response regulator signaling pathway that is required for expression of GTA structural genes. This signaling pathway controls growth-phase-dependent regulation of GTA gene messages, yielding maximal gene expression in the stationary phase. We suggest that GTA is an ancient prophage remnant that has evolved in concert with the bacterial genome, resulting in a genetic exchange process controlled by the bacterial cell. PMID:10639170

  18. Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed

    PubMed Central

    Browett, Sam; McHugo, Gillian; Richardson, Ian W.; Magee, David A.; Park, Stephen D. E.; Fahey, Alan G.; Kearney, John F.; Correia, Carolina N.; Randhawa, Imtiaz A. S.; MacHugh, David E.

    2018-01-01

    Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland. PMID:29520297

  19. Cluster analysis of Pinus taiwanensis for its ex situ conservation in China.

    PubMed

    Gao, X; Shi, L; Wu, Z

    2015-06-01

    Pinus taiwanensis Hayata is one of the most famous sights in the Huangshan Scenic Resort, China, because of its strong adaptability and ability to survive; however, this endemic species is currently under threat in China. Relationships between different P. taiwanensis populations have been well-documented; however, few studies have been conducted on how to protect this rare pine. In the present study, we propose the ex situ conservation of this species using geographical information system (GIS) cluster and genetic diversity analyses. The GIS cluster method was conducted as a preliminary analysis for establishing a sampling site category based on climatic factors. Genetic diversity was analyzed using morphological and genetic traits. By combining geographical information with genetic data, we demonstrate that growing conditions, morphological traits, and the genetic make-up of the population in the Huangshan Scenic Resort were most similar to conditions on Tianmu Mountain. Therefore, we suggest that Tianmu Mountain is the best choice for the ex situ conservation of P. taiwanensis. Our results provide a molecular basis for the sustainable management, utilization, and conservation of this species in Huangshan Scenic Resort.

  20. An analysis of the metabolic theory of the origin of the genetic code

    NASA Technical Reports Server (NTRS)

    Amirnovin, R.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature.

  1. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    PubMed

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals. © 2013 Blackwell Publishing Ltd.

  2. Genetic risk score analysis indicates migraine with and without comorbid depression are genetically different disorders

    PubMed Central

    Ligthart, Lannie; Hottenga, Jouke-Jan; Lewis, Cathryn M.; Farmer, Anne E.; Craig, Ian W.; Breen, Gerome; Willemsen, Gonneke; Vink, Jacqueline M.; Middeldorp, Christel M.; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A.F.; Pergadia, Michele L.; Montgomery, Grant W.; Martin, Nicholas G.; Penninx, Brenda W.J.H.; McGuffin, Peter; Boomsma, Dorret I.; Nyholt, Dale R.

    2013-01-01

    Migraine and major depressive disorder (MDD) are comorbid, moderately heritable and to some extent influenced by the same genes. In a previous paper, we suggested the possibility of causality (one trait causing the other) underlying this comorbidity. We present a new application of polygenic (genetic risk) score analysis to investigate the mechanisms underlying the genetic overlap of migraine and MDD. Genetic risk scores were constructed based on data from two discovery samples in which genome-wide association analyses (GWA) were performed for migraine and MDD, respectively. The Australian Twin Migraine GWA study (N = 6350) included 2825 migraine cases and 3525 controls, 805 of whom met the diagnostic criteria for MDD. The RADIANT GWA study (N = 3230) included 1636 MDD cases and 1594 controls. Genetic risk scores for migraine and for MDD were used to predict pure and comorbid forms of migraine and MDD in an independent Dutch target sample (NTR-NESDA, N = 2966), which included 1476 MDD cases and 1058 migraine cases (723 of these individuals had both disorders concurrently). The observed patterns of prediction suggest that the ‘pure’ forms of migraine and MDD are genetically distinct disorders. The subgroup of individuals with comorbid MDD and migraine were genetically most similar to MDD patients. These results indicate that in at least a subset of migraine patients with MDD, migraine may be a symptom or consequence of MDD. PMID:24081561

  3. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Genetic evidence for an ethnic diversity in the susceptibility to Ménière's disease.

    PubMed

    Ohmen, Jeffrey Douglass; White, Cory H; Li, Xin; Wang, Juemei; Fisher, Laurel M; Zhang, Huan; Derebery, Mary Jennifer; Friedman, Rick A

    2013-09-01

    Ménière's disease (MD) is a debilitating disorder of the inner ear characterized by cochlear and vestibular dysfunction. The cause of this disease is still unknown, and epidemiological data for MD are sparse. From the existing literature, women seem to be more susceptible than men, and Caucasians seem to be more susceptible than Asians. In this article, we characterize a large definite MD cohort for sex and age of onset of disease and use molecular genetic methodologies to characterize ethnicity. Medical record review for sex and age of onset. Ancestry analysis compared results from the principal component analysis of whole-genome genotype data from MD patients to self-identified ancestry in control samples. House Clinic in Los Angeles. Definitive MD patients. Our review of medical records for definitive MD patients reveals that women are more susceptible than men. We also find that men and women have nearly identical age of onset for disease. Lastly, interrogation of molecular genetic data with principal component analysis allowed detailed observations about the ethnic ancestry of our patients. Comparison of the ethnicity of MD patients presenting to our tertiary care clinic with the self-recollected ethnicity of all patients visiting the clinic revealed an ethnic bias, with Caucasians presenting at a higher frequency than expected and the remaining major ethnicities populating Los Angeles (Hispanics, Blacks, and Asians) presenting at a lower frequency than expected. To the best of our knowledge, this report is the first ethnic characterization of a large MD cohort from a large metropolitan region using molecular genetic data. Our data suggest that there is a bias in sex and ethnic susceptibility to this disease.

  5. Evaluation of microsatellite loci from libraries derived from the wild diploid 'Calcutta 4' and 'Ouro' banana cultivars.

    PubMed

    Silva, P R O; Jesus, O N J; Creste, S; Figueira, A; Amorim, E P; Ferreira, C F

    2015-09-25

    Microsatellite markers have been widely used in the quantification of genetic variability and for genetic breeding in Musa spp. The objective of the present study was to evaluate the discriminatory power of microsatellite markers derived from 'Calcutta 4' and 'Ouro' genomic libraries, and to analyze the genetic variability among 30 banana accessions. Thirty-eight markers were used: 15 from the 'Ouro' library and 23 from the 'Calcutta 4' library. Genetic diversity was evaluated by considering SSR markers as both dominant markers because of the presence of triploid accessions, and co-dominant markers. For the dominant analysis, polymorphism information content (PIC) values for 44 polymorphic markers ranged from 0.063 to 0.533, with a mean value of 0.24. A dendrogram analysis separated the BGB-Banana accessions into 4 groups: the 'Ouro' and 'Muísa Tia' accessions were the most dissimilar (93% dissimilarity), while the most similar accessions were 'Pacovan' and 'Walha'. The mean genetic distance between samples was 0.74. For the analysis considering SSR markers as co-dominants, using only diploid accessions, two groups were separated based on their genome contents (A and B). The PIC values for the markers from the 'Calcutta 4' library varied from 0.4836 to 0.7886, whereas those from the 'Ouro' library ranged from 0.3800 to 0.7521. Given the high PIC values, the markers from both the libraries showed high discriminatory power, and can therefore be widely applied for analysis of genetic diversity, population structures, and linkage mapping in Musa spp.

  6. Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases.

    PubMed

    Guerreiro, Rita; Escott-Price, Valentina; Darwent, Lee; Parkkinen, Laura; Ansorge, Olaf; Hernandez, Dena G; Nalls, Michael A; Clark, Lorraine; Honig, Lawrence; Marder, Karen; van der Flier, Wiesje; Holstege, Henne; Louwersheimer, Eva; Lemstra, Afina; Scheltens, Philip; Rogaeva, Ekaterina; St George-Hyslop, Peter; Londos, Elisabet; Zetterberg, Henrik; Ortega-Cubero, Sara; Pastor, Pau; Ferman, Tanis J; Graff-Radford, Neill R; Ross, Owen A; Barber, Imelda; Braae, Anne; Brown, Kristelle; Morgan, Kevin; Maetzler, Walter; Berg, Daniela; Troakes, Claire; Al-Sarraj, Safa; Lashley, Tammaryn; Compta, Yaroslau; Revesz, Tamas; Lees, Andrew; Cairns, Nigel J; Halliday, Glenda M; Mann, David; Pickering-Brown, Stuart; Powell, John; Lunnon, Katie; Lupton, Michelle K; Dickson, Dennis; Hardy, John; Singleton, Andrew; Bras, Jose

    2016-02-01

    The similarities between dementia with Lewy bodies (DLB) and both Parkinson's disease (PD) and Alzheimer's disease (AD) are many and range from clinical presentation, to neuropathological characteristics, to more recently identified, genetic determinants of risk. Because of these overlapping features, diagnosing DLB is challenging and has clinical implications since some therapeutic agents that are applicable in other diseases have adverse effects in DLB. Having shown that DLB shares some genetic risk with PD and AD, we have now quantified the amount of sharing through the application of genetic correlation estimates, and show that, from a purely genetic perspective, and excluding the strong association at the APOE locus, DLB is equally correlated to AD and PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. EvolQG - An R package for evolutionary quantitative genetics

    PubMed Central

    Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel

    2016-01-01

    We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352

  8. Genetics of the Framingham Heart Study Population

    PubMed Central

    Govindaraju, Diddahally R.; Cupples, L. Adrienne; Kannel, William B.; O’Donnell, Christopher J.; Atwood, Larry D.; D’Agostino, Ralph B.; Fox, Caroline S.; Larson, Marty; Levy, Daniel; Morabito, Joanne; Vasan, Ramachandran S.; Splansky, Greta Lee; Wolf, Philip A.; Benjamin, Emelia J.

    2010-01-01

    This article provides an introduction to the Framingham Heart Study (FHS) and the genetic research related to cardiovascular diseases conducted in this unique population1. It briefly describes the origins of the study, the risk factors that contribute to heart disease and the approaches taken to discover the genetic basis of some of these risk factors. The genetic architecture of several biological risk factors has been explained using family studies, segregation analysis, heritability, phenotypic and genetic correlations. Many quantitative trait loci underlying cardiovascular diseases have been discovered using different molecular markers. Additionally, results from genome-wide association studies using 100,000 markers, and the prospects of using 550,000 markers for association studies are presented. Finally, the use of this unique sample in genotype and environment interaction is described. PMID:19010253

  9. Genetic variation in insecticide tolerance in a population of southern leopard frogs (Rana sphenocephala): Implications for amphibian conservation

    USGS Publications Warehouse

    Bridges, C.M.; Semlitsch, R.D.

    2001-01-01

    Currently, conservation efforts are devoted to determining the extent and the causes of the decline of many amphibian species worldwide. Human impacts frequently degrade amphibian habitat and have been implicated in many declines. Because genetic variance is critical in determining the persistence of a species in a changing environment, we examined the amount of genetic variability present in a single population for tolerance to an environmental stressor. We examined the amount of genetic variability among full- and half-sib families in a single population of southern leopard frogs (Rana sphenocephala) with respect to their tolerance to lethal concentrations of the agricultural chemical, carbaryl. Analysis of time-to-death data indicated significant differences among full-sib families and suggests a large amount of variability present in the responses to this environmental stressor. Significant differences in responses among half-sib families indicated that there is additive genetic variance. These data suggest that this population may have the ability to adapt to environmental stressors. It is possible that declines of amphibian populations in the western United States may be attributed to low genetic variability resulting from limited migration among populations and small population sizes.

  10. What factors may influence psychological well being at three months and one year post BRCA genetic result disclosure?

    PubMed

    Bosch, Nina; Junyent, Núria; Gadea, Neus; Brunet, Joan; Ramon y Cajal, Teresa; Torres, Asunción; Graña, Begoña; Velasco, Angela; Darder, Esther; Mensa, Irene; Balmaña, Judith

    2012-12-01

    Genetic testing for breast cancer predisposition has been available in the clinical practice for more than a decade. How the result of genetic testing affects the psychological well-being of the individuals is an under-researched area in many populations. Follow-up analysis of psychological well-being via HADS scale was performed in 364 individuals at 3 months and 1 year after the disclosure of BRCA1/2 genetic result. We analyzed potential predictors for pathological anxiety and variables associated to the variation of HADS scores over time. At pre-test only 16% and 4% of individuals presented symptoms of anxiety and depression, respectively. Having a prior diagnosis of cancer and presenting a pathological HADS-A score at the baseline were associated with clinically significant anxiety scores at one year, but the genetic test result was not. Thus, BRCA genetic testing does not influence short and long term anxiety and depression levels among those identified as mutation carriers. It is our task to demystify the allegedly negative impact of BRCA testing on psychological well being to increase the uptake of genetic testing and benefit those who are at high risk of developing breast, ovarian and prostate cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Plasmodium falciparum Genetic Diversity in Continental Equatorial Guinea before and after Introduction of Artemisinin-Based Combination Therapy

    PubMed Central

    Guerra, Mónica; Neres, Rita; Salgueiro, Patrícia; Mendes, Cristina; Ndong-Mabale, Nicolas; Berzosa, Pedro; de Sousa, Bruno

    2016-01-01

    ABSTRACT Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa. PMID:27795385

  12. Plenary III-04: Media Messages and Public Perceptions of Direct-to-Consumer Genetics: Results of a Media Analysis and Focus Group Study

    PubMed Central

    Rahm, Alanna Kulchak; Dearing, James; Feigelson, Heather Spencer; Tracer, David; Bull, Sheana

    2011-01-01

    Background Information about genetics and the promise of genomic medicine is commonplace in the mass media. How the mass media themselves contribute – or not – to the persistence of this issue and its perception by the public is the topic of this presentation. The purpose of this study is to investigate the structural and individual perspectives on the issue of direct-to-consumer (DTC) genetics, and assess the degree of correspondence across these perspectives. Methods I conducted a media analysis to determine how the issue of DTC genetics has been framed in mass media stories and the salient topics related to the issue. I conducted focus groups to determine individual knowledge, attitudes and beliefs about the issue of DTC genetics. Results A final sample of 398 mass media stories of DTC genetics from Lexis-Nexis Academic archives between September 1, 2007 and September 30, 2009 were coded for salience and frames. Fourteen focus groups were conducted between October, 2009 and March, 2010 with Kaiser Permanente Colorado members and medical staff. Focus group transcripts were coded for salience and framing of the issue and compared with the media analysis results.Study results found that the issue of DTC genetics was not very important to focus group participants except as it related to the topic of breast cancer. Mass media message topics and frames showed differences over time. Focus group participants were generally negative towards the issue while the mass media was mostly positive towards DTC genetics. Focus group participants used some of the many frames to understand the issue that were utilized by the mass media to package the issue, but participants mainly framed the issue in terms of prevention and a pandora’s box, while the mass media presented the issue more in terms of progressive and discrimination frames. Conclusions The mass media appears to function as a field of power for the issue of DTC genetics with the consumers in the middle of the contests. A higher-level concept of an “informed consumer” emerged from the focus groups that appears to provide consumers a degree of power in this battlefield as well.

  13. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: a systematic review and meta-analysis protocol.

    PubMed

    Nansseu, Jobert Richie N; Ngo-Um, Suzanne S; Balti, Eric V

    2016-11-10

    In the absence of existing data, the present review intends to determine the incidence, prevalence and/or genetic determinants of neonatal diabetes mellitus (NDM), with expected contribution to disease characterization. We will include cross-sectional, cohort or case-control studies which have reported the incidence, prevalence and/or genetic determinants of NDM between January 01, 2000 and May 31, 2016, published in English or French languages and without any geographical limitation. PubMed and EMBASE will be extensively screened to identify potentially eligible studies, completed by manual search. Two authors will independently screen, select studies, extract data, and assess the risk of bias; disagreements will be resolved by consensus. Clinical heterogeneity will be investigated by examining the design and setting (including geographic region), procedure used for genetic testing, calculation of incidence or prevalence, and outcomes in each study. Studies found to be clinically homogeneous will be pooled together through a random effects meta-analysis. Statistical heterogeneity will be assessed using the chi-square test of homogeneity and quantified using the I 2 statistic. In case of substantial heterogeneity, subgroup analyses will be undertaken. Publication bias will be assessed with funnel plots, complemented with the use of Egger's test of bias. This systematic review and meta-analysis is expected to draw a clear picture of phenotypic and genotypic presentations of NDM in order to better understand the condition and adequately address challenges in respect with its management. PROSPERO CRD42016039765.

  14. Machine learning applications in genetics and genomics.

    PubMed

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  15. Label-free probing of genes by time-domain terahertz sensing.

    PubMed

    Haring Bolivar, P; Brucherseifer, M; Nagel, M; Kurz, H; Bosserhoff, A; Büttner, R

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a freespace analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  16. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. | Office of Cancer Genomics

    Cancer.gov

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.

  17. Policy analysis for prenatal genetic diagnosis.

    PubMed

    Thompson, M; Milunsky, A

    1979-01-01

    Consideration of the analytic difficulties faced in estimating the benefits and costs of prenatal genetic diagnosis, coupled with a brief review of existing benefit-cost studies, leads to the conclusion that public subsidy of prenatal testing can yield benefits substantially in excess of costs. The practical obstacles to such programs include the attitudes of prospective parents, a lack of knowledge, monetary barriers, inadequately organized medical resources, and the political issue of abortion. Policy analysis can now nevertheless formulate principles and guide immediate actions to improve present utilization of prenatal testing and to facilitate possible future expansion of these diagnostic techniques.

  18. Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens)

    USGS Publications Warehouse

    Coulon, A.; Fitzpatrick, J.W.; Bowman, R.; Stith, B.M.; Makarewich, C.A.; Stenzler, L.M.; Lovette, I.J.

    2008-01-01

    The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.

  19. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    PubMed

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  20. Experiencing new forms of genetic choice: findings from an ethnographic study of preimplantation genetic diagnosis.

    PubMed

    Roberts, Celia; Franklin, Sarah

    2004-12-01

    Contemporary scientific and clinical knowledges and practices continue to make available new forms of genetic information, and to create new forms of reproductive choice. For example, couples at high risk of passing on a serious genetic condition to their offspring in Britain today have the opportunity to use Preimplantation Genetic Diagnosis (PGD) to select embryos that are unaffected by serious genetic disease. This information assists these couples in making reproductive choices. This article presents an analysis of patients' experiences of making the decision to undertake PGD treatment and of making reproductive choices based on genetic information. We present qualitative interview data from an ethnographic study of PGD based in two British clinics which indicate how these new forms of genetic choice are experienced by patients. Our data suggest that PGD patients make decisions about treatment in a complex way, taking multiple variables into account, and maintaining ongoing assessments of the multiple costs of engaging with PGD. Patients are aware of broader implications of their decisions, at personal, familial, and societal levels, as well as clinical ones. Based on these findings we argue that the ethical and social aspects of PGD are often as innovative as the scientific and medical aspects of this technique, and that in this sense, science cannot be described as "racing ahead" of society.

  1. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices.

    PubMed

    Drori, Elyashiv; Rahimi, Oshrit; Marrano, Annarita; Henig, Yakov; Brauner, Hodaya; Salmon-Divon, Mali; Netzer, Yishay; Prazzoli, Maria Lucia; Stanevsky, Maria; Failla, Osvaldo; Weiss, Ehud; Grando, Maria Stella

    2017-03-17

    The importance and extent of wine consumption in all life aspects at the Holy Land is well documented. The Muslim influence in this region led to the abandonment of winemaking practices, and possible loss of indigenous wine varieties. Here we present a country wide collection of the local grapevine population including wild and cultivated forms, and its characterization by genetic, ampelographic and enological methods. The ampelographic analysis shows clear differences between Sativa and Sylvestris groups in flower, leaf and cluster parameters, and that most Sativa belong to proles orientalis. Genetic population analysis was conducted by analyzing 22 common SSR markers, determining first the unique genotypes, and internally assessing the population's structure, showing the existence of two distinct Sativa and Sylvestris populations, and a third mixed one. Likewise, the relationship between the Israeli grapevine population and grapevine populations in Europe and parts of Asia was investigated, showing that the Israeli Sativa and Sylvestris populations cluster closely together, suggesting a common genetic source. Lastly, the enological characteristics of selected Sativa and Sylvestris genotypes are presented, demonstrating their potential for quality wine production. This research significantly contributes toward the re-establishment of indigenous and traditional local grapevine varieties into the modern international wine industry.

  2. Genetic structure of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) on the transvolcanic Mexican belt.

    PubMed

    Alcalá, Raúl E; Domínguez, César A

    2012-06-01

    Most species of Pinguicula present a montane distribution with populations located at high altitudes. In this context, we proposed that populations of Pinguicula species could be genetically differentiated even at a local scale. This study supported that prediction, as a RAPD-based analysis of molecular variance revealed a high degree of genetic structure (Φ (st) = 0.157, P = 0.001) and low gene flow (Nm = 1.0) among four central populations of Pinguicula moranensis in Mexico, with a maximum geographic separation of about 140 km. The four populations also exhibited high levels of genetic diversity (mean Nei's genetic diversity = 0.3716; % polymorphism = 95.45%). The evolutionary implications of the genetic structure found in P. moranensis for other species in the genus are discussed in the context of the naturally fragmented distribution and a set of life history traits shared by most Pinguicula species that could promote geographic isolation and limited gene flow.

  3. Genetic sex determination assays in 53 mammalian species: Literature analysis and guidelines for reporting standardization.

    PubMed

    Hrovatin, Karin; Kunej, Tanja

    2018-01-01

    Erstwhile, sex was determined by observation, which is not always feasible. Nowadays, genetic methods are prevailing due to their accuracy, simplicity, low costs, and time-efficiency. However, there is no comprehensive review enabling overview and development of the field. The studies are heterogeneous, lacking a standardized reporting strategy. Therefore, our aim was to collect genetic sexing assays for mammals and assemble them in a catalogue with unified terminology. Publications were extracted from online databases using key words such as sexing and molecular. The collected data were supplemented with species and gene IDs and the type of sex-specific sequence variant (SSSV). We developed a catalogue and graphic presentation of diagnostic tests for molecular sex determination of mammals, based on 58 papers published from 2/1991 to 10/2016. The catalogue consists of five categories: species, genes, SSSVs, methods, and references. Based on the analysis of published literature, we propose minimal requirements for reporting, consisting of: species scientific name and ID, genetic sequence with name and ID, SSSV, methodology, genomic coordinates (e.g., restriction sites, SSSVs), amplification system, and description of detected amplicon and controls. The present study summarizes vast knowledge that has up to now been scattered across databases, representing the first step toward standardization regarding molecular sexing, enabling a better overview of existing tests and facilitating planned designs of novel tests. The project is ongoing; collecting additional publications, optimizing field development, and standardizing data presentation are needed.

  4. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia.

    PubMed

    Witt, S H; Streit, F; Jungkunz, M; Frank, J; Awasthi, S; Reinbold, C S; Treutlein, J; Degenhardt, F; Forstner, A J; Heilmann-Heimbach, S; Dietl, L; Schwarze, C E; Schendel, D; Strohmaier, J; Abdellaoui, A; Adolfsson, R; Air, T M; Akil, H; Alda, M; Alliey-Rodriguez, N; Andreassen, O A; Babadjanova, G; Bass, N J; Bauer, M; Baune, B T; Bellivier, F; Bergen, S; Bethell, A; Biernacka, J M; Blackwood, D H R; Boks, M P; Boomsma, D I; Børglum, A D; Borrmann-Hassenbach, M; Brennan, P; Budde, M; Buttenschøn, H N; Byrne, E M; Cervantes, P; Clarke, T-K; Craddock, N; Cruceanu, C; Curtis, D; Czerski, P M; Dannlowski, U; Davis, T; de Geus, E J C; Di Florio, A; Djurovic, S; Domenici, E; Edenberg, H J; Etain, B; Fischer, S B; Forty, L; Fraser, C; Frye, M A; Fullerton, J M; Gade, K; Gershon, E S; Giegling, I; Gordon, S D; Gordon-Smith, K; Grabe, H J; Green, E K; Greenwood, T A; Grigoroiu-Serbanescu, M; Guzman-Parra, J; Hall, L S; Hamshere, M; Hauser, J; Hautzinger, M; Heilbronner, U; Herms, S; Hitturlingappa, S; Hoffmann, P; Holmans, P; Hottenga, J-J; Jamain, S; Jones, I; Jones, L A; Juréus, A; Kahn, R S; Kammerer-Ciernioch, J; Kirov, G; Kittel-Schneider, S; Kloiber, S; Knott, S V; Kogevinas, M; Landén, M; Leber, M; Leboyer, M; Li, Q S; Lissowska, J; Lucae, S; Martin, N G; Mayoral-Cleries, F; McElroy, S L; McIntosh, A M; McKay, J D; McQuillin, A; Medland, S E; Middeldorp, C M; Milaneschi, Y; Mitchell, P B; Montgomery, G W; Morken, G; Mors, O; Mühleisen, T W; Müller-Myhsok, B; Myers, R M; Nievergelt, C M; Nurnberger, J I; O'Donovan, M C; Loohuis, L M O; Ophoff, R; Oruc, L; Owen, M J; Paciga, S A; Penninx, B W J H; Perry, A; Pfennig, A; Potash, J B; Preisig, M; Reif, A; Rivas, F; Rouleau, G A; Schofield, P R; Schulze, T G; Schwarz, M; Scott, L; Sinnamon, G C B; Stahl, E A; Strauss, J; Turecki, G; Van der Auwera, S; Vedder, H; Vincent, J B; Willemsen, G; Witt, C C; Wray, N R; Xi, H S; Tadic, A; Dahmen, N; Schott, B H; Cichon, S; Nöthen, M M; Ripke, S; Mobascher, A; Rujescu, D; Lieb, K; Roepke, S; Schmahl, C; Bohus, M; Rietschel, M

    2017-06-20

    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case-control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10 -7 ) and PKP4 (P=8.67 × 10 -7 ); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, P FDR =0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (r g =0.28 [P=2.99 × 10 -3 ]), SCZ (r g =0.34 [P=4.37 × 10 -5 ]) and MDD (r g =0.57 [P=1.04 × 10 -3 ]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.

  5. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China.

    PubMed

    Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang

    2015-12-01

    The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.

  6. Molecular genetic analysis for periodic fever syndromes: a supplemental role for the diagnosis of adult-onset Still's disease.

    PubMed

    Li, Hongbin; Abramova, Irina; Chesoni, Sandra; Yao, Qingping

    2018-06-17

    Adult-onset Still's disease (AOSD) represents a systemic autoinflammatory disease (SAID), and its diagnostic criteria are clinical without genetic testing. Given shared manifestations between AOSD and hereditary SAIDs, molecular analysis may help differentiate these diseases. A PubMed literature search was conducted using key words "adult-onset Still's disease," "autoinflammatory disease," and "genetic mutation" between 1970 and February 2018. Articles on genetic mutations in the genes MEFV, TNFRSF1A, mevalonate kinase, or NOD2 for hereditary SAIDs in AOSD/systemic onset juvenile idiopathic arthritis (SJIA) patients were reviewed and analyzed. Five case series studies consisting of a total of 162 of both adult and pediatric patients were included. All patients fulfilled the Yamaguchi criteria for AOSD or the diagnostic criteria for SJIA. The results showed that 31.4% (51/162) of patients were identified to carry at least one genetic variant for periodic fever syndromes. In addition, four patients with the diagnosis of SJIA in other reports were confirmed to have FMF or TRAPS with molecular testing. These data together suggest that some patients who satisfy the clinical diagnostic criteria for AOSD/SOJIA could well be diagnosed with other SAIDs; genetic testing, particularly for those with atypical presentation can be supplementary to the accurate disease diagnosis by excluding other autoinflammatory diseases. AOSD is a diagnosis of exclusion and shares common manifestations with other SAIDs. The currently employed clinical criteria for AOSD can cause misdiagnosis. An updated set of classification criteria to integrate the molecular genetic analysis to exclude other autoinflammatory diseases is warranted.

  7. A powerful and robust test in genetic association studies.

    PubMed

    Cheng, Kuang-Fu; Lee, Jen-Yu

    2014-01-01

    There are several well-known single SNP tests presented in the literature for detecting gene-disease association signals. Having in place an efficient and robust testing process across all genetic models would allow a more comprehensive approach to analysis. Although some studies have shown that it is possible to construct such a test when the variants are common and the genetic model satisfies certain conditions, the model conditions are too restrictive and in general difficult to verify. In this paper, we propose a powerful and robust test without assuming any model restrictions. Our test is based on the selected 2 × 2 tables derived from the usual 2 × 3 table. By signals from these tables, we show through simulations across a wide range of allele frequencies and genetic models that this approach may produce a test which is almost uniformly most powerful in the analysis of low- and high-frequency variants. Two cancer studies are used to demonstrate applications of the proposed test. © 2014 S. Karger AG, Basel.

  8. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    PubMed Central

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  9. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

    PubMed

    van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem

    2015-10-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.

  10. Ndufs4 related Leigh syndrome: A case report and review of the literature.

    PubMed

    Ortigoza-Escobar, Juan Darío; Oyarzabal, Alfonso; Montero, Raquel; Artuch, Rafael; Jou, Cristina; Jiménez, Cecilia; Gort, Laura; Briones, Paz; Muchart, Jordi; López-Gallardo, Ester; Emperador, Sonia; Pesini, Eduardo Ruiz; Montoya, Julio; Pérez, Belén; Rodríguez-Pombo, Pilar; Pérez-Dueñas, Belén

    2016-05-01

    The genetic causes of Leigh syndrome are heterogeneous, with a poor correlation between the phenotype and genotype. Here, we present a patient with an NDUFS4 mutation to expand the clinical and biochemical spectrum of the disease. A combined defect in the CoQ, PDH and RCC activities in our patient was due to an inappropriate assembly of the RCC complex I (CI), which was confirmed using Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. Targeted exome sequencing analysis allowed for the genetic diagnosis of this patient. We reviewed 198 patients with 24 different genetic defects causing RCC I deficiency and compared them to 22 NDUFS4 patients. We concluded that NDUFS4-related Leigh syndrome is invariably linked to an early onset severe phenotype that results in early death. Some data, including the clinical phenotype, neuroimaging and biochemical findings, can guide the genetic study in patients with RCC I deficiency. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  11. Pitfalls in genetic analysis of pheochromocytomas/paragangliomas-case report.

    PubMed

    Canu, Letizia; Rapizzi, Elena; Zampetti, Benedetta; Fucci, Rossella; Nesi, Gabriella; Richter, Susan; Qin, Nan; Giachè, Valentino; Bergamini, Carlo; Parenti, Gabriele; Valeri, Andrea; Ercolino, Tonino; Eisenhofer, Graeme; Mannelli, Massimo

    2014-07-01

    About 35% of patients with pheochromocytoma/paraganglioma carry a germline mutation in one of the 10 main susceptibility genes. The recent introduction of next-generation sequencing will allow the analysis of all these genes in one run. When positive, the analysis is generally unequivocal due to the association between a germline mutation and a concordant clinical presentation or positive family history. When genetic analysis reveals a novel mutation with no clinical correlates, particularly in the presence of a missense variant, the question arises whether the mutation is pathogenic or a rare polymorphism. We report the case of a 35-year-old patient operated for a pheochromocytoma who turned out to be a carrier of a novel SDHD (succinate dehydrogenase subunit D) missense mutation. With no positive family history or clinical correlates, we decided to perform additional analyses to test the clinical significance of the mutation. We performed in silico analysis, tissue loss of heterozygosity analysis, immunohistochemistry, Western blot analysis, SDH enzymatic assay, and measurement of the succinate/fumarate concentration ratio in the tumor tissue by tandem mass spectrometry. Although the in silico analysis gave contradictory results according to the different methods, all the other tests demonstrated that the SDH complex was conserved and normally active. We therefore came to the conclusion that the variant was a nonpathogenic polymorphism. Advancements in technology facilitate genetic analysis of patients with pheochromocytoma but also offer new challenges to the clinician who, in some cases, needs clinical correlates and/or functional tests to give significance to the results of the genetic assay.

  12. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP.

    PubMed

    El Hamouchi, Adil; El Kacem, Sofia; Ejghal, Rajaa; Lemrani, Meryem

    2018-06-14

    Leishmania infantum is the causative agent of human visceral leishmaniasis (VL) and sporadic human cutaneous leishmaniasis (CL) in the Mediterranean region. The genetic variation of the Leishmania parasites may result in different phenotypes that can be associated with the geographical distribution and diversity of the clinical manifestations. The main objective of this study was to explore the genetic polymorphism in L. infantum isolates from human and animal hosts in different regions of Morocco. The intraspecific genetic variability of 40 Moroccan L. infantum MON-1 strains isolated from patients with VL (n = 31) and CL (n = 2) and from dogs (n = 7) was evaluated by PCR-RFLP of nagt, a single-copy gene encoding N-acetylglucosamine-1-phosphate transferase. For a more complete analysis of L. infantum polymorphism, we included the restriction patterns of nagt from 17 strains available in the literature and patterns determined by in-silico digestion of three sequences from the GenBank database. Moroccan L. infantum strains presented a certain level of genetic diversity and six distinct nagt-RFLP genotypes were identified. Three of the six genotypes were exclusively identified in the Moroccan population of L. infantum: variant M1 (15%), variant M2 (7.5%), and variant M3 (2.5%). The most common genotype (65%), variant 2 (2.5%), and variant 4 (7.5%), were previously described in several countries with endemic leishmaniasis. Phylogenetic analysis segregated our L. infantum population into two distinct clusters, whereas variant M2 was clearly distinguished from both cluster I and cluster II. This distribution highlights the degree of genetic variability among the Moroccan L. infantum population. The nagt PCR-RFLP method presented here showed an important genetic heterogeneity among Moroccan L. infantum strains isolated from human and canine reservoirs with 6 genotypes identified. Three of the six Moroccan nagt genotypes, have not been previously described and support the particular genetic diversity of the Moroccan L. infantum population reported in other studies.

  13. The genetic relationship between extirpated and contemporary Atlantic salmon Salmo salar L. lines from the southern Baltic Sea.

    PubMed

    Bernaś, Rafał; Poćwierz-Kotus, Anita; Dębowski, Piotr; Wenne, Roman

    2016-04-01

    The genetic relationship between original Atlantic salmon populations that are now extinct in the southern Baltic Sea and the present-day populations has long been controversial. To investigate and clarify this issue, we successfully genotyped individuals of the historical populations from the Oder and Vistula Rivers using DNA extracted from dried scales with the Atlantic salmon single nucleotide polymorphism array. Our results showed a global F ST of 0.2515 for all pairs of loci, which indicates a high level of genetic differentiation among the groups analyzed in this study. Pairwise F ST values were significant for all comparisons and the highest values were found between present-day reintroduced Slupia River salmon and extinct Vistula River Atlantic salmon. Bayesian analysis of genetic structure revealed the existence of substructures in the extirpated Polish populations and three main clades among studied stocks. The historical salmon population from the Oder River was genetically closer to present-day salmon from the Neman River than to the historical salmon from the Vistula River. Vistula salmon clearly separated from all other analyzed salmon stocks. It is likely that the origins of the Atlantic salmon population from the Morrum River and the Polish historical native populations are different.

  14. Re-examining the Gene in Personalized Genomics

    NASA Astrophysics Data System (ADS)

    Bartol, Jordan

    2013-10-01

    Personalized genomics companies (PG; also called `direct-to-consumer genetics') are businesses marketing genetic testing to consumers over the Internet. While much has been written about these new businesses, little attention has been given to their roles in science communication. This paper provides an analysis of the gene concept presented to customers and the relation between the information given and the science behind PG. Two quite different gene concepts are present in company rhetoric, but only one features in the science. To explain this, we must appreciate the delicate tension between PG, academic science, public expectation, and market forces.

  15. Phylogenetic analysis reveals multiple introductions of Cynodon species in Australia

    USDA-ARS?s Scientific Manuscript database

    The distinction between native and introduced flora in Australia presents some unique challenges given its geological and colonization history. While it is believed that seven species of Cynodon are present in Australia, no genetic analyses, to date, have investigated the origin, diversity and phylo...

  16. Golden Ratio Genetic Algorithm Based Approach for Modelling and Analysis of the Capacity Expansion of Urban Road Traffic Network

    PubMed Central

    Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun

    2015-01-01

    This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512

  17. Imprinting center analysis in Prader-Willi and Angelman syndrome patients with typical and atypical phenotypes.

    PubMed

    Camprubí, Cristina; Coll, Maria Dolors; Villatoro, Sergi; Gabau, Elisabeth; Kamli, Amine; Martínez, Maria Jesus; Poyatos, David; Guitart, Miriam

    2007-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are genetic disorders caused by a deficiency of imprinted gene expression from the paternal or maternal chromosome 15, respectively. This deficiency is due to the deletion of the 15q11-q13 region, parental uniparental disomy of the chromosome 15, or imprinting defect (ID). Mutation of the UBE3A gene causes approximately 10% of AS cases. In this present study, we describe the molecular analysis and phenotypes of two PWS patients and four AS patients with ID. One of the PWS patients has a non-familial imprinting center (IC) deletion and displayed a severe phenotype with an atypical PWS appearance, hyperactivity and psychiatric vulnerability. The other PWS and AS patients did not present genetic abnormalities in the IC, suggesting an epimutation as the genetic cause. The methylation pattern of two AS patients showed a faint maternal band corresponding to a mosaic ID. One of these mosaic patients displayed a mild AS phenotype while the other displayed a PWS-like phenotype.

  18. Stakeholder perspectives on decision-analytic modeling frameworks to assess genetic services policy.

    PubMed

    Guzauskas, Gregory F; Garrison, Louis P; Stock, Jacquie; Au, Sylvia; Doyle, Debra Lochner; Veenstra, David L

    2013-01-01

    Genetic services policymakers and insurers often make coverage decisions in the absence of complete evidence of clinical utility and under budget constraints. We evaluated genetic services stakeholder opinions on the potential usefulness of decision-analytic modeling to inform coverage decisions, and asked them to identify genetic tests for decision-analytic modeling studies. We presented an overview of decision-analytic modeling to members of the Western States Genetic Services Collaborative Reimbursement Work Group and state Medicaid representatives and conducted directed content analysis and an anonymous survey to gauge their attitudes toward decision-analytic modeling. Participants also identified and prioritized genetic services for prospective decision-analytic evaluation. Participants expressed dissatisfaction with current processes for evaluating insurance coverage of genetic services. Some participants expressed uncertainty about their comprehension of decision-analytic modeling techniques. All stakeholders reported openness to using decision-analytic modeling for genetic services assessments. Participants were most interested in application of decision-analytic concepts to multiple-disorder testing platforms, such as next-generation sequencing and chromosomal microarray. Decision-analytic modeling approaches may provide a useful decision tool to genetic services stakeholders and Medicaid decision-makers.

  19. Qualitative and Quantitative Pedigree Analysis: Graph Theory, Computer Software, and Case Studies.

    ERIC Educational Resources Information Center

    Jungck, John R.; Soderberg, Patti

    1995-01-01

    Presents a series of elementary mathematical tools for re-representing pedigrees, pedigree generators, pedigree-driven database management systems, and case studies for exploring genetic relationships. (MKR)

  20. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics.

    PubMed

    Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid

    2006-04-04

    A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.

  1. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-11-18

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.

  2. Phenotype analysis of congenital and neurodevelopmental disorders in the next generation sequencing era.

    PubMed

    Carey, John C

    2017-09-01

    The designation, phenotype, was proposed as a term by Wilhelm Johannsen in 1909. The word is derived from the Greek, phano (showing) and typo (type), phanotypos. Phenotype has become a widely recognized term, even outside of the genetics community, in recent years with the ongoing identification of human disease genes. The term has been defined as the observable constitution of an organism, but sometimes refers to a condition when a person has a particular clinical presentation. Analysis of phenotype is a timely theme because advances in the understanding of the genetic basis of human disease and the emergence of next generation sequencing have spurred a renewed interest in phenotype and the proposal to establish a "Human Phenome Project." This article summarizes the principles of phenotype analysis that are important in medical genetics and describes approaches to comprehensive phenotype analysis in the investigation of patients with human disorders. I discuss the various elements related to disease phenotypes and highlight neurofibromatosis type 1 and the Elements of Morphology Project as illustrations of the principles. In recent years, the notion of "deep phenotyping" has emerged. Currently there are now a number of proposed strategies and resources to approach this concept. Not since the 1960s and 1970s has there been such an exciting time in the history of medicine surrounding the analysis of phenotype in genetic disorders. © 2017 Wiley Periodicals, Inc.

  3. Analysis of genetic diversity of Tunisian pistachio (Pistacia vera L.) using sequence-related amplified polymorphism (SRAP) markers.

    PubMed

    Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A

    2016-10-17

    Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (G ST = 0.307). High gene flow (N m = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.

  4. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes.

    PubMed

    Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis

    2013-01-01

    Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.

  5. Genetically Based Location from Triploid Populations and Gene Ontology of a 3.3-Mb Genome Region Linked to Alternaria Brown Spot Resistance in Citrus Reveal Clusters of Resistance Genes

    PubMed Central

    Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis

    2013-01-01

    Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids. PMID:24116149

  6. Phylogeography of the sandy beach amphipod Haustorioides japonicus along the Sea of Japan: Paleogeographical signatures of cryptic regional divergences

    NASA Astrophysics Data System (ADS)

    Takada, Yoshitake; Sakuma, Kay; Fujii, Tetsuo; Kojima, Shigeaki

    2018-01-01

    Recent findings of genetic breaks within apparently continuous marine populations challenge the traditional vicariance paradigm in population genetics. Such "invisible" boundaries are sometimes associated with potential geographic barriers that have forced divergence of an ancestral population, habitat discontinuities, biogeographic disjunctions due to environmental gradients, or a combination of these factors. To explore the factors that influence the genetic population structure of apparently continuous populations along the Sea of Japan, the sandy beach amphipod Haustorioides japonicus was examined. We sampled a total of 300 individuals of H. japonicus from the coast of Japan, and obtained partial sequences of the mitochondrial COI gene. The sequences from 19 local populations were clustered into five groups (Northwestern Pacific, Northern, Central, Southern Sea of Japan, and East China Sea) based on a spatial genetic mixture analysis and a minimum-spanning network. AMOVA and pairwise Fst tests further supported the significant divergence of the five groups. Phylogenetic analysis revealed the relationship among the haplotypes of H. japonicus and outgroups, which inferred the northward range expansion of the species. A relaxed molecular-clock Bayesian analysis inferred the early-to middle-Pleistocene divergence of the populations. Among the five clusters, the Central Sea of Japan showed the highest values for genetic diversity indices indicating the existence of a relatively stable and large population there. The hypothesis is also supported by Bayesian Skyline Plots that showed sudden population expansion for all the clusters except for Central Sea of Japan. The present study shows genetic boundaries between the Sea of Japan and the neighboring seas, probably due to geographic isolation during the Pleistocene glacial periods. We further found divergence between the populations along the apparently continuous coast of the Sea of Japan. Historical changes in the geographic range of H. japonicus in relation to sandy beach habitat availability, account for the genetic breaks among the three populations in the Sea of Japan. The present results infer that the past geographic events influenced the population formation of H. japonicus.

  7. Parallelism and Epistasis in Skeletal Evolution Identified through Use of Phylogenomic Mapping Strategies

    PubMed Central

    Daane, Jacob M.; Rohner, Nicolas; Konstantinidis, Peter; Djuranovic, Sergej; Harris, Matthew P.

    2016-01-01

    The identification of genetic mechanisms underlying evolutionary change is critical to our understanding of natural diversity, but is presently limited by the lack of genetic and genomic resources for most species. Here, we present a new comparative genomic approach that can be applied to a broad taxonomic sampling of nonmodel species to investigate the genetic basis of evolutionary change. Using our analysis pipeline, we show that duplication and divergence of fgfr1a is correlated with the reduction of scales within fishes of the genus Phoxinellus. As a parallel genetic mechanism is observed in scale-reduction within independent lineages of cypriniforms, our finding exposes significant developmental constraint guiding morphological evolution. In addition, we identified fixed variation in fgf20a within Phoxinellus and demonstrated that combinatorial loss-of-function of fgfr1a and fgf20a within zebrafish phenocopies the evolved scalation pattern. Together, these findings reveal epistatic interactions between fgfr1a and fgf20a as a developmental mechanism regulating skeletal variation among fishes. PMID:26452532

  8. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae)

    PubMed Central

    Manni, Mosè; Lima, Kátia Manuela; Guglielmino, Carmela Rosalba; Lanzavecchia, Silvia Beatriz; Juri, Marianela; Vera, Teresa; Cladera, Jorge; Scolari, Francesca; Gomulski, Ludvik; Bonizzoni, Mariangela; Gasperi, Giuliano; Silva, Janisete Gomes; Malacrida, Anna Rodolfa

    2015-01-01

    Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area. PMID:26798258

  9. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    PubMed

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. PCR amplification and genetic analysis in a microwell cell culturing chip.

    PubMed

    Lindström, Sara; Hammond, Maria; Brismar, Hjalmar; Andersson-Svahn, Helene; Ahmadian, Afshin

    2009-12-21

    We have previously described a microwell chip designed for high throughput, long-term single-cell culturing and clonal analysis in individual wells providing a controlled way of studying high numbers of individual adherent or non-adherent cells. Here we present a method for the genetic analysis of cells cultured on-chip by PCR and minisequencing, demonstrated using two human adherent cell lines: one wild type and one with a single-base mutation in the p53 gene. Five wild type or mutated cells were seeded per well (in a defined set of wells, each holding 500 nL of culture medium) in a 672-microwell chip. The cell chip was incubated overnight, or cultured for up to five days, depending on the desired colony size, after which the cells were lysed and subjected to PCR directly in the wells. PCR products were detected, in the wells, using a biotinylated primer and a fluorescently labelled primer, allowing the products to be captured on streptavidin-coated magnetic beads and detected by a fluorescence microscope. In addition, to enable genetic analysis by minisequencing, the double-stranded PCR products were denatured and the immobilized strands were kept in the wells by applying a magnetic field from the bottom of the wells while the wells were washed, a minisequencing reaction mixture was added, and after incubation in appropriate conditions the expected genotypes were detected in the investigated microwells, simultaneously, by an array scanner. We anticipate that the technique could be used in mutation frequency screening, providing the ability to correlate cells' proliferative heterogeneity to their genetic heterogeneity, in hundreds of samples simultaneously. The presented method of single-cell culture and DNA amplification thus offers a potentially powerful alternative to single-cell PCR, with advantageous robustness and sensitivity.

  11. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    PubMed

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  12. Shared and unique common genetic determinants between pediatric and adult celiac disease.

    PubMed

    Senapati, Sabyasachi; Sood, Ajit; Midha, Vandana; Sood, Neena; Sharma, Suresh; Kumar, Lalit; Thelma, B K

    2016-07-22

    Based on age of presentation, celiac disease (CD) is categorised as pediatric CD and adult CD. It however remains unclear if these are genetically and/or phenotypically distinct disorders or just different spectrum of the same disease. We therefore explored the common genetic components underlying pediatric and adult CD in a well characterized north Indian cohort. A retrospective analysis of children (n = 531) and adult (n = 871) patients with CD between January 2001 and December 2010 was done. The database included basic demographic characteristics, clinical presentations, associated diseases and complications, if any. The genotype dataset was acquired for children (n = 217) and adult CD patients (n = 340) and controls (n = 736) using Immunochip. Association analysis was performed using logistic regression model to identify susceptibility genetic variants. The predominant form of CD was classical CD in both pediatric and adult CD groups. There was remarkable similarity between pediatric and adult CD except for quantitative differences between the two groups such as female preponderance, non-classical presentation, co-occurrence of other autoimmune diseases being more common amongst adult CD. Notably, same HLA-DQ2 and -DQ8 haplotypes were established as the major risk factors in both types of CD. In addition, a few suggestively associated (p < 5 × 10(-4)) non-HLA markers were identified of which only ANK3 (rs4948256-A; rs10994257-T) was found to be shared and explain risk for ~45 % of CD patients with HLA allele. Overall phenotypic similarity between pediatric and adult CD groups can be explained by contribution of same HLA risk alleles. Different non-HLA genes/loci with minor risk seem to play crucial role in disease onset and extra intestinal manifestation of CD. None of the non-HLA risk variants reached genome-wide significance, however most of them were shown to have functional implication to disease pathogenesis. Functional relevance of our findings needs to be investigated to address clinical heterogeneity of CD. This present study is the first comparative study based on common genetic markers to suggest that CD in pediatric age group and in adults are the spectrum of the same disease with novel and shared genetic risk determinants. Follow-up fine mapping studies with larger study cohorts are warranted for further genetic investigation.

  13. Personality and divorce: a genetic analysis.

    PubMed

    Jocklin, V; McGue, M; Lykken, D T

    1996-08-01

    M. McGue and D.T. Lykken (1992) found that divorce risk was, to a substantial degree, genetically mediated; prior research has identified numerous social and psychological factors that affect divorce risk (G.C. Kitson, K.B. Barbi, & M.J. Roach, 1985). The present study attempted to link these domains by examining the extent to which genetic influences on one such psychological factor, personality, explain divorce risk heritability. A sample of adult twins from the Minnesota Twin Registry completed a marital history questionnaire and the Multidimensional Personality Questionnaire (A. Tellegen, 1982). Positive Emotionality and Negative Emotionality factors were positively related to divorce risk, whereas Constraint was negatively related. In women and men, respectively, 30% and 42% of the heritability of divorce risk consisted of genetic factors affecting personality and divorce risk correlated largely as a result of these common genetic influences.

  14. Possibilities for the evolution of the genetic code from a preceding form

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1973-01-01

    Analysis of the interaction between mRNA codons and tRNA anticodons suggests a model for the evolution of the genetic code. Modification of the nucleic acid following the anticodon is at present essential in both eukaryotes and prokaryotes to ensure fidelity of translation of codons starting with A, and the amino acids which could be coded for before the evolution of the modifying enzymes can be deduced.

  15. The limitations of behavior-genetic analyses: comment on McGue, Elkins, Walden, and Iacono (2005).

    PubMed

    Greenberg, Gary

    2005-11-01

    This article takes issue with the behavior-genetic analysis of parenting style presented by M. McGue, I. Elkins, B. Walden, and W. G. Iacono. The author argues that the attribution of their findings to inherited genetic effects was without basis because McGue et al. never indicated how those genetic effects manifested themselves. Instead, McGue et al. neglected important, and inevitable, developmental effects that most developmental psychologists understand to influence parent and adolescent behavior. The author also suggests that there is great merit in adopting the approach of developmental systems theory in understanding McGue et al.'s findings in particular and all developmental phenomena in general. ((c) 2005 APA, all rights reserved).

  16. Investigating Married Adults' Communal Coping with Genetic Health Risk and Perceived Discrimination

    PubMed Central

    Smith, Rachel A.; Sillars, Alan; Chesnut, Ryan P.; Zhu, Xun

    2017-01-01

    Increased genetic testing in personalized medicine presents unique challenges for couples, including managing disease risk and potential discrimination as a couple. This study investigated couples' conflicts and support gaps as they coped with perceived genetic discrimination. We also explored the degree to which communal coping was beneficial in reducing support gaps, and ultimately stress. Dyadic analysis of married adults (N = 266, 133 couples), in which one person had the genetic risk for serious illness, showed that perceived discrimination predicted more frequent conflicts about AATD-related treatment, privacy boundaries, and finances, which, in turn, predicted wider gaps in emotion and esteem support, and greater stress for both spouses. Communal coping predicted lower support gaps for both partners and marginally lower stress. PMID:29731540

  17. Investigating Married Adults' Communal Coping with Genetic Health Risk and Perceived Discrimination.

    PubMed

    Smith, Rachel A; Sillars, Alan; Chesnut, Ryan P; Zhu, Xun

    2018-01-01

    Increased genetic testing in personalized medicine presents unique challenges for couples, including managing disease risk and potential discrimination as a couple. This study investigated couples' conflicts and support gaps as they coped with perceived genetic discrimination. We also explored the degree to which communal coping was beneficial in reducing support gaps, and ultimately stress. Dyadic analysis of married adults ( N = 266, 133 couples), in which one person had the genetic risk for serious illness, showed that perceived discrimination predicted more frequent conflicts about AATD-related treatment, privacy boundaries, and finances, which, in turn, predicted wider gaps in emotion and esteem support, and greater stress for both spouses. Communal coping predicted lower support gaps for both partners and marginally lower stress.

  18. Heuristic Identification of Biological Architectures for Simulating Complex Hierarchical Genetic Interactions

    PubMed Central

    Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C

    2015-01-01

    Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175

  19. Genetic diversity studies and identification of SSR markers associated with Fusarium wilt (Fusarium udum) resistance in cultivated pigeonpea (Cajanus cajan).

    PubMed

    Singh, A K; Rai, V P; Chand, R; Singh, R P; Singh, M N

    2013-01-01

    Genetic diversity and identification of simple sequence repeat markers correlated with Fusarium wilt resistance was performed in a set of 36 elite cultivated pigeonpea genotypes differing in levels of resistance to Fusarium wilt. Twenty-four polymorphic sequence repeat markers were screened across these genotypes, and amplified a total of 59 alleles with an average high polymorphic information content value of 0.52. Cluster analysis, done by UPGMA and PCA, grouped the 36 pigeonpea genotypes into two main clusters according to their Fusarium wilt reaction. Based on the Kruskal-Wallis ANOVA and simple regression analysis, six simple sequence repeat markers were found to be significantly associated with Fusarium wilt resistance. The phenotypic variation explained by these markers ranged from 23.7 to 56.4%. The present study helps in finding out feasibility of prescreened SSR markers to be used in genetic diversity analysis and their potential association with disease resistance.

  20. Compositional analysis of genetically modified corn events (NK603, MON88017×MON810 and MON89034×MON88017) compared to conventional corn.

    PubMed

    Rayan, Ahmed M; Abbott, Louise C

    2015-06-01

    Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Genetic analysis of the putative remains of general Władysław Sikorski].

    PubMed

    Kupiec, Tomasz; Branicki, Wojciech

    2009-01-01

    The paper presents results of genetic identification studies carried out in material collected during exhumation of the putative body of general Władysław Sikorski, buried in a sarcophagus in Saint Leonard's crypt in the Wawel Cathedral. The analysis of STR-type autosomal markers, Y-STR markers and sequences of HVI and HVII regions of mitochondrial DNA carried out in samples collected for genetic analysis--fragments of the thigh bone and a tooth--yielded a full set of results. The same mtDNA profile was also determined in hair revealed on the underpants and shirt secured from the studied body. The mitochondrial DNA profile determined in the bone material and also in the hair matched the profile characteristic for a female relative through the maternal line of general Władysław Sikorski. The obtained evidence supports the hypothesis that the studied body is that of general Sikorski. An additional analysis of position SNP rs12913832 located on the HERC2 gene revealed the presence of genotype C/C, which suggests that general Władysław Sikorski had light (most probably blue) eyes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  3. Genetic characterization, at the mitochondrial and nuclear DNA levels, of five Canary Island dog breeds.

    PubMed

    Suárez, N M; Betancor, E; Fregel, R; Pestano, J

    2013-08-01

    Many studies presenting genetic analysis of dog breeds have been conducted without the inclusion of island dog breeds, although isolation can be one of the main factors in their origin. Here we report the genetic analysis at the nuclear and mitochondrial DNA levels of five Canary Island dog breeds (Canarian Warren Hound, Canary Island Mastiff, Garafiano Shepherd, La Palma Rat-Hunter and El Hierro Wolfhound) to fill this gap and, at the same time, genetically characterize these breeds. We identified 168 alleles in autosomal microsatellites and 16 mitochondrial haplotypes. Observed and expected heterozygosities ranged from 0.556 to 0.783 and from 0.737 to 0.943 respectively. Furthermore, three haplotypes were newly described and exclusive to a particular breed (A17+ in the Canary Island Mastiff; A33+ in the Canarian Warren Hound; Bi in the La Palma Rat-Hunter). The outcome of our analyses also revealed different breed histories consistent with historical documents and hypothetical origin designations. Although mtDNA haplotypes showed poor breed discriminating power, autosomal markers allowed a clear clustering of each single population. We expect that our results, together with further analyses, will help to make the population histories of island dog breeds clearer. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  4. Statistical Optimization of Pharmacogenomics Association Studies: Key Considerations from Study Design to Analysis

    PubMed Central

    Grady, Benjamin J.; Ritchie, Marylyn D.

    2011-01-01

    Research in human genetics and genetic epidemiology has grown significantly over the previous decade, particularly in the field of pharmacogenomics. Pharmacogenomics presents an opportunity for rapid translation of associated genetic polymorphisms into diagnostic measures or tests to guide therapy as part of a move towards personalized medicine. Expansion in genotyping technology has cleared the way for widespread use of whole-genome genotyping in the effort to identify novel biology and new genetic markers associated with pharmacokinetic and pharmacodynamic endpoints. With new technology and methodology regularly becoming available for use in genetic studies, a discussion on the application of such tools becomes necessary. In particular, quality control criteria have evolved with the use of GWAS as we have come to understand potential systematic errors which can be introduced into the data during genotyping. There have been several replicated pharmacogenomic associations, some of which have moved to the clinic to enact change in treatment decisions. These examples of translation illustrate the strength of evidence necessary to successfully and effectively translate a genetic discovery. In this review, the design of pharmacogenomic association studies is examined with the goal of optimizing the impact and utility of this research. Issues of ascertainment, genotyping, quality control, analysis and interpretation are considered. PMID:21887206

  5. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.

    PubMed

    Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E

    2014-05-01

    Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.

  6. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  7. Comprehensive analysis of the mutation spectrum in 301 German ALS families.

    PubMed

    Müller, Kathrin; Brenner, David; Weydt, Patrick; Meyer, Thomas; Grehl, Torsten; Petri, Susanne; Grosskreutz, Julian; Schuster, Joachim; Volk, Alexander E; Borck, Guntram; Kubisch, Christian; Klopstock, Thomas; Zeller, Daniel; Jablonka, Sibylle; Sendtner, Michael; Klebe, Stephan; Knehr, Antje; Günther, Kornelia; Weis, Joachim; Claeys, Kristl G; Schrank, Berthold; Sperfeld, Anne-Dorte; Hübers, Annemarie; Otto, Markus; Dorst, Johannes; Meitinger, Thomas; Strom, Tim M; Andersen, Peter M; Ludolph, Albert C; Weishaupt, Jochen H

    2018-04-12

    Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions. Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families. 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1 , whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes. We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Current Controversies in Diagnosis and Management of Cleft Palate and Velopharyngeal Insufficiency

    PubMed Central

    Ysunza, Pablo Antonio; Repetto, Gabriela M.; Pamplona, Maria Carmen; Calderon, Juan F.; Shaheen, Kenneth; Chaiyasate, Konkgrit; Rontal, Matthew

    2015-01-01

    Background. One of the most controversial topics concerning cleft palate is the diagnosis and treatment of velopharyngeal insufficiency (VPI). Objective. This paper reviews current genetic aspects of cleft palate, imaging diagnosis of VPI, the planning of operations for restoring velopharyngeal function during speech, and strategies for speech pathology treatment of articulation disorders in patients with cleft palate. Materials and Methods. An updated review of the scientific literature concerning genetic aspects of cleft palate was carried out. Current strategies for assessing and treating articulation disorders associated with cleft palate were analyzed. Imaging procedures for assessing velopharyngeal closure during speech were reviewed, including a recent method for performing intraoperative videonasopharyngoscopy. Results. Conclusions from the analysis of genetic aspects of syndromic and nonsyndromic cleft palate and their use in its diagnosis and management are presented. Strategies for classifying and treating articulation disorders in patients with cleft palate are presented. Preliminary results of the use of multiplanar videofluoroscopy as an outpatient procedure and intraoperative endoscopy for the planning of operations which aimed to correct VPI are presented. Conclusion. This paper presents current aspects of the diagnosis and management of patients with cleft palate and VPI including 3 main aspects: genetics and genomics, speech pathology and imaging diagnosis, and surgical management. PMID:26273595

  9. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi).

    PubMed

    Álvares-Carvalho, S V; Duarte, J F; Santos, T C; Santos, R M; Silva-Mann, R; Carvalho, D

    2016-06-17

    In the face of a possible loss of genetic diversity in plants due the environmental changes, actions to ensure the genetic variability are an urgent necessity. The extraction of Brazilian pepper fruits is a cause of concern because it results in the lack of seeds in soil, hindering its distribution in space and time. It is important to address this concern and explore the species, used by riparian communities and agro-factories without considering the need for keeping the seeds for natural seed banks and for species sustainability. The objective of this study was to evaluate the structure and the genetic diversity in natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Twenty-two alleles in 223 individuals were identified from eight forest remnants located in the states of Minas Gerais, Espírito Santo, and Sergipe. All populations presented loci in Hardy-Weinberg equilibrium deviation. Four populations presented six combinations of loci in linkage disequilibrium. Six exclusive alleles were detected in four populations. Analysis of molecular variance showed the absence of diversity between regions and that between the populations (GST) was 41%. Genetic diversity was structured in seven clusters (ΔK7). Brazilian pepper populations were not structured in a pattern of isolation by distance and present genetic bottleneck. The populations São Mateus, Canastra, Barbacena, and Ilha das Flores were identified as management units and may support conservation projects, ecological restoration and in implementation of management plans for Brazilian pepper in the State of Sergipe.

  10. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment.

    PubMed

    White, Paul A; Johnson, George E

    2016-05-01

    Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the relationships between genetic damage and disease, and the concomitant ability to use genetic toxicity results per se. © Her Majesty the Queen in Right of Canada 2016. Reproduced with the permission of the Minister of Health.

  11. designGG: an R-package and web tool for the optimal design of genetical genomics experiments.

    PubMed

    Li, Yang; Swertz, Morris A; Vera, Gonzalo; Fu, Jingyuan; Breitling, Rainer; Jansen, Ritsert C

    2009-06-18

    High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial. This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG. All software, including source code and documentation, is freely available. DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines, as well as to association analysis of natural populations.

  12. Population genetic data and forensic parameters of 30 autosomal InDel markers in Santa Catarina State population, Southern Brazil.

    PubMed

    Torres, Sandra Regina Rachadel; Uehara, Clineu Julien Seki; Sutter-Latorre, Ana Frederica; de Almeida, Bibiana Sgorla; Sauerbier, Tania Streck; Muniz, Yara Costa Netto; Marrero, Andrea Rita; de Souza, Ilíada Rainha

    2014-08-01

    The application of DNA technology in forensic investigations has grown rapidly in the last 25 years and with an exponential increase of short tandem repeats (STRs) data, usually presented as allele frequencies, that may be later used as databases for forensic and population genetics purposes. Thereby, classes of molecular markers such as single nucleotide polymorphisms and insertions/deletions (InDels) have been presented as another option of genetic marker sets. These markers can be used in paternity cases, when mutations in STR polymorphisms are present, as well as in highly degraded DNA analysis. In the present study, the allele frequencies and heterozygosity (H) of a 30 InDel markers set were determined and the forensic efficacy was evaluated through estimation of discrimination power (DP), match probability, typical paternity index and power of paternity exclusion in 108 unrelated volunteers from the State of Santa Catarina (South Brazil). The observed H per locus showed a range between 0.370 and 0.574 (mean = 0.479). HLD128 was the locus with the highest DP (DP = 0.656). DP for all markers combined was greater than 99.9999999999646 % which provides satisfactory levels of information for forensic demands. Genetic comparisons (exact tests of population differentiation and pairwise genetic distances) revealed that the population of Santa Catarina State differs from Korea and USA Afro-American populations but is similar to the Portuguese, German, Polish, Spanish and Basque populations.

  13. Genetic affinities between endogamous and inbreeding populations of Uttar Pradesh.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Tripathi, Manorma; Talwar, Sudha; Bisen, Prakash S; Borkar, Minal; Agrawal, Suraksha

    2007-04-07

    India has experienced several waves of migration since the Middle Paleolithic. It is believed that the initial demic movement into India was from Africa along the southern coastal route, approximately 60,000-85,000 years before present (ybp). It has also been reported that there were two other major colonization which included eastward diffusion of Neolithic farmers (Elamo Dravidians) from Middle East sometime between 10,000 and 7,000 ybp and a southern dispersal of Indo Europeans from Central Asia 3,000 ybp. Mongol entry during the thirteenth century A.D. as well as some possible minor incursions from South China 50,000 to 60,000 ybp may have also contributed to cultural, linguistic and genetic diversity in India. Therefore, the genetic affinity and relationship of Indians with other world populations and also within India are often contested. In the present study, we have attempted to offer a fresh and immaculate interpretation on the genetic relationships of different North Indian populations with other Indian and world populations. We have first genotyped 20 tetra-nucleotide STR markers among 1800 north Indian samples of nine endogamous populations belonging to three different socio-cultural strata. Genetic distances (Nei's DA and Reynold's Fst) were calculated among the nine studied populations, Caucasians and East Asians. This analysis was based upon the allelic profile of 20 STR markers to assess the genetic similarity and differences of the north Indian populations. North Indians showed a stronger genetic relationship with the Europeans (DA 0.0341 and Fst 0.0119) as compared to the Asians (DA 0.1694 and Fst - 0.0718). The upper caste Brahmins and Muslims were closest to Caucasians while middle caste populations were closer to Asians. Finally, three phylogenetic assessments based on two different NJ and ML phylogenetic methods and PC plot analysis were carried out using the same panel of 20 STR markers and 20 geo-ethnic populations. The three phylogenetic assessments revealed that north Indians are clustering with Caucasians. The genetic affinities of Indians and that of different caste groups towards Caucasians or East Asians is distributed in a cline where geographically north Indians and both upper caste and Muslim populations are genetically closer to the Caucasians.

  14. Approach to Investigating Congenital Skeletal Abnormalities in Livestock.

    PubMed

    Dittmer, K E; Thompson, K G

    2015-09-01

    Congenital skeletal abnormalities may be genetic, teratogenic, or nutritional in origin; distinguishing among these different causes is essential in the management of the disease but may be challenging. In some cases, teratogenic or nutritional causes of skeletal abnormalities may appear very similar to genetic causes. For example, chondrodysplasia associated with intrauterine zinc or manganese deficiency and mild forms of hereditary chondrodysplasia have very similar clinical features and histologic lesions. Therefore, historical data are essential in any attempt to distinguish genetic and acquired causes of skeletal lesions; as many animals as possible should be examined; and samples should be collected for future analysis, such as genetic testing. Acquired causes of defects often show substantial variation in presentation and may improve with time, while genetic causes frequently have a consistent presentation. If a disease is determined to be of genetic origin, a number of approaches may be used to detect mutations, each with advantages and disadvantages. These approaches include sequencing candidate genes, single-nucleotide polymorphism array with genomewide association studies, and exome or whole genome sequencing. Despite advances in technology and increased cost-effectiveness of these techniques, a good clinical history and description of the pathology and a reliable diagnosis are still key components of any investigation. © The Author(s) 2015.

  15. Cone photopigment variations in Cebus apella monkeys evidenced by electroretinogram measurements and genetic analysis

    PubMed Central

    Soares, Juliana G.M.; Fiorani, Mario; Araujo, Eduardo A.; Zana, Yossi; Bonci, Daniela M.O.; Neitz, Maureen; Ventura, Dora F.; Gattass, Ricardo

    2011-01-01

    We investigated the color vision pattern in male and female Cebus apella monkeys by means of electroretinogram measurements and genetic analysis. Our objective was to establish a simple, fast and efficient protocol in order to determine the chromatic vision pattern in Cebus monkeys. We found five among ten possible different phenotypes, two trichromats and three dichromats. We also found that Cebus present a new allele with spectral peak near 552 nm, with the amino acid combination SFT at positions 180, 277 and 285 of the opsin gene, in addition to the previously described SYT, AFT and AFA alleles. PMID:19883678

  16. [The estimation of possibilities for the application of the laser capture microdissection technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA].

    PubMed

    Ivanov, P L; Leonov, S N; Zemskova, E Iu

    2012-01-01

    The present study was designed to estimate the possibilities of application of the laser capture microdissection (LCM) technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA. The experimental method employed for the purpose was the multiplex multilocus analysis of autosomal DNA polymorphism in the preparations of buccal epitheliocytes obtained by LCM. The key principles of the study were the application of physical methods for contrast enhancement of the micropreparations (such as phase-contrast microscopy and dark-field microscopy) and PCR-compatible cell lysis. Genotyping was carried out with the use of AmpFISTR Minifiler TM PCR Amplification Kits ("Applied Biosynthesis", USA). It was shown that the technique employed in the present study ensures reliable genotyping of human chromosomal DNA in the pooled preparations containing 10-20 dissected diploid cells each. This result fairly well agrees with the calculated sensitivity of the method. A few practical recommendations are offered.

  17. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Genetic and cytogenetic analysis of the fruit fly Rhagoletis cerasi (Diptera: Tephritidae).

    PubMed

    Kounatidis, Ilias; Papadopoulos, Nikolaos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2008-07-01

    The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.

  19. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  20. Genetic determinants of prepubertal and pubertal growth and development.

    PubMed

    Thomis, Martine A; Towne, Bradford

    2006-12-01

    This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.

  1. Biochemical and genetic diagnosis of the primary hyperoxalurias: a review.

    PubMed

    Rumsby, G

    2000-01-01

    The primary hyperoxalurias are a group of inherited disorders of endogenous oxalate overproduction. Diagnosis of the two best-characterized disorders, primary hyperoxaluria (PH) Types 1 and 2, is achieved by sequential measurement of alanine:glyoxylate aminotransferase and glyoxylate reductase enzyme activity in a single needle liver biopsy. While genetic analysis of PH2 is still at a relatively early stage, the AGXT gene defective in the Type 1 disorder is well characterized, and a number of mutations have been identified. To determine whether mutation analysis could replace enzymatic analysis for the diagnosis of PH1, DNA samples from 127 consecutive unrelated patients in whom there was a high clinical suspicion of primary hyperoxaluria were analyzed for the presence of the G630A and T853C mutations, which together account for approximately 34% of the mutant alleles in our patient cohort. The sensitivity of mutation detection was 47% in those patients with enzymologically confirmed Type 1 disease, showing that mutation analysis cannot effectively replace enzymology at the present time. However, there is little doubt of the value of genetic methods (mutation and linkage analysis) for diagnosing PH1 (and eventually PH2) in other family members and for prenatal diagnosis and carrier testing.

  2. Conservation biology of the Cross River gorilla (Gorilla gorilla diehli)

    NASA Astrophysics Data System (ADS)

    Bergl, Richard Alexander

    The Cross River gorilla (Gorilla gorilla diehli), a recently revived fourth subspecies of gorilla, is the most endangered and poorly studied ape taxon. Only about 300 Cross River gorillas remain and these gorillas occur in at least eleven different localities. This dissertation presents a population-wide assessment of threats to this population based on molecular genetic data, satellite imagery and demographic modeling. I used DNA extracted from non-invasively collected fecal samples to amplify eleven microsatellite loci for population genetic analysis. Microsatellite data suggested that a complex population structure is present in the Cross River gorilla, with three genetically identifiable subpopulations present. Though levels of gene flow between certain subpopulations were low, there is evidence that reproductive contact persists between many of the subpopulations. The genetic data also demonstrate that levels of diversity in the Cross River population are not evenly distributed across subpopulations, and that one subpopulation has higher levels of variability than the others. In a genus-wide comparison, levels of genetic diversity in the Cross River gorilla were comparable to those of the similarly small populations of the mountain gorilla ( Gorilla beringei beringei) in Bwindi and the Virunga volcanoes, but showed lower levels of diversity than a sample from a large, continuous population of Gorilla gorilla gorilla at Mondika, Central African Republic. Genetic data also showed strong evidence of a population bottleneck in the Cross River gorilla, but not in the other three gorilla populations examined. I used analysis of remotely-sensed data from the Landsat satellite to assess the extent and pattern of land cover distribution across the Cross River gorilla's range. Considerable potential gorilla habitat remains within the range of the Cross River gorilla and each gorilla locality is at least tenuously connected by forest. Finally, I developed a model-based population viability analysis for the Cross River gorilla. Demographic modeling suggested that both population structure and variables associated with female reproductive output most influence population growth in the Cross River gorilla. Taken together, the results of my study are encouraging for the conservation of the Cross River gorilla population, and highlight the resilience of these animals in the face of human activities. Conservation efforts should promote connectivity between gorilla localities and foster the growth of their population. The methods I applied could provide useful insights into patterns of population structure and migration for a wide range of animal taxa.

  3. Genetic connectivity of the moth pollinated tree Glionnetia sericea in a highly fragmented habitat.

    PubMed

    Finger, Aline; Kaiser-Bunbury, Christopher N; Kettle, Chris J; Valentin, Terence; Ghazoul, Jaboury

    2014-01-01

    Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow.

  4. Genetic Connectivity of the Moth Pollinated Tree Glionnetia sericea in a Highly Fragmented Habitat

    PubMed Central

    Finger, Aline; Valentin, Terence; Ghazoul, Jaboury

    2014-01-01

    Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow. PMID:25347541

  5. Sequence analysis of mitochondrial ND1 gene can reveal the genetic structure and origin of Bactrocera dorsalis s.s.

    PubMed Central

    2014-01-01

    Background The oriental fruit fly, Bactrocera dorsalis s.s., is one of the most important quarantine pests in many countries, including China. Although the oriental fruit fly has been investigated extensively, its origins and genetic structure remain disputed. In this study, the NADH dehydrogenase subunit 1 (ND1) gene was used as a genetic marker to examine the genetic diversity, population structure, and gene flow of B. dorsalis s.s. throughout its range in China and southeast Asia. Results Haplotype networks and phylogenetic analysis indicated two distinguishable lineages of the fly population but provided no strong support for geographical subdivision in B. philippinensis. Demographic analysis revealed rapid expansion of B. dorsalis s.s. populations in China and Southeast Asia in the recent years. The greatest amount of genetic diversity was observed in Manila, Pattaya, and Bangkok, and asymmetric migration patterns were observed in different parts of China. The data collected here further show that B. dorsalis s.s. in Yunnan, Guangdong, and Fujian Provinces, and in Taiwan might have different origins within southeast Asia. Conclusions Using the mitochondrial ND1 gene, the results of the present study showed B. dorsalis s.s. from different parts of China to have different genetic structures and origins. B. dorsalis s.s. in China and southeast Asia was found to have experienced rapid expansion in recent years. Data further support the existence of two distinguishable lineages of B. dorsalis s.s. in China and indicate genetic diversity and gene flow from multiple origins. The sequences in this paper have been deposited in GenBank/NCBI under accession numbers KC413034–KC413367. PMID:24655832

  6. Genetic Parameters and the Impact of Off-Types for Theobroma cacao L. in a Breeding Program in Brazil

    PubMed Central

    DuVal, Ashley; Gezan, Salvador A.; Mustiga, Guiliana; Stack, Conrad; Marelli, Jean-Philippe; Chaparro, José; Livingstone, Donald; Royaert, Stefan; Motamayor, Juan C.

    2017-01-01

    Breeding programs of cacao (Theobroma cacao L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis. Three separate analyses (multisite, single site with and without off-types) were performed to estimate genetic parameters from statistical models fitted on nine important agronomic traits (yield, seed index, pod index, % healthy pods, % pods infected with witches broom, % of pods other loss, vegetative brooms, diameter, and tree height). Genetic parameters were estimated along with variance components and heritabilities from the multisite analysis, and a trial was fingerprinted with low-density SNP markers to determine the impact of off-types on estimations. Heritabilities ranged from 0.37 to 0.64 for yield and its components and from 0.03 to 0.16 for disease resistance traits. A weighted index was used to make selections for clonal evaluation, and breeding values estimated for the parental selection and estimation of genetic gain. The impact of off-types to breeding progress in cacao was assessed for the first time. Even when present at <5% of the total population, off-types altered selections by 48%, and impacted heritability estimations for all nine of the traits analyzed, including a 41% difference in estimated heritability for yield. These results show that in a mixed model analysis, even a low level of pedigree error can significantly alter estimations of genetic parameters and selections in a breeding program. PMID:29250097

  7. Segregation of a QTL cluster for home-cage activity using a new mapping method based on regression analysis of congenic mouse strains

    PubMed Central

    Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T

    2014-01-01

    Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804

  8. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  9. Application of Multivariate Statistical Analysis to Biomarkers in Se-Turkey Crude Oils

    NASA Astrophysics Data System (ADS)

    Gürgey, K.; Canbolat, S.

    2017-11-01

    Twenty-four crude oil samples were collected from the 24 oil fields distributed in different districts of SE-Turkey. API and Sulphur content (%), Stable Carbon Isotope, Gas Chromatography (GC), and Gas Chromatography-Mass Spectrometry (GC-MS) data were used to construct a geochemical data matrix. The aim of this study is to examine the genetic grouping or correlations in the crude oil samples, hence the number of source rocks present in the SE-Turkey. To achieve these aims, two of the multivariate statistical analysis techniques (Principle Component Analysis [PCA] and Cluster Analysis were applied to data matrix of 24 samples and 8 source specific biomarker variables/parameters. The results showed that there are 3 genetically different oil groups: Batman-Nusaybin Oils, Adıyaman-Kozluk Oils and Diyarbakir Oils, in addition to a one mixed group. These groupings imply that at least, three different source rocks are present in South-Eastern (SE) Turkey. Grouping of the crude oil samples appears to be consistent with the geographic locations of the oils fields, subsurface stratigraphy as well as geology of the area.

  10. Autosomal dominant hereditary spastic paraplegia with axonal sensory motor polyneuropathy maps to chromosome 21q 22.3.

    PubMed

    Peddareddygari, Leema Reddy; Hanna, Philip A; Igo, Robert P; Luo, Yuqun A; Won, Sungho; Hirano, Michio; Grewal, Raji P

    2016-01-01

    Hereditary spastic paraplegia (HSP) are a genetically and clinically heterogeneous group of disorders. At present, 19 autosomal dominant loci for HSP have been mapped. We ascertained an American family of European descent segregating an autosomal dominant HSP associated with peripheral neuropathy. A genome wide scan was performed with 410 microsatellite repeat marker (Weber lab screening set 16) and following linkage and haplotype analysis, fine mapping was performed. Established genes or loci for HSP were excluded by direct sequencing or haplotype analysis. All established loci for HSP were excluded. Fine mapping suggested a locus on chromosome 21q22.3 flanked by markers D21S1411 and D21S1446 with a maximum logarithm of odds score of 2.05 and was supported by haplotype analysis. A number of candidate genes in this region were analyzed and no disease-producing mutations were detected. We present the clinical and genetic analysis of an American family with autosomal dominant HSP with axonal sensory motor polyneuropathy mapping to a novel locus on chromosome 21q22.3 designated SPG56.

  11. Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals.

    PubMed

    Yang, Lijuan; Zhou, Xianghai; Luo, Yingying; Sun, Xiuqin; Tang, Yong; Guo, Wulan; Han, Xueyao; Ji, Linong

    2012-01-01

    A number of studies have been performed to identify the association between potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene and type 2 diabetes mellitus (T2DM) in East Asian populations, with inconsistent results. The main aim of this work was to evaluate more precisely the genetic influence of KCNJ11 on T2DM in East Asian populations by means of a meta-analysis. We identified 20 articles for qualitative analysis and 16 were eligible for quantitative analysis (meta-analysis) by database searching up to May 2010. The association was assessed under different genetic models, and the pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. The allelic and genotypic contrast demonstrated that the association between KCNJ11 and T2DM was significant for rs5210. However, not all results for rs5215 and rs5218 showed significant associations. For rs5219, the combined ORs (95% CIs) for allelic contrast, dominant and recessive models contrast (with allelic frequency and genotypic distribution data) were 1.139 (1.093-1.188), 1.177 (1.099-1.259) and 1.207 (1.094-1.332), respectively (random effect model). The analysis on the most completely adjusted ORs (95% CIs) by the covariates of rs5219 all presented significant associations under different genetic models. Population-stratified analysis (Korean, Japanese and Chinese) and sensitivity analysis verified the significant results. Cumulative meta-analysis including publication time and sample size illustrated the exaggerated genetic effect in the earliest studies. Heterogeneity and publication bias were assessed. Our study verified that single nucleotide polymorphisms (SNPs) of KCNJ11 gene were significantly associated with the risk of T2DM in East Asian populations.

  12. Analysis of the concept of informed consent concerning the use of genetic material according to the European Convention on Bioethics and in other solutionsm - Propositions for broad consent for future genetic research from the point of view of the activity of the Biobank.

    PubMed

    Patryn, Rafał; Sak, Jarosław

    2017-09-21

    The aim of the article is a critical presentation of the typology of consents included in the European Convention on Bioethics and in other formal solutions concerning the gathering of genetic material in institutions called Biobanks. Existing types of Acts of Consent are inaccurate in their scope and possess insufficient information regarding the gathering of genetic material (application, usage, processing) and their final (future and diverse) use. Lack of precise legal regulations on the broad future use of genetic material may result in various formal problems relating both to research participants as well as those commissioning the research. Ultimately, it may lead to various complications with the appropriate legal interpretation of consent and possible claims on behalf of the donors. The presented proposition of consent with a terminal premise is to be applied eventually to legal and formal aspects of the collecting of genetic material. It is a possible solution which would clarify the issue of informed consent, and may be implemented in the regulations of the Convention as well as constitute a self-contained legislative solution to this matter. For example, Polish law in its current form, without the ratification of the Bioethical Convention, allows the collecting of material for genetic testing for determination of the risk of genetic defects in common genetic material from people who are planning to have a child.

  13. Meta-analysis reveals PTPN22 1858C/T polymorphism confers susceptibility to rheumatoid arthritis in Caucasian but not in Asian population.

    PubMed

    Nabi, Gowher; Akhter, Naseem; Wahid, Mohd; Bhatia, Kanchan; Mandal, Raju Kumar; Dar, Sajad Ahmad; Jawed, Arshad; Haque, Shafiul

    2016-01-01

    The PTPN22 1858C/T polymorphism is associated with rheumatoid arthritis (RA). However, reports from the Asian populations are conflicting in nature and lacks consensus. The aim of our study was to evaluate the association between the PTPN22 1858C/T polymorphism and RA in Asian and Caucasian subjects by carrying out a meta-analysis of Asian and Caucasian data. A total of 27 205 RA cases and 27 677 controls were considered in the present meta-analysis involving eight Asian and 35 Caucasian studies. The pooled odds ratios (ORs) were performed for the allele, dominant, and recessive genetic model. No statistically significant association was found between the PTPN22 1858C/T polymorphism and risk of RA in Asian population (allele genetic model: OR = 1.217, 95% confidence interval (CI) = 0.99-1.496, p value 0.061; dominant genetic model: OR = 1.238, 95% CI = 0.982-1.562, p value 0.071; recessive genetic model: OR = 1.964, 95% CI = 0.678-5.693, p value 0.213). A significant association with risk of RA in Caucasian population suggesting that T-- allele does confer susceptibility to RA in this subgroup was observed (allele genetic model: OR = 1.638, 95% CI = 1.574-1.705, p value < 0.0001; dominant genetic model: OR = 1.67, 95% CI = 1.598-1.745, p value < 0.0001; recessive genetic model: OR = 2.65, 95% CI = 2.273-3.089, p value < 0.0001). The PTPN22 1858C/T polymorphism is not associated with RA risk in Asian populations. However, our meta-analysis confirms that the PTPN22 1858C/T polymorphism is associated with RA susceptibility in Caucasians.

  14. Genetics of Temporal Lobe Epilepsy: A Review

    PubMed Central

    Salzmann, Annick; Malafosse, Alain

    2012-01-01

    Temporal lobe epilepsy (TLE) is usually regarded as a polygenic and complex disorder. To understand its genetic component, numerous linkage analyses of familial forms and association studies of cases versus controls have been conducted since the middle of the nineties. The present paper lists genetic findings for TLE from the initial segregation analysis to the most recent results published in May 2011. To date, no genes have been clearly related to TLE despite many efforts to do so. However, it is vital to continue replication studies and collaborative attempts to find significant results and thus determine which gene variant combination plays a definitive role in the aetiology of TLE. PMID:22957248

  15. [Rubella virus genetic determinant of attenuation].

    PubMed

    Dmitriev, G V; Borisova, T K; Faizuloev, E B; Desiatskova, R G; Zverev, V V

    2014-01-01

    Vaccination is the most effective and available way to prevent Rubella. Presently, 9 vaccine strains were registered. Nevertheless, the molecular mechanisms of the attenuation were poorly elucidated for the rubella virus. However, the study of these mechanisms identifying genotypic and phenotypic markers of attenuation, which together with sequence analysis could be used for the genetic stability control of vaccine strains, is still of current interest. Common trends of genetic changes in the process of adaptation to cold were found due to comparison of nucleic acid and amino acid sequences of the Russian strain C-77 with corresponding positions of the known rubella virus strains and its wild type progenitors, if available.

  16. HLA polymorphisms in Cabo Verde and Guiné-Bissau inferred from sequence-based typing.

    PubMed

    Spínola, Hélder; Bruges-Armas, Jácome; Middleton, Derek; Brehm, António

    2005-10-01

    Human leukocyte antigen (HLA)-A, -B, and -DRB1 polymorphisms were examined in the Cabo Verde and Guiné-Bissau populations. The data were obtained at high-resolution level, using sequence-based typing. The most frequent alleles in each locus was: A*020101 (16.7% in Guiné-Bissau and 13.5% in Cabo Verde), B*350101 (14.4% in Guiné-Bissau and 13.2% in Cabo Verde), DRB1*1304 (19.6% in Guiné-Bissau), and DRB1*1101 (10.1% in Cabo Verde). The predominant three loci haplotype in Guiné-Bissau was A*2301-B*1503-DRB1*1101 (4.6%) and in Cabo Verde was A*3002-B*350101-DRB1*1001 (2.8%), exclusive to northwestern islands (5.6%) and absent in Guiné-Bissau. The present study corroborates historic sources and other genetic studies that say Cabo Verde were populated not only by Africans but also by Europeans. Haplotypes and dendrogram analysis shows a Caucasian genetic influence in today's gene pool of Cabo Verdeans. Haplotypes and allele frequencies present a differential distribution between southeastern and northwestern Cabo Verde islands, which could be the result of different genetic influences, founder effect, or bottlenecks. Dendrograms and principal coordinates analysis show that Guineans are more similar to North Africans than other HLA-studied sub-Saharans, probably from ancient and recent genetic contacts with other peoples, namely East Africans.

  17. Genetic architecture of adiposity and organ weight using combined generation QTL analysis.

    PubMed

    Fawcett, Gloria L; Roseman, Charles C; Jarvis, Joseph P; Wang, Bing; Wolf, Jason B; Cheverud, James M

    2008-08-01

    We present here a detailed study of the genetic contributions to adult body size and adiposity in the LG,SM advanced intercross line (AIL), an obesity model. This study represents a first step in fine-mapping obesity quantitative trait loci (QTLs) in an AIL. QTLs for adiposity in this model were previously isolated to chromosomes 1, 6, 7, 8, 9, 12, 13, and 18. This study focuses on heritable contributions and the genetic architecture of fatpad and organ weights. We analyzed both the F(2) and F(3) generations of the LG,SM AIL population single-nucleotide polymorphism (SNP) genotyped with a marker density of approximately 4 cM. We replicate 88% of the previously identified obesity QTLs and identify 13 new obesity QTLs. Nearly half of the single-trait QTLs were sex-specific. Several broad QTL regions were resolved into multiple, narrower peaks. The 113 single-trait QTLs for organs and body weight clustered into 27 pleiotropic loci. A large number of epistatic interactions are described which begin to elucidate potential interacting molecular networks. We present a relatively rapid means to obtain fine-mapping details from AILs using dense marker maps and consecutive generations. Analysis of the complex genetic architecture underlying fatpad and organ weights in this model may eventually help to elucidate not only heritable contributions to obesity but also common gene sets for obesity and its comorbidities.

  18. Applying remote sensing expertise to crop improvement: progress and challenges to scale up high throughput field phenotyping from research to industry

    NASA Astrophysics Data System (ADS)

    Gouache, David; Beauchêne, Katia; Mini, Agathe; Fournier, Antoine; de Solan, Benoit; Baret, Fred; Comar, Alexis

    2016-05-01

    Digital and image analysis technologies in greenhouses have become commonplace in plant science research and started to move into the plant breeding industry. However, the core of plant breeding work takes place in fields. We will present successive technological developments that have allowed the migration and application of remote sensing approaches at large into the field of crop genetics and physiology research, with a number of projects that have taken place in France. These projects have allowed us to develop combined sensor plus vector systems, from tractor mounted and UAV (unmanned aerial vehicle) mounted spectroradiometry to autonomous vehicle mounted spectroradiometry, RGB (red-green-blue) imagery and Lidar. We have tested these systems for deciphering the genetics of complex plant improvement targets such as the robustness to nitrogen and water deficiency of wheat and maize. Our results from wheat experiments indicate that these systems can be used both to screen genetic diversity for nitrogen stress tolerance and to decipher the genetics behind this diversity. We will present our view on the next critical steps in terms of technology and data analysis that will be required to reach cost effective implementation in industrial plant breeding programs. If this can be achieved, these technologies will largely contribute to resolving the equation of increasing food supply in the resource limited world that lies ahead.

  19. Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes.

    PubMed

    Flanley, Catherine M; Ramalho-Ortigao, Marcelo; Coutinho-Abreu, Iliano V; Mukbel, Rami; Hanafi, Hanafi A; El-Hossary, Shabaan S; Fawaz, Emad El-Din Y; Hoel, David F; Bray, Alexander W; Stayback, Gwen; Shoue, Douglas A; Kamhawi, Shaden; Karakuş, Mehmet; Jaouadi, Kaouther; Yaghoobie-Ershadi, Mohammad Reza; Krüger, Andreas; Amro, Ahmad; Kenawy, Mohamed Amin; Dokhan, Mostafa Ramadhan; Warburg, Alon; Hamarsheh, Omar; McDowell, Mary Ann

    2018-03-27

    Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024-0.648. The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with previous reports in that pockets of genetic differentiation exists between populations of this widely dispersed species but, overall, the species remains relatively homogeneous.

  20. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  1. A tale of aborigines, conquerors and slaves: Alu insertion polymorphisms and the peopling of Canary Islands.

    PubMed

    Maca-Meyer, N; Villar, J; Pérez-Méndez, L; Cabrera de León, A; Flores, C

    2004-11-01

    Classical, mitochondrial DNA (mtDNA) and Y chromosome markers have been used to examine the genetic admixture in present day inhabitants of the Canary Islands. In this study, we report the analysis of ten autosomal Alu insertion polymorphisms in 364 samples from the seven main islands of the Archipelago, and their comparison to continental samples. The detection of population-specific alleles from the Iberian Peninsula and Northwest Africa, as well as their affinities on the basis of genetic distances and principal component analysis, support a clear link between these populations. Coincident with previous results, the Canarian gene pool can be distinguished as being halfway between those of its putative parents, although with a major Iberian contribution (62-78%). Both the substantial Northwest African contribution (23-38%), and the minor sub-Saharan African input (3%), suggest that the genetic legacy from the aborigines and slaves still persists in the Canary Islanders.

  2. Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds.

    PubMed

    Bruni, Matthew; Flax, Judy F; Buyske, Steven; Shindhelm, Amber D; Witton, Caroline; Brzustowicz, Linda M; Bartlett, Christopher W

    2017-03-01

    Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2  = 0.20) and FM (h 2  = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.

  3. Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis.

    PubMed

    Kaigala, Govind V; Hoang, Viet N; Backhouse, Christopher J

    2008-07-01

    Microvalves are key in realizing portable miniaturized diagnostic platforms. We present a scalable microvalve that integrates well with standard lab on a chip (LOC) implementations, yet which requires essentially no external infrastructure for its operation. This electrically controlled, phase-change microvalve is used to integrate genetic amplification and analysis via capillary electrophoresis--the basis of many diagnostics. The microvalve is actuated using a polymer (polyethylene glycol, PEG) that exhibits a large volumetric change between its solid and liquid phases. Both the phase change of the PEG and the genetic amplification via polymerase chain reaction (PCR) are thermally controlled using thin film resistive elements that are patterned using standard microfabrication methods. By contrast with many other valve technologies, these microvalves and their control interface scale down in size readily. The novelty here lies in the use of fully integrated microvalves that require only electrical connections to realize a portable and inexpensive genetic analysis platform.

  4. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  5. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  6. Population genetic structure and geographic differentiation in butter catfish, Ompok bimaculatus, from Indian waters inferred by cytochrome b mitochondrial gene.

    PubMed

    Kumar, Ravindra; Pandey, Brijesh Kumar; Sarkar, Uttam Kumar; Nagpure, Naresh Sahebrao; Baisvar, Vishwamitra Singh; Agnihotri, Praveen; Awasthi, Abhishek; Mishra, Abha; Kumar, Narendra

    2017-05-01

    Documentation of genetic differentiation among the populations of a species can provide useful information that has roles in conservation, breeding, and management plans. In the present study, we examined the genetic structure and phylogenetic relationships among the 149 individuals of Ompok bimaculatus belonging to 24 populations, collected from Indian waters, using cytochrome b gene. The combined analyses of data suggested that the Indian O. bimaculatus consist of three distinct mtDNA lineages with star-like haplotypes network, which exhibited high genetic variation and haplotypic diversity. Analysis of molecular variance indicated that most of the observed genetic variation was found among the populations suggesting restricted gene flow. Long-term interruption of gene flow was also evidenced by high overall Fst values (0.82367) that could be favored by the discontinuous distributions of the lineages.

  7. Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria

    PubMed Central

    Veeramah, Krishna R.; Rott, Andreas; Groß, Melanie; López, Saioa; Kirsanow, Karola; Sell, Christian; Blöcher, Jens; Link, Vivian; Hofmanová, Zuzana; Peters, Joris; Trautmann, Bernd; Gairhos, Anja; Haberstroh, Jochen; Päffgen, Bernd; Hellenthal, Garrett; Haas-Gebhard, Brigitte; Harbeck, Michaela; Burger, Joachim

    2018-01-01

    Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago. PMID:29531040

  8. Assessment of genetic diversity of Tunisian orange, Citrus sinensis (L.) Osbeck using microsatellite (SSR) markers.

    PubMed

    Mahjbi, A; Oueslati, A; Baraket, G; Salhi-Hannachi, A; Zehdi Azouzi, S

    2016-05-20

    Citrus are one of the most cultivated crops in the world. Economically, they are very important fruit trees in Tunisia. Little is known about the genetic diversity of the Tunisian Citrus germplasm. Exploring this diversity is a prerequisite for the identification and characterization of the local germplasm to circumvent and controlling genetic erosion caused by biotic and abiotic stress to aid its conservation and use. In the present study, we explored the genetic diversity of 20 Tunisian orange cultivars [Citrus sinensis (L.) Osbeck] and established their relationships by using seven simple sequence repeat (SSR) loci. In total, 37 alleles and 44 genotypes were scored. The sizes of alleles ranged from 90 to 280 bp. The number of alleles per locus was from 4 to 7, with an average of 5.28. Polymorphic information content value changed from 0.599 to 0.769 with an average of 0.675. Analysis of the genotypes revealed a heterozygote deficiency across all the genotypes. The observed heterozygosity varied from 0 to 1 (average of 0.671). Cluster analysis showed that three groups could be distinguished and the polymorphism occurred independently of the geographical origin of the studied orange cultivars. The detected SSR genotypes allowed the establishment of an identification key with a discriminating power of 100%. Multivariate analysis and the neighbor-joining phylogenetic tree indicated a narrow genetic base for the orange cultivars. The usefulness of SSR markers for orange fingerprinting and evaluation of the genetic diversity in the Tunisian germplasm are discussed in this paper.

  9. The Value of Extended Pedigrees for Next-Generation Analysis of Complex Disease in the Rhesus Macaque

    PubMed Central

    Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy

    2013-01-01

    Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435

  10. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    PubMed

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  11. Genetic analysis of hispanic individuals with cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebe, T.A.; Doane, W.W.; Norman, R.A.

    1994-03-01

    The authors have performed molecular genetic analysis of Hispanic individuals with cystic fibrosis (CF) in the southwestern United States. Of 129 CF chromosomes analyzed, oly 46% (59/129) carry [Delta]F508. The G542X mutation was found on 5% (7/129) of CF chromosomes. The 3849+10kbC[yields]T mutation, detected primarily in Ashkenazi Jews, was present on 2% (3/129). R1162X and R334W, mutations identified in Spain and Italy, each occurred on 1.6% (2/129) of CF chromosomes. W1282X and R553X were each detected once. G551D and N1303K were not found. Overall, screening for 22 or more mutations resulted in detection of only 58% of CF transmembrane conductancemore » regulator gene mutations among Hispanic individuals. Analysis of KM19/XV2c haplotypes revealed an unusual distribution. Although the majority of [Delta]508 mutations are on chromosomes of B haplotypes, the other CF mutations are on A and C haplotypes at higher-than-expected frequencies. These genetic analysis demonstrate significant differences between Hispanic individuals with CF and those of the general North American population. Assessment of carrier/affected risk in Hispanic CF individuals cannot, therefore, be based on the mutation frequencies found through studies of the general population but must be adjusted to better reflect the genetic makeup of this ethnic group. Further studies are necessary to identify the causative mutation(s) in this population and to better delineate genotype/phenotype correlations. These will enable counselors to provide more accurate genetic counseling. 22 refs., 2 tabs.« less

  12. Genetic diversity in intraspecific hybrid populations of Eucommia ulmoides Oliver evaluated from ISSR and SRAP molecular marker analysis.

    PubMed

    Yu, J; Wang, Y; Ru, M; Peng, L; Liang, Z S

    2015-07-03

    Eucommia ulmoides Oliver, the only extant species of Eucommiaceae, is a second-category state-protected endangered plant in China. Evaluation of genetic diversity among some intraspecific hybrid populations of E. ulmoides Oliver is vital for breeding programs and further conservation of this rare species. We studied the genetic diversity of 130 accessions from 13 E. ulmoides intraspecific hybrid populations using inter-simple sequence related (ISSR) and sequence-related amplified polymorphism (SRAP) markers. Of the 100 ISSR primers and 100 SRAP primer combinations screened, eight ISSRs and eight SRAPs were used to evaluate the level of polymorphism and discriminating capacity. A total number of 65 bands were amplified using eight ISSR primers, in which 50 bands (76.9%) were polymorphic, with an average of 8.1 polymorphic fragments per primer. Alternatively, another 244 bands were observed using eight SRAP primer combinations, and 163 (66.8%) of them were polymorphic, with an average of 30.5 polymorphic fragments per primer. The unweighted pair-group method (UPGMA) analysis showed that these 13 populations could be classified into three groups by the ISSR marker and two groups by the SRAP marker. Principal coordinate analysis using SRAP was completely identical to the UPGMA-based clustering, although this was partly confirmed by the results of UPGMA cluster analysis using the ISSR marker. This study provides insights into the genetic background of E. ulmoides intraspecific hybrids. The progenies of the variations "Huazhong-3", "big fruit", "Yanci", and "smooth bark" present high genetic diversity and offer great potential for E. ulmoides breeding and conservation.

  13. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    PubMed Central

    2011-01-01

    Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923

  14. Genetic variability in the Guahibo population from Venezuela.

    PubMed

    Moral, Pedro; Marini, Elisabetta; Esteban, Esther; Mameli, Giuseppa Elisa; Succa, Valeria; Vona, Giuseppe

    2002-01-01

    Four communities from Guahibo of Venezuela were analyzed for the genetic variants of nine erythrocyte enzymes and five serum proteins. Of the 14 loci determined, four were monomorphic. Significant frequency differentiation among communities, was present for ESD and TF markers. In general, Guahibo allele frequencies are in the variation ranges described for South American groups. The analysis indicates a relatively higher affinity of Guahibos with other Venezuelan groups within an irregular pattern of genetic distances that are likely related to the complex demographic history of the South American groups. Genetic diversity estimates reveal a moderate degree of genetic structure between the four Guahibo communities. This intra-tribal variability in Guahibo appears to be lower than in Venezuelan Piaroa but higher than in other Amerindians and could be attributed to a combined effect of low population size and relative isolation of communities. At a continental level, the distribution of genetic diversity is consistent with preferential population movements along the eastern and western coastal areas.

  15. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    PubMed

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  16. The genetics and genomics of thoracic aortic disease

    PubMed Central

    Pomianowski, Pawel

    2013-01-01

    Genetic studies over the past several decades have helped to better elucidate the genomics and inheritance of thoracic aortic diseases. Seminal work from various researchers have identified several genetic factors and mutations that predispose to aortic aneurysms, which will aid in better screening and early intervention, resulting in better clinical outcomes. Syndromic aneurysms have been associated with Marfan syndrome, Loeys-Dietz syndrome, aneurysm osteoarthritis syndrome, arterial tortuosity syndrome, Ehlers-Danlos Syndrome, and TGFβ mutation. Mutations in MYH11, TGFβR1, TGFβR2, MYLK, and ACTA2 genes have been linked to familial non-syndromic cases, although linkage analysis is limited by incomplete penetrance and/or locus heterogeneity. This overview presents a summary of key genetic and genomic factors that are associated with thoracic aortic diseases. PMID:23977594

  17. A strategy to apply quantitative epistasis analysis on developmental traits.

    PubMed

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  18. Genetic Structure of Pacific Trout at the Extreme Southern End of Their Native Range

    PubMed Central

    Abadía-Cardoso, Alicia; Garza, John Carlos; Mayden, Richard L.; García de León, Francisco Javier

    2015-01-01

    Salmonid fishes are cold water piscivores with a native distribution spanning nearly the entire temperate and subarctic northern hemisphere. Trout in the genus Oncorhynchus are the most widespread salmonid fishes and are among the most important fish species in the world, due to their extensive use in aquaculture and valuable fisheries. Trout that inhabit northwestern Mexico are the southernmost native salmonid populations in the world, and the least studied in North America. They are unfortunately also facing threats to their continued existence. Previous work has described one endemic species, the Mexican golden trout (O. chrysogaster), and one endemic subspecies, Nelson’s trout (O. mykiss nelsoni), in Mexico, but previous work indicated that there is vastly more biodiversity in this group than formally described. Here we conducted a comprehensive genetic analysis of this important group of fishes using novel genetic markers and techniques to elucidate the biodiversity of trout inhabiting northwestern Mexico, examine genetic population structure of Mexican trout and their relationships to other species of Pacific trout, and measure introgression from non-native hatchery rainbow trout. We confirmed substantial genetic diversity and extremely strong genetic differentiation present in the Mexican trout complex, not only between basins but also between some locations within basins, with at least four species-level taxa present. We also revealed significant divergence between Mexican trout and other trout species and found that introgression from non-native rainbow trout is present but limited, and that the genetic integrity of native trout is still maintained in most locations. This information will help to guide effective conservation strategies for this important group of fishes. PMID:26509445

  19. Functional genomics platform for pooled screening and mammalian genetic interaction maps

    PubMed Central

    Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.

    2014-01-01

    Systematic genetic interaction maps in microorganisms are powerful tools for identifying functional relationships between genes and defining the function of uncharacterized genes. We have recently implemented this strategy in mammalian cells as a two-stage approach. First, genes of interest are robustly identified in a pooled genome-wide screen using complex shRNA libraries. Second, phenotypes for all pairwise combinations of hit genes are measured in a double-shRNA screen and used to construct a genetic interaction map. Our protocol allows for rapid pooled screening under various conditions without a requirement for robotics, in contrast to arrayed approaches. Each stage of the protocol can be implemented in ~2 weeks, with additional time for analysis and generation of reagents. We discuss considerations for screen design, and present complete experimental procedures as well as a full computational analysis suite for identification of hits in pooled screens and generation of genetic interaction maps. While the protocols outlined here were developed for our original shRNA-based approach, they can be applied more generally, including to CRISPR-based approaches. PMID:24992097

  20. Inverse Correlation of Population Similarity and Introduction Date for Invasive Ascidians

    PubMed Central

    Silva, Nathan; Smith, William C.

    2008-01-01

    The genomes of many marine invertebrates, including the purple sea urchin and the solitary ascidians Ciona intestinalis and Ciona savignyi, show exceptionally high levels of heterozygosity, implying that these populations are highly polymorphic. Analysis of the C. savignyi genome found little evidence to support an elevated mutation rate, but rather points to a large population size contributing to the polymorphism level. In the present study, the relative genetic polymorphism levels in sampled populations of ten different ascidian species were determined using a similarity index generated by AFLP analysis. The goal was to determine the range of polymorphism within the populations of different species, and to uncover factors that may contribute to the high level of polymorphism. We observe that, surprisingly, the levels of polymorphism within these species show a negative correlation with the reported age of invasive populations, and that closely related species show substantially different levels of genetic polymorphism. These findings show exceptions to the assumptions that invasive species start with a low level of genetic polymorphism that increases over time and that closely related species have similar levels of genetic polymorphism. PMID:18575620

  1. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits

    PubMed Central

    van Zanten, Martijn

    2015-01-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  2. Sparse models for correlative and integrative analysis of imaging and genetic data

    PubMed Central

    Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.

    2014-01-01

    The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561

  3. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay

    PubMed Central

    García, Graciela; Vergara, Julia; Lombardi, Raúl

    2011-01-01

    The European wild boar Sus scrofa was first introduced into Uruguay, in southern South America during the early decades of the last century. Subsequently, and starting from founder populations, its range spread throughout the country and into the neighbouring Brazilian state Rio Grande do Sul. Due to the subsequent negative impact, it was officially declared a national pest. The main aim in the present study was to provide a more comprehensive scenario of wild boar differentiation in Uruguay, by using mtDNA markers to access the genetic characterization of populations at present undergoing rapid expansion. A high level of haplotype diversity, intermediate levels of nucleotide diversity and considerable population differentiation, were detected among sampled localities throughout major watercourses and catchment dams countrywide. Phylogenetic analysis revealed the existence of two different phylogroups, thereby reflecting two deliberate introduction events forming distantly genetic lineages in local wild boar populations. Our analysis lends support to the hypothesis that the invasive potential of populations emerge from introgressive hybridization with domestic pigs. On taking into account the appreciable differentiation and reduced migration between locales in wild boar populations, management strategies could be effective if each population were to be considered as a single management unit. PMID:21734838

  4. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum.

    PubMed

    Iskandar, Christelle F; Cailliez-Grimal, Catherine; Rahman, Abdur; Rondags, Emmanuel; Remenant, Benoît; Zagorec, Monique; Leisner, Jorgen J; Borges, Frédéric; Revol-Junelles, Anne-Marie

    2016-09-01

    The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits.

    PubMed

    Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A

    2017-10-23

    Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments.

  6. Automated discovery of structural features of the optic nerve head on the basis of image and genetic data

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2014-03-01

    Evaluation of optic nerve head (ONH) structure is a commonly used clinical technique for both diagnosis and monitoring of glaucoma. Glaucoma is associated with characteristic changes in the structure of the ONH. We present a method for computationally identifying ONH structural features using both imaging and genetic data from a large cohort of participants at risk for primary open angle glaucoma (POAG). Using 1054 participants from the Ocular Hypertension Treatment Study, ONH structure was measured by application of a stereo correspondence algorithm to stereo fundus images. In addition, the genotypes of several known POAG genetic risk factors were considered for each participant. ONH structural features were discovered using both a principal component analysis approach to identify the major modes of variance within structural measurements and a linear discriminant analysis approach to capture the relationship between genetic risk factors and ONH structure. The identified ONH structural features were evaluated based on the strength of their associations with genotype and development of POAG by the end of the OHTS study. ONH structural features with strong associations with genotype were identified for each of the genetic loci considered. Several identified ONH structural features were significantly associated (p < 0.05) with the development of POAG after Bonferroni correction. Further, incorporation of genetic risk status was found to substantially increase performance of early POAG prediction. These results suggest incorporating both imaging and genetic data into ONH structural modeling significantly improves the ability to explain POAG-related changes to ONH structure.

  7. Construction of a High-Density Genetic Map from RNA-Seq Data for an Arabidopsis Bay-0 × Shahdara RIL Population

    PubMed Central

    Serin, Elise A. R.; Snoek, L. B.; Nijveen, Harm; Willems, Leo A. J.; Jiménez-Gómez, Jose M.; Hilhorst, Henk W. M.; Ligterink, Wilco

    2017-01-01

    High-density genetic maps are essential for high resolution mapping of quantitative traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs) covering the whole genome. Based on a 100-kbp window SNP binning method, 1059 bin-markers were identified, physically anchored on the genome. The total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution genotyping revealed new recombination breakpoints in the population. To highlight the advantages of such high-density map, we compared it to two publicly available genetic maps for the same population, comprising 69 PCR-based markers and 497 gene expression markers derived from microarray data, respectively. In this study, we show that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq map closes many existing gaps in marker coverage, saturating the previously available genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the available genetic maps showed increased QTL mapping resolution and reduced QTL confidence interval using the RNA-seq map. The new high-density map is a valuable resource that facilitates the identification of candidate genes and map-based cloning approaches. PMID:29259624

  8. Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species.

    PubMed

    Bhattacharyya, Paromik; Kumaria, Suman; Kumar, Shrawan; Tandon, Pramod

    2013-10-15

    Genetic variability in the wild genotypes of Dendrobium nobile Lindl. collected from different parts of Northeast India, was analyzed using a Start Codon Targeted (SCoT) marker system. A total of sixty individuals comprising of six natural populations were investigated for the existing natural genetic diversity. One hundred and thirty two (132) amplicons were produced by SCoT marker generating 96.21% polymorphism. The PIC value of the SCoT marker system was 0.78 and the Rp values of the primers ranged between 4.43 and 7.50. The percentage of polymorphic loci (Pp) ranging from 25% to 56.82%, Nei's gene diversity (h) from 0.08 to 0.15 with mean Nei's gene diversity of 0.28, and Shannon's information index (I) values ranging from 0.13 to 0.24 with an average value of 0.43 were recorded. The gene flow value (0.37) and the diversity among populations (0.57) demonstrated higher genetic variation among the populations. Analysis of molecular variance (AMOVA) showed 43.37% of variation within the populations, whereas 56.63% variation was recorded among the populations. Cluster analysis also reveals high genetic variation among the genotypes. Present investigation suggests the effectiveness of SCoT marker system to estimate the genetic diversity of D. nobile and that it can be seen as a preliminary point for future research on the population and evolutionary genetics of this endangered orchid species of medicinal importance. © 2013.

  9. Genome-Wide Analysis in Brazilian Xavante Indians Reveals Low Degree of Admixture

    PubMed Central

    Kuhn, Patricia C.; Horimoto, Andréa R. V. Russo.; Sanches, José Maurício; Vieira Filho, João Paulo B.; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C.; Moises, Regina S

    2012-01-01

    Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise Fst statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders. PMID:22900041

  10. Genome-wide analysis in Brazilian Xavante Indians reveals low degree of admixture.

    PubMed

    Kuhn, Patricia C; Horimoto, Andréa R V Russo; Sanches, José Maurício; Vieira Filho, João Paulo B; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C; Moises, Regina S

    2012-01-01

    Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise F(st) statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders.

  11. The Diversity Outbred Mouse Population

    PubMed Central

    Churchill, Gary A.; Gatti, Daniel M.; Munger, Steven C.; Svenson, Karen L.

    2012-01-01

    The Diversity Outbred (DO) population is a heterogeneous stock derived from the same eight founder strains as the Collaborative Cross (CC) inbred strains. Genetically heterogeneous DO mice display a broad range of phenotypes. Natural levels of heterozygosity provide genetic buffering and, as a result, DO mice are robust and breed well. Genetic mapping analysis in the DO presents new challenges and opportunities. Specialized algorithms are required to reconstruct haplotypes from high-density SNP array data. The eight founder haplotypes can be combined into 36 possible diplotypes, which must be accommodated in QTL mapping analysis. Population structure of the DO must be taken into account here. Estimated allele effects of 8 founder haplotypes provide information that is not available in two-parent crosses and can dramatically reduce the number of candidate loci. Allele effects can also distinguish chance co-location of QTL from pleiotropy – which provides a basis for establishing causality in expression QTL studies. We recommended sample sizes of 200 to 800 mice for QTL mapping studies, larger than for traditional crosses. The CC inbred strains provide a resource for independent validation of DO mapping results. Genetic heterogeneity of the DO can provide a powerful advantage in our ability to generalize conclusions to other genetically diverse populations. Genetic diversity can also help to avoid the pitfall of identifying an idiosyncratic reaction that occurs only in a limited genetic context. Informatics tools and data resources associated with the CC, the DO, and their founder strains are developing rapidly. We anticipate a flood of new results to follow as our community begins to adopt and utilize these new genetic resource populations. PMID:22892839

  12. No Genetic Influence for Childhood Behavior Problems From DNA Analysis

    PubMed Central

    Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Objective Twin studies of behavior problems in childhood point to substantial genetic influence. It is now possible to estimate genetic influence using DNA alone in samples of unrelated individuals, not relying on family-based designs such as twins. A linear mixed model, which incorporates DNA microarray data, has confirmed twin results by showing substantial genetic influence for diverse traits in adults. Here we present direct comparisons between twin and DNA heritability estimates for childhood behavior problems as rated by parents, teachers, and children themselves. Method Behavior problem data from 2,500 UK-representative 12-year-old twin pairs were used in twin analyses; DNA analyses were based on 1 member of the twin pair with genotype data for 1.7 million DNA markers. Diverse behavior problems were assessed, including autistic, depressive, and hyperactive symptoms. Genetic influence from DNA was estimated using genome-wide complex trait analysis (GCTA), and the twin estimates of heritability were based on standard twin model fitting. Results Behavior problems in childhood—whether rated by parents, teachers, or children themselves—show no significant genetic influence using GCTA, even though twin study estimates of heritability are substantial in the same sample, and even though both GCTA and twin study estimates of genetic influence are substantial for cognitive and anthropometric traits. Conclusions We suggest that this new type of “missing heritability,” that is, the gap between GCTA and twin study estimates for behavior problems in childhood, is due to nonadditive genetic influence, which will make it more difficult to identify genes responsible for heritability. PMID:24074471

  13. Breeding of Acrocomia aculeata using genetic diversity parameters and correlations to select accessions based on vegetative, phenological, and reproductive characteristics.

    PubMed

    Coser, S M; Motoike, S Y; Corrêa, T R; Pires, T P; Resende, M D V

    2016-10-17

    Macaw palm (Acrocomia aculeata) is a promising species for use in biofuel production, and establishing breeding programs is important for the development of commercial plantations. The aim of the present study was to analyze genetic diversity, verify correlations between traits, estimate genetic parameters, and select different accessions of A. aculeata in the Macaw Palm Germplasm Bank located in Universidade Federal de Viçosa, to develop a breeding program for this species. Accessions were selected based on precocity (PREC), total spathe (TS), diameter at breast height (DBH), height of the first spathe (HFS), and canopy area (CA). The traits were evaluated in 52 accessions during the 2012/2013 season and analyzed by restricted estimation maximum likelihood/best linear unbiased predictor procedures. Genetic diversity resulted in the formation of four groups by Tocher's clustering method. The correlation analysis showed it was possible to have indirect and early selection for the traits PREC and DBH. Estimated genetic parameters strengthened the genetic variability verified by cluster analysis. Narrow-sense heritability was classified as moderate (PREC, TS, and CA) to high (HFS and DBH), resulting in strong genetic control of the traits and success in obtaining genetic gains by selection. Accuracy values were classified as moderate (PREC and CA) to high (TS, HFS, and DBH), reinforcing the success of the selection process. Selection of accessions for PREC, TS, and HFS by the rank-average method permits selection gains of over 100%, emphasizing the successful use of the accessions in breeding programs and obtaining superior genotypes for commercial plantations.

  14. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia.

    PubMed

    Tapio, Miika; Ozerov, Mikhail; Tapio, Ilma; Toro, Miguel A; Marzanov, Nurbiy; Cinkulov, Mirjana; Goncharenko, Galina; Kiselyova, Tatyana; Murawski, Maziek; Kantanen, Juha

    2010-08-10

    Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success.

  15. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia

    PubMed Central

    2010-01-01

    Background Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Results Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. Conclusions During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success. PMID:20698974

  16. Using the Genetics Concept Assessment to Document Persistent Conceptual Difficulties in Undergraduate Genetics Courses

    PubMed Central

    Smith, Michelle K.; Knight, Jennifer K.

    2012-01-01

    To help genetics instructors become aware of fundamental concepts that are persistently difficult for students, we have analyzed the evolution of student responses to multiple-choice questions from the Genetics Concept Assessment. In total, we examined pretest (before instruction) and posttest (after instruction) responses from 751 students enrolled in six genetics courses for either majors or nonmajors. Students improved on all 25 questions after instruction, but to varying degrees. Notably, there was a subgroup of nine questions for which a single incorrect answer, called the most common incorrect answer, was chosen by >20% of students on the posttest. To explore response patterns to these nine questions, we tracked individual student answers before and after instruction and found that particular conceptual difficulties about genetics are both more likely to persist and more likely to distract students than other incorrect ideas. Here we present an analysis of the evolution of these incorrect ideas to encourage instructor awareness of these genetics concepts and provide advice on how to address common conceptual difficulties in the classroom. PMID:22367036

  17. Using the Genetics Concept Assessment to document persistent conceptual difficulties in undergraduate genetics courses.

    PubMed

    Smith, Michelle K; Knight, Jennifer K

    2012-05-01

    To help genetics instructors become aware of fundamental concepts that are persistently difficult for students, we have analyzed the evolution of student responses to multiple-choice questions from the Genetics Concept Assessment. In total, we examined pretest (before instruction) and posttest (after instruction) responses from 751 students enrolled in six genetics courses for either majors or nonmajors. Students improved on all 25 questions after instruction, but to varying degrees. Notably, there was a subgroup of nine questions for which a single incorrect answer, called the most common incorrect answer, was chosen by >20% of students on the posttest. To explore response patterns to these nine questions, we tracked individual student answers before and after instruction and found that particular conceptual difficulties about genetics are both more likely to persist and more likely to distract students than other incorrect ideas. Here we present an analysis of the evolution of these incorrect ideas to encourage instructor awareness of these genetics concepts and provide advice on how to address common conceptual difficulties in the classroom.

  18. Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes.

    PubMed

    Lee, Cha Gon; Lee, Jeehun; Lee, Munhyang

    2018-01-01

    Genetic heterogeneity of common genetic generalized epilepsy syndromes is frequently considered. The present study conducted a focused analysis of potential candidate or susceptibility genes for common genetic generalized epilepsy syndromes using multi-gene panel testing with next-generation sequencing. This study included patients with juvenile myoclonic epilepsy, juvenile absence epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We identified pathogenic variants according to the American College of Medical Genetics and Genomics guidelines and identified susceptibility variants using case-control association analyses and family analyses for familial cases. A total of 57 patients were enrolled, including 51 sporadic cases and 6 familial cases. Twenty-two pathogenic and likely pathogenic variants of 16 different genes were identified. CACNA1H was the most frequently observed single gene. Variants of voltage-gated Ca2+ channel genes, including CACNA1A, CACNA1G, and CACNA1H were observed in 32% of variants (n = 7/22). Analyses to identify susceptibility variants using case-control association analysis indicated that KCNMA1 c.400G>C was associated with common genetic generalized epilepsy syndromes. Only 1 family (family A) exhibited a candidate pathogenic variant p.(Arg788His) on CACNA1H, as determined via family analyses. This study identified candidate genetic variants in about a quarter of patients (n = 16/57) and an average of 2.8 variants was identified in each patient. The results reinforced the polygenic disorder with very high locus and allelic heterogeneity of common GGE syndromes. Further, voltage-gated Ca2+ channels are suggested as important contributors to common genetic generalized epilepsy syndromes. This study extends our comprehensive understanding of common genetic generalized epilepsy syndromes.

  19. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean.

    PubMed

    Planes, S; Fauvelot, C

    2002-02-01

    We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.

  20. Genetic parameters and principal component analysis for egg production from White Leghorn hens.

    PubMed

    Venturini, G C; Savegnago, R P; Nunes, B N; Ledur, M C; Schmidt, G S; El Faro, L; Munari, D P

    2013-09-01

    The objectives of this study were to estimate genetic parameters for accumulated egg production over 3-wk periods and for total egg production over 54 wk of egg-laying, and using principal component analysis (PCA), to explore the relationships among the breeding values of these traits to identify the possible genetic relationships present among them and hence to observe which of them could be used as selection criteria for improving egg production. Egg production was measured among 1,512 females of a line of White Leghorn laying hens. The traits analyzed were the number of eggs produced over partial periods of 3 wk, thus totaling 18 partial periods (P1 to P18), and the total number of eggs produced over the period between the 17 and 70 wk of age (PTOT), thus totaling 54 wk of egg production. Estimates of genetic parameters were obtained by means of the restricted maximum likelihood method, using 2-trait animal models. The PCA was done using the breeding values of partial and total egg production. The heritability estimates ranged from 0.05 ± 0.03 (P1 and P8) to 0.27 ± 0.06 (P4) in the 2-trait analysis. The genetic correlations between PTOT and partial periods ranged from 0.19 ± 0.31 (P1) to 1.00 ± 0.05 (P10, P11, and P12). Despite the high genetic correlation, selection of birds based on P10, P11, and P12 did not result in an increase in PTOT because of the low heritability estimates for these periods (0.06 ± 0.03, 0.12 ± 0.04, and 0.10 ± 0.04, respectively). The PCA showed that egg production can be divided genetically into 4 periods, and that P1 and P2 are independent and have little genetic association with the other periods.

  1. D-VASim: an interactive virtual laboratory environment for the simulation and analysis of genetic circuits.

    PubMed

    Baig, Hasan; Madsen, Jan

    2017-01-15

    Simulation and behavioral analysis of genetic circuits is a standard approach of functional verification prior to their physical implementation. Many software tools have been developed to perform in silico analysis for this purpose, but none of them allow users to interact with the model during runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze the behavior of genetic logic circuit models represented in an SBML (Systems Biology Markup Language). Hence, SBML models developed in other software environments can be analyzed and simulated in D-VASim. D-VASim offers deterministic as well as stochastic simulation; and differs from other software tools by being able to extract and validate the Boolean logic from the SBML model. D-VASim is also capable of analyzing the threshold value and propagation delay of a genetic circuit model. D-VASim is available for Windows and Mac OS and can be downloaded from bda.compute.dtu.dk/downloads/. haba@dtu.dk, jama@dtu.dk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. DNA Commission of the International Society for Forensic Genetics (ISFG): Guidelines on the use of X-STRs in kinship analysis.

    PubMed

    Tillmar, Andreas O; Kling, Daniel; Butler, John M; Parson, Walther; Prinz, Mechthild; Schneider, Peter M; Egeland, Thore; Gusmão, Leonor

    2017-07-01

    Forensic genetic laboratories perform an increasing amount of genetic analyses of the X chromosome, in particular to solve complex cases of kinship analysis. For some biological relationships X-chromosomal markers can be more informative than autosomal markers, and there are a large number of markers, methods and databases that have been described for forensic use. Due to their particular mode of inheritance, and their physical location on a single chromosome, some specific considerations are required when estimating the weight of evidence for X-chromosomal marker DNA data. The DNA Commission of the International Society for Forensic Genetics (ISFG) hereby presents guidelines and recommendations for the use of X-chromosomal markers in kinship analysis with a special focus on the biostatistical evaluation. Linkage and linkage disequilibrium (association of alleles) are of special importance for such evaluations and these concepts and the implications for likelihood calculations are described in more detail. Furthermore it is important to use appropriate computer software that accounts for linkage and linkage disequilibrium among loci, as well as for mutations. Even though some software exist, there is still a need for further improvement of dedicated software. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Insights to the Genetics of Diabetic Nephropathy through a Genome-wide Association Study of the GoKinD Collection

    PubMed Central

    Pezzolesi, Marcus G.; Skupien, Jan; Krolewski, Andrzej S.

    2010-01-01

    The Genetics of Kidneys in Diabetes (GoKinD) study was initiated to facilitate research aimed at identifying genes involved in diabetic nephropathy (DN) in type 1 diabetes (T1D). In this review, we present on overview of this study and the various reports that have utilized its collection. At the forefront of these efforts is the recent genome-wide association (GWA) scan implemented on the GoKinD collection. We highlight the results from our analysis of these data and describe compelling evidence from animal models that further support the potential role of associated loci in the susceptibility of DN. To enhance our analysis of genetic associations in GoKinD, using genome-wide imputation (GWI), we expanded our analysis of this collection to include genotype data from more than 2.4 million common SNPs. We illustrate the added utility of this enhanced dataset through the comprehensive fine-mapping of candidate genomic regions previously linked with DN and the targeted investigation of genes involved in candidate pathway implicated in its pathogenesis. Collectively, GWA and GWI data from the GoKinD collection will serve as a springboard for future investigations into the genetic basis of DN in T1D. PMID:20347642

  4. Identification of Single-Copy Orthologous Genes between Physalis and Solanum lycopersicum and Analysis of Genetic Diversity in Physalis Using Molecular Markers

    PubMed Central

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei’s genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis. PMID:23166835

  5. Development of Genomic Simple Sequence Repeats (SSR) by Enrichment Libraries in Date Palm.

    PubMed

    Al-Faifi, Sulieman A; Migdadi, Hussein M; Algamdi, Salem S; Khan, Mohammad Altaf; Al-Obeed, Rashid S; Ammar, Megahed H; Jakse, Jerenj

    2017-01-01

    Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).

  6. Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos

    PubMed Central

    D’Souza, Fiona; Pudakalakatti, Shivanand M.; Uppangala, Shubhashree; Honguntikar, Sachin; Salian, Sujith Raj; Kalthur, Guruprasad; Pasricha, Renu; Appajigowda, Divya; Atreya, Hanudatta S.; Adiga, Satish Kumar

    2016-01-01

    Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs. PMID:27853269

  7. Genetic diversity and variation of mitochondrial DNA in native and introduced bighead carp

    USGS Publications Warehouse

    Li, Si-Fa; Yang, Qin-Ling; Xu, Jia-Wei; Wang, Cheng-Hui; Chapman, Duane C.; Lu, Guoping

    2010-01-01

    The bighead carp Hypophthalmichthys nobilis is native to China but has been introduced to over 70 countries and is established in many large river systems. Genetic diversity and variation in introduced bighead carp have not previously been evaluated, and a systematic comparison among fish from different river systems was unavailable. In this study, 190 bighead carp specimens were sampled from five river systems in three countries (Yangtze, Pearl, and Amur rivers, China; Danube River, Hungary; Mississippi River basin, USA) and their mitochondrial 16S ribosomal RNA gene and D-loop region were sequenced (around 1,345 base pairs). Moderate genetic diversity was found in bighead carp, ranging from 0.0014 to 0.0043 for nucleotide diversity and from 0.6879 to 0.9333 for haplotype diversity. Haplotype analysis provided evidence that (1) multiple haplotype groups might be present among bighead carp, (2) bighead carp probably originated from the Yangtze River, and (3) bighead carp in the Mississippi River basin may have some genetic ancestry in the Danube River. The analysis of molecular variance showed significant genetic differentiation among these five populations but also revealed limited differentiation between the Yangtze and Amur River bighead carp. This large-scale study of bighead carp genetic diversity and variation provides the first global perspective of bighead carp in the context of biodiversity conservation as well as invasive species control and management.

  8. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    PubMed

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  9. Genetic relationships among seven sections of genus Arachis studied by using SSR markers

    PubMed Central

    2010-01-01

    Background The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis. Results The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea. Conclusion A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut. PMID:20089171

  10. 46,XX T testicular disorder of sex development. Case report.

    PubMed

    Pastor Guzmán, José María; Pastor Navarro, Hector; Quintanilla Mata, María Luisa; Carrión López, Pedro; Martínez Ruíz, Jesús; Martínez Sanchiz, Carlos; Perán Teruel, Miguel; Virseda Rodríguez, Julio Antonio

    2011-06-01

    We present a case of X-Y translocation with male phenotype (46,XX testicular disorder of sex development) and review the literature. Disorders of sex development with mismatch of genetic, gonadal and phenotypic sex are quite rare, and some are due to genetic or chromosomal abnormalities. The karyotype was investigated by a cytogenetic study of peripheral blood (phytohemagglutinin-timulated lymphocyte culture over 72 hours). G-banding analysis of 25 metaphases showed a 46,XX chromosome constitution (46 chromosomes with XX sexual composition). Fluorescence in situ hybridization (FISH) analysis with probes for X centromeres and the sex-determining region of the Y chromosome (SRY) (testis-determining factor gene) showed two X chromosomes. The analysis also showed the SRY signal in the telomeric region of the short arm of one of the chromosomes. In recent years, a number of other genes involved in disorders of sex development in animals and humans have also been identified. Genetic defects in the peptide hormone receptors, members of the steroid receptor superfamily, and other transcription factors, as well as any of a series of enzymes and cofactors involved in steroid biosynthesis can cause abnormal determination and differentiation. Although chromosomal abnormalities are rarely present in patients with apparently normal external genitalia, they should be considered in urology consultations by adolescents and adults, particularly in the investigation of gynecomastia or infertility.

  11. Array-CGH analysis in Rwandan patients presenting development delay/intellectual disability with multiple congenital anomalies.

    PubMed

    Uwineza, Annette; Caberg, Jean-Hubert; Hitayezu, Janvier; Hellin, Anne Cecile; Jamar, Mauricette; Dideberg, Vinciane; Rusingiza, Emmanuel K; Bours, Vincent; Mutesa, Leon

    2014-07-12

    Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development delay/intellectual disability and congenital malformation in East Africa. Array comparative genomic hybridization was performed in 50 Rwandan patients with development delay/intellectual disability and multiple congenital abnormalities, using the Agilent's 180 K microarray platform. Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with known syndromes, whereas 7 patients presented rare genomic imbalances. This study showed that CNVs are present in African population and show the importance to implement genetic testing in East-African countries.

  12. Application of RAD Sequencing for Evaluating the Genetic Diversity of Domesticated Panax notoginseng (Araliaceae)

    PubMed Central

    Pan, Yuezhi; Wang, Xueqin; Sun, Guiling; Li, Fusheng; Gong, Xun

    2016-01-01

    Panax notoginseng, a traditional Chinese medicinal plant, has been cultivated and domesticated for approximately 400 years, mainly in Yunnan and Guangxi, two provinces in southwest China. This species was named according to cultivated rather than wild individuals, and no wild populations had been found until now. The genetic resources available on farms are important for both breeding practices and resource conservation. In the present study, the recently developed technology RADseq, which is based on next-generation sequencing, was used to analyze the genetic variation and differentiation of P. notoginseng. The nucleotide diversity and heterozygosity results indicated that P. notoginseng had low genetic diversity at both the species and population levels. Almost no genetic differentiation has been detected, and all populations were genetically similar due to strong gene flow and insufficient splitting time. Although the genetic diversity of P. notoginseng was low at both species and population levels, several traditional plantations had relatively high genetic diversity, as revealed by the He and π values and by the private allele numbers. These valuable genetic resources should be protected as soon as possible to facilitate future breeding projects. The possible geographical origin of Sanqi domestication was discussed based on the results of the genetic diversity analysis. PMID:27846268

  13. From ecology to base pairs: nursing and genetic science.

    PubMed

    Williams, J K; Tripp-Reimer, T

    2001-07-01

    With the mapping of the human genome has come the opportunity for nursing research to explore topics of concern to the maintenance, restoration, and attainment of genetic-related health. Initially, nursing research on genetic topics originated primarily from physical anthropology and from a clinical, disease-focused perspective. Nursing research subsequently focused on psychosocial aspects of genetic conditions for individuals and their family members. As findings emerge from current human genome discovery, new programs of genetic nursing research are originating from a biobehavioral interface, ranging from the investigations of the influence of specific molecular changes on gene function to social/ethical issues of human health and disease. These initiatives reflect nursing's response to discoveries of gene mutations related to phenotypic expression in both clinical and community-based populations. Genetic research programs are needed that integrate or adapt theoretical and methodological advances in epidemiology, family systems, anthropology, and ethics with those from nursing. Research programs must address not only populations with a specific disease but also community-based genetic health care issues. As genetic health care practice evolves, so will opportunities for research by nurses who can apply genetic concepts and interventions to improve the health of the public. This article presents an analysis of the evolution of genetic nursing research and challengesfor the future.

  14. Juvenile X-linked retinoschisis with normal scotopic b-wave in the electroretinogram at an early stage of the disease.

    PubMed

    Eksandh, Louise; Andréasson, Sten; Abrahamson, Magnus

    2005-09-01

    To report four cases of genetically verified juvenile X-linked retinoschisis (XLRS) with normal scotopic b-waves in full-field ERG, including one patient with a novel mutation (W50X) in the RS1 gene. Four XLRS patients from different families were examined with regard to visual acuity, kinetic perimetry, fundus photography, full-field ERG, and OCT. Two of these patients were also examined with multifocal-ERG (mfERG). Mutations in the RS1 gene were identified by sequence analysis. The full-field ERG presented normal b-wave amplitudes on scotopic white-light stimulation. OCT and mfERG presented macular schisis and macular dysfunction. Genetic analysis revealed a deletion of exon 1 and the promotor region in one patient and mutations giving rise to the amino acid substitutions R209C and W96R in two others. The fourth patient carried a novel mutation in exon 3 of the RS1 gene (nt 149 G-->A), causing the introduction of a stop codon after amino acid 49 in the RS protein. Four young males with XLRS did not present with reduction in the scotopic b-wave amplitude on full-field ERG, which is otherwise often considered to be characteristic of the disease. Full-field ERG and molecular genetic analysis of the RS1 gene still remain the most important diagnostic tools for this retinal disorder, although the OCT can be a valuable complement in order to make the diagnosis at an early stage.

  15. Metastatic Pheochromocytoma/Paraganglioma Related to Primary Tumor Development in Childhood or Adolescence: Significant Link to SDHB Mutations

    PubMed Central

    King, Kathryn S.; Prodanov, Tamara; Kantorovich, Vitaly; Fojo, Tito; Hewitt, Jacqueline K.; Zacharin, Margaret; Wesley, Robert; Lodish, Maya; Raygada, Margarita; Gimenez-Roqueplo, Anne-Paule; McCormack, Shana; Eisenhofer, Graeme; Milosevic, Dragana; Kebebew, Electron; Stratakis, Constantine A.; Pacak, Karel

    2011-01-01

    Purpose To present data on the high rate of SDHB mutations in patients with metastatic pheochromocytoma/paraganglioma whose initial tumor presentation began in childhood or adolescence. Patients and Methods From 2000 to 2010, 263 patients with pheochromocytoma/paraganglioma were evaluated through the National Institutes of Health (NIH), Bethesda, MD. Of the 263 patients, 125 patients were found to have metastatic disease; of these 125 patients, 32 patients presented with a tumor before 20 years of age. An additional 17 patients presented with a tumor before 20 years of age but demonstrated no development of metastatic disease. Genetic testing for mutations in the VHL, MEN, and SDHB/C/D genes was performed on patients without previously identified genetic mutations. Results Of the 32 patients who presented with metastatic disease and had their primary tumor in childhood or adolescence, sequence analysis of germline DNA showed SDHB mutations in 23 patients (71.9%), SDHD mutations in three patients (9.4%), VHL mutations in two patients (6.3%), and an absence of a known mutation in four patients (12.5%). The majority of these 32 patients (78.1%) presented with primary tumors in an extra-adrenal location. Conclusion The majority of patients with metastatic pheochromocytoma/paraganglioma who presented with a primary tumor in childhood/adolescence had primary extra-adrenal tumors and harbored SDHB mutations. Except for primary tumors located in the head and neck where SDHD genetic testing is advised, we recommend that patients who present with metastatic pheochromocytoma/paraganglioma with primary tumor development in childhood or adolescence undergo SDHB genetic testing before they undergo testing for other gene mutations, unless clinical presentation or family history suggests a different mutation. PMID:21969497

  16. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    PubMed

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  17. Present status of understanding on the genetic etiology of polycystic ovary syndrome.

    PubMed

    Dasgupta, S; Reddy, B Mohan

    2008-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age with a prevalence of approximately 7-10% worldwide. PCOS reflects multiple potential aetiologies and variable clinical manifestations. This syndrome is characterized by serious health implications such as diabetes, coronary heart diseases and cancer and also leads to infertility. PCOS can be viewed as a heterogeneous androgen excess disorder with varying degrees of reproductive and metabolic abnormalities determined by the interaction of multiple genetic and environmental factors. In this paper, we have attempted a comprehensive review of primarily molecular genetic studies done so far on PCOS. We have also covered the studies focusing on the environmental factors and impact of ethnicity on the presentation of this syndrome. A large number of studies have been attempted to understand the aetiological mechanisms behind PCOS both at the clinical and molecular genetic levels. In the Indian context, majority of the PCOS studies have been confined to the clinical dimensions. However, a concrete genetic mechanism behind the manifestation of PCOS is yet to be ascertained. Understanding of this complex disorder requires comprehensive studies incorporating relatively larger homogenous samples for genetic analysis and taking into account the ethnicity and the environmental conditions of the population/cohort under study. Research focused on these aspects may provide better understanding on the genetic etiology and the interaction between genes and environment, which may help develop new treatment methods and possible prevention of the syndrome.

  18. Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii)

    PubMed Central

    Congiu, Leonardo; Pujolar, Jose Martin; Forlani, Anna; Cenadelli, Silvia; Dupanloup, Isabelle; Barbisan, Federica; Galli, Andrea; Fontana, Francesco

    2011-01-01

    While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifically designed for polyploid species that can facilitate management of genetic diversity, as exemplified by the ex situ conservation program for the tetraploid Adriatic sturgeon Acipenser naccarii. A critically endangered endemic species of the Adriatic Sea tributaries, its persistence is strictly linked to the ex situ conservation of a single captive broodstock currently decimated to about 25 individuals, which represents the last remaining population of Adriatic sturgeon of certain wild origin. The genetic variability of three F1 broodstocks available as future breeders was estimated based on mitochondrial and microsatellite information and compared with the variability of the parental generation. Genetic data showed that the F1 stocks have only retained part of the genetic variation present in the original stock due to the few parent pairs used as founders. This prompts for the urgent improvement of the current F1 stocks by incorporating new founders that better represent the genetic diversity available. Following parental allocation based on band sharing values, we set up a user-friendly tool for selection of candidate breeders according to relatedness between all possible parent-pairs that secures the use of non-related individuals. The approach developed here could also be applied to other endangered tetraploid sturgeon species overexploited for caviar production, particularly in regions lacking proper infrastructure and/or expertise. PMID:21483472

  19. Preliminary Groundwater Simulations To Compare Different Reconstruction Methods of 3-d Alluvial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Teles, V.; de Marsily, G.; Delay, F.; Perrier, E.

    Alluvial floodplains are extremely heterogeneous aquifers, whose three-dimensional structures are quite difficult to model. In general, when representing such structures, the medium heterogeneity is modeled with classical geostatistical or Boolean meth- ods. Another approach, still in its infancy, is called the genetic method because it simulates the generation of the medium by reproducing sedimentary processes. We developed a new genetic model to obtain a realistic three-dimensional image of allu- vial media. It does not simulate the hydrodynamics of sedimentation but uses semi- empirical and statistical rules to roughly reproduce fluvial deposition and erosion. The main processes, either at the stream scale or at the plain scale, are modeled by simple rules applied to "sediment" entities or to conceptual "erosion" entities. The model was applied to a several kilometer long portion of the Aube River floodplain (France) and reproduced the deposition and erosion cycles that occurred during the inferred climate periods (15 000 BP to present). A three-dimensional image of the aquifer was gener- ated, by extrapolating the two-dimensional information collected on a cross-section of the floodplain. Unlike geostatistical methods, this extrapolation does not use a statis- tical spatial analysis of the data, but a genetic analysis, which leads to a more realistic structure. Groundwater flow and transport simulations in the alluvium were carried out with a three-dimensional flow code or simulator (MODFLOW), using different rep- resentations of the alluvial reservoir of the Aube River floodplain: first an equivalent homogeneous medium, and then different heterogeneous media built either with the traditional geostatistical approach simulating the permeability distribution, or with the new genetic model presented here simulating sediment facies. In the latter case, each deposited entity of a given lithology was assigned a constant hydraulic conductivity value. Results of these models have been compared to assess the value of the genetic approach and will be presented.

  20. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    PubMed

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  1. Genetic diversity analysis of Leuconostoc mesenteroides from Korean vegetables and food products by multilocus sequence typing.

    PubMed

    Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.

  2. Comparative genetic analysis of trichome-less and normal pod genotypes of Mucuna pruriens (Fabaceae).

    PubMed

    Dhawan, S S; Rai, G K; Darokar, M P; Lal, R K; Misra, H O; Khanuja, S P S

    2011-09-15

    Velvet bean (Mucuna pruriens) seeds contain the catecholic amino acid L-DoPA (L-3,4-dihydroxyphenylalanine), which is a neurotransmitter precursor and used for the treatment of Parkinson's disease and mental disorders. The great demand for L-DoPA is largely met by the pharmaceutical industry through extraction of the compound from wild populations of this plant; commercial exploitation of this compound is hampered because of its limited availability. The trichomes present on the pods can cause severe itching, blisters and dermatitis, discouraging cultivation. We screened genetic stocks of velvet bean for the trichome-less trait, along with high seed yield and L-DoPA content. The highest yielding trichome-less elite strain was selected and indentified on the basis of a PCR-based DNA fingerprinting method (RAPD), using deca-nucleotide primers. A genetic similarity index matrix was obtained through multivariant analysis using Nei and Li's coefficient. The similarity coefficients were used to generate a tree for cluster analysis using the UPGMA method. Analysis of amplification spectra of 408 bands obtained with 56 primers allowed us to distinguish a trichome-less elite strain of M. pruriens.

  3. Genetic and cytogenetic analysis of the American cherry fruit fly, Rhagoletis cingulata (Diptera: Tephritidae).

    PubMed

    Drosopoulou, Elena; Augustinos, Antonios A; Nakou, Ifigeneia; Koeppler, Kirsten; Kounatidis, Ilias; Vogt, Heidrun; Papadopoulos, Nikolaos T; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2011-12-01

    The American eastern cherry fruit fly, Rhagoletis cingulata, a pest of cherries in the western hemisphere, invaded Europe in 1983, and since then dispersed to several European countries. Information on the genetics and cytogenetics of this pest is very scarce. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of R. cingulata are presented here. The mitotic metaphase complement consists of six pairs of chromosomes with the sex chromosomes being very small and similar in size. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes (10 polytene arms), which correspond to the five autosomes of the mitotic nuclei and an extrachromosomal heterochromatic mass, which corresponds to the sex chromosomes. The banding patterns and the most characteristic features and prominent landmarks of each polytene chromosome are presented and discussed. Chromosomal homologies between R. cingulata, R. completa and R. cerasi are also proposed, based on the comparison of chromosome banding patterns. Furthermore, the detection and characterization of Wolbachia pipientis in the R. cingulata population studied is presented and the potential correlation with the asynaptic phenomena found in its polytene complement is discussed. In addition, 10 out of 24 microsatellite markers developed for other Rhagoletis species are cross-amplified, evaluated and proposed as useful markers for population and genetic studies in R. cingulata.

  4. Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project: study design and methods for pooling results of genetic epidemiological studies

    PubMed Central

    2012-01-01

    Background For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields. PMID:22862891

  5. Introducing medical genetics services in Ethiopia using the MiGene Family History App.

    PubMed

    Quinonez, Shane C; Yeshidinber, Abate; Lourie, Michael A; Bekele, Delayehu; Mekonnen, Yemisrach; Nigatu, Balkachew; Metaferia, Gesit; Jebessa, Solomie

    2018-06-11

    Almost all low-income countries and many middle-income countries lack the capacity to deliver medical genetics services. We developed the MiGene Family History App (MFHA), which assists doctors with family history collection and population-level epidemiologic analysis. The MFHA was studied at St. Paul's Hospital in Addis Ababa, Ethiopia. A needs assessment was used to assess Ethiopian physicians' experience with genetics services. The MFHA then collected patient data over a 6-month period. The majority of doctors provide genetics services, with only 16% reporting their genetics knowledge is sufficient. A total of 1699 patients from the pediatric ward (n = 367), neonatal intensive care unit (NICU) (n = 477), and antenatal clinic (n = 855) were collected using the MFHA with a 4% incidence of a MFHA-screened condition present. The incidence was 11.7% in the pediatric ward, 3% in the NICU, and 0.5% in the antenatal clinic. Heart malformations (5.5% of patients) and trisomy 21 (4.4% of patients) were the most common conditions in the pediatric ward. Medical genetics services are needed in Ethiopia. As other countries increase their genetics capacity, the MFHA can provide fundamental genetics services and collect necessary epidemiologic data.

  6. Genetic risks and healthy choices: creating citizen-consumers of genetic services through empowerment and facilitation.

    PubMed

    Harvey, Alison

    2010-03-01

    Genetic testing to identify susceptibility to a variety of common complex diseases is increasingly becoming available. In this article, focusing on the development of genetic susceptibility testing for diet-related disease, I examine the emergence of direct-to-the-consumer genetic testing services and the (re)configuration of healthcare provision, both within and outside the specialist genetics service, in the UK. I identify two key techniques within these practices: empowerment and facilitation. Using Foucauldian social theory, I show that empowerment and facilitation are being positioned as tools for the creation of citizen-consumers who will make appropriate dietary choices, based on the results of their genetic analysis. Through these techniques, individuals are transformed into properly entrepreneurial citizens who will, through judicious choices, act to maximise their 'vital capital' (their health) and the capital of the social body. I argue that the user of these services is not purely an economic figure, making rational choices as a consumer, but that her configuration as a citizen-consumer who avails herself of genetic information and services in a proper manner ensures that she is fit to contribute to the economic life of our present.

  7. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts.

    PubMed

    Balsamo, Geisi M; Valentim-Neto, Pedro A; Mello, Carla S; Arisi, Ana C M

    2015-12-09

    The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.

  8. Systematic prediction of control proteins and their DNA binding sites

    PubMed Central

    Sorokin, Valeriy; Severinov, Konstantin; Gelfand, Mikhail S.

    2009-01-01

    We present here the results of a systematic bioinformatics analysis of control (C) proteins, a class of DNA-binding regulators that control time-delayed transcription of their own genes as well as restriction endonuclease genes in many type II restriction-modification systems. More than 290 C protein homologs were identified and DNA-binding sites for ∼70% of new and previously known C proteins were predicted by a combination of phylogenetic footprinting and motif searches in DNA upstream of C protein genes. Additional analysis revealed that a large proportion of C protein genes are translated from leaderless RNA, which may contribute to time-delayed nature of genetic switches operated by these proteins. Analysis of genetic contexts of newly identified C protein genes revealed that they are not exclusively associated with restriction-modification genes; numerous instances of associations with genes originating from mobile genetic elements were observed. These instances might be vestiges of ancient horizontal transfers and indicate that during evolution ancestral restriction-modification system genes were the sites of mobile elements insertions. PMID:19056824

  9. Comparison of Mediterranean Pistacia lentiscus genotypes by random amplified polymorphic DNA, chemical, and morphological analyses.

    PubMed

    Barazani, Oz; Dudai, Nativ; Golan-Goldhirsh, Avi

    2003-08-01

    Characterization of the genetic variability of Mediterranean Pistacia lentiscus genotypes by RAPD, composition of essential oils, and morphology is presented. High polymorphism in morphological parameters was found among accessions, with no significant differences in relation to geographical origin, or to gender. GC-MS analysis of leaves extracted by t-butyl methyl ether, showed 12 monoterpenes, seven sesquiterpenes, and one linear nonterpenic compound. Cluster analysis divided the accessions into two main groups according to the relative content of the major compounds, with no relation to their geographical origin. In contrast, a dendrogram based on RAPD analysis gave two main clusters according to their geographical origins. Low correlation was found between genetic and essential oil content matrices. High morphological and chemical variability on one hand, and genotypic polymorphism on the other, provide ecological advantages that might explain the distribution of Pistacia lentiscus over a wide range of habitats. The plants under study were grown together in the same climatic and environmental conditions, thus pointing to the plausible genetic basis of the observed phenotypic differences.

  10. The silencing of Kierkegaard in Habermas' critique of genetic enhancement.

    PubMed

    Christiansen, Karin

    2009-06-01

    The main purpose of this paper is to draw attention to an important part of Habermas' critique of genetic enhancement, which has been largely ignored in the discussion; namely his use of Kierkegaard's reflections on the existential conditions for becoming one-self from Either/or and the Sickness unto Death. It will be argued that, although Habermas presents some valuable and highly significant perspectives on the effect of genetic enhancement on the individual's self-understanding and ability to experience him- or herself as a free and equal individual, he does not succeed in working out a consistent argument. The claim is that he fails to explain how the existential analysis is related to his reflections on the sociological and psychological impacts of genetic enhancement in the realm of communicative action. It is this lack of theoretical clarity, which seems to render Habermas vulnerable to some of the critique which has been raised against his theory from a number of different scientific disciplines and areas of research. Hence, the first part of the paper provides some examples of the nature and variety of this critique, the second part presents Habermas' own critique of genetic enhancement in the context of a dispute between so-called 'liberal' and 'conservative' arguments, and finally, the third part discusses the limits and possibilities of his position in a future debate about genetic enhancement.

  11. Temporal distribution and genetic variants in influenza A(H1N1)pdm09 virus circulating in Mexico, seasons 2012 and 2013.

    PubMed

    Canche-Pech, Jose Reyes; Conde-Ferraez, Laura; Puerto-Solis, Marylin; Gonzalez-Losa, Refugio; Granja-Pérez, Pilar; Villanueva-Jorge, Salha; Chan-Gasca, Maria; Gómez-Carballo, Jesus; López-Ochoa, Luisa; Jiménez-Delgadillo, Bertha; Rodríguez-Sánchez, Iram; Ramírez-Prado, Jorge; Ayora-Talavera, Guadalupe

    2017-01-01

    The 2012 and 2013 annual influenza epidemics in Mexico were characterized by presenting different seasonal patterns. In 2012 the A(H1N1)pdm09 virus caused a high incidence of influenza infections after a two-year period of low circulation; whereas the 2013 epidemic presented circulation of the A(H1N1)pdm09 virus throughout the year. We have characterized the molecular composition of the Hemagglutinin (HA) and Neuraminidase (NA) genes of the A(H1N1)pdm09 virus from both epidemic seasons, emphasizing the genetic characteristics of viruses isolated from Yucatan in Southern Mexico. The molecular analysis of viruses from the 2012 revealed that all viruses from Mexico were predominantly grouped in clade 7. Strikingly, the molecular characterization of viruses from 2013 revealed that viruses circulating in Yucatan were genetically different to viruses from other regions of Mexico. In fact, we identified the occurrence of two genetic variants containing relevant mutations at both the HA and NA surface antigens. There was a difference on the temporal circulation of each genetic variant, viruses containing the mutations HA-A141T / NA-N341S were detected in May, June and July; whereas viruses containing the mutations HA-S162I / NA-L206S circulated in August and September. We discuss the significance of these novel genetic changes.

  12. Normosmic idiopathic hypogonadotropic hypogonadism due to a novel homozygous nonsense c.C969A (p.Y323X) mutation in the KISS1R gene in three unrelated families.

    PubMed

    Demirbilek, Huseyin; Ozbek, M Nuri; Demir, Korcan; Kotan, L Damla; Cesur, Yasar; Dogan, Murat; Temiz, Fatih; Mengen, Eda; Gurbuz, Fatih; Yuksel, Bilgin; Topaloglu, A Kemal

    2015-03-01

    The spectrum of genetic alterations in cases of hypogonadotropic hypogonadism continue to expand. However, KISS1R mutations remain rare. The aim of this study was to understand the molecular basis of normosmic idiopathic hypogonadotropic hypogonadism. Clinical characteristics, hormonal studies and genetic analyses of seven cases with idiopathic normosmic hypogonadotropic hypogonadism (nIHH) from three unrelated consanguineous families are presented. One male presented with absence of pubertal onset and required surgery for severe penoscrotal hypospadias and cryptorchidism, while other two males had absence of pubertal onset. Two of four female cases required replacement therapy for pubertal onset and maintenance, whereas the other two had spontaneous pubertal onset but incomplete maturation. In sequence analysis, we identified a novel homozygous nonsense (p.Y323X) mutation (c.C969A) in the last exon of the KISS1R gene in all clinically affected cases. We identified a homozygous nonsense mutation in the KISS1R gene in three unrelated families with nIHH, which enabled us to observe the phenotypic consequences of this rare condition. Escape from nonsense-mediated decay, and thus production of abnormal proteins, may account for the variable severity of the phenotype. Although KISS1R mutations are extremely rare and can cause a heterogeneous phenotype, analysis of the KISS1R gene should be a part of genetic analysis of patients with nIHH, to allow better understanding of phenotype-genotype relationship of KISS1R mutations and the underlying genetic basis of patients with nIHH. © 2014 John Wiley & Sons Ltd.

  13. Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.

    2012-01-01

    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659

  14. Insights into Modern Human Prehistory Using Ancient Genomes.

    PubMed

    Yang, Melinda A; Fu, Qiaomei

    2018-03-01

    The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Population genetic structure and tolerance to dioxin-like compounds of a migratory marine fish (Menidia menidia) at polychlorinated biphenyl-contaminated and reference sites.

    PubMed

    Roark, Shaun A; Kelble, Mary A; Nacci, Diane; Champlin, Denise; Coiro, Laura; Guttman, Sheldon I

    2005-03-01

    The present study was conducted to evaluate evidence of genetic adaptation to local contaminants in populations of the migratory marine fish Menidia menidia residing seasonally in reference sites or an industrial harbor contaminated with dioxin-like compounds (DLCs). For this purpose, we compared DLC sensitivity and genetic patterns of populations sampled from sites both inside and outside New Bedford Harbor (NBH; MA, USA), a U.S. Environmental Protection Agency Superfund site with extreme polychlorinated biphenyl (PCB) contamination. Offspring of M. menidia collected from NBH were significantly less sensitive regarding embryonic exposure to the dioxin-like PCB congener 3,3',4,4',5-pentachlorobiphenyl (PCB 126) than offspring of M. menidia from a reference site. Analysis of 10 polymorphic enzymatic loci indicated little genetic differentiation among populations in the study area. However, genotype frequencies of juveniles from both NBH and an adjacent site in Massachusetts exhibited significant deviations from Hardy-Weinberg equilibrium expectations at one locus, phosphoglucomutase (PGM*). Genetic analysis of survivors of embryonic laboratory exposure to PCB 126 indicated that genotypes at PGM* were related to survivorship. Although a relationship was identified between DLC tolerance and PGM* genotype, regional mixing of M. menidia populations during migration and absence of multigeneration exposure at contaminated sites may limit localized adaptation.

  16. [Differentiated perception of transgenic tomato sauce in the southern Chile].

    PubMed

    Schnettler Morales, B; Sepúlveda Bravo, O; Ruiz Fuentes, D; Denegri Coria, M

    2008-03-01

    The present study considers the debate generated in developed countries by genetically modified foods, the importance of this variable to consumers in Temuco (Araucanía Region, Chile) when purchasing tomato sauce and different market segments were studied through a personal survey administered to 400 people. Using conjoint analysis, it was determined that the presence of genetic modification in food was generally more important than the brand and purchase price. Using cluster analysis, three segments were distinguished, with the most numerous (49.3%) placing the greatest importance on the presence of genetic modification (GM) in food and rejecting the transgenic product. The second group (39.4%) gave the greatest importance to the brand and preferred tomato sauce with genetically modified ingredients. The smallest segment (11.3%) placed the greatest value on price and preferred transgenic tomato sauce. The three segments prefer the national brand, reject the store brand and react positively to lower prices. The segment sensitive to the presence of GM in food comprised mainly those younger than 35 years of age, single and with no children. The absence of GM in food of vegetable origin is desirable for young consumers in the Araucanía Region, but a significant proportion accepts genetic modification in food (50.7%).

  17. Variation in clinical phenotype of human infection among genetic groups of Blastomyces dermatitidis

    USGS Publications Warehouse

    Meece, Jennifer K.; Anderson, Jennifer L.; Gruszka, Sarah; Sloss, Brian L.; Sullivan, Bradley; Reed, Kurt D.

    2013-01-01

    Background. Blastomyces dermatitidis, the etiologic agent of blastomycosis, has 2 genetic groups and shows varied clinical presentation, ranging from silent infections to fulminant respiratory disease and dissemination. The objective of this study was to determine whether clinical phenotype and outcomes vary based on the infecting organism's genetic group.Methods. We used microsatellites to genotype 227 clinical isolates of B. dermatitidis from Wisconsin patients. For each isolate, corresponding clinical disease characteristics and patient demographic information were abstracted from electronic health records and Wisconsin Division of Health reportable disease forms and questionnaires.Results. In univariate analysis, group 1 isolates were more likely to be associated with pulmonary-only infections (P < .0001) and constitutional symptoms such as fever (P < .0001). In contrast, group 2 isolates were more likely to be associated with disseminated disease (P < .0001), older patient age (P < .0001), and comorbidities (P = .0019). In multivariate analysis, disease onset to diagnosis of >1 month (P < .0001), older age at diagnosis (P < .0001), and current smoking status (P = .0001) remained predictors for group 2 infections.Conclusions. This study identified previously unknown associations between clinical phenotype of human infection and genetic groups of B. dermatitidis and provides a framework for further investigations of the genetic basis for virulence in B. dermatitidis.

  18. Smoothing of the bivariate LOD score for non-normal quantitative traits.

    PubMed

    Buil, Alfonso; Dyer, Thomas D; Almasy, Laura; Blangero, John

    2005-12-30

    Variance component analysis provides an efficient method for performing linkage analysis for quantitative traits. However, type I error of variance components-based likelihood ratio testing may be affected when phenotypic data are non-normally distributed (especially with high values of kurtosis). This results in inflated LOD scores when the normality assumption does not hold. Even though different solutions have been proposed to deal with this problem with univariate phenotypes, little work has been done in the multivariate case. We present an empirical approach to adjust the inflated LOD scores obtained from a bivariate phenotype that violates the assumption of normality. Using the Collaborative Study on the Genetics of Alcoholism data available for the Genetic Analysis Workshop 14, we show how bivariate linkage analysis with leptokurtotic traits gives an inflated type I error. We perform a novel correction that achieves acceptable levels of type I error.

  19. [Costicartilage analysis inspection technology in the application of forensic medicine].

    PubMed

    Meng, Hang; Xiao, Bi; Yan, Jian-Jun; Ma, Kai-Jun

    2011-10-01

    The traditional costicartilage analysis inspection is limited to morphological inspection. In recent years, with the development of forensic radiology and molecular genetics, the costicartilage analysis inspection technology has been further enriched and developed. At present, the costicartilage analysis inspection technology have been able to be used in the practice of forensic medicine. This paper reviews the research advances about the costicartilage analysis inspection technology in the identification of human gender, age and so on in order to provide the references for forensic appraisers.

  20. Cross-Population Joint Analysis of eQTLs: Fine Mapping and Functional Annotation

    PubMed Central

    Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-01-01

    Mapping expression quantitative trait loci (eQTLs) has been shown as a powerful tool to uncover the genetic underpinnings of many complex traits at molecular level. In this paper, we present an integrative analysis approach that leverages eQTL data collected from multiple population groups. In particular, our approach effectively identifies multiple independent cis-eQTL signals that are consistent across populations, accounting for population heterogeneity in allele frequencies and linkage disequilibrium patterns. Furthermore, by integrating genomic annotations, our analysis framework enables high-resolution functional analysis of eQTLs. We applied our statistical approach to analyze the GEUVADIS data consisting of samples from five population groups. From this analysis, we concluded that i) jointly analysis across population groups greatly improves the power of eQTL discovery and the resolution of fine mapping of causal eQTL ii) many genes harbor multiple independent eQTLs in their cis regions iii) genetic variants that disrupt transcription factor binding are significantly enriched in eQTLs (p-value = 4.93 × 10-22). PMID:25906321

  1. Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primaeval Forest indicates domestic cattle as the likely source of infection.

    PubMed

    Walker, Stephen M; Demiaszkiewicz, Aleksander W; Kozak, Monika; Wedrychowicz, Halina; Teofanova, Denitsa; Prodohl, Paulo; Brennan, Gerry; Fairweather, Ian; Hoey, Elizabeth M; Trudgett, Alan

    2013-01-16

    We have determined the mitochondrial genotype of liver fluke present in Bison (Bison bonasus) from the herd maintained in the Bialowieza National Park in order to determine the origin of the infection. Our results demonstrated that the infrapopulations present in the bison were genetically diverse and were likely to have been derived from the population present in local cattle. From a consideration of the genetic structure of the liver fluke infrapopulations we conclude that the provision of hay at feeding stations may be implicated in the transmission of this parasite to the bison. This information may be of relevance to the successful management of the herd. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves.

    PubMed

    Ngeve, Magdalene N; Van der Stocken, Tom; Menemenlis, Dimitris; Koedam, Nico; Triest, Ludwig

    2016-01-01

    Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise.

  3. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.

  4. Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves

    PubMed Central

    Ngeve, Magdalene N.; Van der Stocken, Tom; Menemenlis, Dimitris; Koedam, Nico; Triest, Ludwig

    2016-01-01

    Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise. PMID:26964094

  5. Phylogenetic analysis of different breeds of domestic chickens in selected area of Peninsular Malaysia inferred from partial cytochrome b gene information and RAPD markers.

    PubMed

    Yap, Fook Choy; Yan, Yap Jin; Loon, Kiung Teh; Zhen, Justina Lee Ning; Kamau, Nelly Warau; Kumaran, Jayaraj Vijaya

    2010-10-01

    The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.

  6. Genetic screening for von Hippel-Lindau gene mutations in non-syndromic pheochromocytoma: low prevalence and false-positives or misdiagnosis indicate a need for caution.

    PubMed

    Eisenhofer, G; Vocke, C D; Elkahloun, A; Huynh, T-T; Prodanov, T; Lenders, J W M; Timmers, H J; Benhammou, J N; Linehan, W M; Pacak, K

    2012-05-01

    Genetic testing of tumor susceptibility genes is now recommended in most patients with pheochromocytoma or paraganglioma (PPGL), even in the absence of a syndromic presentation. Once a mutation is diagnosed there is rarely follow-up validation to assess the possibility of misdiagnosis. This study prospectively examined the prevalence of von Hippel-Lindau (VHL) gene mutations among 182 patients with non-syndromic PPGLs. Follow-up in positive cases included comparisons of biochemical and tumor gene expression data in 64 established VHL patients, with confirmatory genetic testing in cases with an atypical presentation. VHL mutations were detected by certified laboratory testing in 3 of the 182 patients with non-syndromic PPGLs. Two of the 3 had an unusual presentation of diffuse peritoneal metastases and substantial increases in plasma metanephrine, the metabolite of epinephrine. Tumor gene expression profiles in these 2 patients also differed markedly from those associated with established VHL syndrome. One patient was diagnosed with a partial deletion by Southern blot analysis and the other with a splice site mutation. Quantitative polymerase chain reaction, multiplex ligation-dependent probe amplification, and comparative genomic hybridization failed to confirm the partial deletion indicated by certified laboratory testing. Analysis of tumor DNA in the other patient with a splice site alteration indicated no loss of heterozygosity or second hit point mutation. In conclusion, VHL germline mutations represent a minor cause of non-syndromic PPGLs and misdiagnoses can occur. Caution should therefore be exercised in interpreting positive genetic test results as the cause of disease in patients with non-syndromic PPGLs. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria.

    PubMed

    Benhaj Mbarek, Ibtihel; Abroug, Saoussen; Omezzine, Asma; Zellama, Dorsaf; Achour, Abdellatif; Harbi, Abdelaziz; Bouslama, Ali

    2011-05-25

    Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals.

  8. The Western and Eastern Roots of the Saami—the Story of Genetic “Outliers” Told by Mitochondrial DNA and Y Chromosomes

    PubMed Central

    Tambets, Kristiina; Rootsi, Siiri; Kivisild, Toomas; Help, Hela; Serk, Piia; Loogväli, Eva-Liis; Tolk, Helle-Viivi; Reidla, Maere; Metspalu, Ene; Pliss, Liana; Balanovsky, Oleg; Pshenichnov, Andrey; Balanovska, Elena; Gubina, Marina; Zhadanov, Sergey; Osipova, Ludmila; Damba, Larisa; Voevoda, Mikhail; Kutuev, Ildus; Bermisheva, Marina; Khusnutdinova, Elza; Gusar, Vladislava; Grechanina, Elena; Parik, Jüri; Pennarun, Erwan; Richard, Christelle; Chaventre, Andre; Moisan, Jean-Paul; Barać, Lovorka; Peričić, Marijana; Rudan, Pavao; Terzić, Rifat; Mikerezi, Ilia; Krumina, Astrida; Baumanis, Viesturs; Koziel, Slawomir; Rickards, Olga; De Stefano, Gian Franco; Anagnou, Nicholas; Pappa, Kalliopi I.; Michalodimitrakis, Emmanuel; Ferák, Vladimir; Füredi, Sandor; Komel, Radovan; Beckman, Lars; Villems, Richard

    2004-01-01

    The Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA (mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples. It was shown that the “Saami motif” variant of mtDNA haplogroup U5b is present in a large area outside Scandinavia. A detailed phylogeographic analysis of one of the predominant Saami mtDNA haplogroups, U5b1b, which also includes the lineages of the “Saami motif,” was undertaken in 31 populations. The results indicate that the origin of U5b1b, as for the other predominant Saami haplogroup, V, is most likely in western, rather than eastern, Europe. Furthermore, an additional haplogroup (H1) spread among the Saami was virtually absent in 781 Samoyed and Ob-Ugric Siberians but was present in western and central European populations. The Y-chromosomal variety in the Saami is also consistent with their European ancestry. It suggests that the large genetic separation of the Saami from other Europeans is best explained by assuming that the Saami are descendants of a narrow, distinctive subset of Europeans. In particular, no evidence of a significant directional gene flow from extant aboriginal Siberian populations into the haploid gene pools of the Saami was found. PMID:15024688

  9. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders

    PubMed Central

    Smoller, Jordan W

    2016-01-01

    Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories—posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders—for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene–environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research. PMID:26321314

  10. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    PubMed

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  11. Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Cafaro, Thamara A.; Suarez, María F.

    2013-01-01

    Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK. PMID:24040292

  12. Genetic background and climatic droplet keratopathy incidence in a Mapuche population from Argentina.

    PubMed

    Schurr, Theodore G; Dulik, Matthew C; Cafaro, Thamara A; Suarez, María F; Urrets-Zavalia, Julio A; Serra, Horacio M

    2013-01-01

    To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.

  13. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  14. Preliminary spectrum of genetic variants in familial hypercholesterolemia in Argentina.

    PubMed

    Bañares, Virginia G; Corral, Pablo; Medeiros, Ana Margarida; Araujo, María Beatriz; Lozada, Alfredo; Bustamante, Juan; Cerretini, Roxana; López, Graciela; Bourbon, Mafalda; Schreier, Laura E

    Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein cholesterol and early cardiovascular disease. As cardiovascular disease is a leading cause of mortality in Argentina, early identification of patients with FH is of great public health importance. The aim of our study was to identify families with FH and to approximate to the characterization of the genetic spectrum mutations of FH in Argentina. Thirty-three not related index cases were selected with clinical diagnosis of FH. Genetic analysis was performed by sequencing, multiplex ligation-dependent probe amplification, and bioinformatics tools. Twenty genetic variants were identified among 24 cases (73%), 95% on the low-density lipoprotein receptor gene. The only variant on APOB was the R3527Q. Four were novel variants: c.-135C>A, c.170A>C p.(Asp57Ala), c.684G>C p.(Glu228Asp), and c.1895A>T p.(Asn632Ile); the bioinformatics' analysis revealed clear destabilizing effects for 2 of them. The exon 14 presented the highest number of variants (32%). Four variants were observed in more than 1 case and the c.2043C>A p.(Cys681*) was carried by 18% of index cases. Two true homozygotes, 3 compound heterozygotes, and 1 double heterozygote were identified. This study characterizes for the first time in Argentina genetic variants associated with FH and suggest that the allelic heterogeneity of the FH in the country could have 1 relative common low-density lipoprotein receptor mutation. This knowledge is important for the genotype-phenotype correlation and for optimizing both cholesterol-lowering therapies and mutational analysis protocols. In addition, these data contribute to the understanding of the molecular basis of FH in Argentina. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.).

    PubMed

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F(2) (RC-F(2)) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2) populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition.

  16. Thorough Investigation of a Canine Autoinflammatory Disease (AID) Confirms One Main Risk Locus and Suggests a Modifier Locus for Amyloidosis

    PubMed Central

    Olsson, Mia; Tintle, Linda; Kierczak, Marcin; Perloski, Michele; Tonomura, Noriko; Lundquist, Andrew; Murén, Eva; Fels, Max; Tengvall, Katarina; Pielberg, Gerli; Dufaure de Citres, Caroline; Dorso, Laetitia; Abadie, Jérôme; Hanson, Jeanette; Thomas, Anne; Leegwater, Peter; Hedhammar, Åke; Lindblad-Toh, Kerstin; Meadows, Jennifer R. S.

    2013-01-01

    Autoinflammatory disease (AID) manifests from the dysregulation of the innate immune system and is characterised by systemic and persistent inflammation. Clinical heterogeneity leads to patients presenting with one or a spectrum of phenotypic signs, leading to difficult diagnoses in the absence of a clear genetic cause. We used separate genome-wide SNP analyses to investigate five signs of AID (recurrent fever, arthritis, breed specific secondary dermatitis, otitis and systemic reactive amyloidosis) in a canine comparative model, the pure bred Chinese Shar-Pei. Analysis of 255 DNA samples revealed a shared locus on chromosome 13 spanning two peaks of association. A three-marker haplotype based on the most significant SNP (p<2.6×10−8) from each analysis showed that one haplotypic pair (H13-11) was present in the majority of AID individuals, implicating this as a shared risk factor for all phenotypes. We also noted that a genetic signature (F ST) distinguishing the phenotypic extremes of the breed specific Chinese Shar-Pei thick and wrinkled skin, flanked the chromosome 13 AID locus; suggesting that breed development and differentiation has played a parallel role in the genetics of breed fitness. Intriguingly, a potential modifier locus for amyloidosis was revealed on chromosome 14, and an investigation of candidate genes from both this and the chromosome 13 regions revealed significant (p<0.05) renal differential expression in four genes previously implicated in kidney or immune health (AOAH, ELMO1, HAS2 and IL6). These results illustrate that phenotypic heterogeneity need not be a reflection of genetic heterogeneity, and that genetic modifiers of disease could be masked if syndromes were not first considered as individual clinical signs and then as a sum of their component parts. PMID:24130694

  17. The Genetic Blues: Understanding Genetic Principles Using a Practical Approach and a Historical Perspective.

    ERIC Educational Resources Information Center

    Mysliwiec, Tami H.

    2003-01-01

    Incorporates history and genetics to explain how genetic traits are passed on to the next generation by focusing on methemoglobinemia, a rare genetic disease, and discusses how oxygen is carried by hemoglobin. Includes individual pedigree analysis and class pedigree analysis. (YDS)

  18. Polyploidy creates higher diversity among Cynodon accessions as assessed by molecular markers.

    PubMed

    Gulsen, Osman; Sever-Mutlu, Songul; Mutlu, Nedim; Tuna, Metin; Karaguzel, Osman; Shearman, Robert C; Riordan, Terrance P; Heng-Moss, Tiffany M

    2009-05-01

    Developing a better understanding of associations among ploidy level, geographic distribution, and genetic diversity of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to: (1) determine ploidy analysis of Cynodon accessions collected from Turkey, (2) investigate associations between ploidy level and diversity, (3) determine whether geographic and ploidy distribution are related to nuclear genome variation, and (4) correlate among four nuclear molecular marker systems for Cynodon accessions' genetic analyses. One hundred and eighty-two Cynodon accessions collected in Turkey from an area south of the Taurus Mountains along the Mediterranean cost and ten known genotypes were genotyped using sequence related amplified polymorphism (SRAP), peroxidase gene polymorphism (POGP), inter-simple sequence repeat (ISSR), and random amplified polymorphic DNA (RAPD). The diploids, triploids, tetraploids, pentaploids, and hexaploids revealed by flow cytometry had a linear present band frequency of 0.36, 0.47, 0.49, 0.52, and 0.54, respectively. Regression analysis explained that quadratic relationship between ploidy level and band frequency was the most explanatory (r = 0.62, P < 0.001). The AMOVA results indicated that 91 and 94% of the total variation resided within ploidy level and provinces, respectively. The UPGMA analysis suggested that commercial bermudagrass cultivars only one-third of the available genetic variation. SRAP, POGP, ISSR, and RAPD markers differed in detecting relationships among the bermudagrass genotypes and rare alleles, suggesting more efficiency of combinatory analysis of molecular marker systems. Elucidating Cynodon accessions' genetic structure can aid to enhance breeding programs and broaden genetic base of commercial cultivars.

  19. Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females.

    PubMed

    Smouse, P E; Dyer, R J; Westfall, R D; Sork, V L

    2001-02-01

    Gene flow is a key factor in the spatial genetic structure in spatially distributed species. Evolutionary biologists interested in microevolutionary processess and conservation biologists interested in the impact of landscape change require a method that measures the real time process of gene movement. We present a novel two-generation (parent-offspring) approach to the study of genetic structure (TwoGener) that allows us to quantify heterogeneity among the male gamete pools sampled by maternal trees scattered across the landscape and to estimate mean pollination distance and effective neighborhood size. First, we describe the model's elements: genetic distance matrices to estimate intergametic distances, molecular analysis of variance to determine whether pollen profiles differ among mothers, and optimal sampling considerations. Second, we evaluate the model's effectiveness by simulating spatially distributed populations. Spatial heterogeneity in male gametes can be estimated by phiFT, a male gametic analogue of Wright's F(ST) and an inverse function of mean pollination distance. We illustrate TwoGener in cases where the male gamete can be categorically or ambiguously determined. This approach does not require the high level of genetic resolution needed by parentage analysis, but the ambiguous case is vulnerable to bias in the absence of adequate genetic resolution. Finally, we apply TwoGener to an empirical study of Quercus alba in Missouri Ozark forests. We find that phiFT = 0.06, translating into about eight effective pollen donors per female and an effective pollination neighborhood as a circle of radius about 17 m. Effective pollen movement in Q. alba is more restricted than previously realized, even though pollen is capable of moving large distances. This case study illustrates that, with a modest investment in field survey and laboratory analysis, the TwoGener approach permits inferences about landscape-level gene movements.

  20. Mapping Genes that Contribute to Daunorubicin-Induced Cytotoxicity

    PubMed Central

    Duan, Shiwei; Bleibel, Wasim K.; Huang, Rong Stephanie; Shukla, Sunita J.; Wu, Xiaolin; Badner, Judith A.; Dolan, M. Eileen

    2009-01-01

    Daunorubicin is an anthracycline antibiotic agent used in the treatment of hematopoietic malignancies. Toxicities associated with this agent include myelosuppression and cardiotoxicity; however, the genes or genetic determinants that contribute to these toxicities are unknown. We present an unbiased genome-wide approach that incorporates heritability, whole-genome linkage analysis, and linkage-directed association to uncover genetic variants contributing to the sensitivity to daunorubicin-induced cytotoxicity. Cell growth inhibition in 324 Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines (24 pedigrees) was evaluated following treatment with daunorubicin for 72 h. Heritability analysis showed a significant genetic component contributing to the cytotoxic phenotypes (h2 = 0.18–0.63at 0.0125, 0.025, 0.05, 0.1, 0.2, and 1.0 µmol/L daunorubicin and at the IC50, the dose required to inhibit 50% cell growth). Whole-genome linkage scans at all drug concentrations and IC50 uncovered 11 regions with moderate peak LOD scores (>1.5), including 4q28.2 to 4q32.3 with a maximum LOD score of 3.18. The quantitative transmission disequilibrium tests were done using 31,312 high-frequency single-nucleotide polymorphisms (SNP) located in the 1 LOD confidence interval of these 11 regions. Thirty genes were identified as significantly associated with daunorubicin-induced cytotoxicity (P ≤ 2.0 × 10−4, false discovery rate ≤ 0.1). Pathway and functional gene ontology analysis showed that these genes were overrepresented in the phosphatidylinositol signaling system, axon guidance pathway, and GPI-anchored proteins family. Our findings suggest that a proportion of susceptibility to daunorubicin-induced cytotoxicity may be controlled by genetic determinants and that analysis using linkage-directed association studies with dense SNP markers can be used to identify the genetic variants contributing to cytotoxicity. PMID:17545624

  1. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity

    PubMed Central

    Zhang, Michael Y.; Keel, Siobán B.; Walsh, Tom; Lee, Ming K.; Gulsuner, Suleyman; Watts, Amanda C.; Pritchard, Colin C.; Salipante, Stephen J.; Jeng, Michael R.; Hofmann, Inga; Williams, David A.; Fleming, Mark D.; Abkowitz, Janis L.; King, Mary-Claire; Shimamura, Akiko

    2015-01-01

    Accurate and timely diagnosis of inherited bone marrow failure and inherited myelodysplastic syndromes is essential to guide clinical management. Distinguishing inherited from acquired bone marrow failure/myelodysplastic syndrome poses a significant clinical challenge. At present, diagnostic genetic testing for inherited bone marrow failure/myelodysplastic syndrome is performed gene-by-gene, guided by clinical and laboratory evaluation. We hypothesized that standard clinically-directed genetic testing misses patients with cryptic or atypical presentations of inherited bone marrow failure/myelodysplastic syndrome. In order to screen simultaneously for mutations of all classes in bone marrow failure/myelodysplastic syndrome genes, we developed and validated a panel of 85 genes for targeted capture and multiplexed massively parallel sequencing. In patients with clinical diagnoses of Fanconi anemia, genomic analysis resolved subtype assignment, including those of patients with inconclusive complementation test results. Eight out of 71 patients with idiopathic bone marrow failure or myelodysplastic syndrome were found to harbor damaging germline mutations in GATA2, RUNX1, DKC1, or LIG4. All 8 of these patients lacked classical clinical stigmata or laboratory findings of these syndromes and only 4 had a family history suggestive of inherited disease. These results reflect the extensive genetic heterogeneity and phenotypic complexity of bone marrow failure/myelodysplastic syndrome phenotypes. This study supports the integration of broad unbiased genetic screening into the diagnostic workup of children and young adults with bone marrow failure and myelodysplastic syndromes. PMID:25239263

  2. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    USGS Publications Warehouse

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up < 60% of the harvest. In general, seasonal and annual differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  3. Genetic structure of Cantharellus formosus populations in a second-growth temperate rain forest of the Pacific Northwest

    USGS Publications Warehouse

    Redman, Regina S.; Ranson, Judith; Rodriguez, Rusty J.

    2006-01-01

    Cantharellus formosus growing on the Olympic Peninsula of the Pacific Northwest was sampled from September – November 1995 for genetic analysis. A total of ninety-six basidiomes from five clusters separated from one another by 3 - 25 meters were genetically characterized by PCR analysis of 13 arbitrary loci and rDNA sequences. The number of basidiomes in each cluster varied from 15 to 25 and genetic analysis delineated 15 genets among the clusters. Analysis of variance utilizing thirteen apPCR generated genetic molecular markers and PCR amplification of the ribosomal ITS regions indicated that 81.41% of the genetic variation occurred between clusters and 18.59% within clusters. Proximity of the basidiomes within a cluster was not an indicator of genotypic similarity. The molecular profiles of each cluster were distinct and defined as unique populations containing 2 - 6 genets. The monitoring and analysis of this species through non-lethal sampling and future applications is discussed.

  4. Genetics, development and composition of the insect head--a beetle's view.

    PubMed

    Posnien, Nico; Schinko, Johannes B; Kittelmann, Sebastian; Bucher, Gregor

    2010-11-01

    Many questions regarding evolution and ontogeny of the insect head remain open. Likewise, the genetic basis of insect head development is poorly understood. Recently, the investigation of gene expression data and the analysis of patterning gene function have revived interest in insect head development. Here, we argue that the red flour beetle Tribolium castaneum is a well suited model organism to spearhead research with respect to the genetic control of insect head development. We review recent molecular data and discuss its bearing on early development and morphogenesis of the head. We present a novel hypothesis on the ontogenetic origin of insect head sutures and review recent insights into the question on the origin of the labrum. Further, we argue that the study of developmental genes may identify the elusive anterior non-segmental region and present some evidence in favor of its existence. With respect to the question of evolution of patterning we show that the head Anlagen of the fruit fly Drosophila melanogaster and Tribolium differ considerably and we review profound differences of their genetic regulation. Finally, we discuss which insect model species might help us to answer the open questions concerning the genetic regulation of head development and its evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Evaluation of Genetic Diversity, Population Structure, and Relationship Between Legendary Vechur Cattle and Crossbred Cattle of Kerala State, India.

    PubMed

    Radhika, G; Aravindakshan, T V; Jinty, S; Ramya, K

    2018-01-02

    The legendary Vechur cattle of Kerala, described as a very short breed, and the crossbred (CB) Sunandini cattle population exhibited great phenotypic variation; hence, the present study attempted to analyze the genetic diversity existing between them. A set of 14 polymorphic microsatellites were chosen from FAO-ISAG panel and amplified from genomic DNA isolated from blood samples of 30 Vechur and 64 unrelated crossbred cattle, using fluorescent labeled primers. Both populations revealed high genetic diversity as evidenced from high observed number of alleles, Polymorphic Information Content and expected heterozygosity. Observed heterozygosity was lesser (0.699) than expected (0.752) in Vechur population which was further supported by positive F IS value of 0.1149, indicating slight level of inbreeding in Vechur population. Overall, F ST value was 0.065, which means genetic differentiation between crossbred and Vechur population was 6.5%, indicating that the crossbred cattle must have differentiated into a definite population that is different from the indigenous Vechur cows. Structure analysis indicated that the two populations showed distinct differences, with two underlying clusters. The present study supports the separation between Taurine and Zebu cattle and throws light onto the genetic diversity and relationship between native Vechur and crossbred cattle populations in Kerala state.

  6. Evaluation of Genetic Polymorphism of Leishmania (V.) braziliensis Isolates Obtained from the Same Patient before and after Therapeutic Failure or Reactivation of Cutaneous Lesions

    PubMed Central

    Baptista, Cibele; Schubach, Armando de Oliveira; Madeira, Maria de Fatima; de Freitas Campos Miranda, Luciana; Guimarães de Souza Pinto, Andressa; Helena da Silva Barros, Juliana; Conceição-Silva, Fatima; Fernandes Pimentel, Maria Ines; da Silva Pacheco, Raquel

    2012-01-01

    The aim of this study was to investigate genetic polymorphism in Leishmania braziliensis population previously typed through isoenzyme electrophoresis, isolated from the same patient in two different moments: (A) before the beginning of treatment and (B) after treatment failure to meglumine antimoniate or reactivation after successful initial treatment. Fifteen pairs of isolates were assessed using the polymorphic molecular marker LSSP-PCR and following the phenetic analysis. The genetic profiles of the 30 samples were grouped in four clusters. Only two patients presented total identity in the A and B isolates. Most isolates presented similarity coefficients varying from 0.63 to 0.91. In this group of patients genetic polymorphisms could be observed indicating low similarity between the pairs of isolates. The results demonstrate the existence of genetic polymorphism between the samples isolated before treatment and after reactivation or treatment failure, suggesting a possible differentiation of the structure of the original parasite population which could be involved in the mechanisms of resistance to treatment or reactivation of lesions in the ATL. This phenomenon is important, although other factors also could be involved in this context and are discussed in this paper. PMID:23304168

  7. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  8. Analysis of half diallel mating designs I: a practical analysis procedure for ANOVA approximation.

    Treesearch

    G.R. Johnson; J.N. King

    1998-01-01

    Procedures to analyze half-diallel mating designs using the SAS statistical package are presented. The procedure requires two runs of PROC and VARCOMP and results in estimates of additive and non-additive genetic variation. The procedures described can be modified to work on most statistical software packages which can compute variance component estimates. The...

  9. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    PubMed

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  10. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    PubMed Central

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  11. Genetic variation and population structure in Jamunapari goats using microsatellites, mitochondrial DNA, and milk protein genes.

    PubMed

    Rout, P K; Thangraj, K; Mandal, A; Roy, R

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation decision and management of the breed.

  12. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    PubMed Central

    Rout, P. K.; Thangraj, K.; Mandal, A.; Roy, R.

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation decision and management of the breed. PMID:22606053

  13. Functional Connectivity and Genetic Profile of a “Double-Cortex”-Like Malformation

    PubMed Central

    Sprugnoli, Giulia; Vatti, Giampaolo; Rossi, Simone; Cerase, Alfonso; Renieri, Alessandra; Mencarelli, Maria A.; Zara, Federico; Rossi, Alessandro; Santarnecchi, Emiliano

    2018-01-01

    Laminar heterotopia is a rare condition consisting in an extra layer of gray matter under properly migrated cortex; it configures an atypical presentation of periventricular nodular heterotopia (PNH) or a double cortex (DC) syndrome. We conducted an original functional MRI (fMRI) analysis in a drug-resistant epilepsy patient with “double-cortex”-like malformation to reveal her functional connectivity (FC) as well as a wide genetic analysis to identify possible genetic substrates. Heterotopias were segmented into region of interests (ROIs), whose voxel-wise FC was compared to that of (i) its normally migrated counterpart, (ii) its contralateral homologous, and (iii) those of 30 age-matched healthy controls. Extensive genetic analysis was conducted to screen cortical malformations-associated genes. Compared to healthy controls, both laminar heterotopias and the overlying cortex showed significant reduction of FC with the contralateral hemisphere. Two heterozygous variants of uncertain clinical significance were found, involving autosomal recessive disease-causing genes, FAT4 and COL18A1. This first FC analysis of a unique case of “double-cortex”-like malformation revealed a hemispheric connectivity segregation both in the laminar cortex as in the correctly migrated one, with a new pattern of genes’ mutations. Our study suggests the altered FC could have an electrophysiological and functional impact on large-scale brain networks, and the involvement of not yet identified genes in “double-cortex”-like malformation with a possible role of rare variants in recessive genes as pathogenic cofactors. PMID:29946244

  14. Diagnosis of Wilson disease in young children: molecular genetic testing and a paradigm shift from the laboratory diagnosis.

    PubMed

    Seo, Jeong Kee

    2012-12-01

    Wilson disease (WD) is an autosomal recessive disorder of copper metabolism that results in accumulation of copper primarily in the liver, brain and cornea. Mutations in the WD gene, ATP7B, cause failure of copper excretion from hepatocyte into bile and a defective synthesis of ceruloplasmin. More than 500 mutations are now recognized, scattered throughout the ATP7B gene. Since WD has protean clinical presentations, awareness of WD in clinical practice is important for the early diagnosis and prevention of accumulated copper toxicity. Molecular genetic testing is playing an increasingly important role in the diagnosis of WD in uncertain cases and family screening. Siblings should be screened for WD once an index case has been diagnosed. Discrimination of heterozygotes from asymptomatic patients is essential to avoid inappropriate lifelong therapy for heterozygotes. Genetic testing, either by haplotype analysis or by mutation analysis, is the only definite solution for differentiating heterozygote carriers from affected asymptomatic patients. Routine genetic testing, because of the multitude of documented mutations, has been thought to be impractical until recently. However, genetic testing is now being more actively applied to the diagnosis of WD, particularly in young children in whom conventional biochemical diagnosis has much limitation and only genetic testing is able to confirm WD. Because advancement of modern biochemical technology now allows more rapid, easier, and less expensive mutation detection, direct DNA sequencing could be actively considered as the primary mode of diagnostic investigation rather than a supplementary test to the conventional biochemical tests. This review will focus on the recent advancement of molecular genetics and genetic diagnosis of WD in very young children on the basis of research data of the Seoul National University Children's Hospital and recent literature.

  15. Elaboration of the Reciprocal-Engagement Model of Genetic Counseling Practice: a Qualitative Investigation of Goals and Strategies.

    PubMed

    Redlinger-Grosse, Krista; Veach, Patricia McCarthy; LeRoy, Bonnie S; Zierhut, Heather

    2017-12-01

    As the genetic counseling field evolves, a comprehensive model of practice is critical. The Reciprocal-Engagement Model (REM) consists of 5 tenets and 17 goals. Lacking in the REM, however, are well-articulated counselor strategies and behaviors. The purpose of the present study was to further elaborate and provide supporting evidence for the REM by identifying and mapping genetic counseling strategies to the REM goals. A secondary, qualitative analysis was conducted on data from two prior studies: 1) focus group results of genetic counseling outcomes (Redlinger-Grosse et al., Journal of Genetic Counseling, 2015); and 2) genetic counselors' examples of successful and unsuccessful genetic counseling sessions (Geiser et al. 2009). Using directed content analysis, 337 unique strategies were extracted from focus group data. A Q-sort of the 337 strategies yielded 15 broader strategy domains that were then mapped to the successful and unsuccessful session examples. Differing prevalence of strategy domains identified in successful sessions versus the prevalence of domains identified as lacking in unsuccessful sessions provide further support for the REM goals. The most prevalent domains for successful sessions were Information Giving and Use Psychosocial Skills and Strategies; and for unsuccessful sessions, Information Giving and Establish Working Alliance. Identified strategies support the REM's reciprocal nature, especially with regard to addressing patients' informational and psychosocial needs. Patients' contributions to success (or lack thereof) of sessions was also noted, supporting a REM tenet that individual characteristics and the counselor-patient relationship are central to processes and outcomes. The elaborated REM could be used as a framework for certain graduate curricular objectives, and REM components could also inform process and outcomes research studies to document and further characterize genetic counselor strategies.

  16. Analysing malaria drug trials on a per-individual or per-clone basis: a comparison of methods.

    PubMed

    Jaki, Thomas; Parry, Alice; Winter, Katherine; Hastings, Ian

    2013-07-30

    There are a variety of methods used to estimate the effectiveness of antimalarial drugs in clinical trials, invariably on a per-person basis. A person, however, may have more than one malaria infection present at the time of treatment. We evaluate currently used methods for analysing malaria trials on a per-individual basis and introduce a novel method to estimate the cure rate on a per-infection (clone) basis. We used simulated and real data to highlight the differences of the various methods. We give special attention to classifying outcomes as cured, recrudescent (infections that never fully cleared) or ambiguous on the basis of genetic markers at three loci. To estimate cure rates on a per-clone basis, we used the genetic information within an individual before treatment to determine the number of clones present. We used the genetic information obtained at the time of treatment failure to classify clones as recrudescence or new infections. On the per-individual level, we find that the most accurate methods of classification label an individual as newly infected if all alleles are different at the beginning and at the time of failure and as a recrudescence if all or some alleles were the same. The most appropriate analysis method is survival analysis or alternatively for complete data/per-protocol analysis a proportion estimate that treats new infections as successes. We show that the analysis of drug effectiveness on a per-clone basis estimates the cure rate accurately and allows more detailed evaluation of the performance of the treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  17. The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome.

    PubMed

    Catelli, María Laura; Alvarez-Iglesias, Vanesa; Gómez-Carballa, Alberto; Mosquera-Miguel, Ana; Romanini, Carola; Borosky, Alicia; Amigo, Jorge; Carracedo, Angel; Vullo, Carlos; Salas, Antonio

    2011-08-30

    The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence.

  18. Conference summary: Navigating the Sea of Genomic Data, October 28-29, 2015.

    PubMed

    Pihlstrom, Bruce L; Barnett, Michael L

    2016-03-01

    The rapid pace of biomedical discoveries in the past few years has resulted in substantial advances in our ability to diagnose, treat, and prevent a wide variety of diseases. The sequencing of the human genome offered the possibility of understanding the etiology, pathogenesis, and risk of developing disease from a genetic perspective and has resulted, for example, in the development of genomic-based diagnostic or risk-assessment tests for a number of medical and dental conditions. To assess the scientific evidence underlying such tests and determine whether they may be useful in clinical practice, practitioners need to have a basic understanding of the state-of-the-science of genomics and genetic testing. To assist practitioners in understanding the science of genomics, the American Dental Association and the Task Force on Design and Analysis in Oral Health Research co-sponsored a landmark conference, Navigating the Sea of Genomic Data, held October 28-29, 2015, at the American Dental Association headquarters building in Chicago, IL. The purpose of this conference was to review the basics of genomic science, promote sound design and analysis of genomic studies of oral diseases, and provide a basis or "framework" to guide practitioners in assessing new development in genomics and genetic tests for oral diseases. Presentations at this conference were made by 9 world-renowned scientists who discussed a wide range of topics involving genomic science, genetic testing for rare mendelian single gene disorders, and genetic testing for assessing the risk of experiencing common complex diseases. This article summarizes the key points and concepts presented by the speakers. It is essential for oral health care professionals to have a fundamental understanding of genomic science so that they can evaluate new advances in this field and the use of genetic testing for the benefit of their patients. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  19. The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome

    PubMed Central

    2011-01-01

    Background The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Results Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Conclusions Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence. PMID:21878127

  20. The genetic heterogeneity of Arab populations as inferred from HLA genes

    PubMed Central

    Almawi, Wassim Y.; Arnaiz-Villena, Antonio; Hattab, Lasmar; Hmida, Slama

    2018-01-01

    This is the first genetic anthropology study on Arabs in MENA (Middle East and North Africa) region. The present meta-analysis included 100 populations from 36 Arab and non-Arab communities, comprising 16,006 individuals, and evaluates the genetic profile of Arabs using HLA class I (A, B) and class II (DRB1, DQB1) genes. A total of 56 Arab populations comprising 10,283 individuals were selected from several databases, and were compared with 44 Mediterranean, Asian, and sub-Saharan populations. The most frequent alleles in Arabs are A*01, A*02, B*35, B*51, DRB1*03:01, DRB1*07:01, DQB1*02:01, and DQB1*03:01, while DRB1*03:01-DQB1*02:01 and DRB1*07:01-DQB1*02:02 are the most frequent class II haplotypes. Dendrograms, correspondence analyses, genetic distances, and haplotype analysis indicate that Arabs could be stratified into four groups. The first consists of North Africans (Algerians, Tunisians, Moroccans, and Libyans), and the first Arabian Peninsula cluster (Saudis, Kuwaitis, and Yemenis), who appear to be related to Western Mediterraneans, including Iberians; this might be explained for a massive migration into these areas when Sahara underwent a relatively rapid desiccation, starting about 10,000 years BC. The second includes Levantine Arabs (Palestinians, Jordanians, Lebanese, and Syrians), along with Iraqi and Egyptians, who are related to Eastern Mediterraneans. The third comprises Sudanese and Comorians, who tend to cluster with Sub-Saharans. The fourth comprises the second Arabian Peninsula cluster, made up of Omanis, Emiratis, and Bahrainis. It is noteworthy that the two large minorities (Berbers and Kurds) are indigenous (autochthonous), and are not genetically different from “host” and neighboring populations. In conclusion, this study confirmed high genetic heterogeneity among present-day Arabs, and especially those of the Arabian Peninsula. PMID:29522542

  1. Population genetic structure of clinical and environmental isolates of Blastomyces dermatitidis, Based on 27 Polymorphic Microsatellite Markers

    USGS Publications Warehouse

    Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, Brian L.; Reed, K.D.

    2011-01-01

    Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n = 112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and ??-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species. ?? 2011, American Society for Microbiology.

  2. Population genetic structure of clinical and environmental isolates of Blastomyces dermatitidis based on 27 polymorphic microsatellite markers

    USGS Publications Warehouse

    Meece, Jennifer K.; Anderson, Jennifer L.; Fisher, Matthew C.; Henk, Daniel A.; Sloss, Brian L.; Reed, Kurt D.

    2011-01-01

    Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n=112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and α-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species.

  3. Genetic Characterization of the Fish Piaractus brachypomus by Microsatellites Derived from Transcriptome Sequencing.

    PubMed

    Jorge, Paulo H; Mastrochirico-Filho, Vito A; Hata, Milene E; Mendes, Natália J; Ariede, Raquel B; de Freitas, Milena Vieira; Vera, Manuel; Porto-Foresti, Fábio; Hashimoto, Diogo T

    2018-01-01

    The pirapitinga, Piaractus brachypomus (Characiformes, Serrasalmidae), is a fish from the Amazon basin and is considered to be one of the main native species used in aquaculture production in South America. The objectives of this study were: (1) to perform liver transcriptome sequencing of pirapitinga through NGS and then validate a set of microsatellite markers for this species; and (2) to use polymorphic microsatellites for analysis of genetic variability in farmed stocks. The transcriptome sequencing was carried out through the Roche/454 technology, which resulted in 3,696 non-redundant contigs. Of this total, 2,568 contigs had similarity in the non-redundant (nr) protein database (Genbank) and 2,075 sequences were characterized in the categories of Gene Ontology (GO). After the validation process of 30 microsatellite loci, eight markers showed polymorphism. The analysis of these polymorphic markers in farmed stocks revealed that fish farms from North Brazil had a higher genetic diversity than fish farms from Southeast Brazil. AMOVA demonstrated that the highest proportion of variation was presented within the populations. However, when comparing different groups (1: Wild; 2: North fish farms; 3: Southeast fish farms), a considerable variation between the groups was observed. The F ST values showed the occurrence of genetic structure among the broodstocks from different regions of Brazil. The transcriptome sequencing in pirapitinga provided important genetic resources for biological studies in this non-model species, and microsatellite data can be used as the framework for the genetic management of breeding stocks in Brazil, which might provide a basis for a genetic pre-breeding programme.

  4. A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms.

    PubMed

    Mathew, Lisa S; Spannagl, Manuel; Al-Malki, Ameena; George, Binu; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Hussein, Emad; Mathew, Sweety; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A

    2014-04-15

    The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. Based on a modified genotyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms.

  5. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin

    PubMed Central

    Conord, Cyrille; Gurevitch, Jessica; Fady, Bruno

    2012-01-01

    Biodiversity is the diversity of life at all scales, from genes to ecosystems. Predicting its patterns of variation across the globe is a fundamental issue in ecology and evolution. Diversity within species, that is, genetic diversity, is of prime importance for understanding past and present evolutionary patterns, and highlighting areas where conservation might be a priority. Using published data on the genetic diversity of species whose populations occur in the Mediterranean basin, we calculated a coefficient of correlation between within-population genetic diversity indices and longitude. Using a meta-analysis framework, we estimated the role of biological, ecological, biogeographic, and marker type factors on the strength and magnitude of this correlation in six phylla. Overall, genetic diversity increases from west to east in the Mediterranean basin. This correlation is significant for both animals and plants, but is not uniformly expressed for all groups. It is stronger in the southern than in the northern Mediterranean, in true Mediterranean plants than in plants found at higher elevations, in trees than in other plants, and in bi-parentally and paternally than in maternally inherited DNA makers. Overall, this correlation between genetic diversity and longitude, and its patterns across biological and ecological traits, suggests the role of two non-mutually exclusive major processes that shaped the genetic diversity in the Mediterranean during and after the cold periods of the Pleistocene: east-west recolonization during the Holocene and population size contraction under local Last Glacial Maximum climate in resident western and low elevation Mediterranean populations. PMID:23145344

  6. Bayes factors based on robust TDT-type tests for family trio design.

    PubMed

    Yuan, Min; Pan, Xiaoqing; Yang, Yaning

    2015-06-01

    Adaptive transmission disequilibrium test (aTDT) and MAX3 test are two robust-efficient association tests for case-parent family trio data. Both tests incorporate information of common genetic models including recessive, additive and dominant models and are efficient in power and robust to genetic model specifications. The aTDT uses information of departure from Hardy-Weinberg disequilibrium to identify the potential genetic model underlying the data and then applies the corresponding TDT-type test, and the MAX3 test is defined as the maximum of the absolute value of three TDT-type tests under the three common genetic models. In this article, we propose three robust Bayes procedures, the aTDT based Bayes factor, MAX3 based Bayes factor and Bayes model averaging (BMA), for association analysis with case-parent trio design. The asymptotic distributions of aTDT under the null and alternative hypothesis are derived in order to calculate its Bayes factor. Extensive simulations show that the Bayes factors and the p-values of the corresponding tests are generally consistent and these Bayes factors are robust to genetic model specifications, especially so when the priors on the genetic models are equal. When equal priors are used for the underlying genetic models, the Bayes factor method based on aTDT is more powerful than those based on MAX3 and Bayes model averaging. When the prior placed a small (large) probability on the true model, the Bayes factor based on aTDT (BMA) is more powerful. Analysis of a simulation data about RA from GAW15 is presented to illustrate applications of the proposed methods.

  7. Genomic Study of Cardiovascular Continuum Comorbidity.

    PubMed

    Makeeva, O A; Sleptsov, A A; Kulish, E V; Barbarash, O L; Mazur, A M; Prokhorchuk, E B; Chekanov, N N; Stepanov, V A; Puzyrev, V P

    2015-01-01

    Comorbidity or a combination of several diseases in the same individual is a common and widely investigated phenomenon. However, the genetic background for non-random disease combinations is not fully understood. Modern technologies and approaches to genomic data analysis enable the investigation of the genetic profile of patients burdened with several diseases (polypathia, disease conglomerates) and its comparison with the profiles of patients with single diseases. An association study featuring three groups of patients with various combinations of cardiovascular disorders and a control group of relatively healthy individuals was conducted. Patients were selected as follows: presence of only one disease, ischemic heart disease (IHD); a combination of two diseases, IHD and arterial hypertension (AH); and a combination of several diseases, including IHD, AH, type 2 diabetes mellitus (T2DM), and hypercholesterolemia (HC). Genotyping was performed using the "My Gene" genomic service (www.i-gene.ru). An analysis of 1,400 polymorphic genetic variants and their associations with the studied phenotypes are presented. A total of 14 polymorphic variants were associated with the phenotype "IHD only," including those in the APOB, CD226, NKX2-5, TLR2, DPP6, KLRB1, VDR, SCARB1, NEDD4L, and SREBF2 genes, and intragenic variants rs12487066, rs7807268, rs10896449, and rs944289. A total of 13 genetic markers were associated with the "IHD and AH" phenotype, including variants in the BTNL2, EGFR, CNTNAP2, SCARB1, and HNF1A genes, and intragenic polymorphisms rs801114, rs10499194, rs13207033, rs2398162, rs6501455, and rs1160312. A total of 14 genetic variants were associated with a combination of several diseases of cardiovascular continuum (CVC), including those in the TAS2R38, SEZ6L, APOA2, KLF7, CETP, ITGA4, RAD54B, LDLR, and MTAP genes, along with intragenic variants rs1333048, rs1333049, and rs6501455. One common genetic marker was identified for the "IHD only" and "IHD and AH" phenotypes: rs4765623 in the SCARB1 gene; two common genetic markers, rs663048 in SEZ6L and intragenic rs6501455, were identified for the "IHD and AH" phenotype and a combination of several diseases (syntropy); there were no common genetic markers for the "syntropy" and "IHD only" phenotypes. Classificatory analysis of the relationships between the associated genes and metabolic pathways revealed that lipid-metabolizing genes are involved in the development of all three CVC variants, whereas immunity-response genes are specific to the "IHD only" phenotype. The study demonstrated that comorbidity presents additional challenges in association studies of disease predisposition, since the genetic profile of combined forms of pathology can be markedly different from those for isolated "single" forms of a disease.

  8. A Factorial Analysis of Timed and Untimed Measures of Mathematics and Reading Abilities in School Aged Twins

    ERIC Educational Resources Information Center

    Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.

    2010-01-01

    The present study examined the phenotypic and genetic relationship between fluency and non-fluency-based measures of reading and mathematics performance. Participants were drawn from the Western Reserve Reading and Math Project, an ongoing longitudinal twin project of same-sex MZ and DZ twins from Ohio. The present analyses are based on…

  9. The Comparative Effects of Prediction/Discussion-Based Learning Cycle, Conceptual Change Text, and Traditional Instructions on Student Understanding of Genetics

    NASA Astrophysics Data System (ADS)

    Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra

    2011-03-01

    The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.

  10. A discriminative test among the different theories proposed to explain the origin of the genetic code: the coevolution theory finds additional support.

    PubMed

    Giulio, Massimo Di

    2018-05-19

    A discriminative statistical test among the different theories proposed to explain the origin of the genetic code is presented. Gathering the amino acids into polarity and biosynthetic classes that are the first expression of the physicochemical theory of the origin of the genetic code and the second expression of the coevolution theory, these classes are utilized in the Fisher's exact test to establish their significance within the genetic code table. Linking to the rows and columns of the genetic code of probabilities that express the statistical significance of these classes, I have finally been in the condition to be able to calculate a χ value to link to both the physicochemical theory and to the coevolution theory that would express the corroboration level referred to these theories. The comparison between these two χ values showed that the coevolution theory is able to explain - in this strictly empirical analysis - the origin of the genetic code better than that of the physicochemical theory. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. [The problem of molecular-genetic identification of sweat and grease deposits in the human fingerprints].

    PubMed

    Faleeva, T G; Ivanov, I N; Mishin, E S; Vnukova, N V; Kornienko, I V

    2016-01-01

    The objective of the present experimental molecular-genetic study of DNA contained in of human fingerprints was to establish the relationship between the reference genetic profiles and the genotypes of the individuals leaving their fingerprints on a smooth metal object. The biological material for the purpose of the investigation was sampled at different time intervals. The were taken using a scotch tape and used to obtain the complete genetic profile immediately after the fingerprints had been left as well as within the next 24 hours and one week. It proved impossible to identify the complete genetic profile one month after the fingerprints had been left. The alleles not typical for reference samples were identified within one week after swabbing the material from the metal surface. The results of the sudy can be explained by the decrease of the concentration of the initial DNA-matrix in the samples due to its degradation in the course of time. It is concluded that the parallel genetic analysis is needed if reliable evidence of identity of the profiles of interest or its absence is to be obtained.

  12. Forensic analysis of mtDNA haplotypes from two rural communities in Haiti reflects their population history.

    PubMed

    Wilson, Jamie L; Saint-Louis, Vertus; Auguste, Jensen O; Jackson, Bruce A

    2012-11-01

    Very little genetic data exist on Haitians, an estimated 1.2 million of whom, not including illegal immigrants, reside in the United States. The absence of genetic data on a population of this size reduces the discriminatory power of criminal and missing-person DNA databases in the United States and Caribbean. We present a forensic population study that provides the first genetic data set for Haiti. This study uses hypervariable segment one (HVS-1) mitochondrial DNA (mtDNA) nucleotide sequences from 291 subjects primarily from rural areas of northern and southern Haiti, where admixture would be minimal. Our results showed that the African maternal genetic component of Haitians had slightly higher West-Central African admixture than African-Americans and Dominicans, but considerably less than Afro-Brazilians. These results lay the foundation for further forensic genetics studies in the Haitian population and serve as a model for forensic mtDNA identification of individuals in other isolated or rural communities. © 2012 American Academy of Forensic Sciences.

  13. Structure and genetic diversity of natural populations of Morus alba in the trans-Himalayan Ladakh region.

    PubMed

    Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering

    2014-04-01

    Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.

  14. Not all my fault”: Genetics, stigma, and personal responsibility for women with eating disorders

    PubMed Central

    Easter, Michele M.

    2012-01-01

    Medical researchers and clinicians increasingly understand and present eating disorders (anorexia and bulimia nervosa) as biologically-based psychiatric disorders, with genetic risk factors established by high heritability estimates in twin studies. But there has been no research on interpretation of genetic involvement by people with eating disorders, who may hold other views. Their interpretations are particularly important given the frequent presumption that biogenetic framing will reduce stigma, and recent findings that it exacerbates stigma for other mental illnesses. To identify implications of genetic framing in eating disorders, I conducted semi-structured interviews with 50 US women with a history of eating disorders (half recovered, half in treatment; interviewed 2008–9 in the USA). Interviews introduced the topic of genetics, but not stigma per se. Analysis followed the general principles of grounded theory to identify perceived implications of genetic involvement; those relevant to stigma are reported here. Most anticipated that genetic reframing would help reduce stigma from personal responsibility (i.e., blame and guilt for eating disorder as ongoing choice). A third articulated ways it could add stigma, including novel forms of stigma related to genetic essentialist effacing of social factors. Despite welcoming reductions in blame and guilt, half also worried genetic framing could hamper recovery, by encouraging fatalistic self-fulfilling prophecies and genetic excuses. This study is the first to elicit perceptions of genetic involvement by those with eating disorders, and contributes to an emerging literature on perceptions of psychiatric genetics by people with mental illness. PMID:22819736

  15. Cacao Flavor through Genetics – Anatomy of Fine Flavor

    USDA-ARS?s Scientific Manuscript database

    This presentation will discuss the transcript analysis of Moniliophthora roreri infected pods, which revealed a total of 3009 differentially expressed transcripts among resistant and susceptible clones. Comparison of the tolerant and susceptible clones by KEGG (Kyoto Encyclopedia of Genes and Genome...

  16. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  17. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. SIMPLEX: Cloud-Enabled Pipeline for the Comprehensive Analysis of Exome Sequencing Data

    PubMed Central

    Fischer, Maria; Snajder, Rene; Pabinger, Stephan; Dander, Andreas; Schossig, Anna; Zschocke, Johannes; Trajanoski, Zlatko; Stocker, Gernot

    2012-01-01

    In recent studies, exome sequencing has proven to be a successful screening tool for the identification of candidate genes causing rare genetic diseases. Although underlying targeted sequencing methods are well established, necessary data handling and focused, structured analysis still remain demanding tasks. Here, we present a cloud-enabled autonomous analysis pipeline, which comprises the complete exome analysis workflow. The pipeline combines several in-house developed and published applications to perform the following steps: (a) initial quality control, (b) intelligent data filtering and pre-processing, (c) sequence alignment to a reference genome, (d) SNP and DIP detection, (e) functional annotation of variants using different approaches, and (f) detailed report generation during various stages of the workflow. The pipeline connects the selected analysis steps, exposes all available parameters for customized usage, performs required data handling, and distributes computationally expensive tasks either on a dedicated high-performance computing infrastructure or on the Amazon cloud environment (EC2). The presented application has already been used in several research projects including studies to elucidate the role of rare genetic diseases. The pipeline is continuously tested and is publicly available under the GPL as a VirtualBox or Cloud image at http://simplex.i-med.ac.at; additional supplementary data is provided at http://www.icbi.at/exome. PMID:22870267

  19. Estimating the actual subject-specific genetic correlations in behavior genetics.

    PubMed

    Molenaar, Peter C M

    2012-10-01

    Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.

  20. Genetic diversity and population genetic analysis of bovine MHC class II DRB3.2 locus in three Bos indicus cattle breeds of Southern India.

    PubMed

    Das, D N; Sri Hari, V G; Hatkar, D N; Rengarajan, K; Saravanan, R; Suryanarayana, V V S; Murthy, L K

    2012-12-01

    The present study was performed to evaluate the genetic polymorphism of BoLA-DRB3.2 locus in Malnad Gidda, Hallikar and Ongole South Indian Bos indicus cattle breeds, employing the PCR-RFLP technique. In Malnad Gidda population, 37 BoLA-DRB3.2 alleles were detected, including one novel allele DRB3*2503 (GenBank: HM031389) that was observed in the frequency of 1.87%. In Hallikar and Ongole populations, 29 and 21 BoLA-DRB3.2 alleles were identified, respectively. The frequencies of the most common BoLA-DRB3.2 alleles (with allele frequency > 5%), in Malnad Gidda population, were DRB3.2*15 (10.30%), DRB3*5702 (9.35%), DRB3.2*16 (8.41%), DRB3.2*23 (7.01%) and DRB3.2*09 (5.61%). In Hallikar population, the most common alleles were DRB3.2*11 (13.00%), DRB3.2*44 (11.60%), DRB3.2*31 (10.30%), DRB3.2*28 (5.48%) and DRB3.2*51 (5.48%). The most common alleles in Ongole population were DRB3.2*15 (22.50%), DRB3.2*06 (20.00%), DRB3.2*13 (13.30%), DRB3.2*12 (9.17%) and DRB3.2*23 (7.50%). A high degree of heterozygosity observed in Malnad Gidda (H(O) = 0.934, H(E) = 0.955), Hallikar (H(O) = 0.931, H(E) = 0.943) and Ongole (H(O) = 0.800, H(E) = 0.878) populations, along with F(IS) values close to F(IS) zero (Malnad Gidda: F(IS) = 0.0221, Hallikar: F(IS) = 0.0127 and Ongole: F(IS) = 0.0903), yielded nonsignificant P-values with respect to Hardy-Weinberg equilibrium probabilities revealing, no perceptible inbreeding, greater genetic diversity and characteristic population structure being preserved in the three studied cattle populations. The phylogenetic tree constructed based on the frequencies of BoLA-DRB3.2 alleles observed in 10 Bos indicus and Bos taurus cattle breeds revealed distinct clustering of specific Bos indicus cattle breeds, along with unique genetic differentiation observed among them. The results of this study demonstrated that the BoLA-DRB3.2 is a highly polymorphic locus, with significant breed-specific genetic diversities being present amongst the three studied cattle breeds. The population genetics and phylogenetic analysis have revealed pivotal information about the population structure and importance of the presently studied three Bos indicus cattle breeds as unique animal genetic resources, which have to be conserved for maintaining native cattle genetic diversity. © 2012 Blackwell Publishing Ltd.

  1. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests

    PubMed Central

    Broders, K D; Boraks, A; Sanchez, A M; Boland, G J

    2012-01-01

    The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America. PMID:23139872

  2. Genetic architecture of male sterility and segregation distortion in Drosophila pseudoobscura Bogota-USA hybrids.

    PubMed

    Phadnis, Nitin

    2011-11-01

    Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.

  3. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania.

    PubMed

    Puffenberger, E G

    2003-08-15

    The Old Order Mennonites of southeastern Pennsylvania are a religious isolate with origins in 16th-century Switzerland. The Swiss Mennonites immigrated to Pennsylvania over a 50-year period in the early 18th century. The history of this population in the United States provides insight into the increased incidence of several genetic diseases, most notably maple syrup urine disease (MSUD), Hirschsprung disease (HSCR), and congenital nephrotic syndrome. A comparison between the Old Order Mennonites and the Old Order Amish demonstrates the unique genetic heritage of each group despite a common religious and geographic history. Unexpectedly, several diseases in both groups demonstrate allelic and/or locus heterogeneity. The population genetics of the 1312T --> A BCKDHA gene mutation, which causes classical MSUD, are presented in detail. The incidence of MSUD in the Old Order Mennonites is estimated to be 1/358 births, yielding a corrected carrier frequency of 7.96% and a mutation allele frequency of 4.15%. Analysis of the population demonstrates that repeated cycles of sampling effects, population bottlenecks, and subsequent genetic drift were important in shaping the current allele frequencies. A linkage disequilibrium analysis of 1312T --> A mutation haplotypes is provided and discussed in the context of the known genealogical history of the population. Finally, data from microsatellite marker genotyping within the Old Order Mennonite population are provided that show a significant but modest decrease in genetic diversity and elevated levels of background linkage disequilibrium. Copyright 2003 Wiley-Liss, Inc.

  4. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak.

    PubMed

    Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J

    2018-06-02

    Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.

  5. The clinical introduction of genetic testing for Alzheimer disease. An ethical perspective.

    PubMed

    Post, S G; Whitehouse, P J; Binstock, R H; Bird, T D; Eckert, S K; Farrer, L A; Fleck, L M; Gaines, A D; Juengst, E T; Karlinsky, H; Miles, S; Murray, T H; Quaid, K A; Relkin, N R; Roses, A D; St George-Hyslop, P H; Sachs, G A; Steinbock, B; Truschke, E F; Zinn, A B

    1997-03-12

    Primary caregivers should be aware of recent progress in the genetics of Alzheimer disease (AD) and of the clinical and ethical considerations raised regarding the introduction of genetic testing for purposes of disease prediction and susceptibility (risk) analysis in asymptomatic individuals and diagnosis in patients who present clinically with dementia. This statement addresses arguments for and against clinical genetic testing. The 20 participants were selected by the investigators (S.G.P., T.H.M., A.B.Z., and P.J.W.) to achieve balance in the areas of genetics, counseling, ethics, and public policy, and to include leadership from related consensus projects. The consensus group met twice in closed meetings and carried on extensive correspondence over 2 years (1995-1997). The project was supported by the National Human Genome Research Institute of the National Institutes of Health. All 4 involved chromosomes were discussed in group meetings against a background of information from several focus group sessions with AD-affected families. The focus groups comprised volunteers identified by the Cleveland Area Chapter of the Alzheimer's Disease and Related Disorders Association and represented a variety of ethnic populations. The first draft was written in April 1996 by the principal investigator (S.G.P.) after the consensus group had met twice. The draft was mailed to all consensus group members 3 times over 6 months for extensive response and redrafting by the principal investigator until all members were satisfied. Except for autosomal dominant early-onset families, genetic testing in asymptomatic individuals is unwarranted. Use of APOE genetic testing as a diagnostic adjunct in patients already presenting with dementia may prove useful but it remains under investigation. The premature introduction of genetic testing and possible adverse consequences are to be avoided.

  6. New syndromic form of benign hereditary chorea is associated with a deletion of TITF-1 and PAX-9 contiguous genes.

    PubMed

    Devos, David; Vuillaume, Isabelle; de Becdelievre, Alix; de Martinville, Berengère; Dhaenens, Claire-Marie; Cuvellier, Jean-Christophe; Cuisset, Jean-Marie; Vallée, Louis; Lemaitre, Marie-Pierre; Bourteel, Hélène; Hachulla, Eric; Wallaert, Benoit; Destée, Alain; Defebvre, Luc; Sablonnière, Bernard

    2006-12-01

    Benign hereditary chorea is a rare autosomal dominant disorder presenting with a childhood-onset and slowly progressive chorea. The objective of this study was to describe the clinical and genetic features of 3 patients who developed childhood-onset chorea. Three affected patients from three generations of a family with benign hereditary chorea associated with a multisystemic disorder of the basal ganglia, thyroid, lungs, salivary glands, bowels, and teeth. The TITF-1 gene was screened by microsatellite analysis, gene sequencing, and fluorescence in situ hybridization. Genetic analysis revealed a novel 0.9-Mb deletion on chromosome 14, which includes the TITF-1 and PAX9 genes. We have identified a novel deletion responsible for a new syndrome of benign hereditary chorea, including symptoms of brain-thyroid-lung syndrome associated with bowels, salivary glands, and teeth disorders. Associated signs, sometimes of slight expression, remain of high interest for the clinical and genetic diagnosis of benign hereditary chorea. Copyright 2006 Movement Disorder Society.

  7. Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni.

    PubMed

    Liu, Mingming; Adjou Moumouni, Paul Franck; Asada, Masahito; Hakimi, Hassan; Masatani, Tatsunori; Vudriko, Patrick; Lee, Seung-Hun; Kawazu, Shin-Ichiro; Yamagishi, Junya; Xuan, Xuenan

    2018-04-23

    Genetic manipulation techniques, such as transfection, have been previously reported in many protozoan parasites. In Babesia, stable transfection systems have only been established for bovine Babesia parasites. We recently reported a transient transfection system and the selection of promoter candidates for Babesia gibsoni. The establishment of a stable transfection system for B. gibsoni is considered to be urgent to improve our understanding of the basic biology of canine Babesia parasites for a better control of babesiosis. GFP-expressing parasites were observed by fluorescence microscopy as early as two weeks after drug selection, and consistently expressed GFP for more than 3 months without drug pressure. Genome integration was confirmed by PCR, sequencing and Southern blot analysis. We present the first successful establishment of a stable transfection system for B. gibsoni. This finding will facilitate functional analysis of Babesia genomes using genetic manipulation and will serve as a foundation for the development of tick-Babesia and host-Babesia infection models.

  8. Biodiversity and distribution of polar freshwater DNA viruses

    PubMed Central

    Aguirre de Cárcer, Daniel; López-Bueno, Alberto; Pearce, David A.; Alcamí, Antonio

    2015-01-01

    Viruses constitute the most abundant biological entities and a large reservoir of genetic diversity on Earth. Despite the recent surge in their study, our knowledge on their actual biodiversity and distribution remains sparse. We report the first metagenomic analysis of Arctic freshwater viral DNA communities and a comparative analysis with other freshwater environments. Arctic viromes are dominated by unknown and single-stranded DNA viruses with no close relatives in the database. These unique viral DNA communities mostly relate to each other and present some minor genetic overlap with other environments studied, including an Arctic Ocean virome. Despite common environmental conditions in polar ecosystems, the Arctic and Antarctic DNA viromes differ at the fine-grain genetic level while sharing a similar taxonomic composition. The study uncovers some viral lineages with a bipolar distribution, suggesting a global dispersal capacity for viruses, and seemingly indicates that viruses do not follow the latitudinal diversity gradient known for macroorganisms. Our study sheds light into the global biogeography and connectivity of viral communities. PMID:26601189

  9. Evaluation of psychiatric and genetic risk factors among primary relatives of suicide completers in Delhi NCR region, India.

    PubMed

    Pasi, Shivani; Singh, Piyoosh Kumar; Pandey, Rajeev Kumar; Dikshit, P C; Jiloha, R C; Rao, V R

    2015-10-30

    Suicide as a public health problem is studied worldwide and association of psychiatric and genetic risk factors for suicidal behavior are the point of discussion in studies across different ethnic groups. The present study is aimed at evaluating psychiatric and genetic traits among primary relatives of suicide completer families in an urban Indian population. Bi-variate analysis shows significant increase in major depression (PHQ and Hamilton), stress, panic disorder, somatoform disorder and suicide attemptamong primary compared to other relatives. Sib pair correlations also reveal significant results for major depression (Hamilton), stress, suicide attempt, intensity of suicide ideation and other anxiety syndrome. 5-HTTLPR, 5-HTT (Stin2) and COMT risk alleles are higher among primary relatives, though statistically insignificant. Backward conditional logistic regression analysis show only independent variable, Depression (Hamilton) made a unique statistically significant contribution to the model in primary relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine.

    PubMed

    Antón-Martín, Pilar; Aparicio López, Cristina; Ramiro-León, Soraya; Santillán Garzón, Sonia; Santos-Simarro, Fernando; Gil-Fournier, Belén

    2012-01-01

    Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.

  11. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.

    PubMed

    Guadalupe, Tulio; Mathias, Samuel R; vanErp, Theo G M; Whelan, Christopher D; Zwiers, Marcel P; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A; Arias-Vásquez, Alejandro; Aribisala, Benjamin S; Armstrong, Nicola J; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E; Baune, Bernhard T; Blangero, John; Bokde, Arun L W; Boedhoe, Premika S W; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Büchel, Christian; Buitelaar, Jan; Calhoun, Vince D; Cannon, Dara M; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; de Zubicaray, Greig I; de Zwarte, Sonja M C; Deary, Ian J; Desrivières, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dørum, Erlend S; Ehrlich, Stefan; Espeseth, Thomas; Fernández, Guillén; Flor, Herta; Fouche, Jean-Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jürgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U; Heinz, Andreas; Hibar, Derrek P; Hoekstra, Pieter J; Hoogman, Martine; Howells, Fleur M; Hu, Hao; Hulshoff Pol, Hilleke E; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jönsson, Erik G; Jurk, Sarah; Kahn, Rene S; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus-Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F; Martin, Nicholas G; Martínez-Zalacaín, Ignacio; Martinot, Jean-Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L; Medland, Sarah E; Menchón, José M; Morris, Derek W; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C; Nees, Frauke; Nordvik, Jan E; Onnink, A Marten H; Opel, Nils; Ophoff, Roel; Paillère Martinot, Marie-Laure; Papadopoulos Orfanos, Dimitri; Pauli, Paul; Paus, Tomáš; Poustka, Luise; Reddy, Janardhan Yc; Renteria, Miguel E; Roiz-Santiáñez, Roberto; Roos, Annerine; Royle, Natalie A; Sachdev, Perminder; Sánchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N; Soares, Jair C; Soriano-Mas, Carles; Stein, Dan J; Strike, Lachlan T; Toro, Roberto; Turner, Jessica A; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernández, Maria Valdés; van den Heuvel, Odile A; van der Meer, Dennis; van Haren, Neeltje E M; Veltman, Dick J; Venkatasubramanian, Ganesan; Vetter, Nora C; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, JingJing; Franke, Barbara; Thompson, Paul M; Glahn, David C; Mazoyer, Bernard; Fisher, Simon E; Francks, Clyde

    2017-10-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.

  12. Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics.

    PubMed

    Baniasadi, Hamid; Vlahakis, Chris; Hazebroek, Jan; Zhong, Cathy; Asiago, Vincent

    2014-02-12

    We recently applied gas chromatography coupled to time-of-flight mass spectrometry (GC/TOF-MS) and multivariate statistical analysis to measure biological variation of many metabolites due to environment and genotype in forage and grain samples collected from 50 genetically diverse nongenetically modified (non-GM) DuPont Pioneer commercial maize hybrids grown at six North American locations. In the present study, the metabolome coverage was extended using a core subset of these grain and forage samples employing ultra high pressure liquid chromatography (uHPLC) mass spectrometry (LC/MS). A total of 286 and 857 metabolites were detected in grain and forage samples, respectively, using LC/MS. Multivariate statistical analysis was utilized to compare and correlate the metabolite profiles. Environment had a greater effect on the metabolome than genetic background. The results of this study support and extend previously published insights into the environmental and genetic associated perturbations to the metabolome that are not associated with transgenic modification.

  13. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses*

    PubMed Central

    Opara, Umezuruike Linus; Jacobson, Dan; Al-Saady, Nadiya Abubakar

    2010-01-01

    Banana is an important crop grown in Oman and there is a dearth of information on its genetic diversity to assist in crop breeding and improvement programs. This study employed amplified fragment length polymorphism (AFLP) to investigate the genetic variation in local banana cultivars from the southern region of Oman. Using 12 primer combinations, a total of 1094 bands were scored, of which 1012 were polymorphic. Eighty-two unique markers were identified, which revealed the distinct separation of the seven cultivars. The results obtained show that AFLP can be used to differentiate the banana cultivars. Further classification by phylogenetic, hierarchical clustering and principal component analyses showed significant differences between the clusters found with molecular markers and those clusters created by previous studies using morphological analysis. Based on the analytical results, a consensus dendrogram of the banana cultivars is presented. PMID:20443211

  14. PopSc: Computing Toolkit for Basic Statistics of Molecular Population Genetics Simultaneously Implemented in Web-Based Calculator, Python and R

    PubMed Central

    Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia

    2016-01-01

    Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis. PMID:27792763

  15. Genetic diversity and selection gain in the physic nut (Jatropha curcas).

    PubMed

    Brasileiro, B P; Silva, S A; Souza, D R; Santos, P A; Oliveira, R S; Lyra, D H

    2013-07-08

    The use of efficient breeding methods depends on knowledge of genetic control of traits to be improved. We estimated genetic parameters, selection gain, and genetic diversity in physic nut half-sib families, in order to provide information for breeding programs of this important biofuel species. The progeny test included 20 half-sib families in 4 blocks and 10 plants per plot. The mean progeny heritability values were: 50% for number of bunches, 47% for number of fruits, 35% for number of seeds, 6% for stem diameter, 26% for number of primary branches, 14% for number of secondary branches, 66% for plant height, and 25% for survival of the plants, demonstrating good potential for early selection in plant height, number of branches, and number of fruits per plant. In the analysis of genetic diversity, genotypes were divided into 4 groups. Genotypes 18, 19, 20, and 8 clustered together and presented the highest means for the vegetative and production. Lower means were observed in the 17, 12, 13, and 9 genotypes from the same group. We detected genetic variability in this population, with high heritability estimates and accuracy, demonstrating the possibility of obtaining genetic gains for vegetative characters and production at 24 months after planting.

  16. Multi-scale genetic dynamic modelling I : an algorithm to compute generators.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).

  17. PopSc: Computing Toolkit for Basic Statistics of Molecular Population Genetics Simultaneously Implemented in Web-Based Calculator, Python and R.

    PubMed

    Chen, Shi-Yi; Deng, Feilong; Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia

    2016-01-01

    Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.

  18. Consent, ethics and genetic biobanks: the case of the Athlome project.

    PubMed

    Thompson, Rachel; McNamee, Michael J

    2017-11-14

    This article provides a critical overview of the ethics and governance of genetic biobank research, using the Athlome Consortium as a large scale instance of collaborative sports genetic biobanking. We present a traditional model of written informed consent for the acquisition, storage, sharing and analysis of genetic data and articulate the challenges to it from new research practices such as genetic biobanking. We then articulate six possible alternative consent models: verbal consent, blanket consent, broad consent, meta consent, dynamic consent and waived consent. We argue that these models or conceptions of consent must be articulated in the context of the complexities of international legislation and non legislative national and international biobank governance frameworks and policies, those which govern research in the field of sports genetics. We discuss the tensions between individual rights and public benefits of genomic research as a critical ethical issue, particularly where benefits are less obvious, as in sports genomics. The inherent complexities of international regulation and biobanking governance are challenging in a relatively young field. We argue that there is much nuanced ethical work still to be done with regard to governance of sports genetic biobanking and the issues contained therein.

  19. Characterization of the genetic profile of five Danish dog breeds.

    PubMed

    Pertoldi, C; Kristensen, T N; Loeschcke, V; Berg, P; Praebel, A; Stronen, A V; Proschowsky, H F; Fredholm, M

    2013-11-01

    This investigation presents results from a genetic characterization of 5 Danish dog breeds genotyped on the CanineHD BeadChip microarray with 170,000 SNP. The breeds investigated were 1) Danish Spitz (DS; n=8), 2) Danish-Swedish Farm Dog (DSF; n=18), 3) Broholmer (BR; n=22), 4) Old Danish Pointing Dog (ODP; n=24), and 5) Greenland Dog (GD; n=23). The aims of the investigation were to characterize the genetic profile of the abovementioned dog breeds by quantifying the genetic differentiation among them and the degree of genetic homogeneity within breeds. The genetic profile was determined by means of principal component analysis (PCA) and through a Bayesian clustering method. Both the PCA and the Bayesian clustering method revealed a clear genetic separation of the 5 breeds. The level of genetic variation within the breeds varied. The expected heterozygosity (HE) as well as the degree of polymorphism (P%) ranked the dog breeds in the order DS>DSF>BR>ODP>GD. Interestingly, the breed with a tenfold higher census population size compared to the other breeds, the Greenland Dog, had the lowest within-breed genetic variation, emphasizing that census size is a poor predictor of genetic variation. The observed differences in variation among and within dog breeds may be related to factors such as genetic drift, founder effects, genetic admixture, and population bottlenecks. We further examined whether the observed genetic patterns in the 5 dog breeds can be used to design breeding strategies for the preservation of the genetic pool of these dog breeds.

  20. Crater Lake Apoyo Revisited - Population Genetics of an Emerging Species Flock

    PubMed Central

    Geiger, Matthias F.; McCrary, Jeffrey K.; Schliewen, Ulrich K.

    2013-01-01

    The polytypic Nicaraguan Midas cichlids ( Amphilophus cf. citrinellus) have been established as a model system for studying the mechanisms of speciation and patterns of diversification in allopatry and sympatry. The species assemblage in Crater Lake Apoyo has been accepted as a textbook example for sympatric speciation. Here, we present a first comprehensive data set of population genetic (mtDNA & AFLPs) proxies of species level differentiation for a representative set of individuals of all six endemic Amphilophus species occurring in Crater Lake Apoyo. AFLP genetic differentiation was partitioned into a neutral and non-neutral component based on outlier-loci detection approaches, and patterns of species divergence were explored with Bayesian clustering methods. Substantial levels of admixture between species were detected, indicating different levels of reproductive isolation between the six species. Analysis of neutral genetic variation revealed several A . zaliosus as being introgressed by an unknown contributor, hereby rendering the sympatrically evolving L. Apoyo flock polyphyletic. This is contrasted by the mtDNA analysis delivering a clear monophyly signal with Crater Lake Apoyo private haplotypes characterising all six described species, but also demonstrating different demographic histories as inferred from pairwise mismatch distributions. PMID:24086393

  1. Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization.

    PubMed

    Lewandowski, Mariusz; Skoracka, Anna; Szydło, Wiktoria; Kozak, Marcin; Druciarek, Tobiasz; Griffiths, Don A

    2014-08-01

    Eriophyoid species belonging to the genus Trisetacus are economically important as pests of conifers. A narrow host specialization to conifers and some unique morphological characteristics have made these mites interesting subjects for scientific inquiry. In this study, we assessed morphological and genetic variation of seven Trisetacus species originating from six coniferous hosts in Poland by morphometric analysis and molecular sequencing of the mitochondrial cytochrome oxidase subunit I gene and the nuclear D2 region of 28S rDNA. The results confirmed the monophyly of the genus Trisetacus as well as the monophyly of five of the seven species studied. Both DNA sequences were effective in discriminating between six of the seven species tested. Host-dependent genetic and morphological variation in T. silvestris and T. relocatus, and habitat-dependent genetic and morphological variation in T. juniperinus were detected, suggesting the existence of races or even distinct species within these Trisetacus taxa. This is the first molecular phylogenetic analysis of the Trisetacus species. The findings presented here will stimulate further investigations on the evolutionary relationships of Trisetacus as well as the entire Phytoptidae family.

  2. Global optimization of small bimetallic Pd-Co binary nanoalloy clusters: a genetic algorithm approach at the DFT level.

    PubMed

    Aslan, Mikail; Davis, Jack B A; Johnston, Roy L

    2016-03-07

    The global optimisation of small bimetallic PdCo binary nanoalloys are systematically investigated using the Birmingham Cluster Genetic Algorithm (BCGA). The effect of size and composition on the structures, stability, magnetic and electronic properties including the binding energies, second finite difference energies and mixing energies of Pd-Co binary nanoalloys are discussed. A detailed analysis of Pd-Co structural motifs and segregation effects is also presented. The maximal mixing energy corresponds to Pd atom compositions for which the number of mixed Pd-Co bonds is maximised. Global minimum clusters are distinguished from transition states by vibrational frequency analysis. HOMO-LUMO gap, electric dipole moment and vibrational frequency analyses are made to enable correlation with future experiments.

  3. Genetic relationships between blowflies (Calliphoridae) of forensic importance.

    PubMed

    Stevens, J; Wall, R

    2001-08-15

    Phylogenetic relationships among blowfly (Calliphoridae) species of forensic importance are explored using DNA sequence data from the large sub-unit (lsu, 28S) ribosomal RNA (rRNA) gene, the study includes representatives of a range of calliphorid species commonly encountered in forensic analysis in Britain and Europe. The data presented provide a basis to define molecular markers, including the identification of highly informative intra-sequence regions, which may be of use in the identification of larvae for forensic entomology. Phylogenetic analysis of the sequences also provides new insights into the different evolutionary patterns apparent within the family Calliphoridae which, additionally, can provide a measure of the degree of genetic variation likely to be encountered within taxonomic groups of differing forensic utility.

  4. DNA-based methods of geochemical prospecting

    DOEpatents

    Ashby, Matthew [Mill Valley, CA

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  5. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  6. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium

    PubMed Central

    Baselga-Cervera, Beatriz; Costas, Eduardo; Bustillo-Avendaño, Estéfano

    2016-01-01

    The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population’s adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics—a fluctuation analysis—and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be) is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10−6 and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER). Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be-resistant genotype suggest a pleiotropic effect mediated by an advantageous mutation; however, no sequencing confirmation was performed. PMID:27019784

  7. Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods

    PubMed Central

    Deborah, Dondapati Annekitty; Vipparla, Abhilash; Anuradha, Ghanta; Siddiq, Ebrahimali Abubacker; Vemireddy, Lakshminarayana Reddy

    2013-01-01

    Genetic diversity in representative sets of high yielding varieties of rice released in India between 1970 and 2010 was studied at molecular level employing hypervariable microsatellite markers. Of 64 rice SSR primer pairs studied, 52 showed polymorphism, when screened in 100 rice genotypes. A total of 184 alleles was identified averaging 3.63 alleles per locus. Cluster analysis clearly grouped the 100 genotypes into their respective decadal periods i.e., 1970s, 1980s, 1990s and 2000s. The trend of diversity over the decadal periods estimated based on the number of alleles (Na), allelic richness (Rs), Nei’s genetic diversity index (He), observed heterozygosity (Ho) and polymorphism information content (PIC) revealed increase of diversity over the periods in year of releasewise and longevitywise classification of rice varieties. Analysis of molecular variance (AMOVA) suggested more variation in within the decadal periods than among the decades. Pairwise comparison of population differentiation (Fst) among decadal periods showed significant difference between all the pairs except a few. Analysis of trends of appearing and disappearing alleles over decadal periods showed an increase in the appearance of alleles and decrease in disappearance in both the categories of varieties. It was obvious from the present findings, that genetic diversity was progressively on the rise in the varieties released during the decadal periods, between 1970s and 2000s. PMID:23805204

  8. Genetic diversity and population structure analysis between Indian red jungle fowl and domestic chicken using microsatellite markers.

    PubMed

    Kumar, Vinay; Shukla, Sanjeev K; Mathew, Jose; Sharma, Deepak

    2015-01-01

    The present study was conducted to assess the genetic diversity, population structure, and relatedness in Indian red jungle fowl (RJF, Gallus gallus murgi) from northern India and three domestic chicken populations (gallus gallus domesticus), maintained at the institute farms, namely White Leghorn (WL), Aseel (AS) and Red Cornish (RC) using 25 microsatellite markers. All the markers were polymorphic, the number of alleles at each locus ranged from five (MCW0111) to forty-three (LEI0212) with an average number of 19 alleles per locus. Across all loci, the mean expected heterozygosity and polymorphic information content were 0.883 and 0.872, respectively. Population-specific alleles were found in each population. A UPGMA dendrogram based on shared allele distances clearly revealed two major clusters among the four populations; cluster I had genotypes from RJF and WL whereas cluster II had AS and RC genotypes. Furthermore, the estimation of population structure was performed to understand how genetic variation is partitioned within and among populations. The maximum ▵K value was observed for K = 4 with four identified clusters. Furthermore, factorial analysis clearly showed four clustering; each cluster represented the four types of population used in the study. These results clearly, demonstrate the potential of microsatellite markers in elucidating the genetic diversity, relationships, and population structure analysis in RJF and domestic chicken populations.

  9. Hepatitis A virus: host interactions, molecular epidemiology and evolution.

    PubMed

    Vaughan, Gilberto; Goncalves Rossi, Livia Maria; Forbi, Joseph C; de Paula, Vanessa S; Purdy, Michael A; Xia, Guoliang; Khudyakov, Yury E

    2014-01-01

    Infection with hepatitis A virus (HAV) is the commonest viral cause of liver disease and presents an important public health problem worldwide. Several unique HAV properties and molecular mechanisms of its interaction with host were recently discovered and should aid in clarifying the pathogenesis of hepatitis A. Genetic characterization of HAV strains have resulted in the identification of different genotypes and subtypes, which exhibit a characteristic worldwide distribution. Shifts in HAV endemicity occurring in different parts of the world, introduction of genetically diverse strains from geographically distant regions, genotype displacement observed in some countries and population expansion detected in the last decades of the 20th century using phylogenetic analysis are important factors contributing to the complex dynamics of HAV infections worldwide. Strong selection pressures, some of which, like usage of deoptimized codons, are unique to HAV, limit genetic variability of the virus. Analysis of subgenomic regions has been proven useful for outbreak investigations. However, sharing short sequences among epidemiologically unrelated strains indicates that specific identification of HAV strains for molecular surveillance can be achieved only using whole-genome sequences. Here, we present up-to-date information on the HAV molecular epidemiology and evolution, and highlight the most relevant features of the HAV-host interactions. Published by Elsevier B.V.

  10. Genetics in the courts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, Heather; Drell, Dan

    Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller

  11. Probability of Positive Genetic Testing Results in Patients with Family History of Primary Hyperparathyroidism.

    PubMed

    El Lakis, Mustapha; Nockel, Pavel; Gaitanidis, Apostolos; Guan, Bin; Agarwal, Sunita; Welch, James; Simonds, William F; Weinstein, Lee; Marx, Stephen; Nilubol, Naris; Patel, Dhaval; Merkel, Roxanne; Tirosh, Amit; Kebebew, Electron

    2018-05-01

    Approximately 10% of patients with primary hyperparathyroidism (PHPT) have hereditary disease. Hereditary PHPT may be syndromic (MEN1, 2, and 4 and hyperparathyroidism-jaw tumor syndrome) or non-syndromic (familial isolated PHPT). There are limited data on the probability of testing positive for genetic mutation based on clinical presentation. The aim of this study was to determine potential associations between clinical and biochemical features and mutation in susceptibility genes for PHPT in patients with a family history of PHPT. A retrospective analysis of 657 patients who had an initial parathyroidectomy for PHPT at a tertiary referral center. Logistic regression analyses were performed in 205 patients with a family history of PHPT to identify factors associated with a positive genetic test. Of 657 patients, 205 (31.2%) had a family history of PHPT. Of those 205 patients, 123 (60%) had a germline mutation detected (91 MEN1, 14 CDC73, and 18 GCM2). In univariate analysis, younger age (45 years and younger), male sex, multigland disease, and parathyroid carcinoma were associated with positive germline mutation; biochemical cure after an initial parathyroidectomy was less frequent in patients with familial PHPT (96.2% vs 89.2%; p = 0.005). In multivariable analysis, age 45 years and younger, male sex, and multigland disease were independent factors associated with positive genetic testing. In addition to a family history of PHPT, male sex, age 45 years and younger, and presence of multigland disease, should prompt physicians to offer the opportunity for genetic counseling and testing, as it could influence the management of patients with PHPT. Published by Elsevier Inc.

  12. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member

    PubMed Central

    Augustinos, Antonios A.; Drosopoulou, Elena; Lanzavecchia, Silvia B.; Cladera, Jorge L.; Caceres, Carlos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone

    2016-01-01

    Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications. PMID:27362546

  13. Reliably Discriminating Stock Structure with Genetic Markers:Mixture Models with Robust and Fast Computation.

    PubMed

    Foster, Scott D; Feutry, Pierre; Grewe, Peter M; Berry, Oliver; Hui, Francis K C; Davies, Campbell R

    2018-06-26

    Delineating naturally occurring and self-sustaining sub-populations (stocks) of a species is an important task, especially for species harvested from the wild. Despite its central importance to natural resource management, analytical methods used to delineate stocks are often, and increasingly, borrowed from superficially similar analytical tasks in human genetics even though models specifically for stock identification have been previously developed. Unfortunately, the analytical tasks in resource management and human genetics are not identical { questions about humans are typically aimed at inferring ancestry (often referred to as 'admixture') rather than breeding stocks. In this article, we argue, and show through simulation experiments and an analysis of yellowfin tuna data, that ancestral analysis methods are not always appropriate for stock delineation. In this work, we advocate a variant of a previouslyintroduced and simpler model that identifies stocks directly. We also highlight that the computational aspects of the analysis, irrespective of the model, are difficult. We introduce some alternative computational methods and quantitatively compare these methods to each other and to established methods. We also present a method for quantifying uncertainty in model parameters and in assignment probabilities. In doing so, we demonstrate that point estimates can be misleading. One of the computational strategies presented here, based on an expectation-maximisation algorithm with judiciously chosen starting values, is robust and has a modest computational cost. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Barriers to the use of genetic information for the development of new epilepsy treatments.

    PubMed

    Ferraro, Thomas N

    2016-01-01

    Genetic analysis is providing new information on the biological basis of epilepsy at a rapid pace; this article identifies factors acting as major barriers to use of these data for therapy development. Disease heterogeneity is a primary obstacle since so many genes can cause or predispose to epilepsy and the clinical presentation of epilepsy is so diverse, thus making it difficult to define the most therapeutically relevant targets. Further, many epilepsy genes affect brain development, an observation that represents a barrier unto itself given the challenge of reversing or preventing genetically mediated alterations of brain pathway formation. Finally, the lack of appropriate models for testing new therapies is also recognized as a fundamental limitation. Overcoming these barriers will be aided by full characterization of the genetic landscape of epilepsy, elucidation of key pathway points for therapeutic intervention and creation of unique experimental models to validate results.

  15. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana

    PubMed Central

    Radakovits, Randor; Jinkerson, Robert E.; Fuerstenberg, Susan I.; Tae, Hongseok; Settlage, Robert E.; Boore, Jeffrey L.; Posewitz, Matthew C.

    2012-01-01

    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga. PMID:22353717

  16. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.

    PubMed

    Radakovits, Randor; Jinkerson, Robert E; Fuerstenberg, Susan I; Tae, Hongseok; Settlage, Robert E; Boore, Jeffrey L; Posewitz, Matthew C

    2012-02-21

    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.

  17. Next generation sequencing--implications for clinical practice.

    PubMed

    Raffan, Eleanor; Semple, Robert K

    2011-01-01

    Genetic testing in inherited disease has traditionally relied upon recognition of the presenting clinical syndrome and targeted analysis of genes known to be linked to that syndrome. Consequently, many patients with genetic syndromes remain without a specific diagnosis. New 'next-generation' sequencing (NGS) techniques permit simultaneous sequencing of enormous amounts of DNA. A slew of research publications have recently demonstrated the tremendous power of these technologies in increasing understanding of human genetic disease. These approaches are likely to be increasingly employed in routine diagnostic practice, but the scale of the genetic information yielded about individuals means that caution must be exercised to avoid net harm in this setting. Use of NGS in a research setting will increasingly have a major but indirect beneficial impact on clinical practice. However, important technical, ethical and social challenges need to be addressed through informed professional and public dialogue before it finds its mature niche as a direct tool in the clinical diagnostic armoury.

  18. Genetic diversity analysis of Zingiber Officinale Roscoe by RAPD collected from subcontinent of India.

    PubMed

    Ashraf, Kamran; Ahmad, Altaf; Chaudhary, Anis; Mujeeb, Mohd; Ahmad, Sayeed; Amir, Mohd; Mallick, N

    2014-04-01

    The present investigation was undertaken for the assessment of 12 accessions of Zingiber officinale Rosc. collected from subcontinent of India by RAPD markers. DNA was isolated using CTAB method. Thirteen out of twenty primers screened were informative and produced 275 amplification products, among which 261 products (94.90%) were found to be polymorphic. The percentage polymorphism of all 12 accessions ranged from 88.23% to 100%. Most of the RAPD markers studied showed different levels of genetic polymorphism. The data of 275 RAPD bands were used to generate Jaccard's similarity coefficients and to construct a dendrogram by means of UPGMA. Results showed that ginger undergoes genetic variation due to a wide range of ecological conditions. This investigation was an understanding of genetic variation within the accessions. It will also provide an important input into determining resourceful management strategies and help to breeders for ginger improvement program.

  19. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  20. Genetic diversity analysis of Zingiber Officinale Roscoe by RAPD collected from subcontinent of India

    PubMed Central

    Ashraf, Kamran; Ahmad, Altaf; Chaudhary, Anis; Mujeeb, Mohd.; Ahmad, Sayeed; Amir, Mohd.; Mallick, N.

    2013-01-01

    The present investigation was undertaken for the assessment of 12 accessions of Zingiber officinale Rosc. collected from subcontinent of India by RAPD markers. DNA was isolated using CTAB method. Thirteen out of twenty primers screened were informative and produced 275 amplification products, among which 261 products (94.90%) were found to be polymorphic. The percentage polymorphism of all 12 accessions ranged from 88.23% to 100%. Most of the RAPD markers studied showed different levels of genetic polymorphism. The data of 275 RAPD bands were used to generate Jaccard’s similarity coefficients and to construct a dendrogram by means of UPGMA. Results showed that ginger undergoes genetic variation due to a wide range of ecological conditions. This investigation was an understanding of genetic variation within the accessions. It will also provide an important input into determining resourceful management strategies and help to breeders for ginger improvement program. PMID:24600309

  1. Giardia/giardiasis - a perspective on diagnostic and analytical tools.

    PubMed

    Koehler, Anson V; Jex, Aaron R; Haydon, Shane R; Stevens, Melita A; Gasser, Robin B

    2014-01-01

    Giardiasis is a gastrointestinal disease of humans and other animals caused by species of parasitic protists of the genus Giardia. This disease is transmitted mainly via the faecal-oral route (e.g., in water or food) and is of socioeconomic importance worldwide. The accurate detection and genetic characterisation of the different species and population variants (usually referred to as assemblages and/or sub-assemblages) of Giardia are central to understanding their transmission patterns and host spectra. The present article provides a background on Giardia and giardiasis, and reviews some key techniques employed for the identification and genetic characterisation of Giardia in biological samples, the diagnosis of infection and the analysis of genetic variation within and among species of Giardia. Advances in molecular techniques provide a solid basis for investigating the systematics, population genetics, ecology and epidemiology of Giardia species and genotypes as well as the prevention and control of giardiasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [A new teaching mode improves the effect of comprehensive experimental teaching of genetics].

    PubMed

    Fenghua, He; Jieqiang, Li; Biyan, Zhu; Feng, Gao

    2015-04-01

    To improve the research atmosphere in genetics experimental teaching and develop students' creativity in research, we carried out a reform in comprehensive experimental teaching which is one of important modules for genetics practice. In our new student-centered teaching mode, they chose research topics, performed experiments and took innovative approaches independently. With the open laboratory and technical platform in our experimental teaching center, students finished their experiments and were required to write a mini-research article. Comprehensive experimental teaching is a scientific research practice before they complete their thesis. Through this teaching practice, students' research skills in experimental design and operation, data analysis and results presentation, as well as their collaboration spirit and innovation consciousness are strengthened.

  3. Exploring APOE genotype effects on Alzheimer's disease risk and amyloid β burden in individuals with subjective cognitive decline: The FundacioACE Healthy Brain Initiative (FACEHBI) study baseline results.

    PubMed

    Moreno-Grau, Sonia; Rodríguez-Gómez, Octavio; Sanabria, Ángela; Pérez-Cordón, Alba; Sánchez-Ruiz, Domingo; Abdelnour, Carla; Valero, Sergi; Hernández, Isabel; Rosende-Roca, Maitée; Mauleón, Ana; Vargas, Liliana; Lafuente, Asunción; Gil, Silvia; Santos-Santos, Miguel Ángel; Alegret, Montserrat; Espinosa, Ana; Ortega, Gemma; Guitart, Marina; Gailhajanet, Anna; de Rojas, Itziar; Sotolongo-Grau, Óscar; Ruiz, Susana; Aguilera, Nuria; Papasey, Judith; Martín, Elvira; Peleja, Esther; Lomeña, Francisco; Campos, Francisco; Vivas, Assumpta; Gómez-Chiari, Marta; Tejero, Miguel Ángel; Giménez, Joan; Serrano-Ríos, Manuel; Orellana, Adelina; Tárraga, Lluís; Ruiz, Agustín; Boada, Mercè

    2018-05-01

    Subjective cognitive decline (SCD) has been proposed as a potential preclinical stage of Alzheimer's disease (AD). Nevertheless, the genetic and biomarker profiles of SCD individuals remain mostly unexplored. We evaluated apolipoprotein E (APOE) ε4's effect in the risk of presenting SCD, using the Fundacio ACE Healthy Brain Initiative (FACEHBI) SCD cohort and Spanish controls, and performed a meta-analysis addressing the same question. We assessed the relationship between APOE dosage and brain amyloid burden in the FACEHBI SCD and Alzheimer's Disease Neuroimaging Initiative cohorts. Analysis of the FACEHBI cohort and the meta-analysis demonstrated SCD individuals presented higher allelic frequencies of APOE ε4 with respect to controls. APOE dosage explained 9% (FACEHBI cohort) and 11% (FACEHBI and Alzheimer's Disease Neuroimaging Initiative cohorts) of the variance of cerebral amyloid levels. The FACEHBI sample presents APOE ε4 enrichment, suggesting that a pool of AD patients is nested in our sample. Cerebral amyloid levels are partially explained by the APOE allele dosage, suggesting that other genetic or epigenetic factors are involved in this AD endophenotype. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...

  5. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer.

    PubMed

    Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B

    2014-12-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. Copyright © 2014 Walling et al.

  6. A Multivariate Analysis of Genetic Constraints to Life History Evolution in a Wild Population of Red Deer

    PubMed Central

    Walling, Craig A.; Morrissey, Michael B.; Foerster, Katharina; Clutton-Brock, Tim H.; Pemberton, Josephine M.; Kruuk, Loeske E. B.

    2014-01-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. PMID:25278555

  7. [Genetic dissection of intracranial aneurysm].

    PubMed

    Onda, Hideaki; Yoneyama, Taku; Akagawa, Hiroyuki; Kasuya, Hidetoshi

    2008-11-01

    Subarachnoid hemorrhage (SAH) due to rupture of an intracranial aneurysm (IA) is a devastating condition with high mortality and morbidity. Genetic as well as environment factors play important roles in the pathogenesis of SAH and IAs. We review the present knowledge on the genetic factors responsible for SAH or IAs. Linkage analysis and association study are used for genetic dissection. Genome-wide linkage analyses have specified several genetic loci for IAs and 6 loci (1p34-36, 7q11, 11q24-25, 14q22-31, 19q13, and Xp22) have been replicated in different populations. Numerous functional and/or positional candidate genes for IAs have been investigated by case-control association studies. The results of genetic association studies are modest because of small sample sizes. To date, no specific genes have been identified as responsible for IA development or rupture. Recent, large-scale genome-wide association (GWA) studies have revealed consistent and replicable genetic markers of several complex diseases such as coronary artery disease and type 2 diabetes. Although, thus far, no GWA studies have been performed for IAs, such a study may accomplish the breakthrough of genetic dissection of IAs. The identification of susceptible genes might lead to the understanding of the mechanism of IA formation or rupture and to novel therapeutic strategies.

  8. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    USGS Publications Warehouse

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  9. Temporal distribution and genetic variants in influenza A(H1N1)pdm09 virus circulating in Mexico, seasons 2012 and 2013

    PubMed Central

    Canche-Pech, Jose Reyes; Conde-Ferraez, Laura; Puerto-Solis, Marylin; Gonzalez-Losa, Refugio; Granja-Pérez, Pilar; Villanueva-Jorge, Salha; Chan-Gasca, Maria; Gómez-Carballo, Jesus; López-Ochoa, Luisa; Jiménez-Delgadillo, Bertha; Rodríguez-Sánchez, Iram; Ramírez-Prado, Jorge

    2017-01-01

    The 2012 and 2013 annual influenza epidemics in Mexico were characterized by presenting different seasonal patterns. In 2012 the A(H1N1)pdm09 virus caused a high incidence of influenza infections after a two-year period of low circulation; whereas the 2013 epidemic presented circulation of the A(H1N1)pdm09 virus throughout the year. We have characterized the molecular composition of the Hemagglutinin (HA) and Neuraminidase (NA) genes of the A(H1N1)pdm09 virus from both epidemic seasons, emphasizing the genetic characteristics of viruses isolated from Yucatan in Southern Mexico. The molecular analysis of viruses from the 2012 revealed that all viruses from Mexico were predominantly grouped in clade 7. Strikingly, the molecular characterization of viruses from 2013 revealed that viruses circulating in Yucatan were genetically different to viruses from other regions of Mexico. In fact, we identified the occurrence of two genetic variants containing relevant mutations at both the HA and NA surface antigens. There was a difference on the temporal circulation of each genetic variant, viruses containing the mutations HA-A141T / NA-N341S were detected in May, June and July; whereas viruses containing the mutations HA-S162I / NA-L206S circulated in August and September. We discuss the significance of these novel genetic changes. PMID:29220381

  10. [The genetic determination and function of RR-proteins--the regulators of photoperiodic reaction and circadian rhythms in plants].

    PubMed

    Tots'kyĭ, V M; D'iachenko, L F; Muterko, O F; Balashova, I A; Toptikov, V A

    2012-01-01

    The present review devoted to the analysis of recent literature on genetic determination and the domain organization of the newly discovered two-component signaling systems in pro- and eukaryotes. These structures are involved in the regulation of numerous morphological and physiological processes in plants. RR-proteins, it the key elements of signaling systems, they launch a cascade of phosphotransferase reactions and directly or indirectly regulate the transcription and activity other proteins, including enzymes, in response to hormones or environmental factors. Modern views on the molecular and genetic mechanisms of photoperiodic response, circadian rhythms and anti-stress responses in plants are set out in these positions. The relationship between gene expression and photoreceptor sensitivity of plants to photoperiod traced. We present our own data obtained on the isogenic lines of wheat, where been showed dependence expression of structural genes of enzymes on the allelic composition of individual PRR-loci and the duration action of low temperature.

  11. Optimizing management of the condensing heat and cooling of gases compression in oxy block using of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brzęczek, Mateusz; Bartela, Łukasz

    2013-12-01

    This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.

  12. Microsatellite data analysis for population genetics

    USDA-ARS?s Scientific Manuscript database

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  13. Autoimmunity and primary immunodeficiency: two sides of the same coin?

    PubMed

    Schmidt, Reinhold E; Grimbacher, Bodo; Witte, Torsten

    2017-12-19

    Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.

  14. Parallelism and Epistasis in Skeletal Evolution Identified through Use of Phylogenomic Mapping Strategies.

    PubMed

    Daane, Jacob M; Rohner, Nicolas; Konstantinidis, Peter; Djuranovic, Sergej; Harris, Matthew P

    2016-01-01

    The identification of genetic mechanisms underlying evolutionary change is critical to our understanding of natural diversity, but is presently limited by the lack of genetic and genomic resources for most species. Here, we present a new comparative genomic approach that can be applied to a broad taxonomic sampling of nonmodel species to investigate the genetic basis of evolutionary change. Using our analysis pipeline, we show that duplication and divergence of fgfr1a is correlated with the reduction of scales within fishes of the genus Phoxinellus. As a parallel genetic mechanism is observed in scale-reduction within independent lineages of cypriniforms, our finding exposes significant developmental constraint guiding morphological evolution. In addition, we identified fixed variation in fgf20a within Phoxinellus and demonstrated that combinatorial loss-of-function of fgfr1a and fgf20a within zebrafish phenocopies the evolved scalation pattern. Together, these findings reveal epistatic interactions between fgfr1a and fgf20a as a developmental mechanism regulating skeletal variation among fishes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Conserved syntenic clusters of protein coding genes are missing in birds.

    PubMed

    Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V

    2014-01-01

    Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

  16. Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration

    PubMed Central

    Corona, Erik; Chen, Rong; Sikora, Martin; Morgan, Alexander A.; Patel, Chirag J.; Ramesh, Aditya; Bustamante, Carlos D.; Butte, Atul J.

    2013-01-01

    Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation. PMID:23717210

  17. Phanerochaete chrysosporium genomics

    Treesearch

    Luis F. Larrondo; Rafael Vicuna; Dan Cullen

    2005-01-01

    A high quality draft genome sequence has been generated for the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium (Martinez et al. 2004). Analysis of the genome in the context of previously established genetics and physiology is presented. Transposable elements and their potential relationship to genes involved in lignin degradation are systematically...

  18. A study of entropy/clarity of genetic sequences using metric spaces and fuzzy sets.

    PubMed

    Georgiou, D N; Karakasidis, T E; Nieto, Juan J; Torres, A

    2010-11-07

    The study of genetic sequences is of great importance in biology and medicine. Sequence analysis and taxonomy are two major fields of application of bioinformatics. In the present paper we extend the notion of entropy and clarity to the use of different metrics and apply them in the case of the Fuzzy Polynuclotide Space (FPS). Applications of these notions on selected polynucleotides and complete genomes both in the I(12×k) space, but also using their representation in FPS are presented. Our results show that the values of fuzzy entropy/clarity are indicative of the degree of complexity necessary for the description of the polynucleotides in the FPS, although in the latter case the interpretation is slightly different than in the case of the I(12×k) hypercube. Fuzzy entropy/clarity along with the use of appropriate metrics can contribute to sequence analysis and taxonomy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. A Hypomorphic RAG1 Mutation Resulting in a Phenotype Resembling Common Variable Immunodeficiency

    PubMed Central

    Abolhassani, Hassan; Wang, Ning; Aghamohammadi, Asghar; Rezaei, Nima; Lee, Yu Nee; Frugoni, Francesco; Notrangelo, Luigi D.; Pan-Hammarström, Qiang; Hammarström, Lennart

    2014-01-01

    Background RAG1 deficiency presents a varied spectrum of combined immunodeficiency, ranging from a T−B−NK+type of disease to a T+B+NK+ phenotype. Objective To assess the genetic background of common variable immunodeficiency (CVID) patients. Methods A patient diagnosed with CVID, who was born in a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunological assays, homozygosity gene mapping, exome sequencing, Sanger sequencing and functional analysis. Results The 14-year-old patient, who suffered from liver granuloma, extranodal marginal zone B cell lymphoma and autoimmune neutropenia, is presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. Conclusion Our finding broadens the range of disorders associated with RAG1 mutations and may have important therapeutic implications. PMID:24996264

  20. Environmental stress alters genetic regulation of novelty seeking in vervet monkeys.

    PubMed

    Fairbanks, L A; Bailey, J N; Breidenthal, S E; Laudenslager, M L; Kaplan, J R; Jorgensen, M J

    2011-08-01

    Considerable attention has been paid to identifying genetic influences and gene-environment interactions that increase vulnerability to environmental stressors, with promising but inconsistent results. A nonhuman primate model is presented here that allows assessment of genetic influences in response to a stressful life event for a behavioural trait with relevance for psychopathology. Genetic and environmental influences on free-choice novelty seeking behaviour were assessed in a pedigreed colony of vervet monkeys before and after relocation from a low stress to a higher stress environment. Heritability of novelty seeking scores, and genetic correlations within and between environments were conducted using variance components analysis. The results showed that novelty seeking was markedly inhibited in the higher stress environment, with effects persisting across a 2-year period for adults but not for juveniles. There were significant genetic contributions to novelty seeking scores in each year (h(2) = 0.35-0.43), with high genetic correlations within each environment (rhoG > 0.80) and a lower genetic correlation (rhoG = 0.35, non-significant) between environments. There were also significant genetic contributions to individual change scores from before to after the move (h(2) = 0.48). These results indicate that genetic regulation of novelty seeking was modified by the level of environmental stress, and they support a role for gene-environment interactions in a behavioural trait with relevance for mental health. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

Top