Sample records for present high resolution

  1. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  2. Waveform digitization for high resolution timing detectors with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Albrow, M. G.; Los, S.

    2012-03-01

    The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.

  3. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE PAGES

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...

    2014-10-13

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  4. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.

  5. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  6. MRI Superresolution Using Self-Similarity and Image Priors

    PubMed Central

    Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat

    2010-01-01

    In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094

  7. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  8. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  9. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  10. Webinar Presentation: Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS)

    EPA Pesticide Factsheets

    This presentation, Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS), was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome held on May 11, 2016.

  11. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Treesearch

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  12. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Treesearch

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  13. SPARTAN II: An Instructional High Resolution Land Combat Model

    DTIC Science & Technology

    1993-03-01

    93M-09 SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT MODEL THESIS DWquALfl’ 4 Presented to the Faculty of the School of Engineering of the...ADVISOR NAJ Edward Negrelli/ENS REALDER MAJ Bruce Marl an/MA LD1 { The goal of this thesis was to improve SPARTAN, a high resolution land combat model...should serve as a useful tool for learning about the advantages and disadvantages of high resolution combat modeling. I wish to thank I4AJ Edward

  14. On Super-Resolution and the MUSIC Algorithm,

    DTIC Science & Technology

    1985-05-01

    SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b

  15. High-spatial-resolution TOVS observations for the FIRE/SRB Wisconsin experiment region from October 14 through November 2, 1986

    NASA Technical Reports Server (NTRS)

    Whitlock, Charles H.; Wylie, Donald P.; Lecroy, Stuart R.

    1988-01-01

    Maps and concise tables are presented which show TOVS (TIROS Operational Vertical Sounder) HIRS/2 (High Resolution Infrared Sounder) data products, resolution size, and sounding location for the FIRE/SRB (First ISCCP Experiment/Surface Radiation Budget) Wisconsin experiment region from October 14 through November 2, 1986. The data presented are the result of a special analysis of the HIRS/2 sounder from the NOAA-9 and -10 satellites.

  16. MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging

    NASA Astrophysics Data System (ADS)

    Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.

    2012-07-01

    Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.

  17. Fiber optic cable-based high-resolution, long-distance VGA extenders

    NASA Astrophysics Data System (ADS)

    Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon

    2013-02-01

    Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.

  18. Ultra-High Spectral Resolution Observations of Fragmentation in Dark Cloud Cores

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, W.; Kuiper, T; Levin, S.; Olsen, E.

    1993-01-01

    This paper presents new evidence of the fragmentary structure of dense cores in dark clouds using the high resolution spectra of the carbon chain molecule CCS transition (J subscript N = 2 subscript 1 - 1 subscript o) at 22.344033 GHz with 0.008 km s superscript -1 resolution.

  19. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungho

    Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS undermore » high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.« less

  1. Flexible high-resolution display systems for the next generation of radiology reading rooms

    NASA Astrophysics Data System (ADS)

    Caban, Jesus J.; Wood, Bradford J.; Park, Adrian

    2007-03-01

    A flexible, scalable, high-resolution display system is presented to support the next generation of radiology reading rooms or interventional radiology suites. The project aims to create an environment for radiologists that will simultaneously facilitate image interpretation, analysis, and understanding while lowering visual and cognitive stress. Displays currently in use present radiologists with technical challenges to exploring complex datasets that we seek to address. These include resolution and brightness, display and ambient lighting differences, and degrees of complexity in addition to side-by-side comparison of time-variant and 2D/3D images. We address these issues through a scalable projector-based system that uses our custom-designed geometrical and photometrical calibration process to create a seamless, bright, high-resolution display environment that can reduce the visual fatigue commonly experienced by radiologists. The system we have designed uses an array of casually aligned projectors to cooperatively increase overall resolution and brightness. Images from a set of projectors in their narrowest zoom are combined at a shared projection surface, thus increasing the global "pixels per inch" (PPI) of the display environment. Two primary challenges - geometric calibration and photometric calibration - remained to be resolved before our high-resolution display system could be used in a radiology reading room or procedure suite. In this paper we present a method that accomplishes those calibrations and creates a flexible high-resolution display environment that appears seamless, sharp, and uniform across different devices.

  2. Analyzing and leveraging self-similarity for variable resolution atmospheric models

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis; Collins, William

    2015-04-01

    Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.

  3. Applications of nanopipettes in bionanotechnology.

    PubMed

    Ying, Liming

    2009-08-01

    At present, technical hurdles remain in probing biochemical processes in living cells and organisms at nanometre spatial resolution, millisecond time resolution and with high specificity and single-molecule sensitivity. Owing to its unique shape, size and electrical properties, the nanopipette has been used to obtain high-resolution topographic images of live cells under physiological conditions, and to create nanoscale features by controlled delivery of biomolecules. In the present paper, I discuss recent progress in the development of a family of new methods for nanosensing and nanomanipulation using nanopipettes.

  4. Creation of a Multiresolution and Multiaccuracy Dtm: Problems and Solutions for Heli-Dem Case Study

    NASA Astrophysics Data System (ADS)

    Biagi, L.; Carcano, L.; Lucchese, A.; Negretti, M.

    2013-01-01

    The work is part of "HELI-DEM" (HELvetia-Italy Digital Elevation Model) project, funded by the European Regional Development Fund within the Italy-Switzerland cooperation program. The aim of the project is the creation of a unique DTM for the alpine and subalpine area between Italy (Piedmont, Lombardy) and Switzerland (Ticino and Grisons Cantons); at present, different DTMs, that are in different reference frames and have been obtained with different technologies, accuracies, and resolutions, have been acquired. The final DTM should be correctly georeferenced and produced validating and integrating the data that are available for the project. DTMs are fundamental in hydrogeological studies, especially in alpine areas where hydrogeological risks may exist. Moreover, when an event, like for example a landslide, happens at the border between countries, a unique and integrated DTM which covers the interest area is useful to analyze the scenario. In this sense, HELI-DEM project is helpful. To perform analyses along the borders between countries, transnational geographic information is needed: a transnational DTM can be obtained by merging regional low resolution DTMs. Moreover high resolution local DTMs should be used where they are available. To be merged, low and high resolution DTMs should be in the same three dimensional reference frame, should not present biases and should be consistent in the overlapping areas. Cross-validation between the different DTMs is therefore needed. Two different problems should be solved: the merging of regional, partly overlapping low and medium resolution DTMs into a unique low/medium resolution DTM and the merging with other local high resolution/high accuracy height data. This paper discusses the preliminary processing of the data for the fusion of low and high resolution DTMs in a study-case area within the Lombardy region: Valtellina valley. In this region the Lombardy regional low resolution DTM is available, with a horizontal resolution of 20 meters; in addition a LiDAR DTM with a horizontal resolution of 1 meter, which covers only the main hydrographic basins, is also available. The two DTMs have been transformed into the same reference frame. The cross-validation of the two datasets has been performed comparing the low resolution DTM with the local high resolution DTM. Then, where significant differences are present, GPS survey have been used as external validation. The results are presented. Moreover, a possible strategy for the future fusion of the data, is shortly summarized at the end of the paper.

  5. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  6. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  7. High Resolution Near Real Time Image Processing and Support for MSSS Modernization

    DTIC Science & Technology

    2012-09-01

    00-00-2012 to 00-00-2012 4 . TITLE AND SUBTITLE High Resolution Near Real Time Image Processing and Support for MSSS Modernization 5a. CONTRACT...This current CONOPS is depicted in Fig. 4 . Fig. 4 . PCID/ASPIRE High Resolution Post...experiments were performed, and subsequently addressed in papers and presentations [3, 4 ,] that demonstrated system behavior; with details of the

  8. High-resolution mid-infrared observations of NGC 7469

    NASA Technical Reports Server (NTRS)

    Miles, J. W.; Houck, J. R.; Hayward, T. L.

    1994-01-01

    We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.

  9. Single image super-resolution reconstruction algorithm based on eage selection

    NASA Astrophysics Data System (ADS)

    Zhang, Yaolan; Liu, Yijun

    2017-05-01

    Super-resolution (SR) has become more important, because it can generate high-quality high-resolution (HR) images from low-resolution (LR) input images. At present, there are a lot of work is concentrated on developing sophisticated image priors to improve the image quality, while taking much less attention to estimating and incorporating the blur model that can also impact the reconstruction results. We present a new reconstruction method based on eager selection. This method takes full account of the factors that affect the blur kernel estimation and accurately estimating the blur process. When comparing with the state-of-the-art methods, our method has comparable performance.

  10. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  11. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  12. [Study on the effect of solar spectra on the retrieval of atmospheric CO2 concentration using high resolution absorption spectra].

    PubMed

    Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li

    2011-06-01

    Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.

  13. Survey of currently available high-resolution raster graphics systems

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1987-01-01

    Presented are data obtained on high-resolution raster graphics engines currently available on the market. The data were obtained through survey responses received from various vendors and also from product literature. The questionnaire developed for this survey was basically a list of characteristics desired in a high performance color raster graphics system which could perform real-time aircraft simulations. Several vendors responded to the survey, with most reporting on their most advanced high-performance, high-resolution raster graphics engine.

  14. Conceptual study of an optical aperture synthesis system for high resolution astronomy

    NASA Astrophysics Data System (ADS)

    Calvel, Bertrand

    2018-04-01

    This paper, "Conceptual study of an optical aperture synthesis system for high resolution astronomy," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  15. Human immunodeficiency virus atropy induces modification of subcutaneous adipose tissue architecture: in vivo visualization by high-resolution magnetic resonance imaging.

    PubMed

    Josse, G; Gensanne, D; Aquilina, C; Bernard, J; Saint-Martory, C; Lagarde, J M; Schmitt, A M

    2009-04-01

    Human immunodeficiency virus (HIV) infection generally induces lipodystrophy. For targeted treatment a better understanding of its development is necessary. The utility of high-resolution magnetic resonance imaging (MRI) is explored. The present study presents a way to visualize the adipose tissue architecture in vivo and to inspect modifications associated with the atrophy. High-resolution MRI scans with surface coils were performed on the calf and at the lumbar region of three groups of patients: HIV patients with lipoatrophy, HIV patients without lipoatrophy and healthy volunteers. All patients underwent a clinical examination. In addition, dual energy X-ray absorptiometry (DEXA) measurements were taken. On the MRI scans adipose tissue thickness and adipose nodule size were measured. Results High-resolution MRI enabled identification of a clear disorganization of adipose tissue in patients with lipoatrophy. In addition, these patients presented a very small adipose tissue thickness on the calf and a very small nodule size. led to the hypothesis that adipose tissue disorganization appears before changes in DEXA measurements or clinically visible modifications. High-resolution MRI enabled visualization in vivo of precise changes in tissue organization due to HIV lipoatrophy. This imaging technique should be very informative for better monitoring of the atrophy.

  16. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.

    PubMed

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.

  17. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors.

  18. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  19. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  20. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  1. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  2. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM) in collaboration with scientists at NIH. PALM achieves 10-fold improvement in spatial resolution of cells, going from the resolution limit of approximately 250 nm in standard optical microscopy down to approximately 20 nm, thus producing a so-called “super-resolution” image. Spatial resolution refers to the clarity of an image or, in other words, the smallest details that can be observed from an image.

  3. Fractional screen video enhancement apparatus

    DOEpatents

    Spletzer, Barry L [Albuquerque, NM; Davidson, George S [Albuquerque, NM; Zimmerer, Daniel J [Tijeras, NM; Marron, Lisa C [Albuquerque, NM

    2005-07-19

    The present invention provides a method and apparatus for displaying two portions of an image at two resolutions. For example, the invention can display an entire image at a first resolution, and a subset of the image at a second, higher resolution. Two inexpensive, low resolution displays can be used to produce a large image with high resolution only where needed.

  4. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM)

  5. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  7. A new omni-directional multi-camera system for high resolution surveillance

    NASA Astrophysics Data System (ADS)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  8. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region.

    Treesearch

    L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera

    2006-01-01

    Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...

  9. High temporal resolution delayed analysis of clinical microdialysate streams† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7an01209h

    PubMed Central

    Gowers, S. A. N.; Hamaoui, K.; Cunnea, P.; Anastasova, S.; Curto, V. F.; Vadgama, P.; Yang, G.-Z.; Papalois, V.; Drakakis, E. M.; Fotopoulou, C.; Weber, S. G.

    2018-01-01

    This paper presents the use of tubing to store clinical microdialysis samples for delayed analysis with high temporal resolution, offering an alternative to traditional discrete offline microdialysis sampling. Samples stored in this way were found to be stable for up to 72 days at –80 °C. Examples of how this methodology can be applied to glucose and lactate measurement in a wide range of in vivo monitoring experiments are presented. This paper presents a general model, which allows for an informed choice of tubing parameters for a given storage time and flow rate avoiding high back pressure, which would otherwise cause the microdialysis probe to leak, while maximising temporal resolution. PMID:29336454

  10. Geographic information system for fusion and analysis of high-resolution remote sensing and ground truth data

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Dubois, Pascale; Leberl, Franz; Norikane, L.; Way, Jobea

    1991-01-01

    Viewgraphs on Geographic Information System for fusion and analysis of high-resolution remote sensing and ground truth data are presented. Topics covered include: scientific objectives; schedule; and Geographic Information System.

  11. A high resolution on-chip delay sensor with low supply-voltage sensitivity for high-performance electronic systems.

    PubMed

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-02-13

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.

  12. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  13. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  14. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    PubMed

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  15. Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates

    NASA Astrophysics Data System (ADS)

    Picton, J.; Galantowicz, J. F.; Root, B.

    2016-12-01

    The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.

  16. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  17. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  18. Long linear MWIR and LWIR HgCdTe infrared detection arrays for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Chamonal, Jean-Paul; Audebert, Patrick; Medina, Philippe; Destefanis, Gérard; Deschamps, Joel R.; Girard, Michel; Chatard, Jean-Pierre

    2018-04-01

    This paper, "Long linear MWIR and LWIR HgCdTe infrared detection arrays for high resolution imaging," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  19. High-Resolution Views of Io's Emakong Patera: Latest Galileo Imaging Results

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Davies, A. G.; Greeley, R.; Head, J. W., III

    2002-01-01

    This presentation will discuss analyses of the latest Galileo SSI (solid state imaging) high-resolution images of the Emakong lava channels and flow field on Jupiter's moon Io. Additional information is contained in the original extended abstract.

  20. Satellite image time series simulation for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.

  1. Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis

    PubMed Central

    Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk

    2017-01-01

    Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066

  2. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  3. Ship Detection Using High Resolution Satellite Imagery and Space-Based AIS

    NASA Astrophysics Data System (ADS)

    Hannevik, Tonje Nanette; Skauen, Andreas N.; Olsen, R. B.

    2013-03-01

    This paper presents a trial carried out in the Malangen area close to Tromsø city in the north of Norway in September 2010. High resolution Synthetic Aperture Radar (SAR) images from RADARSAT-2 were used to analyse how SAR images and cooperative reporting can be combined. Data from the Automatic Identification System, both land-based and space-based, have been used to identify detected vessels in the SAR images. The paper presents results of ship detection in high resolution RADARSAT-2 Standard Quad-Pol images, and how these results together with land-based and space-based AIS can be used. Some examples of tracking of vessels are also shown.

  4. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  5. On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Khorrami, Mehdi R.

    2017-01-01

    A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.

  6. Evaluation of High Resolution Imagery and Elevation Data

    DTIC Science & Technology

    2009-06-01

    the value of cutting-edge geospatial tools while keeping the data constant, the present experiment evaluated the effect of higher resolution imagery...and elevation data while keeping the tools constant. The high resolution data under evaluation was generated from TEC’s Buckeye system, an...results. As researchers and developers provide increasingly advanced tools to process data more quickly and accurately, it is necessary to assess each

  7. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  8. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  9. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-04-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  10. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  11. Flat field concave holographic grating with broad spectral region and moderately high resolution.

    PubMed

    Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng

    2012-02-01

    In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fan, E-mail: zf5016@126.com; Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080; Tan, Xinran

    An autocollimation (AC) setup with ultra-high resolution and stability for micro-angle measurement is presented. The telephoto objective, which is characterized in long focal length at a compact structure size, and the optical enlargement unit, which can magnify the image displacement to improve its measurement resolution and accuracy, are used to obtain an ultra-high measurement resolution of the AC. The common-path beam drift compensation is used to suppress the drift of measurement results, which is evident in the high-resolution AC, thus to obtain a high measurement stability. Experimental results indicate that an effective resolution of better than 0.0005 arc sec (2.42more » nrad) over a measurement range of ±30 arc sec and a 2-h stability of 0.0061 arc sec (29.57 nrad) can be achieved.« less

  13. A flexible spatiotemporal method for fusing satellite images with different resolutions

    Treesearch

    Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky

    2016-01-01

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...

  14. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less

  15. Main High-Resolution Near-IR Spectrometer for the VLT

    NASA Astrophysics Data System (ADS)

    Piskunov, N.

    2017-06-01

    We present the ongoing CRISES+ project on the development of a cross-dispersed high resolution near-infrared spectrometer for the ESO Very Large Telescope. The presentation highlights the relation between science objectives, technical solutions, and the structure of the project. We also share some of the insights on the implementation and management of the project that are crucial for keeping the tight time-line through efficient interaction between consortium members.

  16. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions

    USDA-ARS?s Scientific Manuscript database

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing data with high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta ...

  17. Subpixelic measurement of large 1D displacements: principle, processing algorithms, performances and software.

    PubMed

    Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-03-12

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.

  18. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    NASA Astrophysics Data System (ADS)

    Gasmi, Taieb

    2018-04-01

    An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  19. High angular resolution at LBT

    NASA Astrophysics Data System (ADS)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  20. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.

  1. Data compression techniques applied to high resolution high frame rate video technology

    NASA Technical Reports Server (NTRS)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.

    1989-01-01

    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  2. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  3. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  4. Image super-resolution via sparse representation.

    PubMed

    Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi

    2010-11-01

    This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.

  5. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  6. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  7. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  8. O-space with high resolution readouts outperforms radial imaging.

    PubMed

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  10. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  11. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.

    2011-08-01

    Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.

  13. Xenia Mission: Spacecraft Design Concept

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  14. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  15. Framework for Detection and Localization of Extreme Climate Event with Pixel Recursive Super Resolution

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.

    2017-12-01

    Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.

  16. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE PAGES

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; ...

    2016-07-22

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  17. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  18. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  19. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  20. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  1. High-Resolution Soil Moisture Retrieval using SMAP-L Band Radiometer and RISAT-C band Radar Data for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.

    2016-12-01

    Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.

  2. Precision Timing Calorimeter for High Energy Physics

    DOE PAGES

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; ...

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  3. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo

    2018-03-01

    Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.

  5. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  6. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  7. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  8. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  9. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R.

    2000-01-01

    High-resolution thermal inertia mapping results are presented, derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) observations of the surface temperature of Mars obtained during the early portion of the MGS mapping mission. Thermal inertia is the key property controlling the diurnal surface temperature variations, and is dependent on the physical character of the top few centimeters of the surface. It represents a complex combination of particle size, rock abundance, exposures of bedrock, and degree of induration. In this work we describe the derivation of thermal inertia from TES data, present global scale analysis, and place these results into context with earlier work. A global map of nighttime thermal-bolometer-based thermal inertia is presented at 14?? per pixel resolution, with approximately 63% coverage between 50??S and 70??N latitude. Global analysis shows a similar pattern of high and low thermal inertia as seen in previous Viking low-resolution mapping. Significantly more detail is present in the high-resolution TES thermal inertia. This detail represents horizontal small-scale variability in the nature of the surface. Correlation with albedo indicates the presence of a previously undiscovered surface unit of moderate-to-high thermal inertia and intermediate albedo. This new unit has a modal peak thermal inertia of 180-250 J m-2 K-1 s-12 and a narrow range of albedo near 0.24. The unit, covering a significant fraction of the surface, typically surrounds the low thermal inertia regions and may comprise a deposit of indurated fine material. Local 3-km-resolution maps are also presented as examples of eolian, fluvial, and volcanic geology. Some impact crater rims and intracrater dunes show higher thermal inertias than the surrounding terrain; thermal inertia of aeolian deposits such as intracrater dunes may be related to average particle size. Outflow channels and valleys consistently show higher thermal inertias than the surrounding terrain. Generally, correlations between spatial variations in thermal inertia and geologic features suggest a relationship between the hundred-meter-scale morphology and the centimeter-scale surface layer. ?? 2000 Academic Press.

  10. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  11. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  12. Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution.

    PubMed

    Pavlin, C J; Foster, F S

    1998-11-01

    UBM presents us with a new method of imaging the anterior segment of the eye at high resolution. Its strengths lie in its ability to produce cross-sections of the living eye at microscopic resolution without violating the integrity of the globe. UBM, although lacking the resolution of optical microscopy, gives us images in living eyes without affecting the internal relationships of the structures imaged. There are many other applications of this new imaging method. Examples of other uses include imaging adnexal pathology, assessing corneal changes with refractive surgery, the assessment of trauma, and determination of intraocular lens position.

  13. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  14. Special Order of Business: Reading for Life.

    ERIC Educational Resources Information Center

    New York State United Teachers.

    This paper presents a resolution passed by the New York State United Teachers calling on New York State to adopt a "Reading for Life" plan. Also, included is a letter to Chancellor Carl T. Hayden discussing the resolution and recommendations on changes in high school graduation requirements. The paper first sets out the resolution on the…

  15. Full-field OCT: ex vivo and in vivo biological imaging applications

    NASA Astrophysics Data System (ADS)

    Grieve, Katharine; Dubois, Arnaud; Moneron, Gael; Guyot, Elvire; Boccara, Albert C.

    2005-04-01

    We present results of studies in embryology and ophthalmology performed using our ultrahigh-resolution full-field OCT system. We also discuss recent developments to our ultrashort acquisition time full-field optical coherence tomography system designed to allow in vivo biological imaging. Preliminary results of high-speed imaging in biological samples are presented. The core of the experimental setup is the Linnik interferometer, illuminated by a white light source. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by high-resolution CCD cameras. An isotropic spatial resolution of ~1 μm is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of ~90 dB is obtained by means of image averaging and pixel binning. In ophthalmology, reconstructed xz images from rat ocular tissue are presented, where cellular-level structures in the retina are revealed, demonstrating the unprecedented resolution of our instrument. Three-dimensional reconstructions of the mouse embryo allowing the study of the establishment of the anterior-posterior axis are shown. Finally we present the first results of embryonic imaging using the new rapid acquisition full-field OCT system, which offers an acquisition time of 10 μs per frame.

  16. Nested hyper-resolution modeling of urban areas for the National Water Model - The Dallas-Fort Worth Testbed

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Kim, S.; Habibi, H.; Seo, D. J.; Welles, E.; Philips, B.; Adams, E.; Smith, M. B.; Wells, E.

    2017-12-01

    With the development of the National Water Model (NWM), the NWS has made a step-change advance in operational water forecasting by enabling high-resolution hydrologic modeling across the US. As a part of a separate initiative to enhance flash flood forecasting and inundation mapping capacity, the NWS has been mandated to provide forecasts at even finer spatiotemporal resolutions when and where such information is demanded. In this presentation, we describe implementation of the NWM at a hyper resolution over a nested domain. We use WRF-Hydro as the core model but at significantly higher resolutions with scale-commensurate model parameters. The demonstration domain is multiple urban catchments within the Cities of Arlington and Grand Prairie in the Dallas-Fort Worth Metroplex. This area is susceptible to urban flooding due to the hydroclimatology coupled with large impervious cover. The nested model is based on hyper-resolution terrain data to resolve significant land surface features such as streets and large man-made structures, and forced by the high-resolution radar-based quantitative precipitation information. In this presentation, we summarize progress and preliminary results and share issues and challenges.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less

  18. High Resolution Full-Aperture ISAR Processing through Modified Doppler History Based Motion Compensation

    PubMed Central

    Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho

    2017-01-01

    A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036

  19. High Quality Data for Grid Integration Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less

  20. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  1. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  2. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  3. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.

    2016-11-15

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution datamore » is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.« less

  4. LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching

    PubMed Central

    Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.

    2018-01-01

    Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939

  5. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models.

  6. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  7. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  8. Modelling and observations of molecules in discs around young stars

    NASA Astrophysics Data System (ADS)

    Ilee, John David

    2013-04-01

    This thesis contains a study of molecules within circumstellar discs around young stars. Firstly, the chemistry of a disc around a young, Class 0 protostar is modelled. Such discs are thought to be massive, and thus experience gravitational instabilities, which produce spiral density waves. These affect the chemistry in three ways; by desorbing molecules from dust grains, by providing extra energy for new reactions to take place, and by mixing the internal structure of the disc to provide a rich chemistry near the midplane. Secondly, high resolution near-infrared spectra of 20 massive young stellar objects are presented. The objects display CO first overtone bandhead emission, which is excited in the conditions expected within circumstellar discs. The emission is modelled using a simple analytic model of a Keplerian disc, and good fits are found to all spectra. On average, the discs correspond to being geometrically thin, spread across a wide range of inclinations. The discs are located within the dust sublimation radius, providing strong evidence that the CO emission originates in small gaseous discs, supporting the scenario in which massive stars form via disc accretion. Finally, medium resolution near-infrared spectra of 5 Herbig Ae/Be stars are presented. The spectra cover both CO bandhead and Br gamma emission. Accretion rates are derived from the measuring the Br gamma emission and through modelling the CO emission, however these accretion rates are found to be inconsistent. High resolution archival data of one of the targets is presented, and it is shown that this CO disc model is unable to fit the high resolution data. Therefore, it is concluded that to properly fit CO spectra, high resolution data are needed, and that previously published information determined from low resolution spectra should be treated with caution.

  9. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    PubMed

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  10. Structured illumination 3D microscopy using adaptive lenses and multimode fibers

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios

    2017-06-01

    Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

  11. Requirements on high resolution detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, A.

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  12. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    NASA Astrophysics Data System (ADS)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  13. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  14. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  15. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  16. High-resolution matrix-assisted laser desorption ionization–imaging mass spectrometry of lipids in rodent optic nerve tissue

    PubMed Central

    Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.

    2013-01-01

    Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852

  17. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  18. Replicated Wolter-I X-ray Optics for Lightweight, High Angular Resolution, Large Collecting Area X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Joy, M.; Bilbro, J.; Elsner, R.; Jones, W.; Kolodziejczak, J.; Petruzzo, J.; ODell, S.; Weisskopf, M.

    1997-01-01

    The next generation of orbiting x-ray observatories will require high angular resolution telescopes that have an order of magnitude greater collecting area in the 0.1-10 keV spectral region than those currently under construction, but with a much lower weight and cost per unit area. Replicated Wolter-I x-ray optics have the potential to meet this requirement. The currently demonstrated capabilities of replicated Wolter-I optics will be described, and a development plan for creating lightweight, high angular resolution, large effective area x-ray telescopes will be presented.

  19. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com; Papas, Stylianos, E-mail: vascular@drpapas.com; Pantziara, Maria, E-mail: mgpantziara@gmail.com

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  20. Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry

    PubMed Central

    Cartier, Sebastian; Kagias, Matias; Bergamaschi, Anna; Wang, Zhentian; Dinapoli, Roberto; Mozzanica, Aldo; Ramilli, Marco; Schmitt, Bernd; Brückner, Martin; Fröjdh, Erik; Greiffenberg, Dominic; Mayilyan, Davit; Mezza, Davide; Redford, Sophie; Ruder, Christian; Schädler, Lukas; Shi, Xintian; Thattil, Dhanya; Tinti, Gemma; Zhang, Jiaguo; Stampanoni, Marco

    2016-01-01

    MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented. PMID:27787252

  1. ERIC First Analysis: The United States Justice System; 1983-84 National High School Debate Resolutions.

    ERIC Educational Resources Information Center

    Wagner, David L.

    Designed to serve as a framework from which high school debate students, coaches, and judges can evaluate the issues, arguments, and evidence present in sustaining and reforming the U.S. justice system, this booklet provides debaters with guidelines for research on the 1983-84 debate resolutions selected by the National University Continuing…

  2. ERIC First Analysis: Water Resources; 1985-86 National High School Debate Resolutions.

    ERIC Educational Resources Information Center

    Wagner, David L.; Fraleigh, Douglas

    Designed to serve as a framework from which high school debate students, coaches, and judges can evaluate the issues, arguments and evidence present in the availability and quality of water resources in the United States, this booklet provides guidelines for research on the 1985-86 debate resolutions selected by the National Federation of State…

  3. Lunar Polar Illumination for Power Analysis

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.

  4. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    NASA Technical Reports Server (NTRS)

    Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Parker, Allen R. Jr. (Inventor); Hamory, Philip J (Inventor); Chan, Hon Man (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  5. Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Nishikawa, K.; Honda, M.; Shimura, T.; Akasaka, K.; Tabayashi, K.

    2001-02-01

    A pressure-resisting cell system has been developed for high-pressure high-resolution nuclear magnetic resonance (NMR) measurements up to a maximum pressure of 600 MPa. This cell system is capable of performing high-pressure experiments with any standard spectrometer, including modern high field NMR machines. A full description of the high-pressure NMR assembly mounted on a 750 MHz spectrometer is presented along with a detailed explanation of the procedure for preparing the pressure-resisting quartz and glass cells.

  6. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  7. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, L.; Muelder, S.

    1999-10-22

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at themore » time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography.« less

  8. RadioAstron Maser Observations: a Record in Angular Resolution

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team

    2017-06-01

    Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.

  9. Super resolution reconstruction of infrared images based on classified dictionary learning

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng

    2018-05-01

    Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.

  10. Architecture and applications of a high resolution gated SPAD image sensor

    PubMed Central

    Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo

    2014-01-01

    We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572

  11. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  12. Re-assessing Present Day Global Mass Transport and Glacial Isostatic Adjustment From a Data Driven Approach

    NASA Astrophysics Data System (ADS)

    Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.

    2017-12-01

    Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.

  13. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  14. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  15. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

    PubMed

    Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C

    2018-01-09

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  16. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  17. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  18. X-ray structure determination at low resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunger, Axel T., E-mail: brunger@stanford.edu; Department of Molecular and Cellular Physiology, Stanford University; Department of Neurology and Neurological Sciences, Stanford University

    2009-02-01

    Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible. As an example of structure determination in the 3.5–4.5 Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alonemore » was subsequently solved at 3 Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ∼4 Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible.« less

  19. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  20. A custom-built PET phantom design for quantitative imaging of printed distributions.

    PubMed

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Lionheart, W R; Reader, A J; Matthews, J C

    2011-11-07

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction.

  1. High-resolution anoscopy or expectant management for anal intraepithelial neoplasia for the prevention of anal cancer: is there really a difference?

    PubMed

    Crawshaw, Benjamin P; Russ, Andrew J; Stein, Sharon L; Reynolds, Harry L; Marderstein, Eric L; Delaney, Conor P; Champagne, Bradley J

    2015-01-01

    High-resolution anoscopy has been shown to improve identification of anal intraepithelial neoplasia but a reduction in progression to anal squamous-cell cancer has not been substantiated when serial high-resolution anoscopy is compared with traditional expectant management. The aim of this study was to compare high-resolution anoscopy versus expectant management for the surveillance of anal intraepithelial neoplasia and the prevention of anal cancer. This is a retrospective review of all patients who presented with anal squamous dysplasia, positive anal Pap smears, or anal squamous-cell cancer from 2007 to 2013. This study was performed in the colorectal department of a university-affiliated, tertiary care hospital. Included patients had biopsy-proven anal intraepithelial neoplasia from 2007 to 2013. Patients were treated with high-resolution anoscopy with ablation or standard anoscopy with ablation. Both groups were treated with imiquimod and followed every 6 months indefinitely. The incidence of anal squamous-cell cancer in each group was the primary end point. From 2007 to 2013, 424 patients with anal squamous dysplasia were seen in the clinic (high-resolution anoscopy, 220; expectant management, 204). Three patients (high-resolution anoscopy, 1; expectant management, 2) progressed to anal squamous-cell cancer; 2 were noncompliant with follow-up and with HIV treatment, and the third was allergic to imiquimod and refused to take topical 5-fluorouracil. The 5-year progression rate was 6.0% (95% CI, 1.5-24.6) for expectant management and 4.5% (95% CI, 0.7-30.8) for high-resolution anoscopy (p = 0.37). This was a retrospective review. There is potential for selection and referral bias. Because of the rarity of the outcome, the study may be underpowered. Patients with squamous-cell dysplasia followed with expectant management or high-resolution anoscopy rarely develop squamous-cell cancer if they are compliant with the protocol. The cost, morbidity, and value of high-resolution anoscopy should be further evaluated in lieu of these findings.

  2. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  3. Automatic public access to documents and maps stored on and internal secure system.

    NASA Astrophysics Data System (ADS)

    Trench, James; Carter, Mary

    2013-04-01

    The Geological Survey of Ireland operates a Document Management System for providing documents and maps stored internally in high resolution and in a high level secure environment, to an external service where the documents are automatically presented in a lower resolution to members of the public. Security is devised through roles and Individual Users where role level and folder level can be set. The application is an electronic document/data management (EDM) system which has a Geographical Information System (GIS) component integrated to allow users to query an interactive map of Ireland for data that relates to a particular area of interest. The data stored in the database consists of Bedrock Field Sheets, Bedrock Notebooks, Bedrock Maps, Geophysical Surveys, Geotechnical Maps & Reports, Groundwater, GSI Publications, Marine, Mine Records, Mineral Localities, Open File, Quaternary and Unpublished Reports. The Konfig application Tool is both an internal and public facing application. It acts as a tool for high resolution data entry which are stored in a high resolution vault. The public facing application is a mirror of the internal application and differs only in that the application furnishes high resolution data into low resolution format which is stored in a low resolution vault thus, making the data web friendly to the end user for download.

  4. A description and evaluation of an air quality model nested within global and regional composition-climate models using MetUM

    NASA Astrophysics Data System (ADS)

    Neal, Lucy S.; Dalvi, Mohit; Folberth, Gerd; McInnes, Rachel N.; Agnew, Paul; O'Connor, Fiona M.; Savage, Nicholas H.; Tilbee, Marie

    2017-11-01

    There is a clear need for the development of modelling frameworks for both climate change and air quality to help inform policies for addressing these issues simultaneously. This paper presents an initial attempt to develop a single modelling framework, by introducing a greater degree of consistency in the meteorological modelling framework by using a two-step, one-way nested configuration of models, from a global composition-climate model (GCCM) (140 km resolution) to a regional composition-climate model covering Europe (RCCM) (50 km resolution) and finally to a high (12 km) resolution model over the UK (AQUM). The latter model is used to produce routine air quality forecasts for the UK. All three models are based on the Met Office's Unified Model (MetUM). In order to better understand the impact of resolution on the downscaling of projections of future climate and air quality, we have used this nest of models to simulate a 5-year period using present-day emissions and under present-day climate conditions. We also consider the impact of running the higher-resolution model with higher spatial resolution emissions, rather than simply regridding emissions from the RCCM. We present an evaluation of the models compared to in situ air quality observations over the UK, plus a comparison against an independent 1 km resolution gridded dataset, derived from a combination of modelling and observations, effectively producing an analysis of annual mean surface pollutant concentrations. We show that using a high-resolution model over the UK has some benefits in improving air quality modelling, but that the use of higher spatial resolution emissions is important to capture local variations in concentrations, particularly for primary pollutants such as nitrogen dioxide and sulfur dioxide. For secondary pollutants such as ozone and the secondary component of PM10, the benefits of a higher-resolution nested model are more limited and reasons for this are discussed. This study highlights the point that the resolution of models is not the only factor in determining model performance - consistency between nested models is also important.

  5. Multiframe super resolution reconstruction method based on light field angular images

    NASA Astrophysics Data System (ADS)

    Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao

    2017-12-01

    The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.

  6. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.

    PubMed

    Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju

    2018-05-29

    Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.

  7. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    PubMed Central

    He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151

  8. High-resolution Rainfall Mapping in Dallas-Fort Worth (DFW) Urban Network of Radars at Multiple Frequencies

    NASA Astrophysics Data System (ADS)

    Chandra, Chandrasekar V.; Chen*, Haonan

    2015-04-01

    Urban flash flood is one of the most commonly encountered hazardous weather phenomena. Unfortunately, the rapid urbanization has made the densely populated areas even more vulnerable to flood risks. Hence, accurate and timely monitoring of rainfall at high spatiotemporal resolution is critical to severe weather warning and civil defense, especially in urban areas. However, it is still challenging to produce high-resolution products based on the large S-band National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD), due to the sampling limitations and Earth curvature effect. Since 2012, the U.S. National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) has initiated the development of Dallas-Fort Worth (DFW) radar remote sensing network for urban weather hazards mitigation. The DFW urban radar network consists of a combination of high-resolution X-band radars and a standard NWS NEXRAD radar operating at S-band frequency. High-resolution quantitative precipitation estimation (QPE) is one of the major research goals in the deployment of this urban radar network. It has been shown in the literature that the dual-polarization radar techniques can improve the QPE accuracy over traditional single-polarization radars by rendering more measurements to enhance the data quality, providing more information about rain drop size distribution (DSD), and implying more characteristics of different hydrometeor types. This paper will present the real-time dual-polarization CASA DFW QPE system, which is developed via fusion of observations from both the high-resolution X band radar network and the S-band NWS radar. The specific dual-polarization rainfall algorithms at different frequencies (i.e., S- and X-band) will be described in details. In addition, the fusion methodology combining observations at different temporal resolution will be presented. In order to demonstrate the capability of rainfall estimation of the CASA DFW QPE system, rainfall measurements from ground rain gauges will be used for evaluation purposes. This high-resolution QPE system is used for urban flash flood forecasting when coupled with hydrological models.

  9. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  10. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    PubMed

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  11. High-resolution imaging optomechatronics for precise liquid crystal display module bonding automated optical inspection

    NASA Astrophysics Data System (ADS)

    Ni, Guangming; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong

    2018-01-01

    With the development of the liquid crystal display (LCD) module industry, LCD modules become more and more precise with larger sizes, which demands harsh imaging requirements for automated optical inspection (AOI). Here, we report a high-resolution and clearly focused imaging optomechatronics for precise LCD module bonding AOI inspection. It first presents and achieves high-resolution imaging for LCD module bonding AOI inspection using a line scan camera (LSC) triggered by a linear optical encoder, self-adaptive focusing for the whole large imaging region using LSC, and a laser displacement sensor, which reduces the requirements of machining, assembly, and motion control of AOI devices. Results show that this system can directly achieve clearly focused imaging for AOI inspection of large LCD module bonding with 0.8 μm image resolution, 2.65-mm scan imaging width, and no limited imaging width theoretically. All of these are significant for AOI inspection in the LCD module industry and other fields that require imaging large regions with high resolution.

  12. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  13. High Temporal and Spatial Resolution Global GPS TEC Observations of the 2015 St. Patrick Day Storm

    NASA Astrophysics Data System (ADS)

    Vierinen, J.

    2015-12-01

    High spatiotemperal resolution global GPS TEC measurements of the 2015 St. Patrick's day storm are presented. The high resolution data is useful, as it clearly shows the high latitude convection patterns, the equatorward progression of the auroral region, the tongue of ionization, as well as the increased electron density in the equatorial anomaly region. The measurements are compared with high power large aperture radar and passive radar measurements of coherent and incoherent scatter at Millstone Hill. Regions of fast convection identified in the GPS TEC data are found to coincide with coherent scatter in both radar data. Convection velocities determined from GPS TEC are compared with those obtained from incoherent scatter radar measurements.

  14. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS's parallel subsetting capabilities including challenges in the design and implementation of a scientific data subsetter.

  15. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  16. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  17. Laser radar cross-section estimation from high-resolution image data.

    PubMed

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  18. Prospects for Electron Imaging with Ultrafast Time Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, M R; Reed, B W; Torralva, B R

    2007-01-26

    Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here we demonstrate the feasibility of short-pulse electron imaging with t10 nanometer/10 picosecond spatio-temporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10 kilometer/second) without smearing. We outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, we present a model electron imaging system that achieves 10 nanometer/10 picosecond spatio-temporal resolution.

  19. Xenon detector with high energy resolution for gamma-ray line emission registration

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.

    2014-09-01

    A description of the xenon detector (XD) for gamma-ray line emission registration is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.

  20. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  1. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  2. A Fabry-Perot Spectrometer for High-Resolution Observation of the Sun

    NASA Astrophysics Data System (ADS)

    Kneer, F.; Hirzberger, J.

    Fabry-Perot interferometers (FPIs) are powerful instruments for spectro-polarimetry of the Sun with high spatial resolution. They allow easy image reconstruction of two-dimensional narrow-band fields of view. Some examples of high quality results obtained with the ``Göttingen'' FPI spectrometer, mounted in the Vacuum Tower Telescope at the Observatorio del Teide/Tenerife, are presented in a poster to this workshop. We thus concentrate on the design of a new instrument for the 1.5 m GREGOR solar telescope. We discuss the pros and cons of telecentric and collimated mounting and describe the expected performance, especially the spectral resolution, of our design.

  3. A Fabry-Perot spectrometer for high-resolution observation of the Sun

    NASA Astrophysics Data System (ADS)

    Kneer, F.; Hirzberger, H.

    2001-12-01

    Fabry-Perot interferometers (FPIs) are powerful instruments for spectro-polarimetry of the Sun with high spatial resolution. They allow easy image reconstruction of two-dimensional fields of view. Some examples of high quality results obtained with the ``Göttingen'' FPI spectrometer, mounted in the Vacuum Tower Telescope at the Observatorio del Teide/Tenerife, are presented in a poster to this workshop. We thus concentrate on the design of a new instrument for the 1.5 m GREGOR solar telescope. We discuss the pros and cons of telecentric and collimated mounting and describe the expected performance, especially the spectral resolution, of our design.

  4. A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Bueley, Christopher; Wild, Peter M.

    2013-09-01

    This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated.

  5. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  6. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  7. Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization.

    PubMed

    Li, Yiming; Ishitsuka, Yuji; Hedde, Per Niklas; Nienhaus, G Ulrich

    2013-06-25

    In localization-based super-resolution microscopy, individual fluorescent markers are stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the subregions within the frames where the individual molecules are present have to be identified-oftentimes in the presence of high background. In this work, we address the importance of reliable molecule identification for the quality of the final reconstructed super-resolution image. We present a fast and robust algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false assignments that can lead to image artifacts.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, J.; Mather, B.

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability inmore » system load and the variability of distributed PV generation are made.« less

  9. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  10. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  11. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  12. Subpixelic Measurement of Large 1D Displacements: Principle, Processing Algorithms, Performances and Software

    PubMed Central

    Guelpa, Valérian; Laurent, Guillaume J.; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-01-01

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations—leading to high resolution—while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 μs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 μm measurement range. PMID:24625736

  13. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  14. LOFAR facet callibration

    DOE PAGES

    Weeren, R. J. van; Williams, W. L.; Hardcastle, M. J.; ...

    2016-03-07

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map di use extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional di culties. In this paper we present a new calibration scheme, which we name facetmore » calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed eld of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ~5'' resolution, meeting the speci cations of the LOFAR Tier-1 northern survey.« less

  15. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  16. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.

  17. SkySat-1: very high-resolution imagery from a small satellite

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk

    2014-10-01

    This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.

  18. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    PubMed

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  19. High resolution positron annihilation induced Auger electron spectroscopy of the CuM 2,3VV-transition and of Cu sub-monolayers on Pd and Fe

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-09-01

    We present a high resolution positron annihilation induced Auger Electron Spectroscopy (PAES) of the CuM 2,3VV-transition with the unprecedented energy resolution of Δ/EE <1%. This energy resolution and the highly intense positron source NEPOMUC enabled us to resolve the double peak structure with PAES for the first time within a measurement time of only 5.5 h. In addition, sub-monolayers of Cu were deposited on Fe- and Pd-samples in order to investigate the surface selectivity of PAES in comparison with EAES. The extremely high surface selectivity of PAES due to the different positron affinity of Cu and Fe lead to the result that with only 0.96 monolayer of Cu on Fe more than 55% of the emitted Auger electrons stem from Cu, whereas with EAES the Cu Auger fraction amounted to less than 6%.

  20. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  1. Effects of whispering gallery mode in microsphere super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  2. Early development in synthetic aperture lidar sensing and processing for on-demand high resolution imaging

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Turbide, Simon; Terroux, Marc; Marchese, Linda; Harnisch, Bernd

    2017-11-01

    The quest for real-time high resolution is of prime importance for surveillance applications specially in disaster management and rescue mission. Synthetic aperture radar provides meter-range resolution images in all weather conditions. Often installed on satellites the revisit time can be too long to support real-time operations on the ground. Synthetic aperture lidar can be lightweight and offers centimeter-range resolution. Onboard airplane or unmanned air vehicle this technology would allow for timelier reconnaissance. INO has developed a synthetic aperture radar table prototype and further used a real-time optronic processor to fulfill image generation on-demand. The early positive results using both technologies are presented in this paper.

  3. Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes

    NASA Astrophysics Data System (ADS)

    Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu

    2018-02-01

    Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.

  4. Enhanced High Resolution RBS System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic datamore » collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.« less

  5. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  6. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  7. Achieving subpixel resolution with time-correlated transient signals in pixelated CdZnTe gamma-ray sensors using a focused laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.

    2017-05-01

    High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.

  8. Fragmentation of urban forms and the environmental consequences: results from a high-spatial resolution model system

    NASA Astrophysics Data System (ADS)

    Tang, U. W.; Wang, Z. S.

    2008-10-01

    Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.

  9. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  10. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  11. High resolution present climate and surface mass balance (SMB) of Svalbard modelled by MAR and implementation of a new online SMB downscaling method

    NASA Astrophysics Data System (ADS)

    Lang, C.; Fettweis, X.; Kittel, C.; Erpicum, M.

    2017-12-01

    We present the results of high resolution simulations of the climate and SMB of Svalbard with the regional climate model MAR forced by ERA-40 then ERA-Interim, as well as an online downscaling method allowing us to model the SMB and its components at a resolution twice as high (2.5 vs 5 km here) using only about 25% more CPU time. Spitsbergen, the largest island in Svalbard, has a very hilly topography and a high spatial resolution is needed to correctly represent the local topography and the complex pattern of ice distribution and precipitation. However, high resolution runs with an RCM fully coupled to an energy balance module like MAR require a huge amount of computation time. The hydrostatic equilibrium hypothesis used in MAR also becomes less valid as the spatial resolution increases. We therefore developed in MAR a method to run the snow module at a resolution twice as high as the atmospheric module. Near-surface temperature and humidity are corrected on a grid with a resolution twice as high, as a function of their local gradients and the elevation difference between the corresponding pixels in the 2 grids. We compared the results of our runs at 5 km and with SMB downscaled at 2.5 km over 1960 — 2016 and compared those to previous 10 km runs. On Austfonna, where the slopes are gentle, the agreement between observations and the 5 km SMB is better than with the 10 km SMB. It is again improved at 2.5 km but the gain is relatively small, showing the interest of our method rather than running a time consuming classic 2.5 km resolution simulation. On Spitsbergen, we show that a spatial resolution of 2.5 km is still not enough to represent the complex pattern of topography, precipitation and SMB. Due to a change in the summer atmospheric circulation, from a westerly flow over Svalbard to a northwesterly flow bringing colder air, the SMB of Svalbard was stable between 2006 and 2012, while several melt records were broken in Greenland, due to conditions more anticyclonic than usual. In 2013, the reverse situation happened and a southwesterly atmospheric circulation brought warmer air over Svalbard. The SMB broke the last 55 years' record. In 2016, the temperature was higher than average and a new record melt was broken despite a northwesterly flow. The northerly flow still mitigated the warming over Svalbard, which was much lower than most regions of the Arctic.

  12. High-resolution AM LCD development for avionic applications

    NASA Astrophysics Data System (ADS)

    Lamberth, Larry S.; Laddu, Ravindra R.; Harris, Doug; Sarma, Kalluri R.; Li, Wang-Yang; Chien, C. C.; Chu, C. Y.; Lee, C. S.; Kuo, Chen-Lung

    2003-09-01

    For the first time, an avionic grade MVA AM LCD with wide viewing angle has been developed for use in either landscape or portrait mode. The development of a high resolution Multi-domain Vertical Alignment (MVA) Active Matrix Liquid Crystal Display (AM LCD) is described. Challenges met in this development include achieving the required performance with high luminance and sunlight readability while meeting stringent optical (image quality) and environmental performance requirements of avionics displays. In this paper the optical and environmental performance of this high resolution 14.1" MVA-AM-LCD are discussed and some performance comparisons to conventional AM-LCDs are documented. This AM LCD has found multiple Business Aviation and Military display applications and cockpit pictures are presented.

  13. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    PubMed Central

    Devesse, Wim; De Baere, Dieter; Guillaume, Patrick

    2017-01-01

    A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764

  14. Sub-micron resolution selected area electron channeling patterns.

    PubMed

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  16. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  17. Relative Fluxes of Primary Particles in B-C-N-O Group from the ATIC Experiment (Science Flight)

    NASA Technical Reports Server (NTRS)

    Panov, A. D.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.; Guzik, T. G.; hide

    2007-01-01

    The ATIC balloon-born experiment measures the energy spectra of elements from H to Fe in primary cosmic rays from about 100 GeV to 100 TeV. ATIC is comprised of a fully active bismuth germinate calorimeter, a carbon target with embedded scintillator hodoscopes, and a silicon matrix that is used as a main charge detector. The silicon matrix produces good charge resolution for the protons and helium but only a partial resolution for heavier nuclei. In the present paper a charge resolution of ATIC device was improved and backgrounds were reduced in the region from Be to Si by means of the upper layer of the scintillator hodoscope that was used as charge detector together with silicon matrix. Relative fluxes of nuclei B, C, N, O in the energy region from about 20 GeV/nucleon to 200 GeV/nucleon that were obtained from new high-resolution and high-quality charge spectra of nuclei are presented.

  18. Resolving the fine-scale structure in turbulent Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Scheel, Janet; Emran, Mohammad; Schumacher, Joerg

    2013-11-01

    Results from high-resolution direct numerical simulations of turbulent Rayleigh-Benard convection in a cylindrical cell with an aspect ratio of one will be presented. We focus on the finest scales of convective turbulence, in particular the statistics of the kinetic energy and thermal dissipation rates in the bulk and the whole cell. These dissipation rates as well as the local dissipation scales are compared for different Rayleigh and Prandtl numbers. We also have investigated the convergence properties of our spectral element method and have found that both dissipation fields are very sensitive to insufficient resolution. We also demonstrate that global transport properties, such as the Nusselt number and the energy balances, are partly insensitive to insufficient resolution and yield consistent results even when the dissipation fields are under-resolved. Our present numerical framework is also compared with high-resolution simulations which use a finite difference method. For most of the compared quantities the agreement is found to be satisfactory.

  19. The fusion of satellite and UAV data: simulation of high spatial resolution band

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  20. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  1. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle.

    PubMed

    Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome

    2009-01-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  2. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle

    NASA Astrophysics Data System (ADS)

    Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome

    2009-05-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  3. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  4. Fluid dynamics and convective heat transfer in impinging jets through implementation of a high resolution liquid crystal technique

    NASA Technical Reports Server (NTRS)

    Kim, K.; Wiedner, B.; Camci, C.

    1993-01-01

    A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.

  5. Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range

    NASA Astrophysics Data System (ADS)

    Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina

    2018-02-01

    High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.

  6. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  7. Digital time delay

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  8. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    DOE PAGES

    Suvorov, Alexey; Cunsolo, Alessandro; Chubar, Oleg; ...

    2015-11-25

    Further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the “Synchrotron Radiation Workshop” software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. We show that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  9. High resolution solar observations from first principles to applications

    NASA Astrophysics Data System (ADS)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the polarization optics for the Visible-light Imaging Magnetograph (VIM) is presented. VIM uses a set of two Liquid Crystal Variable Retarders (LCVRs) as the main components of its Stokes analyzer. Calibration of these components is a crucial step in providing reliable polarimetric measurements of the Sun using VIM. On 2007 July 15, using the Dunn Solar Telescope (DST) at the National Solar Observatory at Sacramento Peak (NSO/SP), New Mexico, the first polarimetric measurements using VIM were made. As a final step, illustrating an application of high-resolution solar observations, the results of a two-dimensional time-series acquired on 2006 June 11, using the DST at NSOP is presented. The data is used in a study of upflow events that are observed to occur in the Halpha 656.3 nm and Na D2 589.0 nm chromospheric absorption lines.

  10. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  11. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  12. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  13. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  14. The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian

    2017-10-01

    This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.

  15. The NPP and J1 CrIS Operational High-Resolution Channel Selection for the NUCAPS algorithm: A demonstration of global applicability to meet users needs

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gambacorta, A.; Barnet, C.; Smith, N.; Goldberg, M.; Pierce, B.; Wolf, W.; King, T.

    2016-12-01

    This work presents an overview of the NPP and J1 CrIS high resolution operational channel selection. Our methodology focuses on the spectral sensitivity characteristics of the available channels in order to maximize information content and spectral purity. These aspects are key to ensure accuracy in the retrieval products, particularly for trace gases. We will provide a demonstration of its global optimality by analyzing different test cases that are of particular interests to our JPSS Proving Ground and Risk Reduction user applications. A focus will be on high resolution trace gas retrieval capability in the context of the Alaska fire initiatives.

  16. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  17. CO (3 - 2) High-resolution Survey of the Galactic Plane: R1

    NASA Astrophysics Data System (ADS)

    Dempsey, J. T.; Thomas, H. S.; Currie, M. J.

    2013-11-01

    We present the first release (R1) of data from the CO High-Resolution Survey (COHRS), which maps a strip of the inner Galactic plane in 12CO (J = 3 → 2). The data are taken using the Heterodyne Array Receiver Programme on the James Clerk Maxwell Telescope (JCMT) in Hawaii, which has a 14 arcsec angular resolution at this frequency. When complete, this survey will cover |b| <= 0.°5 between 10° < l < 65°. This first release covers |b| <= 0.°5 between 10.°25 < l < 17.°5 and 50.°25 < l < 55.°25, and |b| <= 0.°25 between 17.°5 < l < 50.°25. The data are smoothed to a velocity resolution of 1 km s-1, a spatial resolution of 16 arcsec and achieve a mean rms of ~1 K. COHRS data are available to the community online at http://dx.doi.org/10.11570/13.0002. In this paper we describe the data acquisition and reduction techniques used and present integrated intensity images and longitude-velocity maps. We also discuss the noise characteristics of the data. The high resolution is a powerful tool for morphological studies of bubbles and filaments while the velocity information shows the spiral arms and outflows. These data are intended to complement both existing and upcoming surveys, e.g., the Bolocam Galactic Plane Survey (BGPS), ATLASGAL, the Herschel Galactic Plane Survey (Hi-GAL) and the JCMT Galactic Plane Survey with SCUBA-2 (JPS).

  18. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  19. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  20. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less

  1. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  2. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  3. Loop Evolution Observed with AIA and Hi-C

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana; Winebarger, Amy R.; Cirtain, Jonathan W.; Kobayashi, Ken; Korreck, Kelly E.; Golub, Leon; Kuzin, Sergei; Walsh, Robert William; DeForest, Craig E.; De Pontieu, Bart; hide

    2012-01-01

    In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data. In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data.

  4. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  5. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, T.; Jensen, R.; Christensen, M. K.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less

  6. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  7. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors.

    PubMed

    Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).

  8. Sub-micron materials characterization using near-field optics

    NASA Astrophysics Data System (ADS)

    Blodgett, David Wesley

    1998-12-01

    High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.

  9. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  10. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  11. Investigation of the Chromosphere-Corona Interface with the Upgraded Very High Angular Resolution Ultraviolet Telescope (VAULT2.0)

    NASA Astrophysics Data System (ADS)

    Vourlidas, Angelos; Beltran, Samuel Tun; Chintzoglou, Georgios; Eisenhower, Kevin; Korendyke, Clarence; Feldman, Ronen; Moser, John; Shea, John; Johnson-Rambert, Mary; McMullin, Don; Stenborg, Guillermo; Shepler, Ed; Roberts, David

    2016-03-01

    Very high angular resolution ultraviolet telescope (VAULT2.0) is a Lyman-alpha (Lyα; 1216Å) spectroheliograph designed to observe the upper chromospheric region of the solar atmosphere with high spatial (<0.5‧‧) and temporal (8s) resolution. Besides being the brightest line in the solar spectrum, Lyα emission arises at the temperature interface between coronal and chromospheric plasmas and may, hence, hold important clues about the transfer of mass and energy to the solar corona. VAULT2.0 is an upgrade of the previously flown VAULT rocket and was launched successfully on September 30, 2014 from White Sands Missile Range (WSMR). The target was AR12172 midway toward the southwestern limb. We obtained 33 images at 8s cadence at arc second resolution due to hardware problems. The science campaign was a resounding success, with all space and ground-based instruments obtaining high-resolution data at the same location within the AR. We discuss the science rationale, instrument upgrades, and performance during the first flight and present some preliminary science results.

  12. Resolution analysis of archive films for the purpose of their optimal digitization and distribution

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2017-09-01

    With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan; Hill, K. W.; Bitter, M.

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  14. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization

    PubMed Central

    Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-01-01

    Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296

  15. Ultra-sensitive magnetic microscopy with an atomic magnetometer and flux guides

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    Many applications in neuroscience, biomedical research, and material science require high-sensitivity, high-resolution magnetometry. In order to meet this need we recently combined a cm-size spin-exchange relaxation-free Atomic Magnetometer (AM) with a flux guide (FG) to produce ultra-sensitive FG-AM magnetic microscopy. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution to tiny magnetic objects. In this talk, we will describe existing and next generation FG-AM devices and present experimental and numerical tests of its sensitivity and resolution. We demonstrate that an optimized FG-AM has sufficient resolution and sensitivity for the detection of a small number of neurons, which would be an important milestone in neuroscience. In addition, as a demonstration of one possible application of the FG-AM device, we conducted high-resolution magnetic imaging of micron-size magnetic particles. We will show that the device can produce clear microscopic magnetic image of 10 μm-size magnetic particles.

  16. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.

    2018-04-01

    We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

  17. Standard, Random, and Optimum Array conversions from Two-Pole resistance data

    DOE PAGES

    Rucker, D. F.; Glaser, Danney R.

    2014-09-01

    We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less

  18. Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography

    NASA Astrophysics Data System (ADS)

    Sciarrino, Fabio; Vitelli, Chiara; de Martini, Francesco; Glasser, Ryan; Cable, Hugo; Dowling, Jonathan P.

    2008-01-01

    Quantum lithography proposes to adopt entangled quantum states in order to increase resolution in interferometry. In the present paper we experimentally demonstrate that the output of a high-gain optical parametric amplifier can be intense yet exhibits quantum features, namely, sub-Rayleigh fringes, as proposed by [Agarwal , Phys. Rev. Lett. 86, 1389 (2001)]. We investigate multiphoton states generated by a high-gain optical parametric amplifier operating with a quantum vacuum input for gain values up to 2.5. The visibility has then been increased by means of three-photon absorption. The present paper opens interesting perspectives for the implementation of such an advanced interferometrical setup.

  19. Measuring the performance of super-resolution reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; Schutte, Klamer; van Eekeren, Adam W. M.; Bijl, Piet

    2012-06-01

    For many military operations situational awareness is of great importance. This situational awareness and related tasks such as Target Acquisition can be acquired using cameras, of which the resolution is an important characteristic. Super resolution reconstruction algorithms can be used to improve the effective sensor resolution. In order to judge these algorithms and the conditions under which they operate best, performance evaluation methods are necessary. This evaluation, however, is not straightforward for several reasons. First of all, frequency-based evaluation techniques alone will not provide a correct answer, due to the fact that they are unable to discriminate between structure-related and noise-related effects. Secondly, most super-resolution packages perform additional image enhancement techniques such as noise reduction and edge enhancement. As these algorithms improve the results they cannot be evaluated separately. Thirdly, a single high-resolution ground truth is rarely available. Therefore, evaluation of the differences in high resolution between the estimated high resolution image and its ground truth is not that straightforward. Fourth, different artifacts can occur due to super-resolution reconstruction, which are not known on forehand and hence are difficult to evaluate. In this paper we present a set of new evaluation techniques to assess super-resolution reconstruction algorithms. Some of these evaluation techniques are derived from processing on dedicated (synthetic) imagery. Other evaluation techniques can be evaluated on both synthetic and natural images (real camera data). The result is a balanced set of evaluation algorithms that can be used to assess the performance of super-resolution reconstruction algorithms.

  20. An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Skala, Melissa C.

    2014-02-01

    The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.

  1. A high resolution cavity BPM for the CLIC Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chritin, N.; Schmickler, H.; Soby, L.

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  2. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  3. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    NASA Technical Reports Server (NTRS)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  4. Deep learning massively accelerates super-resolution localization microscopy.

    PubMed

    Ouyang, Wei; Aristov, Andrey; Lelek, Mickaël; Hao, Xian; Zimmer, Christophe

    2018-06-01

    The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.

  5. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  6. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  7. Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.

    2004-12-01

    We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.

  8. Resolving the fine-scale structure in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Scheel, Janet D.; Emran, Mohammad S.; Schumacher, Jörg

    2013-11-01

    We present high-resolution direct numerical simulation studies of turbulent Rayleigh-Bénard convection in a closed cylindrical cell with an aspect ratio of one. The focus of our analysis is on the finest scales of convective turbulence, in particular the statistics of the kinetic energy and thermal dissipation rates in the bulk and the whole cell. The fluctuations of the energy dissipation field can directly be translated into a fluctuating local dissipation scale which is found to develop ever finer fluctuations with increasing Rayleigh number. The range of these scales as well as the probability of high-amplitude dissipation events decreases with increasing Prandtl number. In addition, we examine the joint statistics of the two dissipation fields and the consequences of high-amplitude events. We have also investigated the convergence properties of our spectral element method and have found that both dissipation fields are very sensitive to insufficient resolution. We demonstrate that global transport properties, such as the Nusselt number, and the energy balances are partly insensitive to insufficient resolution and yield correct results even when the dissipation fields are under-resolved. Our present numerical framework is also compared with high-resolution simulations which use a finite difference method. For most of the compared quantities the agreement is found to be satisfactory.

  9. Compact high-power shipborne doppler lidar based on high spectral resolution techniques

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Bingyi; Dai, Guangyao; Qin, Shenguang; Liu, Jintao; Zhang, Kailin; Feng, Changzhong; Zhai, Xiaochun; Song, Xiaoquan

    2018-04-01

    The Compact High-Power Shipborne Doppler Wind Lidar (CHiPSDWiL) based on highspectral-resolution technique has been built up at the Ocean University of China for the measurement of the wind field and the properties of the aerosol and clouds in the troposphere. The design of the CHiPSDWiL including the transceiver, the injection seeding, the locking and the frequency measurement will be presented. Preliminary results measured by the CHiPSDWiL are provided.

  10. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  11. An alternative method of fabricating sub-micron resolution masks using excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Hayden, C. J.; Eijkel, J. C. T.; Dalton, C.

    2004-06-01

    In the work presented here, an excimer laser micromachining system has been used successfully to fabricate high-resolution projection and contact masks. The contact masks were subsequently used to produce chrome-gold circular ac electro-osmotic pump (cACEOP) microelectrode arrays on glass substrates, using a conventional contact photolithography process. The contact masks were produced rapidly (~15 min each) and were found to be accurate to sub-micron resolution, demonstrating an alternative route for mask fabrication. Laser machined masks were also used in a laser-projection system, demonstrating that such fabrication techniques are also suited to projection lithography. The work addresses a need for quick reproduction of high-resolution contact masks, given their rapid degradation when compared to non-contact masks.

  12. High-Resolution Large Field-of-View FUV Compact Camera

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    The need for a high resolution camera with a large field of view and capable to image dim emissions in the far-ultraviolet is driven by the widely varying intensities of FUV emissions and spatial/temporal scales of phenomena of interest in the Earth% ionosphere. In this paper, the concept of a camera is presented that is designed to achieve these goals in a lightweight package with sufficient visible light rejection to be useful for dayside and nightside emissions. The camera employs the concept of self-filtering to achieve good spectral resolution tuned to specific wavelengths. The large field of view is sufficient to image the Earth's disk at Geosynchronous altitudes and capable of a spatial resolution of >20 km. The optics and filters are emphasized.

  13. High Resolution Regional Climate Simulations over Alaska

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  14. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  15. A High Resolution Spectroscopic Observation of CAL 83 with XMM-Newton/RGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Rasmussen, Andrew P.; Hartmann, H. W.; Heise, J.; Brinkman, A. C.; deVries, C. P.; denHerder, J.-W.

    2000-01-01

    We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the famous CAL 83 in the Large Magellanic Cloud. The spectrum was obtained with the Reflection Grating Spectrometer on XMM-Newton during the Calibration/Performance Verification phase of the observatory. The spectrum covers the range 20-40 A at an approximately constant resolution of 0.05 A, and shows very significant, intricate detail, that is very sensitive to the physical properties of the object. We present the results of an initial investigation of the spectrum, from which we draw the conclusion that the spectral structure is probably dominated by numerous absorption features due to transitions in the Gshells of the mid-2 elements and the M-shell of Fe, in addition to a few strong K-shell features due to CNO.

  16. IMRT sequencing for a six-bank multi-leaf system.

    PubMed

    Topolnjak, R; van der Heide, U A; Lagendijk, J J W

    2005-05-07

    In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 degrees . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments.

  17. Developmental approach towards high resolution optical coherence tomography for glaucoma diagnostics

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Ketelhut, Steffi; Heiduschka, Peter; Thorn, Marie; Larsen, Michael; Schnekenburger, Jürgen

    2018-02-01

    Glaucoma is caused by a pathological rise in the intraocular pressure, which results in a progressive loss of vision by a damage to retinal cells and the optical nerve head. Early detection of pressure-induced damage is thus essential for the reduction of eye pressure and to prevent severe incapacity or blindness. Within the new European Project GALAHAD (Glaucoma Advanced, Label free High Resolution Automated OCT Diagnostics), we will develop a new low-cost and high-resolution OCT system for the early detection of glaucoma. The device is designed to improve diagnosis based on a new system of optical coherence tomography. Although OCT systems are at present available in ophthalmology centres, high-resolution devices are extremely expensive. The novelty of the new Galahad system is its super wideband light source to achieve high image resolution at a reasonable cost. Proof of concept experiments with cell and tissue Glaucoma test standards and animal models are planned for the test of the new optical components and new algorithms performance for the identification of Glaucoma associated cell and tissue structures. The intense training of the software systems with various samples should result in a increased sensitivity and specificity of the OCT software system.

  18. Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2017-09-01

    Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.

  19. Fabrication High Resolution Metrology Target By Step And Repeat Method

    NASA Astrophysics Data System (ADS)

    Dusa, Mircea

    1983-10-01

    Based on the photolithography process generally used to generate high resolution masks for semiconductor I.C.S, we found a very useful industrial application of laser technology.First, we have generated high resolution metrology targets which are used in industrial measurement laser interferometers as difra.ction gratings. Secondi we have generated these targets using step and repeat machine, with He-Ne laser interferometer controlled state, as a pattern generator, due to suitable computer programming.Actually, high resolution metrology target, means two chromium plates, one of which is called the" rule" the other one the "vernier". In Fig.1 we have the configuration of the rule and the vernier. The rule has a succesion of 3 μM lines generated as a difraction grating on a 4 x 4 inch chromium blank. The vernier has several exposed fields( areas) having 3 - 15 μm lines, fields placed on very precise position on the chromium blank surface. High degree of uniformity, tight CD tolerances, low defect density required by the targets, creates specialised problems during processing. Details of the processing, together with experimental results will be presented. Before we start to enter into process details, we have to point out that the dimensional requirements of the reticle target, are quite similar or perhaps more strict than LSI master casks. These requirements presented in Fig.2.

  20. Detailed sensory memory, sloppy working memory.

    PubMed

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  1. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  2. Wavefront coding for fast, high-resolution light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Olarte, Omar E.; Licea-Rodriguez, Jacob; Loza-Alvarez, Pablo

    2017-02-01

    Some biological experiments demand the observation of dynamics processes in 3D with high spatiotemporal resolution. The use of wavefront coding to extend the depth-of-field (DOF) of the collection arm of a light-sheet microscope is an interesting alternative for fast 3D imaging. Under this scheme, the 3D features of the sample are captured at high volumetric rates while the light sheet is swept rapidly within the extended DOF. The DOF is extended by coding the pupil function of the imaging lens by using a custom-designed phase mask. A posterior restoration step is required to decode the information of the captured images based on the applied phase mask [1]. This hybrid optical-digital approach is known as wavefront coding (WFC). Previously, we have demonstrated this method for performing fast 3D imaging of biological samples at medium resolution [2]. In this work, we present the extension of this approach for high-resolution microscopes. Under these conditions, the effective DOF of a standard high NA objective is of a few micrometers. Here we demonstrate that by the use of WFC, we can extend the DOF more than one order of magnitude keeping the high-resolution imaging. This is demonstrated for two designed phase masks using Zebrafish and C. elegans samples. [1] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled Illumination-Detection Microscopy. Selected Optics in Year 2105," in Optics and Photonics news 26, p. 41 (2015). [2] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled illumination detection in light sheet microscopy for fast volumetric imaging," Optica 2(8), 702 (2015).

  3. HATS (High Altitude Thermal Sounder): a passive sensor solution to 3D high-resolution mapping of upper atmosphere dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gordley, Larry; Marshall, Benjamin T.; Lachance, Richard L.

    2016-10-01

    This presentation introduces a High Altitude Thermal Sensor (HATS) that has the potential to resolve the thermal structure of the upper atmosphere (cloud top to 100km) with both horizontal and vertical resolution of 5-7 km or better. This would allow the complete characterization of the wave structures that carry weather signature from the underlying atmosphere. Using a novel gas correlation technique, an extremely high-resolution spectral scan is accomplished by measuring a Doppler modulated signal as the atmospheric thermal scene passes through the HATS 2D FOV. This high spectral resolution, difficult to impossible to achieve with any other passive technique, enables the separation of radiation emanating at high altitudes from that emanating at low altitudes. A principal component analysis of these modulation signals then exposes the complete thermal structure of the upper atmosphere. We show that nadir sounding from low earth orbit, using various branches of CO2 emission in the 17 to 15 micron region, with sufficient spectral resolution and spectral measurement range, can distinguish thermal energy that peaks at various altitudes. By observing the up-welling atmospheric emission through a low pressure (Doppler broadened) gas cell, as the scene passes through our FOV, a modulation signal is created as the atmospheric emission lines are shifted through the spectral position of the gas cell absorption lines. The modulation signal is shown to be highly correlated to the emission coming from the spectral location of the gas cell lines relative to the atmospheric emission lines. This effectively produces a scan of the atmospheric emission with a Doppler line resolution. Similar to thermal sounding of the troposphere, a principal component analysis of the modulation signal can be used to produce an altitude resolved profile, given a reasonable a priori temperature profile. It is then shown that with the addition of a limb observation with one CO2 broadband channel (similar to methods employed with sensors like LIMS on Nimbus 7, HIRDLS on Aura, and SABER on TIMED), a limb temperature profile can be retrieved and used as the a priori profile, nearly eliminating uncertainty due to a priori inaccuracy. Feasibility studies and proposed instrument designs are presented. A tutorial for a similar technique proposed for measuring winds and temperature with limb observations can be found at http://www.gats-inc.com/future_missions.html

  4. Scaling an in situ network for high resolution modeling during SMAPVEX15

    USDA-ARS?s Scientific Manuscript database

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in si...

  5. Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Sun, Peizhen; Parvathaneni, Prasanna; Schilling, Kurt G.; Gao, Yurui; Janve, Vaibhav; Anderson, Adam; Landman, Bennett A.

    2015-03-01

    This effort is a continuation of development of a digital brain atlas of the common squirrel monkey, Saimiri sciureus, a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. Here, we present the integration of histology with multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. The central concept of this work is to use block face photography to establish an intermediate common space in coordinate system which preserves the high resolution in-plane resolution of histology while enabling 3-D correspondence with MRI. In vivo MRI acquisitions include high resolution T2 structural imaging (300 μm isotropic) and low resolution diffusion tensor imaging (600 um isotropic). Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging (both 300 μm isotropic). Cortical regions were manually annotated on the co-registered volumes based on published histological sections in-plane. We describe mapping of histology and MRI based data of the common squirrel monkey and construction of a viewing tool that enable online viewing of these datasets. The previously descried atlas MRI is used for its deformation to provide accurate conformation to the MRI, thus adding information at the histological level to the MRI volume. This paper presents the mapping of single 2D image slice in block face as a proof of concept and this can be extended to map the atlas space in 3D coordinate system as part of the future work and can be loaded to an XNAT system for further use.

  6. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1)

    NASA Astrophysics Data System (ADS)

    Quiquet, Aurélien; Roche, Didier M.; Dumas, Christophe; Paillard, Didier

    2018-02-01

    This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  7. Hyperspectral imaging in SWIR: from stain-free microscopy to deep tissue imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berezin, Mikhail Y.

    2016-03-01

    Recent advances in relatively unexplored short wave infrared (SWIR) range from 800-1600 nm detectors make wide-field imaging in this spectral range attractive to biology. The distinct advantages of SWIR region over the visible and near infrared (NIR) in tissue analysis are two-fold: (i) high abundance endogenous chromophores (i.e. water and lipids) enable tissue component differentiation based on wavelength-dependent absorption properties and (ii) the weak scattering of tissue permits better resolution of imaging in thick specimens. When combined with high spectral resolution, SWIR imaging produces a spectroscopic image, where every pixel corresponds to the entire high-resolution spectrum. This hyperspectral (HS) approach provides rich information about the relative abundance of individual chromophores and their interactions that contribute to the intensity and location of the optical signal. The presentation discusses the challenges in the SWIR-HS instrument design and data analysis and demonstrates some of the promising applications of this technology in life science and medicine.

  8. Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperatures

    NASA Technical Reports Server (NTRS)

    Farrar, Michael R.; Smith, Eric A.

    1992-01-01

    A method for enhancing the 19, 22, and 37 GHz measurements of the SSM/I (Special Sensor Microwave/Imager) to the spatial resolution and sampling density of the high resolution 85-GHz channel is presented. An objective technique for specifying the tuning parameter, which balances the tradeoff between resolution and noise, is developed in terms of maximizing cross-channel correlations. Various validation procedures are performed to demonstrate the effectiveness of the method, which hopefully will provide researchers with a valuable tool in multispectral applications of satellite radiometer data.

  9. High resolution imaging and wavefront aberration correction in plenoptic systems.

    PubMed

    Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M

    2014-09-01

    Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.

  10. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  11. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  12. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  13. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  14. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE PAGES

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; ...

    2016-12-13

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  15. A Parallel, Multi-Scale Watershed-Hydrologic-Inundation Model with Adaptively Switching Mesh for Capturing Flooding and Lake Dynamics

    NASA Astrophysics Data System (ADS)

    Ji, X.; Shen, C.

    2017-12-01

    Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.

  16. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    PubMed

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  17. Libraries of High and Mid-Resolution Spectra of F, G, K, and M Field Stars

    NASA Astrophysics Data System (ADS)

    Montes, D.

    1998-06-01

    I have compiled here the three libraries of high and mid-resolution optical spectra of late-type stars I have recently published. The libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 1000 Å, with spectral resolution ranging from 0.09 to 3.0 Å. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity. The spectra have been obtained with the aim of providing a library of high and mid-resolution spectra to be used in the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways. A digital version of all the fully reduced spectra is available via FTP and the World Wide Web (WWW) in FITS format.

  18. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  19. High-resolution x-ray tomography using laboratory sources

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing

    2006-08-01

    X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.

  20. Obtaining high-resolution velocity spectra using weighted semblance

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saleh; Kahoo, Amin Roshandel; Porsani, Milton J.; Kalateh, Ali Nejati

    2017-02-01

    Velocity analysis employs coherency measurement along a hyperbolic or non-hyperbolic trajectory time window to build velocity spectra. Accuracy and resolution are strictly related to the method of coherency measurements. Semblance, the most common coherence measure, has poor resolution velocity which affects one's ability to distinguish and pick distinct peaks. Increase the resolution of the semblance velocity spectra causes the accuracy of estimated velocity for normal moveout correction and stacking is improved. The low resolution of semblance spectra depends on its low sensitivity to velocity changes. In this paper, we present a new weighted semblance method that ensures high-resolution velocity spectra. To increase the resolution of semblance spectra, we introduce two weighting functions based on the first to second singular values ratio of the time window and the position of the seismic wavelet in the time window to the semblance equation. We test the method on both synthetic and real field data to compare the resolution of weighted and conventional semblance methods. Numerical examples with synthetic and real seismic data indicate that the new proposed weighted semblance method provides higher resolution than conventional semblance and can separate the reflectors which are mixed in the semblance spectrum.

  1. High definition clouds and precipitation for climate prediction -results from a unified German research initiative on high resolution modeling and observations

    NASA Astrophysics Data System (ADS)

    Rauser, F.

    2013-12-01

    We present results from the German BMBF initiative 'High Definition Cloud and Precipitation for advancing Climate Prediction -HD(CP)2'. This initiative addresses most of the problems that are discussed in this session in one, unified approach: cloud physics, convection, boundary layer development, radiation and subgrid variability are approached in one organizational framework. HD(CP)2 merges both observation and high performance computing / model development communities to tackle a shared problem: how to improve the understanding of the most important subgrid-scale processes of cloud and precipitation physics, and how to utilize this knowledge for improved climate predictions. HD(CP)2 is a coordinated initiative to: (i) realize; (ii) evaluate; and (iii) statistically characterize and exploit for the purpose of both parameterization development and cloud / precipitation feedback analysis; ultra-high resolution (100 m in the horizontal, 10-50 m in the vertical) regional hind-casts over time periods (3-15 y) and spatial scales (1000-1500 km) that are climatically meaningful. HD(CP)2 thus consists of three elements (the model development and simulations, their observational evaluation and exploitation/synthesis to advance CP prediction) and its first three-year phase has started on October 1st 2012. As a central part of HD(CP)2, the HD(CP)2 Observational Prototype Experiment (HOPE) has been carried out in spring 2013. In this campaign, high resolution measurements with a multitude of instruments from all major centers in Germany have been carried out in a limited domain, to allow for unprecedented resolution and precision in the observation of microphysics parameters on a resolution that will allow for evaluation and improvement of ultra-high resolution models. At the same time, a local area version of the new climate model ICON of the Max Planck Institute and the German weather service has been developed that allows for LES-type simulations on high resolutions on limited domains. The advantage of modifying an existing, evolving climate model is to share insights from high resolution runs directly with the large-scale modelers and to allow for easy intercomparison and evaluation later on. Within this presentation, we will give a short overview on HD(CP)2 , show results from the observation campaign HOPE and the LES simulations of the same domain and conditions and will discuss how these will lead to an improved understanding and evaluation background for the efforts to improve fast physics in our climate model.

  2. Calorimetric low-temperature detectors for high resolution x-ray spectroscopy on stored highly stripped heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kraft, S.; McCammon, D.; Meier, H. J.; Shrivastava, A.; Stahle, C. K.; Weber, M.

    2002-02-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208Pb81+ or 238U91+ with sufficient accuracy, a high resolution calorimetric detector for hard x-rays (E<=100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm2×47 μm Pb absorber an energy resolution of ΔEFWHM=65 eV is obtained for 60 keV x-rays. .

  3. Warping an atlas derived from serial histology to 5 high-resolution MRIs.

    PubMed

    Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar

    2018-06-19

    Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.

  4. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  5. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    PubMed Central

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188

  6. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    PubMed

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish

    PubMed Central

    Li, Yun; Liu, Shikai; Qin, Zhenkui; Waldbieser, Geoff; Wang, Ruijia; Sun, Luyang; Bao, Lisui; Danzmann, Roy G.; Dunham, Rex; Liu, Zhanjiang

    2015-01-01

    Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. PMID:25428894

  8. HIPS: A new hippocampus subfield segmentation method.

    PubMed

    Romero, José E; Coupé, Pierrick; Manjón, José V

    2017-12-01

    The importance of the hippocampus in the study of several neurodegenerative diseases such as Alzheimer's disease makes it a structure of great interest in neuroimaging. However, few segmentation methods have been proposed to measure its subfields due to its complex structure and the lack of high resolution magnetic resonance (MR) data. In this work, we present a new pipeline for automatic hippocampus subfield segmentation using two available hippocampus subfield delineation protocols that can work with both high and standard resolution data. The proposed method is based on multi-atlas label fusion technology that benefits from a novel multi-contrast patch match search process (using high resolution T1-weighted and T2-weighted images). The proposed method also includes as post-processing a new neural network-based error correction step to minimize systematic segmentation errors. The method has been evaluated on both high and standard resolution images and compared to other state-of-the-art methods showing better results in terms of accuracy and execution time. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Changhui; Zhu, Lei; Gu, Naiting

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system wasmore » demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.« less

  10. High-resolution mapping of transcription factor binding sites on native chromatin

    PubMed Central

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  11. WebPresent: a World Wide Web-based telepresentation tool for physicians

    NASA Astrophysics Data System (ADS)

    Sampath-Kumar, Srihari; Banerjea, Anindo; Moshfeghi, Mehran

    1997-05-01

    In this paper, we present the design architecture and the implementation status of WebPresent - a world wide web based tele-presentation tool. This tool allows a physician to use a conference server workstation and make a presentation of patient cases to a geographically distributed audience. The audience consists of other physicians collaborating on patients' health care management and physicians participating in continuing medical education. These physicians are at several locations with networks of different bandwidth and capabilities connecting them. Audiences also receive the patient case information on different computers ranging form high-end display workstations to laptops with low-resolution displays. WebPresent is a scalable networked multimedia tool which supports the presentation of hypertext, images, audio, video, and a white-board to remote physicians with hospital Intranet access. WebPresent allows the audience to receive customized information. The data received can differ in resolution and bandwidth, depending on the availability of resources such as display resolution and network bandwidth.

  12. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  13. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  14. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  15. Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms

    NASA Astrophysics Data System (ADS)

    Mohan, K. Aditya

    2017-10-01

    4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.

  16. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less

  17. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  18. Linear mixing model applied to coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  19. High-resolution structure of viruses from random diffraction snapshots

    PubMed Central

    Hosseinizadeh, A.; Schwander, P.; Dashti, A.; Fung, R.; D'Souza, R. M.; Ourmazd, A.

    2014-01-01

    The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects. PMID:24914154

  20. High-resolution structure of viruses from random diffraction snapshots.

    PubMed

    Hosseinizadeh, A; Schwander, P; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-07-17

    The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects.

  1. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  2. Video flow active control by means of adaptive shifted foveal geometries

    NASA Astrophysics Data System (ADS)

    Urdiales, Cristina; Rodriguez, Juan A.; Bandera, Antonio J.; Sandoval, Francisco

    2000-10-01

    This paper presents a control mechanism for video transmission that relies on transmitting non-uniform resolution images depending on the delay of the communication channel. These images are built in an active way to keep the areas of interest of the image at the highest resolution available. In order to shift the area of high resolution over the image and to achieve a data structure easy to process by using conventional algorithms, a shifted fovea multi resolution geometry of adaptive size is used. Besides, if delays are nevertheless too high, the different areas of resolution of the image can be transmitted at different rates. A functional system has been developed for corridor surveillance with static cameras. Tests with real video images have proven that the method allows an almost constant rate of images per second as long as the channel is not collapsed.

  3. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  4. Spectroscopic Characterisation of CARMENES Target Candidates from FEROS, CAFE and HRS High-Resolution Spectra

    NASA Astrophysics Data System (ADS)

    Passegger, Vera Maria; Reiners, Ansgar; Jeffers, Sandra V.; Wende, Sebastian; Schöfer, Patrick; Amado, Pedro J.; Caballero, Jose A.; Montes, David; Mundt, Reinhard; Ribas, Ignasi; Quirrenbach, Andreas

    2016-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and χ2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.

  5. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed Central

    Bullen, A; Patel, S S; Saggau, P

    1997-01-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810

  6. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  7. A novel high-resolution chaotic lidar with optical injection to chaotic laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Yun-cai; Wang, An-bang

    2008-03-01

    A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.

  8. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  9. Problems and Processes in Medical Encounters: The CASES method of dialogue analysis

    PubMed Central

    Laws, M. Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B.

    2013-01-01

    Objective To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Methods Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The Comprehensive Analysis of the Structure of Encounters System (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads – the problems or issues addressed; and processes within threads –basic tasks of clinical care labeled Presentation, Information, Resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. Results 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. Conclusions In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Practice Implications Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. PMID:23391684

  10. Problems and processes in medical encounters: the cases method of dialogue analysis.

    PubMed

    Laws, M Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B

    2013-05-01

    To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The comprehensive analysis of the structure of encounters system (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads--the problems or issues addressed; and processes within threads--basic tasks of clinical care labeled presentation, information, resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  12. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    PubMed

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  13. Suitability of holographic beam scanning in high resolution applications

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Goutam Buddha, S. S.; Boruah, Bosanta R.

    2018-02-01

    The high resolution applications of a laser scanning imaging system very much demand the accurate positioning of the illumination beam. The galvanometer scanner based beam scanning imaging systems, on the other hand, suffer from both short term and long term beam instability issues. Fortunately Computer generated holography based beam scanning offers extremely accurate beam steering, which can be very useful for imaging in high-resolution applications in confocal microscopy. The holographic beam scanning can be achieved by writing a sequence of holograms onto a spatial light modulator and utilizing one of the diffracted orders as the illumination beam. This paper highlights relative advantages of such a holographic beam scanning based confocal system and presents some of preliminary experimental results.

  14. Report on the ESO Workshop ''Astronomy at High Angular Resolution''

    NASA Astrophysics Data System (ADS)

    Boffin, H.; Schmidtobreick, L.; Hussain, G.; Berger, J.-Ph.

    2015-03-01

    A workshop took place in Brussels in 2000 on astrotomography, a generic term for indirect mapping techniques that can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei. It appeared to be timely to revisit the topic given the many past, recent and forthcoming improvements in telescopes and instrumentation. We therefore decided to repeat the astrotomography workshop, but to put it into the much broader context of high angular resolution astronomy. Many techniques, from lucky and speckle imaging, adaptive optics to interferometry, are now widely employed to achieve high angular resolution and they have led to an amazing number of new discoveries. A summary of the workshop themes is presented.

  15. High-resolution imaging of (100) kyanite surfaces using friction force microscopy in water

    NASA Astrophysics Data System (ADS)

    Pimentel, Carlos; Gnecco, Enrico; Pina, Carlos M.

    2015-05-01

    In this paper, we present high-resolution friction force microscopy (FFM) images of the (100) face of kyanite (Al2SiO5) immersed in water. These images show an almost rectangular lattice presumably defined by the protruding oxygen of AlO6 polyhedra. Surface lattice parameters measured on two-dimensional fast Fourier transform (2D-FFT) plots of recorded high-resolution friction maps are in good agreement with lattice parameters calculated from the bulk mineral structure. Friction measurements performed along the [001] and [010] directions on the kyanite (100) face provide similar friction coefficients μ ≈ 0.10, even if the sequences of AlO6 polyhedra are different along the two crystallographic directions.

  16. Supercontinuum ultra-high resolution line-field OCT; experimental spectrograph comparison and comparison with current clinical OCT systems by the imaging of a human cornea

    NASA Astrophysics Data System (ADS)

    Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun

    2018-03-01

    Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.

  17. High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.

  18. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  19. Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems

    NASA Astrophysics Data System (ADS)

    Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang

    2016-09-01

    Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.

  20. Analysis of atmospheric trace constituents from high resolution infrared balloon-borne and ground-based solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Results of ongoing studies of high-resolution solar absorption spectra aimed at the identification and quantification of trace constituents of importance in the chemistry of the stratosphere and upper troposphere are presented. An analysis of balloon-borne and ground-based spectra obtained at 0.0025/cm covering the 700-2200/cm interval is presented. The 0.0025/cm spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of quantifying trace constituents. Results for COF2, F22, SF6, and other species are presented. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra are also discussed.

  1. Optical scanner system for high resolution measurement of lubricant distributions on metal strips based on laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht

    2017-06-01

    We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.

  2. Analysis of bovine milk caseins on organic monolithic columns: an integrated capillary liquid chromatography-high resolution mass spectrometry approach for the study of time-dependent casein degradation.

    PubMed

    Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco

    2013-10-25

    Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk and the contemporary formation of low-molecular-weight proteose-peptones (PP) with exact monoisotopic Mr between 9444.0989 Da and 14098.9861 Da was confirmed through the deconvolution of high resolution mass spectra and literature data. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    USGS Publications Warehouse

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  4. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

  5. Numerical simulations of significant orographic precipitation in Madeira island

    NASA Astrophysics Data System (ADS)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  6. Spectral band passes for a high precision satellite sounder

    NASA Technical Reports Server (NTRS)

    Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.

    1977-01-01

    Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.

  7. A comparison of GLAS SAT and NMC high resolution NOSAT forecasts from 19 and 11 February 1976

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1979-01-01

    A subjective comparison of the Goddard Laboratory for Atmospheric Sciences (GLAS) and the National Meteorological Center (NMC) high resolution model forecasts is presented. Two cases where NMC's operational model in 1976 had serious difficulties in forecasting for the United States were examined. For each of the cases, the GLAS model forecasts from initial conditions which included satellite sounding data were compared directly to the NMC higher resolution model forecasts, from initial conditions which excluded the satellite data. The comparison showed that the GLAS satellite forecasts significantly improved upon the current NMC operational model's predictions in both cases.

  8. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

    DOE PAGES

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...

    2014-12-05

    We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.

  9. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  10. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  11. T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm.

    PubMed

    Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver

    2017-03-14

    We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T 1 -weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.

  12. T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm

    NASA Astrophysics Data System (ADS)

    Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver

    2017-03-01

    We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.

  13. Super-resolved refocusing with a plenoptic camera

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu

    2011-03-01

    This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).

  14. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  15. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  16. Imaging the small animal cardiovascular system in real-time with multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis

    2011-03-01

    Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.

  17. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Xie, Jiehui; Wang, Fuyin; Pan, Yao; Wang, Junjie; Hu, Zhengliang; Hu, Yongming

    2015-03-01

    In this paper, a signal-processing method for optical fiber extrinsic Fabry-Perot interferometric sensors is presented. It achieves both high resolution and absolute measurement of the dynamic change of cavity length with low sampling points in wavelength domain. In order to improve the demodulation accuracy, the reflected interference spectrum is cleared by Discrete Wavelet Transform and adjusted by the Hilbert transform. Then the cavity length is interrogated by the cross correlation algorithm. The continuous tests show the resolution of cavity length is only 36.7 pm. Moreover, the corresponding resolution of cavity length is only 1 pm on the low frequency range below 420 Hz, and the corresponding power spectrum shows the possibility of detecting the ultra-low frequency signals based on spectra detection.

  18. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  19. A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching

    NASA Astrophysics Data System (ADS)

    Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham

    2017-04-01

    An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.

  20. Superresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging

    PubMed Central

    Otazo, Ricardo; Lin, Fa-Hsuan; Wiggins, Graham; Jordan, Ramiro; Sodickson, Daniel; Posse, Stefan

    2009-01-01

    Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complete k-space matrix and reconstruction is explicitly based on intra-voxel coil sensitivity variation. In SURE-SENSE, parallel MRI reconstruction is formulated as a superresolution imaging problem where a collection of low resolution images acquired with multiple receiver coils are combined into a single image with higher spatial resolution using coil sensitivities acquired with high spatial resolution. The effective acceleration of conventional gradient encoding is given by the gain in spatial resolution, which is dictated by the degree of variation of the different coil sensitivity profiles within the low resolution image voxel. Since SURE-SENSE is an ill-posed inverse problem, Tikhonov regularization is employed to control noise amplification. Unlike standard SENSE, for which acceleration is constrained to the phase-encoding dimension/s, SURE-SENSE allows acceleration along all encoding directions — for example, two-dimensional acceleration of a 2D echo-planar acquisition. SURE-SENSE is particularly suitable for low spatial resolution imaging modalities such as spectroscopic imaging and functional imaging with high temporal resolution. Application to echo-planar functional and spectroscopic imaging in human brain is presented using two-dimensional acceleration with a 32-channel receiver coil. PMID:19341804

  1. Status of ADRIANO R&D in T1015 Collaboration

    DOE PAGES

    Gatto, Corrado; Di Benedetto, V.; Mazzacane, A.

    2015-02-13

    The physics program for future High Energy and High Intensity experiments requires an energy resolution of the calorimetric component of detectors at limits of traditional techniques and an excellent particle identification. The novel ADRIANO technology (A Dualreadout Integrally Active Non-segmented Option), currently under development at Fermilab, is showing excellent performance on those respects. Results from detailed Monte Carlo studies on the performance with respect to energy resolution, linear response and transverse containment and a preliminary optimization of the layout are presented. A baseline configuration is chosen with an estimated energy resolution of σ(E)/E ≈ 30%/√E , to support an extensivemore » R&D program recently started by T1015 Collaboration at Fermilab. Furthermore, preliminary results from several test beams at the Fermilab Test Beam Facility (FTBF) of a ~ 1λI prototype are presented. Future prospects with ultra-heavy glass are, also, summarized.« less

  2. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells.

    PubMed

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2013-01-01

    Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.

  3. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells

    PubMed Central

    Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu

    2016-01-01

    Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878

  4. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less

  5. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  6. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  7. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    NASA Astrophysics Data System (ADS)

    Scopinaro, F.; Capriotti, G.; Di Santo, G.; Capotondi, C.; Micarelli, A.; Massari, R.; Trotta, C.; Soluri, A.

    2006-12-01

    The diagnosis of diabetic foot osteomyelitis is often difficult. 99mTc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7×25.7 mm 2 FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. 99mTc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.

  8. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data

    EPA Science Inventory

    Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-reduction Averaging (ONA) algorithm has been d...

  9. High spatial resolution LWIR hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  10. Conflict Resolution Strategies Adopted from Parenting Coordination: Assisting High-Conflict Coparenting Students

    ERIC Educational Resources Information Center

    Henry, Wilma J.; Mitcham, Michelle A.; Henry, Lynette M.

    2013-01-01

    This article examines the challenges faced by nontraditional college students who are coparents as a result of divorce. The need for college counseling centers to have counseling options designed to assist this special population in successfully completing their academic pursuits is presented. Conflict resolution techniques based on the Parenting…

  11. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  12. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  13. Synergizing High-Resolution EOS Terra Satellite Data and S-POLKa Radar Reflectivity to Assess Trade Wind Cumuli Precipitation

    NASA Astrophysics Data System (ADS)

    Snodgrass, E. R.; di Girolamo, L.; Rauber, R.; Zhao, G.

    2005-12-01

    During the RICO field campaign, the EOS Terra Spacecraft and NCAR's S-POLKa radar collected coincident high-resolution visible and near-IR satellite data and dual-polarized S-band and Ka-band radar reflectivity data to understand trade wind cumuli cloud distribution and precipitation. In this paper, the comparison of the trade wind cloud field's satellite-derived cloud properties and radar-derived precipitation characteristics are presented. Specifically, these results focus on the relationship between radar reflectivity and derived rain rate to the satellite visible radiance, cloud fraction, height and thickness. Also results concerning the relationship between cloud area estimated by satellite and cloud boundary estimated by radar Bragg and Rayleigh scattering will be presented. The resolution effects between visible satellite data from the ASTER instrument at 15m ground-resolution and the S-POLKa radar data will be reviewed. The potential applications of these results to the estimation of trade wind cumuli's role in returning water to the ocean through precipitation, and to cloud and climate model parameterization will be discussed.

  14. Aberration control in 4Pi nanoscopy: definitions, properties, and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Allgeyer, Edward S.; Velasco, Mary Grace M.; Booth, Martin J.; Bewersdorf, Joerg

    2016-03-01

    The development of fluorescence microscopy, which allows live-cell imaging with high labeling specificity, has made the visualization of cellular architecture routine. However, for centuries, the spatial resolution of optical microscopy was fundamentally limited by diffraction. The past two decades have seen a revolution in far-field optical nanoscopy (or "super-resolution" microscopy). The best 3D resolution is achieved by optical nanoscopes like the isoSTED or the iPALM/4Pi-SMS, which utilize two opposing objective lenses in a coherent manner. These system are, however, also more complex and the required interference conditions demand precise aberration control. Our research involves developing novel adaptive optics techniques that enable high spatial and temporal resolution imaging for biological applications. In this talk, we will discuss how adaptive optics can enhance dual-objective lens nanoscopes. We will demonstrate how adaptive optics devices provide unprecedented freedom to manipulate the light field in isoSTED nanoscopy, allow to realize automatic beam alignment, suppress the inherent side-lobes of the point-spread function, and dynamically compensate for sample-induced aberrations. We will present both the theoretical groundwork and the experimental confirmations.

  15. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  16. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element

    NASA Astrophysics Data System (ADS)

    Hui, Yu; Rinaldi, Matteo

    2013-03-01

    This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.

  17. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests

  18. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.

  19. A high-resolution programmable Vernier delay generator based on carry chains in FPGA

    NASA Astrophysics Data System (ADS)

    Cui, Ke; Li, Xiangyu; Zhu, Rihong

    2017-06-01

    This paper presents an architecture of a high-resolution delay generator implemented in a single field programmable gate array chip by exploiting the method of utilizing dedicated carry chains. It serves as the core component in various physical instruments. The proposed delay generator contains the coarse delay step and the fine delay step to guarantee both large dynamic range and high resolution. The carry chains are organized in the Vernier delay loop style to fulfill the fine delay step with high precision and high linearity. The delay generator was implemented in the EP3SE110F1152I3 Stratix III device from Altera on a self-designed test board. Test results show that the obtained resolution is 38.6 ps, and the differential nonlinearity/integral nonlinearity is in the range of [-0.18 least significant bit (LSB), 0.24 LSB]/(-0.02 LSB, 0.01 LSB) under the nominal supply voltage of 1100 mV and environmental temperature of 2 0°C. The delay generator is rather efficient concerning resource cost, which uses only 668 look-up tables and 146 registers in total.

  20. Microlaser-based displays

    NASA Astrophysics Data System (ADS)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.

    1997-07-01

    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  1. Plutonium and uranium determination in environmental samples: combined solvent extraction-liquid scintillation method.

    PubMed

    McDowell, W J; Farrar, D T; Billings, M R

    1974-12-01

    A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.

  2. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  3. Cloud-Based Tools to Support High-Resolution Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, N.; Nelson, J.; Swain, N.; Christensen, S.

    2013-12-01

    The majority of watershed models developed to support decision-making by water management agencies are simple, lumped-parameter models. Maturity in research codes and advances in the computational power from multi-core processors on desktop machines, commercial cloud-computing resources, and supercomputers with thousands of cores have created new opportunities for employing more accurate, high-resolution distributed models for routine use in decision support. The barriers for using such models on a more routine basis include massive amounts of spatial data that must be processed for each new scenario and lack of efficient visualization tools. In this presentation we will review a current NSF-funded project called CI-WATER that is intended to overcome many of these roadblocks associated with high-resolution modeling. We are developing a suite of tools that will make it possible to deploy customized web-based apps for running custom scenarios for high-resolution models with minimal effort. These tools are based on a software stack that includes 52 North, MapServer, PostGIS, HT Condor, CKAN, and Python. This open source stack provides a simple scripting environment for quickly configuring new custom applications for running high-resolution models as geoprocessing workflows. The HT Condor component facilitates simple access to local distributed computers or commercial cloud resources when necessary for stochastic simulations. The CKAN framework provides a powerful suite of tools for hosting such workflows in a web-based environment that includes visualization tools and storage of model simulations in a database to archival, querying, and sharing of model results. Prototype applications including land use change, snow melt, and burned area analysis will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  4. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery.

    PubMed

    Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme

    2016-07-01

    The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.

  5. Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt

    NASA Astrophysics Data System (ADS)

    Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.

    2016-12-01

    Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.

  6. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

  7. Temporal resolution required for accurate evaluation of the interplay effect in spot scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Seo, Jeongmin; Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Kim, Chan Hyeong; Jeong, Jong Hwi; Kim, SeongHoon

    2017-04-01

    In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom ( i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement ( i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.

  8. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  9. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  10. The Advanced Pair Telescope (APT) Mission Concept

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; Buckley, James H.

    2008-01-01

    We present a mission concept for the Advanced Pair Telescope (APT), a high-energy gamma-ray instrument with an order of magnitude improvement in sensitivity, 6 sr field of view, and angular resolution a factor of 3-10 times that of GLAST. With its very wide instantaneous field-of-view and large effective area, this instrument would be capable of detecting GRBs at very large redshifts, would enable a very high resolution study of SNRs and PWN, and could provide hour-scale temporal resolution of transients from many AGN and galactic sources. The APT instrument will consist of a Xe time-projection-chamber tracker that bridges the energy regime between Compton scattering and pair production and will provide an unprecedented improvement in angular resolution; a thick scintillating-fiber trackerlcalorimeter that will provide sensitivity and energy resolution to higher energies and will possess a factor of 10 improvement in geometric factor over GLAST; and an anticoincidence detector using scintillator-tiles to reject charged particles. After the anticipated 10-years of GLAST operation , the APT instrument would provide continued coverage of the critial high-energy gamma-ray band (between 30 MeV to 100 GeV), providing an essential component of broad-band multiwavelength studies of the high-energy universe.

  11. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  12. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David

    2016-04-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  13. High energy near- and far-field ptychographic tomography at the ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter

    2017-09-01

    In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.

  14. Creating the High-Resolution Settlement Layer - lessons learned

    NASA Astrophysics Data System (ADS)

    Gros, A.

    2017-12-01

    Facebook publishes the High-resolution Settlement Layer (HRSL: https://ciesin.columbia.edu/data/hrsl/) in collaboration with Columbia University's CIESIN institute and the World Bank. So far, data for 13 countries have been published over the past nine months. HRSL data for Burkina Faso, Ghana, Haiti, Ivory Coast, Madagascar, Malawi, Mexico, The Philippines, Rwanda, South Africa, Sri Lanka, Thailand, and Uganda are available for download. We will present a status update and report on lessons learned.

  15. NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations

    NASA Astrophysics Data System (ADS)

    Holly, R.; Damyanovich, A.; Peemoeller, H.

    2006-05-01

    A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.

  16. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  17. High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging - the Southern Hemisphere Quadrangles

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.

    2018-04-01

    We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  18. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  19. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  20. Coastal and Inland Water Applications of High Resolution Optical Satellite Data from Landsat-8 and Sentinel-2

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Q.

    2016-02-01

    Since the launch of Landsat-8 (L8) in 2013, a joint NASA/USGS programme, new applications of high resolution imagery for coastal and inland waters have become apparent. The optical imaging instrument on L8, the Operational Land Imager (OLI), is much improved compared to its predecessors on L5 and L7, especially with regards to SNR and digitization, and is therefore well suited for retrieving water reflectances and derived parameters such as turbidity and suspended sediment concentration. In June 2015, the European Space Agency (ESA) successfully launched a similar instrument, the MultiSpectral Imager (MSI), on board of Sentinel-2A (S2A). Imagery from both L8 and S2A are free of charge and publicly available (S2A starting at the end of 2015). Atmospheric correction schemes and processing software is under development in the EC-FP7 HIGHROC project. The spatial resolution of these instruments (10-60 m) is a great improvement over typical moderate resolution ocean colour sensors such as MODIS and MERIS (0.25 - 1 km). At higher resolution, many more lakes, rivers, ports and estuaries are spatially resolved, and can thus now be studied using satellite data, unlocking potential for mandatory monitoring e.g. under European Directives such as the Marine Strategy Framework Directive and the Water Framework Directive. We present new applications of these high resolution data, such as monitoring of offshore constructions, wind farms, sediment transport, dredging and dumping, shipping and fishing activities. The spatial variability at sub moderate resolution (0.25 - 1 km) scales can be assessed, as well as the impact of sub grid scale variability (including ships and platforms used for validation) on the moderate pixel retrieval. While the daily revisit time of the moderate resolution sensors is vastly superior to those of the high resolution satellites, at the equator respectively 16 and 10 days for L8 and S2A, the low revisit times can be partially mitigated by combining data streams. Time-series of L8 and S2A imagery are presented to show the power of combining the two satellite missions. With the launch of Sentinel-2B (expected mid-2016), the time-series will be extended with another high resolution sensor. S2B will be on the same orbit as S2A, spaced 180 degrees apart, bringing the S2A+B combined revisit time down to 5 days.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solarmore » modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.

    A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  3. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  4. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  5. Effects of Drake Passage on a strongly eddying global ocean

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.

    2015-04-01

    During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. Drake Passage (DP) is an intensively studied gateway because it plays a central role in closing the transport pathways of heat and chemicals in the ocean. The climate response to a closed DP has been explored with a variety of general circulation models, however, all of these models employ low model-grid resolutions such that the effects of subgrid-scale fluctuations ('eddies') are parameterized. We present results of the first high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed DP in which the eddy field is largely resolved. The simulation extends over more than 200 years such that the strong transient adjustment process is passed and a near-equilibrium ocean state is reached. The effects of DP are diagnosed by comparing with both an open DP high-resolution control simulation (of same length) and corresponding low-resolution simulations. By focussing on the heat/tracer transports we demonstrate that the results are twofold: Considering spatially integrated transports the overall response to a closed DP is well captured by low-resolution simulations. However, looking at the actual spatial distributions drastic differences appear between far-scattered high-resolution and laminar-uniform low-resolution fields. We conclude that sparse and highly localized tracer proxy observations have to be interpreted carefully with the help of high-resolution model simulations.

  6. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  7. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3 μm Region: Role of Periphery

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-11-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.

  8. OpenMP parallelization of a gridded SWAT (SWATG)

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  9. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  10. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  11. Super-resolution reconstruction for 4D computed tomography of the lung via the projections onto convex sets approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu, E-mail: yuzhang@smu.edu.cn, E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei

    2014-11-01

    Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images.more » The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.« less

  12. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach.

    PubMed

    Pinto, Francisco; Mielewczik, Michael; Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe

    2013-01-01

    Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.

  13. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    PubMed

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  14. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  15. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.

  16. Unraveling the martian water cycle with high-resolution global climate simulations

    NASA Astrophysics Data System (ADS)

    Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste

    2017-07-01

    Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.

  17. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.

  18. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions

    DOE PAGES

    Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; ...

    2017-04-24

    In this study, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularlymore » well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Finally, modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation, consistent with previous 2D simulations of such capsules.« less

  19. Microwave Radiometer and Lidar Synergy for High Vertical Resolution Thermodynamic Profiling in a Cloudy Scenario

    NASA Astrophysics Data System (ADS)

    Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.

    2016-12-01

    Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.

  20. An advanced algorithm for deformation estimation in non-urban areas

    NASA Astrophysics Data System (ADS)

    Goel, Kanika; Adam, Nico

    2012-09-01

    This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.

  1. Recent advances in a linear micromirror array for high-resolution projection

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Doucet, Michel; Niall, Keith K.; Larouche, Carl; Savard, Maxime; Crisan, Silviu; Thibault, Simon; Jerominek, Hubert

    2004-05-01

    The visual displays of contemporary military flight simulators lack adequate definition to represent scenes in basic fast-jet fighter tasks. For example, air-to-air and air-to-ground targets are not projected with sufficient contrast and resolution for a pilot to perceive aspect, aspect rate and object detail at real world slant ranges. Simulator display geometries require the development of ultra-high resolution projectors with greater than 20 megapixel resolution at 60 Hz frame rate. A new micromirror device has been developed to address this requirement; it is able to modulate light intensity in an analog fashion with switching times shorter than 5 μs. When combined with a scanner, a laser and Schlieren optics, a linear array of these flexible micromirrors can display images composed of thousands of lines at a frame rate of 60 Hz. Recent results related to evaluation of this technology for high resolution projection are presented. Alternate operation modes for light modulation with flexible micromirrors are proposed. The related importance of controlling the residual micromirror curvature is discussed and results of experiments investigating the use of the deposition pressure to achieve such control are reported. Moreover, activities aiming at minimizing the micromirror response time and, so doing, maximizing the number of image columns per image frame are discussed. Finally, contrast measurement and estimate of the contrast limit achievable with the flexible micromirror technology are presented. All reported activities support the development of a fully addressable 2000-element micromirror array.

  2. VizieR Online Data Catalog: KODIAQ DR2 (O'Meara+, 2017)

    NASA Astrophysics Data System (ADS)

    O'Meara, J. M.; Lehner, N.; Howk, J. C.; Prochaska, J. X.; Fox, A. J.; Peeples, M. S.; Tumlinson, J.; O'Shea, B. W.

    2018-02-01

    The new data presented here in DR2 all stem from High-Resolution Echelle Spectrograph (HIRES) observations by multiple PIs between 1995 and 2004. Table1 presents the HIRES deckers used across DR2 and their corresponding spectral resolution. As with DR1, the majority of observations were made with the C1 or C5 decker providing ~6 and ~8km/s FWHM resolution, respectively. The Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ) DR2 comprises HIRES observations of 300 quasar lines of sight in total. Of these, 130 quasar sight lines are new since DR1 (O'Meara et al. 2015, Cat. J/AJ/150/111), along with many new additional observations of some of the DR1 quasars. Table2 presents the new data since DR1. Table3 presents the full DR2 sample of 300 quasars. (3 data files).

  3. Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné; Armitage, Paul

    Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by usingmore » a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.« less

  4. Digital multi-channel high resolution phase locked loop for surveillance radar systems

    NASA Astrophysics Data System (ADS)

    Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed

    This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.

  5. EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent

    2009-03-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.

  6. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Caudillo, Roman; Chandhok, Manish

    2010-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. Readiness of EUV materials is currently one high risk area according to recent assessments made at the 2009 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data collected utilizing Intel's Micro-Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <= 12.5mJ/cm2 with <= 4nm LWR.

  7. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  8. The Liege-balloon program. [balloon-borne instruments for high-spectral resolution observations of the sun

    NASA Technical Reports Server (NTRS)

    Zander, R.

    1974-01-01

    The Liege-balloon program is intended to make high-spectral resolution observations of the sun in the near- and intermediate infrared regions not accessible from the ground. A description of the equipment, followed by a summary of the data obtained till now is presented. Except for ozone whose maximum of concentration lies near 25 Km altitude, the residual mass distribution of the other mentioned molecules decreases with altitude. This is a self-explanatory argument for carrying out spectroscopic observations from platforms transcending the densest layers of the earth's atmosphere. The Liege balloon equipment is primarily intended for very high-resolution solar observations from about 27-30 Km altitude, in all spectral regions between 1.5 and 15.0 microns, not accessible from the ground.

  9. Large depth high-precision FMCW tomography using a distributed feedback laser array

    NASA Astrophysics Data System (ADS)

    DiLazaro, Thomas; Nehmetallah, George

    2018-02-01

    Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.

  10. Study of high resolution x-ray spectrometer concepts for NIF experiments

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.

    2015-11-01

    Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Papers and abstracts of papers are presented concerning high resolution spectroscopy, life sciences, evironmental studies, and industrial analyses. Sixty-seven of the papers were processed individually. (JRD)

  12. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    PubMed Central

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  13. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  14. Transit time spreads in biased paracentric hemispherical deflection analyzers

    NASA Astrophysics Data System (ADS)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  15. Resolution dependence of precipitation statistical fidelity in hindcast simulations

    DOE PAGES

    O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...

    2016-06-19

    This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less

  16. Resolution dependence of precipitation statistical fidelity in hindcast simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik

    This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less

  17. High-Resolution Large-Field-of-View Ultrasound Breast Imager

    DTIC Science & Technology

    2013-06-01

    record the display of the AO detector for image processing and storage. The measured resolution is 400 microns. • The noise present in the imaging...l T 4 O igure 7: (Le n cyst thickn ask 3: Inco .a. Incorpor ensitivity (U e have not ideo camera enses. ask 4: Desi .a. Determin ur initial pl

  18. A hybrid color mapping approach to fusing MODIS and Landsat images for forward prediction

    USDA-ARS?s Scientific Manuscript database

    We present a new, simple, and efficient approach to fusing MODIS and Landsat images. It is well known that MODIS images have high temporal resolution and low spatial resolution whereas Landsat images are just the opposite. Similar to earlier approaches, our goal is to fuse MODIS and Landsat images t...

  19. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  20. High-resolution forest mapping for behavioural studies in the Nature Reserve ‘Les Nouragues’, French Guiana

    PubMed Central

    Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva

    2015-01-01

    For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943

  1. Design of a high speed, high resolution thermometry system for 1.5 GHz superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Knobloch, Jens; Muller, Henry; Padamsee, Hasan

    1994-11-01

    Presented in this paper are the description and the test results of a new stationary thermometry system used to map the temperature of the outer surface of 1.5 GHz superconducting single-cell cavities during operation at 1.6 K. The system comprises 764 removable carbon thermometers whose signals are multiplexed and scanned by a Macintosh computer. A complete temperature map can be obtained in as little as 0.1 s at a temperature resolution of about 0.2 mK. Alternatively, it has been demonstrated that if the acquisition time is increased to several seconds, then a temperature resolution on the order of 30 μK is possible. To our knowledge, these are the fastest acquisition times so far achieved with L-band cavities at these resolutions.

  2. High-Resolution Surface Reconstruction from Imagery for Close Range Cultural Heritage Applications

    NASA Astrophysics Data System (ADS)

    Wenzel, K.; Abdel-Wahab, M.; Cefalu, A.; Fritsch, D.

    2012-07-01

    The recording of high resolution point clouds with sub-mm resolution is a demanding and cost intensive task, especially with current equipment like handheld laser scanners. We present an image based approached, where techniques of image matching and dense surface reconstruction are combined with a compact and affordable rig of off-the-shelf industry cameras. Such cameras provide high spatial resolution with low radiometric noise, which enables a one-shot solution and thus an efficient data acquisition while satisfying high accuracy requirements. However, the largest drawback of image based solutions is often the acquisition of surfaces with low texture where the image matching process might fail. Thus, an additional structured light projector is employed, represented here by the pseudo-random pattern projector of the Microsoft Kinect. Its strong infrared-laser projects speckles of different sizes. By using dense image matching techniques on the acquired images, a 3D point can be derived for almost each pixel. The use of multiple cameras enables the acquisition of a high resolution point cloud with high accuracy for each shot. For the proposed system up to 3.5 Mio. 3D points with sub-mm accuracy can be derived per shot. The registration of multiple shots is performed by Structure and Motion reconstruction techniques, where feature points are used to derive the camera positions and rotations automatically without initial information.

  3. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Lisa J.; De Mooij, Ernst J. W.; Watson, Chris

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDSmore » on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.« less

  4. Conflict resolution efforts through stakeholder mapping in Labanan Research Forest, Berau, East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Wiati, C. B.; Indriyanti, S. Y.; Maharani, R.; Subarudi

    2018-04-01

    Conflict resolution in Labanan Research Forest (LRF) by the Dipterocarps Forest Ecosystem Research and Development Center (Balai Besar Penelitian dan Pengembangan Ekosistem Hutan Dipterokarpa – B2P2EHD) needs support from other parties that are also interested in such forest management. This paper aimed to presented conflict resolution in LRF through stakeholder mapping for its engagement. This research was conducted for seven months (June to December 2015) with interviews and literature study as its data collection. Collected data were analysed by a stakeholder analysis and matrix based on their interest and power levels. Two important findings were: (1) There are 19 parties having interests in the existence of LRF should be engaged; (2) Conflict resolution of LRF can be achieved: (a) ensuring key stakeholders which have high interest and high power level has same perception in existence and management of LRF, (b) establishing a partnership with primary stakeholders which have high interest and high power levels; (c) building partnerships between primary stakeholders which have high interest but low power levels, (d) building partnerships between key and secondary stakeholders which have low interest but high power levels and (e) gaining support from primary and secondary stakeholders which have low interest and low power levels. Stakeholder mapping is an important tool for tenure conflict resolution through mapping the power and interest of the conflicted parties and finding the proper parties to be approached.

  5. Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer

    NASA Astrophysics Data System (ADS)

    Cui, Bo-chuan; Wang, Jian-li; Yao, Kai-nan; Chen, Tao

    2018-03-01

    An approach to measure a high-dynamic two-dimensional (2D) temperature field using a high-speed quadriwave lateral shearing interferometer (QWLSI) is proposed. The detailed theoretical derivation to express the wavefront reconstruct principle of the proposed method is presented. The comparison experiment with thermocouples shows that the temperature field measurement using QWLSI has a precision of ±0.5 °C. An experiment for measuring the highdynamic temperature field generated by an electrical heater is carried out. A 200 frame rate temperature field video with 512 × 512 resolution is obtained finally. Experimental results show that the temperature field measurement system using a QWLSI has the advantage of high sensitivity and high resolution.

  6. New features in Saturn's atmosphere revealed by high-resolution thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Mumma, M. J.; Espenak, F.; Deming, D.; Bjoraker, G.; Woods, L.; Folz, W.

    1989-01-01

    Observations of the stratospheric IR emission structure on Saturn are presented. The high-spatial-resolution global images show a variety of new features, including a narrow equatorial belt of enhanced emission at 7.8 micron, a prominent symmetrical north polar hotspot at all three wavelengths, and a midlatitude structure which is asymmetrically brightened at the east limb. The results confirm the polar brightening and reversal in position predicted by recent models for seasonal thermal variations of Saturn's stratosphere.

  7. High resolution X-ray diffraction imaging of lead tin telluride

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  8. High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy

    PubMed Central

    Tranca, D. E.; Stanciu, S. G.; Hristu, R.; Stoichita, C.; Tofail, S. A. M.; Stanciu, G. A.

    2015-01-01

    A new method for high-resolution quantitative measurement of the dielectric function by using scattering scanning near-field optical microscopy (s-SNOM) is presented. The method is based on a calibration procedure that uses the s-SNOM oscillating dipole model of the probe-sample interaction and quantitative s-SNOM measurements. The nanoscale capabilities of the method have the potential to enable novel applications in various fields such as nano-electronics, nano-photonics, biology or medicine. PMID:26138665

  9. The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.

    2017-09-01

    We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.

  10. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    number of high resolution PET experiments including the dual-ring small field- of-view configuration shown at left in Figure 5 . The benchtop system...detectors having 26 x 40 arrays of 1mm x 1mm x 1mm detector elements is shown at right in Figure 5 . Detectors used for probe experiments shown in...Figure 13). In the series of experiments geared towards PET application, but with the results applicable to the present single gamma case, we have

  11. Magnetically confined electron beam system for high resolution electron transmission-beam experiments

    NASA Astrophysics Data System (ADS)

    Lozano, A. I.; Oller, J. C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G.

    2018-06-01

    A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.

  12. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  13. Towards a minimally invasive sampling tool for high resolution tissue analytical mapping

    NASA Astrophysics Data System (ADS)

    Gottardi, R.

    2015-09-01

    Multiple spatial mapping techniques of biological tissues have been proposed over the years, but all present limitations either in terms of resolution, analytical capacity or invasiveness. Ren et al (2015 Nanotechnology 26 284001) propose in their most recent work the use of a picosecond infrared laser (PIRL) under conditions of ultrafast desorption by impulsive vibrational excitation (DIVE) to extract small amounts of cellular and molecular components, conserving their viability, structure and activity. The PIRL DIVE technique would then work as a nanobiopsy with minimal damage to the surrounding tissues, which could potentially be applied for high resolution local structural characterization of tissues in health and disease with the spatial limit determined by the laser focus.

  14. Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.

    2011-05-01

    Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427), . we developed a new thin film single crystal scintillator for high resolution X-ray imaging based on a layer of modified LSO (Lu2SiO5) grown by liquid phase epitaxy (LPE) on a dedicated substrate. In this work we present the characterisation of the scintillating LSO films in terms of optical and scintillation properties as well as spatial resolution performances. The obtained results are discussed and compared with the performances of the thin scintillating films commonly used in synchrotron-based micro-imaging applications.

  15. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  16. Improving Numerical Weather Predictions of Summertime Precipitation Over the Southeastern U.S. Through a High-Resolution Initialization of the Surface State

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.

    2011-01-01

    It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.

  17. Aberration-free superresolution imaging via binary speckle pattern encoding and processing

    NASA Astrophysics Data System (ADS)

    Ben-Eliezer, Eyal; Marom, Emanuel

    2007-04-01

    We present an approach that provides superresolution beyond the classical limit as well as image restoration in the presence of aberrations; in particular, the ability to obtain superresolution while extending the depth of field (DOF) simultaneously is tested experimentally. It is based on an approach, recently proposed, shown to increase the resolution significantly for in-focus images by speckle encoding and decoding. In our approach, an object multiplied by a fine binary speckle pattern may be located anywhere along an extended DOF region. Since the exact magnification is not known in the presence of defocus aberration, the acquired low-resolution image is electronically processed via a parallel-branch decoding scheme, where in each branch the image is multiplied by the same high-resolution synchronized time-varying binary speckle but with different magnification. Finally, a hard-decision algorithm chooses the branch that provides the highest-resolution output image, thus achieving insensitivity to aberrations as well as DOF variations. Simulation as well as experimental results are presented, exhibiting significant resolution improvement factors.

  18. Gridless, pattern-driven point cloud completion and extension

    NASA Astrophysics Data System (ADS)

    Gravey, Mathieu; Mariethoz, Gregoire

    2016-04-01

    While satellites offer Earth observation with a wide coverage, other remote sensing techniques such as terrestrial LiDAR can acquire very high-resolution data on an area that is limited in extension and often discontinuous due to shadow effects. Here we propose a numerical approach to merge these two types of information, thereby reconstructing high-resolution data on a continuous large area. It is based on a pattern matching process that completes the areas where only low-resolution data is available, using bootstrapped high-resolution patterns. Currently, the most common approach to pattern matching is to interpolate the point data on a grid. While this approach is computationally efficient, it presents major drawbacks for point clouds processing because a significant part of the information is lost in the point-to-grid resampling, and that a prohibitive amount of memory is needed to store large grids. To address these issues, we propose a gridless method that compares point clouds subsets without the need to use a grid. On-the-fly interpolation involves a heavy computational load, which is met by using a GPU high-optimized implementation and a hierarchical pattern searching strategy. The method is illustrated using data from the Val d'Arolla, Swiss Alps, where high-resolution terrestrial LiDAR data are fused with lower-resolution Landsat and WorldView-3 acquisitions, such that the density of points is homogeneized (data completion) and that it is extend to a larger area (data extension).

  19. Analytical Calculation of the Lower Bound on Timing Resolution for PET Scintillation Detectors Comprising High-Aspect-Ratio Crystal Elements

    PubMed Central

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-01-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559

  20. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.

  1. Automatic Coregistration and orthorectification (ACRO) and subsequent mosaicing of NASA high-resolution imagery over the Mars MC11 quadrangle, using HRSC as a baseline

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian

    2018-02-01

    This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.

  2. IKONOS: future and present

    NASA Astrophysics Data System (ADS)

    Schaap, Niek

    2003-04-01

    The IKONOS satellite has been operational since January 2000 and was the first commercial satellite collecting imagery with 1 meter resolution. The current life expectancy of the satellite is 10 years. Since the launch, Space Imaging Inc. (the owner of the satellite) supplied IKONOS imagery to users in many vertical markets, such as: agriculture, defense, oil & gas and telecommunications. This oral presentation will give comprehensive information about IKONOS and the future: * Block II, the successor of IKONOS. Space Imaging expects to launch in 2004 a new high-resolution satellite, ensuring both continuity and (for some years) a tandem operation with IKONOS, greatly improving the availability of imagery. * Space Imaging affiliates. IKONOS imagery collected, processed and sold by regional affiliates. These regional affiliates are strategically located around the world, like Japan Space Imaging (Tokyo), Space Imaging Middle East (Dubai) and Space Imaging Eurasia (Ankara, Turkey). * Technical briefing IKONOS. IKONOS (compared to other commercial high-resolution satellites) has superior collection capabilities. Due to, the higher orbit altitude, local reception of the imagery, bi-directional scanning and the high agility of the satellite, is the IKONOS satellite capable to collect the imagery relative quickly.

  3. High-resolution altitude profiles of the atmospheric turbulence with PML at the Sutherland Observatory

    NASA Astrophysics Data System (ADS)

    Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.

    2017-05-01

    With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.

  4. SEEDS Moving Groups and CHARIS Status Updates

    NASA Technical Reports Server (NTRS)

    McElwain, Michael

    2012-01-01

    We present the status update for the SEEDS Moving Groups category. To date, we have observed 59 targets and currently have more than 20 candidates. We also present the expected scientific capabilities of CHARIS, the Coronagraphic High Angular Resolution Imaging Spectrograph, which is being built for the Subaru 8.2 m telescope of the National Astronomical Observatory of Japan. CHARIS will be implemented behind the new extreme adaptive optics system at Subaru, SCExAO, and the existing 188-actuator system AO188. CHARIS will offer three observing modes over nearinfrared wavelengths from 0.9 to 2.4 microns (the y-, J-, H-, and K-bands), including a low-spectral-resolution mode covering this entire wavelength range and a high-resolution mode within a single band. With these capabilities, CHARIS will offer exceptional sensitivity for discovering giant exoplanets, and will enable detailed characterization of their atmospheres, CHARIS, the only planned high-contrast integral field spectrograph on an 8m-class telescope in the Northern Hemisphere, will complement the similar instruments such as Project 1640 at Palomar, and GPI and SPHERE in Chile.

  5. Opto-mechanical design of a new cross dispersion unit for the CRIRES+ high resolution spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Lizon, Jean Louis; Klein, Barbara; Oliva, Ernesto; Löwinger, Tom; Anglada Escude, Guillem; Baade, Dietrich; Bristow, Paul; Dorn, Reinhold J.; Follert, Roman; Grunhut, Jason; Hatzes, Artie; Heiter, Ulrike; Ives, Derek; Jung, Yves; Kerber, Florian; Lockhart, Matt; Marquart, Thomas; Origlia, Livia; Pasquini, Luca; Paufique, Jerome; Piskunov, N.; Pozna, Eszter; Reiners, Ansgar; Smette, Alain; Smoker, Jonathan; Seemann, Ulf; Stempels, Eric; Valenti, Elena

    2014-07-01

    CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.

  6. Tidal dwarf galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher

    2018-02-01

    The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.

  7. The LUVOIR Large Mission Concept

    NASA Astrophysics Data System (ADS)

    O'Meara, John; LUVOIR Science and Technology Definition Team

    2018-01-01

    LUVOIR is one of four large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. We are currently developing two architectures: Architecture A with a 15.1 meter segmented primary mirror, and Architecture B with a 9.2 meter segmented primary mirror. Our focus in this presentation is the Architecture A LUVOIR. LUVOIR will operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The initial instruments developed for LUVOIR Architecture A include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a high resolution UV/optical spectropolarimeter. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable, upgradable, and primarily driven by guest observer science programs. In this presentation, we will describe the observatory, its instruments, and survey the transformative science LUVOIR can accomplish.

  8. Freeform metrology using subaperture stitching interferometry

    NASA Astrophysics Data System (ADS)

    Supranowitz, Chris; Lormeau, Jean-Pierre; Maloney, Chris; Murphy, Paul; Dumas, Paul

    2016-11-01

    As applications for freeform optics continue to grow, the need for high-precision metrology is becoming more of a necessity. Currently, coordinate measuring machines (CMM) that implement touch probes or optical probes can measure the widest ranges of shapes of freeform optics, but these measurement solutions often lack sufficient lateral resolution and accuracy. Subaperture stitching interferometry (SSI™) extends traditional Fizeau interferometry to provide accurate, high-resolution measurements of flats, spheres, and aspheres, and development is currently on-going to enable measurements of freeform surfaces. We will present recent freeform metrology results, including repeatability and cross-test data. We will also present MRF® polishing results where the stitched data was used as the input "hitmap" to the deterministic polishing process.

  9. Ultrafast compression of graphite observed with sub-ps time resolution diffraction on LCLS

    NASA Astrophysics Data System (ADS)

    Armstrong, Michael; Goncharov, A.; Crowhurst, J.; Zaug, J.; Radousky, H.; Grivickas, P.; Bastea, S.; Goldman, N.; Stavrou, E.; Belof, J.; Gleason, A.; Lee, H. J.; Nagler, R.; Holtgrewe, N.; Walter, P.; Pakaprenka, V.; Nam, I.; Granados, E.; Presher, C.; Koroglu, B.

    2017-06-01

    We will present ps time resolution pulsed x-ray diffraction measurements of rapidly compressed highly oriented pyrolytic graphite along its basal plane at the Materials under Extreme Conditions (MEC) sector of the Linac Coherent Light Source (LCLS). These experiments explore the possibility of rapid (<100 ps time scale) material transformations occurring under very highly anisotropic compression conditions. Under such conditions, non-equilibrium mechanisms may play a role in the transformation process. We will present experimental results and simulations which explore this possibility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  10. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers

    NASA Astrophysics Data System (ADS)

    Siegel, Nisan; Lupashin, Vladimir; Storrie, Brian; Brooker, Gary

    2016-12-01

    Fresnel incoherent correlation holography (FINCH) microscopy is a promising approach for high-resolution biological imaging but has so far been limited to use with low-magnification, low-numerical-aperture configurations. We report the use of in-line incoherent interferometers made from uniaxial birefringent α-barium borate (α-BBO) or calcite crystals that overcome the aberrations and distortions present with previous implementations that employed spatial light modulators or gradient refractive index lenses. FINCH microscopy incorporating these birefringent elements and high-numerical-aperture oil immersion objectives could outperform standard wide-field fluorescence microscopy, with, for example, a 149 nm lateral point spread function at a wavelength of 590 nm. Enhanced resolution was confirmed with sub-resolution fluorescent beads. Taking the Golgi apparatus as a biological example, three different proteins labelled with GFP and two other fluorescent dyes in HeLa cells were resolved with an image quality that is comparable to similar samples captured by structured illumination microscopy.

  11. High Resolution, Low Altitude Aeromagnetic and Electromagnetic Survey of Mt Rainier

    USGS Publications Warehouse

    Rystrom, V.L.; Finn, C.; Deszcz-Pan, Maryla

    2000-01-01

    In October 1996, the USGS conducted a high resolution airborne magnetic and electromagnetic survey in order to discern through-going sections of exposed altered rocks and those obscured beneath snow, vegetation and surficial unaltered rocks. Hydrothermally altered rocks weaken volcanic edifices, creating the potential for catastrophic sector collapses and ensuing formation of destructive volcanic debris flows. This data once compiled and interpreted, will be used to examine the geophysical properties of the Mt. Rainier volcano, and help assist the USGS in its Volcanic Hazards Program and at its Cascades Volcano Observatory. Aeromagnetic and electromagnetic data provide a means for seeing through surficial layers and have been tools for delineating structures within volcanoes. However, previously acquired geophysical data were not useful for small-scale geologic mapping. In this report, we present the new aeromagnetic and electromagnetic data, compare results from previously obtained, low-resolution aeromagnetic data with new data collected at a low-altitude and closely spaced flightlines, and provide information on potential problems with using high-resolution data.

  12. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits

    PubMed Central

    Hayworth, Kenneth J.; Morgan, Josh L.; Schalek, Richard; Berger, Daniel R.; Hildebrand, David G. C.; Lichtman, Jeff W.

    2014-01-01

    The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly—the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments. PMID:25018701

  13. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    PubMed

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  14. Ship detection from high-resolution imagery based on land masking and cloud filtering

    NASA Astrophysics Data System (ADS)

    Jin, Tianming; Zhang, Junping

    2015-12-01

    High resolution satellite images play an important role in target detection application presently. This article focuses on the ship target detection from the high resolution panchromatic images. Taking advantage of geographic information such as the coastline vector data provided by NOAA Medium Resolution Coastline program, the land region is masked which is a main noise source in ship detection process. After that, the algorithm tries to deal with the cloud noise which appears frequently in the ocean satellite images, which is another reason for false alarm. Based on the analysis of cloud noise's feature in frequency domain, we introduce a windowed noise filter to get rid of the cloud noise. With the help of morphological processing algorithms adapted to target detection, we are able to acquire ship targets in fine shapes. In addition, we display the extracted information such as length and width of ship targets in a user-friendly way i.e. a KML file interpreted by Google Earth.

  15. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  16. High-resolution CdTe detectors with application to various fields (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichiro; Orita, Tadashi; Arai, Yasuo; Sugawara, Hirotaka; Tomaru, Ryota; Katsuragawa, Miho; Sato, Goro; Watanabe, Shin; Ikeda, Hirokazu; Takahashi, Tadayuki; Furenlid, Lars R.; Barber, H. Bradford

    2016-10-01

    High-quality CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging fields. ISAS/JAXA has been developing CdTe imaging detectors to meet scientific demands in latest celestial observation and severe environmental limitation (power consumption, vibration, radiation) in space for over 15 years. The energy resolution of imaging detectors with a CdTe Schottky diode of In/CdTe/Pt or Al/CdTe/Pt contact is a highlight of our development. We can extremely reduce a leakage current of devises, meaning it allows us to supply higher bias voltage to collect charges. The 3.2cm-wide and 0.75mm-thick CdTe double-sided strip detector with a strip pitch of 250 µm has been successfully established and was mounted in the latest Japanese X-ray satellite. The energy resolution measured in the test on ground was 2.1 keV (FWHM) at 59.5 keV. The detector with much finer resolution of 60 µm is ready, and it was actually used in the FOXSI rocket mission to observe hard X-ray from the sun. In this talk, we will focus on our research activities to apply space sensor technologies to such various imaging fields as medical imaging. Recent development of CdTe detectors, imaging module with pinhole and coded-mask collimators, and experimental study of response to hard X-rays and gamma-rays are presented. The talk also includes research of the Compton camera which has a configuration of accumulated Si and CdTe imaging detectors.

  17. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue

    PubMed Central

    Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.

    2015-01-01

    Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. PMID:26026581

  18. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue.

    PubMed

    Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A

    2015-09-30

    Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  20. Climatologies at high resolution for the earth’s land surface areas

    PubMed Central

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-01-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. PMID:28872642

  1. Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Flyback 3D-MRSI

    PubMed Central

    Hu, Simon; Lustig, Michael; Chen, Albert P.; Crane, Jason; Kerr, Adam; Kelley, Douglas A.C.; Hurd, Ralph; Kurhanewicz, John; Nelson, Sarah J.; Pauly, John M.; Vigneron, Daniel B.

    2008-01-01

    High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal to noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility. PMID:18367420

  2. Climatologies at high resolution for the earth's land surface areas

    NASA Astrophysics Data System (ADS)

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-09-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

  3. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  4. Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors

    PubMed Central

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804

  5. Computational burden resulting from image recognition of high resolution radar sensors.

    PubMed

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena

    2013-04-22

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.

  6. Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen

    PubMed Central

    Shvartsburg, Alexandre A.; Smith, Richard D.

    2011-01-01

    The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 90% H2. Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H2 fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times, at least. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes. PMID:22074292

  7. A device to measure the effects of strong magnetic fields on the image resolution of PET scanners

    NASA Astrophysics Data System (ADS)

    Burdette, D.; Albani, D.; Chesi, E.; Clinthorne, N. H.; Cochran, E.; Honscheid, K.; Huh, S. S.; Kagan, H.; Knopp, M.; Lacasta, C.; Mikuz, M.; Schmalbrock, P.; Studen, A.; Weilhammer, P.

    2009-10-01

    Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as Ga68 and Tc94m, which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for Na22 and Ga68 point sources.

  8. Phase-contrast tomography of neuronal tissues: from laboratory- to high resolution synchrotron CT

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Müller, Kristin; Salditt, Tim

    2016-10-01

    Assessing the three-dimensional architecture of neuronal tissues with sub-cellular resolution presents a significant analytical challenge. Overcoming the limitations associated with serial slicing, phase-contrast x-ray tomography has the potential to contribute to this goal. Even compact laboratory CT at an optimized liquid-metal jet micro- focus source combined with suitable phase-retrieval algorithms and preparation protocols can yield renderings with single cell sensitivity in millimeter sized brain areas of mouse. Here, we show the capabilities of the setup by imaging a Golgi-Cox impregnated mouse brain. Towards higher resolution we extend these studies at our recently upgraded waveguide-based cone-beam holo-tomography instrument GINIX at DESY. This setup allows high resolution recordings with adjustable field of view and resolution, down to the voxel sizes in the range of a few ten nanometers. The recent results make us confident that important issues of neuronal connectivity can be addressed by these methods, and that 3D (virtual) histology with nanoscale resolution will become an attractive modality for neuroscience research.

  9. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture.

    PubMed

    Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M; Torres-Rua, Alfonso; McKee, Mac

    2017-09-14

    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "AggieAir", an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products.

  10. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture

    PubMed Central

    Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M.; McKee, Mac

    2017-01-01

    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from “AggieAir”, an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products. PMID:28906428

  11. Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.

    2010-02-01

    Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.

  12. Image superresolution of cytology images using wavelet based patch search

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  13. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  14. Averaging scheme for atomic resolution off-axis electron holograms.

    PubMed

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Improving resolution of crosswell seismic section based on time-frequency analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, H.; Li, Y.

    1994-12-31

    According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less

  16. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  17. Data collection and simulation of high range resolution laser radar for surface mine detection

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Chevalier, Tomas; Larsson, Håkan

    2006-05-01

    Rapid and efficient detection of surface mines, IED's (Improvised Explosive Devices) and UXO (Unexploded Ordnance) is of high priority in military conflicts. High range resolution laser radars combined with passive hyper/multispectral sensors offer an interesting concept to help solving this problem. This paper reports on laser radar data collection of various surface mines in different types of terrain. In order to evaluate the capability of 3D imaging for detecting and classifying the objects of interest a scanning laser radar was used to scan mines and surrounding terrain with high angular and range resolution. These data were then fed into a laser radar model capable of generating range waveforms for a variety of system parameters and combinations of different targets and backgrounds. We can thus simulate a potential system by down sampling to relevant pixel sizes and laser/receiver characteristics. Data, simulations and examples will be presented.

  18. Gyrocopter-Based Remote Sensing Platform

    NASA Astrophysics Data System (ADS)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-04-01

    In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.

  19. Design Parameters and Objectives of a High-­Resolution X-­ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitter, M; Gates, D; Neilson, H

    A high-resolution X-ray imaging crystal spectrometer, whose instrumental concept was thoroughly tested on NSTX and Alcator C-Mod, is presently being designed for LHD. The instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of 1 cm and > 10 ms which are obtained by a tomographic inversion of the spectral data, using the stellarator equilibrium reconstruction codes, STELLOPT and PIES. Since the spectrometer will be equipped with radiation hardened, high count rate, PILATUS detectors,, it is expected to be operational for all experimental conditions on LHD, which include plasmas ofmore » high density and plasmas with auxiliary RF and neutral beam heating. The special design features required by the magnetic field structure at LHD will be described.« less

  20. Study of Small-Scale Anisotropy of Ultra-High-Energy Cosmic Rays Observed in Stereo by the High Resolution Fly's Eye Detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration

    2004-08-01

    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.

Top