Sample records for present ground-based observations

  1. Jupiter cloud morphology and zonal winds from ground-based observations during Juno's first year around Jupiter

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Gómez-Forrellad, J. M.; Rojas, J. F.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Peralta, J.; Ordonez-Etxeberria, I.; Chen-Chen, H.; Mendikoa, I.; Peach, D.; Go, C.; Wesley, A.; Miles, P.; Olivetti, T.

    2017-09-01

    We present an analysis of Jupiter's atmospheric activity over Juno's first year around the planet based on ground-based observations. We present variability of the zonal winds associated to large outbreaks of convective activity at different belts in the planet, a study of short-scale atmospheric waves at low latitudes and examine polar views of the planet that can be compared with JunoCam observations.

  2. Evaluation of NCAR CAM5 Simulated Marine Boundary Layer Cloud Properties Using a Combination of Satellite and Surface Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.

    2016-12-01

    he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.

  3. Detection of sea otters in boat-based surveys of Prince William Sound, Alaska

    USGS Publications Warehouse

    Udevitz, Mark S.; Bodkin, James L.; Costa, Daniel P.

    1995-01-01

    Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.

  4. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005-2014.

    PubMed

    Paraschiv, Spiru; Constantin, Daniel-Eduard; Paraschiv, Simona-Lizica; Voiculescu, Mirela

    2017-11-20

    In this work we present the evolution of tropospheric nitrogen dioxide (NO₂) content over several important European cities during 2005-2014 using space observations and ground-based in-situ measurements. The NO₂ content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO₂ volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO₂ tropospheric column data can be used to assess the evolution of NO₂ over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO₂ negative trend for all of locations presented in this study.

  5. Ionospheric Observations During a Geomagnetic Storm from LITES on the ISS

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Stephan, A. W.; Cook, T.; Budzien, S. A.; Chakrabarti, S.; Erickson, P. J.; Geddes, G.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an extreme-ultraviolet imaging spectrograph that launched in February 2017 and was installed on the International Space Station (ISS). LITES is limb-viewing ( 150 - 350 km tangent altitude) and measures airglow emissions from 60 - 140 nm with 0.2° angular and 1 nm spectral resolutions. We present early LITES results of observations during a G2 geomagnetic storm in April 2017. In addition to LITES data, we will show complementary ground-based incoherent scatter radar (ISR) observations from Millstone Hill during this storm. The combination of LITES EUV space-based observations with the ground-based radio data is an example of the capability of campaign-style measurements of the ionosphere-thermosphere system using multiwavelength ground- and space-based instruments.

  6. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014

    PubMed Central

    Voiculescu, Mirela

    2017-01-01

    In this work we present the evolution of tropospheric nitrogen dioxide (NO2) content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study. PMID:29156623

  7. Ground-based solar astrometric measurements during the PICARD mission

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.

    2011-11-01

    PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.

  8. Bipolar cloud-to-ground lightning flash observations

    NASA Astrophysics Data System (ADS)

    Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Helsdon, John H.; Schulz, Wolfgang; Orville, Richard E.

    2013-10-01

    lightning is usually defined as a lightning flash where the current waveform exhibits a polarity reversal. There are very few reported cases of cloud-to-ground (CG) bipolar flashes using only one channel in the literature. Reports on this type of bipolar flashes are not common due to the fact that in order to confirm that currents of both polarities follow the same channel to the ground, one necessarily needs video records. This study presents five clear observations of single-channel bipolar CG flashes. High-speed video and electric field measurement observations are used and analyzed. Based on the video images obtained and based on previous observations of positive CG flashes with high-speed cameras, we suggest that positive leader branches which do not participate in the initial return stroke of a positive cloud-to-ground flash later generate recoil leaders whose negative ends, upon reaching the branch point, traverse the return stroke channel path to the ground resulting in a subsequent return stroke of opposite polarity.

  9. Fine-tuning satellite-based rainfall estimates

    NASA Astrophysics Data System (ADS)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  10. In situ observations of Pc1 pearl pulsations by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Paulson, K. W.; Smith, C. W.; Lessard, M. R.; Engebretson, M. J.; Torbert, R. B.; Kletzing, C. A.

    2014-03-01

    We present in situ observations of Pc1 pearl pulsations using the Van Allen Probes. These waves are often observed using ground-based magnetometers, but are rarely observed by orbiting satellites. With the Van Allen Probes, we have seen at least 14 different pearl pulsation events during the first year of operations. These new in situ measurements allow us to identify the wave classification based on local magnetic field conditions. Additionally, by using two spacecraft, we are able to observe temporal changes in the region of observation. The waves appear to be generated at an overall central frequency, as often observed on the ground, and change polarization from left- to right-handedness as they propagate into a region where they are resonant with the crossover frequency (where R- and L-mode waves have the same phase velocity). By combining both in situ and ground-based data, we have found that the region satisfying electromagnetic ion cyclotron wave generation conditions is azimuthally large while radially narrow. The observation of a similar modulation period on the ground as in the magnetosphere contradicts the bouncing wave packet mechanism of generation.

  11. A co-ordinated and synergistic analysis strategy for future ground-based and space helioseismology

    NASA Technical Reports Server (NTRS)

    Ulrich, Roger K.

    1991-01-01

    The variety of helioseismology observational programs planned for the mid-1990s represents an unprecedented opportunity to improve understanding of the solar interior. This review discusses the coordination of the GONG, IRIS, Birmingham and other ground-based observational programs with the space experiments on the SOHO mission: GOLF, VIRGO, and MDI. The integration and coordination of the different data streams in terms of the spatial and temporal coverage as well as the implications of the different spectral resolution and stability characteristics of each experiment are discussed. The study of the effect of active regions on various helioseismology signals is presented as an example of how ground-based and space experiments can be coordinated.

  12. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  13. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  14. A Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS) and the Resultant Hyperspectral Field Goniometer System

    PubMed Central

    Buchhorn, Marcel; Petereit, Reinhold; Heim, Birgit

    2013-01-01

    This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.

  15. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  16. ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II

    2017-12-01

    E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then be validated from the in situ measurements of the fields from the ISINGLASS campaign. Upon successful synthesis and validation of the ground based data for the times where in situ data are present, the same analysis will be applied to similar long straight stable arcs during the campaign window when ground support is present to further explore the data synthesis method.

  17. Future projects in asteroseismology: the unique role of Antarctica

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Siamois Team

    Asteroseismology requires observables registered in stringent conditions: very high sensitivity, uninterrupted time series, long duration. These specifications then allow to study the details of the stellar interior structure. Space-borne and ground-based asteroseismic projects are presented and compared. With CoRoT as a precursor, then Kepler and maybe Plato, the roadmap in space appears to be precisely designed. In parallel, ground-based projects are necessary to provide different and unique information on bright stars with Doppler measurements. Dome C appears to be the ideal place for ground-based asteroseismic observations. The unequalled weather conditions yield a duty cycle comparable to space. Long time series (up to 3 months) will be possible, thanks to the long duration of the polar night.

  18. Ground Based Monitoring of Cloud Activity on Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Rojo, Patricio; Ádámkovics, Máté; Turtle, Elizabeth; Buratti, Bonnie

    2014-11-01

    We will report on the latest results of an on-going ground based monitoring campaign of Saturn’s moon Titan using the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument on the Very Large Telescope (VLT). Presently, much is still unknown about the complex and dynamic hydrologic system of Titan as observations have yet to be made through an entire Titan year (29.7 Earth years). Because of the limited ability to observe Titan with Cassini, a combined ground and spaced-based approach provides a steady cadence of observation throughout the duration of a Titan year. We will present the results of observations to date using the adaptive optics (AO) mode (weather dependent) of SINFONI. We have been regularly observing Titan since April 2014 for the purpose of monitoring and identifying clouds and have also been in collaboration with the Cassini team that has concurrent ISS observations and historical VIMS observations of clouds. Our discussion will focus on the various algorithms and approaches used for cloud identification and analysis. Currently, we are entering into a very interesting time for clouds and Titan hydrology as Saturn moves into north polar summer for the first time since Cassini entered the Saturnian system. The increased insolation that this will bring to the north, where the majority of the liquid methane lakes reside, will give us our first observations of the potentially complex interplay between surface liquid and atmospheric conditions. By carefully monitoring and characterizing clouds (size, optical depth, altitude, etc.) we will also be able to derive constraints that can help to guide and validate GCMs. Since the beginning of our observations, no clouds have been observed through ground based observations, while Cassini has only observed a single cloud event in the north polar region over Ligeia Mare. We will provide an update on the latest results of our cloud monitoring campaign and discuss how this atmospheric inactivity and the frequency and characteristics of future cloud outbursts enhances our current understanding of Titan's hydrologic system.

  19. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  20. Methods for analyzing optical observations of tsunami-induced signatures in airglow emissions from ground-based and space-based platforms

    NASA Astrophysics Data System (ADS)

    Grawe, M.; Makela, J. J.

    2016-12-01

    Airglow imaging of the 630.0-nm redline emission has emerged as a useful tool for studying the properties of tsunami-ionospheric coupling in recent years, offering spatially continuous coverage of the sky with a single instrument. Past studies have shown that airglow signatures induced by tsunamis are inherently anisotropic due to the observation geometry and effects from the geomagnetic field. Here, we present details behind the techniques used to determine the parameters of the signature (orientation, wavelength, etc) with potential extensions to real or quasi-real time and a tool for interpreting the location and strength of the signatures in the field of view. We demonstrate application of the techniques to ground-based optical measurements of several tsunami-induced signatures taking place over the past five years from an imaging system in Hawaii. Additionally, these methods are extended for use on space-based observation platforms, offering advantages over ground-based installations.

  1. Arase: mission overview and initial results

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Wang, S. Y.; Kazama, Y.; Kasahara, S.; Yokota, S.; Mitani, T.; Higashio, N.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Kazuo, S.; Seki, K.; Hori, T.; Shoji, M.; Teramoto, M.; Chang, T. F.; Kurita, S.; Matsuda, S.; Keika, K.; Miyashita, Y.; Hosokawa, K.; Ogawa, Y.; Kadokura, A.; Kataoka, R.; Ono, T.

    2017-12-01

    Geospace Exploation Project; ERG addresses what mechanisms cause acceleration, transportation and loss of MeV electrons of the radiation belts and evolutions of space storms. Cross-energy and cross-regional couplings are key concepts for the project. In order to address questions, the project has been organized by three research teams; satellite observations, ground-based observations, and modeling/data-analysis studies, and interdisciplinary research are realized for comprehensive understanding of geospace. The Arase (ERG) satellite had been developed and 9 science instruments are developed and provided from JAXA, universities and instituted in Japan and Taiwan. The Arase satellite was successfully launched on December 20, 2016. After the initial operation including maneuvers, Arase has started normal observations since March, 2017. Until now, Arase has observed several geomagnetic storms driven by coronal hole streams and CMEs, and several interesting features are observed associated with geomagnetic disturbances. The six particle instruments; LEP-e/LEP-i/MEP-e/MEP-i/HEP/XEP have shown large enhancement as well as loss of wide energy electrons and ions and variations as well as changes of pitch angle and energy spectrum. The two field/wave instruments: PWE and MGF observed several kinds of plasma waves such as chorus, hiss, EMIC as well as large scale electric and magnetic field variations. And newly developed S-WPIA has been operated to identify micro-process of wave-particle interactions. Since conjugate observations between Arase and ground-based observations are essential for comprehensive understanding of geospace, we organized several campaign observations that include both satellite and ground-based observations. The project has collaborated with the international projects, EISCAT, SuperDARN and other ground-based observations, and various data are obtained from such international collaborations. Moreover, multi-point satellite observations by collaboration with other satellites; Van Allen Probes, THEMIS and MMS are realized. In this presentation, we will report overview and initial highlights for the first year and discuss importance of synergies of multi-satellites and ground-based observations that are realized by international collaborations.

  2. The deterioration of materials as a result of air pollution as derived from satellite and ground based observations

    NASA Astrophysics Data System (ADS)

    Christodoulakis, John; Varotsos, Costas A.; Cracknell, Arthur P.; Kouremadas, George A.

    2018-07-01

    Dose Response Functions (DRFs) are widely used in estimating corrosion and/or soiling levels of materials used in building constructions and cultural monuments. These functions quantify the effects of air pollution and environmental parameters on different materials through ground based measurements of specific air pollutants and climatic parameters. Here, we propose a new approach where available satellite observations are used instead of ground-based data. Through this approach, the use of DRFs is expanded to cover situations where there are no in situ measurements, introducing also a totally new field where satellite data can be shown to be very helpful. In the present work satellite observations made by MODIS (MODerate resolution Imaging Spectroradiometer) on board Terra and Aqua, OMI (Ozone Monitoring Instrument) on board Aura and AIRS (Atmospheric Infrared Sounder) on board Aqua have been used.

  3. Ground based remote sensing retrievals and observations of snowfall in the Telemark region of Norway

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; L'Ecuyer, T. S.; Wood, N.; Cooper, S.; Wolff, M. A.; Petersen, W. A.; Bliven, L. F.; Tushaus, S. A.

    2017-12-01

    Snowfall can be broadly categorized into deep and shallow events, based on the vertical extent of the frozen precipitation in the column. The two categories are driven by different thermodynamic and physical mechanisms in the atmosphere and surface. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation and over complex terrain. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes. We present data collected in a recently deployed ground suite of instruments based in Norway. The Meteorological Institute of Norway has a snow measurement suite in Haukeliseter located in the orographically complex Telemark region. This suite consists of several snow accumulation instruments as well as meteorological data (temperature, dew point, wind speeds and directions). A joint project between University of Wisconsin and University of Utah augmented this suite with a 24 GHz radar MicroRain Radar (MRR), a NASA Particle Imaging Package (PIP), and a Multi-Angle Snowflake Camera (MASC). Preliminary data from this campaign are presented along with coincident overpasses from the GPM satellite. We compare the ground-based and spaceborne remotely sensed estimates of snowfall with snow gauge observations from the Haukeliseter site. Finally, we discuss how particle size distribution and fall velocity observations from the PIP and MASC can be used to improve remotely-sensed snowfall retrievals as a function of environmental conditions at Haukeliseter.

  4. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis stresses on the specificity of the satellite and ground-based observations and the importance of the right choice of appropriate scenario for correlative studies.

  5. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    NASA Astrophysics Data System (ADS)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  6. Comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Gary, Gilmer A. (Editor)

    1975-01-01

    A compilation of scientific observations (workshop) is presented. Topics discussed are: (1) tail form, structure, and evolution; (2) hydroxyl related observations; (3) molecules and atoms in the coma and tail; (4) photometry and radiometry; and (5) spacecraft and ground based observation data. Color photographs are shown.

  7. Ground-based very high energy gamma ray astronomy: Observational highlights

    NASA Technical Reports Server (NTRS)

    Turver, K. E.

    1986-01-01

    It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.

  8. Correlation of satellite lightning observations with ground-based lightning experiments in Florida, Texas and Oklahoma

    NASA Technical Reports Server (NTRS)

    Edgar, B. C.; Turman, B. N.

    1982-01-01

    Satellite observations of lightning were correlated with ground-based measurements of lightning from data bases obtained at three separate sites. The percentage of ground-based observations of lightning that would be seen by an orbiting satellite was determined.

  9. Celescope catalog of ultraviolet stellar observations. Magnetic tape version. [Orbiting Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Davis, R. J.; Deutschman, W. A.; Haramundanis, K. L.

    1973-01-01

    Observational results obtained by the celescope experiment during the first 16 months of operation of NASA's Orbiting Astronomical Observatory are presented. Results of the stellar observations are listed along with selected ground-based information obtained from the available literature.

  10. Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data

    NASA Astrophysics Data System (ADS)

    Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang

    2017-10-01

    Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.

  11. Solar Spicules Near and at the Limb, Observed from Hinode

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2010-01-01

    Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments. Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we present observations of spicules from Hinode SOT, as seen near the limb with the Ca II filtergraph.

  12. Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Bhattacharyya, A.

    2006-01-01

    The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented.

  13. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  14. A virtual remote sensing observation network for continuous, near-real-time monitoring of atmospheric instability

    NASA Astrophysics Data System (ADS)

    Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco

    2017-04-01

    Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite remote sensing (i.e. SEVIRI, AMSU) is used to complement observations from a virtual ground-based microwave radiometer network based on the reanalysis of the COSMO model for Europe. In this contribution, we present a synergetic retrieval algorithm of stability indices from satellite observations and ground-based microwave measurements based on the COSMO-DE reanalysis as truth. In order to make the approach feasible for data assimilation applications at national weather services, we simulate satellite observations with the standard RTTOV model and use the newly developed RTTOV-gb (ground-based) for the ground-based radiometers (De Angelis et al., 2016). For the detection of significant instabilities, we show the synergy benefit in terms of uncertainty reduction, probability of detection and other forecast skill scores. The overall goal of ARON is to quantify the impact of ground-based vertical profilers within an integrated forecasting system, which combines short-term and now-casting.

  15. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  16. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  17. Discovery of hotspots on Io using disk-resolved infrared imaging

    NASA Technical Reports Server (NTRS)

    Spencer, J. R.; Shure, M. A.; Ressler, M. E.; Sinton, W. M.; Goguen, J. D.

    1990-01-01

    First results are presented using two new techniques for ground-based observation of Io's hotspots. An IR array camera was used to obtain direct IR images of Io with resolution better than 0.5 arcsec, so that more than one hotspot is seen on Io in Jupiter eclipse. The camera was also used to make the first observations of the Jupiter occultation of the hotspots. These new techniques have revealed and located at least three hotspots and will now permit routine ground-based monitoring of the locations, temperatures, and sizes of multiple hotspots on Io.

  18. Automated observation scheduling for the VLT

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    It is becoming increasingly evident that, in order to optimize the observing efficiency of large telescopes, some changes will be required in the way observations are planned and executed. Not all observing programs require the presence of the astronomer at the telescope: for those programs which permit service observing it is possible to better match planned observations to conditions at the telescope. This concept of flexible scheduling has been proposed for the VLT: based on current and predicted environmental and instrumental observations which make the most efficient possible use of valuable time. A similar kind of observation scheduling is already necessary for some space observatories, such as Hubble Space Telescope (HST). Space Telescope Science Institute is presently developing scheduling tools for HST, based on the use of artificial intelligence software development techniques. These tools could be readily adapted for ground-based telescope scheduling since they address many of the same issues. The concept are described on which the HST tools are based, their implementation, and what would be required to adapt them for use with the VLT and other ground-based observatories.

  19. The dynamic cusp at low altitudes: A case study combining Viking, DMSP, and Sondrestrom incoherent scatter radar observations

    NASA Technical Reports Server (NTRS)

    Watermann, Jurgen; Delabeaujardiere, Odile; Lummerzheim, Dirk; Woch, Joachim; Newell, Patrick T.; Potemra, Thomas A.; Rich, Frederick J.; Shapshak, Mans

    1992-01-01

    A case study involving data from three satellites and a ground-based radar are presented. Focus is on a detailed discussion of observations of the dynamic cusp made on 24 Sep. 1986 in the dayside high-latitude ionosphere and interior magnetosphere. The relevant data from space-borne and ground-based sensors is presented. They include in-situ particle and field measurements from the DMSP-F7 and Viking spacecraft and Sondrestrom radar observations of the ionosphere. These data are augmented by observations of the IMF and the solar wind plasma. The observations are compared with predictions about the ionospheric response to the observed particle precipitation, obtained from an auroral model. It is shown that observations and model calculations fit well and provide a picture of the ionospheric footprint of the cusp in an invariant latitude versus local time frame. The combination of Viking, Sondrestrom radar, and IMP-8 data suggests that we observed an ionospheric signature of the dynamic cusp. Its spatial variation over time which appeared closely related to the southward component of the IMF was monitored.

  20. Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, P.A.; Kleinman, L.; Eichinger, W. E.

    On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Column averaged, aerosol size distribution (ASD) measurements were made on the ground concurrently with the lidar measurements. The ASD ground measurements allowed calculation of the column averaged mass extinction efficiency (MEE) for the lidar system (1064 nm). The value of column averaged MEE was combined with spatially resolved lidar extinction coefficients to produce total aerosol mass concentration estimates with the resolution of the lidar (1.5 m vertical spatial and 1 s temporal). Airborne ASD measurements from DOE G-1 aircraftmore » made later in the day on 7 March 2006, allowed the evaluation of the assumptions of constant ASD with height and time used for estimating the column averaged MEE. The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 {mu}g/m{sup 3} and the base levels outside are of the order of 100 {mu}g/m{sup 3}. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 {mu}g/m{sup 3}. The article presents the methodology for estimating aerosol mass concentration from mobile, ground-based lidar measurements in combination with aerosol size distribution measurements. An uncertainty analysis of the methodology is also presented.« less

  1. Studies of thermal wave phenomena on the Jovian planets

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    Ground-based and Voyager observations of Jupiter provided evidence that the tropospheric temperature shows global-scale longitudinal variations which are often wavelike in character. The investigation is presented which is directed toward obtaining additional ground-based data in IR spectral bands whose contribution functions are optimized for specific atmospheric regions, in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets.

  2. Infrared Fourier spectrometer for laboratory use and for astronomical studies from aircraft and ground-based telescopes

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.

    1975-01-01

    A portable, versatile, IR Fourier spectrometer is described that provides 0.5 per cm spectral resolution in the 0.87-5.6-micron region. This spectrometer is employed in a varied program of astronomical observations from ground-based telescopes and from the NASA 91.5-cm airborne IR telescope. A number of spectral results are presented to illustrate the performance of this spectrometer in astronomical applications.

  3. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite observations. The multiple-lidar data during the CATZ campaign is expected to provide additional information on regional aerosol and cloud dynamics for give overpass, and enable a more realistic assessment of ground-to-satellite correlations. Future work is anticipated to finalize calibrated lidar backscatter profiles and utilization of wind trajectory information to further enable comparisons to CALIPS data.

  4. Nowcasting Ground Magnetic Perturbations with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Toth, G.; Singer, H. J.; Millward, G. H.; Gombosi, T. I.

    2015-12-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized B/t predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.

  5. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  6. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  7. Estimates of residence time and related variations in quality of ground water beneath Submarine Base Bangor and vicinity, Kitsap County, Washington

    USGS Publications Warehouse

    Cox, S.E.

    2003-01-01

    Estimates of residence time of ground water beneath Submarine Base Bangor and vicinity ranged from less than 50 to 4,550 years before present, based on analysis of the environmental tracers tritium, chlorofluorocarbons (CFCs), and carbon-14 (14C), in 33 ground-water samples collected from wells tapping the ground-water system. The concentrations of multiple environmental tracers tritium, CFCs, and 14C were used to classify ground water as modern (recharged after 1953), pre-modern (recharged prior to 1953), or indeterminate. Estimates of the residence time of pre-modern ground water were based on evaluation of 14C of dissolved inorganic carbon present in ground water using geochemical mass-transfer modeling to account for the interactions of the carbon in ground water with carbon of the aquifer sediments. Ground-water samples were obtained from two extensive aquifers and from permeable interbeds within the thick confining unit separating the sampled aquifers. Estimates of ground-water residence time for all ground-water samples from the shallow aquifer were less than 45 years and were classified as modern. Estimates of the residence time of ground water in the permeable interbeds within the confining unit ranged from modern to 4,200 years and varied spatially. Near the recharge area, residence times in the permeable interbeds typically were less than 800 years, whereas near the discharge area residence times were in excess of several thousand years. In the deeper aquifers, estimates of ground-water residence times typically were several thousand years but ranged from modern to 4,550 years. These estimates of ground-water residence time based on 14C were often larger than estimates of ground-water residence time developed by particle-tracking analysis using a ground-water flow model. There were large uncertainties?on the order of 1,000-2,000 years?in the estimates based on 14C. Modern ground-water tracers found in some samples from large-capacity production wells screened in the deeper aquifer may be the result of preferential ground-water pathways or induced downward flow caused by pumping stress. Spatial variations in water quality were used to develop a conceptual model of chemical evolution of ground water. Stable isotope ratios of deuterium and oxygen-18 in the 33 ground-water samples were similar, indicating similar climatic conditions and source of precipitation recharge for all of the sampled ground water. Oxidation of organic matter and mineral dissolution increased the concentrations of dissolved inorganic carbon and common ions in downgradient ground waters. However, the largest concentrations were not found near areas of ground-water discharge, but at intermediate locations where organic carbon concentrations were greatest. Dissolved methane, derived from microbial methanogenesis, was present in some ground waters. Methanogenesis resulted in substantial alteration of the carbon isotopic composition of ground water. The NETPATH geochemical model code was used to model mass-transfers of carbon affecting the 14C estimate of ground-water residence time. Carbon sources in ground water include dispersed particulate organic matter present in the confining unit separating the two aquifers and methane present in some ground water. Carbonate minerals were not observed in the lithologic material of the ground-water system but may be present, because they have been found in the bedrock of stream drainages that contribute sediment to the study area.

  8. Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope

    NASA Technical Reports Server (NTRS)

    Marrone, Daniel P.; Blundell, Raymond; Tong, Edward; Paine, Scott N.; Loudkov, Denis; Kawamura, Jonathan H.; Luhr, Daniel; Barrientos, Claudio

    2005-01-01

    The Receiver Lab Telescope (RLT) is a ground-based terahertz telescope; it is currently the only instrument producing astronmical data between 1 and 2 THz. We report on our first measurements o the high CO transitions, which represent the highest frequency detection ever made from the ground. We also present initial observations of {N II} and discuss the implications of this non-detection for the standard estimates of the strength of this line.

  9. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that complements and augments current and planned space-based observing systems.

  10. Thermospheric observations combining chemical seeding and ground-based techniques. I - Winds, turbulence and the parameters of the neutral atmosphere.

    NASA Technical Reports Server (NTRS)

    Lloyd, K. H.; Low, C. H.; Mcavaney, B. J.; Rees, D.; Roper, R. G.

    1972-01-01

    Two Skylark sounding rockets carrying chemical seeding payloads were launched from Woomera, South Australia (31 S, 137 E) in October 1969. In conjunction with these firings, the University of Adelaide conducted ground-based experiments on the upper atmosphere using the radio meteor and spaced receiver drift methods. This paper presents the measurements of properties of the neutral atmosphere above 90 km which were obtained from these experiments.

  11. Future of Space Astronomy: A Global Road Map for the Next Decades

    NASA Technical Reports Server (NTRS)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  12. Ground-Based Observations of 9P/Tempel 1 - The Deep Impact Mission

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; Bauer, J. M.; A'Hearn, M. F.

    1999-09-01

    The Deep Impact mission, one of the two recently approved Discovery missions, will deliver a 500 kg copper projectile to the comet 9P/Tempel 1 on July 4, 2005, to excavate a crater. The goal will be to watch the cratering event, measure the change in activity level caused by the impact, and will be the first experiment to sample deeply below the surface of a comet. In preparation for a successful mission, we will begin a vigorous ground-based observing campaign to characterize the nucleus of 9P/Tempel 1. The ground-based observations will characterize the pre-impact activity levels for comparison after the impact, characterize the nucleus in terms of a rotational light curve and pole position, get an estimate of the nucleus size and albedo, model the dust production rates, and search for the appearance of gaseous species as the comet approaches perihelion. The observing campaign as already begun with some intensive observations of the comet during the following observing runs: UT Date & Nts & Telescope & r[AU] & No. & Exp 12/97 & 1 &Keck II & 4.48 & 2 & 240 1/98 & 1 &UH 2.2m & 4.44 & 7 & 4200 2/98 & 1 &CTIO1.5m & 4.36 & 3 & 1800 4/98 & 2 &UH 2.2m & 4.26 & 8 & 4800 1/99 & 6 &UH 2.2m & 3.14 &133 &17220 3/99 & 4 &UH 2.2m & 2.88 &181 &54000 5/99 & 2 &UH 2.2m & 2.47 & 9 & 810 7 /99 & 2 &UH 2.2m & 2.19 & 9 & 1620 The 1999 January and March observations were made to search for the rotation period of the comet, as well as to obtain deep images to model the coma. The results of the rotational light curve observations will be presented, as well as a compilation of the heliocentric light curve from the data from earlier epochs. In addition, a detailed, comprehensive multi-wavelength ground-based observing plan will be presented to characterize the nucleus before the 2005 July 4 Deep Impact encounter with the comet. This project has been funded through the NASA Planetary Astronomy Program to date, NAG 4494.

  13. Retrievals of methane from IASI radiance spectra and comparisons with ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, T.; Kumps, N.; de Mazière, M.; Kruglanski, M.; Senten, C.; Vanhaelewyn, G.; Vandaele, A. C.; Vigouroux, C.

    2009-04-01

    The Infrared Atmospheric Sounding Interferometer (IASI), launched on 19 October 2006, is a Fourier transform spectrometer onboard METOP-1, observing the radiance of the Earth's surface and atmosphere in nadir mode. The spectral range covers the 645 to 2760 cm-1 region with a resolution of 0.35 to 0.5 cm-1. A line-by-line spectral simulation and inversion code, ASIMUT, has been developed for the retrieval of chemical species from infrared spectra. The code includes an analytical calculation of the Jacobians for use in the inversion part of the algorithm based on the Optimal Estimation Method. In 2007 we conducted a measurement campaign at St Denis, Île de la Réunion where we performed ground-based solar absorption observations with a infrared Fourier transform spectrometer. ASIMUT has been used to retrieve methane from the ground-based and collocated satellite measurements. For the latter we selected pixels that are situated over the sea. In this presentation we will show the retrieval strategies, the resulting methane column time series above St Denis and the comparisons of the satellite data with the ground-based data sets. Vertical profile information in these data sets will also be discussed.

  14. Emotional Bias in Classroom Observations: Within-Rater Positive Emotion Predicts Favorable Assessments of Classroom Quality

    ERIC Educational Resources Information Center

    Floman, James L.; Hagelskamp, Carolin; Brackett, Marc A.; Rivers, Susan E.

    2017-01-01

    Classroom observations increasingly inform high-stakes decisions and research in education, including the allocation of school funding and the evaluation of school-based interventions. However, trends in rater scoring tendencies over time may undermine the reliability of classroom observations. Accordingly, the present investigations, grounded in…

  15. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  16. Solar Spicules Near and at the Limb, Observed from Hinode

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald

    2009-01-01

    Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle (Beckers 1968, 1972; Sterling 2000). In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments (e.g., DePontieu et al. 2004). Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft (e.g., De Pontieu et al. 2007a, 2007b). Here we present observations of spicules from Hinode SOT, as seen near the limb with the Ca II filtergraph.

  17. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  18. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  19. Characterizing the physical-basis of orographic rainfall retrieval errors due to terrain artifacts on GPM-DPR reflectivity profiles

    NASA Astrophysics Data System (ADS)

    Arulraj, M.; Barros, A. P.

    2017-12-01

    GPM-DPR reflectivity profiles in mountainous regions are severely handicapped by low level ground-clutter artifacts which have different error characteristics depending on landform (upwind slopes of high mountains versus complex topography in middle-mountains) and precipitation regime. These artifacts result in high detection and estimation errors especially in mid-latitude and tropical mountain regions where low-level light precipitation and complex multi-layer clouds interact with incoming storms. Here, we present results assessment studies in the Southern Appalachian Mountains (SAM) and preliminary results over the eastern slopes of the Andes using ground-based observations from the long-term hydrometeorological networks and model studies toward developing a physically-based framework to systematically identify and attribute measurement errors. Specifically, the focus is on events when GPM-DPR Ka- and Ku- Band precipitation radar misses low-level precipitation with vertical altitude less than 2 km AGL (above ground level). For this purpose, ground-based MRR and Parsivel disdrometer observations near the surface are compared with the reflectivity profiles observed by the GPM-DPR overpasses, the raindrop-size spectra are used to classify the precipitation regime associated with different classes of detection and estimation errors. This information will be used along with a coupled rainfall dynamics and radar simulator model to 1) merge the low-level GPM-DPR measured reflectivity with the MRR reflectivities optimally under strict physically-based constraints and 2) build a library of reflectivity profile corrections. Finally, preliminary 4D analysis of the organization of reflectivity correction modes, microphysical regimes, topography and storm environment will be presented toward developing a general physically-based error model.

  20. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE PAGES

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; ...

    2016-02-04

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  1. Investigation of CO, C2H6 and aerosols over Eastern Canada during BORTAS 2011 using ground-based and satellite-based observations and model simulations

    NASA Astrophysics Data System (ADS)

    Griffin, Debora; Franklin, Jonathan; Parrington, Mark; Whaley, Cynthia; Hopper, Jason; Lesins, Glen; Tereszchuk, Keith; Walker, Kaley A.; Drummond, James R.; Palmer, Paul; Strong, Kimberly; Duck, Thomas J.; Abboud, Ihab; Dan, Lin; O'Neill, Norm; Clerbaux, Cathy; Coheur, Pierre; Bernath, Peter F.; Hyer, Edward; Kliever, Jenny

    2013-04-01

    We present the results of total column measurements of CO and C2H6 and aerosol optical depth (AOD) during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. They were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and in Toronto, Ontario. Measurements of enhanced fine mode AOD were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this study, we will focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre (CMC) as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto did originate from forest fires in Northwestern Ontario, that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6-CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. The C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to other geographical regions. The ground-based CO and C2H6 observations were compared with output from the 3-D global chemical transport model GEOS-Chem, using the inventory of the Fire Locating And Monitoring of Burning Emissions (FLAMBE). Good agreement was found for the magnitude of the enhancement of the total columns of CO between the measured and modelled results; however, a small shift in time of approximately 6 h of the arrival of the plume over Halifax is apparent between the results. The modeled C2H6 columns are systematically lower than the observations from the ground-based FTSs. It is possible that this difference between the model output and observations is due to the extra-tropical (rather than specific boreal) fire emission ratio used in the GEOS-Chem simulation, which seems to underestimate the C2H6 emission, derived from the presented ground-based observations. This suggests that a finer categorization of extra-tropical biomass burning is necessary and should be considered in future model simulations.

  2. Examining Scattering Mechanisms within Bubbled Freshwater Lake Ice using a Time-Series of RADARSAT-2 (C-band) and UW-Scat (X-, Ku-band) Polarimetric Observations

    NASA Astrophysics Data System (ADS)

    Gunn, Grant; Duguay, Claude; Atwood, Don

    2017-04-01

    This study identifies the dominant scattering mechanism for C-, X- and Ku-band for bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Canada, using a winter time series of fully polarimetric ground-based (X- and Ku-band, UW-Scat) scatterometer and spaceborne (C-band) synthetic aperture radar (SAR, Radarsat-2) observations collected coincidentally to in-situ snow and ice measurements. Scatterometer observations identify two dominant backscatter sources from the ice cover: the snow-ice, and ice-water interface. Using in-situ measurements as ground-truth, a winter time series of scatterometer and satellite acquisitions show increases in backscatter from the ice-water interface prior to the timing of tubular bubble development in the ice cover. This timing indicates that scattering in the ice is independent of double-bounce scatter caused by tubular bubble inclusions. Concurrently, the co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations are centred at 0° throughout the time series, indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of SAR observations is presented for C-band acquisitions indicating a dominant single-bounce scattering mechanism regime, which is hypothesized to be a result of an ice-water interface that presents a rough surface or a surface composed of preferentially oriented facets. This study is the first to present a winter time series of coincident ground-based and spaceborne fully polarimetric active microwave observations for bubbled freshwater lake ice.

  3. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  4. Psyche: State of Knowledge from Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Shepard, M. K.; Takir, D.; Sanchez, J. A.; Richardson, J.; Emery, J. P.; Taylor, P. A.

    2017-07-01

    We present results from a multi-year campaign to characterize asteroid (16) Psyche, the target of NASA Discovery mission. Our results suggest that Psyche is covered with exogenic carbonaceous impactor similar to Vesta.

  5. Multiple cues add up in defining a figure on a ground.

    PubMed

    Devinck, Frédéric; Spillmann, Lothar

    2013-01-25

    We studied the contribution of multiple cues to figure-ground segregation. Convexity, symmetry, and top-down polarity (henceforth called wide base) were used as cues. Single-cue displays as well as ambiguous stimulus patterns containing two or three cues were presented. Error rate (defined by responses to uncued stimuli) and reaction time were used to quantify the figural strength of a given cue. In the first experiment, observers were asked to report which of two regions, left or right, appeared as foreground figure. Error rate did not benefit from adding additional cues if convexity was present, suggesting that responses were based on convexity as the predominant figural determinant. However, reaction time became shorter with additional cues even if convexity was present. For example, when symmetry and wide base were added, figure-ground segregation was facilitated. In a second experiment, stimulus patterns were exposed for 150ms to rule out eye movements. Results were similar to those found in the first experiment. Both experiments suggest that under the conditions of our experiment figure-ground segregation is perceived more readily, when several cues cooperate in defining the figure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Networked high-speed auroral observations combined with radar measurements for multi-scale insights

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Semeter, J. L.

    2015-12-01

    Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.

  7. High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    McCaughrean, Mark; Stapelfeldt, Karl; Close, Laird

    2000-01-01

    In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive optics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational techniques and highlight their results by presenting prototype examples of disks imaged in the Taurus-Auriga and Orion star-forming regions. As appropriate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging techniques, and how they may impact disk studies.

  8. Ground-based radar monitoring of volcanic ash: a novel approach for the estimation of the bulk microphysical parameters

    NASA Astrophysics Data System (ADS)

    Vulpiani, Gianfranco; Ripepe, Maurizio

    2017-04-01

    The detection and quantitative retrieval of ash plumes is of significant interest due to the environmental, climatic, and socioeconomic effects of ash fallout which might cause hardship and damages in areas surrounding volcanoes, representing a serious hazard to aircrafts. Real-time monitoring of such phenomena is crucial for initializing ash dispersion models. Ground-based and space-borne remote sensing observations provide essential information for scientific and operational applications. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low-level eruptions. Their imagery is available every 10-30 min and suffers from a relatively poor spatial resolution. Moreover, the field of view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and the observations' overall utility is reduced at night. Ground-based microwave weather radars may represent an important tool for detecting and, to a certain extent, mitigating the hazards presented by ash clouds. The possibility of monitoring in all weather conditions at a fairly high spatial resolution (less than a few hundred meters) and every few minutes after the eruption is the major advantage of using ground-based microwave radar systems. Ground-based weather radar systems can also provide data for estimating the ash volume, total mass, and height of eruption clouds. Previous methodological studies have investigated the possibility of using ground-based single- and dual-polarization radar system for the remote sensing of volcanic ash cloud. In the present work, methodology was revised to overcome some limitations related to the assumed microphysics. New scattering simulations based on the T-matrix solution technique were used to set up the parametric algorithms adopted to estimate the mass concentration and ash mean diameter. Furthermore, because quantitative estimation of the erupted materials in the proximity of the volcano's vent is crucial for initializing transportation models, a novel methodology for estimating a volcano eruption's mass discharge rate based on the combination of radar and a thermal camera was developed. We show how it is possible to calculate the mass flow using radar-derived ash concentration and particle diameter at the base of the eruption column using the exit velocity estimated by the thermal camera. The proposed procedure was tested on four Etna eruption episodes that occurred in December 2015 as observed by the available network of C and X band radar systems. The results are congruent with other independent methodologies and observations . The agreement between the total erupted mass derived by the retrieved MDR and the plume concentration can be considered as a self-consistent methodological assessment. Interestingly, the analysis of the polarimetric radar observations allowed us to derive some features of the ash plume, including the size of the eruption column and the height of the gas thrust region.

  9. Multi-Spectral Image Analysis for Improved Space Object Characterization

    NASA Astrophysics Data System (ADS)

    Duggin, M.; Riker, J.; Glass, W.; Bush, K.; Briscoe, D.; Klein, M.; Pugh, M.; Engberg, B.

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  10. Global Space Weather Observational Network: Challenges and China's Contribution

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  11. Short-term Forecasting Ground Magnetic Perturbations with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, Daniel; Toth, Gabor; Gombosi, Tamas; Singer, Howard; Millward, George

    2016-04-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized dB/dt predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.

  12. Evaluating Tasks for Performance-Based Assessments: Advice for Music Teachers

    ERIC Educational Resources Information Center

    Scott, Sheila

    2004-01-01

    Performance-based assessments allow teachers to systematically observe skills used or demonstrated by students when they create a product, construct a response, or make a presentation (McMillan 2001). These assessments are grounded in performance-based tasks that elicit students' responses in relation to the outcomes of instruction. The criteria…

  13. Building the GPM-GV Column from the GPM Cold season Precipitation Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Nesbitt, S. W.; Duffy, G. A.; Gleicher, K.; McFarquhar, G. M.; Kulie, M.; Williams, C. R.; Petersen, W. A.; Munchak, S. J.; Tokay, A.; Skofronick Jackson, G.; Chandrasekar, C. V.; Kollias, P.; Hudak, D. R.; Tanelli, S.

    2013-12-01

    Within the context of the Drop Size Distribution Working Group (DSDWG) of the Global Precipitation Mission-Ground Validation (GPM-GV) program, a major science and satellite precipitation algorithm validation focus is on quantitatively determining the variability of microphysical properties of precipitation in the vertical column, as well as the radiative properties of those particles at GPM-relevant microwave frequencies. The GPM Cold season Precipitation Experiment, or GCPEx, was conducted to address both of these objectives in mid-latitude winter precipitation. Radar observations at C, X, Ku, Ka, and W band from ground based scanning radars, profiling radars, and aircraft, as well as an aircraft passive microwave imager from GCPEx, conducted in early 2012 near Barrie, Ontario, Canada, can be used to constrain the observed reflectivites and brightness temperatures in snow as well as construct radar dual frequency ratios (DFRs) that can be used to identify regimes of microwave radiative properties in observed hydrometeor columns. These data can be directly matched with aircraft and ground based in situ microphysical probes, such as 2-D and bulk aircraft probes and surface disdrometers, to place the microphysical and microwave scattering and emission properties of the snow in context throughout the column of hydrometeors. In this presentation, particle scattering regimes will be identified in GCPEx hydrometeor columns storm events using a clustering technique in a multi-frequency DFR-near Rayleigh radar reflectivity phase space using matched ground-based and aircraft-based radar and passive microwave data. These data will be interpreted using matched in situ disdrometer and aircraft probe microphysical data (particle size distributions, habit identification, fall speed, mass-diameter relationships) derived during the events analyzed. This database is geared towards evaluating scattering simulations and the choice of integral particle size distributions for snow precipitation retrieval algorithms for ground and spaceborne radars at relevant wavelengths. A comparison of results for different cases with varying synoptic forcing and microphysical evolution will be presented.

  14. Ground-based Instrumentations in Africa and its Scientific and Societal Benefits to the region

    NASA Astrophysics Data System (ADS)

    Yizengaw, Endawoke

    2012-07-01

    Much of what we know about equatorial physics is based on Jicamarca Incoherent Scattering Radar (ISR) observations. However, Jicamarca is in the American sector where the geomagnetic equator dips with a fairly large excursion between the geomagnetic and geodetic equator. On the other hand, in the African sector the geomagnetic equator is fairly well aligned with the geodetic equator. Satellites (e.g. ROCSAT, DMSP, C/NOFS) observations have also indicated that the equatorial ionosphere in the African sector responds differently than other sectors. However, these satellite observations have not been confirmed, validated or studied in detail by observations from the ground due to lack of suitable ground-based instrumentation in the region. Thus, the question of what causes or drives these unique density irregularities in the region is still not yet fully understood, leading the investigation of the physics behind each effect into speculative dead ends. During the past couple of years very few (compared to the land-mass that Africa covers) small instruments, like GPS receivers, magnetometers, VHF, and VLF have been either deployed in the region or in process. However, to understand the most dynamic region in terms of ionospheric irregularities, those few instruments are far from enough. Recently, significant progress has been emerging in securing more ground-based instrument into the region, and thus three ionosondes are either deployed or in process. In this paper, results from AMBER magnetometer network, ionosonde, and GPS receivers will be presented. By combining the multi instrument independent observations, this paper will show a cause and effect of space weather impact in the region for the first time. While the magnetometer network, such as those operated under the umbrella of AMBER project, estimates the fundamental electrodynamics that governs equatorial ionospheric motion, the GPS receivers will track the structure and dynamics of the ionosphere. In addition to the scientific importance, the ground-based instrumentations have also direct impact in advancing space science research by establishing and furthering sustainable research/training infrastructure within Africa so that more young scientists will be educated in their own country. The paper will present research results performed by graduate students who utilize data from the recently deployed instruments within the African universities.

  15. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  16. Hydrogen production rate from comet Austin 1982g

    NASA Technical Reports Server (NTRS)

    Shih, P.; Scherb, F.; Roesler, F. L.

    1984-01-01

    Meaningful measurements with respect to the cometary Balmer-alpha (H-alpha) emission are difficult and require the use of special equipment. The first ground-based observations of H-alpha emission from a cometary hydrogen corona were conducted on comet Kohoutek 1973 XII with a large-aperture Fabry-Perot spectrometer installed at the McMath solar telescope at Kitt Peak National Observatory. The present investigation is concerned with the second ground-based observations of cometary H-alpha emission carried out during the apparition of comet Austin 1982g. A 150 mm dual-etalon Fabry-Perot spectrometer was employed in the experiment. Use was made of an observatory which is designed for the high spectral resolution study of faint extended sources such as interstellar and geocoronal emission lines. The investigation demonstrates that hydrogen production rates from comets as faint as about 7th magnitude can be routinely measured from the ground at minimal cost.

  17. Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin; Rothacher, Markus

    2017-04-01

    The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.

  18. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union (INTAS-YSF-02-138), International Science and Technology Center (ISTC Kr-763), Russian Foundation for Basic Research (RFBR-03-05-64626), the joint foundation of Russian Ministry of Education and St.Petersburg Administration (PD02-1.5-96) and the President of Russia grant (MK-2686.2003.05).

  19. Constraining Galaxy Evolution With Hubble's Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, S.; Lindler, D. J.

    2009-03-01

    We present Hubble's Next Generation Spectral Library, a library of UV-optical spectra (0.2-1.0 μ) of 378 stars. We show that the mid-UV spectrum can be used to constrain the ages and metallicities of high-redshift galaxies presently being observed with large, ground-based telescopes.

  20. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  1. Orographic Condensation at the South Pole of Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate

    2016-10-01

    Although many clouds have been observed on Titan over the past two decades (Griffith et al. 1998, Rodriquez et al 2009, Brown et al. 2010), only a handful of clouds have been analyzed in detail (Griffith et al 2005, Brown et al 2009, Adamkovics et al 2010). In light of new data and better radiative transfer (RT) modelling, we present here a reexamination of one of these cloud systems observed in March 2007, formerly identified as ground fog (Brown et al 2009), using the Cassini VIMS instrument. Combining our analysis with RADAR observations we attempt to understand the connection and correlation between this low altitude atmospheric phenomenon and the local topography, suggesting instead, a topographically driven (orographic) cloud formation mechanism. This analysis would present the first links between cloud formation and topography on Titan, and has valuable implications in understanding additional cloud formation mechanisms, allowing for a better understanding of Titan's atmospheric dynamics.We will also present an update on an ongoing ground based observation campaign looking for clouds on Titan. This campaign, begun back in April 2014, has been (nearly) continuously monitoring Titan for ongoing cloud activity. Although a variety of telescope and instruments have been used in an effort to best capture the onset of cloud activity expected at Titan's North Pole, no cloud outbursts have yet been observed from the ground (though frequent observations have been made with Cassini ISS/VIMS). This is interesting because it further suggests a developing dichotomy between Titan's seasons, since clouds were observable from the ground during southern summer. Thus, monitoring the onset of large scale cloud activity at Titan's North Pole will be crucial to understanding Titan's hydrologic cycle on seasonal timescales.

  2. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  3. Validation of Ground-based Optical Estimates of Auroral Electron Precipitation Energy Deposition

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Grubbs, G. A., II; Conde, M.; Lynch, K. A.; Michell, R.; Zettergren, M. D.; Samara, M.; Ahrns, M. J.

    2017-12-01

    One of the major energy inputs into the high latitude ionosphere and mesosphere is auroral electron precipitation. Not only does the kinetic energy get deposited, the ensuing ionization in the E and F-region ionosphere modulates parallel and horizontal currents that can dissipate in the form of Joule heating. Global models to simulate these interactions typically use electron precipitation models that produce a poor representation of the spatial and temporal complexity of auroral activity as observed from the ground. This is largely due to these precipitation models being based on averages of multiple satellite overpasses separated by periods much longer than typical auroral feature durations. With the development of regional and continental observing networks (e.g. THEMIS ASI), the possibility of ground-based optical observations producing quantitative estimates of energy deposition with temporal and spatial scales comparable to those known to be exhibited in auroral activity become a real possibility. Like empirical precipitation models based on satellite overpasses such optics-based estimates are subject to assumptions and uncertainties, and therefore require validation. Three recent sounding rocket missions offer such an opportunity. The MICA (2012), GREECE (2014) and Isinglass (2017) missions involved detailed ground based observations of auroral arcs simultaneously with extensive on-board instrumentation. These have afforded an opportunity to examine the results of three optical methods of determining auroral electron energy flux, namely 1) ratio of auroral emissions, 2) green line temperature vs. emission altitude, and 3) parametric estimates using white-light images. We present comparisons from all three methods for all three missions and summarize the temporal and spatial scales and coverage over which each is valid.

  4. Impact of space-based instruments on magnetic star research: past and future

    NASA Astrophysics Data System (ADS)

    Weiss, WW.; Neiner, C.; Wade, G. A.

    2018-01-01

    Magnetic stars are observed at a large variety of spectral ranges, frequently with photometric and spectroscopic techniques and on time scales ranging from a 'snap shot' to years, sometimes using data sets which are continuous over many months. The outcome of such observations has been discussed during this conference and many examples have been presented, demonstrating the high scientific significance and gains in our knowledge that result from these observations. A key question that should be addressed is, what are the advantages and requirements of space based research of magnetic stars, particularly in relation to ground based observations? And what are the drawbacks? What are the hopes for the future? In the following, we intend to present an overview that addresses these questions.

  5. Studies for the Loss of Atomic and Molecular Species from Io

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    1999-01-01

    A summary discussion of research undertaken in this project is presented and is related to six published papers attached in the appendix. The discussion is divided into six sections describing a variety of studies for the loss of atomic and molecular species from Io. They include studies for: (1) atomic sodium, (2) SO2, (3) O and S, (4) spectacular high-spatial resolution ultraviolet image observations of O, S, and possibly H in Io's atmosphere and/or corona acquired by the Space Telescope Imaging Spectrometer (STIS) of the Hubble Space Telescope (HST), (5) spectacular high-spatial resolution visible Io eclipse image observations acquired by the Solid State Imager (SSI) of Galileo spacecraft, (6) ground-based observations acquired by the Solid State Imager (SSI) of Galileo spacecraft, and (7) ground-based observations of Io's neutral cloud in [OI] 6300 angstrom emission. New source rates at Io's exobase for SO2, O, and H are given and a variety of interesting implications for Io's atmosphere and for the Io plasma torus are discussed. Appendices that are comprised of articles published during the contract are also presented.

  6. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip.

    PubMed

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.

  7. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip

    PubMed Central

    Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values. PMID:26421312

  8. Portable traceability solution for ground-based calibration of optical instruments

    NASA Astrophysics Data System (ADS)

    El Gawhary, Omar; van Veghel, Marijn; Kenter, Pepijn; van der Leden, Natasja; Dekker, Paul; Revtova, Elena; Heemskerk, Maurice; Trarbach, André; Vink, Ramon; Doyle, Dominic

    2017-11-01

    We present a portable traceability solution for the ground-based optical calibration of earth observation (EO) instruments. Currently, traceability for this type of calibration is typically based on spectral irradiance sources (e.g. FEL lamps) calibrated at a national metrology institute (NMI). Disadvantages of this source-based traceability are the inflexibility in operating conditions of the source, which are limited to the settings used during calibration at the NMI, and the susceptibility to aging, which requires frequent recalibrations, and which cannot be easily checked on-site. The detector-based traceability solution presented in this work uses a portable filter radiometer to calibrate light sources onsite, immediately before and after, or even during instrument calibration. The filter radiometer itself is traceable to the primary standard of radiometry in the Netherlands. We will discuss the design and realization, calibration and performance verification.

  9. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase clouds from the ground where low-level supercooled liquid layer are more easily observed and where additional environmental properties such as cloud condensation nuclei are quantified. This should help assist in choosing between several possible diagnostic ice nucleation schemes for ModelE stratiform cloud.

  10. First Ground-Based Observation of Sprites Over Southern Africa and Estimation of Their Physical and Optical Characteristics

    NASA Astrophysics Data System (ADS)

    Nnadih, O.; Martinez, P.; Kosch, M.; Lotz, S.; Fullekrug, M.

    2016-12-01

    We present the first ground-based observations of sprites over convective thunderstorms in southern Africa. The observations, acquired during the austral summer of 2015/16. show sprites with dendritic, carrot, angel and jellyfish-like shapes. The sprite locations are compared with lightning locations and peak amplitudes determined from the lightning detection network operated by the South African Weather Service, and also with the lightning locations reported by the World Wide Lightning Location Network (WLLN) and Low Frequency radio waveforms of the electric field strength recorded in the conjugate hemisphere in South-West England. The charge moment of the lightning discharges causing sprites is inferred from Extremely Low Frequency magnetic field measurements recorded at remote distances. These measurements reveal that a number of the sprites that we observed were triggered below and above the charge moment threshold for sprite production.

  11. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  12. Lightning leader models of terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.

  13. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  14. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  15. High-resolution CO2 and CH4 flux inverse modeling combining GOSAT, OCO-2 and ground-based observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Oda, T.; Saito, M.; Ito, A.; Janardanan Achari, R.; Sasakawa, M.; Machida, T.; Kaiser, J. W.; Belikov, D.; Valsala, V.; O'Dell, C.; Yoshida, Y.; Matsunaga, T.

    2017-12-01

    We develop a high-resolution CO2 and CH4 flux inversion system that is based on the Lagrangian-Eulerian coupled tracer transport model, and is designed to estimate surface fluxes from atmospheric CO2 and CH4 data observed by the GOSAT and OCO-2 satellites and by global in-situ networks, including observation in Siberia. We use the Lagrangian particle dispersion model (LPDM) FLEXPART to estimate the surface flux footprints for each observation at 0.1-degree spatial resolution for three days of transport. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). The adjoint of the coupled transport model is used in an iterative optimization procedure based on either quasi-Newtonian algorithm or singular value decomposition. Combining surface and satellite data for use in inversion requires correcting for biases present in satellite observation data, that is done in a two-step procedure. As a first step, bi-weekly corrections to prior flux fields are estimated for the period of 2009 to 2015 from in-situ CO2 and CH4 data from global observation network, included in Obspack-GVP (for CO2), WDCGG (CH4) and JR-STATION datasets. High-resolution prior fluxes were prepared for anthropogenic emissions (ODIAC and EDGAR), biomass burning (GFAS), and the terrestrial biosphere. The terrestrial biosphere flux was constructed using a vegetation mosaic map and separate simulations of CO2 fluxes by the VISIT model for each vegetation type present in a grid. The prior flux uncertainty for land is scaled proportionally to monthly mean GPP by the MODIS product for CO2 and EDGAR emissions for CH4. Use of the high-resolution transport leads to improved representation of the anthropogenic plumes, often observed at continental continuous observation sites. OCO-2 observations are aggregated to 1 second averages, to match the 0.1 degree resolution of the transport model. Before including satellite observations in the inversion, the monthly varying latitude-dependent bias is estimated by comparing satellite observations with column abundance simulated with surface fluxes optimized by surface inversion. The bias-corrected GOSAT and OCO-2 data are then used in the inversion together with ground-based observations. Application of the bias correction to satellite data reduces the difference between the flux estimates based on ground-based and satellite observations.

  16. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector - why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?

  17. Recent changes in stratospheric aerosol budget from ground-based and satellite observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry

    2017-04-01

    Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background) aerosol by comparing the recent observations with historical data available from 23-yr observations at Haute-Provence and Mauna-Loa.

  18. Multi-spectral image analysis for improved space object characterization

    NASA Astrophysics Data System (ADS)

    Glass, William; Duggin, Michael J.; Motes, Raymond A.; Bush, Keith A.; Klein, Meiling

    2009-08-01

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground-based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). This information can be used to improve our catalog of space objects and will be helpful in the resolution of satellite anomalies. At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space-Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  19. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  20. Shipborne LF-VLF oceanic lightning observations and modeling

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.

    2015-10-01

    Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.

  1. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  2. Characterization of Activity at Loki from Galileo and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Howell, R. R.; Lopes, R. M.

    2004-01-01

    While Loki is the most active volcanic center on Io, major questions remain concerning the nature of that activity. Rathbun et al. showed that the activity was semi-periodic, and suggested it was due to a resurfacing wave which swept across a lava lake as the crust cooled and become unstable. However in 2001 new observations showed that an intermediate level, less periodic mode of activity had apparently begun. Galileo-NIMS observations of Loki clearly show that the highest temperatures are found near the edge of the patera, consistent with disruption of a lava lake at the margins. NIMS observations also show gradients in temperature across the patera which, when modeled in terms of lava cooling models, are generally consistent with ages expected for the resurfacing wave but may also be consistent with spreading flows. We present a further analysis of NIMS data from I24 and I32 which help define the nature of the temperature variations present in Loki patera, along with Galileo-SSI images from the G1-I32 flybys which show albedo changes apparently correlated with the "periodic" activity measured from ground-based observations.

  3. The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)

    NASA Astrophysics Data System (ADS)

    Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.

    2017-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.

  4. Experimental investigation of variations in morphology, composition and mixing-state of boundary layer aerosol: A balloon based study over urban environment (New Delhi)

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Ahlawat, A.; Khosla, D.; Sharma, C.; Prasad, M. V. S. N.; Singh, Sukhvir; Gupta, B.; Tulsi; Sethi, D.; Sinha, P. R.; Ojha, D. K.; Wiedensohler, A.; Kotnala, R. K.

    2018-07-01

    The morphology, composition, and complex mixing states of aerosol are extremely important physico-chemical properties which are the major inputs to the optical/radiative models. Though, ground based observations of the said properties are abundant but the vertical profiles of the same are very much limited throughout the globe. The information on the vertical heterogeneity of the aforementioned properties over a polluted environment like Delhi will be very helpful to develop a better understanding of the thermodynamics of the lower atmosphere. In present study, we carried out a tethered balloon based field campaign in National Physical Laboratory (28° 38‧ 10″ N, 77° 10‧ 17″ E) from 21 to 27 February 2014 to explore the vertical distribution of the said properties. Based on the microscopic observations, the bubbly shaped sulfate particles number percentage is less (5%) on the ground, abundant (49%) on altitude <350 m and nearly absent on altitude >350 m. At 500 m altitude, particles were majorly of spiked shape with elongated dimension ∼ 3-4 μm. The number percentage of the aged fractals has been found to increase by 4% in the 100-350 m range against the ground observations. Based on the bulk composition of non-carbonaceous species, at 200 m altitude, we observed significant amount (74%) of the oxides of sulfur compared to that of ground observations (30%) that could be due to temperature inversion and air parcel movement from IGP (Indo Gangetic Plain). Various core-shell type particle configurations have been observed at different altitudes. At 200 m altitude, particles were majorly aged with anionic species (like S, Cl and HSO4) and cationic species (like C2H5). The bulk and individual particle level data generated over Delhi environment in this experiment may improve our understanding of boundary layer aerosol and could provide the scientific insights of their probable effects on low level cloud formation.

  5. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  6. SEU induced errors observed in microprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asenek, V.; Underwood, C.; Oldfield, M.

    In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.

  7. Pulsar observations with the MAGIC Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, M.; Contreras, J. L.; Otte, N.

    2007-07-12

    Pulsars were detected by EGRET up to energies below 20 GeV. Observations at higher energies with ground-based experiments, including MAGIC, so far failed to detect pulsars, indicating a sharp cutoff of the pulsed emission. Here we present, in particular, the results of the search for very high {gamma}-ray emission from the pulsar PSR B1951+32.

  8. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  9. Wide energy electron precipitations associated with chorus waves; Initial observations from Arase and ground-based observations

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kurita, S.; Saito, S.; Shinohara, I.; Kasahara, Y.; Matsuda, S.; Kasaba, Y.; Yagitani, S.; Kojima, H.; Hikishima, M.; Tsuchiya, F.; Kumamoto, A.; Katoh, Y.; Matsuoka, A.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, S.; Yokota, S.; Asamura, K.; Kazama, Y.; Wang, S. Y.; Shiokawa, K.; Oyama, S. I.; Ogawa, Y.; Hosokawa, K.; Kataoka, R.; Kero, A.; Hori, T.; Turunen, E. S.; Shoji, M.; Teramoto, M.; Chang, T. F.

    2017-12-01

    The pulsating aurora is caused by intermittent precipitations of a few - 10s keV electrons, and it is expected that the pitch angle scattering by chorus waves at the magnetosphere is a primary process to cause the pulsating aurora. The Arase satellite that was launched in December, 2016 has obtained comprehensive data sets for plasma/particles and fields/waves. In March and April, 2017, a series of campaign observation focused on the chorus-wave particle interactions from conjugate observations from Arase and ground-based observations, and the pulsating aurora as a manifest of chorus-wave particle ineteractions was the important observation subject. During the campaign observations, good conjugate observations were realized between Arase and ground-based observations in Scandinavia. Associated with the pulsating aurora, the EISCAT VHF incoherent scatter radar at Tromso, Norway observed strong ionization in lower ionosphere. During the period, the Arase satellite observed intense chorus waves near the magnetic equator for a few hours, suggesting that strong pitch angle scattering took place. From the conjugate observations from Arase and ground-based observations, we discuss how chorus waves cause strong precipitation of electrons from plasma sheet and radiation belts.

  10. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  11. Ionospheric Irregularities Characterization by Ground and Space-based GPS Observations

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Cherniak, I.; Krankowski, A.

    2017-12-01

    We present new results on detection and investigation of the topside ionospheric irregularities using GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit satellites. Our investigation is based on the recent ESA's Swarm mission launched on 22 November 2013 and consisted of three identical satellites, two of them fly in a tandem at an orbit altitude of 460 km while the third satellite - at an orbit altitude of 510 km. Each satellite is equipped with a zenith-looking antenna and 8-channel dual-frequency GPS receiver that delivered 1 Hz data for POD purposes, as well as Langmuir Probe instrument for in situ electron density. Additionally, we have analyzed GPS measurements onboard GRACE and TerraSAR-X satellite, which have rather similar to Swarm orbit altitude of 500 km. GPS measurements onboard MetOP-A and MetOP-B satellites (altitude of 840 km) can complement these observations in order to estimate an altitudinal extent of the ionospheric irregularities penetrating to higher altitudes. We demonstrate that space-based GPS observations can be effectively used for monitoring of the topside ionospheric irregularities occurrence in both high-latitude and equatorial regions and may essentially contribute to the multi-instrumental analysis of the ground-based and in situ data. Climatological characteristics of the equatorial ionospheric irregularities occurrence probability are derived from POD GPS measurements for all longitudinal sectors for the years 2013-2016. Several examples of strong geomagnetic storms, including the 2015 St. Patrick's Day storm, were analyzed to demonstrate differences between the climatlogical characteristics in space-based GPS data and storm-induced equatorial irregularities observations (postsunset suppression, night/morning-time occurrence). To support our observations and conclusions, we involve into our analysis in situ plasma density provided by Swarm constellation, GRACE KBR, DMSP satellites, as well as ground-based GNSS and digisonde networks. New International GNSS Service (IGS) product - the Northern Hemisphere GPS-based ROTI (rate of the TEC index) maps - was analyzed to determine similarities and differences in ionospheric irregularities signatures in the ground and space-based GPS observations.

  12. Remote Sensing of Supercooled Cloud Layers in Cold Climate Using Ground Based Integrated Sensors System and Comparison with Pilot Reports and model forecasts

    NASA Astrophysics Data System (ADS)

    Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france

    2017-04-01

    In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predictions are given. Preliminary results suggest that remote sensing and present weather sensors based observations of cloud SD regions can be used to describe micro and macro physical characteristics of the icing conditions. The model based icing intensity prediction reasonably agreed with the PIREPs and MWR observations.

  13. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  14. Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno's first perijove

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J. M.; Go, C.; Peach, D.; Colas, F.; Vedovato, M.

    2017-05-01

    We analyze Jupiter observations between December 2015 and August 2016 in the 0.38-1.7 μm wavelength range from the PlanetCam instrument at the 2.2 m telescope at Calar Alto Observatory and in the optical range by amateur observers contributing to the Planetary Virtual Observatory Laboratory. Over this time Jupiter was in a quiescent state without notable disturbances. Analysis of ground-based images and Hubble Space Telescope observations in February 2016 allowed the retrieval of mean zonal winds from -74.5° to +73.2°. These winds did not change over 2016 or when compared with winds from previous years with the sole exception of intense zonal winds at the North Temperate Belt. We also present results concerning the major wave systems in the North Equatorial Belt and in the upper polar hazes visible in methane absorption bands, a description of the planet's overall cloud morphology and observations of Jupiter hours before Juno's orbit insertion.

  15. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    NASA Astrophysics Data System (ADS)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  16. Ground-based Observation System Development for the Moon Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng

    2017-05-01

    The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.

  17. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  18. Atmospheric seeing measurements obtained with MISOLFA in the framework of the PICARD Mission

    NASA Astrophysics Data System (ADS)

    Ikhlef, R.; Corbard, T.; Irbah, A.; Morand, F.; Fodil, M.; Chauvineau, B.; Assus, P.; Renaud, C.; Meftah, M.; Abbaki, S.; Borgnino, J.; Cissé, E. M.; D'Almeida, E.; Hauchecorne, A.; Laclare, F.; Lesueur, P.; Lin, M.; Martin, F.; Poiet, G.; Rouzé, M.; Thuillier, G.; Ziad, A.

    2012-09-01

    PICARD is a space mission launched in June 2010 to study mainly the geometry of the Sun. The PICARD mission has a ground program consisting mostly in four instruments based at the Calern Observatory (Observatoire de la Côte d’Azur). They allow recording simultaneous solar images and various atmospheric data from ground. The ground instruments consist in the qualification model of the PICARD space instrument (SODISM II: Solar Diameter Imager and Surface Mapper), standard sun-photometers, a pyranometer for estimating a global sky quality index, and MISOLFA a generalized daytime seeing monitor. Indeed, astrometric observations of the Sun using ground-based telescopes need an accurate modeling of optical effects induced by atmospheric turbulence. MISOLFA is founded on the observation of Angle-of-Arrival (AA) fluctuations and allows us to analyze atmospheric turbulence optical effects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried parameter r0, size of the isoplanatic patch, the spatial coherence outer scale L0 and atmospheric correlation times). We present in this paper simulations showing how the Fried parameter infered from MISOLFA records can be used to interpret radius measurements extracted from SODISM II images. We show an example of daily and monthly evolution of r0 and present its statistics over 2 years at Calern Observatory with a global mean value of 3.5cm.

  19. Surveying the IR corona during the 2017 solar eclipse

    NASA Astrophysics Data System (ADS)

    Bryans, P.; Hannigan, J. W.; Sewell, S. D.; Judge, P. G.

    2017-12-01

    The spectral emission of the infrared solar corona is the most promising direct diagnostic of the coronal magnetic field, and yet remains poorly measured. During the 2017 total solar eclipse, we will perform the first spectral survey of the IR corona using the NCAR Airborne Interferometer. This Fourier Transform Infrared Spectrometer is configured to observe the coronal spectrum from 1.5 to 5.5 microns at R 10,000 from a ground-based site. The location is atop Casper Mountain, Wyoming (42.73ºN, 106.32ºW, 2400 masl), 8 km from the center-line of totality. In this presentation, we will outline the need for such measurements, describe the instrument design and adaptation for the eclipse measurement, observation scheme, and present preliminary results. We will also discuss implications for observing infrared coronal lines from the ground, for example with the upcoming DKIST facility.

  20. Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kains, N.; Calamida, A.; Sahu, K. C.

    Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less

  1. Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements

    DOE PAGES

    Kains, N.; Calamida, A.; Sahu, K. C.; ...

    2017-07-14

    Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less

  2. Comparison and covalidation of ozone anomalies and variability observed in SBUV(/2) and Umkehr northern midlatitude ozone profile estimates

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I.; Ahn, Changwoo; Bhartia, P. K.; Flynn, L. E.

    2005-03-01

    This analysis presents comparisons of upper-stratosphere ozone information observed by two independent systems: the Solar Backscatter UltraViolet (SBUV and SBUV/2) satellite instruments, and ground-based Dobson spectrophotometers. Both the new SBUV Version 8 and the new UMK04 profile retrieval algorithms are optimized for studying long-term variability and trends in ozone. Trend analyses of the ozone time series from the SBUV(/2) data set are complex because of the multiple instruments involved, changes in the instruments' geo-location, and short periods of overlaps for inter-calibrations among different instruments. Three northern middle latitudes Dobson ground stations (Arosa, Boulder, and Tateno) are used in this analysis to validate the trend quality of the combined 25-year SBUV/2 time series, 1979 to 2003. Generally, differences between the satellite and ground-based data do not suggest any significant time-dependent shifts or trends. The shared features confirm the value of these data sets for studies of ozone variability.

  3. Updated Review of Planetary Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Fischer, G.; Simões, F.; Renno, N.; Zarka, P.

    2008-06-01

    This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955 997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.

  4. Updated Review of Planetary Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Fischer, G.; Simões, F.; Renno, N.; Zarka, P.

    This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955-997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.

  5. Are Radishes Really Allelopathic to Lettuce?

    ERIC Educational Resources Information Center

    Santaniello, Catherine M.; Koning, Ross E.

    1996-01-01

    Presents an experiment that challenges the claim that sprouting radish seedlings release chemicals into the environment that inhibit germination of lettuce seeds. Reports that although no simple allelopathic demonstration was observed, the experiment provides fertile ground for further experimentation in inquiry-based laboratory experiences. (JRH)

  6. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.

  7. Observational astrophysics.

    NASA Astrophysics Data System (ADS)

    Léna, P.; Lebrun, F.; Mignard, F.

    This book is the 2nd edition of an English translation published in 1988 (45.003.105) of the French original "Astrophysique: Méthodes physiques de l'observation" published in 1986 (42.003.048). Written specifically for physicists and graduate students in astronomy, this textbook focuses on astronomical observation and on the basic physical principles that astronomers use to conceive, build and exploit their instruments at their ultimate limits in sensitivity or resolution. This second edition has been entirely restructured and almost doubled in size, in order to improve its clarity and to account for the great progress achieved in the last 15 years. It deals with ground-based and space-based astronomy and their respective fields. It presents the new generation of giant ground-based telescopes, with the new methods of optical interferometry and adaptive optics, and also the ambitious concepts behind planned space missions for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spectrum and touches upon the "new astronomies" becoming possible with gravitational waves and neutrinos.

  8. GEARS: An Enterprise Architecture Based On Common Ground Services

    NASA Astrophysics Data System (ADS)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  9. A discussion of differences in preparation, performance and postreflections in participant observations within two grounded theory approaches.

    PubMed

    Berthelsen, Connie Bøttcher; Lindhardt, Tove; Frederiksen, Kirsten

    2017-06-01

    This paper presents a discussion of the differences in using participant observation as a data collection method by comparing the classic grounded theory methodology of Barney Glaser with the constructivist grounded theory methodology by Kathy Charmaz. Participant observations allow nursing researchers to experience activities and interactions directly in situ. However, using participant observations as a data collection method can be done in many ways, depending on the chosen grounded theory methodology, and may produce different results. This discussion shows that how the differences between using participant observations in classic and constructivist grounded theory can be considerable and that grounded theory researchers should adhere to the method descriptions of performing participant observations according to the selected grounded theory methodology to enhance the quality of research. © 2016 Nordic College of Caring Science.

  10. Ground-based observations of 951 Gaspra: CCD lightcurves and spectrophotometry with the Galileo filters

    NASA Technical Reports Server (NTRS)

    Mottola, Stefano; Dimartino, M.; Gonano-Beurer, M.; Hoffmann, H.; Neukum, G.

    1992-01-01

    This paper reports the observations of 951 Gaspra carried out at the European Southern Observatory (La Silla, Chile) during the 1991 apparition, using the DLR CCD Camera equipped with a spare set of the Galileo SSI filters. Time-resolved spectrophotometric measurements are presented. The occurrence of spectral variations with rotation suggests the presence of surface variegation.

  11. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  12. Analysis of Forbush decreases during strong geomagnetic disturbances in March-April 2001

    NASA Astrophysics Data System (ADS)

    Kravtsova, M. V.; Sdobnov, V. E.

    2014-08-01

    Using ground-based cosmic-ray (CR) observations on the worldwide network of neutron monitors, we have studied the variations in CR rigidity spectrum, anisotropy, and planetary system of geomagnetic cutoff rigidities during Forbush decreases in March-April 2001 by the global spectrographic method. By jointly analyzing ground-based and satellite measurements, we have determined the parameters of the CR rigidity spectrum that reflect the electromagnetic characteristics of the heliospheric fields in each hour of observations within the framework of the model of CR modulation by the heliosphere's regular electromagnetic fields. The rigidity spectra of the variations and the relative changes in the intensity of CRs with rigidities of 4 and 10 GV in the solar-ecliptic geocentric coordinate system are presented in specific periods of the investigated events.

  13. Effect of Different Ground Scenarios on Flow Structure of a Rotor At Hover Condition

    NASA Astrophysics Data System (ADS)

    Kocak, Goktug; Nalbantoglu, Volkan; Yavuz, Mehmet Metin

    2017-11-01

    The ground effect of a scaled model rotor at hover condition was investigated experimentally in a confined environment. Different ground effect scenarios including full, partial, and inclined conditions, compared to out of ground condition, were characterized qualitatively and quantitatively using laser illuminated smoke visualization and Laser Doppler Anemometry measurements. The results indicate that the presence of the ground affects the flow regime near the blade tip by changing the spatial extent and the path of the vortex core. After the impingement of the wake to the ground, highly unsteady and turbulent wake is observed. Both the mean and the root mean square of the induced velocity increase toward the blade tip. In line with this, the spectral power of the dominant frequency in the velocity fluctuations significantly increases toward the blade tip. All these observations are witnessed in all ground effect conditions tested in the present study. Considering the inclined ground effect in particular, it is observed that the mean induced velocities of the high side (mountain) are higher compared to the velocities of the low side (valley) in contrast to the general trend observed in the present study where the ground effect reduces the induced velocity.

  14. Validating Pseudo-dynamic Source Models against Observed Ground Motion Data at the SCEC Broadband Platform, Ver 16.5

    NASA Astrophysics Data System (ADS)

    Song, S. G.

    2016-12-01

    Simulation-based ground motion prediction approaches have several benefits over empirical ground motion prediction equations (GMPEs). For instance, full 3-component waveforms can be produced and site-specific hazard analysis is also possible. However, it is important to validate them against observed ground motion data to confirm their efficiency and validity before practical uses. There have been community efforts for these purposes, which are supported by the Broadband Platform (BBP) project at the Southern California Earthquake Center (SCEC). In the simulation-based ground motion prediction approaches, it is a critical element to prepare a possible range of scenario rupture models. I developed a pseudo-dynamic source model for Mw 6.5-7.0 by analyzing a number of dynamic rupture models, based on 1-point and 2-point statistics of earthquake source parameters (Song et al. 2014; Song 2016). In this study, the developed pseudo-dynamic source models were tested against observed ground motion data at the SCEC BBP, Ver 16.5. The validation was performed at two stages. At the first stage, simulated ground motions were validated against observed ground motion data for past events such as the 1992 Landers and 1994 Northridge, California, earthquakes. At the second stage, they were validated against the latest version of empirical GMPEs, i.e., NGA-West2. The validation results show that the simulated ground motions produce ground motion intensities compatible with observed ground motion data at both stages. The compatibility of the pseudo-dynamic source models with the omega-square spectral decay and the standard deviation of the simulated ground motion intensities are also discussed in the study

  15. Investigation on contribution of neutron monitor data to estimation of aviation doses.

    PubMed

    Kákona, M; Ploc, O; Kyselová, D; Kubančák, J; Langer, R; Kudela, K

    2016-11-01

    Recently, many efforts have appeared to routinely measure radiation exposure (RE) of aircraft crew due to cosmic rays (CR). On the other hand real-time CR data measured with the ground based neutron monitors (NMs) are collected worldwide and available online. This is an opportunity for comparison of long-term observations of RE at altitudes of about 10km, where composition and energy spectra of secondary particles differ from those on the ground, with the data from NMs. Our contribution presents examples of such type of comparison. Analysis of the silicon spectrometer Liulin measurements aboard aircraft is presented over the period May-September 2005 and compared with data from a single NM at middle latitude. While extreme solar driven events observed by NMs have clearly shown an impact on dosimetric characteristics as measured on the airplanes, the transient short time effects in CR of smaller amplitude have been not studied extensively in relation to RE. For the period May-September 2005, when aircraft data become available and several Forbush decreases (FDs) are observed on the ground, a small improvement in the correlation between the dose measured and multiple linear regression fit based on two key parameters (altitude and geomagnetic cut-off rigidity), is obtained, if the CR intensity at a single NM is added into the scheme. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  16. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  17. Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Gautam, Ritesh; Hsu, N. Christina; Eck, Thomas F.; Holben, Brent N.; Janjai, Serm; Jantarach, Treenuch; Tsay, Si-Chee; Lau, William K.

    2013-10-01

    This paper presents characterization of aerosols over the Indochina peninsular regions of Southeast Asia during pre-monsoon season from satellite and ground-based radiometric observations. Our analysis focuses on the seasonal peak period in aerosol loading and biomass burning, prior to the onset of the Asian summer monsoon, as observed in the inter-annual variations of Aerosol Optical Depth (AOD) and fire count data from MODIS. Multi-year (2007-2011) analysis of spaceborne lidar measurements, from CALIOP, indicates presence of aerosols mostly within boundary layer, however extending to elevated altitudes to ˜4 km over northern regions of Indochina, encompassing Myanmar, northern Thailand and southern China. In addition, a strong gradient in aerosol loading and vertical distribution is observed from the relatively clean equatorial conditions to heavy smoke-laden northern regions (greater aerosol extinction and smaller depolarization ratio). Based on column-integrated ground-based measurements from four AERONET locations distributed over Thailand, the regional aerosol loading is found to be significantly absorbing with spectral single scattering albedo (SSA) below 0.91 ± 0.02 in the 440-1020 nm range, with lowest seasonal mean SSA (most absorbing aerosol) over the northern location of Chiang Mai (SSA ˜ 0.85) during pre-monsoon season. The smoke-laden aerosol loading is found to exhibit a significant diurnal pattern with higher AOD departures during early morning observations relative to late afternoon conditions (peak difference of more than 15% amplitude). Finally, satellite-based aerosol radiative impact is assessed using CERES shortwave Top-of-Atmosphere flux, in conjunction with MODIS AOD. Overall, a consistency in the aerosol-induced solar absorption characteristic is found among selected regions from ground-based sunphotometer-derived spectral SSA retrievals and satellite-based radiative forcing analysis.

  18. How Well the Early 2017 California Atmospheric River Precipitation Events Were Captured by Satellite Products and Ground-based Radars?

    NASA Astrophysics Data System (ADS)

    Wen, Y. B.; Behrangi, A.; Chen, H.; Lambrigtsen, B.

    2017-12-01

    In January and February of 2017, California experienced multiple heavy storms that caused serious destruction of facilities and economic loss, although it also helped to reduce water storage deficit due to prolonged drought in previous years. These extreme precipitation events were mainly associated with Atmospheric Rivers (ARs) and brought about 174 km3 of water to California according to ground observations. This paper evaluates the performance of six commonly used satellite-based precipitation products (IMERG, 3B42RT, PERSIANN, CCS, CMORPH, and GSMaP), as well as ground-based radar products (Radar-only and Radar-lgc) in capturing the ARs precipitation rate and distribution. It is found that precipitation maps from all products present heavy precipitation in January and February, with more consistent observations over ocean than land. Though large uncertainties exist in quantitative precipitation estimation (QPE) over land, the ensemble mean of different remote sensing precipitation products over California is consistent with gauge measurements. Among the six satellite-based products, IMERG correlates the best with gauge observations both in the detection and quantification of precipitation, but it is not the best product in terms of root mean square error (RMSE) or bias. Compared to satellite products, ground weather radar shows better precipitation detectability and estimation skill. However, neither radar nor satellite QPE products have good performances in quantifying the peak precipitation intensity during the extreme events, suggesting that further advancement in quantification of extremely intense precipitation associated with AR in the Western United States is needed.

  19. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  20. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  1. Space-based Scintillation Nowcasting with the Communications/Navigation Outage Forecast System

    NASA Astrophysics Data System (ADS)

    Groves, K.; Starks, M.; Beach, T.; Basu, S.

    2008-12-01

    The Air Force Research Laboratory's Communication/Navigation Outage Forecast System (C/NOFS) fuses ground- and space-based data in a near real-time physics-based model aimed at forecasting and nowcasting equatorial scintillations and their impacts on satellite communications and navigation. A key component of the system is the C/NOFS satellite that was launched into a low-inclination (13°) elliptical orbit (400 km x 850 km) in April 2008. The satellite contains six sensors to measure space environment parameters including electron density and temperature, ion density and drift, electric and magnetic fields and neutral wind, as well as a tri-band radio beacon transmitting at 150 MHz, 400 MHz and 1067 MHz. Scintillation nowcasts are derived from measuring the one-dimensional in situ electron density fluctuations and subsequently modeling the propagation environment for satellite-to-ground radio links. The modeling process requires a number of simplifying assumptions regarding the three-dimensional structure of the ionosphere and the results are readily validated by comparisons with ground-based measurements of the satellite's tri-band beacon signals. In mid-September 2008 a campaign to perform detailed analyses of space-based scintillation nowcasts with numerous ground observations was conducted in the vicinity of Kwajalein Atoll, Marshall Islands. To maximize the collection of ground-truth data, the ALTAIR radar was employed to obtain detailed information on the spatial structure of the ionosphere during the campaign and to aid the improvement of space-based nowcasting algorithms. A comparison of these results will be presented; it appears that detailed information on the electron density structure is a limiting factor in modeling the scintillation environment from in situ observations.

  2. How ground-based observations can support satellite greenhouse gas retrievals

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  3. Unique concurrent observations of whistler mode hiss, chorus, and triggered emissions

    NASA Astrophysics Data System (ADS)

    Hosseini, Poorya; Gołkowski, Mark; Turner, Drew L.

    2017-06-01

    We present a unique 2 h ground-based observation of concurrent magnetospheric hiss, chorus, VLF triggered emissions as well as ELF/VLF signals generated locally by the High Frequency Active Auroral Research Program (HAARP) facility. Eccentricity of observed wave polarization is used as a criteria to identify magnetospheric emissions and estimate their ionospheric exit points. The observations of hiss and chorus in the unique background of coherent HAARP ELF/VLF waves and triggered emissions allow for more accurate characterization of hiss and chorus properties than in typical ground-based observations. Eccentricity and azimuth results suggest a moving ionospheric exit point associated with a single ducted path at L 5. The emissions exhibit dynamics in time suggesting an evolution of a magnetospheric source from hiss generation to chorus generation or a moving plasmapause location. We introduce a frequency band-limited autocorrelation method to quantify the relative coherency of the emissions. A range of coherency was observed from high order of coherency in local HAARP transmissions and their echoes to lower coherency in natural chorus and hiss emissions.

  4. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision

    PubMed Central

    Reina, Giulio; Milella, Annalisa

    2012-01-01

    Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.

  5. Dynamics of Auroras Conjugate to the Dayside Reconnection Region.

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Frey, H. U.; Doolittle, J. H.

    2006-12-01

    During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.

  6. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  7. A method for evaluating horizontal well pumping tests.

    PubMed

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  8. Spectral mapping of comet 67P/Churyumov-Gerasimenko with VLT/MUSE and SINFONI

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, Aurelie; Besse, Sebastien; Snodgrass, Colin; Yang, Bin

    2016-10-01

    Comets are supposedly the most primitive objects in the solar system, preserving the earliest record of material from the nebula out of which our Sun and planets were formed, and thus holding crucial clues on the early phases of the solar system formation and evolution. For most small bodies in the solar system we can only access the surface properties, whereas active comet nuclei lose material from their subsurface, so that understanding cometary activity represents an unique opportunity to assess their internal composition, and by extension the composition, the temperature and pressure conditions of the protoplanetary disk at their place of formation.The ESA/Rosetta mission is performing the most thorough investigation of a comet ever made. Rosetta is measuring properties of comet 67P/Churyumov-Gerasimenko at distances between 5 and hundreds of km from the nucleus. However, it is unable to make any measurement over the thousands of km of the rest of the coma. Fortunately, the outer coma is accessible from the ground. In addition, we currently lack an understanding of how the very detailed information gathered from space-based observations can be extrapolated to the many ground-based observations that we can potentially perform. Combining parallel in situ observations with observations from the ground therefore gives us a great opportunity, not only to understand the behavior of 67P, but also to other comets observed exclusively from Earth. As part of the many observations taken from the ground, we have performed a spectral mapping of 67's coma using two IFU instruments mounted on the VLT: MUSE in the visible, and SINFONI in the near-infrared. The observations, carried out in March 2016, will be presented and discussed.

  9. Can One Satellite Data Set Validation Another? Validation of Envisat SCIAMACHY Data by Comparisons with NOAA-16 SBUV/2 and ERS-2 GOME

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.

    2004-01-01

    Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.

  10. Mercury's Exosphere: Ground Based Observations as a Support to the Forthcoming Bepi-Colombo

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Chaufray, J. Y.

    2018-05-01

    We will summarize the still open questions regarding Mercury's exosphere, highlighting which new topics Bepi-Colombo set of instruments might be able to address and how ground based observations should contribute to further improve our understanding.

  11. Kepler Flares. IV. A Comprehensive Analysis of the Activity of the dM4e Star GJ 1243

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven M.; Kowalski, Adam F.; Davenport, James R. A.; Wisniewski, John P.; Hawley, Suzanne L.; Hilton, Eric J.

    2016-10-01

    We present a comprehensive study of the active dM4e star GJ 1243. We use previous observations and ground-based echelle spectroscopy to determine that GJ 1243 is a member of the Argus association of field stars, suggesting it is ∼ 30{--}50 {{Myr}} old. We analyze 11 months of 1 minute cadence data from Kepler, presenting Kepler flare frequency distributions, as well as determining correlations between flare energy, amplitude, duration, and decay time. We find that the exponent α of the power-law flare energy distribution varies in time, primarily due to completeness of sample and the low frequency of high-energy flares. We also find a deviation from a single power law at high energy. We use ground-based spectroscopic observations that were simultaneous with the Kepler data to provide simultaneous photometric and spectroscopic analysis of three low-energy flares, the lowest-energy dMe flares with detailed spectral analysis to date on any star. The spectroscopic data from these flares extend constraints for radiative hydrodynamic flare models to a lower energy regime than has previously been studied. We use this simultaneous spectroscopy and Kepler photometry to develop approximate conversions from the Kepler bandpass to the traditional U and B bands. This conversion will be a critical factor in comparing any Kepler flare analyses to the canon of previous ground-based flare studies.

  12. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  13. A Lunar Optical-Ultraviolet-Infrared Synthesis Array (LOUISA)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Johnson, Stewart W. (Editor); Duric, Nebojsa (Editor)

    1992-01-01

    This document contains papers presented at a workshop held to consider 'optical ultraviolet infrared' interferometric observations from the moon. Part 1 is an introduction. Part 2 is a description of current and planned ground-based interferometers. Part 3 is a description of potential space-based interferometers. Part 4 addresses the potential for interferometry on the moon. Part 5 is the report of the workshop's working groups. Concluding remarks, summary, and conclusions are presented in Part 6.

  14. A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description

    NASA Astrophysics Data System (ADS)

    Pokharel, Binod; Geerts, Bart

    2016-12-01

    The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).

  15. TANGOO: A ground-based tilting-filter spectrometer for deriving the temperature in the mesopause region

    NASA Astrophysics Data System (ADS)

    Wildner, S.; Bittner, M.

    2009-04-01

    TANGOO (Tilting-filter spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements) is a passive, ground-based optical instrument for the purpose of a simultanously automatic long-term monitoring of OH(6-2) and O2 atm. Band (0-1) emissions (called "airglow"), yielding rotational temperatures in about 87 and 95 km, respectively. TANGOO, being a transportable and comparatively easy-to-use instrument, is the enhancement of the Argentine Airglow Spectrometer (Scheer, 1987) and shows significant improvements in the temporal resolution and throughput. It will be located on the German Enviromental Research Station "Schneefernerhaus", Zugspitze (47°,4 N, 11° E) and will start measurements in 2009. Objectives of TANGOO cover the analysis of dynamical processes such as gravity waves as well as the identification of climate signals. The observation method will be presented.

  16. Astrometry and Geostationary Satellites in Venezuela

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  17. Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging

    NASA Astrophysics Data System (ADS)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha

    2018-01-01

    Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.

  18. Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.

  19. Rapid model-based inter-disciplinary design of a CubeSat mission

    NASA Astrophysics Data System (ADS)

    Lowe, C. J.; Macdonald, M.

    2014-12-01

    With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.

  20. A stepped leader model for lightning including charge distribution in branched channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Zhang, Li; Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statisticsmore » of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.« less

  1. ReOBS: a new approach to synthesize long-term multi-variable dataset and application to the SIRTA supersite

    NASA Astrophysics Data System (ADS)

    Chiriaco, Marjolaine; Dupont, Jean-Charles; Bastin, Sophie; Badosa, Jordi; Lopez, Julio; Haeffelin, Martial; Chepfer, Helene; Guzman, Rodrigo

    2018-05-01

    A scientific approach is presented to aggregate and harmonize a set of 60 geophysical variables at hourly timescale over a decade, and to allow multiannual and multi-variable studies combining atmospheric dynamics and thermodynamics, radiation, clouds and aerosols from ground-based observations. Many datasets from ground-based observations are currently in use worldwide. They are very valuable because they contain complete and precise information due to their spatio-temporal co-localization over more than a decade. These datasets, in particular the synergy between different type of observations, are under-used because of their complexity and diversity due to calibration, quality control, treatment, format, temporal averaging, metadata, etc. Two main results are presented in this article: (1) a set of methods available for the community to robustly and reliably process ground-based data at an hourly timescale over a decade is described and (2) a single netCDF file is provided based on the SIRTA supersite observations. This file contains approximately 60 geophysical variables (atmospheric and in ground) hourly averaged over a decade for the longest variables. The netCDF file is available and easy to use for the community. In this article, observations are re-analyzed. The prefix re refers to six main steps: calibration, quality control, treatment, hourly averaging, homogenization of the formats and associated metadata, as well as expertise on more than a decade of observations. In contrast, previous studies (i) took only some of these six steps into account for each variable, (ii) did not aggregate all variables together in a single file and (iii) did not offer an hourly resolution for about 60 variables over a decade (for the longest variables). The approach described in this article can be applied to different supersites and to additional variables. The main implication of this work is that complex atmospheric observations are made readily available for scientists who are non-experts in measurements. The dataset from SIRTA observations can be downloaded at http://sirta.ipsl.fr/reobs.html (last access: April 2017) (Downloads tab, no password required) under https://doi.org/10.14768/4F63BAD4-E6AF-4101-AD5A-61D4A34620DE.

  2. Observations of specular reflective particles and layers in crystal clouds.

    PubMed

    Balin, Yurii S; Kaul, Bruno V; Kokhanenko, Grigorii P; Penner, Ioganes E

    2011-03-28

    In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.

  3. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Otsuka, Yuichi; Abe, Takumi; Yokoyama, Tatsuhiro; Bernhardt, Paul; Watanabe, Shigeto; Yamamoto, Masa-yuki; Larsen, Miguel; Saito, Akinori; Pfaff, Robert; Ishisaka, Keigo

    2012-07-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA, while ground-based instruments measure waves in the ionosphere. The main purpose of the study is to reveal seeding mechanism of Medium-Scale Traveling Ionospheric Disturbances (MSTID). The MSTID is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple reflection of atmospheric waves to the ionosphere, but includes complicated processes including the electromagnetic coupling of the F- and E-regions, and inter-hemisphere coupling of the ionosphere. We will measure ionospheric parameters such as electron density and electric fields together with neutral winds in the E- and F-regions. TMA and Lithium release experiment will be conducted with S-310-42 and S-520-27 rockets, respectively. The observation campaign is planned in summer 2012 or 2013. In the presentation we will overview characteristics of MSTID, and show plan and current status of the project. We also touch results from the sounding rocket S-520-26 that was launched on January 12, 2012. We will show results of the rocket-ground dual-band beacon experiment.

  4. Improved quantification of mountain snowpack properties using observations from Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.

    2017-12-01

    Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.

  5. PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Lynch, K. A.; Heinselman, C. J.; Stenbaek-Nielsen, H. C.

    2008-11-01

    We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR). On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm), was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs), the first observed with PFISR. These times corresponded to (a) when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b) when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a) and (b) was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m-3. Broad-band extremely low frequency (BBELF) wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs) and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground-based signatures could have many implications. One specific example of interest is identifying and following the temporal and spatial evolution of regions of potential ion outflow over large spatial and temporal scales using ground-based optical observations.

  6. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Rambabu, S.; Pillai, J. S.; Agarwal, A.; Pandithurai, G.

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature ( T B ) includes the inversion algorithm, which uses the back ground information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of T B for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated T B s and radiometer measured T B s at Mahabaleshwar (73.66 ∘E and 17.93∘N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  7. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving as network or supersite observations, which have been playing key roles in major international research projects over diverse aerosol regimes to complement and enrich the EOS scientific research.

  8. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how high latitude ground based observations can address these challenges.

  9. A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Linnemann, J. T.; Tollefson, K.; Abeysekara, A. U.; Bhat, P. N.; Sonbas, E.; Gehrels, N.

    2011-01-01

    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.

  10. Optical properties of an industrial fire observed with a ground based N2-Raman lidar over the Paris area

    NASA Astrophysics Data System (ADS)

    Shang, Xiaoxia; Chazette, Patrick; Totems, Julien

    2018-04-01

    This paper presents the first, to our knowledge, lidar measurement of an industrial fire plume, which covered the north of the Paris area on 17th April 2015. The fire started in a textile warehouse and rapidly spread by emitting large quantities of aerosols into the low troposphere. A ground based N2-Raman lidar performed continuous measurements during this event. Vertical profiles of the aerosol extinction coefficient, depolarization and lidar ratio are derived. A Monte Carlo algorithm was used to assess the uncertainties on the optical parameters, and to evaluate lidar inversion methods.

  11. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    NASA Astrophysics Data System (ADS)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  12. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for different altitudes were determined using the airborne in situ measurements and were compared with the lidar measurements. The investigation of the optical properties shows that on average the airborne-based particle light backscatter coefficient is 50.1 % smaller for 1064 nm, 27.4 % smaller for 532 nm, and 29.5 % smaller for 355 nm than the measurements of the lidar system. These results are quite promising, since in situ measurement-based Mie calculations of the particle light backscattering are scarce and the modeling is quite challenging. In contrast, for the particle light extinction coefficient we found a good agreement. The airborne-based particle light extinction coefficient was just 8.2 % larger for 532 nm and 3 % smaller for 355 nm, for an assumed LR of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar measurements. For the first time, the lidar ratio of 30 sr for 1064 nm was determined on the basis of in situ measurements and the LR of 55 sr for 355 and 532 nm wavelength was reproduced for European continental aerosol on the basis of this comparison. Lidar observations and the in situ based aerosol optical properties agree within the uncertainties. However, our observations indicate that a determination of the PNSD for a large size range is important for a reliable modeling of aerosol particle backscattering.

  13. Detecting Earth's temporarily-captured natural satellites-Minimoons

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce; Jedicke, Robert; Granvik, Mikael; Brown, Peter; Howell, Ellen; Nolan, Michael C.; Jenniskens, Peter; Chyba, Monique; Patterson, Geoff; Wainscoat, Richard

    2014-10-01

    We present a study on the discoverability of temporarily captured orbiters (TCOs) by present day or near-term anticipated ground-based and space-based facilities. TCOs (Granvik, M., Vaubaillon, J., Jedicke, R. [2012]. Icarus 218, 262-277) are potential targets for spacecraft rendezvous or human exploration (Chyba, M., Patterson, G., Picot, G., Granvik, M., Jedicke, R., Vaubaillon, J. [2014]. J. Indust. Manage. Optim. 10, 477-501) and provide an opportunity to study the population of the smallest asteroids in the Solar System. We find that present day ground-based optical surveys such as Pan-STARRS and ATLAS can discover the largest TCOs over years of operation. A targeted survey conducted with the Subaru telescope can discover TCOs in the 0.5-1.0 m diameter size range in about 5 nights of observing. Furthermore, we discuss the application of space-based infrared surveys, such as NEOWISE, and ground-based meteor detection systems such as CAMS, CAMO and ASGARD in discovering TCOs. These systems can detect TCOs but at a uninteresting rate. Finally, we discuss the application of bi-static radar at Arecibo and Green Bank to discover TCOs. Our radar simulations are strongly dependent on the rotation rate distribution of the smallest asteroids but with an optimistic distribution we find that these systems have >80% chance of detecting a >10 cm diameter TCO in about 40 h of operation.

  14. NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croll, Bryce; Albert, Loic; Lafreniere, David

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so asmore » to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.« less

  15. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  16. 7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  17. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  18. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  19. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  20. Intercomparison among tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Urita, N.; Ohta, E.; Hayashida, S.; Richter, A.; Burrows, J. P.; Liu, X.; Chance, K.; Ziemke, J. R.

    2005-12-01

    Rapid economical growth and industrial development in East Asian regions are causing serious air pollution. The influence of such air pollution is not limited to a local scale but reaches an intercontinental or hemispheric scale. Satellite-borne observations can monitor the behaviors of air pollutants in a global scale for long periods with a single instrument. In particular, ozone and nitrogen dioxide in the troposphere have a crucial role in air pollution, and many studies have tried to derive those species. Recently, instrumentations and retrieval techniques have made a lot of progress in measurements of tropospheric constituents. However, tropospheric observations from space need careful validation because of difficulties in detecting signals from the lower atmosphere through the middle atmosphere. In the present study, we intercompare the tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements in order to validate the satellite measurements. For the validation of tropospheric ozone, we utilize ozonesonde data provided by WOUDC, and three satellite-borne data (Tropospheric Ozone Residual (TOR), Cloud Slicing, and GOME) are intercompared. For nitrogen dioxide, we compare GOME observations with ground-based air monitoring measurements in Japan which are operationally conducted by the Ministry of the Environment Japan. This study demonstrates the validity and potential of those satellite datasets to apply for quantitative analysis of dispersion of air pollutants and their chemical lifetime. Acknowledgments. TOR data is provided by J. Fishman via http://asd-www.larc.nasa.gov/TOR/data.html. The ground observation data of nitrogen dioxide over Japan is provided by National Institute for Environmental Studies (NIES) under the collaboration study with NIES and Nara Women's University.

  1. Intercomparisons of Marine Boundary Layer Cloud Properties from the ARM CAP-MBL Campaign and Two MODIS Cloud Products

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-01-01

    From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.

  2. Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-02-01

    From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.

  3. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    NASA Astrophysics Data System (ADS)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-04-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images obtained by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope. In this presentation, we will overview the observational results and discuss their interpretations.

  4. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  5. Illinois ground-water observation network; a preliminary planning document for network design

    USGS Publications Warehouse

    Frost, L.R.; O'Hearn, Michael; Gibb, J.P.; Sherrill, M.G.

    1984-01-01

    Water-level and water-quality networks in Illinois were evaluated to determine the adequacy and completeness of available data bases. Ground-water data in present data bases are inadequate to provide information on ground-water quality and water levels in large areas of Illinois and in the major geohydrologic units underlying Illinois and surrounding areas. Data-management needs indicate that a new data base is desirable and could be developed by use of carefully selected available data and new data. Types of data needed to define ground-water quality and water levels in selected geohydrologic units were tentatively identified. They include data on concentrations of organic chemicals related to activities of man, and concentrations of inorganic chemicals which relate either to man 's activities or to the chemical composition of the source aquifer. Water-level data are needed which can be used to describe short- and long-term stresses on the ground-water resources of Illinois. Establishment of priorities for data collection has been deferred until existing hydrologic data files can be stored for usable data and until input from other local, State, and Federal agencies can be solicited and compiled. (USGS)

  6. Microphysical properties of the Shuttle exhaust cloud

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the STS has been developed based on data from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Aircraft observations were performed during the STS-3 launch with a NOAA WP-3D Orion hurricane research aircraft which contained instrumentation for cloud condensation nucleus and ice nucleus counting, Aitken particle counting, and pH determination. Ground observations were conducted at 50 different sites, as well as in the direct exhaust from the solid rocket booster flame trench at all three launches. The data is analyzed in order to determine any possible adverse impacts of the exhaust products on human health and/or the environment. Analyses of the exhaust cloud measurements indicate that in the case of the ground cloud where plenty of large water drops are present and considerable scavenging and fallout of aerosol takes place, possible adverse impacts of the remaining aerosols (CCN and IN) on natural precipitation processes which may occur in the launch area hours after the launch are remote. However, it is determined that under certain atmospheric conditions there could be short term adverse effects on visibility.

  7. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  8. Conjugate Ground-Spacecraft Observations of VLF Chorus Elements

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Manninen, J.; Santolík, O.; Titova, E. E.

    2017-12-01

    We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of -12.4∘ close to the plasmapause and inside a localized density inhomogeneity with about 30% density increase and a transverse size of about 600 km. The time delay between the waves detected on the ground and on the spacecraft is about 1.3 s, with ground-based detection leading spacecraft detection. The measured time delay is consistent with the wave travel time of quasi-parallel whistler-mode waves for a realistic profile of the plasma density distribution along the field line. The results suggest that chorus discrete elements can preserve their spectral shape during a hop from the generation region to the ground followed by reflection from the ionosphere and return to the near-equatorial region.

  9. A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents

    NASA Technical Reports Server (NTRS)

    Parrish, A.; Dezafra, R. L.; Solomon, P. M.; Barrett, J. W.

    1988-01-01

    Recent concern over possible long term stratospheric changes caused by the introduction of man-made compounds has increased the need for instrumentation that can accurately measure stratospheric minor constituents. The technique of radio spectroscopy at millimeter wavelengths was first used to observe rotational transitions of stratospheric ozone nearly two decades ago, but has not been highly developed until recently. A ground-based observing technique is reported which employs a millimeter-wave superheterodyne receiver and multichannel filter spectrometer for measurements of stratospheric constituents that have peak volume mixing ratios that are less than 10 to the -9th, more than 3 orders of magnitude less than that for ozone. The technique is used for an extensive program of observations of stratospheric chlorine monoxide and also for observations of other stratospheric trace gases such as (O-16)3, vibrationally excited (O-16)3, (O-18)2(O-16), N2O, HO2, and HCN. In the present paper, analysis of the observing technique is given, including the method of calibration and analysis of sources of error. The technique is found to be a reliable means of observing and monitoring important stratospheric trace constituents.

  10. The advances in airglow study and observation by the ground-based airglow observation network over China

    NASA Astrophysics Data System (ADS)

    Xu, Jiyao; Li, Qinzeng; Yuan, Wei; Liu, Xiao; Liu, Weijun; Sun, Longchang

    2017-04-01

    Ground-based airglow observation networks over China used to study airglow have been established, which contains 15 stations. Some new results were obtained using the networks. For OH airglow observations, firstly, an unusual outbreak of Concentric Gravity Wave (CGW) events were observed by the first no-gap network nearly every night during the first half of August 2013. Combination of the ground imager network with satellites provides multilevel observations of the CGWs from the troposphere to the mesopause region. Secondly, three-year OH airglow images (2012-2014) from Qujing (25.6°N, 103.7°E) were used to study how orographic features of the Tibetan Plateau (TP) affect the geographical distributions of gravity wave (GW) sources. We find the orographic forcings have a significant impact on the gravity wave propagation features. Thirdly, ground-based observations of the OH (9-4, 8-3, 6-2, 5-1, 3-0) band airglow over Xinglong (40°2N, 117°4E) in northern China from 2012 to 2014 are used to calculate rotational temperatures. By comparing the ground-based OH rotational temperature with SABER's observations, five Einstein coefficient datasets are evaluated. We find rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. We have obtained a set of optimal Einstein coefficients ratios for rotational temperature derivation using three years data from ground-based OH spectra and SABER temperatures. For the OI 630.0 nm airglow observations, we used three-year (2011-2013) observations of thermospheric winds (at 250 km) by Fabry-Perot interferometers at Xinglong to study the climatology of atmospheric planetary wave-type oscillations (PWTOs) with periods of 4-19 days. We found these PWTOs occur more frequently in the months from May to October. They are consistent with the summertime preference of middle-latitude ionospheric electron density oscillations noted in other studies. By using an all-sky airglow imager at 630.0 nm over Xinglong, we studied the evolution (generation, amplification, and dissipation) of mesoscale field-aligned irregularity structures (FAIs) ( 150 km) associated with a medium-scale traveling ionospheric disturbance (MSTID) event. We also investigates the statistical features of equatorial plasma bubbles (EPBs) using airglow images from 2012 to 2014 from a ground-based network of four imagers in the equatorial region of China.

  11. Magnetic Ripples Observed by Low-altitude Satellites and their Relation to Micro-barometric and Ground Magnetic Variations

    NASA Astrophysics Data System (ADS)

    Iyemori, T.; Aoyama, T.; Nakanishi, K.; Odagi, Y.; Sanoo, Y.; Yokoyama, Y.; Yamada, A.

    2017-12-01

    The `magnetic ripples' are small scale magnetic fluctuations observed in upper ionosphere by low altitude satellites such as CHAMP or Swarm, and they are spatial structure of field-aligned currents along satellite orbit. They are observed almost always in mid- and low-latitudes. From their geographical and seasonal characteristics, they are supposed to be caused by the atmospheric waves which propagates from lower atmosphere to the ionosphere. Although the global distribution and its local time or seasonal variation of the amplitude of magnetic ripples, or the correlation with meteorological phenomena such as typhoons strongly suggest the cumulus convection as the main origin, we need to clarify which mode of atmospheric waves, i.e., acoustic wave or internal gravity wave, mainly contributes to the magnetic ripples and what meteorological condition correspond them. For those purposes, we analyze ground based magnetic and micro-barometric variations. We try to make quantitative estimation of the contribution from both acoustic and internal mode of gravity waves, acoustic resonance, etc. by calculating PSD (power spectral density) of pressure and ground magnetic variations. In this paper, we present their basic characteristics and discuss the relation with magnetic ripples. [Acknowledgments]: The ground observations have been supported by many people including students at our graduate school and by the collaboration with other institutions.

  12. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  13. Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.

    2005-01-01

    The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.

  14. Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements

    NASA Astrophysics Data System (ADS)

    Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.

    2010-10-01

    This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations.

  15. Experimental Verification of Ocean Bounced GPS Signals and Analysis of their Application to Ionospheric Corrections for Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Axelrad, P.; Cox, A. E.; Crumpton, K. S.

    1997-01-01

    An algorithm is presented which uses observations of Global Positioning System (GPS) signals reflected from the ocean surface and acquired by a GPS receiver onboard an altimetric satellite to compute the ionospheric delay present in the altimeter measurement. This eliminates the requirement for a dual frequency altimeter for many Earth observing missions. A ground-based experiment is described which confirms the presence of these ocean-bounced signals and demonstrates the potential for altimeter ionospheric correction at the centimeter level.

  16. TeV radiation from the Crab nebula and other matters

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.

    1990-01-01

    The detection of the Crab Nebula via the Cherenkov imaging technique places TeV astronomy on a secure observational footing. The motivation for TeV observations, a discussion of the atmospheric Cherenkov technique, the experimental details of the Crab Nebula detection, and its scientific implications are presented. The present dilemma of VHE/UHE astronomy is that the Crab appears to be the only source whose showers match theoretical expectations. The situation will be clarified as improved ground-based detectors come on-line with sensitivities matching those of the GRO (Gamma Ray Observatory) instruments.

  17. Observations of iodine monoxide in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Zielcke, Johannes; Lampel, Johannes; Frieß, Udo; Sihler, Holger; Netcheva, Stoyka; Platt, Ulrich

    2014-05-01

    A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulfide. The sources, however, as well as release and recycling mechanisms of these halogen species are far from being completely understood, especially the role of chlorine and iodine compounds. For iodine, which is thought to be produced either by organic precursors or inorganic processes, one curious issue is the difference of its role in the two polar regions, the Arctic and the Antarctic. Satellite observations show significant quantities of IO in large areas of Antarctica and the surrounding ocean and comparatively no IO in the Arctic. This is in concordance with some ground-based remote sensing observations in Antarctica, whereas publications of IO mixing ratios or upper limits from the Arctic are seldom. This strong hemispheric dichotomy may however not be the whole picture. Here we present data from ground-based MAX-DOAS observations in the Arctic. Long-term measurements from Alert, Canada (82N) spanning the period from 2007 until 2013 indicate elevated and significant quantities of IO in the troposphere in late spring and early summer comparable to ground-based observations in Antarctica. This is backed up by ship-borne MAX-DOAS measurements in Baffin Bay during summer 2010, which also show elevated and significant amounts of IO. Furthermore the interaction of IO and BrO will be shown, as well as the influence of meteorological parameters and the data will be compared to other measurements.

  18. The Escompte - Marseille 2001 International Field Experiment: Ground Based and Lidar Results Obtained At St. Chamas By The Epfl Mobile Laboratory

    NASA Astrophysics Data System (ADS)

    Balin, I.; Jimenez, R.; Simeonov, V.; Ristori, P.; Navarette, M.; van den Bergh, H.; Calpini, B.

    The assessment of the air pollution problems in term of understanding of the non- linear chemical mechanisms, the transport or the meteorological processes, and the choice of the abatement strategies could be based on the air pollution models. Nowa- days, very few of these models were validated due to the lack of 3D measurements. The goal of the ESCOMPTE experiment was to provide such of 3D database in order to constrain the air pollution models. The EPFL-LPA mobile laboratory was part of the ESCOMPTE extensive network and was located on the northern side of the Berre Lake at St.Chamas. In this framework, measurements of the air pollutants (O3, SO2, NOx, polycyclic aromatic hydrocarbons, black carbon and particulate matter of less than 10 microns mean diameter) and meteorological parameters (wind, temperature, pressure and relative humidity) were continuously performed from June 10 to July 13, 2001. They were combined with ground based lidar observations for ozone and aerosol estimation from 100m above ground level up to the free troposphere at ca.7 km agl. This paper will present an overview of the results obtained and will highlight one of the intensive observation period (IOP) during which clean air conditions were initially observed followed by highly polluted air masses during the second half of the IOP.

  19. Ground-based observations of the corona in the visible and NIR spectral ranges

    NASA Technical Reports Server (NTRS)

    Epple, Alexander; Schwenn, Rainer

    1995-01-01

    Since late 1993 we have been using a mirror coronagraph on Pic du Midi (PICO) to observe the solar emission corona in several spectral lines of (FE-X), (FE-XIII), and (FE-XIV). For good meteorological conditions the diffuse corona and coronal holes in between can be seen out to 1.2 solar mass for sun center. Active regions can be mapped to bond 1.5 solar mass in the green and infrared lines. Recent observations of PICO are presented.

  20. Retrieval evaluation and distance learning from perceived similarity between endomicroscopy videos.

    PubMed

    André, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas

    2011-01-01

    Evaluating content-based retrieval (CBR) is challenging because it requires an adequate ground-truth. When the available groundtruth is limited to textual metadata such as pathological classes, retrieval results can only be evaluated indirectly, for example in terms of classification performance. In this study we first present a tool to generate perceived similarity ground-truth that enables direct evaluation of endomicroscopic video retrieval. This tool uses a four-points Likert scale and collects subjective pairwise similarities perceived by multiple expert observers. We then evaluate against the generated ground-truth a previously developed dense bag-of-visual-words method for endomicroscopic video retrieval. Confirming the results of previous indirect evaluation based on classification, our direct evaluation shows that this method significantly outperforms several other state-of-the-art CBR methods. In a second step, we propose to improve the CBR method by learning an adjusted similarity metric from the perceived similarity ground-truth. By minimizing a margin-based cost function that differentiates similar and dissimilar video pairs, we learn a weight vector applied to the visual word signatures of videos. Using cross-validation, we demonstrate that the learned similarity distance is significantly better correlated with the perceived similarity than the original visual-word-based distance.

  1. Precision Spectral Variability of L Dwarfs from the Ground

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Schlawin, Everett; Teske, Johanna K.; Karalidi, Theodora; Gizis, John

    2017-01-01

    L dwarf photospheres (1500 K < T < 2500 K) contain mineral and metal condensates, which appear to organize into cloud structures as inferred from observed periodic photometric variations with amplitudes of <1%-30%. Studying the vertical structure, composition, and long-term evolution of these clouds necessitates precision spectroscopic monitoring, until recently limited to space-based facilities. Building on techniques developed for ground-based exoplanet transit spectroscopy, we present a method for precision spectral monitoring of L dwarfs with nearby visual companions. Using IRTF/SpeX, we demonstrate <0.5% spectral variability precision across the 0.9-2.4 micron band, and present results for two known L5 dwarf variables, J0835-0819 and J1821+1414, both of which show evidence of 3D cloud structure similar to that seen in space-based observations. We describe a survey of 30 systems which would sample the full L dwarf sequence and allow characterization of temperature, surface gravity, metallicity, rotation period and orientation effects on cloud structure, composition and evolution.This research is supported by funding from the National Science Foundation under award No. AST-1517177, and the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  2. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D. S.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-11-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite-observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with decoupled direct method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2-based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  3. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-07-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  4. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and land surface hydrology through simulation, downscaling, and data assimilation. An overview of the GPM mission, science status, and synergies with HyMex activities will be presented

  5. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  6. Data Assimilation Results from PLASMON

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Manninen, J. K.; Raita, T.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.

    2013-12-01

    VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. In this presentation we will describe the plasmasphere model, the data assimilation approach that we have taken, PLASMON data and data assimilation results for specific events.

  7. Field size, length, and width distributions based on LACIE ground truth data. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G.

    1980-01-01

    The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.

  8. Twenty Years of Work with Janet Mattei on Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Szkody, P.

    2005-08-01

    Janet Mattei and the AAVSO database have had a large impact on the field of cataclysmic variables, especially in the areas of outburst light curves of dwarf novae and ground-based support of space observations. A summary of some of the major results from AAVSO data during the last 20 years is presented.

  9. The mysterious mid-latitude ionosphere of Saturn via ground-based observations of H3+: ring rain and other drivers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Stallard, T.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-09-01

    In 2013, we discovered that the "ring rain" which falls on Saturn from the rings also leaves an imprint on the low-latitude upper-atmosphere. Specifically, the ionospheric-bound H3+ ion appeared to emit brightest where water products are known to fall. Here we show the first re-detections of the imprint of "ring rain" on Saturn's ionosphere, using ground-based Keck telescope data from 2013 and 2014. We have also found that the emission from low-latitudes decreases dramatically from 2011 to 2013, implying a planetary cooling over the time period, but we are unaware of the mechanism of this cooling at present.

  10. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  11. Ground-based measurement of column-averaged mixing ratios of methane and carbon dioxide in the Sichuan Basin of China by a desktop optical spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi

    2018-01-01

    Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.

  12. Second generation OH suppression filters using multicore fibers

    NASA Astrophysics Data System (ADS)

    Haynes, R.; Birks, T. A.; Bland-Hawthorn, J.; Cruz, J. L.; Diez, A.; Ellis, S. C.; Haynes, D.; Krämer, R. G.; Mangan, B. J.; Min, S.; Murphy, D. F.; Nolte, S.; Olaya, J. C.; Thomas, J. U.; Trinh, C. Q.; Tünnermann, A.; Voigtländer, Christian

    2012-09-01

    Ground based near-infrared observations have long been plagued by poor sensitivity when compared to visible observations as a result of the bright narrow line emission from atmospheric OH molecules. The GNOSIS instrument recently commissioned at the Australian Astronomical Observatory uses Photonic Lanterns in combination with individually printed single mode fibre Bragg gratings to filter out the brightest OH-emission lines between 1.47 and 1.70μm. GNOSIS, reported in a separate paper in this conference, demonstrates excellent OH-suppression, providing very “clean” filtering of the lines. It represents a major step forward in the goal to improve the sensitivity of ground based near-infrared observation to that possible at visible wavelengths, however, the filter units are relatively bulky and costly to produce. The 2nd generation fibre OH-Suppression filters based on multicore fibres are currently under development. The development aims to produce high quality, cost effective, compact and robust OH-Suppression units in a single optical fibre with numerous isolated single mode cores that replicate the function and performance of the current generation of “conventional” photonic lantern based devices. In this paper we present the early results from the multicore fibre development and multicore fibre Bragg grating imprinting process.

  13. "Slow-scanning" in Ground-based Mid-infrared Observations

    NASA Astrophysics Data System (ADS)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  14. Super-cooled liquid water topped sub-arctic clouds and precipitation - investigation based on combination of ground-based in-situ and remote-sensing observations

    NASA Astrophysics Data System (ADS)

    Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami

    2017-04-01

    In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).

  15. Low-Latitude Ionospheric Density Irregularities and Associated Scintillations Investigated by Combining COSMIC RO and Ground-Based Global Positioning System Observations Over a Solar Active Period

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Liu, Zhizhao

    2018-05-01

    This study for the first time presents a locally integrated analysis of occurrences of ionospheric E and F region irregularities/scintillations in southeast China, by employing radio occultation (RO) profile data retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations from a ground-based Global Navigation Satellite System receiver over a solar active period from 2014 to 2015. Their occurrences in both nighttime and daytime were examined by using both amplitude scintillation index (S4) and the rate of change of total electron content index. It is found that (1) F region irregularities occurred predominantly during 20-03 local time (LT) and exhibited maximum (minimum) during equinoxes (solstices) and equinoctial (solstice) asymmetry. Their geographic mapping reveals the maximum occurrence in the westward tilted structure of equatorial plasma bubbles. In addition, the altitude-time variations indicate that their occurrences at higher altitudes were prevailing at 20-22 LT. (2) The E region irregularities were found prominently during 15-00 LT at altitudes of 90-110 km with an even geographic distribution. Their occurrences with maximum in summer (May-August) were distinctly detected by RO observations but insignificantly by ground-based observations. (3) By examining simultaneous observations of E and F region irregularities, it is found that they appeared absent during 21-00 LT and predominant after midnight. This could be related to the weakening/disruption of sporadic E (Es) layers during the development of equatorial plasma bubbles. A sign of coupling of E and F regions during nighttime is likely revealed from RO profile data.

  16. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    NASA Astrophysics Data System (ADS)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  17. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Swenson, C.; Durão, O.; Loures, L.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Habash Krause, L.; De Nardin, C. M.; Fonseca, E.

    2015-12-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for Scintillation Prediction Observations Research Task. This mission that will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  18. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, James; Le, Guan; Swenson, Charles; Denardini, Clezio Marcos; Bishop, Rebecca L.; Abdu, Mangalathayil A.; Cupertino Durao, Otavio S.; Heelis, Roderick; Loures, Luis; Krause, Linda; Fonseca, Eloi

    2016-07-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  19. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, James; Swenson, Charles; Durão, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Nardin, Clezio; Fonseca, Eloi

    2016-04-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  20. WFIRST: Guest observer science with the coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Levesque, Emily; Lomax, Jamie; Akeson, Rachel; Meshkat, Tiffany; WFIRST CGI GO working group

    2018-01-01

    In addition to the discovery and characterization of exoplanets, the coronagraph instrument (CGI) on WFIRST has the potential for ground-breaking discoveries in other fields through the Guest Observer (GO) program. 25% of the observing time in the primary mission will be made available to the GO community, and GO science with the CGI spans a broad range of scientific applications. These include imaging of binary and multiple asteroids and Kuiper Belt objects, the circumstellar environments of evolved giants and supergiants, debris disks around young stars, and the circumnuclear regions of active galactic nuclei. In this poster we summarize some of the key compelling science gains that can be pursued with the GO program and present preliminary analyses of the technical gains that the CGI will be able to offer over other contemporary coronagraphs, including those on JWST and ground-based observatories.

  1. SERVIR: The Regional Visualization and Monitoring System

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2010-01-01

    This slide presentation reviews the SERVIR program. SERVIR is a partnership between NASA and USAID and three international nodes: Central America, Africa, and the Himalaya region. SERVIR,using satellite observations and ground based observations, is used by decision makers to allow for improved monitoring of air quality, extreme weather, biodiversity, and changes in land cove and has also been used to respond to environmental threats, such as wildfires, floods, landslides, harmful algal blooms, and earthquakes.

  2. Occurrence and use of an estuarine habitat by giant manta ray Manta birostris.

    PubMed

    Medeiros, A M; Luiz, O J; Domit, C

    2015-06-01

    Based on the knowledge of local artisanal fishermen and on direct observations, this study presents evidence that the giant manta ray Manta birostris uses the Paranaguá estuarine complex in south Brazil, south-western Atlantic Ocean, in a predictable seasonal pattern. Behavioural observations suggest that the estuary can act as a nursery ground for M. birostris during the summer. © 2015 The Fisheries Society of the British Isles.

  3. Comparison of Heat and Bromide as Ground Water Tracers Near Streams

    USGS Publications Warehouse

    Constantz, J.; Cox, M.H.; Su, G.W.

    2003-01-01

    Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.

  4. Ali Observatory in Tibet: a unique northern site for future CMB ground-based observations

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2015-08-01

    Ground-based CMB observations have been performed at the South Pole and the Atacama desert in Chile. However, a significant fraction of the sky can not be observed from just these two sites. For a full sky coverage from the ground in the future, a northern site for CMB observation, in particular CMB polarization, is required. Besides the long-thought site in Greenland, the high altitude Tibet plateau provides another opportunity. I will describe the Ali Observatory in Tibet, located at N32°19', E80°01', as a potential site for ground-based CMB observations. The new site is located on almost 5100m mountain, near Gar town, where is an excellent site for both infrared and submillimeter observations. Study with the long-term database of ground weather stations and archival satellite data has been performed. The site has enough relative height on the plateau and is accessible by car. The Shiquanhe town is 40 mins away by driving, and a recently opened airport with 40 mins driving, the site also has road excess, electricity, and optical fiber with fast internet. Preliminary measurement of the Precipitable Water Vapor is ~one quarter less than 0.5mm per year and the long term monitoring is under development. In addition, surrounding higher sites are also available and could be further developed if necessary. Ali provides unique northern sky coverage and together with the South Pole and the Atacama desert, future CMB observations will be able to cover the full sky from ground.

  5. An Enhanced Method for Scheduling Observations of Large Sky Error Regions for Finding Optical Counterparts to Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Javed; Singhal, Akshat; Gadre, Bhooshan

    2017-04-01

    The discovery and subsequent study of optical counterparts to transient sources is crucial for their complete astrophysical understanding. Various gamma-ray burst (GRB) detectors, and more notably the ground-based gravitational wave detectors, typically have large uncertainties in the sky positions of detected sources. Searching these large sky regions spanning hundreds of square degrees is a formidable challenge for most ground-based optical telescopes, which can usually image less than tens of square degrees of the sky in a single night. We present algorithms for better scheduling of such follow-up observations in order to maximize the probability of imaging the optical counterpart, basedmore » on the all-sky probability distribution of the source position. We incorporate realistic observing constraints such as the diurnal cycle, telescope pointing limitations, available observing time, and the rising/setting of the target at the observatory’s location. We use simulations to demonstrate that our proposed algorithms outperform the default greedy observing schedule used by many observatories. Our algorithms are applicable for follow-up of other transient sources with large positional uncertainties, such as Fermi -detected GRBs, and can easily be adapted for scheduling radio or space-based X-ray follow-up.« less

  6. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range from 0.8 to 0.9. This result suggests that we could predict ground motions with the high accuracy using peak amplitudes of S-waves in deep boreholes and site amplification factors based on S-wave velocity structures. Also, we estimated parameters which represent radiation coefficients and the P/S velocity ratios around hypocentral regions, using peak amplitudes of P-waves and S-waves observed in deep boreholes, to minimize the residuals between calculations and observations. Correlation coefficients between calculations and observations are slightly lower values in the range from 0.7 to 0.9 than those for site amplification factors. This result suggests that the variability of radiation patterns for individual earthquakes affects the accuracy to predict ground motions using P-waves in deep boreholes.

  7. Ground-based follow-up in relation to Kepler asteroseismic investigation

    NASA Astrophysics Data System (ADS)

    Uytterhoeven, K.; Briquet, M.; Bruntt, H.; De Cat, P.; Frandsen, S.; Gutiérrez-Soto, J.; Kiss, L.; Kurtz, D. W.; Marconi, M.; Molenda-Żakowicz, J.; Østensen, R.; Randall, S.; Southworth, J.; Szabó, R.

    2010-12-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous and high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as T_eff, log g, metallicity, and v sin i, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. Based on observations made with the Isaac Newton Telescope and William Herschel Telescope operated by the Isaac Newton Group, with the Nordic Optical Telescope, operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the Mercator telescope, operated by the Flemish Community, all on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). Based on observations made with the IAC-80 operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Also based on observations taken at the observatories of Sierra Nevada, San Pedro Mártir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt. Wilson, Białków Observatory of the Wrocław University, Piszkésteto Mountain Station, and Observatoire de Haute Provence. Based on spectra taken at the Loiano (INAF - OA Bologna), Serra La Nave (INAF - OA Catania) and Asiago (INAF - OA Padova) observatories. Also based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the development and operations of this outstanding mission.

  8. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  9. Exoplanet Observations in SOFIA's Cycle 1

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel

    2013-06-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micron photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in the field of characterization of the physical properties of exoplanets: parallel optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments and possible future dedicated instrumentation. Here we present spectrophotometric exoplanet observations that were or will be conducted in SOFIA's cycle 1.

  10. A refined 'standard' thermal model for asteroids based on observations of 1 Ceres and 2 Pallas

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Sykes, Mark V.; Tedesco, Edward F.; Veeder, Glenn J.; Matson, Dennis L.

    1986-01-01

    An analysis of ground-based thermal IR observations of 1 Ceres and 2 Pallas in light of their recently determined occultation diameters and small amplitude light curves has yielded a new value for the IR beaming parameter employed in the standard asteroid thermal emission model which is significantly lower than the previous one. When applied to the reduction of thermal IR observations of other asteroids, this new value is expected to yield model diameters closer to actual values. The present formulation incorporates the IAU magnitude convention for asteroids that employs zero-phase magnitudes, including the opposition effect.

  11. Inverse Modeling of Texas NOx Emissions Using Space-Based and Ground-Based NO2 Observations

    NASA Technical Reports Server (NTRS)

    Tang, Wei; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-01-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellitebased top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  12. Temporal and spatial distributions of summer-time ground-level fine particulate matters in Baltimore-DC region

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Greenwald, R.; Sarnat, J.; Hu, X.; Kewada, P.; Morales, Y.; Goldman, G.; Redman, J.; Russell, A. G.

    2011-12-01

    Environmental epidemiological studies have established a robust association between chronic exposure to ambient level fine particulate matters (PM2.5) and adverse health effects such as COPD, cardiorespiratory diseases, and premature death. Population exposure to PM2.5 has historically been estimated using ground measurements which are often sparse and unevenly distributed. There has been much interest as well as suspicion in both the air quality management and research communities regarding the value of satellite retrieved AOD as particle air pollution indicators. A critical step towards the future use of satellite aerosol products in air quality monitoring and management is to better understand the AOD-PM2.5 association. The existing EPA and IMPROVE networks are insufficient to validate AOD-estimated PM2.5 surface especially when higher resolution satellite products become available in the near future. As part of DISCOVER-AQ mission, we deployed 15 portable filter-based samplers alongside of ground-based sun photometers of the Distributed Regional Aerosol Gridded Observation Network (DRAGON) in July 2011. Gravimetric analyses were conducted to estimate 24h PM2.5 mass concentrations, using Teflon filters and Personal Environmental Monitors (PEMs) operated at a flow rate of 4 LPM. Pre- and post-sampling filters were weighed at our weigh room laboratory facilities at the Georgia Institute of Technology. Our objectives are (1) to examine if AOD measured by ground-based sun-photometers with the support from ground-based lidars can provide the fine scale spatial heterogeneity observed by ground PM monitors, and (2) whether PM2.5 levels estimated by satellite AOD agree with this true PM2.5 surface. Study design, instrumentation, and preliminary results of measured PM2.5 spatial patterns in July 2011 will be presented as well as discussion of further data analysis and model development.

  13. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    NASA Astrophysics Data System (ADS)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products, which shows great potential of the machine learning concept in radar rainfall estimation.

  14. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, within a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability, and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation, testing results, and other information. Where appropriate, actual performance history was used to calculate failure rates for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to assess compliance with requirements and to highlight design or performance shortcomings for further decision making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability, and maintainability analysis, and present findings and observation based on analysis leading to the Ground Operations Project Preliminary Design Review milestone.

  15. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    NASA Astrophysics Data System (ADS)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  16. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective, depending on whether or not a clearly-defined melting layer is present at an expected height, and if present, maximum reflectivity within the melting layer as well as the corresponding height are determined. We will present results of quantitative comparisons between the XPR observations-based classifications and the simultaneous 2DVD data-based classifications. Time series comparisons will be presented for thirteen events in Huntsville.

  17. Microgravity Apparatus And Ground-Based Study Of The Flame Propagation And Quenching In Metal Dust Suspensions

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Kolbe, Massimilliano; Bellerose, Julie; Lee, John

    2003-01-01

    Due to particle sedimentation and relatively low laminar flame speeds in dust suspensions, microgravity environment is essential for the observation of laminar dust flames in a wide range of particle sizes and fuel concentrations [1]. The capability of a reduced-gravity environment to facilitate study of dust combustion was realized by researchers long before current microgravity programs were established by the various national Space Agencies. Thus, several experimentalists even built their own, albeit very short-duration, drop tower facilities to study flames in particle and droplet suspensions [2,3]. About ten years ago, authors of the present paper started their dust combustion reduced gravity research with the investigation of the constant volume dust flames in a spherical-bomb on board a parabolic flight aircraft [4]. However it was soon realized that direct observation of the constant-pressure flame might be more beneficial. Thus, microgravity apparatus, permitting examination of the freely propagating flames in open-end tubes, was tested in parabolic flights three years later [5]. The improved design of the newlyconstructed apparatus for the experiments on board the NASA KC-135 aircraft is also based on the observation of the dust flame propagating in semi-opened tubes with free expansion of the combustion products that are continuously vented overboard. The apparatus design and results of its extensive ground-based testing are presented below.

  18. Millimetron and Earth-Space VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.

    2014-01-01

    The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.

  19. Information content of sky intensity and polarization measurements at right angles to the solar direction

    NASA Technical Reports Server (NTRS)

    Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.

    1978-01-01

    The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.

  20. Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks

    NASA Astrophysics Data System (ADS)

    Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.

    2017-12-01

    The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.

  1. LEO-ground scintillation measurements with the optical ground station Oberpfaffenhofen and SOTA/OPALS space terminals

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Kolev, Dimitar; Abrahamson, Matthew; Schmidt, Christopher; Mata Calvo, Ramon; Fuchs, Christian

    2016-10-01

    The optical satellite-ground channel is turbulent and causes scintillation of the power received by a ground based telescope. Measurements are important to quantify the effect and evaluate common theory. A telescope with 40 cm primary mirror is used to measure the signals from the OPALS terminal on the International Space Station and the SOTA terminal on the SOCRATES satellite. The measurement instrument is a pupil camera from which images are recorded and intensity scintillation index, power scintillation index, probability density function of intensity and intensity correlation width are derived. A preliminary analysis of measurements from three satellite passed is performed, presented and discussed. The intensity scintillation index ranges from 0.25 to 0.03 within elevations of 26 to 66 deg. Power scintillation index varies from 0.08 to 0.006 and correlation width of intensity between 11 and 3 cm. The measurements can be used to estimate the fluctuation dynamics to be expected for a future operational ground receiver. The measurements are compared to model calculations based on the HV5/7-profile. Good agreement is observed to some part in the intensity scintillation index. Agreement is less for the power scintillation index and intensity correlation width. The reason seems to be a reduction of aperture averaging in some sections of the measurements due to increased speckle size. Finally, topics for future work are identified to improve the measurement analysis and deeper investigate the origin of the observed behavior.

  2. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  3. A catalogue of ground-based astrometric observations of the Martian satellites, 1877-1982

    NASA Astrophysics Data System (ADS)

    Morley, T. A.

    1989-02-01

    A catalog of 5767 ground-based astrometric observations of the Martian satellites, Phobos and Deimos, has been compiled. The position measurements comprise: 2497 of Phobos relative to Mars 3116 of Deimos relative to Mars and 154 of Deimos relative to Phobos. The data have been extracted from both published and unpublished sources and have been tabulated in a consistent format. All the observation times have been converted to the same time system, UTC. The catalog contains accuracy figures which can be used to differentially weigh the data when they are used for orbit determination purposes. Bad quality measurements have been identified and some obvious blunders have been corrected. The catalog is the official source of ground-based observations to be used for improving the satellite ephemerides in support of the Soviet Phobos mission.

  4. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    NASA Technical Reports Server (NTRS)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  5. An Analysis of Conjugate Ground-based and Space-based Measurements of Energetic Electrons during Substorms

    NASA Astrophysics Data System (ADS)

    Sivadas, N.; Semeter, J. L.

    2015-12-01

    Substorms within the Earth's magnetosphere release energy in the form of energetic charged particles and several kinds of waves within the plasma. Depending on their strength, satellite-based navigation and communication systems are adversely affected by the energetic charged particles. Like many other natural phenomena, substorms can have a severe economic impact on a technology-driven society such as ours. Though energization of charged particles is known to occur in the magnetosphere during substorms, the source of this population and its relation to traditional acceleration region dynamics, are not completely understood. Combining measurements of energetic charged particles within the plasmasheet and that of charged particles precipitated in to the ionosphere will provide a better understanding of the role of processes that accelerate these charged particles. In the current work, we present energetic electron flux measured indirectly using data from ground-based Incoherent Scatter Radar and that measured directly at the plasmasheet by the THEMIS spacecraft. Instances of low-altitude-precipitation observed from ground suggest electrons of energy greater than 300 keV, possibly arising from particle injection events during substorms at the magnetically conjugate locations in the plasmasheet. The differences and similarities in the measurements at the plasmasheet and the ionosphere indicate the role different processes play in influencing the journey of these energetic particles form the magnetosphere to the ionosphere. Our observations suggest that there is a lot more to be understood of the link between magnetotail dynamics and energetic electron precipitation during substorms. Understanding this may open up novel and potentially invaluable ways of diagnosing the magnetosphere from the ground.

  6. Monitoring Rainfall by Combining Ground-based Observed Precipitation and PERSIANN Satellite Product (Case Study Area: Lake Urmia Basin)

    NASA Astrophysics Data System (ADS)

    Abrishamchi, A.; Mirshahi, A.

    2015-12-01

    The global coverage, quick access, and appropriate spatial-temporal resolution of satellite precipitation data renders the data appropriate for hydrologic studies, especially in regions with no sufficient rain-gauge network. On the other hand, satellite precipitation products may have major errors. The present study aims at reduction of estimation error of the PERSIANN satellite precipitation product. Bayesian logic employed to develop a statistical relationship between historical ground-based and satellite precipitation data. This relationship can then be used to reduce satellite precipitation product error in near real time, when there is no ground-based precipitation observation. The method was evaluated in the Lake Urmia basin with a monthly time scale; November to May of 2000- 2008 for the purpose of model development and two years of 2009 and 2010 for the validation of the established relationships. Moreover, Kriging interpolation method was employed to estimate the average rainfall in the basin. Furthermore, to downscale the satellite precipitation product from 0.25o to 0.05o, data-location downscaling algorithm was used. In 76 percent of months, the final product, compared with the satellite precipitation, had less error during the validation period. Additionally, its performance was marginally better than adjusted PERSIANN product.

  7. Low-Altitude Satellite Measurements of Pulsating Auroral Electrons

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-01-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  8. Targeting an asteroid: The DSPSE encounter with asteroid 1620 Geographos

    NASA Technical Reports Server (NTRS)

    Yeomans, Donald K.

    1993-01-01

    Accurate targeting of the Deep Space Program Science Experiment (DSPSE) spacecraft to achieve a 100 km sunward flyby of asteroid 1620 Geographos will require that the ground-based ephemeris of Geographos be well known in advance of the encounter. Efforts are underway to ensure that precision optical and radar observations are available for the final asteroid orbit update that takes place several hours prior to the DSPSE flyby. Because the asteroid passes very close to the Earth six days prior to the DSPSE encounter, precision ground-based optical and radar observations should be available. These ground-based data could reduce the asteroid's position uncertainties (1-sigma) to about 10 km. This ground-based target ephemeris error estimate is far lower than for any previous comet or asteroid that has been under consideration as a mission target.

  9. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  10. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  11. Spanning Scale and Platform to Track Spring and Autumn Phenology

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.

    2016-04-01

    Important opportunities to further understanding of ecosystem processes can be realized through improved integration and utilization of multiple phenological measures. Combining satellite-derived remote sensing data, which facilitate needed spatial integration and large area coverage with detailed conventional (visual) ground observations, which provide necessary information on species timing differences, is an important path for advancement in this area. A relatively new resource to address this scaling issue is near-surface remote sensing data collected from fixed position cameras. This paper presents on-going findings from a multi-year comparison of the spring and autumn seasonal transitions in Downer Woods, a small urban woodlot on the University of Wisconsin-Milwaukee campus (43.08°N, 87.88°W) dominated by white ash (Fraxinus americana) and basswood (Tilia americana) trees. The study area is under observation from a visible/near-infrared camera installed in March 2013 that is part of the Phenocam network (http://phenocam.sr.unh.edu), and also has detailed ground-based species-specific visual phenological observations collected in both spring and autumn, as well as air/soil temperatures and light sensor data measured under the canopy. The results show that at this location, the Phenocam visible/near-infrared band data series can be successfully compared to aggregated species visual phenological observations. Further, both of these changes can be in turn simulated by process models based on seasonal temperature changes. Thus, the concurrent collection of these data suggest a coherent process whereby more robust ground-based species-aggregated "pixel" data can be produced which will be scalable to large areas, and potentially be applicable to more complex environments and ecosystems. Such an approach could potentially improve phenology-based spatial estimates of carbon and energy flux.

  12. Comparison of OMI NO2 Observations and Their Seasonal and Weekly Cycles with Ground-Based Measurements in Helsinki

    NASA Technical Reports Server (NTRS)

    Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Boersma, Folkert; Hovila, Jari; Tamminen, Johanna

    2016-01-01

    We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from standard product (SP) and DOMINO algorithm, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora 21 and OMI SP retrievals is 4 and 6 for clear sky and all sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about 5 and 14 for clear sky and all sky conditions, respectively. Large differences often correspond to cloudy autumn-winter days with solar zenith angles above 65. Nevertheless, the differences remain within the retrieval uncertainties. Furthermore, the weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as result of reduced emissions from traffic and industrial activities. Also the seasonal cycle shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in an urban site at high latitudes (60N). Despite the city of Helsinki having relatively small pollution sources, OMI retrievals have proved to be able to describe air quality features and variability similar to surface observations. This adds confidence in using satellite observations for air quality monitoring also at high latitudes.

  13. Results and lessons from the GMOS survey of transiting exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Todorov, Kamen; Desert, Jean-Michel; Huitson, Catherine; Bean, Jacob; Fortney, Jonathan; Bergmann, Marcel; Stevenson, Kevin

    2018-01-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our four-years survey focussed on ten close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. We present the complete analysis of all the targets observed (50 transits, 300 hours), and the challenges to overcome to achieve the best spectrophotometric precision (200-500 ppm / 10 nm). We also present the main results and conclusions from this survey. We show that the precision achieved by this survey permits to distinguish hazy atmospheres from cloud-free ones. We discuss the challenges faced by such an experiment, and the lessons learnt for future MOS survey. We lay out the challenges facing future ground based MOS transit surveys aiming for the atmospheric characterization of habitable worlds, and utilizing the next generation of multi-object spectrographs mounted on extremely large ground based telescopes (ELT, TMT).

  14. Solar Spicules near and at The Limb, Observed from Hinode

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2009-01-01

    Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years,mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally. Most recently, spicule studies have undergone revolution because of the superior resolution, time cadence, and atmosphere-free observations from the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we present observations of spicules from {\\sl Hinode} SOT, and consider how the observations from Hinode compare with historical observations. We include data taken in the blue and red wings of Halpha, where the spicules have widths of a few approx.100 kms, and the longest ones reach about 10(exp 4) km in extent,similar to sizes long reported from ground-based instruments. Their dynamics are not easy to generalize, with many showing the upward movement followed by falling or fading, as traditionally reported, but with others showing more dynamic or even ejective aspects. There is a strong transverse component to their motion, as extensively reported previously from the Hinode data as evidence for Alfven waves.

  15. 3D fault curvature and fractal roughness: Insights for rupture dynamics and ground motions using a Discontinous Galerkin method

    NASA Astrophysics Data System (ADS)

    Ulrich, Thomas; Gabriel, Alice-Agnes

    2017-04-01

    Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial stress conditions on a planar fault, is demonstrated. Furthermore, we show that rupture extend, rupture front coherency and rupture speed are highly dependent on the initial amplitude of stress acting on the fault, defined by the normalized prestress factor R, the ratio of the potential stress drop over the breakdown stress drop. The effects of fault complexity are particularly pronounced for lower R. By low-pass filtering a rough fault at several cut-off wavelengths, we then try to capture rupture complexity using a simplified fault geometry. We find that equivalent source dynamics can only be obtained using a scarcely filtered fault associated with a reduced stress level. To investigate the wavelength-dependent roughness effect, the fault geometry is bandpass-filtered over several spectral ranges. We show that geometric fluctuations cause rupture velocity fluctuations of similar length scale. The impact of fault geometry is especially pronounced when the rupture front velocity is near supershear. Roughness fluctuations significantly smaller than the rupture front characteristic dimension (cohesive zone size) affect only macroscopic rupture properties, thus, posing a minimum length scale limiting the required resolution of 3D fault complexity. Lastly, the effect of fault curvature and roughness on the simulated ground-motions is assessed. Despite employing a simple linear slip weakening friction law, the simulated ground-motions compare well with estimates from ground motions prediction equations, even at relatively high frequencies.

  16. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    NASA Astrophysics Data System (ADS)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  17. A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Menang, Kaah P.; Coleman, Marc D.; Gardiner, Tom D.; Ptashnik, Igor V.; Shine, Keith P.

    2013-06-01

    A detailed spectrally resolved extraterrestrial solar spectrum (ESS) is important for line-by-line radiative transfer modeling in the near-IR. Very few observationally based high-resolution ESS are available in this spectral region. Consequently, the theoretically calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS, which is derived using the Langley technique applied to calibrated observations using a ground-based high-resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000 to 10,000 cm-1 (1-5 µm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite-based Atmospheric Chemistry Experiment-FTS ESS, in the spectral region where they overlap, and good agreement with other ground-based FTS measurements in two near-IR windows. However, there are significant differences in the structure between the CAVIAR ESS and spectra from semiempirical models. In addition, we found a difference of up to 8% in the absolute (and hence the wavelength-integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, because the coverage factor k = 2 (or 95% confidence limit) uncertainties in the two sets of observations do not overlap. Because the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated "loss" of solar irradiance of about 30 W m-2 in the near-IR that would have to be compensated by an increase at other wavelengths.

  18. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations

    PubMed Central

    Izzaty Horsali, Nurul Amira; Mat Zauki, Nurul Ashikin; Otero, Viviana; Nadzri, Muhammad Izuan; Ibrahim, Sulong; Husain, Mohd-Lokman; Dahdouh-Guebas, Farid

    2018-01-01

    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite—ALOS) and ground-truth (Point-Centred Quarter Method—PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans, Rhizophora apiculata, Sonneratia caseolaris, S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok—suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present. PMID:29479500

  19. The upcoming mutual event season for the Patroclus-Menoetius Trojan binary

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Noll, K. S.; Buie, M. W.; Levison, H. F.

    2018-05-01

    We present new Hubble Space Telescope and ground-based Keck observations and new Keplerian orbit solutions for the mutual orbit of binary Jupiter Trojan asteroid (617) Patroclus and Menoetius, targets of NASA's Lucy mission. We predict event times for the upcoming mutual event season, which is anticipated to run from late 2017 through mid 2019.

  20. Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  1. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2 - 35 microns Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  2. DNA analysis of a 30,000-year-old Urocitellus glacialis from northeastern Siberia reveals phylogenetic relationships between ancient and present-day arctic ground squirrels

    PubMed Central

    Faerman, Marina; Bar-Gal, Gila Kahila; Boaretto, Elisabetta; Boeskorov, Gennady G.; Dokuchaev, Nikolai E.; Ermakov, Oleg A.; Golenishchev, Fedor N.; Gubin, Stanislav V.; Mintz, Eugenia; Simonov, Evgeniy; Surin, Vadim L.; Titov, Sergei V.; Zanina, Oksana G.; Formozov, Nikolai A.

    2017-01-01

    In contrast to the abundant fossil record of arctic ground squirrels, Urocitellus parryii, from eastern Beringia, only a limited number of fossils is known from its western part. In 1946, unnamed GULAG prisoners discovered a nest with three mummified carcasses of arctic ground squirrels in the permafrost sediments of the El’ga river, Yakutia, Russia, that were later attributed to a new species, Citellus (Urocitellus) glacialis Vinogr. To verify this assignment and to explore phylogenetic relationships between ancient and present-day arctic ground squirrels, we performed 14C dating and ancient DNA analyses of one of the El’ga mummies and four contemporaneous fossils from Duvanny Yar, northeastern Yakutia. Phylogenetic reconstructions, based on complete cytochrome b gene sequences of five Late Pleistocene arctic ground squirrels and those of modern U. parryii from 21 locations across western Beringia, provided no support for earlier proposals that ancient arctic ground squirrels from Siberia constitute a distinct species. In fact, we observed genetic continuity of the glacialis mitochondrial DNA lineage in modern U. parryii of the Kamchatka peninsula. When viewed in a broader geographic perspective, our findings provide new insights into the genetic history of U. parryii in Late Pleistocene Beringia. PMID:28205612

  3. An Integrative Observing and Modeling Approach for the Physiological Understanding of Sun-Induced Chlorophyll Fluorescence in Japan

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Kato, T.; Saitoh, Y.; Noda, H.; Kikosaka, K.; Ichii, K.; Nasahara, K. N.

    2016-12-01

    Satellite-derived sun-induced chlorophyll fluorescence (SIF) is expected to provides a pathway to link leaf level photosynthesis to global GPP. Existing studies have stressed how well the satellite-derived SIF is correlated with the eddy covariance and/or modeled GPPs. There are some challenges in SIF interpretation because the satellite-derived SIF is a mixture of fluorescence emission from sunlit and shaded leaves and multiple scatterings of fluorescence within plant canopies. In this presentation, we show observation and modeling results around Japan and discuss how the integrative observing and modeling approach potentially overcomes the gaps in-between satellite SIF and photosynthesis reaction within leaves. We have analyzed ground-based SIF monitoring systems "Phenological Eye Network (PEN)". PEN covers several eddy flux sites in Japan and is equipped with spectroradiometer (MS-700) since 2003 (at an earliest site). The computed seasonal SIF variations in the different ecosystems show environmental dependency of SIF and GPP. Another ground-based system we are now developing is the vegetation lidar system named LIFS (Laser-Induced Fluorescence Spectrum), which can offer eco-physiological information of plants. LIFS is consisted of a pulsed UV (355 nm) laser, a telescope, a spectrometer/filter, and a gated image-intensified CCD detector. This system has been using to remotely monitor tree growth status, chlorophyll contents in leaves and so on. The physical and physiological theories are necessary for understanding the observed SIF under various environmental conditions. We have been developing leaf to plant canopy scale photosynthesis and SIF models as precise as possible. The developed model has been used to understand how the leaf-level SIF emission can be related to the canopy scale SIF, which enables to investigate the top of canopy SIF observed from ground-based and satellite-derived SIF measurements.

  4. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  5. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE PAGES

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.; ...

    2015-10-28

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  6. The formation of the first stars and galaxies.

    PubMed

    Bromm, Volker; Yoshida, Naoki; Hernquist, Lars; McKee, Christopher F

    2009-05-07

    Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field.

  7. Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    NASA Astrophysics Data System (ADS)

    Senten, C.; de Mazière, M.; Dils, B.; Hermans, C.; Kruglanski, M.; Neefs, E.; Scolas, F.; Vandaele, A. C.; Vanhaelewyn, G.; Vigouroux, C.; Carleer, M.; Coheur, P. F.; Fally, S.; Barret, B.; Baray, J. L.; Delmas, R.; Leveau, J.; Metzger, J. M.; Mahieu, E.; Boone, C.; Walker, K. A.; Bernath, P. F.; Strong, K.

    2008-01-01

    Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two short-term FTIR measurement campaigns in 2002 and 2004, held at the (sub)tropical site Ile de La Réunion (21°S, 55°E). These campaigns represent the first FTIR observations carried out at this site. The results include total column amounts from the surface up to 100 km of ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3), as well as some vertical profile information for the first four mentioned trace gases. The data are characterised in terms of the vertical information content and associated error budget. In the 2004 time series, the seasonal increase of the CO concentration was observed by the end of October, along with a sudden rise that has been attributed to biomass burning events in southern Africa and Madagascar. This attribution was based on trajectory modeling. In the same period, other biomass burning gases such as C2H6 also show an enhancement in their total column amounts which is highly correlated with the increase of the CO total columns. The observed total column values for CO are consistent with correlative data from MOPITT (Measurements Of Pollution In The Troposphere). Comparisons between our ground-based FTIR observations and space-borne observations from ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and HALOE (Halogen Occultation Experiment) confirm the feasibility of the FTIR measurements at Ile de La Réunion.

  8. Calibration of TOMS Radiances From Ground Observations

    NASA Technical Reports Server (NTRS)

    Bojkov, B. R.; Kowalewski, M.; Wellemeyer, C.; Labow, G.; Hilsenrath, E.; Bhartia, P. K.; Ahmad, Z.

    2003-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of radiances from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used to derive ozone products from both satellite and ground based measurements that are normally used to validate the satellite data. Radiance comparisons employ forward models, but they are inherently more accurate than the retrieval This method employs very accurate comparisons between ground based zenith sicy radiances and satellite nadir radiances and employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. The zenith sky observations are made by the SSBUV where its calibration is maintained to a high degree of accuracy and precision. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. Initial ground observations taken from Goddard Space Flight Center compared with radiative transfer calculations has indicated the feasibility of this method. The effect of aerosols and varying ozone amounts are considered in the model simulations and the theoretical comparisons. The radiative transfer simulations show that the ground and satellite radiance comparisons can be made with an uncertainty of less than l\\% without the knowledge of the amount ozone viewed by either instrument on ground or in space. algorithms.

  9. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites.

    PubMed

    Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry

    2013-02-20

    This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).

  10. Moving towards Hyper-Resolution Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation characteristics.

  11. Onsets of Solar Proton Events in Satellite and Ground Level Observations: A Comparison

    NASA Astrophysics Data System (ADS)

    He, Jing; Rodriguez, Juan V.

    2018-03-01

    The early detection of solar proton event onsets is essential for protecting humans and electronics in space, as well as passengers and crew at aviation altitudes. Two commonly compared methods for observing solar proton events that are sufficiently large and energetic to be detected on the ground through the creation of secondary radiation—known as ground level enhancements (GLEs)—are (1) a network of ground-based neutron monitors (NMs) and (2) satellite-based particle detectors. Until recently, owing to the different time resolution of the two data sets, it has not been feasible to compare these two types of observations using the same detection algorithm. This paper presents a comparison between the two observational platforms using newly processed >100 MeV 1 min count rates and fluxes from National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite (GOES) 8-12 satellites, and 1 min count rates from the Neutron Monitor Database. We applied the same detection algorithm to each data set (tuned to the different background noise levels of the instrument types). Seventeen SPEs with GLEs were studied: GLEs 55-70 from Solar Cycle 23 and GLE 71 from Solar Cycle 24. The median difference in the event detection times by GOES and NM data is 0 min, indicating no innate benefit in time of either system. The 10th, 25th, 75th, and 90th percentiles of the onset time differences (GOES minus NMs) are -7.2 min, -1.5 min, 2.5 min, and 4.2 min, respectively. This is in contrast to previous studies in which NM detections led GOES by 8 to 52 min without accounting for different alert protocols.

  12. Stepped leaders observed in ground operations of ADELE

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Kelley, N.; Lowell, A.; Martinez-McKinney, F.; Dwyer, J. R.; Splitt, M. E.; Lazarus, S. M.; Cramer, E. S.; Levine, S.; Cummer, S. A.; Lu, G.; Shao, X.; Ho, C.; Eastvedt, E. M.; Trueblood, J.; Edens, H. E.; Hunyady, S. J.; Winn, W. P.; Rassoul, H. K.

    2010-12-01

    While the Airborne Detector for Energetic Lightning Emissions (ADELE) was designed primarily to study high-energy radiation associated with thunderstorms at aircraft altitude, it can also be used as a mobile ground-based instrument when mounted in a van. ADELE contains scintillation detectors optimized for faint and bright events and a flat-plate antenna measuring dE/dt. In July and August 2010, ADELE was brought to Langmuir Laboratory in New Mexico as a stationary detector and to the Florida peninsula (based at the Florida Institute of Technology in Melbourne) for rapid-response (storm-chasing) operations. In ten days of chasing, stepped-leader x-ray emission was observed from at least four close CG flashes, a much higher rate of success than can be achieved from a stationary detector or array. We will present these four events as well as the results of a study of candidate events of lesser statistical significance. We will also discuss the optimization of lightning-chasing strategies, science goals for future ground campaigns, and what additional instrumentation would be most scientifically beneficial. In the latter category, a proximity sensor (comparing flash and thunder arrival times) and a field mill are particularly important.

  13. Measuring the accelerating effect of the planetary-scale waves on Venus observed with UVI/AKATSUKI and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.

    2017-12-01

    Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with a small error about +/- 0.1-day period in equatorial region (Figure 2). The same method will be applied for planetary-scale features captured by UVI, and ground-based observations compensate the discontinuity in UVI data. At the presentation, the variability in winds and wave propagation velocity with the time scale of a couple of months will be shown.

  14. Space Based Observations of Coronal Cavities in Conjunction with the Total Solar Eclipse of July 2010

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Berger, T. E.; Druckmuller, M.; Dietzel, M.; Gibson, S. E.; Habbal, S. R.; Morgan, H.; Reeves, K. K.; Schmit, D. J.; Seaton, D. B.

    2010-01-01

    In conjunction with the total solar eclipse on July 11, 2010 we coordinated a campaign between ground and space based observations. Our specific goal was to augment the ground based measurement of corona) prominence cavity temperatures made using iron lines in the IR (Habbal et al. 2010 ApJ 719 1362) with measurements performed by space based instruments. Included in the campaign were Hinode/EIS, XRT and SOT, PROBA2/SWAP, SDO/AIA, SOHO/CDS and STEREO/SECCHI/EUVI, in addition to the ground based IR measurements. We plan to use a combination of line ratio and forward modeling techniques to investigate the density and temperature structure of the cavities at that time.

  15. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    DOE PAGES

    Sarna, Karolina; Russchenberg, Herman W. J.

    2016-03-14

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius ( r e) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m -2 wide. For every LWP bin we present the correlation coefficient between ln r e and ln ATB, as well as ACI r (defined as ACI r = -d ln r e d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACI r are in the range 0.01–0.1. In conclusion, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less

  16. Ground-based observations of the Io torus during Voyager 1 encounter - Indications of enhanced plasma injection and transport

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Mekler, Y.; Brosch, N.; Mazah, T.

    1981-01-01

    Ground-based spectroscopic observations of the cold Io torus made before, during and after the Voyager 1 encounter are compared to the published spacecraft data. During the encounter itself neither sodium nor sulfur emissions were detected. The implications of this finding for the injection and transport of plasma are assessed.

  17. Star-Formation Histories of MUSCEL Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon

    2018-01-01

    The MUSCEL program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies) uses combined ground-based/space-based data to determine the spatially resolved star-formation histories of low surface brightness (LSB) galaxies. LSB galaxies are paradoxical in that they are gas rich but have low star-formation rates. Here we present our observations and fitting technique, and the derived histories for select MUSCEL galaxies. It is our aim to use these histories in tandem with velocity fields and metallicity profiles to determine the physical mechanism(s) that give these faint galaxies low star-formation rates despite ample gas supplies.

  18. Comparison of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    NASA Astrophysics Data System (ADS)

    Kalakoski, N.; Kujanpää, J.; Sofieva, V.; Tamminen, J.; Grossi, M.; Valks, P.

    2014-12-01

    Total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde and Global Positioning System (GPS) observations. The comparisons are performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The comparisons are performed for the period of January 2007-July 2013 (GOME-2A) and from December 2012 to July 2013 (GOME-2B). Radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by National Climatic Data Center (NCDC) and screened for soundings with incomplete tropospheric column. Ground-based GPS observations from COSMIC/SuomiNet network are used as the second independent data source. Good general agreement between GOME-2 and the ground-based observations is found. The median relative difference of GOME-2 to radiosonde observations is -2.7% for GOME-2A and -0.3% for GOME-2B. Against GPS observations, the median relative differences are 4.9 and 3.2% for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against GPS observations. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  19. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  20. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally

    PubMed Central

    Ramirez, Kelly S.; Leff, Jonathan W.; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W.; Kelly, Eugene F.; Oldfield, Emily E.; Shaw, E. Ashley; Steenbock, Christopher; Bradford, Mark A.; Wall, Diana H.; Fierer, Noah

    2014-01-01

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. PMID:25274366

  1. Aerosol profiling during the large scale field campaign CINDI-2

    NASA Astrophysics Data System (ADS)

    Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas

    2018-04-01

    For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. To ensure proper traceability of the MAXDOAS observations, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS observation and retrieval techniques enable inferring vertical structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent observations are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, and essential are in particular the vertical profiles of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.

  2. New Opportunities in Geospace Remote Sensing

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2017-12-01

    This paper will discuss scientific objectives that can be addressed with the serendipitous constellation of thermosphere-ionosphere observations provided by the NASA Ionospheric Connection Explorer (ICON) and Global-scale Observations of the Limb and Disk (GOLD) missions, the international Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2), instruments on the International Space Station and the Defense Meteorological Satellite Program, the European SWARM satellites, the NSF-sponsored AMPERE project, and the ongoing TIMED mission. The confluence of these space-based observations provide opportunities to extend the capabilities of ground-based observational networks, and to exploit opportunities for the development of numerical models and data assimilation methods. A particular focus is the global-scale context provided through GOLD mission measurements, and the challenges presented by their analysis and interpretation. GOLD can be considered a pathfinder for opportunistic instrumentation on commercial vehicles at geostationary orbit, so further speculation will be presented on what other future observations of the thermosphere-ionosphere and exosphere-plasmasphere could be made from these platforms.

  3. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline

    USGS Publications Warehouse

    Griffin, Dale W.; Kubilay, Nilgün; Kocak, Mustafa; Gray, Mike A.; Borden, Timothy C.; Shinn, Eugene A.

    2007-01-01

    Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (

  4. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    DTIC Science & Technology

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  5. Ground Observation of Asteroids at Mission ETA

    NASA Astrophysics Data System (ADS)

    Paganelli, F.; Conrad, A.

    2018-04-01

    We focused on Lucy's targeted asteroids to derive information for best ground-based observation at mission ETA. We used a workflow for data extraction through JPL Horizons considering the LBT-MODS 1. Results outline opportunities suitable during close approach of Lucy ETA.

  6. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    NASA Astrophysics Data System (ADS)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  7. Overview of topographic effects based on experimental observations: meaning, causes and possible interpretations

    NASA Astrophysics Data System (ADS)

    Massa, Marco; Barani, Simone; Lovati, Sara

    2014-06-01

    The paper presents an extensive review of topographic effects in seismology taking into account the knowledge of 40 yr of scientific literature. An overview of topographic effects based on experimental observations and numerical modelling is presented with the aim of highlighting meaning and causes of these phenomena as well as possible correlations between site response (fundamental frequency, amplification level) and geometrical (width and shape ratio of a relief) parameters. After a thorough summary of topographic effects, the paper focuses on five Italian sites whose seismic response is potentially affected by local morphology, as already evidenced by previous studies. In this study, seismic data recorded at these sites are analysed computing directional spectral ratios both in terms of horizontal to vertical spectral ratios (HVSRs) and, wherever possible, in terms of standard spectral ratios (SSRs). The analysis lead to the conclusion that wavefield tends to be polarized along a direction perpendicular to the main axis of a topographic irregularity, direction along which ground motion amplification is maximum. The final section of the article compares and contrasts different spectral ratio techniques in order to examine their effectiveness and reliability in detecting topographic effects. The examples discussed in the paper show that site responses based on HVSRs rather than SSR measurements could lead to misinterpretation of ground response results, both as concerns the definition of the site fundamental frequency and amplification level. Results and findings of this work will be used as starting point to discuss the influence of topographic effects on ground motion prediction equations and regulations for design. These topics will be discussed in the companion article.

  8. Comparison of HIPWAC and Mars Express SPICAM Observations of Ozone on Mars 2006-2008 and Variation from 1993 IRHS Observations

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, Theodor; Lefevre, Frank; Hewagama, Tilak; Livengood, Timothy A.; Delgado, Juan D.; Annen, John; Sonnabend, Guido

    2009-01-01

    Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 microns-atm), as were measurements made close in time (ranging from less than 1 to greater than 8 microns-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA'GSFC's Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity.

  9. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    NASA Technical Reports Server (NTRS)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  10. Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.

    2014-12-01

    While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.

  11. Effect of the Temperature-Emissivity Contrast on the Chemical Signal for Gas Plume Detection Using Thermal Image Data

    PubMed Central

    Walsh, Stephen; Chilton, Larry; Tardiff, Mark; Metoyer, Candace

    2008-01-01

    Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background emissivity and plume/ground temperatures are isolated, and their effects on chemical signal are described. This analysis shows that the plume's physical state, emission or absorption, is directly dependent on the background emissivity and plume/ground temperatures. It then describes what conditions on the background emissivity and plume/ground temperatures have inhibiting or amplifying effects on the chemical signal. These claims are illustrated by analyzing synthetic hyperspectral imaging data with the adaptive matched filter using two chemicals and three distinct background emissivities. PMID:27873881

  12. Visual observations of historical lake trout spawning grounds in western Lake Huron

    USGS Publications Warehouse

    Nester, Robert T.; Poe, Thomas P.

    1987-01-01

    Direct underwater video observations were made of the bottom substrates at 12 spawning grounds formerly used by lake trout Salvelinus namaycush in western Lake Huron to evaluate their present suitability for successful reproduction by lake trout. Nine locations examined north of Saginaw Bay in the northwestern end of the lake are thought to provide the best spawning habitat. The substrate at these sites consisted of angular rough cobble and rubble with relatively deep interstitial spaces (a?Y 0.5 m), small amounts of fine sediments, and little or no periphytic growth. Conditions at the three other sampling locations south of Saginaw Bay seemed much less suitable for successful reproduction based on the reduced area of high-quality substrate, shallow interstitial spaces, high infiltration of fine sediments, and greater periphytic growth.

  13. Figure-ground organization in real and subjective contours: a new ambiguous figure, some novel measures of ambiguity, and apparent distance across regions of figure and ground.

    PubMed

    Shank, M D; Walker, J T

    1989-08-01

    This study was designed to assess the effects of organization, luminance contrast, sector angle, and orientation on a new, highly ambiguous Cs-keyhole figure. Organization and contrast were the most important factors, and sector angle also influenced figure-ground relationships. There was no significant effect of orientation, nor was there any significant interaction between any of the factors. Several new measures of figure-ground organization were developed, such as ambiguity ratios based on reaction times and on ratings of the strength of perceived organizations, providing new quantitative measures of figure-ground relationships. Distances measured across figural regions appeared smaller than equal distances across the ground in the new reversible figure, and also in Rubin's classic vase-face figure presented in real and subjective contours. Inducing a perceptual set to see a particular organization in a reversible figure influenced the apparent distance across that organization. Several possible explanations of the observed effects are considered: (1) an instance of Emmert's law, based on the difference in apparent depth of figure and ground; (2) an aspect of the Müller-Lyer illusion; (3) a feature-detector model of contour attraction; (4) a natural set or predisposition to see a figure as smaller; and (5) framing effects. The first two explanations appear the most promising.

  14. Short-term variations of Mercury's cusps Na emission

    NASA Astrophysics Data System (ADS)

    Massetti, S.; Mangano, V.; Milillo, A.; Mura, A.; Orsini, S.; Plainaki, C.

    2017-09-01

    We illustrate the analysis of short-term ground-based observations of the exospheric Na emission (D1 and D2 lines) from Mercury, which was characterized by two high-latitude peaks confined near the magnetospheric cusp footprints. During a series of scheduled observations from THEMIS solar telescope, achieved by scanning the whole planet, we implemented a series of extra measurements by recording the Na emission from a narrow north-south strip only, centered above the two emission peaks. Our aim was to inspect the existence of short-term variations, which were never analyzed before from ground-based observations, and their possible correlation with interplanetary magnetic field variations. Though Mercury possesses a miniature magnetosphere, characterized by fast reconnection events that develop on a timescale of few minutes, ground-based observations show that the exospheric Na emission pattern can be globally stable for a prolonged period (some days) and can exhibits fluctuations in the time range of tens of minutes.

  15. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  16. Combining low- to high-resolution transit spectroscopy of HD 189733b. Linking the troposphere and the thermosphere of a hot gas giant

    NASA Astrophysics Data System (ADS)

    Pino, Lorenzo; Ehrenreich, David; Wyttenbach, Aurélien; Bourrier, Vincent; Nascimbeni, Valerio; Heng, Kevin; Grimm, Simon; Lovis, Christophe; Malik, Matej; Pepe, Francesco; Piotto, Giampaolo

    2018-04-01

    Space-borne low- to medium-resolution (ℛ 102-103) and ground-based high-resolution spectrographs (ℛ 105) are commonly used to obtain optical and near infrared transmission spectra of exoplanetary atmospheres. In this wavelength range, space-borne observations detect the broadest spectral features (alkali doublets, molecular bands, scattering, etc.), while high-resolution, ground-based observations probe the sharpest features (cores of the alkali lines, molecular lines). The two techniques differ by several aspects. (1) The line spread function of ground-based observations is 103 times narrower than for space-borne observations; (2) Space-borne transmission spectra probe up to the base of thermosphere (P ≳ 10-6 bar), while ground-based observations can reach lower pressures (down to 10-11 bar) thanks to their high resolution; (3) Space-borne observations directly yield the transit depth of the planet, while ground-based observations can only measure differences in the apparent size of the planet at different wavelengths. These differences make it challenging to combine both techniques. Here, we develop a robust method to compare theoretical models with observations at different resolutions. We introduce πη, a line-by-line 1D radiative transfer code to compute theoretical transmission spectra over a broad wavelength range at very high resolution (ℛ 106, or Δλ 0.01 Å). An hybrid forward modeling/retrieval optimization scheme is devised to deal with the large computational resources required by modeling a broad wavelength range 0.3-2 μm at high resolution. We apply our technique to HD 189733b. In this planet, HST observations reveal a flattened spectrum due to scattering by aerosols, while high-resolution ground-based HARPS observations reveal sharp features corresponding to the cores of sodium lines. We reconcile these apparent contrasting results by building models that reproduce simultaneously both data sets, from the troposphere to the thermosphere. We confirm: (1) the presence of scattering by tropospheric aerosols; (2) that the sodium core feature is of thermospheric origin. When we take into account the presence of aerosols, the large contrast of the core of the sodium lines measured by HARPS indicates a temperature of up to 10 000K in the thermosphere, higher than what reported in the literature. We also show that the precise value of the thermospheric temperature is degenerate with the relative optical depth of sodium, controlled by its abundance, and of the aerosol deck.

  17. Paradoxes of the comparative analysis of ground-based and satellite geodetic measurements in recent geodynamics

    NASA Astrophysics Data System (ADS)

    Kuzmin, Yu. O.

    2017-11-01

    The comparative analysis of the Earth's surface deformations measured by ground-based and satellite geodetic methods on the regional and zonal measurement scales is carried out. The displacement velocities and strain rates are compared in the active regions such as Turkmenian-Iranian zone of interaction of the Arabian and Eurasian lithospheric plates and the Kamchatka segment of the subduction of the Pacific Plate beneath the Okotsk Plate. The comparison yields a paradoxical result. With the qualitatively identical kinematics of the motion, the quantitative characteristics of the displacement velocities and rates of strain revealed by the observations using the global navigational satellite system (GNSS) are by 1-2 orders of magnitude higher than those estimated by the more accurate methods of ground-based geodesy. For resolving the revealed paradoxes, it is required to set up special studies on the joint analysis of ground-based and satellite geodetic data from the combined observation sites.

  18. Sub-percent Photometry: Faint DA White Dwarf Spectrophotometric Standards for Astrophysical Observatories

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Axelrod, Tim; Calamida, Annalisa; Saha, Abhijit; Matheson, Thomas; Olszewski, Edward; Holberg, Jay; Holberg, Jay; Bohlin, Ralph; Stubbs, Christopher W.; Rest, Armin; Deustua, Susana; Sabbi, Elena; MacKenty, John W.; Points, Sean D.; Hubeny, Ivan

    2018-01-01

    We have established a network of faint (16.5 < V < 19) hot DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our standards are accessible from both hemispheres and suitable for ground and space-based covering the UV to the near IR. The network is tied directly to the most precise astrophysical reference presently available - the CALSPEC standards - through a multi-cycle program imaging using the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We have developed two independent analyses to forward model all the observed photometry and ground-based spectroscopy and infer a spectral energy distribution for each source using a non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmosphere extincted by interstellar dust. The models are in excellent agreement with each other, and agree with the observations to better than 0.01 mag in all passbands, and better than 0.005 mag in the optical. The high-precision of these faint sources, tied directly to the most accurate flux standards presently available, make our network of standards ideally suited for any experiments that have very stringent requirements on absolute flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope (WFIRST).

  19. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    NASA Technical Reports Server (NTRS)

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  20. Cold Season Ground Validation Activities in support of GPM

    NASA Astrophysics Data System (ADS)

    Hudak, D. R.; Petersen, W. A.

    2012-12-01

    A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is well situated within both mid-latitude synoptic and lake-effect snowfall regimes. The instrumentation suite at CARE included active remote sensing observations as follows: W, Ku, and X-band vertically pointing radars, a Ku and Ka-band dual polarization full scanning radar, and nearby C-band dual polarization, scanning radar. The passive remote sensing suite includes a triple channel profiling microwave radiometer (10, 21, 36 GHz), and a dual channel polarization radiometer (89 and 150 GHz). In-situ measurements at CARE include a 2D video disdrometer, the Precipitation Video Imager, digital photography and a number of other technologies that estimate instantaneous precipitation rate. GCPEX collected ground-based data on 22 distinct precipitation events, 2 rain, 3 mixed and 17 snow. For 16 of these events, there were also aircraft observations. In addition, there were two clear air flights. The presentation will provide an overview of the data collection. It will also summarize the ground-based event precipitation estimates from various sensors as compared to a manual double fence reference to assess measurement uncertainties. Examples will be presented from radar and aircraft in-situ data highlighting the variability of snowfall characteristics relative to the synoptic context. Plans for ongoing validation studies with the WMO Solid Precipitation Intercomparison Experiment beginning in 2013 will be described.

  1. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  2. Variations in the Geometry of the Sun Observed with HMI/SDO during Cycle 24

    NASA Astrophysics Data System (ADS)

    Irbah, Abdenour; Damé, Luc

    2016-10-01

    Geometry of the Sun and its temporal variations observed with ground-based instruments are still subject to questioning. The geometry, which inform us on the interior of the Sun, is achieved by high resolution measurements of the radius, oblateness and gravitational moments c2 and c4. Several space missions were developed these last decades to validate or refute its observed variations with ground experiments and the link with solar activity. High angular resolution of solar radius measurements and its long term trend is however a challenge in Space. The first attempts with MDI (Soho) then SODISM (PICARD) and HMI (SDO) revealed the difficulties of such measures due to hostile environment which introduces thermal variations of the instruments along the satellite orbit. These variations have non negligible impacts on optical properties of onboard telescopes and therefore on images and parameters extracted, such as the solar radius. We need to take into account the thermal behavior (housekeeping data) recorded together with the science data to correct them. Solar oblateness and gravitational moments ask for both special spacecraft operations and appropriate processing methods to obtain the needed accuracy for their measurements. We present here some results on the solar radius and oblateness obtained with HMI data. Images analysed cover six years since May 1, 2010 (beginning of Cycle 24), until now. Results show that the geometry of the Sun presents some temporal variations related to solar activity. In particular we evidence a Quasi-Biennale Oscillation (QBO) correlated with the solar cycle, as was observed with ground observations.

  3. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    NASA Astrophysics Data System (ADS)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x 30 cm with laser power on the order of milliwatts, and a commercial off the shelf based attitude determination and control system, among others. Different from standard 1U and 3U buses, the 6U form factor allows for a propulsion system for navigating around multiple targets in the GEO belt.

  4. AGN Space Telescope and Optical Reverberation Mapping Project. IV. Velocity-Delay Mapping of Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Horne, Keith D.; Agn Storm Team

    2015-01-01

    Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.

  5. Ground and Space Radar Volume Matching and Comparison Software

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  6. The MHD simulation of interplanetary space and heliosphere by using the boundary conditions of time-varying magnetic field and IPS-based plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Kojima, M.; Fujiki, K.

    2008-12-01

    We present our new boundary treatment to introduce the temporal variation of the observation-based magnetic field and plasma parameters on the inner boundary sphere (at 30 to 50 Rs) to the MHD simulation of the interplanetary space and the simulation results. The boundary treatment to induce the time-variation of the magnetic field including the radial component is essentially same as shown in our previous AGU meetings and newly modified so that the model can also include the variation of the plasma variables detected by IPS (interplanetary scintillation) observation, a ground-based remote sensing technique for the solar wind plasma. We used the WSO (Wilcox Solar Observatory at Stanford University) for the solar magnetic field input. By using the time-varying boundary condition, smooth variations of heliospheric MHD variables during the several Carrington solar rotation period are obtained. The simulation movie will show how the changes in the inner heliosphere observable by the ground-based instrument propagate outward and affects the outer heliosphere. The simulated MHD variables are compared with the Ulysses in-situ measurement data including ones made during its travel from the Earth to Jupiter for validation, and we obtain better agreements than with the simulation with fixed boundary conditions.

  7. The ERG Science Center

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yoshizumi; Hori, Tomoaki; Shoji, Masafumi; Teramoto, Mariko; Chang, T. F.; Segawa, Tomonori; Umemura, Norio; Matsuda, Shoya; Kurita, Satoshi; Keika, Kunihiro; Miyashita, Yukinaga; Seki, Kanako; Tanaka, Yoshimasa; Nishitani, Nozomu; Kasahara, Satoshi; Yokota, Shoichiro; Matsuoka, Ayako; Kasahara, Yoshiya; Asamura, Kazushi; Takashima, Takeshi; Shinohara, Iku

    2018-06-01

    The Exploration of energization and Radiation in Geospace (ERG) Science Center serves as a hub of the ERG project, providing data files in a common format and developing the space physics environment data analysis software and plug-ins for data analysis. The Science Center also develops observation plans for the ERG (Arase) satellite according to the science strategy of the project. Conjugate observations with other satellites and ground-based observations are also planned. These tasks contribute to the ERG project by achieving quick analysis and well-organized conjugate ERG satellite and ground-based observations.

  8. Space- and Ground-based Coronal Spectro-Polarimetry

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  9. Deterministic prediction of post-sunset ESF based on the strength and asymmetry of EIA from ground based TEC measurements: Preliminary results

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Ravindran, Sudha; Pant, Tarun Kumar; Devasia, C. V.; Sreelatha, P.; Sridharan, R.

    2006-07-01

    This paper provides the first observations of EIA asymmetry by receiving beacon transmissions onboard low earth orbiting satellites from a single station ground-based receiver. The EIA strength and asymmetry are derived from the latitudinal profiles of TEC obtained from a radio beacon receiver at Trivandrum (8.5°N, 77°E, diplat ~0.5°N). These two parameters, obtained well ahead of the onset time of ESF, are shown to have a definite role on the subsequent ESF activity. In the present paper, both these factors are combined to define a new `threshold parameter' for the generation of ESF. It has been shown that this parameter can define the state of the `background ionosphere' conducive for the generation of ESF irregularities much prior to its onset.

  10. Ground-Based Navigation and Dispersion Analysis for the Orion Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    D' Souza, Christopher; Holt, Greg; Zanetti, Renato; Wood, Brandon

    2016-01-01

    This paper presents the Orion Exploration Mission 1 Linear Covariance Analysis for the DRO mission using ground-based navigation. The Delta V statistics for each maneuver are presented. In particular, the statistics of the lunar encounters and the Entry Interface are presented.

  11. Independet Component Analyses of Ground-based Exoplanetary Transits

    NASA Astrophysics Data System (ADS)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806; Morello et al. 2016 ApJ, 820, 86; Hyvarinen, A., and Oja, E. 2000 IEEE Transactions on Neural Networks, 13, 411.

  12. First Results from Faint Infrared Grism Survey (Figs): First Simultaneous Detection of Ly Alpha Emission and Lyman Break From a Galaxy at Z =7.51

    NASA Technical Reports Server (NTRS)

    Tilvi, V.; Pirzkal, N.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Windhorst, R.; Grogin, N. A.; Koekemoer, A.; Zakamska, N. L.; Ryan, R.; hide

    2016-01-01

    Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-Alpha emission and the Lyman break from a z = 7.512 +/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble SpaceTelescope (HST), show a significant emission line detection (6 Sigma) in two observational position angles (PA), with Lyman-Alpha line flux of 1.06 +/- 0.19 x 10(exp -17) erg s(exp -1) cm(exp -2). The line flux is nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-Alpha measurements. A 4-Alpha detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), and if confirmed would make this source the highest-redshift AGN yet found.These observations from the Hubble Space Telescope thus clearly demonstrate the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.

  13. First observations of stimulated electromagnetic emission in the ionosphere modified by the spear heating facility on Spitsbergen

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Yurik, R. Yu.; Yeoman, T. K.; Robinson, T. R.

    2008-11-01

    We present the first results of observations of the stimulated electromagnetic emission (SEE) in the ionosphere modified by the Space Plasma Exploration by Active Radar (SPEAR) heating facility. Observation of the SEE is the key method of ground-based diagnostics of the ionospheric plasma disturbances due to high-power HF radiation. The presented results were obtained during the heating campaign performed at the SPEAR facility in February-March 2007. Prominent SEE special features were observed in periods in which the critical frequency of the F 2 layer was higher than the pump-wave frequency (4.45 MHz). As an example, such special features as the downshifted maximum and the broad continuum in the region of negative detunings from the pump-wave frequency are presented. Observations clearly demonstrate that the ionosphere was efficiently excited by the SPEAR heating facility despite the comparatively low pump-wave power.

  14. A Global Perspective of Substorm Onset

    NASA Astrophysics Data System (ADS)

    Bengtson, M.; Nykyri, K.; Angelopoulos, V.

    2017-12-01

    We present a case study of the 25 December 2015 substorm which occurred between 08:15 and 08:45 Universal Time. A fortuitous and unique alignment of several independent spacecraft missions near the Earth-Sun line together with ground based measurements, allows a comprehensive and global analysis of the substorm onset. During this interval, fast particle flows and field geometry consistent with magnetic reconnection were detected in the mid-tail region. An ejected plasmoid was observed by the lunar-orbiting ARTEMIS probes and a corresponding dipolarization signature was observed by the THEMIS spacecraft earthward of the reconnection site, which was determined to be approximately -33 RE. Ground signatures indicative of substorm activity were also observed by the THEMIS ground-based observatories during this interval. The MMS probes, which were in the dayside magnetosheath, detected a strong fluctuation in Bz, with a minimum near -35 nT, at 08:00 UT, consistent with the time delay required for propagation from the magnetosheath to the mid-tail. We analyze and discuss these fluctuations and propose that this strong southward component of Bz in the magnetosheath is possibly associated with the substorm trigger. We simulate the entire magnetosphere for this event using the SWMF/BATS-R-US model with a special, high-resolution grid. The simulations qualitatively agree with the observed substorm flows. The results of this work will be highly relevant to future solar wind observation missions, global-scale space weather models, and the ongoing effort to understand how solar wind energy is coupled to the space environment in near-Earth and at lunar distances.

  15. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  16. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris, was simulated. For the space-based scenario the simulations showed a 20 130 % improvement of the accuracy of all orbital parameters when varying the frame rate from 1/3 fps, which is the fastest rate for a typical CCD detector, to 50 fps, which represents the highest rate of scientific CMOS cameras. Changing the epoch registration accuracy from a typical 20.0 ms for a mechanical shutter to 0.025 ms, the theoretical value for the electronic shutter of a CMOS camera, improved the orbit accuracy by 4 to 190 %. The ground-based scenario also benefit from the specific CMOS characteristics, but to a lesser extent.

  17. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for future HEDS missions.

  18. Preparations for Integrating Space-Based Total Lightning Observations into Forecast Operations

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuell, Kevin K.; Molthan, Andrew L.

    2016-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) Center has been a leader in collaborating with the United States National Weather Service (NWS) offices to integrate ground-based total lightning (intra-cloud and cloud-to-ground) observations into the real-time operational environment. For much of these collaborations, the emphasis has been on training, dissemination of data to the NWS AWIPS system, and focusing on the utility of these data in the warning decision support process. A shift away from this paradigm has occurred more recently for several reasons. For one, SPoRT's collaborations have expanded to new partners, including emergency managers and the aviation community. Additionally, and most importantly, is the impending launch of the GOES-R Geostationary Lightning Mapper (GLM). This has led to collaborative efforts to focus on additional forecast needs, new data displays, develop training for GLM uses based on the lessons learned from ground-based lightning mapping arrays, and ways to better relate total lightning data to other meteorological parameters. This presentation will focus on these efforts to prepare the operational end user community for GLM with an eye towards sharing lessons learned as EUMETSAT prepares for the Meteosat Third Generation Lightning Imager. This will focus on both software and training needs. In particular, SPoRT has worked closely with the Meteorological Development Laboratory to create the total lightning tracking tool. This software allows for NWS forecasters to manually track storms of interest and display a time series trend of observations. This tool also has been expanded to work on any gridded data set allowing for easy visual comparisons of multiple parameters in addition to total lightning. A new web display has been developed for the ground-based observations that can be easily extended to satellite observations. This paves the way for new collaborations outside of the NWS, both domestically and internationally, as the web display will be functional on PCs and mobile devices. Furthermore, SPoRT has helped developed the software plug-in to visualize GLM data. Examples using the official GLM proxy product will be used to provide a glimpse as to what real-time GLM and likely MTG-LI data will be in the near future.

  19. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the time of the conference, we hope to have refined estimates of the absolute mixing ratio of each species, and preliminary results on Saturn. We will discuss the implications of our results for the chemistry and composition of the giant planets, and the differences between gas- and ice-giants.

  20. Modelling Ground Based X- and Ku-Band Observations of Tundra Snow

    NASA Astrophysics Data System (ADS)

    Kasurak, A.; King, J. M.; Kelly, R. E.

    2012-12-01

    As part of a radar-based remote sensing field experiment in Churchill, Manitoba ground based Ku- and X-band scatterometers were deployed to observe changing tundra snowpack conditions from November 2010 to March 2011. The research is part of the validation effort for the Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission, a candidate in the European Space Agency's Earth Explorer program. This paper focuses on the local validation of the semi-empirical radiative transfer (sRT) model proposed for use in snow property retrievals as part of the CoReH2O mission. In this validation experiment, sRT was executed in the forward mode, simulating backscatter to assess the ability of the model. This is a necessary precursor to any inversion attempt. Two experiments are considered, both conducted in a hummocky tundra environment with shallow snow cover. In both cases, scatterometer observations were acquired over a field of view of approximately 10 by 20 meters. In the first experiment, radar observations were made of a snow field and then repeated after the snow had been removed. A ground-based scanning LiDAR system was used to characterize the spatial variability of snow depth through measurements of the snow and ground surface. Snow properties were determined in the field of view from two snow pits, 12 density core measurements, and Magnaprobe snow depth measurements. In the second experiment, a site was non-destructively observed from November through March, with snow properties measured out-of-scene, to characterize the snow evolution response. The model results from sRT fit the form of the observations from the two scatterometer field experiments but do not capture the backscatter magnitude. A constant offset for the season of 5 dB for X-band co- and cross-polarization response was required to match observations, in addition to a 3 dB X- and Ku-band co-polarization offset after the 6th of December. To explain these offsets, it is recognized that the two main physical processes represented by the model are snow volume scattering and ground surface reflectance. With a larger correction needed for X-band, where the ground portion of backscatter is expected to be larger, the contribution from the underlying soil is explored first. The ground contribution in sRT is computed using the semi-empirical Oh et al. (1992) model using permittivity from a temperate mineral soil based model. The ground response is tested against two observations of snow-removed tundra, and one observation of snow free tundra. A secondary analysis is completed using a modified sRT ground model, incorporating recent work on frozen organic permittivity by Mironov et al. (2010). Multi-scale surface roughness resulting from superimposed microtopography on regularly distributed hummocks is also addressed. These results demonstrate the applicability of microwave scattering models to tundra snowpacks underlain with peat, and demonstrate the applicability of the CoReH2O sRT model.

  1. Local spectral anisotropy is a valid cue for figure-ground organization in natural scenes.

    PubMed

    Ramenahalli, Sudarshan; Mihalas, Stefan; Niebur, Ernst

    2014-10-01

    An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination of which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which we show to differ between figure and ground. Image patches are extracted from natural scenes from two standard image sets along the boundaries of objects and spectral analysis is performed separately on figure and ground. On the figure side, oriented spectral power orthogonal to the occlusion boundary significantly exceeds that parallel to the boundary. This "spectral anisotropy" is present only for higher spatial frequencies, and absent on the ground side. The difference in spectral anisotropy between the two sides of an occlusion border predicts which is the figure and which the background with an accuracy exceeding 60% per patch. Spectral anisotropy of close-by locations along the boundary co-varies but is largely independent over larger distances which allows to combine results from different image regions. Given the low cost of this strictly local computation, we propose that spectral anisotropy along occlusion boundaries is a valuable cue for figure-ground segregation. A data base of images and extracted patches labeled for figure and ground is made freely available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Local spectral anisotropy is a valid cue for figure-ground organization in natural scenes

    PubMed Central

    Ramenahalli, Sudarshan; Mihalas, Stefan; Niebur, Ernst

    2016-01-01

    An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which we show to differ between figure and ground. Image patches are extracted from natural scenes from two standard image sets along the boundaries of objects and spectral analysis is performed separately on figure and ground. On the figure side, oriented spectral power orthogonal to the occlusion boundary significantly exceeds that parallel to the boundary. This “spectral anisotropy” is present only for higher spatial frequencies, and absent on the ground side. The difference in spectral anisotropy between the two sides of an occlusion border predicts which is the figure and which the background with an accuracy exceeding 60% per patch. Spectral anisotropy of close-by locations along the boundary co-varies but is largely independent over larger distances which allows to combine results from different image regions. Given the low cost of this strictly local computation, we propose that spectral anisotropy along occlusion boundaries is a valuable cue for figure-ground segregation. A data base of images and extracted patches labeled for figure and ground is made freely available. PMID:25175115

  3. Strategies GeoCape Intelligent Observation Studies @ GSFC

    NASA Technical Reports Server (NTRS)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  4. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  5. Multi-wave band SMM-VLA observations of an M2 flare and an associated coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.; Lang, Kenneth R.; Schmelz, Joan T.; Gonzalez, Raymond D.; Smith, Kermit L.

    1991-01-01

    Results are presented of observations of an M2 flare and an associated coronal mass ejection CME by instruments on the SMM as well as by the VLA and other ground-based observatories on September 30, 1988. The multiwave band data show a gradual slowly changing event which lasted several hours. The microwave burst emission was found to originate in compact moderately circularly polarized sources located near the sites of bright H-alpha and soft X-ray emission. These data are combined with estimates of an electron temperature of 1.5 x 10 to the 7th K and an emission measure of about 2.0 x 10 to the 49th/cu cm obtained from Ca XIX and Fe XXV spectra to show that the microwave emission can be attributed to thermal gyrosynchrotron radiation in regions where the magnetic field strength is 425-650 G. The CME acceleration at low altitudes is measured on the basis of ground- and space-based coronagraphs.

  6. Collaborative observations of the Sun during ihy

    NASA Astrophysics Data System (ADS)

    Strong, K. T.

    2003-04-01

    Many of the major solar physics space missions (Solar Max, Yohkoh, SOHO, and TRACE) have feature extensive collaborative observations with ground-based observers, sounding rocket flights and other space missions. These joint observations have produced some significant results. In preparation for IHY, this poster presents some of the lessons learned from some of these collaborations. The more successful ones have a clear scientific goal and have been planned, coordinated and advertised well in advance with at least one dry run. They have generally not relied on a particular type of solar activity being present at the time of the observations or have been very flexible in the timing of the investigation. Most importantly, they have had a plan with a set schedule to follow up the observation run with data processing, analysis and modeling workshops whether it's a large group or just individual scientists.

  7. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  8. K2 and M4: A Unique Opportunity to Unlock the Mysteries of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Stello, Dennis; Campbell, Simon; Drury, Jason; de Silva, Gayandhi; Maclean, Ben; Bedding, Timothy R.; Huber, Daniel

    2016-01-01

    One of the most exciting opportunities presented by K2 is the ability to study variable stars in globular clusters (GCs). The K2 observations allow us to perform ensemble asteroseismology of a population that is much older than that in the open clusters in the original Kepler field. This should help us answer long-standing questions concerning mass loss on the red giant branch and the spread in masses along the horizontal branch. By combining the asteroseismic data with chemical tagging of sub-populations from spectroscopy, we hope to better constrain stellar evolution models and potentially shed some light on the formation history of GCs. The very crowded nature of stars in GCs poses a challenge, however, due to Kepler's large pixels. M4, observed during K2's campaign 2, presents an excellent opportunity to study GCs with a combination of K2 and ground-based data. M4 is one of the two nearest GCs and thus should appear less crowded and brighter; in fact M4 is likely the only GC whose horizontal branch stars, other than RR Lyraes, will be accessible with K2. We discuss our method of obtaining photometry for the stars in M4 and present sample lightcurves for different classes of oscillating stars in the cluster. We also discuss efforts to use ground-based observations to increase the utility of the K2 dataset.

  9. SkySat-1: very high-resolution imagery from a small satellite

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk

    2014-10-01

    This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.

  10. Latitudinal Variations In Vertical Cloud Structure Of Jupiter As Determined By Ground- based Observation With Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.

    2008-12-01

    We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.

  11. Using long-term ARM observations to evaluate Arctic mixed-phased cloud representation in the GISS ModelE GCM

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Luke, E. P.; Tselioudis, G.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2016-12-01

    The presence of supercooled liquid in clouds affects surface radiative and hydrological budgets, especially at high latitudes. Capturing these effects is crucial to properly quantifying climate sensitivity. Currently, a number of CGMs disagree on the distribution of cloud phase. Adding to the challenge is a general lack of observations on the continuum of clouds, from high to low-level and from warm to cold. In the current study, continuous observations from 2011 to 2014 are used to evaluate all clouds produced by the GISS ModelE GCM over the ARM North Slope of Alaska site. The International Satellite Cloud Climatology Project (ISCCP) Global Weather State (GWS) approach reveals that fair-weather (GWS 7, 32% occurrence rate), as well as mid-level storm related (GWS 5, 28%) and polar (GWS 4, 14%) clouds, dominate the large-scale cloud patterns at this high latitude site. At higher spatial and temporal resolutions, ground-based cloud radar observations reveal a majority of single layer cloud vertical structures (CVS). While clear sky and low-level clouds dominate (each with 30% occurrence rate) a fair amount of shallow ( 10%) to deep ( 5%) convection are observed. Cloud radar Doppler spectra are used along with depolarization lidar observations in a neural network approach to detect the presence, layering and inhomogeneity of supercooled liquid layers. Preliminary analyses indicate that most of the low-level clouds sampled contain one or more supercooled liquid layers. Furthermore, the relationship between CVS and the presence of supercooled liquid is established, as is the relationship between the presence of supercool liquid and precipitation susceptibility. Two approaches are explored to bridge the gap between large footprint GCM simulations and high-resolution ground-based observations. The first approach consists of comparing model output and ground-based observations that exhibit the same column CVS type (i.e. same cloud depth, height and layering). Alternatively, the second approach consists of comparing model output and ground-based observations that exhibit the same large-scale GWS type (i.e. same cloud top pressure and optical depth patterns) where ground-based observations are associated to large-scale GWS every 3 hours using the closest satellite overpass.

  12. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  13. The Trifid Nebula: Stellar Sibling Rivalry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  14. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite difference calculation based on the shallow water theory. The initial wave height for tsunami generation is estimated from the vertical displacement of ocean bottom due to the crustal movements, which is obtained from the ground motion simulation mentioned above. The results of tsunami simulations are compared with the observations of the GPS wave gauges to evaluate the validity for the tsunami prediction using the fault model based on the seismic observation records.

  15. OGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED BY SIMULTANEOUS GROUND-BASED AND SPACE-BASED OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C.; Udalski, A.; Szymański, M. K.

    2016-09-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope . The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lensmore » is a binary composed of two G-type stars with masses of ∼1.0 M {sub ⊙} and ∼0.9 M {sub ⊙} located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color–magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations.« less

  16. Automated Cloud Observation for Ground Telescope Optimization

    NASA Astrophysics Data System (ADS)

    Lane, B.; Jeffries, M. W., Jr.; Therien, W.; Nguyen, H.

    As the number of man-made objects placed in space each year increases with advancements in commercial, academic and industry, the number of objects required to be detected, tracked, and characterized continues to grow at an exponential rate. Commercial companies, such as ExoAnalytic Solutions, have deployed ground based sensors to maintain track custody of these objects. For the ExoAnalytic Global Telescope Network (EGTN), observation of such objects are collected at the rate of over 10 million unique observations per month (as of September 2017). Currently, the EGTN does not optimally collect data on nights with significant cloud levels. However, a majority of these nights prove to be partially cloudy providing clear portions in the sky for EGTN sensors to observe. It proves useful for a telescope to utilize these clear areas to continue resident space object (RSO) observation. By dynamically updating the tasking with the varying cloud positions, the number of observations could potentially increase dramatically due to increased persistence, cadence, and revisit. This paper will discuss the recent algorithms being implemented within the EGTN, including the motivation, need, and general design. The use of automated image processing as well as various edge detection methods, including Canny, Sobel, and Marching Squares, on real-time large FOV images of the sky enhance the tasking and scheduling of a ground based telescope is discussed in Section 2. Implementations of these algorithms on single and expanding to multiple telescopes, will be explored. Results of applying these algorithms to the EGTN in real-time and comparison to non-optimized EGTN tasking is presented in Section 3. Finally, in Section 4 we explore future work in applying these throughout the EGTN as well as other optical telescopes.

  17. GOSAT validation out standing in the field: A case study of satellite validation using the SSEC Portable Atmospheric Research Center (SPARC)

    NASA Astrophysics Data System (ADS)

    Wagner, T. J.; Borg, L. A.; Feltz, M.; Gero, P. J.; Knuteson, R. O.; Olson, E.

    2016-12-01

    The Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison has developed the SSEC Portable Atmospheric Research Center (SPARC), a mobile 11 m trailer that houses numerous in situ and ground-based remote sensing instruments. Available instrumentation includes the Atmospheric Emitted Radiance Interferometer (AERI), a hyperspectral infrared radiometer from which trace gas concentrations and profiles of temperature and water vapor can be retrieved; the High Spectral Resolution Lidar (HSRL), a multichannel lidar capable of directly retrieving profiles of optical depth and backscatter depolarization; and a Doppler lidar wind profiler. The remote instrumentation suite is complemented by surface meteorology observations and a radiosonde ground station. Collectively, these instruments enable SPARC to participate in a wide variety of field studies, including meteorological field experiments and ground-based satellite calibration and validation studies. In August 2016, SPARC traveled to the Chequamegon National Forest in northern Wisconsin for a two week long deployment alongside the WLEF-TV tower. This 447 m tower houses long-term observations of thermodynamic and atmospheric composition at multiple heights, enabling studies of phenomena like atmospheric/land surface interactions and carbon uptake. During this deployment, SPARC launched radiosondes coincident with clear-sky overpasses of the Greenhouse gases Observing SATellite (GOSAT). Thermodynamic profiles from the radiosondes and AERI combined with the trace gas observations from the tower were used to validate the GOSAT observations of carbon dioxide and methane. The on-site presence of SPARC allowed for better characterization of the environment and greater observational certainty than was possible with the tower alone. Examples from this particular validation study as well as a discussion of how SPARC can contribute to other satellite calibration and validation investigations will be presented.

  18. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  19. Solar Energetic Particle Studies with PAMELA

    NASA Astrophysics Data System (ADS)

    Christian, E. R.; Bravar, U.; de Nolfo, G. A.; Ryan, J. M.; Stochaj, S.

    2011-12-01

    Understanding the origin of the high-energy solar energetic particles (SEPs) is a challanging problem due to the limited information provided by ground-level enhancements (GLEs) and the large energy gap between GLEs and the low-energy in-situ SEPs. These challenges are addressed for the first time with observations from the The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012. PAMELA measures energetic particles in the same energy range as ground-based neutron monitors but also extends to lower energies covered by statistically precise in-situ observations. The near-polar orbit of PAMELA translates to low rigidity cutoffs and thus extends the sensitivity to low-energy particles as low as ~20 MeV. It thus bridges an important gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations, making it possible to consider the relationship in origin of these two populations. Composition also plays a key role in determining SEP origin (low corona and chromosphere vs. the high corona and solar wind). PAMELA is sensitive for the first time to the composition of the high-energy component of SEPs, measuring the charge (up to Z=6) and atomic number of the detected particles, and identifying and measuring positrons and neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. We present results for several recent solar flares, registering both proton and helium enhancements in PAMELA. Together with multi-wavelength imaging and in-situ observations of a variety of species, we discuss PAMELA results and possible interpretations for the origins of the high-energy component of SEPs.

  20. Real-time condition assessment of RAPTOR telescope systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, Chris; Taylor, Stuart; Wren, James

    2010-11-30

    The RAPid Telescopes for Optical Response (RAPTOR) observatory network consists of several robotic astronomical telescopes primarily designed to search for astrophysical transients called a gamma-ray bursts (GRBs). Although intrinsically bright, GRBs are difficult to detect because of their short duration. Typically, they are first observed by satellites that then relay the coordinates of the GRB to a ground station which, in turn, distributes the coordinates over the internet so that ground based observers can perform follow-up observations. Typically the ground based observations begin after the GRB has ended and only residual emiSSion (the 'afterglow') is left. However, if the satellitemore » relays the GRB coordinates quickly enough, a 'fast' robotic telescope on the ground may be able to catch the GRB in progress. The RAPTOR telescope system is one of only a few in the world to have accomplished this feat. In order to achieve these results, the RAPTOR telescopes must operate autonomously at a high duty-cycle and in peak operating condition. Currently the telescopes are maintained in an ad hoc manner, often in a run-to-failure mode. The RAPTOR project could benefit greatly from a structural health monitoring (SHM) system, especially as more complex units are added to the suite of telescopes. This paper will summarize preliminary results from an SHM study performed on one of the RAPTOR telescopes. Damage scenarios that are of concern and that have been previously observed are first summarized. Then a specific study of damage to the telescope drive mechanism is presented where the data acquisition system is first described. Next, damage detection algorithms are developed with LANL's new publically available software SHMTools and the results of this process are discussed in detail. The paper will conclude with a summary of future planned refinemenls of the RAPTOR SHM system.« less

  1. Signature of a Sudden Stratospheric Warming in the near-ground 7Be flux.

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.

    2015-12-01

    We present here a study of the impact of one Sudden Stratospheric Warming (SSW) upon the atmospheric vertical dynamics based on 7Be measurements in near ground air, using both numerical and conceptual. In late September 2002, an unprecedented SSW event occurred in the southern hemisphere (SH), causing changes in the tropospheric circulation, ozone depletion and weakening of the polar jet in the mesosphere. There is an observational evidence suggesting that anomalies in the stratosphere play an important role in driving tropospheric weather producing tropospheric changes that can persists for up to 60 days in NH and up to about 90 days in the SH, as observed after the 2002 SSW (Thompson et al., 2005). Radioactive environmental techniques for tracing large-scale air-mass transport have been applied in studies of atmospheric dynamics for decades and they are becoming more and more precise due to the improvement of the instrumental sensitivity and associated modeling. Temporal variations of the cosmogenic 7Be concentration in the near-surface atmosphere can provide information on the air mass dynamics, precipitation patterns, stratosphere-troposphere coupling and cosmic ray variations. The present study is based on an analysis of 7Be concentration measured in near-ground air in the city of Angra dos Reis, Rio de Janeiro state, Brazil between 1987 and 2009. Using a simplified tropospheric 7Be model deposition based on a two-layer transport model, Pacini (2011) reported that the occurrence of strong downward air flux leave an imprint of the 3D motion of air masses to the near-ground air 7Be data in the studied region. In this work, we have further developed the two-layer model by adding one more layer: the lower stratosphere (LS). In normal conditions, the contribution of the LS 7Be to the near-ground isotopic variability would be very small. On the other hand, stratospheric source can be crucial for the SSW event, indicating that a strong stratospheric air intrusion happened after the SSW and induced a downward flux of stratospheric aerosols from the LS to the ground level lasting several months after the SSW peak, showing that its tropospheric consequences can be much larger than it is usually considered.

  2. Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.

  3. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2-35 micrometer Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  4. Characterizing Gaint Exoplanets through Multiwavelength Transit Observations

    NASA Astrophysics Data System (ADS)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Observing the characteristics of giant exoplanets is possible with ground-based telescopes and modern observational methods. We are performing characterizations of multiple giant exoplanets based on 85 allotted nights of transit observations with the 2.3 m Wyoming Infrared Observatory using Sloan filters. In particular, constraints can be made on the atmospheres of our targets from the wavelength (in)dependence in the depth of the transit observations. We present early multiwavelength photometric results on the exoplanet HD 189733 b with comparison to literature sources to exemplify the methodology employed. In total, 15 exoplanets were observed across multiple wavelengths. The majority of the observing allotted to the project was completed as part of the 2017 Summer REU at the University of Wyoming. This work will significantly contribute to the growing number of observed atmospheres and influence interpretation of future WFIRST, JWST, and TESS targets. This work is supported by the National Science Foundation under REU grant AST 1560461.

  5. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  6. Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; Lynch, Kristina A.; Fernandes, Philip A.; Aruliah, Anasuya L.; Engebretson, Mark J.; Moen, Jøran I.; Oksavik, Kjellmar; Yahnin, Alexander G.; Yeoman, Timothy K.

    2017-05-01

    We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements with corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.

  7. MSFC Skylab ground-based astronomy program

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.

    1974-01-01

    The Skylab Ground-Based Astronomy Program (SGAP) was conducted to enhance the data base of solar physics obtained during the Apollo Telescope Mount (ATM) mission flown in conjunction with the Skylab orbital station. Leading solar physicists from various observatories obtained data from the ground at the same time that orbital data were being acquired by ATM. The acquisition of corollary solar data from the ground simultaneously with the ATM orbital observations helped to provide a broader basis for understanding solar physics by increasing spectral coverage and by the use of additional sophisticated instruments of various types. This report briefly describes the individual tasks and the associated instrumentation selected for this ground-based program and contains as appendices, the final reports from the Principal Investigators.

  8. Developing Information Services and Tools to Access and Evaluate Data Quality in Global Satellite-based Precipitation Products

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Shie, C. L.; Meyer, D. J.

    2017-12-01

    Global satellite-based precipitation products have been widely used in research and applications around the world. Compared to ground-based observations, satellite-based measurements provide precipitation data on a global scale, especially in remote continents and over oceans. Over the years, satellite-based precipitation products have evolved from single sensor and single algorithm to multi-sensors and multi-algorithms. As a result, many satellite-based precipitation products have been enhanced such as spatial and temporal coverages. With inclusion of ground-based measurements, biases of satellite-based precipitation products have been significantly reduced. However, data quality issues still exist and can be caused by many factors such as observations, satellite platform anomaly, algorithms, production, calibration, validation, data services, etc. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to NASA global precipitation product archives including the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), as well as other global and regional precipitation products. Precipitation is one of the top downloaded and accessed parameters in the GES DISC data archive. Meanwhile, users want to easily locate and obtain data quality information at regional and global scales to better understand how precipitation products perform and how reliable they are. As data service providers, it is necessary to provide an easy access to data quality information, however, such information normally is not available, and when it is available, it is not in one place and difficult to locate. In this presentation, we will present challenges and activities at the GES DISC to address precipitation data quality issues.

  9. Astrometry for New Reductions: The ANR method

    NASA Astrophysics Data System (ADS)

    Robert, Vincent; Le Poncin-Lafitte, Christophe

    2018-04-01

    Accurate positional measurements of planets and satellites are used to improve our knowledge of their orbits and dynamics, and to infer the accuracy of the planet and satellite ephemerides. With the arrival of the Gaia-DR1 reference star catalog and its complete release afterward, the methods for ground-based astrometry become outdated in terms of their formal accuracy compared to the catalog's which is used. Systematic and zonal errors of the reference stars are eliminated, and the astrometric process now dominates in the error budget. We present a set of algorithms for computing the apparent directions of planets, satellites and stars on any date to micro-arcsecond precision. The expressions are consistent with the ICRS reference system, and define the transformation between theoretical reference data, and ground-based astrometric observables.

  10. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and exoplanet variability may well arise from comparable cloud structures. In my presentation I will compare and contrast the nature of the variability observed for the various solar system and other substelar objects and present a wish list for future observations.

  11. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Kepler Giant Planet Variability Team, Spitzer Ice Giant Variability Team

    2016-10-01

    Over the past several years a number of of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigan et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015). Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of ˜60○, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and exoplanet variability may well arise from comparable cloud structures. In my presentation I will compare and contrast the nature of the variability observed for the various solar system and other substellar objects and present a wish list for future observations.

  12. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  13. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Valverde, M. A.; Montabone, L.; Sornig, M.

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance,more » including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO{sub 2} planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations.« less

  14. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Houser, Paul; Schlosser, C. Adam

    2003-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. The goal of the paper is to explore the concept of using a sensor-web of satellites to observe the global water cycle. The details of the required measurements and observation systems are therefore only an initial approach and will undergo future refinement, as their details will be highly important. Key elements include observation and evaluation of all components of the water cycle in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers-and in terms of the global fluxes of water between these reservoirs. For each component of the water cycle that must be observed, the appropriate temporal and spatial scales of measurement are estimated, along with the some of the frequencies that have been used for active and passive microwave observations of the quantities. The suggested types of microwave observations are based on the heritage for such measurements, and some aspects of the recent heritage of these measurement algorithms are listed. The observational requirements are based on present observational systems, as modified by expectations for future needs. Approaches to the development of space systems for measuring the global water cycle can be based on these observational requirements.

  15. Literature review of some selected types of results and statistical analyses of total-ozone data. [for the ozonosphere

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1976-01-01

    The depletion of ozone in the stratosphere is examined, and causes for the depletion are cited. Ground station and satellite measurements of ozone, which are taken on a worldwide basis, are discussed. Instruments used in ozone measurement are discussed, such as the Dobson spectrophotometer, which is credited with providing the longest and most extensive series of observations for ground based observation of stratospheric ozone. Other ground based instruments used to measure ozone are also discussed. The statistical differences of ground based measurements of ozone from these different instruments are compared to each other, and to satellite measurements. Mathematical methods (i.e., trend analysis or linear regression analysis) of analyzing the variability of ozone concentration with respect to time and lattitude are described. Various time series models which can be employed in accounting for ozone concentration variability are examined.

  16. Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach

    NASA Astrophysics Data System (ADS)

    Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg

    2016-03-01

    The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.

  17. Multiwavelength monitoring of the BL Lacertae object PKS 2155-304. 3: Ground-based observations in 1991 November

    NASA Technical Reports Server (NTRS)

    Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.

    1995-01-01

    We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.

  18. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  19. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    NASA Astrophysics Data System (ADS)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge network.

  20. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  1. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  2. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  3. A Categorisation of Teacher Feedback in the Classroom: A Field Study on Feedback Based on Routine Classroom Assessment in Primary School

    ERIC Educational Resources Information Center

    Eriksson, Elisabeth; Björklund Boistrup, Lisa; Thornberg, Robert

    2017-01-01

    The aim of the present study was to examine and categorise teachers' strategies for feedback in day-to-day communication in primary school. The different feedback categories constructed and grounded in data are applicable to feedback on learning and knowledge as well as on behavioural skills. Qualitative classroom observations were conducted in 4…

  4. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the European MetOp platform as well as a planned series of Chinese polar orbiting satellites. The detailed understanding of the land surface infrared emission is a crucial step in the effective utilization of these advanced sounder instruments for the extraction of atmospheric composition information (esp. water vapor vertical profile) over land, which is a key goal for numerical weather prediction data assimilation.

  5. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σ<0.5 in log units) in comparison to other regional models, at shorter periods brands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  6. Coordinated Polar Spacecraft, Geosynchronous Spacecraft, and Ground-based Observations of Magnetopause Oscillations and Pc5 Waves in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Le, G.; Chen, S.; Zheng, Y.; Russell, C. T.; Slavin, J. A.; Huang, C.-S.; Petrinec, S. S.; Moore, T. E.; Samson, J.; Singer, H. J.

    2005-01-01

    In this paper, we present in situ observations of surface waves at the magnetopause and oscillatory magnetospheric field lines, and coordinated observations Pc5 waves at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210 Degree Magnetic Meridian (210MMJ magnetometer arrays. On February 7,2002 during a highspeed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for approximately 3 hours. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings as well as the velocity of the cold ion bursts indicate that the magnetopause was oscillating with about 6 minute period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning about 4 hours in local time.

  7. Estimating grassland curing with remotely sensed data

    NASA Astrophysics Data System (ADS)

    Chaivaranont, Wasin; Evans, Jason P.; Liu, Yi Y.; Sharples, Jason J.

    2018-06-01

    Wildfire can become a catastrophic natural hazard, especially during dry summer seasons in Australia. Severity is influenced by various meteorological, geographical, and fuel characteristics. Modified Mark 4 McArthur's Grassland Fire Danger Index (GFDI) is a commonly used approach to determine the fire danger level in grassland ecosystems. The degree of curing (DOC, i.e. proportion of dead material) of the grass is one key ingredient in determining the fire danger. It is difficult to collect accurate DOC information in the field, and therefore ground-observed measurements are rather limited. In this study, we explore the possibility of whether adding satellite-observed data responding to vegetation water content (vegetation optical depth, VOD) will improve DOC prediction when compared with the existing satellite-observed data responding to DOC prediction models based on vegetation greenness (normalised difference vegetation index, NDVI). First, statistically significant relationships are established between selected ground-observed DOC and satellite-observed vegetation datasets (NDVI and VOD) with an r2 up to 0.67. DOC levels estimated using satellite observations were then evaluated using field measurements with an r2 of 0.44 to 0.55. Results suggest that VOD-based DOC estimation can reasonably reproduce ground-based observations in space and time and is comparable to the existing NDVI-based DOC estimation models.

  8. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, J. R.; Watson, C. A.; Pollacco, D.

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurementmore » of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.« less

  9. e-POP RRI provides new opportunities for space-based, high-frequency radio science experiments

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.

    2017-04-01

    Perry et al. (2016, https://doi.org/10.1002/2017JG003855) present the first results of the Radio Receiver Instrument (RRI), a part of the enhanced Polar Outflow Probe (e-POP) that flies on board the CAScade, Smallsat and IOnospheric Polar Explorer satellite. Using a matched filter technique, e-POP RRI was able to observe individual radio pulses transmitted by a ground-based radar. These results were used to examine the temporal variations in the dispersion, polarization, and power of the pulses, demonstrating the capacity for e-POP RRI to contribute to studies of radio propagation at high-frequency (HF) ranges. Understanding radio propagation in the presence and absence of ionospheric irregularities is crucial for ionospheric physics, as well as commercial and military radio applications. Conjunctions between e-POP RRI and ground- or space-based HF transmitters offer a new opportunity for coherent scatter experiments.

  10. Accurate measurements of solar spectral irradiance between 4000-10000 cm-1

    NASA Astrophysics Data System (ADS)

    Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.

    2017-12-01

    The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.

  11. Quantifying the spatio-temporal pattern of the ground impact of space weather events using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    NASA Astrophysics Data System (ADS)

    Dods, Joe; Chapman, Sandra; Gjerloev, Jesper

    2016-04-01

    Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere. We can also investigate the solar wind control of the magnetospheric-ionospheric convection system using dynamical networks. The dynamical networks are first interpolated onto a regular grid. Statistically averaged network responses are then formed for a variety of solar wind conditions, including investigating the network response to southward turnings. [1] Dods, J., S. C. Chapman, and J. W. Gjerloev (2015), Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations, J. Geophys. Res. Space Physics, 120, 7774-7784, doi:10.1002/2015JA021456

  12. [Analysis of influence on spatial distribution of fishing ground for Antarctic krill fishery in the northern South Shetland Islands based on GWR model].

    PubMed

    Chen, Lyu Feng; Zhu, Guo Ping

    2018-03-01

    Based on Antarctic krill fishery and marine environmental data collected by scientific observers, using geographically weighted regression (GWR) model, we analyzed the effects of the factors with spatial attributes, i.e., depth of krill swarm (DKS) and distance from fishing position to shore (DTS), and sea surface temperature (SST), on the spatial distribution of fishing ground in the northern South Shetland Islands. The results showed that there was no significant aggregation in spatial distribution of catch per unit fishing effort (CPUE). Spatial autocorrelations (positive) among three factors were observed in 2010 and 2013, but were not in 2012 and 2016. Results from GWR model showed that the extent for the impacts on spatial distribution of CPUEs varied among those three factors, following the order DKS>SST>DTS. Compared to the DKS and DTS, the impact of SST on the spatial distribution of CPUEs presented adverse trend in the eastern and western parts of the South Shetland Islands. Negative correlations occurred for the spatial effects of DKS and DTS on distribution of CPUEs, though with inter-annual and regional variation. Our results provide metho-dological reference for researches on the underlying mechanism for fishing ground formation for Antarctic krill fishery.

  13. Atmospheric Visibility Monitoring for planetary optical communications

    NASA Technical Reports Server (NTRS)

    Cowles, Kelly

    1991-01-01

    The Atmospheric Visibility Monitoring project endeavors to improve current atmospheric models and generate visibility statistics relevant to prospective earth-satellite optical communications systems. Three autonomous observatories are being used to measure atmospheric conditions on the basis of observed starlight; these data will yield clear-sky and transmission statistics for three sites with high clear-sky probabilities. Ground-based data will be compared with satellite imagery to determine the correlation between satellite data and ground-based observations.

  14. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.

  15. A comparison of selected vertical wind measurement techniques on basis of the EUCAARI IMPACT observations

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Baehr, C.; Boquet, M.; Dufournet, Y.; Pawlowska, H.; Siebert, H.; Unal, C.

    2009-04-01

    The poster presents a comparison of selected methods for determination of the vertical wind in the boundary layer used during the EUCAARI IMPACT campaign that took place in May 2008 in The Netherlands. The campaign covered a monthlong intensified ground-based and airborne measurements in the vicinity of the CESAR observatory in Cabauw. Ground-based vertical wind remote sensing was carried out using the Leosphere WindCube WLS70 IR Doppler lidar, Vaisala LAP3000 radar wind-profiler and the TUDelft TARA S-band radar. In-situ airborne measurements were performed using an ultrasonic anemometer (on the ACTOS helicopter underhung platform) and a 5-hole pressure probe (on the SAFIRE ATR-42 airplane radome). Several in-situ anemometers were deployed on the 200-meter high tower of the CESAR observatory. A summary of the characteristics and principles of the considered techniques is presented. A comparison of the results obtained from different platforms depicts the capabilities of each technique and highlights the time, space and velocity resolutions.

  16. SOFIA: Science Vision and Current Status

    NASA Technical Reports Server (NTRS)

    Horner, Scott D.

    2010-01-01

    This slide presentation details the science and status of the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is a 2.5 m Telescope designed to fit into a modified Boeing 747SP aircraft. It will have imaging and spectroscopy from .03 micron to 1.6 mm, emphasizing the obscured infrared spectrum (i.e., 30-300 micron). It will fly between 39,000 to 45,000 feet, above over 99.8 % of the water vapor which obscures the infrared from other ground based telescopes. Since it is on a ground based airplane, the instrumentation can be interchangeable between flights, it can fly anywhere and anytime. Diagrams show an overview of the observatory, the optical layout, and a comparison of SOFIA with the other major IR Imaging spectroscopic Space Observatories. Pictures include a shot of the installation of the primary mirror, and the Telescope instrument interface. Charts show the first generation instruments, and their ranges of spectral observation. Also the presentation reviews the science questions that SOFIA's instruments will assist in reviewing.

  17. Transient Optical Sky survey

    NASA Astrophysics Data System (ADS)

    Hadjiyska, Elena Ivanova

    2009-06-01

    Optical transients have been studied in isolated cases, but never mapped into a comprehensive data base in the past. These events vary in duration and signature, yet they are united under the umbrella of time varying observables and represent a significant portion of the dynamical processes in the universe. The Transient Optical Sky Survey (TOSS) System is a dedicated, ground-based system of small optical telescopes, observing nightly at fixed Declination while gathering 90 sec exposures and thus creating a repeated partial map of the sky. Presented here is a brief overview of some of the signatures of transient events and a description of the TOSS system along with the data acquired during the 2008-2009 observing campaign, potentially producing over 100,000 light curves.

  18. Total ozone observation by sun photometry at Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Schill, Herbert; Hoegger, Bruno; Viatte, Pierre; Levrat, Gilbert; Gamma, Adrian

    1995-07-01

    The method used for ground-based total ozone observations and the design of two instruments used to monitor atmospheric total ozone at Arosa (Dobson spectrophotometer and Brewer spectrometer) are briefly described. Two different procedures of the calibration of the Dobson spectrometer, both based on the Langley plot method, are presented. Data quality problems that occured in recent years in the measurements of one Dobson instrument at Arosa are discussed, and two different methods to reassess total ozone observations are compared. Two partially automated Dobson spectrophotometers and two completely automated Brewer spectrometers are currently in operation at Arosa. Careful comparison of the results of the measurements of the different instruments yields valuable information of possible small long- term drifts of the instruments involved in the operational measurements.

  19. Observation of hectometric auroral radio emissions in Iceland

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ono, T.; Iizima, M.; Sato, N.

    2006-12-01

    The Earth's auroral region is an active radio source at frequencies from a few hertz to several megahertz. In the hectometric range, it was found that Terrestrial Hectometric Radiation (THR) is related to auroras by observations of the Ohzora satellite [Oya et al.(1985)]. In resent research, Shinbori et al. [2003] showed that occurrence of THR follows SC by several minutes using the Akebono satellite data. On the ground, auroral roar and MF burst were discovered by Kellogg and Monson [1979, 1984] and Weatherwax et al. [1994] in the northern Canada, respectively. Because there is not enough physical and geophysical characterization of these radio emissions, the physical mechanism of these phenomena in the auroral ionosphere has not been fully understood yet. We set up new observation system at Husafell station in Iceland in September, 2005 and have started to observe auroral radio emissions. Radio signals, which are received by the cross loop antennas, are converted into left- and right- handed polarized components within the frequency range from 1 MHz to 5 MHz. Based on the calibration of system, it was found that the possibility of occurence would be smaller than expected due to the low sensitivity because average power spectrum densities of auroral roar and MF burst are 50-100 nV/m/Hz^1/2. So, the system was planed to be upgraded in this September, which makes it possible to detect auroral roar and MF burst. It is expected that the detail physical process will be elucidated by clarifying the spectrum, polarization, dependence on the geomagnetic activity, and so on. In this presentation, we will show the improved points of the new system and preliminary observation results. There is a basic question whether auroral roar and MF burst observed on the ground are generated by the same process as THR observed by satellites. By comparing the results from the ground-based observation and the Akebono satellite observation of THR, it becomes possible to obtain a new picture of auroral radio emissions.

  20. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  1. Seismo-ionospheric Precursors of the Total Electron Content Associated with Global Large Earthquakes Examined by Using Ground-based and Space-based Radio Occultation GNSS Observations

    NASA Astrophysics Data System (ADS)

    Liu, J. Y. G.

    2017-12-01

    To verify seismo-ionospheric precursors (SIPs), statistical analyses are implemented on the relationship between the total electron content (TEC) in the global ionosphere map (GIM) derived from measurements of ground-based GNSS (global navigation satellite system) receivers and worldwide M≥7.0 earthquakes during 2000-2016. A median-based method is employed to determine the characteristic of TEC anomalies related to the earthquakes. It is found that the polarity of both negative (decrease) and positive (increase) in the GIM TEC, which varies location-by location, can be observed few days before the earthquakes. In general, PEIAs with the negative polarity associated with the earthquakes are more frequently detected. Meanwhile, FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) or F3/C in was launched into a circular low-Earth orbit on 15 April 2006. Six F3/C microsatellites with 72-degree inclination angle and 30-degree separation in longitude orbit at 800 km altitude, and conduct the ionospheric radio occultation (RO) observations by receiving signals from GNSS satellites and globally observing about 2500 vertical electron density profiles per day. Both ground-based and space-based RO GNSS observations are used to three dimensionally study SIPs related to the 11 March 2011 M9.0 Tohoku earthquake.

  2. Ground-water levels in observation wells in Oklahoma, 1956-1960

    USGS Publications Warehouse

    Hart, D.L.

    1963-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect on a systematic basis records of water levels in selected observation wells. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; and (5) provide long-time continuous records of fluctuations of water levels in representative wells, These selected records also serve as a framework to which other types of hydrologic data may be related.Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey (table 1). Beginning with the 1956 calendar year, however, Federal water-level reports will contain only records of a selected network of observation wells, and will be published by the U.S. Geological Survey at 5-year intervals. The first of this series, for the 1956-59 period has recently been published.This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in Water-Supply Papers since 1955. This report, which contains water-level records for the 5-year period (1956-60), is the first of a series presenting water-level records for all permanent observation wells in Oklahoma. It is planned that future water-level reports will be published at 2-year intervals.

  3. Ground-water levels in observation wells in Oklahoma, 1961-62

    USGS Publications Warehouse

    Wood, P.R.; Moeller, M.D.

    1964-01-01

    The investigation of the ground-water resources of Oklahoma by the U. S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-term continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data may be related.Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U. S. Geological Survey (table 1). Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period, was published in 1962.This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in Water-Supply Papers since 1955. This report, which contains water-level records for the 2-year period (1961-62), is the second of a series presenting water-level records for all permanent observation wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period (1956-60).

  4. A case study of the microphysical and dynamical processes of fog and in-flight icing environments at Cold Lake Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Wu, Di; Boudala, Faisal; Gultepe, Ismail; Isaac, George A.

    2017-04-01

    Pilot reports (PIREPs) of in-flight icing have been frequently been issued at Cold Lake airport (CYOD), Alberta, typically during descent on approach or climb after takeoff in the fall and winter seasons. Climatological data also indicate that this location is affected by various fog conditions. In order to better understand these conditions, Environment and Climate Change Canada (ECCC), in cooperation with the Department of National Defense (DND), installed a number of specialized instruments at Cold Lake. The ground based instruments include a Vaisala PWD22 present weather sensor, a multi-channel microwave profiling radiometer (MWRP) and a Jenoptik CHM15k ceilometer. A case study is presented of an icing event and foggy conditions that occurred very close to ground level and temperature changed from -1 C up to 2 C on 24 October, 2016. The microphysical and thermo-dynamical conditions within the boundary layer and aloft that led to these conditions were examined by integrating the ground based measurements with the Geostationary Operational Environmental Satellite (GOES) and the Canadian 2.5 km resolution NWP (HRDPS - High Resolution Deterministic Prediction System) model data. Preliminary results indicate that the ground based in-situ measurements were in agreement with the aviation weather observations (METAR). Both the HRDPS model and MWRP detected supercooled liquid water well during the icing event and its thermodynamic structure that remains to be investigated further. Furthermore, the icing potential and low clouds formation using the GOES Imager data will be compared with HRDPS simulations and verified by PIREPs.

  5. Attention modulates perception of visual space

    PubMed Central

    Zhou, Liu; Deng, Chenglong; Ooi, Teng Leng; He, Zijiang J.

    2017-01-01

    Attention readily facilitates the detection and discrimination of objects, but it is not known whether it helps to form the vast volume of visual space that contains the objects and where actions are implemented. Conventional wisdom suggests not, given the effortless ease with which we perceive three-dimensional (3D) scenes on opening our eyes. Here, we show evidence to the contrary. In Experiment 1, the observer judged the location of a briefly presented target, placed either on the textured ground or ceiling surface. Judged location was more accurate for a target on the ground, provided that the ground was visible and that the observer directed attention to the lower visual field, not the upper field. This reveals that attention facilitates space perception with reference to the ground. Experiment 2 showed that judged location of a target in mid-air, with both ground and ceiling surfaces present, was more accurate when the observer directed their attention to the lower visual field; this indicates that the attention effect extends to visual space above the ground. These findings underscore the role of attention in anchoring visual orientation in space, which is arguably a primal event that enhances one’s ability to interact with objects and surface layouts within the visual space. The fact that the effect of attention was contingent on the ground being visible suggests that our terrestrial visual system is best served by its ecological niche. PMID:29177198

  6. First Results from The PACA_Rosetta67P Group in Support of ESA/Rosetta Mission

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2016-10-01

    The PACA_Rosetta67P Facebook group is the amateur observing program, complementary to the ground-based professional observations, in support of ESA/Rosetta mission to the comet 67P/Churyumovs-Gerasimenko (CG). The amateur campaign has followed the ESA/Rosetta's escort of 67P from August 2014 to present. Although 67P/CG is faint in its current apparition (it is a Jupiter Family comet, with a period of 6.45 years and is on its seventh passage of the inner solar system), the comet is known to brighten from about a month before perihelion and post perihelion. The comet behaved as expected. With the vast amount of data collected by the global amateur network, we are now able to (i) archive the data to allow it to be crowdsourced by the professionals; (ii) mine the data to determine various trends such as the variation of magnitude with respect to heliospheric distance; map the changes in Afrho (the dust activity parameter) and a long baseline of observations that show features similar to the features seen in the ground-based observations of the professionals. We will highlight the campaign and the results now possible to determine and compare with other observations taken at the same time. We will highlight the first results of the campaign, with the challenges and lessons learned to apply when developing other amateur observing programs.

  7. Multi-spectral observations of flares

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.

    2016-11-01

    Observations show that during solar flares radiation can be emitted across the entire electromagnetic spectrum, spanning from gamma rays to radio waves. These emissions, related to the conversion of magnetic energy into other forms of energy (kinetic, thermal, waves) through magnetic reconnection, are due to different physical processes that can occur in different layers of the Sun. This means that flare observations need to be carried out using instruments operating in different wave-bands in order to achieve a complete scenario of the processes going on. Taking into account that most of the radiative energy is emitted at optical and UV wavelengths, observations carried out from space, need to be complemented by observations carried out from ground-based telescopes. Nowadays, the possibility to carry on high temporal, spatial and spectral resolution from ground-based telescopes in coordinated campaigns with space-borne instruments (like, i.e., IRIS and HINODE) gives the opportunity to investigate the details of the flare emission at different wavelengths and can provide useful hints to understand these phenomena and compare observations with models. However, it is undoubted that sometimes the pointing to the flaring region is not an easy task, due to the necessity to provide the target coordinates to satellites with some hours in advance. Some problems arising from this issue will be discussed. Moreover, new projects related to flare catalogues and archives will be presented.

  8. Urine-marking and ground-scratching by free-ranging Arctic Wolves, Canis lupus arctos, in summer

    USGS Publications Warehouse

    Mech, L.D.

    2006-01-01

    Urine-marking and ground-scratching were observed in an Arctic Wolf (Canis lupus) pack on Ellesmere Island, Nunavut, Canada, during 16 summers between 1986 and 2005. All previously known urination postures and ground-scratching by breeding males and females were seen, and incidence of marking and scratching was greatest when non-pack wolves were present. Observations of urine-marking of food remains supported the conclusion from a captive Wolf study that such marking signals lack of edible food.

  9. Experience Gained From Launch and Early Orbit Support of the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Fink, D. R.; Chapman, K. B.; Davis, W. S.; Hashmall, J. A.; Shulman, S. E.; Underwood, S. C.; Zsoldos, J. M.; Harman, R. R.

    1996-01-01

    this paper reports the results to date of early mission support provided by the personnel of the Goddard Space Flight Center Flight Dynamics Division (FDD) for the Rossi X-Ray Timing Explorer (RXTE) spacecraft. For this mission, the FDD supports onboard attitude determination and ephemeris propagation by supplying ground-based orbit and attitude solutions and calibration results. The first phase of that support was to provide launch window analyses. As the launch window was determined, acquisition attitudes were calculated and calibration slews were planned. postlaunch, these slews provided the basis for ground determined calibration. Ground determined calibration results are used to improve the accuracy of onboard solutions. The FDD is applying new calibration tools designed to facilitate use of the simultaneous, high-accuracy star observations from the two RXTE star trackers for ground attitude determination and calibration. An evaluation of the performance of these tools is presented. The FDD provides updates to the onboard star catalog based on preflight analysis and analysis of flight data. The in-flight results of the mission support in each area are summarized and compared with pre-mission expectations.

  10. Short-term observations of double-peaked Na emission from Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Massetti, S.; Mangano, V.; Milillo, A.; Mura, A.; Orsini, S.; Plainaki, C.

    2017-04-01

    We report the analysis of short-term ground-based observations of the exospheric Na emission (D1 and D2 lines) from Mercury, which was characterized by two high-latitude peaks confined near the magnetospheric cusp footprints. During a series of scheduled observations from the Télescope Héliographique pour l'Etude du Magnétisme et des Instabilités Solaires (THEMIS) telescope, achieved by scanning the whole planet, we implemented a series of extra measurements by recording the Na emission from a narrow north-south strip only, centered above the two emission peaks. Our aim was to inspect the existence of short-term variations, which were never analyzed before from ground-based observations, and their possible correlation with interplanetary magnetic field variations. Though Mercury possesses a miniature magnetosphere, characterized by fast reconnection events that develop on a timescale of few minutes, ground-based observations show that the exospheric Na emission pattern can be globally stable for a prolonged period (some days) and also exhibits fluctuations in the time range of tens of minutes.

  11. The Ground-Based Transmission Spectrum of HD 189733b as Generated Through Multiple Broadband Filter Observations

    NASA Astrophysics Data System (ADS)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-06-01

    We present new multi-broadband transit photometry of HD 189733b observed with the Wyoming Infrared Observatory. With an ensemble of Sloan filter observations across multiple transits we have created an ultra-low resolution transmission spectrum to discern the nature of the exoplanet atmosphere. This data set exemplifies the capabilities of the 2.3 m observatory. The analysis was performed with a Markov-Chain Monte-Carlo method assisted by a Gaussian-processes regression model. These observations were taken as part of the University of Wyoming's 2017 Research Experience for Undergraduates (REU) and represent one of multiple hot Jupiter exoplanet targets for which we have transit event observations in multiple broadband filters.

  12. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.

  13. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.

  14. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,

  15. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally.

    PubMed

    Ramirez, Kelly S; Leff, Jonathan W; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W; Kelly, Eugene F; Oldfield, Emily E; Shaw, E Ashley; Steenbock, Christopher; Bradford, Mark A; Wall, Diana H; Fierer, Noah

    2014-11-22

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Addressing sub-scan variability of tundra snow properties in ground-based Ku- and X-band scatterometer observations

    NASA Astrophysics Data System (ADS)

    King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.

    2012-12-01

    During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon these measurements, continuous surfaces were generated to represent the observed snow target. Two snow pits were also completed within the field of view, quantifying vertical variability in density, permittivity, temperature, grain size, and stratigraphy. A new post-processing method is applied to divide the previously aggregated scatterometer observations into smaller sub-sets, which are then co-located with the physical snow observations. Sub-scan backscatter coefficients and their relationship to tundra snowpack parameters are then explored. The results presented here provide quantitative methods relevant to the radar observation science of snow and, therefore, to potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. Moreover, this paper provides guidelines for future studies exploring ground-based scatterometer observations of tundra snow.

  17. A~compact receiver system for simultaneous measurements of mesospheric CO and O3

    NASA Astrophysics Data System (ADS)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V. M.

    2015-09-01

    During the last decades, ground-based microwave radiometry has matured to an established remote sensing technique for measuring vertical profiles of a number of gases in the stratosphere and the mesosphere. Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the upper stratosphere and mesosphere both day and night, and even during cloudy conditions. Except for microwave instruments placed at high altitude sites, or at sites with dry atmospheric conditions, only molecules with significant emission lines below 150 GHz, such as CO, H2O and O3 can be observed. Vertical profiles of these molecules can give important information about chemistry and dynamics in the middle atmosphere. Today these measurements are performed at relatively few sites, more simple and reliable instrument solutions are required to make the measurement technique more widely spread. This need is today urgent as the number of satellite sensors observing the middle atmosphere is about to decrease drastically. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO at 115.27 GHz and O3 at 110.84 GHz is presented The radiometer, its calibration scheme and observation method are presented. The retrieval procedure, including compensation of the different tropospheric attenuation at the two frequencies, and error characterization are also described. The first measurement series from October 2014 until April 2015 taken at the Onsala Space Observatory, OSO, (57° N, 12° E) is analysed. The retrieved vertical profiles are compared with co-located CO and O3 data from the MLS instrument on the Aura satellite. The datasets from the instruments agree well to each other. The main differences are the higher OSO volume mixing ratios of O3 in the upper mesosphere during the winter nights and the higher OSO volume mixing ratios of CO in the mesosphere during the winter. The low bias of mesospheric winter values of CO from MLS compared to ground-based instruments has been reported earlier.

  18. A compact receiver system for simultaneous measurements of mesospheric CO and O3

    NASA Astrophysics Data System (ADS)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V. M.

    2016-02-01

    During the last decades, ground-based microwave radiometry has matured into an established remote sensing technique for measuring vertical profiles of a number of gases in the stratosphere and the mesosphere. Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the upper stratosphere and mesosphere both day and night, and even during cloudy conditions. Except for microwave instruments placed at high-altitude sites, or at sites with dry atmospheric conditions, only molecules with significant emission lines below 150 GHz, such as CO, H2O, and O3, can be observed. Vertical profiles of these molecules can give important information about chemistry and dynamics in the middle atmosphere. Today these measurements are performed at relatively few sites; more simple and reliable instrument solutions are required to make the measurement technique more widely spread. This need is urgent today as the number of satellite sensors observing the middle atmosphere is about to decrease drastically. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO at 115.27 GHz and O3 at 110.84 GHz is presented. The radiometer, its calibration scheme, and its observation method are presented. The retrieval procedure, including compensation of the different tropospheric attenuations at the two frequencies and error characterization, are also described. The first measurement series from October 2014 until April 2015 taken at the Onsala Space Observatory, OSO (57° N, 12° E), is analysed. The retrieved vertical profiles are compared with co-located CO and O3 data from the MLS instrument on the Aura satellite. The data sets from the instruments agree well with each other. The main differences are the higher OSO volume mixing ratios of O3 in the upper mesosphere during the winter nights and the higher OSO volume mixing ratios of CO in the mesosphere during the winter. The low bias of mesospheric winter values of CO from MLS compared to ground-based instruments was reported earlier.

  19. Retrieval and Validation of Zenith and Slant Path Delays From the Irish GPS Network

    NASA Astrophysics Data System (ADS)

    Hanafin, Jennifer; Jennings, S. Gerard; O'Dowd, Colin; McGrath, Ray; Whelan, Eoin

    2010-05-01

    Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications has been the focus of a number of Europe-wide networks and projects, most recently the EUMETNET GPS water vapour programme. The results presented here are from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. These two receivers supplement the existing Ordnance Survey Ireland active network of 17 permanent ground-based receivers. A system to retrieve column-integrated atmospheric water vapour from the data provided by this network has been developed, based on the GPS Analysis at MIT (GAMIT) software package. The data quality of the zenith retrievals has been assessed using co-located radiosondes at the Valentia site and observations from a microwave profiling radiometer at the Mace Head site. Validation of the slant path retrievals requires a numerical weather prediction model and HIRLAM (High-Resolution Limited Area Model) version 7.2, the current operational forecast model in use at Met Éireann for the region, has been used for this validation work. Results from the data processing and comparisons with the independent observations and model will be presented.

  20. Multi-instrument observations of the ionospheric and plasmaspheric density structure

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.

    2008-05-01

    : The density within the ionosphere and plasmasphere can be monitored using a combination of techniques that use both ground- and space-based instruments. We are combining diagnostic observations of everything, but the kitchen sink. These include observations of GPS TEC, TOPEX and JASON TEC, IMAGE EUV and FUV, GUVI composition data, ULF resonances, and many other multi-satellite data sets such as DMSP in situ observations. The dramatically growing number of GPS receivers on the ground and onboard Low-Earth-Orbit (LEO) satellites offers an excellent opportunity for remote sensing and monitoring of the ionospheric and plasmaspheric density structure using GPS TEC tomographic reconstruction technique. This allows us to clearly quantify magnetosphere-ionosphere (M-I) coupling dynamics, as well as confirm the long-standing conjecture that the mid-latitude trough and plasmapause are on the same field line. This has been demonstrated globally, for the first time, using a combination of data from IMAGE EUV and ground- and space-based GPS receivers. The two dimensional tomographic image of the ionosphere and plasmasphere, using data from the GPS receiver onboard LEO satellites, such as FedSat, CHAMP, COSMIC, etc, also provides a new ability to image the flux tube structure of ionospheric ion outflows, tracking flux tube structure up to 3.17Re (20,200 km) altitude for the first time. The combination of data from the altimeter on JASON and ground-based GPS network also provides an excellent opportunity to experimentally estimate the plasmaspheric density contribution to the ground-based GPS TEC and thus to the degradation of navigation and communication accuracy.

  1. Image processing improvement for optical observations of space debris with the TAROT telescopes

    NASA Astrophysics Data System (ADS)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  2. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  3. Near-Infrared Imaging Polarimetry of the GG Tauri Circumbinary Ring

    NASA Astrophysics Data System (ADS)

    Silber, Joel; Gledhill, Tim; Duchêne, Gaspard; Ménard, François

    2000-06-01

    We present 1 μm Hubble Space Telescope/near-infrared camera and multiobject spectrometer resolved imaging polarimetry of the GG Tau circumbinary ring. We find that the ring displays east-west asymmetries in surface brightness as well as several pronounced irregularities but is smoother than suggested by ground-based adaptive optics observations. The data are consistent with a 37° system inclination and a projected rotational axis at a position angle of 7° east of north, determined from millimeter imaging. The ring is strongly polarized, up to ~50%, which is indicative of Rayleigh-like scattering from submicron dust grains. Although the polarization pattern is broadly centrosymmetric and clearly results from illumination of the ring by the central stars, departures from true centrosymmetry and the irregular flux suggest that binary illumination, scattering through unresolved circumstellar disks, and shading by these disks may all be factors influencing the observed morphology. We confirm a ~0.25" shift between the inner edges of the near-infrared and millimeter images and find that the global morphology of the ring and the polarimetry provide strong evidence for a geometrically thick ring. A simple Monte Carlo scattering simulation is presented that reproduces these features and supports the thick-ring hypothesis. We cannot confirm filamentary streaming from the binary to the ring, also observed in the ground-based images, although it is possible that there is material inside the dynamically cleared region that might contribute to filamentary deconvolution artifacts. Finally, we find a faint fifth point source in the GG Tau field that, if it is associated with the system, is almost certainly a brown dwarf. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  4. Comparison and assessment of aerial and ground estimates of waterbird colonies

    USGS Publications Warehouse

    Green, M.C.; Luent, M.C.; Michot, T.C.; Jeske, C.W.; Leberg, P.L.

    2008-01-01

    Aerial surveys are often used to quantify sizes of waterbird colonies; however, these surveys would benefit from a better understanding of associated biases. We compared estimates of breeding pairs of waterbirds, in colonies across southern Louisiana, USA, made from the ground, fixed-wing aircraft, and a helicopter. We used a marked-subsample method for ground-counting colonies to obtain estimates of error and visibility bias. We made comparisons over 2 sampling periods: 1) surveys conducted on the same colonies using all 3 methods during 3-11 May 2005 and 2) an expanded fixed-wing and ground-survey comparison conducted over 4 periods (May and Jun, 2004-2005). Estimates from fixed-wing aircraft were approximately 65% higher than those from ground counts for overall estimated number of breeding pairs and for both dark and white-plumaged species. The coefficient of determination between estimates based on ground and fixed-wing aircraft was ???0.40 for most species, and based on the assumption that estimates from the ground were closer to the true count, fixed-wing aerial surveys appeared to overestimate numbers of nesting birds of some species; this bias often increased with the size of the colony. Unlike estimates from fixed-wing aircraft, numbers of nesting pairs made from ground and helicopter surveys were very similar for all species we observed. Ground counts by one observer resulted in underestimated number of breeding pairs by 20% on average. The marked-subsample method provided an estimate of the number of missed nests as well as an estimate of precision. These estimates represent a major advantage of marked-subsample ground counts over aerial methods; however, ground counts are difficult in large or remote colonies. Helicopter surveys and ground counts provide less biased, more precise estimates of breeding pairs than do surveys made from fixed-wing aircraft. We recommend managers employ ground counts using double observers for surveying waterbird colonies when feasible. Fixed-wing aerial surveys may be suitable to determine colony activity and composition of common waterbird species. The most appropriate combination of survey approaches will be based on the need for precise and unbiased estimates, balanced with financial and logistical constraints.

  5. InSAR observations of active volcanoes in Latin America

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  6. In Situ Verification of the NASA D3R's Hydrometeor Classification and Rainfall Products during the OLYMPEx Field Campaign

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chandra, C. V.

    2017-12-01

    As a ground validation (GV) radar for the Global Precipitation Measurement (GPM) satellite mission, the NASA dual-frequency, dual-polarization, Doppler radar (D3R) was deployed just north of Pacific Beach, WA between November 8th, 2015 and January 15th, 2016, as part of the Olympic Mountains Experiment (OLYMPEx). The D3R's observations were coordinated with a diverse array of instruments including the NASA NPOL S-band radar, Autonomous Parsivel Unit (APU) disdrometers, rain gauges, and airborne probe. The Ku- and Ka-band D3R is analogous to the GPM core satellite dual-frequency precipitation radar (DPR), but can provide more detailed insight into the precipitation microphysics through the ground-based dual-frequency dual-polarization observations. Previous studies have revealed that the dual polarization radar can be used to identify different hydrometeor types and their size and shape information. However, most of the previous studies are devoted to S-, C-, and/or X-band frequencies since they are standard operating frequency in many countries. This paper presents a region-based hydrometeor classification methodology applied for the NASA D3R measurements collected during OLYMPEx. This paper also details the differential phase based attenuation correction methodology and rainfall algorithm developed for the D3R. The D3R's hydrometeor classification and rainfall products are evaluated using other remote sensors and in situ measurements. In particular, the derived hydrometeor types are cross compared with collocated S-band products and images collected by the airborne probe. The rainfall performance are assessed using rain gauge and disdrometer observations. Results show that the NASA D3R has great potential for monitoring precipitation microphysics and rainfall estimation, especially light rainfall that is hard to be observed by traditional ground or space based sensors.

  7. First results from ground-based CO2 remote sounding using high-resolution thermal IR laser heterodyne radiometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, Alex; Huebner, Marko; Macleod, Neil; Weidmann, Damien

    2016-04-01

    Over the course of the last decade, the Laser Spectroscopy Group at RAL Space has considerably furthered the passive remote sensing technique of thermal IR Laser Heterodyne Radiometry (LHR), and applied it successfully to the ground-based sounding of atmospheric profiles of a variety of trace gases, including methane. LHR is underpinned by coherent detection technology and ideally shot noise-limited, which can significantly enhance the signal-to-noise ratio of acquired atmospheric spectra over conventional direct detection spectrometers when high spectral (>500,000 resolving power) and high spatial resolutions are needed. These benefits allow probing optimized narrow spectral windows (1 cm-1) with full absorption lineshape information, useful for trace gas vertical profiling. Furthermore, LHR has a high potential for miniaturization into a rugged, unprecedentedly compact package, through hollow waveguide optical integration, facilitating its deployment in ground-based observation networks, as well as on a variety of airborne and spaceborne platforms, whilst retaining its high specifications. This makes LHR well-suited to the remote sounding of key greenhouse gases, in particular carbon dioxide, as observations with high precision and accuracy are crucial to discriminate trends and small variations over a substantial background concentration, and in order to contribute to flux estimations in top-down carbon cycle inversion approaches and anthropogenic emission monitoring. Here, we present a new optical bench-based LHR prototype that has been specifically built to demonstrate CO2 sounding in the thermal IR. The instrument has been coupled to a new permanently installed solar tracker to take a long-term measurement series in solar occultation mode, and to assess the performance of the instrument. We discuss its theoretical performance modelled using an Observation System Simulator, and showcase first results from a 6 months' archive, with observations undergoing gradual refinement as the retrieval method is improved.

  8. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  9. Agreements between ground-based and satellite-based observations. [of earth magnetospheric currents

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Weimer, D.; Iijima, T.; Ahn, B.-H.; Kamide, Y.

    1990-01-01

    The polar ionospheric parameters obtained by the meridian chain of magnetometers are compared with those obtained by satellites, and a number of ionospheric quantities including the distribution of the electric potential, field-aligned currents, ionospheric currents and their equatorial counterparts, and the relationship between the AE index and the cross-polar cap potential is determined. It is noted that the agreement observed between the ground-based and satellite-based results allows to reduce the search for the driving mechanism of the ionospheric Pedersen current to identifying the driving mechanism of the Pedersen counterpart current in the equatorial plane.

  10. Data processing of Martian topographic information obtained from ground-based radar and spectroscopy and from Mariners 6 and 7. Martian topography elevations: Data processing

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1974-01-01

    Papers are presented which were published as a result of a project involving the preparation of a topographical elevation contour map of Mars from all data sources available through 1969, as well as the observation of Mars by spectroscopic methods in 1971 to provide additional pressure data for topographic information. Topics of the papers include: the analysis of large-scale Martian topography variations - data preparation from earth based radar, earth based CO2 spectroscopy, and Mariners 6 and 7 CO2 spectroscopy; the analysis of water content in observed Martian white clouds; and Martian, lunar, and terrestrial crusts - a three-dimensional exercise in comparative geophysics.

  11. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  12. Applications of intelligent computer-aided training

    NASA Technical Reports Server (NTRS)

    Loftin, R. B.; Savely, Robert T.

    1991-01-01

    Intelligent computer-aided training (ICAT) systems simulate the behavior of an experienced instructor observing a trainee, responding to help requests, diagnosing and remedying trainee errors, and proposing challenging new training scenarios. This paper presents a generic ICAT architecture that supports the efficient development of ICAT systems for varied tasks. In addition, details of ICAT projects, built with this architecture, that deliver specific training for Space Shuttle crew members, ground support personnel, and flight controllers are presented. Concurrently with the creation of specific ICAT applications, a general-purpose software development environment for ICAT systems is being built. The widespread use of such systems for both ground-based and on-orbit training will serve to preserve task and training expertise, support the training of large numbers of personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences.

  13. Latitudinally dependent Trimpi effects: Modeling and observations

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Yeo, Richard F.; Nunn, David; Smith, Andy J.

    1999-09-01

    Modeling studies show that the exclusion of the propagating VLF wave from the ionospheric region results in the decline of Trimpi magnitude with patch altitude. In large models such as Long Wave Propagation Capability (LWPC) this exclusion does not occur inherently in the code, and high-altitude precipitation modeling can produce results that are not consistent with observations from ground-based experiments. The introduction to LWPC of realistic wave attenuation of the height gain functions in the ionosphere solves these computational problems. This work presents the first modeling of (Born) Trimpi scattering at long ranges, taking into account global inhomogeneities and continuous mode conversion along all paths, by employing the full conductivity perturbation matrix. The application of the more realistic height gain functions allows the prediction of decreasing Trimpi activity with increasing latitude, primarily through the mechanism of excluding the VLF wave from regions of high conductivity and scattering efficiency. Ground-based observations from Faraday and Rothera, Antarctica, in September and October 1995 of Trimpi occurring on the NPM (Hawaii) path provide data that are consistent with these predictions. Latitudinal variations in Trimpi occurrence near L=2.5, with a significant decrease of about 70% occurrence between L=2.4 and L=2.8, have been observed at higher L shell resolution than in previous studies (i.e., 2

  14. Characterization of Metals Melting Discs: Skylab Experiment M551

    NASA Technical Reports Server (NTRS)

    Monroe, R. E.

    1973-01-01

    Information developed to characterize flight and ground based samples from the metals melting experiment is detailed in this report. Included are the characteristics determined by nondestructive examination, visual observation, metallographic examination and posttest measurements. Comparisons of the flight and ground based discs showed that an electron beam heat source can be used successfully in zero gravity for cutting, welding, or melting. Few differences were observed that could be attributed to the absence of gravity in these operations.

  15. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  16. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  17. Upscaling sparse ground-based soil moisture observations for the validation of satellite surface soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...

  18. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  19. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.

  20. HD 50844: a new look at δ Scuti stars from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.

    2009-10-01

    Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work is based on ground-based observations made with ESO telescopes at the La Silla Observatory under the ESO Large Programme LP178.D-0361 and on data collected at the Observatorio de Sierra Nevada (Spain), at the Observatorio Astronómico Nacional San Pedro Mártir (Mexico), and at the Piszkéstetö Mountain Station of Konkoly Observatory (Hungary). Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/85 Current address: Laboratoire AIM, CEA/DSM CNRS Université Paris Diderot, CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.

  1. The decade of discovery in astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A survey of astronomy and astrophysics in the 1990s is presented and a prioritized agenda is offered for space- and ground-based research into the 21st century. In addition to proposing new telescopes for ground and space, the research infrastructure is discussed. The urgent need is emphasized for increased support of individual investigators, for appropriate maintenance and refurbishment of existing facilities, and for a balanced program of space astronomy. The scientific and the technical opportunities of the 1990s are summarized and the technological development is described needed for instruments to be built in the first years of the next century. Also addressed is the suitability of the Moon as an observation site.

  2. First results of ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong

    2014-11-01

    The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.

  3. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  4. The DRAGON scale concept and results for remote sensing of aerosol properties

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.

    2013-12-01

    Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.

  5. Surface deformation of Ayaz-Akhtarma Mud volcano in Azerbaijan detected by ALOS/ALOS-2 InSAR and its source modeling

    NASA Astrophysics Data System (ADS)

    Iio, K.; Furuya, M.

    2017-12-01

    Interferometric synthetic aperture radar (InSAR) allows us to image a wide area with dense spatial resolution without a need for ground-based measurement tools with a precision on the order of a few centimeters. This technique has been mainly used to investigate such ground deformation associated with earthquakes, volcanic eruptions and ground subsidence due to water pumping. However there have been few cases that applied the technique to the activity of mud volcanos. Azerbaijan, located on the western edge of the Caspian Sea in Central Asia, is one of the most abundant countries in term of the population of mud volcanoes over the land. We focused on an especially large and unique mud volcano known as the Ayaz-Akhtarma because the deformation signals are the most evident and peculiar. Antonielli et al., (2014) detected the ground deformation of this mud volcano, using ENVISAT/ASAR C-band SAR data spanning from 2003 to 2005 only along descending path. While the ground displacement at the volcano was 20 cm in line of sight (LOS) for the two years, Antonielli et al., (2014) attributed the observed LOS changes to the uplift and subsidence in the eastern half and western half, respectively, whereas no source model was presented in the study. In the previous study, however, the 3D displacements were totally uncertain because of the restricted looking geometry. We could observe the displacements, based not only on the ALOS data along the ascending path that is the opposite look direction from the previous study but also on the ALOS-2 data for ascending and descending paths. Our observed LOS change data indicated more active and larger horizontal displacements. The cumulative LOS displacement is up to nearly 300 cm for four years by ALOS and 100 cm for two years by ALOS-2. In addition to InSAR, we performed MAI analysis. MAI is a technique for measuring ground displacement along flight direction, which is not sensitive to the InSAR measurement. The result of MAI showed a few meters displacement and also indicated mostly horizontal displacement. Our preliminary source modeling indicates that a fault with normal faulting and tensile opening could account for the observed LOS changes. The more precise source modeling by simultaneous inversion to explain both the InSAR and MAI displacements is under construction.

  6. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    NASA Astrophysics Data System (ADS)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  7. An Isolated Microlens Observed from K2, Spitzer, and Earth

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Udalski, A.; Huang, C. X.; Calchi Novati, S.; Sumi, T.; Poleski, R.; Skowron, J.; Mróz, P.; Szymański, M. K.; Soszyński, I.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Gould, A.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Spitzer Team; Bond, I. A.; Bennett, D. P.; Suzuki, D.; Rattenbury, N. J.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Munakata, H.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-11-01

    We present the result of microlensing event MOA-2016-BLG-290, which received observations from the two-wheel Kepler (K2), Spitzer, as well as ground-based observatories. A joint analysis of data from K2 and the ground leads to two degenerate solutions of the lens mass and distance. This degeneracy is effectively broken once the (partial) Spitzer light curve is included. Altogether, the lens is found to be an extremely low-mass star or brown dwarf ({77}-23+34 {M}{{J}}) located in the Galactic bulge (6.8+/- 0.4 kpc). MOA-2016-BLG-290 is the first microlensing event for which we have signals from three well-separated (∼1 au) locations. It demonstrates the power of two-satellite microlensing experiment in reducing the ambiguity of lens properties, as pointed out independently by S. Refsdal and A. Gould several decades ago.

  8. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  9. High sensitive THz superconducting hot electron bolometer mixers and transition edge sensors

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Miao, W.; Zhou, K. M.; Guo, X. H.; Zhong, J. Q.; Shi, S. C.

    2016-11-01

    Terahertz band, which is roughly defined as 0.1 THz to 10 THz, is an interesting frequency region of the electromagnetic spectrum to be fully explored in astronomy. THz observations play key roles in astrophysics and cosmology. High sensitive heterodyne and direct detectors are the main tools for the detection of molecular spectral lines and fine atomic structure spectral lines, which are very important tracers for probing the physical and chemical properties and dynamic processes of objects such as star and planetary systems. China is planning to build an THz telescope at Dome A, Antarctica, a unique site for ground-based THz observations. We are developing THz superconducting hot electron bolometer (HEB) mixers and transition edge sensors (TES), which are quantum limited and back-ground limited detectors, respectively. Here we first introduce the working principles of superconducting HEB and TES, and then mainly present the results achieved at Purple mountain Observatory.

  10. Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.

    2017-12-01

    Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new pseudo-dynamic rupture modeling approach for computing broadband ground-motion time-histories for simulation-based PSHA

  11. A New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  12. Near Real Time Data for Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2014-12-01

    Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.

  13. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    NASA Astrophysics Data System (ADS)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection and energy measurement, simulation studies indicate that the fluxes and forward-beaming observed are consistent with production in processes such as the relativistic runaway electron avalanche. We conclude that the anomalous triggers observed by TA are most likely downward-directed Terrestrial Gamma Flashes.

  14. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; hide

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  15. Variation of TEC and related parameters over the Indian EIA region from ground and space based GPS observations during the low solar activity period of May 2007-April 2008

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.; Nagaraja, Kamsali; Jakowski, N.

    2017-03-01

    The annual variations of ionospheric Total Electron Content (TEC), F-region peak ionisation (NmF2) and the ionospheric slab thickness (τ) over the Indian region during the low solar activity period of May 2007-April 2008 have been studied. For this purpose the ground based TEC data obtained from GAGAN measurements and the space based data from GPS radio occultation technique using CHAMP have been utilised. The results of these independent measurements are combined to derive additional parameters such as the equivalent slab thickness of the total and the bottom-side ionospheric regions (τT and τB). The one year hourly average values of all these parameters over the ionospheric anomaly latitude region (10-26°N) are presented here along with the statistical error estimates. It is expected that these results are potentially suited to be used as base level values during geomagnetically quiet and undisturbed solar conditions.

  16. Comparisons of COSMIC and C/NOFS GPS Occultation Ionospheric Scintillation Measurements with Ground-based Radar and VHF Measurements

    NASA Astrophysics Data System (ADS)

    Ruggiero, F. H.; Groves, K. M.; Straus, P. R.; Caton, R. G.; Starks, M. J.; Tanyi, K. L.; Verlinden, M.

    2009-12-01

    Ionospheric irregularities are known to cause scintillation of trans-ionospheric radio signals and can affect space-based UHF/VHF communications, causing outages, and degrading GPS accuracy and precision. Current capability for characterizing and predicting ionospheric scintillation utilizes a network of ground-based receivers to detect scintillation and then extrapolate for short-term forecasts. Practical limits on deploying the ground receivers limits the accuracy and spatial coverage one can achieve with this approach. A more global approach is to use a set of space-based satellites equipped with GPS receivers, such as the COSMIC satellite constellation, to measure scintillations observed during so-called occultations with GPS satellites. In this paper the signal-to-noise values of GPS L1 signals received on the COSMIC and C/NOFS satellites for the portions of the occultations that are not affected by the terrestrial atmosphere are examined to help identify areas of ionospheric scintillation. Three years of S4 scintillation index values from COSMIC occultations are compared with near-zenith ground-based VHF S4 scintillation measurements from the AFRL SCIntillation Network Decision Aid (SCINDA) network stations. The data are correlated to ascertain the viability of using space-based scintillation measurements to characterize and predict scintillation to ground-based receivers. Several days of COSMIC and C/NOFS data are compared with each other and the ALTAIR radar located on Kwajalein Atoll, Marshall Islands to examine how occultation geometry affects observed scintillation and also to verify techniques that provide an upper bound on the spatial location of the ionospheric irregularities contributing to scintillations observed in the occultations.

  17. Comparison of High Resolution Quantitative Extreme Precipitation Estimation from GPM Dual-frequency Radar and S-band Radar Observation over Southern China

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Chen, S.; Fan, S.; Min, C.

    2017-12-01

    Precipitation is one of the basic elements of regional and global climate change. Not only does the precipitation have a great impact on the earth's hydrosphere, but also plays a crucial role in the global energy balance. S-band ground-based dual-polarization radar has the excellent performance of identifying the different phase states of precipitation, which can dramatically improve the accuracy of hail identification and quantitative precipitation estimation (QPE). However, the ground-based radar cannot measure the precipitation in mountains, sparsely populated plateau, desert and ocean because of the ground-based radar void. The Unites States National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) have launched the Global Precipitation Measurement (GPM) for almost three years. GPM is equipped with a GPM Microwave Imager (GMI) and a Dual-frequency (Ku- and Ka-band) Precipitation Radar (DPR) that covers the globe between 65°S and 65°N. The main parameters and the detection method of DPR are different from those of ground-based radars, thus, the DPR's reliability and capability need to be investigated and evaluated by the ground-based radar. This study compares precipitation derived from the ground-based radar measurement to that derived from the DPR's observations. The ground-based radar is a S-band dual-polarization radar deployed near an airport in the west of Zhuhai city. The ground-based quantitative precipitation estimates are with a high resolution of 1km×1km×6min. It shows that this radar covers the whole Pearl River Delta of China, including Hong Kong and Macao. In order to quantify the DPR precipitation quantification capabilities relative to the S-band radar, statistical metrics used in this study are as follows: the difference (Dif) between DPR and the S-band radar observation, root-mean-squared error (RMSE) and correlation coefficient (CC). Additionally, Probability of Detection (POD) and False Alarm Ratio (FAR) are used to further evaluate the rainfall capacity of the DPR. The comparisons performed between the DPR and the S-band radar are expected to provide a useful reference not only for algorithm developers but also the end users in hydrology, ecology, weather forecast service and so on.

  18. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    NASA Astrophysics Data System (ADS)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite retrievals. Evaluation results are assessed against recommended criteria and peer studies in the literature. Further analysis is conducted, based upon these assessments, to discover likely errors in model inputs and potential deficiencies in the model itself. Correlations as well as differences in input errors and model deficiencies revealed by ground-level measurements versus satellite observations are discussed. Additionally, sensitivity analyses are employed to investigate errors in emission-rate estimates using either ground-level measurements or satellite retrievals, and the results are compared against each other considering observational uncertainties. Recommendations are made for how to effectively utilize satellite retrievals in regulatory air quality modeling.

  19. Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana; hide

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity soundings were obtained with the UAHuntsville mobile sounding unit and the Redstone Arsenal (QAG) morning sounding.

  20. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles✰

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Lebonnois, Sebastien; Mahieux, Arnaud; Pätzold, Martin; Bougher, Steven; Bruinsma, Sean; Chamberlain, Sarah; Clancy, R. Todd; Gérard, Jean-Claude; Gilli, Gabriella; Grassi, Davide; Haus, Rainer; Herrmann, Maren; Imamura, Takeshi; Kohler, Erika; Krause, Pia; Migliorini, Alessandra; Montmessin, Franck; Pere, Christophe; Persson, Moa; Piccialli, Arianna; Rengel, Miriam; Rodin, Alexander; Sandor, Brad; Sornig, Manuela; Svedhem, Håkan; Tellmann, Silvia; Tanga, Paolo; Vandaele, Ann C.; Widemann, Thomas; Wilson, Colin F.; Müller-Wodarg, Ingo; Zasova, Ludmila

    2017-09-01

    The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components. The differences between the VEx temperature profiles and the VIRA below 0.1 mbar/95 km are small. There is, however, a clear discrepancy at high latitudes in the 10-30 mbar (70-80 km) range. The VEx observations will also allow the improvement of the empirical models (VTS3 by Hedin et al., 1983 and VIRA by Keating et al., 1985) above 0.03 mbar/100 km, in particular the 100-150 km region where a sufficient observational coverage was previously missing. The next steps in order to define the updated VIRA temperature structure up to 150 km altitude are (1) define the grid on which this database may be provided, (2) fill what is possible with the results of the data intercomparison, and (3) fill the observational gaps. An interpolation between the datasets may be performed by using available General Circulation Models as guidelines. An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude and at all local solar times for a complete description of the atmospheric thermal structure, in particular on the dayside above 100 km. New in-situ observations in the atmosphere below 40 km are missing, an altitude region that cannot be accessed by occultation experiments. All these questions need to be addressed by future missions.

  1. Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)

    NASA Technical Reports Server (NTRS)

    Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.

    2014-01-01

    Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.

  2. Aeronomy of the Venus Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Bougher, S. W.; López-Valverde, M. A.; Pätzold, M.; Drossart, P.; Piccioni, G.

    2017-11-01

    We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus' upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.

  3. Ground-based Parallax Confirmed by Spitzer: Binary Microlensing Event MOA-2015-BLG-020

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Zhu, Wei; Mao, Shude; Bond, I. A.; Gould, A.; Udalski, A.; Sumi, T.; Bozza, V.; Ranc, C.; Cassan, A.; Yee, J. C.; Han, C.; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Rattenbury, N.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration; KozŁowski, S.; Mróz, P.; Pawlak, M.; Pietrukowicz, P.; Poleski, R.; Skowron, J.; Soszyński, I.; Szymański, M. K.; Ulaczyk, K.; OGLE Collaboration; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Wibking, B.; Spitzer Team; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Street, R. A.; Tsapras, Y.; Hundertmark, M.; Bachelet, E.; Dominik, M.; Horne, K.; Figuera Jaimes, R.; Wambsganss, J.; Bramich, D. M.; Schmidt, R.; Snodgrass, C.; Steele, I. A.; Menzies, J.; RoboNet Collaboration

    2017-08-01

    We present the analysis of the binary gravitational microlensing event MOA-2015-BLG-020. The event has a fairly long timescale (˜63 days) and thus the light curve deviates significantly from the lensing model that is based on the rectilinear lens-source relative motion. This enables us to measure the microlensing parallax through the annual parallax effect. The microlensing parallax parameters constrained by the ground-based data are confirmed by the Spitzer observations through the satellite parallax method. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined. It is found that the binary lens is composed of two dwarf stars with masses {M}1=0.606+/- 0.028 {M}⊙ and {M}2=0.125 +/- 0.006 {M}⊙ in the Galactic disk. Assuming that the source star is at the same distance as the bulge red clump stars, we find the lens is at a distance {D}L=2.44+/- 0.10 {kpc}. We also provide a summary and short discussion of all of the published microlensing events in which the annual parallax effect is confirmed by other independent observations.

  4. Polar Pollution by Pyroconvection: Assessing the transport of smoke into the Arctic and Antarctic

    NASA Astrophysics Data System (ADS)

    Fromm, M. D.; Stocks, B. J.; Hoff, R.

    2007-12-01

    In northern summer of 2007 boreal forest fires erupted into pyrocumulonimbus (pyroCb) on two continents and injected substantial amounts of smoke into the upper troposphere and lower stratosphere (UTLS). Some of this smoke was transported into high Arctic latitudes where it was observed by ground and space-based instruments. In the Austral summer of 2006/2007 an extremely intense pyroCb in Victoria Australia also polluted the UTLS, from tropical to Antarctic latitudes. This wide-ranging influence of a "small", discrete event such as a fire-aided thunderstorm implies that the pyroCb's weather and climate context needs to be much better understood. Here we will present two case studies from the above-mentioned seasons. The Austral case will include an analysis of the immediate post-blowup smoke plume as observed by MODIS imagery and OMI aerosol index (AI). Then the plume will be followed as it circles the globe and spreads to meridional extremes using AI, CALIPSO backscatter, and geostationary satellite visible imagery. The boreal study will summarize the notable pyroCbs of 2007. One of these was in Mongolia, the first such unambiguously determined Asian pyroCb. The main focus of this analysis will on the observations of stratospheric smoke subsequent to these blowups in midlatitudes observed by CALIPSO, and Arctic smoke observed by both CALIPSO and ground-based lidar at Eureka.

  5. The impact of urban morphology and land cover on the sensible heat flux retrieved by satellite and in-situ observations

    NASA Astrophysics Data System (ADS)

    Gawuc, L.; Łobocki, L.; Kaminski, J. W.

    2017-12-01

    Land surface temperature (LST) is a key parameter in various applications for urban environments research. However, remotely-sensed radiative surface temperature is not equivalent to kinetic nor aerodynamic surface temperature (Becker and Li, 1995; Norman and Becker, 1995). Thermal satellite observations of urban areas are also prone to angular anisotropy which is directly connected with the urban structure and relative sun-satellite position (Hu et al., 2016). Sensible heat flux (Qh) is the main component of surface energy balance in urban areas. Retrieval of Qh, requires observations of, among others, a temperature gradient. The lower level of temperature measurement is commonly replaced by remotely-sensed radiative surface temperature (Chrysoulakis, 2003; Voogt and Grimmond, 2000; Xu et al., 2008). However, such replacement requires accounting for the differences between aerodynamic and radiative surface temperature (Chehbouni et al., 1996; Sun and Mahrt, 1995). Moreover, it is important to avoid micro-scale processes, which play a major role in the roughness sublayer. This is due to the fact that Monin-Obukhov similarity theory is valid only in dynamic sublayer. We will present results of the analyses of the impact of urban morphology and land cover on the seasonal changes of sensible heat flux (Qh). Qh will be retrieved by two approaches. First will be based on satellite observations of radiative surface temperature and second will be based on in-situ observations of kinetic road temperature. Both approaches will utilize wind velocity, and air temperature observed in-situ. We will utilize time series of MODIS LST observations for the period of 2005-2014 as well as simultaneous in-situ observations collected by road weather network (9 stations). Ground stations are located across the city of Warsaw, outside the city centre in low-rise urban structure. We will account for differences in urban morphology and land cover in the proximity of ground stations. We will utilize DEM and Urban Atlas LULC database and freely available visible aerial and satellite imagery. All the analyses will be conducted for single pixels, which will be closest to the locations of the ground stations (nearest neighbour approach). Appropriate figures showing the seasonal variability of Qh will be presented.

  6. Ground-based Spectroscopy Of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2011-09-01

    In recent years, spectroscopy of exoplanetary atmospheres has proven to be very successful. When in the past discoveries were made using space-born observatories such as Hubble and Spitzer, the observational focus continues to shift to ground-based facilities. This is especially true since the end of the Spitzer cold-phase, depleting us of a space-borne eye in the infrared. With projects like E-ELT and TMT on the horizon, this trend will only intensify. So far several observational strategies have been employed for ground-based spectroscopy. All of which are trying to solve the problems incurred by high systematic and telluric noise and are distinct in their advantages and dis-advantages. Using time-resolved spectroscopy, we obtain an individual lightcurve per spectral channel of the instrument. The benefits of such an approach are multifold since it allows us to utilize a broad spectrum of statistical methods. Using new IRTF data, in the K and L-bands, we will illustrate the intricacies of two spectral retrieval approaches: 1) the self-filtering and signal amplification achieved by consecutive convolutions in the frequency domain, 2) the blind de-convolution of signal from noise using non-parametric machine learning algorithms. These novel techniques allow us to present new results on the hot-Jupiter HD189733b, showing strong methane emissions in both, K and L-bands at spectral resolutions of R 170. Using data from the IRTF/SpeX instrument, we will discuss the implications and possible theoretical models of strong methane emissions on this planet.

  7. Modeling the uncertainty of estimating forest carbon stocks in China

    NASA Astrophysics Data System (ADS)

    Yue, T. X.; Wang, Y. F.; Du, Z. P.; Zhao, M. W.; Zhang, L. L.; Zhao, N.; Lu, M.; Larocque, G. R.; Wilson, J. P.

    2015-12-01

    Earth surface systems are controlled by a combination of global and local factors, which cannot be understood without accounting for both the local and global components. The system dynamics cannot be recovered from the global or local controls alone. Ground forest inventory is able to accurately estimate forest carbon stocks at sample plots, but these sample plots are too sparse to support the spatial simulation of carbon stocks with required accuracy. Satellite observation is an important source of global information for the simulation of carbon stocks. Satellite remote-sensing can supply spatially continuous information about the surface of forest carbon stocks, which is impossible from ground-based investigations, but their description has considerable uncertainty. In this paper, we validated the Lund-Potsdam-Jena dynamic global vegetation model (LPJ), the Kriging method for spatial interpolation of ground sample plots and a satellite-observation-based approach as well as an approach for fusing the ground sample plots with satellite observations and an assimilation method for incorporating the ground sample plots into LPJ. The validation results indicated that both the data fusion and data assimilation approaches reduced the uncertainty of estimating carbon stocks. The data fusion had the lowest uncertainty by using an existing method for high accuracy surface modeling to fuse the ground sample plots with the satellite observations (HASM-SOA). The estimates produced with HASM-SOA were 26.1 and 28.4 % more accurate than the satellite-based approach and spatial interpolation of the sample plots, respectively. Forest carbon stocks of 7.08 Pg were estimated for China during the period from 2004 to 2008, an increase of 2.24 Pg from 1984 to 2008, using the preferred HASM-SOA method.

  8. A Program of Ground-Based Astronomy to Complement Einstein Observations.

    DTIC Science & Technology

    1982-11-30

    Astronomy D T I C i CO-,,, Uv I,. WA TOPE: -. Gary A. Cbanan Assistant Professor of Phy.3[cs i t0V.l.., 1982 %30𔃼 0 ii CONTENTS Page A. REPORT DOCUMENTATION...block number) A total of eight ground-based astronomical observing programs were carried out in pursuit of a multiwavelength approach to a number of...astro- physical problems. Synthesis of these results with existing X-ray data led to considerable progress on problems of the emission mechanisms and

  9. Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling: M-I-T COUPLING OF TCV

    DOE PAGES

    Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; ...

    2017-03-11

    We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements withmore » corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.« less

  10. Long-range transport of Siberian forest fire smoke to Canada's west coast identified by Lidar observations

    NASA Astrophysics Data System (ADS)

    Strawbridge, Kevin; Cottle, Paul; McKendry, Ian

    2014-05-01

    During the summer of 2012, forest fire smoke wasdetected by two CORALNet lidar systems operated by Environment Canada along Canada's west coast. Based on satellite, model and back trajectory analysis it is thought the smoke originated in Boreal Asia as a result of unusually large amounts of Siberian wildfire activity. The CORALNet lidar systems operate autonomously, measuring the vertical profile of aerosols from near ground to 18 km at a vertical resolution of 3 m and 7.5 m and a temporal resolution of 10 s and 60 s at 1064 nm and 532 nm wavelengths respectively. The lidar also measures the depolarization ratio at 532 nm: and indicator of particle shape. The lidars, located at the University of British Columbia in Vancouver and in the village of Whistler, British Columbia observed an increase in the aerosol backscatter ratio in the free troposphere as the Siberian forest fire smoke was transported across the Pacific Ocean into the region. Of particular importance was the increase in ground level particulate due to the mixing of the smoke into the boundary layer, impacting the air quality in southwestern British Columbia. Lidar depolarization ratios in the boundary layer and the free troposphere were consistent with high concentrations of smoke. Detailed lidar observations will be presented along with supporting satellite, model and ground observations revealing the magnitude of the impact on the region.

  11. Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling: M-I-T COUPLING OF TCV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.

    We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements withmore » corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.« less

  12. High-resolution sub-ice-shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Davies, D.; Bingham, R. G.; Graham, A. G. C.; Spagnolo, M.; Dutrieux, P.; Vaughan, D. G.; Jenkins, A.; Nitsche, F. O.

    2017-09-01

    Pine Island Glacier Ice Shelf (PIGIS) has been thinning rapidly over recent decades, resulting in a progressive drawdown of the inland ice and an upstream migration of the grounding line. The resultant ice loss from Pine Island Glacier (PIG) and its neighboring ice streams presently contributes an estimated ˜10% to global sea level rise, motivating efforts to constrain better the rate of future ice retreat. One route toward gaining a better understanding of the processes required to underpin physically based projections is provided by examining assemblages of landforms and sediment exposed over recent decades by the ongoing ungrounding of PIG. Here we present high-resolution bathymetry and sub-bottom-profiler data acquired by autonomous underwater vehicle (AUV) surveys beneath PIGIS in 2009 and 2014, respectively. We identify landforms and sediments associated with grounded ice flow, proglacial and subglacial sediment transport, overprinting of lightly grounded ice-shelf keels, and stepwise grounding line retreat. The location of a submarine ridge (Jenkins Ridge) coincides with a transition from exposed crystalline bedrock to abundant sediment cover potentially linked to a thick sedimentary basin extending upstream of the modern grounding line. The capability of acquiring high-resolution data from AUV platforms enables observations of landforms and understanding of processes on a scale that is not possible in standard offshore geophysical surveys.

  13. Technology, Data Bases and System Analysis for Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Lesh, James

    1995-01-01

    Optical communications is becoming an ever-increasingly important option for designers of space-to- ground communications links, whether it be for government or commercial applications. In this paper the technology being developed by NASA for use in space-to-ground optical communications is presented. Next, a program which is collecting a long term data base of atmospheric visibility statistics for optical propagation through the atmosphere will be described. Finally, a methodology for utilizing the statistics of the atmospheric data base in the analysis of space-to-ground links will be presented. This methodology takes into account the effects of station availability, is useful when comparing optical communications with microwave systems, and provides a rationale establishing the recommended link margin.

  14. Adapting Surface Ground Motion Relations to Underground conditions: A case study for the Sudbury Neutrino Observatory in Sudbury, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Babaie Mahani, A.; Eaton, D. W.

    2013-12-01

    Ground Motion Prediction Equations (GMPEs) are widely used in Probabilistic Seismic Hazard Assessment (PSHA) to estimate ground-motion amplitudes at Earth's surface as a function of magnitude and distance. Certain applications, such as hazard assessment for caprock integrity in the case of underground storage of CO2, waste disposal sites, and underground pipelines, require subsurface estimates of ground motion; at present, such estimates depend upon theoretical modeling and simulations. The objective of this study is to derive correction factors for GMPEs to enable estimation of amplitudes in the subsurface. We use a semi-analytic approach along with finite-difference simulations of ground-motion amplitudes for surface and underground motions. Spectral ratios of underground to surface motions are used to calculate the correction factors. Two predictive methods are used. The first is a semi-analytic approach based on a quarter-wavelength method that is widely used for earthquake site-response investigations; the second is a numerical approach based on elastic finite-difference simulations of wave propagation. Both methods are evaluated using recordings of regional earthquakes by broadband seismometers installed at the surface and at depths of 1400 m and 2100 m in the Sudbury Neutrino Observatory, Canada. Overall, both methods provide a reasonable fit to the peaks and troughs observed in the ratios of real data. The finite-difference method, however, has the capability to simulate ground motion ratios more accurately than the semi-analytic approach.

  15. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  16. Adaptive nonlinear control for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Black, William S.

    We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.

  17. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  18. Ground-based determination of atmospheric radiance for correction of ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1974-01-01

    A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.

  19. Wide-Range Multiwavelength Observations of Northern TeV Blazars With MAGIC / HESS, Suzaku And KVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, M.; /Munich, Max Planck Inst.; Rugamer, S.

    2007-11-14

    We have conducted multiwavelength observations of several northern TeV blazars employing the ground-based {gamma}-ray observatories MAGIC and HESS, the optical KVA telescope, and the Suzaku X-ray satellite. The data taken in 2006 establish measurements of the contemporaneous spectral energy distributions of the rapidly variable blazar emission over a wide range of frequencies. Results allow us to test leptonic and hadronic emission and particle acceleration models which predict different correlations between the optical, X-ray, and very high energy {gamma}-ray emissions. In this presentation, we report on the highlights of the results of these observations.

  20. Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.

    1980-01-01

    Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.

  1. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    NASA Astrophysics Data System (ADS)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  2. Assessing the Impact of Fires on Air Quality in the Southeastern U.S. with a Unified Prescribed Burning Database

    NASA Astrophysics Data System (ADS)

    Garcia Menendez, F.; Afrin, S.

    2017-12-01

    Prescribed fires are used extensively across the Southeastern United States and are a major source of air pollutant emissions in the region. These land management projects can adversely impact local and regional air quality. However, the emissions and air pollution impacts of prescribed fires remain largely uncertain. Satellite data, commonly used to estimate fire emissions, is often unable to detect the low-intensity, short-lived prescribed fires characteristic of the region. Additionally, existing ground-based prescribed burn records are incomplete, inconsistent and scattered. Here we present a new unified database of prescribed fire occurrence and characteristics developed from systemized digital burn permit records collected from public and private land management organizations in the Southeast. This bottom-up fire database is used to analyze the correlation between high PM2.5 concentrations measured by monitoring networks in southern states and prescribed fire occurrence at varying spatial and temporal scales. We show significant associations between ground-based records of prescribed fire activity and the observational air quality record at numerous sites by applying regression analysis and controlling confounding effects of meteorology. Furthermore, we demonstrate that the response of measured PM2.5 concentrations to prescribed fire estimates based on burning permits is significantly stronger than their response to satellite fire observations from MODIS (moderate-resolution imaging spectroradiometer) and geostationary satellites or prescribed fire emissions data in the National Emissions Inventory. These results show the importance of bottom-up smoke emissions estimates and reflect the need for improved ground-based fire data to advance air quality impacts assessments focused on prescribed burning.

  3. Vertical columns of NO2, HONO, HCHO, CHOCHO and aerosol extinction: diurnal and seasonal variations in context of CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Coburn, S.; Oetjen, H.; Sinreich, R.; Thalman, R. M.; Waxman, E.; Volkamer, R.

    2011-12-01

    We present results from two ground-based University of Colorado Multi Axis Differential Optical Absorption Spectroscopy (CU-MAX-DOAS) instruments that were deployed during the CALNEX and CARES 2010 field campaigns. Ground based CU-MAX-DOAS measurements were carried out through Dec 2010, and measured vertical column abundances of nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), and aerosol extinction, which is determined indirectly from observing the oxygen dimers (O4). The measurements were acquired on the top of Millikan library at Caltech, Pasadena, CA, at the Fontana Arrows site located 60 Km east of Caltech, and for a limited period also downwind of Sacramento at T1 site during CARES. In the South Coast Air Basin, the MAX-DOAS instruments at both sites collected an extended time series of use to test satellites, and atmospheric chemistry models. We determine the state of the planetary boundary layer by comparing the columns observations with in-situ sensors, and place the CALNEX and CARES measurements intensive into seasonal context.

  4. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Yokoyama, T.; Saito, A.; Otsuka, Y.; Yamamoto, M.; Abe, T.; Watanabe, S.; Ishisaka, K.; Saito, S.; Larsen, M.; Pfaff, R. F.; Bernhardt, P. A.

    2012-12-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA while ground-based instruments measure waves in the ionosphere. It is scheduled in July/August 2013. The main purpose of the experiment is to reveal generation mechanism of Medium-Scale Traveling Ionospheric Disturbance (MSTID). The MSTID is the ionospheric wave with 1-2 hour periodicity, 100-200 km horizontal wavelength, and southwestward propagation. It is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple atmospheric-wave modulation of the ionosphere, but shows similarity to characteristics of the Perkins instability. A problem is that growth rate of the Perkins instability is too small to explain the phenomena. We now hypothesize a generation mechanism that electromagnetic coupling of the F- and E-regions help rapid growth of the MSTID especially at its initial stage. In the observation campaign, we will use the sounding rocket S-520-27 for in-situ measurement of ionospheric parameters, i.e., electron density and electric fields. Wind velocity measurements in both F- and E-regions are very important as well. For the F-region winds, we will conduct Lithium-release experiment under the full-moon condition. This is a big technical challenge. Another rocket S-310-42 will be used for the E-region wind measurement with the TMA release. On the ground, we will use GEONET (Japanese vast GPS receiver network) to monitor horizontal distribution of GPS-TEC on the realtime bases. In the presentation we will show MSTID characteristics and the proposed generation mechanism, and discuss plan and current status of the project.

  5. Total Ozone Trends from 1979 to 2016 Derived from Five Merged Observational Datasets - The Emergence into Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego

    2018-01-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.

  6. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.

  7. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    NASA Astrophysics Data System (ADS)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  8. Future Missions for Space Weather Specifications and Forecasts

    NASA Astrophysics Data System (ADS)

    Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.

    2017-12-01

    The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.

  9. A Comparison of MODIS and DOAS Sulfur Dioxide Measurements of the April 24, 2004 Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Meier, V. L.; Scuderi, L.; Fischer, T.; Realmuto, V.; Hilton, D.

    2006-12-01

    Measurements of volcanic SO2 emissions provide insight into the processes working below a volcano, which can presage volcanic events. Being able to measure SO2 in near real-time is invaluable for the planning and response of hazard mitigation teams. Currently, there are several methods used to quantify the SO2 output of degassing volcanoes. Ground and aerial-based measurements using the differential optical absorption spectrometer (mini-DOAS) provide real-time estimates of SO2 output. Satellite-based measurements, which can provide similar estimates in near real-time, have increasingly been used as a tool for volcanic monitoring. Direct Broadcast (DB) real-time processing of remotely sensed data from NASA's Earth Observing System (EOS) satellites (MODIS Terra and Aqua) presents volcanologists with a range of spectral bands and processing options for the study of volcanic emissions. While the spatial resolution of MODIS is 1 km in the Very Near Infrared (VNIR) and Thermal Infrared (TIR), a high temporal resolution and a wide range of radiance measurements in 32 channels between VNIR and TIR combine to provide a versatile space borne platform to monitor SO2 emissions from volcanoes. An important question remaining to be answered is how well do MODIS SO2 estimates compare with DOAS estimates? In 2004 ground-based plume measurements were collected on April 24th and 25th at Anatahan volcano in the Mariana Islands using a mini-DOAS (Fischer and Hilton). SO2 measurements for these same dates have also been calculated using MODIS images and SO2 mapping software (Realmuto). A comparison of these different approaches to the measurement of SO2 for the same plume is presented. Differences in these observations are used to better quantify SO2 emissions, to assess the current mismatch between ground based and remotely sensed retrievals, and to develop an approach to continuously and accurately monitor volcanic activity from space in near real-time.

  10. A new cue to figure-ground coding: top-bottom polarity.

    PubMed

    Hulleman, Johan; Humphreys, Glyn W

    2004-11-01

    We present evidence for a new figure-ground cue: top-bottom polarity. In an explicit reporting task, participants were more likely to interpret stimuli with a wide base and a narrow top as a figure. A similar advantage for wide-based stimuli also occurred in a visual short-term memory task, where the stimuli had ambiguous figure-ground relations. Further support comes from a figural search task. Figural search is a discrimination task in which participants are set to search for a symmetric target in a display with ambiguous figure-ground organization. We show that figural search was easier when stimuli with a top-bottom polarity were placed in an orientation where they had a wide base and a narrow top, relative to when this orientation was inverted. This polarity effect was present when participants were set to use color to parse figure from ground, and it was magnified when the participants did not have any foreknowledge of the color of the symmetric target. Taken together the results suggest that top-bottom polarity influences figure-ground assignment, with wide base stimuli being preferred as a figure. In addition, the figural search task can serve as a useful procedure to examine figure-ground assignment.

  11. Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.

    2016-12-01

    In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.

  12. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  13. F γ: A new observable for photon-hadron discrimination in hybrid air shower events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niechciol, M.; Risse, M.; Ruehl, P.

    To semore » arch for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. In this paper, we present a new observable, F γ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. F γ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known X max observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), F γ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable F γ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Finally and furthermore, F γ complements nicely to X max such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.« less

  14. F γ: A new observable for photon-hadron discrimination in hybrid air shower events

    DOE PAGES

    Niechciol, M.; Risse, M.; Ruehl, P.; ...

    2017-10-21

    To semore » arch for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. In this paper, we present a new observable, F γ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. F γ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known X max observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), F γ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable F γ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Finally and furthermore, F γ complements nicely to X max such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.« less

  15. Seismo-induced effects in the near-earth space: Combined ground and space investigations as a contribution to earthquake prediction

    NASA Astrophysics Data System (ADS)

    Sgrigna, V.; Buzzi, A.; Conti, L.; Picozza, P.; Stagni, C.; Zilpimiani, D.

    2007-02-01

    The paper aims at giving a few methodological suggestions in deterministic earthquake prediction studies based on combined ground-based and space observations of earthquake precursors. Up to now what is lacking is the demonstration of a causal relationship with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. Coordinated space and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of LEO satellites. At this purpose a new result reported in the paper is an original and specific space mission project (ESPERIA) and two instruments of its payload. The ESPERIA space project has been performed for the Italian Space Agency and three ESPERIA instruments (ARINA and LAZIO particle detectors, and EGLE search-coil magnetometer) have been built and tested in space. The EGLE experiment started last April 15, 2005 on board the ISS, within the ENEIDE mission. The launch of ARINA occurred on June 15, 2006, on board the RESURS DK-1 Russian LEO satellite. As an introduction and justification to these experiments the paper clarifies some basic concepts and critical methodological aspects concerning deterministic and statistic approaches and their use in earthquake prediction. We also take the liberty of giving the scientific community a few critical hints based on our personal experience in the field and propose a joint study devoted to earthquake prediction and warning.

  16. A Preliminary Assessment of Orbiting Carbon Observatory-2 (OCO-2) Measurements Using TCCON Data

    NASA Astrophysics Data System (ADS)

    Wennberg, P. O.; Fisher, B.; Roehl, C. M.; Wunch, D.; Osterman, G. B.; Eldering, A.; Naylor, B. J.; Nguyen, H.; Mandrake, L.; O'Dell, C.; Frankenberg, C.; Natraj, V.; Taylor, T.; Smyth, M.; Crisp, D.; Pollock, H. R.; Payne, V.; Gunson, M. R.; Salawitch, R. J.

    2014-12-01

    The NASA Orbiting Carbon Observatory-2 (OCO-2) successfully launched from Vandenberg Air Force Base in California on July 2, 2014. The mission provides remotely-sensed measurements of the column-averaged dry air mole fraction of carbon dioxide from space. In order to insure the quality of the space-based observations, a detailed validation program was developed for the original OCO mission. During the time period between the original OCO launch failure and the successful launch of OCO-2, that validation methodology was tested and refined using data from the Japanese Greenhouse gases Observing SATellite (GOSAT) as part of the NASA Atmospheric CO2 Observations from Space (ACOS) project. At the core of the OCO-2 validation plan are comparisons of the satellite data to observations from Total Carbon Column Observation Network (TCCON), a network of ground based Fourier Transform Spectrometers. The TCCON instruments provide "ground truth", allowing for determination of bias in the space-based observations. The TCCON observations are, in turn, traceable to the World Meteorological Organization (WMO) standards through aircraft and balloon-borne profile observations at the TCCON locations. OCO-2 is capable of making measurements in three observation modes: nadir; glint; and target. The initial operational mode for OCO-2 alternates between nadir and glint mode every 16 days with target mode observations initiated by commanding the spacecraft to point to specific surface location. Of the 19 locations that can be observed by OCO-2 in target mode, 18 are TCCON sites. The decision to target a specific TCCON site is based on a variety of criteria, including the local weather forecast, the operational status of the station, and the time since previous observation of that site. In addition, the coincidence criteria to utilize in comparison between the satellite and TCCON measurements have been refined during the ACOS project and will be utilized to compare OCO-2 nadir and glint observations with TCCON data. In this presentation, we will show preliminary comparisons between OCO-2 and TCCON, using data from all satellite observing modes.

  17. Analysis of CO, CH4 and AOD distributions over Eurasia and estimates of their long-term tendencies based on spectroscopic ground-based and satellite observations

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Elansky, Nikolai; Shtabkin, Yury; Dzhola, Anatoly; Pankratova, Natalia; Shilkin, Arseny

    2017-04-01

    Analysis of the CO and CH4 total column (TC) measurements and AOD data in urban and background regions of Eurasia for period from 1998 to 2016 years is presented. The trends estimates based on spectroscopic ground-based datasets of OIAP, SPSU, IAP CAC, NPO "Typhoon" and NDACC were compared with similar ones obtained with use of orbital data (MOPITT v6J and AIRS v6). Total decrease of CO TC in both urban (Moscow and Beijing) and background regions (ZSS, Peterhof, Obninsk, European NDACC sites) in 1998-2016 years changed to increase of CO in summer and autumn months in almost all background regions of Northern Eurasia after 2007. Negative trends of AOD were obtained for Europe, West Siberia and China for different seasons (including summer and autumn months) for time periods 2000-2016 and 2007-2016 with using both AERONET and MODIS Terra/Aqua datasets; AOD trends over East Siberia were positive that dui to influence of strong wild fires in 2010-2016 years in Siberia. Rate of CO TC decrease obtained with orbital data using are less than the same for ground based data with factor 1.5-2.0 for both urban and background regions. Rate of CH4 TC increased after 2007 in North-West Eurasian regions and didn't change in most of North-East regions. The negative AOD trends over Europe and West Siberia indirectly point to non-increase of wild-fires emissions over this region in latest years. Therefore the positive CO TC trends cannot be explained only by increase of wild-fires impact and anthropogenic emissions; possible reasons of such CO tendencies could be the changes in all atmospheric photochemistry system. This work was supported by the Russian Scientific Foundation under grant №14-47-00049 (in part of NDACC, AERONET and satellite trends estimates), under grant №16-17-10275 (in part of analysis of ground-based observations over Moscow and Obninsk) and partially by the Russian Foundation for Basic Research (grant № 16-05-00287 in part of provide of ground-based spectroscopic measurements in Moscow and Beijing sites).

  18. Empirical Ground Motion Characterization of Induced Seismicity in Alberta and Oklahoma

    NASA Astrophysics Data System (ADS)

    Novakovic, M.; Atkinson, G. M.; Assatourians, K.

    2017-12-01

    We develop empirical ground-motion prediction equations (GMPEs) for ground motions from induced earthquakes in Alberta and Oklahoma following the stochastic-model-based method of Atkinson et al. (2015 BSSA). The Oklahoma ground-motion database is compiled from over 13,000 small to moderate seismic events (M 1 to 5.8) recorded at 1600 seismic stations, at distances from 1 to 750 km. The Alberta database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at 50 regional stations, at distances from 30 to 500 km. A generalized inversion is used to solve for regional source, attenuation and site parameters. The obtained parameters describe the regional attenuation, stress parameter and site amplification. Resolving these parameters allows for the derivation of regionally-calibrated GMPEs that can be used to compare ground motion observations between waste water injection (Oklahoma) and hydraulic fracture induced events (Alberta), and further compare induced observations with ground motions resulting from natural sources (California, NGAWest2). The derived GMPEs have applications for the evaluation of hazards from induced seismicity and can be used to track amplitudes across the regions in real time, which is useful for ground-motion-based alerting systems and traffic light protocols.

  19. Astrometric surveys in the Gaia era

    NASA Astrophysics Data System (ADS)

    Zacharias, Norbert

    2018-04-01

    The Gaia first data release (DR1) already provides an almost error free optical reference frame on the milli-arcsecond (mas) level allowing significantly better calibration of ground-based astrometric data than ever before. Gaia DR1 provides positions, proper motions and trigonometric parallaxes for just over 2 million stars in the Tycho-2 catalog. For over 1.1 billion additional stars DR1 gives positions. Proper motions for these, mainly fainter stars (G >= 11.5) are currently provided by several new projects which combine earlier epoch ground-based observations with Gaia DR1 positions. These data are very helpful in the interim period but will become obsolete with the second Gaia data release (DR2) expected in April 2018. The era of traditional, ground-based, wide-field astrometry with the goal to provide accurate reference stars has come to an end. Future ground-based astrometry will fill in some gaps (very bright stars, observations needed at many or specific epochs) and mainly will go fainter than the Gaia limit, like the PanSTARRS and the upcoming LSST surveys.

  20. Purely temporal figure-ground segregation.

    PubMed

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  1. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  2. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    NASA Technical Reports Server (NTRS)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first present in the cloud and electric charge separation occurs. These ice particles efficiently scatter the microwave radiation at the 85 and 37 GHz frequencies, thus leading to large brightness temperature depressions. Lightning flash rate is related to the total amount of ice passing through the convective updraft regions of thunderstorms. Confirmation of this relationship using TRMM LIS and TMI data, however, remains constrained to TRMM observational limits of the tropics and subtropics. Satellites from the Defense Meteorology Satellite Program (DMSP) have global coverage and are equipped with passive microwave imagers that, like TMI, observe brightness temperatures at 85 and 37 GHz. Unlike the TRMM satellite, however, DMSP satellites do not have a lightning sensor, and the DMSP microwave data has never been used to derive global lightning. In this presentation, a relationship between DMSP Special Sensor Microwave Imager (SSMI) data and ground-based cloud-to-ground (CG) lightning data from NLDN is investigated to derive a spatially complete time history of CG lightning for the USA study area. This relationship is analogous to the established using TRMM LIS and TMI data. NLDN has the most spatially and temporally complete CG lightning data for the USA, and therefore provides the best opportunity to find geospatially coincident observations with SSMI sensors. The strongest thunderstorms generally have minimum 85 GHz Polarized Corrected brightness Temperatures (PCT) less than 150 K. Archived radar data was used to resolve the spatial extent of the individual storms. NLDN data for that storm spatial extent defined by radar data was used to calculate the CG flash rate for the storm. Similar to results using TRMM sensors, a linear model best explained the relationship between storm-specific CG flash rates and minimum 85 GHz PCT. However, the results in this study apply only to CG lightning. To extend the results to weaker storms, the probability of CG lightning (instead of the flash rate) was calculated for storms having 85 GHz PCT greater than 150 K. NLDN data was used to determine if a CG strike occurred for a storm. This probability of CG lightning was plotted as a function of minimum 85 GHz PCT and minimum 37 GHz PCT. These probabilities were used in conjunction with the linear model to estimate the CG flash rate for weaker storms with minimum 85 GHz PCTs greater than 150 K. Results from the investigation of CG lightning and passive microwave radiation signals agree with the previous research investigating total lightning and brightness temperature. Future work will take the established relationships and apply them to the decades of available DMSP data for the USA to derive a map of CG lightning flash rates. Validation of this method and uncertainty analysis will be done by comparing the derived maps of CG lightning flash rates against existing NLDN maps of CG lightning flash rates.

  3. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  4. Toward a closer integration of magnetospheric research: Magnetospheric currents inferred from ground-based magnetic data

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.; Kamide, Y.

    1998-07-01

    A new approach is needed to advance magnetospheric physics in the future to achieve a much closer integration than in the past among satellite-based researchers, ground-based researchers, and theorists/modelers. Specifically, we must find efficient ways to combine two-dimensional ground-based data and single points satellite-based data to infer three-dimensional aspects of magnetospheric disturbances. For this particular integration purpose, we propose a new project. It is designed to determine the currents on the magnetospheric equatorial plane from the ionospheric current distribution which has become available by inverting ground-based magnetic data from an extensive, systematic network of observations, combined with ground-based radar measurements of ionospheric parameters, and satellite observations of auroras, electric fields, and currents. The inversion method is based on the KRM/AMIE algorithms. In the first part of the paper, we extensively review the reliability and accuracy of the KRM and AMIE algorithms and conclude that the ionospheric quantities thus obtained are accurate enough for the next step. In the second part, the ionospheric current distribution thus obtained is projected onto the equatorial plane. This process requires a close cooperation with modelers in determining an accurate configuration of the magnetospheric field lines. If we succeed in this projection, we should be able to study the changing distribution of the currents in a vast region of the magnetospheric equatorial plane for extended periods with a time resolution of about 5 min. This process requires a model of the magnetosphere for the different phases of the magnetospheric substorm. Satellite-based observations are needed to calibrate the projection results. Agreements and disagreements thus obtained will be crucial for theoretical studies of magnetospheric plasma convection and dynamics, particularly in studying substorms. Nothing is easy in these procedures. However, unless we can overcome the associated difficulties, we may not be able to make distinct progresses. We believe that the proposed project is one way to draw the three groups closer together in advancing magnetospheric physics in the future. It is important to note that the proposed project has become possible because ground-based space physics has made a major advance during the last decade.

  5. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the stations are different in summer and winter, distributed in four typical regions. The CO2 net fluxes in these representative areas show obvious seasonal cycles with similar trends but different varying ranges and different time of the strongest sink. The intensities and uncertainties of the CO2 fluxes are different at different stations in different months and source-sink sectors. Overall, the WLG station is almost a carbon sink, but the other three stations present stronger carbon sources for most of the year. These findings could be conducive to the application of multi-source CO2 data and the understanding of regional CO2 source-sink characteristics and patterns over China.

  6. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.

    PubMed

    Hinas, Ajmal; Roberts, Jonathan M; Gonzalez, Felipe

    2017-12-17

    In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  7. Detection of the Subsidence Affecting a Shopping Center in Marseilles (France) using Sar Interferometry

    NASA Astrophysics Data System (ADS)

    Feurer, D.; Le Mouelic, S.; Raucoules, D.; Carnec, C.; Nédellec, J.-L.

    2004-06-01

    Help of satellite radar interferometry for urban subsidence observation has been demonstrated for several years now. This monitoring tool is able to provide an assessment of the ground motion with a millimetric accuracy and a large spatial coverage. We present here a result of this technique applied to the monitoring of a small area : the shopping centre complex and cinema multiplex in Marseilles, France. This construction work was one of the most important construction site of this last few years in France. Inaugurated in October, 1997, the multiplex had to close 6 of its 15 cinemas five months later because of collapsing risks due to important ground movements. It has been totally closed in July, 1999. The multiplex building demolition is currently under way. Finally, this "flop" represents a cost of 30 millions euros. 14 ERS images acquired between 1992 and 2000 had been processed in order to produce a set of 105 differential interferograms. We performed a recursive correction of orbital and topographic fringes using a FFT computation and a Digital Elevation Model provided by the French National Institute (IGN). The analysis of the interferograms series has allowed to detect unambiguously a signature of few pixels corresponding to the ground movement. From this study, we observed a ground deformation during 1997 to 1998, an overall stability during late 1998 to 1999 and again a deformation during late 1999 to 2000. This study shows that, in specific cases, traditional InSAR is able to provide valuable information on very localised ground deformation. It also shows the interest of a comprehensive study of the full ERS archive of this site in order to assess the stability of the ground before, when no ground-based measurements were available, during, and after the construction works.

  8. Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2010-01-01

    This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.

  9. Ability of the current global observing network to constrain N2O sources and sinks

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.

    2014-12-01

    The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.

  10. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    USGS Publications Warehouse

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is based were undertaken in cooperation with the U.S. Bureau of Reclamation, Region I, at the request of the Planning Division, Central Snake River District. The report was complied in the first instance for the use of the Bureau of Reclamation but is now released to the public. The observation-well program in the area has been maintained in cooperation with the Idaho State Department of Reclamation as part of the regular cooperative program of the Geological Survey.

  11. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    PubMed

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications.

  12. Comets - Groundbased observations of spacecraft mission candidates

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.

    1992-01-01

    Ground-based narrowband photometry results are presented for nine candidate comets for flyby and/or rendezvous missions. The comets include Churyumov-Gerasimenko, d'Arrest, Encke, Grigg-Skjellerup, Honda-Mrkos-Pajdusakova, Kopff, Tempel 1, Tempel 2, and Wild 2. On the basis of measured OH production rates and a model of the sublimation of water from the surface, limits are derived on the size of each cometary nucleus. A detailed analysis of the characteristics of these nine viable mission candidates can furnish the bases for the prioritization of targets of prospective missions.

  13. The high resolution spectrum of 15NH3 in the far-infrared: Rotation-inversion transitions in the ground, v2=1, 2 and v4=1 states

    NASA Astrophysics Data System (ADS)

    Fusina, Luciano; Di Lonardo, Gianfranco; Canè, Elisabetta; Predoi-Cross, Adriana; Rozario, Hoimonti; Herman, Michel

    2017-12-01

    The high resolution spectrum of 15NH3 has been recorded at unapodized resolution of 0.00096 cm-1 in the region 60-600 cm-1 using the Bruker IFS 125 Fourier transform spectrometer located at the far-infrared beam-line, Canadian Light Source. We report on the observation and analysis of the rotation-inversion spectrum in the ground, v2=1, 2 and v4=1 states. All the rotation-inversion transitions in the ground state together with the pure inversion transitions present in the literature were fitted simultaneously on the basis of a rotation-inversion Hamiltonian which includes distortion constants up to the 12th power in the angular momentum and the Δk=±3 and Δk=±6 interaction terms. A set of effective parameters was also obtained for the v2=1 state adopting the same theoretical model. For the v2=2 and v4=1 states only a list of observed transitions is reported. The wavenumbers of all the assigned transitions were compared with their theoretically predicted values [S.N. Yurchenko, J. Quant. Spectrosc. Radiat. Transf., 2015, 152, 28]. The present results noticeably improve the wavenumber line list in the HITRAN data base [L. S. Rothman et al. J. Quant. Spectrosc. Radiat. Transf.,2013, 130, 4].

  14. Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?

    PubMed

    Worden, Timothy A; De Jong, Audrey F; Vallis, Lori Ann

    2016-01-01

    Navigating cluttered and complex environments increases the risk of falling. To decrease this risk, it is important to understand the influence of obstacle visual cues on stepping parameters, however the specific obstacle characteristics that have the greatest influence on avoidance strategies is still under debate. The purpose of the current work is to provide further insight on the relationship between obstacle appearance in the environment and modulation of stepping parameters. Healthy young adults (N=8) first stepped over an obstacle with one visible top edge ("floating"; 8 trials) followed by trials where experimenters randomly altered the location of a ground reference object to one of 7 different positions (8 trials per location), which ranged from 6cm in front of, directly under, or up to 6cm behind the floating obstacle (at 2cm intervals). Mean take-off and landing distance as well as minimum foot clearance values were unchanged across different positions of the ground reference object; a consistent stepping trajectory was observed for all experimental conditions. Contrary to our hypotheses, results of this study indicate that ground based visual cues are not essential for the planning of stepping and clearance strategies. The simultaneous presentation of both floating and ground based objects may have provided critical information that lead to the adoption of a consistent strategy for clearing the top edge of the obstacle. The invariant foot placement observed here may be an appropriate stepping strategy for young adults, however this may not be the case across the lifespan or in special populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. GNSS VTEC calibration using satellite altimetry and LEO data

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. Mahdi; Schuh, Harald

    2015-04-01

    Among different systems remote sensing the ionosphere, space geodetic techniques have turned into a promising tool for monitoring and modeling the ionospheric parameters. Due to the fact that ionosphere is a dispersive medium, the signals travelling through this medium provide information about the parameters of the ionosphere in terms of Total Electron Content (TEC) or electron density along the ray path. The classical input data for development of Global Ionosphere Maps (GIM) of the Vertical Total Electron Content (VTEC) is obtained from the dual-frequency Global Navigation Satellite Systems (GNSS) ground-based observations. Nevertheless due to the fact that GNSS ground stations are in-homogeneously distributed with poor coverage over the oceans (namely southern Pacific and southern Atlantic) and also parts of Africa, the precision of VTEC maps are rather low in these areas. From long term analyses it is believed that the International GNSS Service (IGS) VTEC maps have an accuracy of 1-2 TECU in areas well covered with GNSS receivers; conversely, in areas with poor coverage the accuracy can be degraded by a factor of up to five. On the other hand dual-frequency satellite altimetry missions (such as Jason-1&2) provide direct VTEC values exactly over the oceans, and furthermore the Low Earth Orbiting (LEO) satellites such as the Formosat-3/COSMIC (F/C) provide about a great number of globally distributed occultation measurements per day, which can be used to obtain VTEC values. Combining these data with the ground-based data improves the accuracy and reliability of the VTEC maps by closing of observation gaps that arise when using ground-based data only. In this approach an essential step is the evaluation and calibration of the different data sources used for the combination procedure. This study investigates the compatibility of calibrated TEC observables derived from GNSS dual-frequency data, recorded at global ground-based station networks, with space-based TEC values from satellite altimetry and F/C observations. In the current procedure the ground-based GNSS observations have been used to develop a GNSS-only GIM, using the parameter estimation technique. The VTEC values extracted from these models have been quantified and calibrated with the raw altimetry and LEO measurements. The calibrated values have been consequently used for developing the combined GIMs of the VTEC.

  16. Satellite propulsion spectral signature detection and analysis through Hall effect thruster plume and atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin

    2016-09-01

    Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.

  17. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  18. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    NASA Astrophysics Data System (ADS)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  19. The 2012 Lyrids from Non-traditional Observing Platforms

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E.; Suggs, Robert M.; Cooke, W. J.; Blaauw, Rhiannon C.

    2013-01-01

    The NASA Meteoroid Environment Office (MEO) observed meteors during the Lyrid meteor shower peak on 22 April 2012 from three different observing platforms: the ground, a helium-filled balloon, and from the International Space Station (ISS). Even though the Lyrids are not noted for spectacular rates, the combination of New Moon and a favorable viewing geometry from ISS presented a unique opportunity to simultaneously image shower meteors from above the atmosphere and below it. In the end, however, no meteors were observed simultaneously, and it was impossible to identify Lyrids with 100% confidence among the 155 meteors observed from ISS and the 31 observed from the balloon. Still, this exercise proved successful in that meteors could be observed from a simple and inexpensive balloon-based payload and from less-than-optimal cameras on ISS.

  20. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    NASA Astrophysics Data System (ADS)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies, allowing for country-wide upscaling of high spatial resolution data. This approach allows for better informed carbon cycling modeling for the GBM delta and is applicable to other regions.

Top