Hydrogen Production from Nuclear Energy via High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Carl M. Stoots; J. Stephen Herring
2006-04-01
This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.
High-Temperature Piezoelectric Sensing
Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni
2014-01-01
Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928
The Conference on High Temperature Electronics
NASA Technical Reports Server (NTRS)
Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.
1981-01-01
The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.
The Conference on High Temperature Electronics
NASA Astrophysics Data System (ADS)
Hamilton, D. J.; McCormick, J. B.; Kerwin, W. J.; Narud, J. A.
The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.
Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions
NASA Astrophysics Data System (ADS)
Bahr, Keisha D.; Jokiel, Paul L.; Rodgers, Ku'ulei S.
2016-06-01
Coral reef ecosystems are presently undergoing decline due to anthropogenic climate change. The chief detrimental factors are increased temperature and increased pCO2. The purpose of this study was to evaluate the effect of these two stressors operating independently and in unison on the biological response of common Hawaiian reef corals. Manipulative experiments were performed using five species ( Porites compressa, Pocillopora damicornis, Fungia scutaria, Montipora capitata, and Leptastrea purpurea) in a continuous-flow mesocosm system under natural sunlight conditions. Corals were grown together as a community under treatments of high temperature (2 °C above normal maximum summer temperature), high pCO2 (twice present-day conditions), and with both factors acting in unison. Control corals were grown under present-day pCO2 and at normal summer temperatures. Leptastrea purpurea proved to be an extremely hardy coral. No change in calcification or mortality occurred under treatments of high temperature, high pCO2, or combined high temperature-high pCO2. The remaining four species showed reduced calcification in the high-temperature treatment. Two species ( L. purpurea and M. capitata) showed no response to increased pCO2. Also, high pCO2 ameliorated the negative effect of high temperature on the calcification rates of P. damicornis. Mortality was driven primarily by high temperature, with a negative synergistic effect in P. compressa only in the high-pCO2-high-temperature treatment. Results support the observation that biological response to temperature and pCO2 elevation is highly species-specific, so generalizations based on response of a single species might not apply to a diverse and complex coral reef community.
NASA Astrophysics Data System (ADS)
Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.
1999-01-01
Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.
Seasonal ozone levels and control by seasonal meteorology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnotti, V.
1990-02-01
Meteorological data, particularly 850-MB level temperatures, for Fort Totten, New York (1980) and Atlantic City, New Jersey (1981-1988) were examined for any relationship to seasonal ozone levels. Other radiosonde stations in the Northeast were utilized for 1983 and 1986, years of widely differing ozone levels. Statistics for selected parameters and years are presented. Emphasis is placed on recurring warm temperature regimes in high ozone years. Successive occurrences or episodes of high temperatures characterize seasonally high ozone years. Seasonally persistent high temperatures are related to seasonally chronic high ozone. An example is presented relating the broad-scale climatologically anomalous pattern of highmore » temperatures to anomalous circulation patterns at the 700-MB level.« less
NASA Astrophysics Data System (ADS)
Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.
2017-05-01
A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.
Hermetic encapsulation technique for solar arrays
NASA Technical Reports Server (NTRS)
Deminet, C.; Horne, W. E.
1980-01-01
A concept is presented for encapsulating solar cells between two layers of glass either individually, in panels, or in a continuous process. The concept yields an integral unit that is hermetically sealed and that is tolerant to high temperature thermal cycling and to particulate radiation. Data are presented on both high temperature solar cells and special glasses that soften at low temperatures for use with the concept. The results of encapsulating experiments are presented which show the successful application of the concept to the special high temperature cells. The mechanical feasibility of encapsulating 2 mil cells between two layers of 2 mil glass is also demonstrated.
10.3 High-temperature Instrumentation
NASA Technical Reports Server (NTRS)
Piazza, Anthony
2008-01-01
This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.
Packaging Technologies for 500C SiC Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2013-01-01
Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.
A high-efficiency thermoelectric converter for space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, J.D.; El-Genk, M.S.
1990-01-01
This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reducemore » or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.« less
A high-efficiency thermoelectric converter for space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, J.D.; El-Genk, M.S.
1990-12-31
This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reducemore » or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.« less
New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.
Tang, C C; Bushnell-Wye, G; Cernik, R J
1998-05-01
A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.
High temperature cyclic oxidation data. Part 1: Turbine alloys
NASA Technical Reports Server (NTRS)
Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.
1989-01-01
Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Thermodynamic analysis of biofuels as fuels for high temperature fuel cells
NASA Astrophysics Data System (ADS)
Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz
2011-11-01
Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.
Thermodynamic analysis of biofuels as fuels for high temperature fuel cells
NASA Astrophysics Data System (ADS)
Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz
2013-02-01
Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.
NASA Astrophysics Data System (ADS)
Dudek, M.; Podsadna, J.; Jaszczur, M.
2016-09-01
In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
High-temperature testing of glass/ceramic matrix composites
NASA Technical Reports Server (NTRS)
Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.
1989-01-01
Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.
Ultrasonic Wall Thickness Monitoring at High Temperatures (>500 °C)
NASA Astrophysics Data System (ADS)
Cegla, F. B.; Allin, J.; Davies, J. O.; Collins, P.; Cawley, P.
2011-06-01
Corrosion and erosion shorten the life of components that are used in the petrochemical industry. In order to mitigate the safety and financial risks posed by the degradation mechanisms, plant operators monitor wall thicknesses at regular inspection intervals. In high temperature locations inspections have to be carried out at plant shut downs because conventional ultrasonic sensors cannot withstand the high operating temperatures. The authors have developed a waveguide based high temperature thickness gauge for monitoring of wall thicknesses in high temperature areas. The waveguide allows the use of conventional transduction systems (max temp. 60 °C) at one end and guides ultrasonic waves into the high temperature region where the inspection is to be carried out. Slender stainless steel waveguides allow a temperature drop of ˜500-600 °C per 200 mm length to be sustained simply by natural convection cooling. This paper describes the technical challenges that had to be overcome (dispersion and source/receiver characteristics) in order to implement this "acoustic cable". A range of experimental results of thickness measurements on components of different thickness, and furnace tests at different temperatures are presented. An accelerated corrosion test that demonstrates the effectiveness of the monitoring for corrosion is also presented.
Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant L. Hawkes; Michael G. McKellar
2009-11-01
A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the powermore » cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less
A 400-year ice core melt layer record of summertime warming in the Alaska Range
NASA Astrophysics Data System (ADS)
Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.
2017-12-01
Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.
Containerless measurements on liquids at high temperatures
NASA Technical Reports Server (NTRS)
Weber, Richard
1993-01-01
The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.
The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.
Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui
2017-10-04
This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.
Seal Technology for Hypersonic Vehicle and Propulsion: An Overview
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
2008-01-01
Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.
18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Chen, Liubiao; Jin, Hai; Wang, Junjie; Zhou, Yuan; Zhu, Wenxiu; Zhou, Qiang
2013-02-01
A single-stage high frequency multi-bypass coaxial pulse tube cryocooler (PTC) has been developed for physical experiments. The performance characteristics are presented. At present, the cooler has reached the lowest temperature of 18.6 K with an electric input power of 268 W, which is the reported lowest temperature for single-stage high frequency PTC. The cooler typically provides 0.2 W at 20.6 K and 0.5 W at 24.1 K with the input power of 260 W at 300 K ambient temperature. The cooperation phase adjustment method of multi-bypass and double-inlet shows its advantages in experiments, they might be the best way to get temperature below 20 K for single-stage high frequency PTC. The temperature stability of the developed PTC is also observed.
NASA Astrophysics Data System (ADS)
Cui, Bo-chuan; Wang, Jian-li; Yao, Kai-nan; Chen, Tao
2018-03-01
An approach to measure a high-dynamic two-dimensional (2D) temperature field using a high-speed quadriwave lateral shearing interferometer (QWLSI) is proposed. The detailed theoretical derivation to express the wavefront reconstruct principle of the proposed method is presented. The comparison experiment with thermocouples shows that the temperature field measurement using QWLSI has a precision of ±0.5 °C. An experiment for measuring the highdynamic temperature field generated by an electrical heater is carried out. A 200 frame rate temperature field video with 512 × 512 resolution is obtained finally. Experimental results show that the temperature field measurement system using a QWLSI has the advantage of high sensitivity and high resolution.
Kovach, L.; Holcombe, C.E.
1980-08-22
The present invention relates to a composition particularly suitable for use as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850/sup 0/K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.
Kovach, Louis; Holcombe, Cressie E.
1982-01-01
The present invention relates to a composition particularly suitable for as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850.degree. K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.
More About High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.
1994-01-01
Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.
High temperature NASP engine seals: A technology review
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Tong, Mike
1991-01-01
Progress in developing advanced high temperature engine seal concepts and related sealing technologies for advanced hypersonic engines are reviewed. Design attributes and issues requiring further development for both the ceramic wafer seal and the braided ceramic rope seal are examined. Leakage data are presented for these seals for engine simulated pressure and temperature conditions and compared to a target leakage limit. Basic elements of leakage flow models to predict leakage rates for each of these seals over the wide range of pressure and temperature conditions anticipated in the engine are also presented.
NASA Astrophysics Data System (ADS)
Kelly, James P.
Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.
State of the art in high-temperature fiber optic sensors
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Stinson-Bagby, Kelly L.; Palmer, Matthew E.
2004-12-01
The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of pressure sensors to 500psi at a gas temperature of 800°C. Additionally, pressure sensors were demonstrated at 800°C in combination with a high-speed (1.0MHz) fiber optic readout system enabling previously unobtainable dynamic measurements at high-temperatures. Temperature sensors have been field tested up to 1400°C and as low as -195°C. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.
High Temperature Metallic Seal Development For Aero Propulsion and Gas Turbine Applications
NASA Technical Reports Server (NTRS)
More, Greg; Datta, Amit
2006-01-01
A viewgraph presentation on metallic high temperature static seal development at NASA for gas turbine applications is shown. The topics include: 1) High Temperature Static Seal Development; 2) Program Review; 3) Phase IV Innovative Seal with Blade Alloy Spring; 4) Spring Design; 5) Phase IV: Innovative Seal with Blade Alloy Spring; 6) PHase IV: Testing Results; 7) Seal Seating Load; 8) Spring Seal Manufacturing; and 9) Other Applications for HIgh Temperature Spring Design
Very high temperature chemistry: Science justification for containerless experimentation in space
NASA Technical Reports Server (NTRS)
Hofmeister, William H.; Nordine, Paul
1990-01-01
A summary is presented of the justification for application of containerless processing in space to high temperature science. Low earth orbit offers a gravitational environment that allows samples to be positioned in an experimental apparatus by very small forces. Well controlled experiments become possible on reactive materials at high temperatures in a reasonably quiescent state and without container contamination. This provides an opportunity to advance the science of high temperature chemistry that can only be realized with a commitment by NASA to provide advanced facilities for in-space containerless study of materials at very high temperature.
Shen, Yonghang; He, Jinglei; Sun, Tong; Grattan, Kenneth T V
2004-03-15
An antimony--germanium- (Sb--Ge-) codoped fiber specially designed for the fabrication of fiber Bragg gratings (FBGs) with high temperature sustainability has been developed. The photosensitivity and the high-temperature sustainability of FBGs that have been written into this fiber were tested. The results obtained showed that the FBG written into this fiber has a very high temperature sustainability of 900 degrees C. A decay mechanism that involves cation hopping is presented to explain the observed high temperature sustainability of the grating written into this fiber.
A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range
NASA Astrophysics Data System (ADS)
Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike
2018-04-01
Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.
Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O
2016-09-12
A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.
NASA Astrophysics Data System (ADS)
Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter
2011-03-01
The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.
FUEL ELEMENT FOR A NUCLEAR REACTOR
Davidson, J.K.
1963-11-19
A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)
1988-09-30
resistivity and thermoelectric -power measurements. Both of the high temperature superconducting phases reported in the literature, with transition...temperatures near 80K and 110K, have been observed. Evidence from thermoelectric power measurements is presented which shows that this family of ceramic...observed. Evidence from thermoelectric power measurements is presented which shows that this family of ceramic superconductors has contributions to the
Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle
NASA Astrophysics Data System (ADS)
Fic, Adam; Składzień, Jan; Gabriel, Michał
2015-03-01
Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.
Locally adaptive parallel temperature accelerated dynamics method
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Amar, Jacques G.
2010-03-01
The recently-developed temperature-accelerated dynamics (TAD) method [M. Sørensen and A.F. Voter, J. Chem. Phys. 112, 9599 (2000)] along with the more recently developed parallel TAD (parTAD) method [Y. Shim et al, Phys. Rev. B 76, 205439 (2007)] allow one to carry out non-equilibrium simulations over extended time and length scales. The basic idea behind TAD is to speed up transitions by carrying out a high-temperature MD simulation and then use the resulting information to obtain event times at the desired low temperature. In a typical implementation, a fixed high temperature Thigh is used. However, in general one expects that for each configuration there exists an optimal value of Thigh which depends on the particular transition pathways and activation energies for that configuration. Here we present a locally adaptive high-temperature TAD method in which instead of using a fixed Thigh the high temperature is dynamically adjusted in order to maximize simulation efficiency. Preliminary results of the performance obtained from parTAD simulations of Cu/Cu(100) growth using the locally adaptive Thigh method will also be presented.
Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2012-03-01
Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less
High-temperature ductility of electro-deposited nickel
NASA Technical Reports Server (NTRS)
Dini, J. W.; Johnson, H. R.
1977-01-01
Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret; Gusman, M.; Ellerby, D.; Johnson, S. M.; Arnold, Jim (Technical Monitor)
2001-01-01
The Thermal Protection Materials and Systems Branch at NASA Ames Research Center is involved in the development of a class of refractory oxidation-resistant diboride composites termed Ultra High Temperature Ceramics or UHTCs. These composites have good high temperature properties making them candidate materials for thermal protection system (TPS) applications. The current research focuses on improving processing methods to develop more reliable composites with enhanced thermal and mechanical properties. This presentation will concentrate on the processing of ZrB2/SiC composites. Some preliminary mechanical properties and oxidation data will also be presented.
High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures
Young, J.E.; Jalan, V.M.
1982-07-07
A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.
High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures
Young, J.E.; Jalan, V.M.
1984-06-19
A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.
High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures
Young, John E.; Jalan, Vinod M.
1984-01-01
A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.
NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank
NASA Astrophysics Data System (ADS)
Lukashevskaya, A. A.; Lavrentieva, N. N.; Dudaryonok, A. C.; Perevalov, V. I.
2016-11-01
We present a high-resolution, high-temperature version of the Nitrogen Dioxide Spectroscopic Databank called NDSD-1000. The databank contains the line parameters (positions, intensities, self- and air-broadening coefficients, exponents of the temperature dependence of self- and air-broadening coefficients) of the principal isotopologue of NO2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-25 cm-1/molecule cm-2 at 1000 K. The broadening parameters are presented for two reference temperatures 296 K and 1000 K. The databank has 1,046,808 entries, covers five spectral regions in the 466-4776 cm-1 spectral range and is designed for temperatures up to 1000 K. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as the temperature exponents are calculated using the semi-empirical approach. The databank is useful for studying high-temperature radiative properties of NO2. NDSD-1000 is freely accessible via the internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/NDSD/.
More Cyclic-Oxidation Data For Turbine Alloys
NASA Technical Reports Server (NTRS)
Barrett, Charles A.; Garlick, Ralph G.
1993-01-01
Document presents data on cyclic oxidation of high-temperature, high-strength, nickel-base and cobalt-base alloys for turbines. Completes presentation of data begun in NASA Technical Memorandum 83665 (Revised 1989), "High-Temperature Cyclic Oxidation Data, Turbine Alloys, Part 1." Data consist of plots and tabulations of changes in specific weight as function of time, and lists of surface and spalled material phases identified by x-ray diffraction measurements.
Strain sensing technology for high temperature applications
NASA Technical Reports Server (NTRS)
Williams, W. Dan
1993-01-01
This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.
Effects of atmospheric temperature and humidity on outbreak of diseases.
Choi, Sung Hyuk; Lee, Sung Woo; Hong, Yun Sik; Kim, Su Jin; Kim, Nak Hoon
2007-12-01
The present study aimed to determine the plausibility of forecasting the outbreak of diseases based on the weather by analysing the impact of atmospheric temperature and humidity on the occurrence of different diseases. The subjects of the present study were the 30,434 patients who visited the ED in 1 year from 1 February 2005 to 3 February 2006. The present study analysed the correlation between the daily number of patients who suffered from 22 types of traumatic and non-traumatic diseases and the data on atmospheric temperature and humidity provided by the Korea Meteorological Administration. With traumatic disease, the occurrence tended to increase in proportion to the rise in temperature and humidity; whereas with non-traumatic disease, the occurrence tended to increase according to the rise in temperature, irrespective of humidity changes. The research on the impact of atmospheric temperature and humidity on different diseases revealed a high level of distribution of most diseases in an environment with high temperature and humidity. However, in the case of pulmonary diseases and trauma to multiple body regions, the occurrence increased in environments with low temperature and high humidity for pulmonary diseases, and with low temperature and low humidity for trauma to multiple body regions. Most diseases tend to increase in proportion to the rise in atmospheric temperature whereas being less affected by humidity. However, an increase in humidity in an optimum range of atmospheric temperature (12 degrees C or higher) triggers an increase in the occurrence of diseases.
Design guide for helicopter transmission seals
NASA Technical Reports Server (NTRS)
Hayden, T. S.; Keller, C. H., Jr.
1974-01-01
A detailed approach for the selection and design of seals for helicopter transmissions is presented. There are two major types of seals presently being used and they are lip type seals and mechanical type seals. Lip type seals can be divided in conventional lip seals and hydrodynamic lip seals. Conventional lip seals can be used for slow-speed, low-pressure, low-temperature sealing. Hydrodynamic lip seals although they are as pressure and temperature limited as conventional lip seals, can operate at a higher speed. Mechanical types seals are comprised of face seals and circumferential seals. Face seals are capable of high speed, high pressure, and high temperature. Circumferential seals can be used in high-speed and high-temperature applications, but will leak excessively at moderate pressures. The performance goals of transmission seals are a life that is at least equal to the scheduled overhaul interval of the gearbox component and a leakage rate of near zero.
Second topical conference on high-temperature plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahoda, F.C.; Freese, K.B.
1978-02-01
This report contains the program and abstracts of papers presented at the Second American Physical Society Topical Conference on High Temperature Plasma Diagnostics, March 1-3, 1978, Santa Fe, New Mexico.
SiC Fiber-Reinforced Celsian Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
2003-01-01
Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.
Infrared study of OH(-) defects in KTiOPO4 crystals
NASA Astrophysics Data System (ADS)
Morris, P. A.; Crawford, M. K.; Jones, B.
1992-12-01
Variations in the concentrations and distributions of the OH(-) defects present in flux and hydrothermal KTiOPO4 (KTP) crystals, measured by infrared spectroscopy of single crystals, are attributed to differences in the growth environments and other nonhydrogenic defects present in the crystals. The concentrations of OH(-) have been estimated from the infrared data to be approximately 400 ppma (parts per million atomic) (3.0 x 10 exp 19/cu cm) in the flux crystals, 1100-1500 ppma (0.74-1.1 x 10 exp 20/cu cm) in the high-temperature hydrothermal and 600 ppma (4.3 x 10 exp 19/cu cm) in the low-temperature hydrothermal crystals. A 3566/cm peak and a 3575/cm band are observed in all crystals. The integrated intensity of the OH(-) absorption band at 3566/cm increases at the expense of the 3575/cm band at higher temperatures in the high-temperature hydrothermal crystals. Several OH(-) peaks (3490, 3455, 3428, 3420, and 3333/cm), which have strongly temperature-dependent linewidths, are present in the hydrothermally grown KTP crystals. The temperature dependencies of their peak frequencies and widths are consistent with the presence of mobile protons in the lattice. The protons located in the 3490 and 3428/cm sites are believed to contribute to the ionic conductivity of the high-conductivity high-temperature hydrothermal crystals.
A polarisation maintaining fiber optimized for high temperature gyroscopes
NASA Astrophysics Data System (ADS)
Tutu, F.; Hill, Mark; Cooper, Laurence; Gillooly, A.
2015-05-01
Fiber optic gyroscopes (FOGs) are being used within increasingly severe environments, requiring operational temperatures in excess of the standard operating range for FOGs. Applications requiring these higher temperatures include: directional drilling of wells in oil and gas fields, space applications and military FOG applications. This paper will describe the relative merits of two high temperature acrylate coatings for an optical fiber designed for a FOG in such operating environments. Results for two high temperature acrylates are presented, tested in a 200m length of loose wound fiber, coiled and supported at 75mm diameter, in line with TIA/EIA-455-192 (FOTP-192). It can be seen that both coating types give very good polarization extinction ratio (PER) performance at high temperature up to 180oC, with better performance shown by one coating type on the low temperature side, since it does not harden to the same extent below 0oC. The long term thermal exposure effects will be discussed and experimental results presented which include testing the PER performance over temperature both before and after an extended period of high temperature endurance. This will demonstrate the relative merits of different styles of coatings. From the PER performance, the h-parameter of the fiber can be calculated and hence the preferred coating type selected and recommended for the customer operating environment.
High-frequency fluctuations of surface temperatures in an urban environment
NASA Astrophysics Data System (ADS)
Christen, Andreas; Meier, Fred; Scherer, Dieter
2012-04-01
This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.
Power management and distribution technology
NASA Astrophysics Data System (ADS)
Dickman, John Ellis
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Power management and distribution technology
NASA Technical Reports Server (NTRS)
Dickman, John Ellis
1993-01-01
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
A high-temperature wideband pressure transducer
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1975-01-01
Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.
Observation of dx2
NASA Astrophysics Data System (ADS)
Sato, T.; Kamiyama, T.; Takahashi, T.; Kurahashi, K.; Yamada, K.
2001-02-01
High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd2-xCexCuO4 (x = 0.15, transition temperature Tc = 22 K) has found the quasiparticle signature as well as the anisotropic dx2
A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland
2016-07-15
Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signalsmore » with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.« less
Macroscopic phase separation in high-temperature superconductors
Wen, Hai-Hu
2000-01-01
High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323
Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules
NASA Astrophysics Data System (ADS)
O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon
2016-01-01
Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.
TEMPERATURE SCENARIO DEVELOPMENT USING REGRESSION METHODS
A method of developing scenarios of future temperature conditions resulting from climatic change is presented. he method is straightforward and can be used to provide information about daily temperature variations and diurnal ranges, monthly average high, and low temperatures, an...
Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.
Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun
2016-07-22
The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.
Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor
Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun
2016-01-01
The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271
High temperature resistant cermet and ceramic compositions
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.
Wireless Sensor Applications in Extreme Aeronautical Environments
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2013-01-01
NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
Liu, Donghuan; Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
NASA Technical Reports Server (NTRS)
Seng, Gary T.
1987-01-01
In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism
Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651
NASA Astrophysics Data System (ADS)
Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores
2018-05-01
Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.
High temperature dynamic engine seal technology development
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.
1992-01-01
Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.
NASA Astrophysics Data System (ADS)
Smietana, M.; Bock, W. J.; Mikulic, P.
2011-11-01
This paper presents the temperature sensing properties of a silicon nitride (SiNx) nanocoated long-period grating (LPG). A high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited SiNx nanocoating was applied to tune the external refractive index (RI) sensitivity of LPGs written with UV and electric arc techniques in boron co-doped and standard germanium doped fibers, respectively. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as are required for optical sensors. Thanks to the high-RI SiNx nanocoating, which is less than 90 nm thick, it is possible to reduce RI sensitivity over a wide range (from nD = 1.333 to 1.479), simultaneously decreasing its cross-sensitivity to temperature. For the presented nanocoated LPGs, the temperature effect on resonance wavelength is linear and slightly dependent on the thermo-optic coefficient of the surrounding liquid. The other advantage of the nanocoating is that it makes the resonance clearly visible in the whole investigated external RI range. To the best of our knowledge, this work presents for the first time a nanocoating able to simultaneously tune the RI sensitivity and enable temperature measurements in high-RI liquids applied to LPGs.
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.
This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K andmore » ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.« less
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
High Temperature Materials Needs in NASA's Advanced Space Propulsion Programs
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Glass, David E.
2005-01-01
In recent years, NASA has embarked on several new and exciting efforts in the exploration and use of space. The successful accomplishment of many planned missions and projects is dependent upon the development and deployment of previously unproven propulsion systems. Key to many of the propulsion systems is the use of emergent materials systems, particularly high temperature structural composites. A review of the general missions and benefits of utilizing high temperature materials will be presented. The design parameters and operating conditions will be presented for both specific missions/vehicles and classes of components. Key technical challenges and opportunities are identified along with suggested paths for addressing them.
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Morgan, Cassandra D.
1988-01-01
Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, R.H.; Morgan, C.D.
1988-10-01
Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin. 16 references.
Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron
2015-04-01
We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.C.; DePoorter, G.L.; Munoz, D.R.
1991-02-01
We have initiated a three phase investigation of the development of high performance refractory fibers with enhanced insulating properties and longer usable lifetimes. This report presents the results of the first phase of the study, performed from Aug. 1989 through Feb. 1991, which shows that significant energy saving are possible through the use of high temperature insulating fibers that better retain their efficient insulating properties during the service lifetime of the fibers. The remaining phases of this program include the pilot scale development and then full scale production feasibility development and evaluation of enhanced high temperature refractory insulting fibers. Thismore » first proof of principle phase of the program presents a summary of the current use patterns of refractory fibers, a laboratory evaluation of the high temperature performance characteristics of selected typical refractory fibers and an analysis of the potential energy savings through the use of enhanced refractory fibers. The current use patterns of refractory fibers span a wide range of industries and high temperature furnaces within those industries. The majority of high temperature fiber applications are in furnaces operating between 2000 and 26000{degrees}F. The fibers used in furnaces operating within this range provide attractive thermal resistance and low thermal storage at reasonable cost. A series of heat treatment studies performed for this phase of the program has shown that the refractory fibers, as initially manufactured, have attractive thermal conductivities for high temperature applications but the fibers go through rapid devitrification and subsequent crystal growth upon high temperature exposure. Development of improved fibers, maintaining the favorable characteristics of the existing as-manufactured fibers, could save between 1 and 4% of the energy consumed in high temperature furnaces using refractory fibers.« less
Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance
NASA Technical Reports Server (NTRS)
Morris, J. F. (Inventor)
1977-01-01
Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, v.; Barzi, E.; Turrioni, D.
Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Shortmore » sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.« less
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2014-04-30
Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less
High temperature behaviour of self-consolidating concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fares, Hanaa, E-mail: hanaafares@yahoo.f; Remond, Sebastien; Noumowe, Albert
2010-03-15
This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have alreadymore » been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.« less
Spectroscopy for Industrial Applications: High-Temperature Processes
NASA Astrophysics Data System (ADS)
Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan
2014-06-01
The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a small-scale low-temperature gasifier. A comparison between in situ, gas extraction and conventional gas sampling measurements is presented. Overall the presentation shows an example of successful industrial and academic partnerships within the framework of national and international ongoing projects.
Low toxicity high temperature PMR polyimide
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Telling, M.T.F.; Department of Materials, University of Oxford, Parks Road, Oxford
2013-08-15
Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction datamore » has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)« less
High-temperature Friction and Wear Resistance of Ni-Co-SiC Composite Coatings
NASA Astrophysics Data System (ADS)
Guo, Fang; Sun, Wan-chang; Jia, Zong-wei; Liu, Xiao-jia; Dong, Ya-ru
2018-05-01
Ni-Co alloy and SiC micro-particles were co-deposited on 45 steel by electrodeposition for high temperature performance. The high temperature tribological characteristics were studied by use of a ball-on-disk method. The micrographs and phase structure of the Ni-Co-SiC composite coatings after high-temperature friction were observed by using a field emission scanning electron microscope(FESEM). The results reveal that the Ni-Co-SiC composite coating presents better wear resistance and lower friction coefficient at high temperature in comparison with that of Ni-Co coating and 45 steel substrate. The embedded SiC particles could strengthen the alloy coating by dispersion strengthening effect and changing the friction mechanism from adhesive wear to abrasive wear.
Tan, G-Y; Yang, L; Fu, Y-Q; Feng, J-H; Zhang, M-H
2010-01-01
This study investigated the effects of different acute high ambient temperatures on dysfunction of hepatic mitochondrial respiration, the antioxidative enzyme system, and oxidative injury in broiler chickens. One hundred twenty-eight 6-wk-old broiler chickens were assigned randomly to 4 groups and subsequently exposed to 25 (control), 32, 35, and 38 degrees C (RH, 70 +/- 5%) for 3 h, respectively. The rectal temperatures, activity of antioxidative enzymes (superoxide dismutase, catalase, and glutathione peroxidase), content of malondialdehyde and protein carbonyl, and the activity of mitochondrial respiratory enzymes were determined. The results showed that exposure to high ambient temperature induced a significant elevation of rectal temperature, antioxidative enzyme activity, and formation of malondialdehyde and protein carbonyl, as well as dysfunction of the mitochondrial respiratory chain in comparison with control (P < 0.05). Almost all of the indicators changed in a temperature-dependent manner with the gradual increase of ambient temperature from 32 to 38 degrees C; differences in each parameter (except catalase) among the groups exposed to different high ambient temperatures were also statistically significant (P < 0.05). The results of the present study suggest that, in the broiler chicken model used here, acute exposure to high temperatures may depress the activity of the mitochondrial respiratory chain. This inactivation results subsequently in overproduction of reactive oxygen species, which ultimately results in oxidative injury. However, this hypothesis needs to be evaluated more rigorously in future studies. It has also been shown that, with the gradual increase in temperature, the oxidative injury induced by heat stress in broiler chickens becomes increasingly severe, and this stress response presents in a temperature-dependent manner in the temperature range of 32 to 38 degrees C.
A literature review on fatigue and creep interaction
NASA Technical Reports Server (NTRS)
Chen, W. C.
1978-01-01
Life-time prediction methods, which are based on a number of empirical and phenomenological relationships, are presented. Three aspects are reviewed: effects of testing parameters on high temperature fatigue, life-time prediction, and high temperature fatigue crack growth.
Precipitation Hardenable High Temperature Shape Memory Alloy
NASA Technical Reports Server (NTRS)
Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)
2010-01-01
A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1999-01-01
100 kHz core loss and magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, at B(sub peak) = 0.1 T and 50 C only. A linear permeability model is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials arc reviewed. This linear modeling shows that, due to their high permeabilities, these cores must he gapped in order to make up high Q or high current inductors. However, they should serve well, as is, for high frequency, anti ratcheting transformer applications.
Shear wave EMAT thickness measurements of low carbon steel at 450 °C without cooling
NASA Astrophysics Data System (ADS)
Lunn, Natasha; Potter, Mark; Dixon, Steve
2017-02-01
Performing high temperature online inspection without plant shutdown is highly desirable, yet, development of portable or permanently installed high temperature ultrasonic sensors, without the need for sample surface preparation, remains a key challenge. Low carbon steel pipelines operating at elevated temperatures often develop a magnetostrictive oxide coating (magnetite), which improves electromagnetic acoustic transducer (EMAT) efficiency below the Curie temperature of magnetite (575 °C), via a magnetostrictive mechanism. Coupling the inherent non-contacting nature of EMATs with the enhanced efficiency from a magnetite coating, we are able to continuously operate an uncoded EMAT at elevated temperatures without permanent installation or surface preparation. In this work, a high temperature shear wave EMAT utilizing a high field, high Curie point, permanent magnet has been developed to generate ultrasonic bulk thickness measurements on magnetite coated steel at temperatures of up to 450 °C, without cooling. Relatively high signal-to-noise ratios, in the region of 30 dB for single shot data, have been measured at 450 °C using this technique. The EMAT design and results from high temperature trials, including the performance with change in temperature, sample thickness and EMAT-sample lift-off, are presented here.
NASA Astrophysics Data System (ADS)
Topics presented include the identification of stagnant region in a fluidized bed combustor, high sensitivity objective grating speckle, an X-ray beam method for displacement and strain distributions using the moire method, and high-temperature deformation of a Ti-alloy composite under complex loading. Also addressed are a hybrid procedure for dynamic characterization of ceramics at elevated temperature, thermo-structural measurements in a SiC coated carbon-carbon hypersonic glide vehicle, and recent experience with elevated-temperature foil strain gages with application to thin-gage materials.
Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)
2017-01-01
The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.
The application of a computer data acquisition system to a new high temperature tribometer
NASA Technical Reports Server (NTRS)
Bonham, Charles D.; Dellacorte, Christopher
1991-01-01
The two data acquisition computer programs are described which were developed for a high temperature friction and wear test apparatus, a tribometer. The raw data produced by the tribometer and the methods used to sample that data are explained. In addition, the instrumentation and computer hardware and software are presented. Also shown is how computer data acquisition was applied to increase convenience and productivity on a high temperature tribometer.
The application of a computer data acquisition system for a new high temperature tribometer
NASA Technical Reports Server (NTRS)
Bonham, Charles D.; Dellacorte, Christopher
1990-01-01
The two data acquisition computer programs are described which were developed for a high temperature friction and wear test apparatus, a tribometer. The raw data produced by the tribometer and the methods used to sample that data are explained. In addition, the instrumentation and computer hardware and software are presented. Also shown is how computer data acquisition was applied to increase convenience and productivity on a high temperature tribometer.
2014-03-01
Charts 3. DATES COVERED (From - To) Mar 2014- May 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House High Temperature Latent Heat Thermal ...Energy Storage to Augment Solar Thermal Propulsion for Microsats 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites Presentation Subtitle Matthew R. Gilpin
Raman scattering in single-crystal sapphire at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapa, Juddha; Liu, Bo; Woodruff, Steven D.
Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less
Raman scattering in single-crystal sapphire at elevated temperatures
Thapa, Juddha; Liu, Bo; Woodruff, Steven D.; ...
2017-10-25
Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less
Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.
2015-10-06
Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.
Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang
2016-01-01
High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200
NASA Astrophysics Data System (ADS)
Ianson, I. K.
1991-03-01
Research in the field of high-temperature superconductors based on methods of tunneling and microcontact spectroscopy is reviewed in a systematic manner. The theoretical principles of the methods are presented, and various types of contacts are described and classified. Attention is given to deviations of the measured volt-ampere characteristics from those predicted by simple theoretical models and those observed for conventional superconductors. Results of measurements of the energy gap and fine structure of volt ampere characteristic derivatives are presented for La(2-x)Sr(x)CuO4.
Daily Mean Temperature Affects Urolithiasis Presentation in Seoul: a Time-series Analysis.
Lee, SeoYeon; Kim, Min-Su; Kim, Jung Hoon; Kwon, Jong Kyou; Chi, Byung Hoon; Kim, Jin Wook; Chang, In Ho
2016-05-01
This study aimed to investigate the overall cumulative exposure-response and the lag response relationships between daily temperature and urolithiasis presentation in Seoul. Using a time-series design and distributing lag nonlinear methods, we estimated the relative risk (RR) of urolithiasis presentation associated with mean daily temperature, including the cumulative RR for a 20 days period, and RR for individual daily lag through 20 days. We analyzed data from 14,518 patients of 4 hospitals emergency department who sought medical evaluation or treatment of urolithiasis from 2005-2013 in Seoul. RR was estimated according to sex and age. Associations between mean daily temperature and urolithiasis presentation were not monotonic. Furthermore, there was variation in the exposure-response curve shapes and the strength of association at different temperatures, although in most cases RRs increased for temperatures above the 13°C reference value. The RRs for urolothiasis at 29°C vs. 13°C were 2.54 in all patients (95% confidence interval [CI]: 1.67-3.87), 2.59 in male (95% CI, 1.56-4.32), 2.42 in female (95% CI, 1.15-5.07), 3.83 in male less than 40 years old (95% CI, 1.78-8.26), and 2.47 in male between 40 and 60 years old (95% CI, 1.15-5.34). Consistent trends of increasing RR of urolithiasis presentation were observed within 5 days of high temperatures across all groups. Urolithiasis presentation increased with high temperature with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days, in Seoul, a metropolitan city in Korea.
Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal
NASA Technical Reports Server (NTRS)
Murthy, V. Rama
1992-01-01
If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.
High-temperature elastic-plastic and creep properties for SA533 Grade B Class I and SA508 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, G.B.; Ayres, D.J.
1982-12-01
High temperature elastic-plastic and creep properties are presented for SA533 Grade B Class I and SA508 Class II materials. These properties are derived from tests conducted at Combustion Engineering Material and Metallurgical Laboratories and cover the temperature range of 70/sup 0/F to 1200/sup 0/F.
NASA Technical Reports Server (NTRS)
Curtis, H. B.; Hart, R. E., Jr.
1982-01-01
Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer
NASA Astrophysics Data System (ADS)
Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid
2017-04-01
An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.
NASA Astrophysics Data System (ADS)
Nakagawa, K.; Tanaka, T.; Suzuki, T.
2015-10-01
This paper presents the fabrication of a new energy harvesting module that uses a thermoelectric device (TED) by using molding technology. Through molding technology, the TED and circuit board can be properly protected and a heat-radiating fin structure can be simultaneously constructed. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8 mV K-1, similar to the result with the aluminum heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on a damp heat test, which is an aging test under high temperature and high humidity, highly accelerated temperature, and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments, cold test and thermal cycle test to evaluate degrading characteristics by cycling through two temperatures. All test results indicate that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology because the output voltage of after-tested modules is reduced by less than 5%. This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks.
Simulating canopy temperature for modelling heat stress in cereals
USDA-ARS?s Scientific Manuscript database
Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...
Equation of state of heated glassy carbon
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Ahrens, Thomas J.
1991-01-01
New Hugoniot data are presented for glassy carbon preheated to 1550 K and shocked to 20 GPa. The high-temperature Hugoniot is very similar to the principal Hugoniot. This results argues against the diffusional mechanism for the shock-induced transformaton of amorphous carbon to diamond, although the present results are obviously limited to below 20 GPa. This study provides the first Higoniot data for carbon preheated to significantly high temperatures.
Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process
NASA Astrophysics Data System (ADS)
Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi
2018-05-01
The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.
Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Nath, Rupa
Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat transfer modes at such high temperatures to overcome the aforementioned limitations of PCMs. Encapsulation with sodium silicate coating on preformed PCM pellets were investigated. A low cost, high temperature metal, carbon steel has been used as a capsule for PCMs with a melting point above 500° C. Sodium silicate and high temperature paints were used for oxidation protection of steel at high temperatures. The emissivity of the coatings to enhance heat transfer was investigated.
Derivation and test of elevated temperature thermal-stress-free fastener concept
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.
1985-01-01
Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.
Containerless processing at high temperatures using acoustic levitation
NASA Technical Reports Server (NTRS)
Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.
1991-01-01
Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.
High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines
NASA Astrophysics Data System (ADS)
Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo
2002-02-01
In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.
Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature.
Sayed, Farheen N; Rodrigues, Marco-Tulio F; Kalaga, Kaushik; Gullapalli, Hemtej; Ajayan, P M
2017-12-20
In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.
Articles for high temperature service and methods for their manufacture
Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven
2016-06-14
An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production
NASA Technical Reports Server (NTRS)
Peterman, D. D.; Fontaine, R. W.; Quade, R. N.; Halvers, L. J.; Jahromi, A. M.
1975-01-01
The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program.
NASA Technical Reports Server (NTRS)
Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)
2006-01-01
Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.
2016-10-05
describes physics of a nanosecond surface dielectric barrier discharge (SDBD) at ambient gas temperature and high pressures (1-6 bar) in air. Details about...the ignition by a nanosecond discharge. Chapter 7 presents the high pressure high temperature reactor built recently at Laboratory for Plasma Physics ...livelink.ebs.afrl.af.mil/livelink/llisapi.dll Laboratory for Physics of Plasma, Ecole Polytechnique Plasma Assisted Ignition and Combustion at Low Initial Gas
PLA recycling by hydrolysis at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it
In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.
High Temperature, Wireless Seismometer Sensor for Venus
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.
2012-01-01
Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.
High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging
Devesse, Wim; De Baere, Dieter; Guillaume, Patrick
2017-01-01
A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764
NASA Astrophysics Data System (ADS)
Araki, Takuto; Ohba, Takahiro; Takezawa, Shinya; Onda, Kazuo; Sakaki, Yoshinori
Solid oxide fuel cells (SOFCs) can be composed of solid components for stable operation, and high power generation efficiency is obtained by using high temperature exhaust heat for fuel reforming and bottoming power generation by a gas turbine. Recently, low-temperature SOFCs, which run in the temperature range of around 600 °C or above and give high power generation efficiency, have been developed. On the other hand, a power generation system with multi-staged fuel cells has been proposed by the United States DOE to obtain high efficiency. In our present study, a power generation system consisting of two-staged SOFCs with serial connection of low and high temperature SOFCs was investigated. Overpotential data for the low-temperature SOFC used in this study are based on recently published data, while data for high-temperature SOFC are based on our previous study. The numerical results show that the power generation efficiency of the two-staged SOFCs is 50.3% and the total efficiency of power generation with gas turbine is 56.1% under standard operating conditions. These efficiencies are a little higher than those by high-temperature SOFC only.
Oxygen interaction with hexagonal OsB 2 at high temperature
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2016-08-10
The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less
Oxygen interaction with hexagonal OsB 2 at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina
The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian; Stalker, Amy R.
2007-01-01
This paper presents the characteristics of coplanar waveguide transmission lines fabricated on R-plane sapphire substrates as a function of temperature across the temperature range of 25 to 400 C. Effective permittivity and attenuation are measured on a high temperature probe station. Two techniques are used to obtain the transmission line characteristics, a Thru-Reflect-Line calibration technique that yields the propagation coefficient and resonant stubs. To a first order fit of the data, the effective permittivity and the attenuation increase linearly with temperature.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.
High performance dielectric materials development
NASA Technical Reports Server (NTRS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-01-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
High performance dielectric materials development
NASA Astrophysics Data System (ADS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-09-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
High temperature electrical energy storage: advances, challenges, and frontiers.
Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W
2016-10-24
With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.
Gulab, Hussain; Jan, Muhammad Rasul; Shah, Jasmin; Manos, George
2010-01-01
This paper presents results regarding the effect of various process conditions on the performance of a zeolite catalyst in pyrolysis of high density polyethylene. The results show that polymer catalytic degradation can be operated at relatively low catalyst content reducing the cost of a potential industrial process. As the polymer to catalyst mass ratio increases, the system becomes less active, but high temperatures compensate for this activity loss resulting in high conversion values at usual batch times and even higher yields of liquid products due to less overcracking. The results also show that high flow rate of carrier gas causes evaporation of liquid products falsifying results, as it was obvious from liquid yield results at different reaction times as well as the corresponding boiling point distributions. Furthermore, results are presented regarding temperature effects on liquid selectivity. Similar values resulted from different final reactor temperatures, which are attributed to the batch operation of the experimental equipment. Since polymer and catalyst both undergo the same temperature profile, which is the same up to a specific time independent of the final temperature. Obviously, this common temperature step determines the selectivity to specific products. However, selectivity to specific products is affected by the temperature, as shown in the corresponding boiling point distributions, with higher temperatures showing an increased selectivity to middle boiling point components (C(8)-C(9)) and lower temperatures increased selectivity to heavy components (C(14)-C(18)).
Marquez, Ana; Perez-Serratosa, Maria; Varo, M Angeles; Merida, Julieta
2014-08-06
In this paper, the influence of temperature during the controlled dehydration of Tempranillo red grapes has been studied. Two experiments at fixed temperatures of 30 and 40 °C, and a third experiment alternating temperatures of 40 and 15 °C every 12 h were carried out. The must from grapes dried at 40 °C presented the reddest color, and the highest anthocyanin concentration and antioxidant activity. A possible hypothesis could be that the high temperature induced a continuous water evaporation from the grapes, preventing the oxygen entry. At the same time, the dehydration resulted in broken skins, which facilitated the transfer of colored compounds to the pulp, increasing the red color of the musts. However, when the temperature dropped, oxygen could penetrate through the skin and the browning reactions started. As a result, the must obtained from gra pes dehydrated by alternating high and low temperatures presented the least anthocyanin content and the least red color.
Thermoelastic vibration test techniques
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Snyder, H. Todd
1991-01-01
The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.
Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon
NASA Technical Reports Server (NTRS)
Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.
1973-01-01
Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.
NASA Technical Reports Server (NTRS)
Singh, Jag J. (Editor); Antcliff, Richard R. (Editor)
1992-01-01
An intensive 2-day conference to discuss the current status of measurement technology in the areas of temperature/heat flux, stress/strain, pressure, and flowfield diagnostics for high temperature aerospace applications was held at Langley Research Center, Hampton, Virginia, on April 22 and 23, 1993. Complete texts of the papers presented at the Conference are included in these proceedings.
High temperature sensor properties of a specialty double cladding fiber
NASA Astrophysics Data System (ADS)
Zhou, Ting; Pang, Fufei; Wang, Tingyun
2011-12-01
A simple high temperature fiber sensor is proposed and demonstrated. The sensor head is made of a short section of specialty double cladding fiber (DCF). The DCF consists of a depressed inner cladding which is boron (B)-doped silica. Through an evanescent wave, the cladding mode can be excited, and thus the transmission presents a resonant spectral dip. The high temperature sensing properties was studied according to the shift of the transmission spectrum shifts. With increasing the temperature from 28 °C to 850 °C, the resonant spectrum shifts to longer wavelengths. The sensitivity is 0.112 nm / °C.
Containerless high temperature property measurements by atomic fluorescence
NASA Technical Reports Server (NTRS)
1983-01-01
The use of laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties is studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in Earth-based containerless high temperature experiments. The work to date includes development of an apparatus and its use in studies of chemical reactions on Al2O3, molybdenum, and tungsten specimens, novel methods for noncontact specimen temperature measurement, and levitation jet properties. Brief summaries of these studies are given. The apparatus is described and detailed results for the current reporting period are presented.
Nonlinear Analysis for High-temperature Composites: Turbine Blades/vanes
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1984-01-01
An integrated approach to nonlinear analysis of high-temperature composites in turbine blade/vane applications is presented. The overall strategy of this approach and the key elements comprising this approach are summarized. Preliminary results for a tungsten-fiber-reinforced superalloy (TFRS) composite are discussed.
Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C
2014-01-01
We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.
High-capacity NO2 denuder systems operated at various temperatures (298-473 K).
Wolf, Jan-Christoph; Niessner, Reinhard
2012-12-01
In this study, we investigated several coatings for high-temperature, high-capacity, and high-efficiency denuder-based NO(2) removal, with the scope to face the harsh conditions and requirements of automotive exhaust gas sampling. As first coating, we propose a potassium iodide (KI)/polyethylene glycol coating with a high removal efficiency (ε > 98%) for about 2 h and 50 ppm NO(2) at room temperature (298 K). At elevated temperatures (423 K), the initial capacity (100 ppmh) is decreased to 15 ppmh. Furthermore, this is the first proposal of the ionic liquid methyl-butyl-imidazolium iodide ([BMIm(+)][I(-)]) as denuder coating material. At room temperature, this ionic liquid exhibits far greater capacity (300 ppmh) and NO(2) removal efficiency (ε > 99.9%) than KI. Nevertheless, KI exhibits a slightly (~10%) higher capacity at elevated temperatures than [BMIm(+)][I(-)]. Both coatings presented are suitable for applications requiring selective denuding of NO(2) at temperatures up to 423 K.
A High-Resolution Measurement of Ball IR Black Paint's Low-Temperature Emissivity
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Canavan, Ed; DiPirro, Mike; Li, Xiaoyi; Franck, Randy; Green, Dan
2011-01-01
High-emissivity paints are commonly used on thermal control system components. The total hemispheric emissivity values of such paints are typically high (nearly 1) at temperatures above about 100 Kelvin, but they drop off steeply at lower temperatures. A precise knowledge of this temperature-dependence is critical to designing passively-cooled components with low operating temperatures. Notable examples are the coatings on thermal radiators used to cool space-flight instruments to temperatures below 40 Kelvin. Past measurements of low-temperature paint emissivity have been challenging, often requiring large thermal chambers and typically producing data with high uncertainties below about 100 Kelvin. We describe a relatively inexpensive method of performing high-resolution emissivity measurements in a small cryostat. We present the results of such a measurement on Ball InfraRed BlackTM(BIRBTM), a proprietary surface coating produced by Ball Aerospace and Technologies Corp (BATC), which is used in spaceflight applications. We also describe a thermal model used in the error analysis.
Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)
NASA Astrophysics Data System (ADS)
Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.
2015-06-01
The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.
Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)
NASA Technical Reports Server (NTRS)
Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.
2014-01-01
The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.
Electron-lattice coupling after high-energy deposition in aluminum
NASA Astrophysics Data System (ADS)
Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.
2015-07-01
This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.
Solar-thermal fluid-wall reaction processing
Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
Solar-Thermal Fluid-Wall Reaction Processing
Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin
2016-12-01
Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.
High Temperature Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
1985-01-01
These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.
Fundamental aspects of and failure modes in high-temperature composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Ginty, Carol A.
1990-01-01
Fundamental aspects of and attendant failure mechanisms for high temperature composites are summarized. These include: (1) in-situ matrix behavior; (2) load transfer; (3) limits on matrix ductility to survive a given number of cyclic loadings; (4) fundamental parameters which govern thermal stresses; (5) vibration stresses; and (6) impact resistance. The resulting guidelines are presented in terms of simple equations which are suitable for the preliminary assessment of the merits of a particular high temperature composite in a specific application.
High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber.
Guan, Bai-Ou; Zhang, Yang; Wang, Hong-Jun; Chen, Da; Tam, Hwa-Yaw
2008-03-03
We present a high-temperature-resistant distributed Bragg reflector fiber laser photowritten in Er/Yb codoped phosphosilicate fiber that is capable of long-term operation at 500 degrees C. Highly saturated Bragg gratings are directly inscribed into the Er/Yb fiber without hydrogen loading by using a 193 nm excimer laser and phase mask method. After annealing at elevated temperature, the remained gratings are strong enough for laser oscillation. The laser operates in robust single mode with output power more than 1 dBm and signal-to-noise ratio better than 70 dB over the entire temperature range from room temperature to 500 degrees C.
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.
1993-01-01
The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.
Silicon carbide, an emerging high temperature semiconductor
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Powell, J. Anthony
1991-01-01
In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.
NASA Astrophysics Data System (ADS)
Loomis, S. E.; Russell, J. M.; Kelly, M. A.; Eggermont, H.; Verschuren, D.
2013-12-01
Tropical lapse rate variability on glacial/interglacial time scales has been hotly debated since the publication of CLIMAP in 1976. Low-elevation paleotemperature reconstructions from the tropics have repeatedly shown less warming from the Last Glacial Maximum (LGM) to present than reconstructions from high elevations, leading to widespread difficulty in estimating the true LGM-present temperature change in the tropics. This debate is further complicated by the fact that most paleotemperature estimates from high elevations in the tropics are derived from pollen- and moraine-based reconstructions of altitudinal shifts in vegetation belts and glacial equilibrium line altitudes (ELAs). These traditional approaches rely on the assumption that lapse rates have remained constant through time. However, this assumption is problematic in the case of the LGM, when pervasive tropical aridity most likely led to substantial changes in lapse rates. Glycerol dialkyl glycerol tetraethers (GDGTs) can be used to reconstruct paleotemperatures independent of hydrological changes, making them the ideal proxy to reconstruct high elevation temperature change and assess lapse rate variability through time. Here we present two new equatorial paleotemperature records from high elevations in East Africa (Lake Rutundu, Mt. Kenya and Lake Mahoma, Rwenzori Mountains, Uganda) based on branched GDGTs. Our record from Lake Rutundu shows deglacial warming starting near 17 ka and a mid-Holocene thermal maximum near 5 ka. The overall amplitude of warming in the Lake Rutundu record is 6.8×1.0°C from the LGM to the present, with mid-Holocene temperatures 1.6×0.9°C warmer than modern. Our record from Lake Mahoma extends back to 7 ka and shows similar temperature trends to our record from Lake Rutundu, indicating similar temporal resolution of high-elevation temperature change throughout the region. Combining these new records with three previously published GDGT temperature records from different elevations in East Africa (Sacred Lake, Lake Tanganyika, and Lake Malawi), we are able to reconstruct a continuous record of lapse rates and freezing level heights (FLHs) back to the LGM. We find that tropical lapse rates have varied widely over the last 22 ky, with the largest (lowest) lapse rate (FLH) around the LGM, while the smallest (highest) lapse rate (FLH) occurs during the mid-Holocene, confirming the amplification of warming at high altitudes between the LGM and present. These lapse rate and FLH reconstructions match records of regional hydrological variability, confirming the importance of glacial/interglacial humidity variations on altitudinal temperature gradients in the tropics. Furthermore, the FLH record largely matches records of tropical glacier ELA changes, indicating that warming from LGM-present was likely amplified at high altitudes throughout the tropics.
An Investigation of a Photographic Technique of Measuring High Surface Temperatures
NASA Technical Reports Server (NTRS)
Siviter, James H., Jr.; Strass, H. Kurt
1960-01-01
A photographic method of temperature determination has been developed to measure elevated temperatures of surfaces. The technique presented herein minimizes calibration procedures and permits wide variation in emulsion developing techniques. The present work indicates that the lower limit of applicability is approximately 1,400 F when conventional cameras, emulsions, and moderate exposures are used. The upper limit is determined by the calibration technique and the accuracy required.
Lü, Jianhua; Zhang, Huina
2016-01-01
Heat treatment is a popular alternative to synthetic pesticides in disinfesting food-processing facilities and empty grain storages. Sitophilus zeamais Mostchulsky is one of the most cosmopolitan and destructive insects found in empty grain storage facilities and processing facilities. The effect of acclimation in S. zeamais adults to sublethal high temperature on their subsequent susceptibility to high temperatures was investigated. S. zeamais adults were acclimated to 36°C for 0 (as a control), 1, 3, and 5 h, and then were exposed at 43, 47, 51, and 55°C for different time intervals respectively. Acclimation to sublethal high temperature significantly reduced subsequent susceptibility of S. zeamais adults to lethal high temperatures of 43, 47, 51, and 55°C, although the mortality of S. zeamais adults significantly increased with increasing exposure time at lethal high temperatures. The mortality of S. zeamais adults with 1, 3, and 5 h of acclimation to 36°C was significantly lower than that of S. zeamais adults without acclimation when exposed to the same lethal high temperatures. The present results suggest that the whole facility should be heated to target lethal high temperature as soon as possible, avoiding decreasing the control effectiveness of heat treatment due to the acclimation in stored product insects to sublethal temperature. PMID:27462906
The application of high-speed photography in z-pinch high-temperature plasma diagnostics
NASA Astrophysics Data System (ADS)
Wang, Kui-lu; Qiu, Meng-tong; Hei, Dong-wei
2007-01-01
This invited paper is presented to discuss the application of high speed photography in z-pinch high temperature plasma diagnostics in recent years in Northwest Institute of Nuclear Technology in concentrative mode. The developments and applications of soft x-ray framing camera, soft x-ray curved crystal spectrometer, optical framing camera, ultraviolet four-frame framing camera and ultraviolet-visible spectrometer are introduced.
Gallium phosphide high temperature diodes
NASA Technical Reports Server (NTRS)
Chaffin, R. J.; Dawson, L. R.
1981-01-01
High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.
Elastohydrodynamic principles applied to the design of helicopter components.
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1973-01-01
Elastohydrodynamic principles affecting the lubrication of transmission components are presented and discussed. Surface temperatures of the transmission bearings and gears affect elastohydrodynamic film thickness. Traction forces and sliding as well as the inlet temperature determine surface temperatures. High contact ratio gears cause increased sliding and may run at higher surface temperatures. Component life is a function of the ratio of elastohydrodynamic film thickness to composite surface roughness. Lubricant starvation reduces elastohydrodynamic film thickness and increases surface temperatures. Methods are presented which allow for the application of elastohydrodynamic principles to transmission design in order to increase system life and reliability.
Elastohydrodynamic principles applied to the design of helicopter components
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1973-01-01
Elastohydrodynamic principles affecting the lubrication of transmission components are presented and discussed. Surface temperature of the transmission bearings and gears affect elastohydrodynamic film thickness. Traction forces and sliding as well as the inlet temperature determine surface temperatures. High contact ratio gears cause increased sliding and may run at higher surface temperatures. Component life is a function of the ratio of elastohydrodynamic film thickness to composite surface roughness. Lubricant starvation reduces elastrohydrodynamic film thickness and increases surface temperatures. Methods are presented which allow for the application of elastohydrodynamic principles to transmission design in order to increase system life and reliability.
NASA Astrophysics Data System (ADS)
Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.
2018-02-01
Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.
Shock initiation of explosives: High temperature hot spots explained
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.
2017-08-01
We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.
Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K
NASA Astrophysics Data System (ADS)
Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.
2018-03-01
The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.
Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature
NASA Astrophysics Data System (ADS)
Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.
2009-04-01
We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.
On the melting temperature measurements of metals under shock compression by pyrometry
NASA Astrophysics Data System (ADS)
Dai, Chengda; Hu, Jianbo; Tan, Hua
2009-06-01
The high-pressure melting temperatures are of interest in validating equation of state and modeling constitutive equation. The determination of melting temperatures for metals at megabars by pyrometry experiments is principally associated with the one-dimensional models for heat flow through dissimilar media: Grover-Urtiew model (J. App. Phys. 1974, 45: 146-152) and Tan-Ahrens model (High Press. Res. 1990, 2: 159-182). In the present work, we analyzed the insufficiency of Grover-Urtiew model in determining melting temperatures from observed interface temperatures. Based on the Tan-Ahrens model, we extracted the upper and lower bound on melting temperature at interface pressure, and proposed that the median of the both bounds was a good approximation to the melting temperatures at interface pressure. Pyrometry experiments were performed on tantalum, and the high-pressure melting temperatures were evaluated by application of the proposed approximation. The obtained results were compared with available theoretical calculations.
Evaporation of oil-water emulsion drops when heated at high temperature
NASA Astrophysics Data System (ADS)
Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.
2017-10-01
An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.
Achieving ultra-high temperatures with a resistive emitter array
NASA Astrophysics Data System (ADS)
Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott
2016-05-01
The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.
Tertiary climates and floristic relationships at high latitudes in the northern hemisphere
Wolfe, J.A.
1980-01-01
During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-28
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
NASA Astrophysics Data System (ADS)
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-01
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)
2003-01-01
This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.
NASA Astrophysics Data System (ADS)
Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.
2016-06-01
Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change epilithic communities in the future, thereby likely leading to reduced reef stability and recovery.
Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system
NASA Astrophysics Data System (ADS)
Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.
2013-10-01
Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.
NASA Astrophysics Data System (ADS)
Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.
2017-11-01
This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.
NASA Technical Reports Server (NTRS)
Srivastava, Rakesh
2004-01-01
A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.
NASA Technical Reports Server (NTRS)
Benson, R. F.
1973-01-01
The electron temperatures deduced from Alouette 2 diffuse resonance observations are compared with the temperature obtained from the Alouette 2 cylindrical electrostatic probe experiment using data from 5 mid-to-high latitude telemetry stations. The probe temperature is consistently higher than the diffuse resonance temperature. The average difference ranged from approximately 10% to 40% with the lower values occurring at the lowest altitudes sampled (near 500 km) and at high latitudes (dip latitude greater than 55 deg), and the larger values occurring at high altitudes and lower latitudes. The discrepancy appears to be of geophysical origin since it is dependent on the location of the data sample. The present observations support the view that the often observed radar backscatter - probe electron temperature discrepancy is also of geophysical origin.
Strain monitoring of bismaleimide composites using embedded microcavity sensor
NASA Astrophysics Data System (ADS)
Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam
2016-03-01
A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.
Thin Film Solid Lubricant Development
NASA Technical Reports Server (NTRS)
Benoy, Patricia A.
1997-01-01
Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.
Performance and Reliability of Bonded Interfaces for High-Temperature Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas
2016-06-08
This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.
Charvat, A; Stasicki, B; Abel, B
2006-03-09
In the present article a novel approach for rapid product screening of fast reactions in IR-laser-heated liquid microbeams in a vacuum is highlighted. From absorbed energies, a shock wave analysis, high-speed laser stroboscopy, and thermodynamic data of high-temperature water the enthalpy, temperature, density, pressure, and the reaction time window for the hot water filament could be characterized. The experimental conditions (30 kbar, 1750 K, density approximately 1 g/cm3) present during the lifetime of the filament (20-30 ns) were extreme and provided a unique environment for high-temperature water chemistry. For the probe of the reaction products liquid beam desorption mass spectrometry was employed. A decisive feature of the technique is that ionic species, as well as neutral products and intermediates may be detected (neutrals as protonated aggregates) via time-of-flight mass spectrometry without any additional ionization laser. After the explosive disintegration of the superheated beam, high-temperature water reactions are efficiently quenched via expansion and evaporative cooling. For first exploratory experiments for chemistry in ultrahigh-temperature, -pressure and -density water, we have chosen resorcinol as a benchmark system, simple enough and well studied in high-temperature water environments much below 1000 K. Contrary to oxidation reactions usually present under less extreme and dense supercritical conditions, we have observed hydration and little H-atom abstraction during the narrow time window of the experiment. Small amounts of radicals but no ionic intermediates other than simple proton adducts were detected. The experimental findings are discussed in terms of the energetic and dense environment and the small time window for reaction, and they provide firm evidence for additional thermal reaction channels in extreme molecular environments.
NASA Astrophysics Data System (ADS)
Choudhary, Y. R. S.; Mangavati, Suraj; Patil, Siddanagouda; Rao, Ashok; Nagaraja, B. S.; Thomas, Riya; Okram, G. S.; Kini, Savitha G.
2018-04-01
In the present communication, we present results on the effect of rare-earth (RE) substitution at La-site on the structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds. The lattice parameters are observed to decrease with RE-doping which is attributed to the fact that the substituted RE ions (RE = Eu, Gd and Y) are smaller than that of La ion. In high temperature semiconducting regime, small polaron hopping (SPH) model is valid, whereas, variable hopping model is valid in low temperature metallic region. The resistivity in the entire temperature range follows percolation model. All the samples exhibit sign reversal in thermopower, S. From temperature dependent S data, it is seen that SPH model is applicable in high temperature regime.
Beta Testing of CFD Code for the Analysis of Combustion Systems
NASA Technical Reports Server (NTRS)
Yee, Emma; Wey, Thomas
2015-01-01
A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Giorgetta, Fabrizio R.; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2018-05-01
We measure speed-dependent Voigt lineshape parameters with temperature-dependence exponents for several hundred spectroscopic features of pure water spanning 6801-7188 cm-1. The parameters are extracted from broad bandwidth, high-resolution dual frequency comb absorption spectra with multispectrum fitting techniques. The data encompass 25 spectra ranging from 296 K to 1305 K and 1 to 17 Torr of pure water vapor. We present the extracted parameters, compare them to published data, and present speed-dependence, self-shift, and self-broadening temperature-dependent parameters for the first time. Lineshape data is extracted using a quadratic speed-dependent Voigt profile and a single self-broadening power law temperature-dependence exponent over the entire temperature range. The results represent an important step toward a new high-temperature database using advanced lineshape profiles.
Melt-processing high-T{sub c} superconductors under an elevated magnetic field [Final report no. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
John B. Vander Sande
2001-09-05
This report presents models for crystallographic texture development for high temperature superconducting oxides processed in the absence of a magnetic field and in the presence of a high magnetic field. The results of the models are confirmed through critical experiments. Processing thick films and tapes of high temperature superconducting oxides under a high magnetic field (5-10T) improves the critical current density exhibited.
Experimental testing of olivine-melt equilibrium models at high temperatures
NASA Astrophysics Data System (ADS)
Krasheninnikov, S. P.; Sobolev, A. V.; Batanova, V. G.; Kargaltsev, A. A.; Borisov, A. A.
2017-08-01
Data are presented on the equilibrium compositions of olivine and melts in the products of 101 experiments performed at 1300-1600°C, atmospheric pressure, and controlled oxygen fugacity by means of new equipment at the Vernadsky Institute. It was shown that the available models of the olivine-melt equilibrium describe with insufficient adequacy the natural systems at temperatures over 1400°C. The most adequate is the model by Ford et al. (1983). However, this model overestimates systematically the equilibrium temperature with underestimating by 20-40°C at 1450-1600°C. These data point to the need for developing a new, improved quantitative model of the olivine-melt equilibrium for high-temperature magnesian melts, as well as to the possibility of these studies on the basis of the equipment presented.
QCD thermodynamics with two flavors at Nt=6
NASA Astrophysics Data System (ADS)
Bernard, Claude; Ogilvie, Michael C.; Degrand, Thomas A.; Detar, Carleton; Gottlieb, Steven; Krasnitz, Alex; Sugar, R. L.; Toussaint, D.
1992-05-01
The first results of numerical simulations of quantum chromodynamics on the Intel iPSC/860 parallel processor are presented. We performed calculations with two flavors of Kogut-Susskind quarks at Nt=6 with masses of 0.15T and 0.075T (0.025 and 0.0125 in lattice units) in order to locate the crossover from the low-temperature regime of ordinary hadronic matter to the high-temperature chirally symmetric regime. As with other recent two-flavor simulations, these calculations are insufficient to distinguish between a rapid crossover and a true phase transition. The phase transition is either absent or feeble at this quark mass. An improved estimate of the crossover temperature in physical units is given and results are presented for the hadronic screening lengths in both the high- and low-temperature regimes.
Silicon carbide semiconductor technology for high temperature and radiation environments
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.
1993-01-01
Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.
NASA Astrophysics Data System (ADS)
Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.
2018-06-01
We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.
Miniature cryocooler developments for high operating temperatures at Thales Cryogenics
NASA Astrophysics Data System (ADS)
Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.
2015-05-01
In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.
Zhou, Longhua; Yan, Tao; Chen, Xin; Li, Zhilan; Wu, Dezhi; Hua, Shuijin; Jiang, Lixi
2018-03-24
Global warming causes a faster increase of night temperature than of day temperature in tropical and subtropical zones. Little is known about the effect of high night temperature on storage lipids and transcriptome changes in oilseed rape. This study compared the total fatty acids and fatty acid compositions in seeds of two oilseed rape cultivars between high and low night temperatures. Their transcriptome profiles were also analyzed. High night temperature significantly affected the total fatty acids and fatty acid compositions in seeds of both low and high oil content cultivars, namely Jiuer-13 and Zheyou-50, thereby resulting in 18.9% and 13.7% total fatty acid reductions, respectively. In particular, high night temperature decreased the relative proportions of C18:0 and C18:1 but increased the proportions of C18:2 and C18:3 in both cultivars. In-depth analysis of transcriptome profiles revealed that high night temperature up-regulated gibberellin signaling during the night-time. This up-regulation was associated with the active expression of genes involved in fatty acid catabolism, such as those in β-oxidation and glyoxylate metabolism pathways. Although the effect of temperature on plant lipids has been previously examined, the present study is the first to focus on night temperature and its effect on the fatty acid composition in seeds.
Temperature sensitive surfaces and methods of making same
Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA
2002-09-10
Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.
Program for the development of high temperature electrical materials and components
NASA Technical Reports Server (NTRS)
Neff, W. S.; Lowry, L. R.
1972-01-01
Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.
NASA Astrophysics Data System (ADS)
Goyal, M.; Gupta, B. R. K.
2018-06-01
A theoretical model is described here for studying the effect of temperature on nanomaterials. The thermodynamic equation of state (EoS) proposed by Goyal and Gupta in High Temp.-High Press. 45, 163 (2016); Oriental J. Chem. 32( 4), 2193 (2016), is extended in the present study using Qi and Wang model [ Mater. Chem. Phys. 88, 280 (2004)]. The thermal expansion coefficient is expressed in terms of shape and size and used to obtain the isobaric EoS of nanomaterials for the change in volume V/{V_0}. The variation in V/{V_0} with temperature is estimated for spherical nanoparticles, nanowires and nanofilms. It is found that the volume thermal expansivity decreases as size of the nanomaterial increases, whereas V/{V_0} increases with temperature across nanomaterials of different sizes. The lattice parameter variation with temperature is studied in Zn nanowires, Se and Ag nanoparticles. It is found that lattice constant increases with increase in temperature. Also, bulk modulus is found to increase with temperature in nanomaterials. The results obtained from the present model are compared with the available experimental data. A good consistency between the compared results confirms the suitability of the present model for studying thermal properties of the nanomaterials.
Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong
2017-01-01
Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.
NASA Technical Reports Server (NTRS)
Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.
2012-01-01
Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.
Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng
2018-01-01
Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming. PMID:29694388
Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian
2018-01-01
Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.
NASA Astrophysics Data System (ADS)
Faisal, M.; Mazni, Noor; Prasada Rao, A. K.
2018-03-01
Reported work focusses on the effect of 1.0% Ni addition on the microstructure, high- temperature impression creep and thereby the hardness of recycled Al-alloy containing >2wt% Fe, obtained from automotive scrap. Present studies have shown that the addition of 1.0% Ni have supress the formation of α-phase (Al5FeSi) by supressing the peritectic transformation of β-phase (Al8Fe2Si). Such suppression is found to improve the hardness and high-temperature impression creep of the recycled aluminium alloy.
NASA Astrophysics Data System (ADS)
Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian
Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.
Harsh-environment fiber optic sensors for structural monitoring applications
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Stinson-Bagby, Kelly L.; Palmer, Matthew E.
2004-07-01
The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of a pressure sensor to 100psi at a gas temperature of 800°C, calibration of an accelerometer to 2.5g at a substrate temperature of 850°C. Temperature sensors have been field tested up to 1400°C, and a skin friction sensor designed for 870°C operation has been constructed. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.
High temperature braided rope seals for static sealing applications
NASA Technical Reports Server (NTRS)
Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.
1996-01-01
Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.
Room temperature ferromagnetism in transition metal-doped black phosphorous
NASA Astrophysics Data System (ADS)
Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang
2018-05-01
High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.
Vortex pinning properties in Fe-chalcogenides
NASA Astrophysics Data System (ADS)
Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.
2015-12-01
Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.
Aguirre, Ana-Maria; Bassi, Amarjeet
2014-07-01
Biofuels from algae are considered a technically viable energy source that overcomes several of the problems present in previous generations of biofuels. In this research high pressure steaming (HPS) was studied as a hydrothermal pre-treatment for extraction of lipids from Chlorella vulgaris, and analysis by response surface methodology allowed finding operational points in terms of target temperature and algae concentration for high lipid and glucose yields. Within the range covered by these experiments the best conditions for high bio-crude yield are temperatures higher than 174°C and low biomass concentrations (<5 g/L). For high glucose yield there are two suitable operational ranges, either low temperatures (<105°C) and low biomass concentrations (<4 g/L); or low temperatures (<105°C) and high biomass concentrations (<110 g/L). High pressure steaming is a good hydrothermal treatment for lipid recovery and does not significantly change the fatty acids profile for the range of temperatures studied. Copyright © 2014 Elsevier Ltd. All rights reserved.
The composition and origin of the moon
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1972-01-01
A model is presented of the moon as a high temperature condensate from the solar nebula. The Ca, Al, and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes, and anorthite. Type 3 carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and are highly enriched in refractories. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior. The inferred high U content of the lunar interior, both from the Allende analogy and the high heat flow, indicates a high temperature interior. The model is consistent with extensive early, shallow melting at 3 A.E., and with high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior raises the interior temperatures estimated from electrical conductivity by some 800 C.
Do we understand the temperature profile of air-water interface?
NASA Astrophysics Data System (ADS)
Solcerova, A.; van Emmerik, T. H. M.; Uittenbogaard, R.; van de Ven, F. H. M.; Van De Giesen, N.
2017-12-01
Lakes and reservoirs exchange energy with the atmosphere through long-wave radiation and turbulent heat fluxes. Calculation of those fluxes often depend on the surface temperature. Several recent studies used high resolution Distributed Temperature Sensing (DTS) to measure the temperature of air-water interface. We present results of three of such studies conducted on three different locations with three different climates (Ghana, Israel, The Netherland). Measurements from all presented studies show a distinct temperature drop close to the water surface during daytime. We provide several possible explanations for existence of such deviation of temperature, and discuss the plausibility of each. Explaining the measured temperature drop is crucial for a better understanding of the energy balance of lake surface, and estimation of the surface energy balance.
Ultra-High Temperature Materials Characterization for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Hyers, Robert
2007-01-01
Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.
Feasibility study of a high temperature radiation furnace for space applications
NASA Technical Reports Server (NTRS)
Eiss, A.; Dussan, B.; Shadis, W.; Frank, L.
1973-01-01
The feasibility was investigated of a high temperature general purpose furnace for use in space. It was determined that no commercial furnaces exist which could, even with extensive modifications, meet the goals of temperature, power, weight, volume, and versatility originally specified in the contract Statement of Work. A feasible furnace design which does substantially meet these goals while employing many of the advanced features of the commercial furnaces is developed and presented.
OMNY PIN—A versatile sample holder for tomographic measurements at room and cryogenic temperatures
NASA Astrophysics Data System (ADS)
Holler, M.; Raabe, J.; Wepf, R.; Shahmoradian, S. H.; Diaz, A.; Sarafimov, B.; Lachat, T.; Walther, H.; Vitins, M.
2017-11-01
Nowadays ptychographic tomography in the hard x-ray regime, i.e., at energies above about 2 keV, is a well-established measurement technique. At the Paul Scherrer Institut, currently two instruments are available: one is measuring at room temperature and atmospheric pressure, and the other, the so-called OMNY (tOMography Nano crYo) instrument, is operating at ultra-high vacuum and offering cryogenic sample temperatures down to 10 K. In this manuscript, we present the sample mounts that were developed for these instruments. Aside from excellent mechanical stability and thermal conductivity, they also offer highly reproducible mounting. Various types were developed for different kinds of samples and are presented in detail, including examples of how specimens can be mounted on these holders. We also show the first hard x-ray ptychographic tomography measurements of high-pressure frozen biological samples, in the present case Chlamydomonas cells, the related sample pins and preparation steps. For completeness, we present accessories such as transportation containers for both room temperature and cryogenic samples and a gripper mechanism for automatic sample changing. The sample mounts are not limited to x-ray tomography or hard x-ray energies, and we believe that they can be very useful for other instrumentation projects.
Stable catalyst layers for hydrogen permeable composite membranes
Way, J. Douglas; Wolden, Colin A
2014-01-07
The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.
Test method development for structural characterization of fiber composites at high temperatures
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.; Edwards, B.
1985-01-01
Test methods used for structural characterization of polymer matrix composites can be applied to glass and ceramic matrix composites only at low temperatures. New test methods are required for tensile, compressive, and shear properties of fiber composites at high temperatures. A tensile test which should be useful to at least 1000 C has been developed and used to characterize the properties of a Nicalon/glass composite up to the matrix limiting temperature of 600 C. Longitudinal and transverse unidirectional composite data are presented and discussed.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...
2015-12-17
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Pressure induced phase transitions studies using advanced synchrotron techniques
NASA Astrophysics Data System (ADS)
Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration
2013-06-01
In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.
NASA Astrophysics Data System (ADS)
Errandonea, Daniel
2004-12-01
This reply aims to clarify some of the arguments presented in a previous publication (Errandonea et al 2003 J. Phys.: Condens. Matter 15 1277), which have been criticized in the preceding comment by Olijnyk. The article in question reported the existence of a new high-pressure and high-temperature dhcp phase in magnesium and presented strong evidence that invites one to re-study the up-to-now-established room temperature structural sequence of magnesium.
Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou
2016-01-01
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674
Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou
2016-02-04
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.
Non-contact Creep Resistance Measurement for Ultra-high temperature Materials
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Lee, Jonghuyn; Bradshaw, Richard C.; Rogers, Jan; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter K.
2005-01-01
Continuing pressures for higher performance and efficiency in propulsion are driving ever more demanding needs for high-temperature materials. Some immediate applications in spaceflight include combustion chambers for advanced chemical rockets and turbomachinery for jet engines and power conversion in nuclear-electric propulsion. In the case of rockets, the combination of high stresses and high temperatures make the characterization of creep properties very important. Creep is even more important in the turbomachinery, where a long service life is an additional constraint. Some very high-temperature materials are being developed, including platinum group metals, carbides, borides, and silicides. But the measurement of creep properties at very high temperatures is itself problematic, because the testing instrument must operate at such high temperatures. Conventional techniques are limited to about 1700 C. A new, containerless technique for measuring creep deformation has been developed. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is heated to the measurement temperature and rotated at a rate such that the centrifugal acceleration causes creep deformation. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.
NASA Astrophysics Data System (ADS)
Bochenek, Kamil; Basista, Michal
2015-11-01
Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.
High temperature thermoelectric properties of rock-salt structure PbS
Parker, David S.; Singh, David J.
2013-12-18
We present an analysis of the high temperature transport properties of rock-salt structure PbS, a sister compound to the better studied lead chalcogenides PbSe and PbTe. In this study, we find thermopower magnitudes exceeding 200 V/K in a wide doping range for temperatures of 800 K and above. Based on these calculations, and an analysis of recent experimental work we find that this material has a potential for high thermoelectric performance. Also, we find favorable mechanical properties, based on an analysis of published data.
High temperature solar thermal technology
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.
1980-01-01
Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
Cheng, Chang-Hong; Yang, Fang-Fang; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li; Tan, Jia-Wen; Chen, Xiao-Yan
2015-10-01
Water temperature is an important environmental factor in aquaculture farming that affects the survival and growth of organisms. The change in culture water temperature may not only modify various chemical and biological processes but also affect the status of fish populations. In previous studies, high temperature induced apoptosis and oxidative stress. However, the precise mechanism and the pathways that are activated in fish are still unclear. In the present study, we investigated the effects of high temperature (34°C) on the induction of apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. The data showed that high temperature exposure increased oxygen species (ROS), cytoplasmic free-Ca(2+) concentration and cell apoptosis. To test the apoptotic pathway, the expression pattern of some key apoptotic related genes including P53, Bax, caspase 9 and caspase 3 were examined. The results showed that acute high temperature stress induced up-regulation of these genes, suggesting that the p53-Bax pathway and the caspase-dependent apoptotic pathway could be involved in apoptosis induced by high temperature stress. Furthermore, the gene expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the blood cells were induced by high temperature stress. Taken together, our results showed that high temperature-induced oxidative stress may cause pufferfish blood cells apoptosis, and cooperatively activated p53-Bax and caspase-dependent apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
High Temperature Piezoelectric Drill
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun
2009-01-01
The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.
Ultrasonic/Sonic Drill for High Temperature Application
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Scott, James; Sherrit, Stewart; Widholm, Scott; Badescu, Mircea; Shrout, Tom; Jones, Beth
2010-01-01
Venus is one of the many significant scientific targets for NASA. New rock sampling tools with the ability to be operated at high temperatures of the order of 460 deg C are required for surface in-situ sampling/analysis missions. Piezoelectric materials such as LiNbO? crystals and Bismuth Titanate are potentially operational at the temperature range found on the surface of Venus. A study of the feasibility of producing piezoelectric drills for a temperature up to 500 deg C was conducted. The study includes investigation of the high temperature properties of piezoelectric crystals and ceramics with different formulas and doping. Several prototypes of Ultrasonic/Sonic Drill/Corers (USDC) driven by transducers using the high temperate piezoelectric ceramics and single LiNbO? crystal were fabricated. The transducers were analyzed by scanning the impedance at room temperature and 500 deg C under both low and high voltages. The drilling performances were tested at temperature up to 500 deg C. Preliminary results were previously reported [Bao et al, 2009]. In this paper, the progress is presented and the future works for performance improvements are discussed.
NASA Astrophysics Data System (ADS)
Shchelik, S. V.; Pavlov, A. S.
2013-07-01
Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.
NASA Astrophysics Data System (ADS)
Judycki, Józef; Jaczewski, Mariusz; Ryś, Dawid; Pszczoła, Marek; Jaskuła, Piotr; Glinicki, Adam
2017-09-01
High Modulus Asphalt Concrete (HMAC) was introduced in Poland as a one of the solutions to the problem of rutting, type of deterioration common in the 1990s. After first encouraging trials in 2002 HMAC was widely used for heavily loaded national roads and motorways. However some concerns were raised about low-temperature cracking of HMAC. This was the main reason of the studies presented in this article were started. The article presents the comparison of performance of pavements constructed in typical contract conditions with the road bases made of HMAC and conventional asphalt concrete (AC). The field investigation was focused on the number of low-temperature cracks, bearing capacity (based on FWD test) of road sections localized in coldest region of Poland. Also load transfer efficiency of selected low-temperature cracks was assessed. FWD test confirmed lower deflections of pavements with HMAC and two times higher stiffness modulus of asphalt courses in comparison to pavements constructed with conventional AC mixtures. Relation of stiffness of asphalt layers and amount of low-temperature cracks showed that the higher stiffness modulus of asphalt layers could lead to increase of the number of low-temperature cracks. FWD test results showed that the load transfer efficiency of low-temperature cracks on pavements with HMAC presents very low values, very close to lack of load transfer. It was surprising as section with HMAC road base were aged from 2 to 5 years and presented very good bearing capacity.
High temperature deformation mechanisms of L12-containing Co-based superalloys
NASA Astrophysics Data System (ADS)
Titus, Michael Shaw
Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions, this mode of shearing altered such that extended antiphase boundaries formed in the gamma' precipitates. These high temperature shearing mechanisms differ from Ni-based superalloys, where shearing occurs via APB-coupled dislocations. High resolution electron microscopy studies revealed chemical fluctuations of solute near stacking faults and antiphase boundaries in the gamma' phases. These chemical fluctuations were found to significantly reduce the stacking fault energy, which was calculated via first-principles. The implications for these chemical fluctuations on creep strength were determined, and new models for precipitate shearing will be presented. Furthermore, the implications for the design of new Co- and CoNi-based compositions will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas
2015-06-10
This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRONOWSKI,DAVID R.
The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.
1989-11-01
High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.
2015-01-01
This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.
Ab-initio study of thermodynamic properties of boron nanowire at atomic scale
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.
2018-04-01
In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.
NASA Technical Reports Server (NTRS)
Roelke, Richard J.
1992-01-01
Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francisco Valentin; Narbeh Artoun; Masahiro Kawaji
2015-08-01
Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures upmore » to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.« less
The NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory
NASA Technical Reports Server (NTRS)
Mcgaw, M. A.; Bartolotta, P. A.
1987-01-01
The physical organization of the NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory is described. Particular attention is given to uniaxial test systems, high cycle/low cycle testing systems, axial torsional test systems, computer system capabilities, and a laboratory addition. The proposed addition will double the floor area of the present laboratory and will be equipped with its own control room.
The electronic properties of high (Tc) superconductors probed by positron annihilation
NASA Astrophysics Data System (ADS)
Sundar, C. S.; Bharathi, A.; Jean, Y. C.; Hinks, D. G.; Dabrowski, B.; Zheng, Y.; Mitchell, A. W.; Ho, J. C.; Howell, K. H.; Wachs, A. L.
1989-06-01
The discovery of superconductivity at 30 K in Ba(.6)K(.4) BiO3 has generated considerable excitement in view of the contrasting properties of the Ba-K-Bi-O system when compared to the well known Cu-O based high temperature superconductors. Positron annihilation spectroscopy, which is a sensitive local probe of the electronic and defect properties of a solid, was extensively applied in the study of Cu-O based superconductors. The results of positron lifetime as a function of temperature in Ba-K-Bi-O are presented and compared with the known results in the cuprate superconductors. Plausible reasons for the observed temperature dependence of positron lifetime are presented.
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1989-01-01
Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.
Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures
NASA Astrophysics Data System (ADS)
El-Murr, Nizar; Maurel, Marie-Christine; Rihova, Martina; Vergne, Jacques; Hervé, Guy; Kato, Mikio; Kawamura, Kunio
2012-09-01
The "RNA world" hypothesis proposes that—early in the evolution of life—RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg2+, which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg2+ on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na+ or K+), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation.
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
Gallium phosphide energy converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, P.E.; Dinetta, L.C.; Goetz, M.A.
1995-10-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less
Gallium phosphide energy converters
NASA Astrophysics Data System (ADS)
Sims, P. E.; Dinetta, L. C.; Goetz, M. A.
1995-10-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
Gallium phosphide energy converters
NASA Technical Reports Server (NTRS)
Sims, P. E.; Dinetta, L. C.; Goetz, M. A.
1995-01-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
Hugoniot-measurements of room- and high-temperature metals for study of EOS and strength
NASA Astrophysics Data System (ADS)
Mashimo, Tsutomu; Gomoto, Yuya; Takashima, Hideyuki; Murai, Mitsuru; Yoshiasa, Akira
2011-06-01
Pressure calibration in static high-pressure experiments has been undertaken on the basis of the EOS derived from the Hugoniot compression curves of metals (Au, Pt, Cu, W, etc.), MgO, etc. To obtain the strict EOS at room- and high-temperatures, we need to precisely measure the Hugoniot data, and access the strength and Grüneisen parameter under shock compression. If the Hugoniot data of elevated temperature samples are measured, the high-temperature EOS can be accurately derived, and the Grüneisen parameter can be directly discussed. The strength might decrease at high temperature. The Hugoniot-measurement experiments have been performed on single crystal Au, oxygen-free Cu, forged Ta and W by a streak photographic system equipped with a powder gun and two-stage light gas gun in the pressure range up to >200 GPa. In addition, the Hugoniot-measurement experiment of the elevated temperature samples was started using high-frequency heating on W, Au, etc. Some of the results will be presented, and the EOS and strength are discussed.
Proteomic changes in rice leaves grown under open field high temperature stress conditions.
Das, Smruti; Krishnan, P; Mishra, Vagish; Kumar, Ritesh; Ramakrishnan, B; Singh, N K
2015-11-01
The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.
Lateral instability of high temperature pipelines, the 20-in. Sleipner Vest pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saevik, S.; Levold, E.; Johnsen, O.K.
1996-12-01
The present paper addresses methods to control snaking behavior of high temperature pipelines resting on a flat sea bed. A case study is presented based on the detail engineering of the 12.5 km long 20 inch gas pipeline connecting the Sleipner Vest wellhead platform to the Sleipner T processing platform in the North Sea. The study includes screening and evaluation of alternative expansion control methods, ending up with a recommended method. The methodology and philosophy, used as basis to ensure sufficient structural strength throughout the lifetime of the pipeline, are thereafter presented. The results show that in order to findmore » the optimum technical solution to control snaking behavior, many aspects need to be considered such as process requirements, allowable strain, hydrodynamic stability, vertical profile, pipelay installation and trawlboard loading. It is concluded that by proper consideration of all the above aspects, the high temperature pipeline can be designed to obtain sufficient safety level.« less
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan
2017-04-01
Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.
Rate constants for chemical reactions in high-temperature nonequilibrium air
NASA Technical Reports Server (NTRS)
Jaffe, R. L.
1986-01-01
In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.
Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K
NASA Astrophysics Data System (ADS)
Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang
2016-12-01
This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.
NASA Technical Reports Server (NTRS)
Kudirka, A. A.
1984-01-01
Materials for high-temperature use reviewed. Report discusses characteristics of ceramics and assesses potential of candidate materials in solar receivers. Design requirements presented, including those for receiver with fluid exit temperatures up to 1,425 degrees C.
Investigations on Heat Treatment of a High-Speed Steel Roll
NASA Astrophysics Data System (ADS)
Fu, Hanguang; Qu, Yinhu; Xing, Jiandong; Zhi, Xiaohui; Jiang, Zhiqiang; Li, Mingwei; Zhang, Yi
2008-08-01
High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance.
Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang
2018-05-30
Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.
High speed Infrared imaging method for observation of the fast varying temperature phenomena
NASA Astrophysics Data System (ADS)
Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong
With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.
Toward realizing high power semiconductor terahertz laser sources at room temperature
NASA Astrophysics Data System (ADS)
Razeghi, Manijeh
2011-05-01
The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, E.A.
1992-01-01
The present conference discusses aerobrake-maneuver vehicle aerothermodynamics, aerothermal issues in the structural design of high speed vehicles, laser surface-alloying of superlight metals with ceramic surfaces, high-temperature Al alloys for supersonic and hypersonic vehicles, advanced metallics for high temperature airframes, novel materials for engine applications, and the development status of computational methods for high temperature structural design. Also discussed are a transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement, the FEM thermoviscoplastic analysis of aerospace structures, hot-structures testing techniques, a thermal-structural analysis of a carbon-carbon/refractory metal heat pipe-cooled leading edge, dynamic effects in thermoviscoplastic structures, microlevel thermal effects inmore » metal-matrix composites (MMCs), thermomechanical effects in the plasma spray manufacture of MMC monotapes, and intelligent HIP processing. Most of the presentations at this conference were abstracted previously (see A91-16027 to A91-16047).« less
Combustion synthesis of ceramic-metal composite materials in microgravity
NASA Technical Reports Server (NTRS)
Moore, John
1995-01-01
Combustion synthesis, self-propagating high temperature synthesis (SHS) or reactive synthesis provides an attractive alternative to conventional methods of producing advanced materials since this technology is based on the ability of highly exothermic reactions to be self sustaining and, therefore, energetically efficient. The exothermic SHS reaction is initiated at the ignition temperature, T(sub ig), and generates heat which is manifested in a maximum or combustion temperature, T(sub c), which can exceed 3000 K . Such high combustion temperatures are capable of melting and/or volatilizing reactant and product species and, therefore, present an opportunity for producing structure and property modification and control through liquid-solid, vapor-liquid-solid, and vapor-solid transformations.
NASA Astrophysics Data System (ADS)
Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.
2012-10-01
An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.
Air temperature gradient in large industrial hall
NASA Astrophysics Data System (ADS)
Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia
2017-11-01
In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-03-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.
Paleoclimate and paleoelevation in the western US Cordillera, 80 Ma to Present
NASA Astrophysics Data System (ADS)
Snell, K. E.; Thompson, J. M.; Foreman, B. Z.; Wernicke, B. P.; Chamberlain, C. P.; Eiler, J. M.; Koch, P. L.
2011-12-01
Disentangling local to regional paleoclimatic signals from paleoelevation changes in the terrestrial sedimentary record is challenging, and can be done with confidence only by compiling spatially and temporally distributed datasets (preferably drawing on diverse proxies). Spatial coverage is particularly important for paleoelevation reconstruction because climate at low elevation sites must be known to identify higher paleoelevation sites and to quantify their altitude. The abundance of previous paleoclimatic and paleoelevation studies from the western United States can provide some of the necessary temporal and spatial framework for discriminating signals of climate change from elevation changes. Here, we present a compilation of previously published and new paleotemperature data from the western United States from the Late Cretaceous - Present derived from leaf physiognomy MAT estimates and carbonate clumped-isotope temperature estimates. After coarsely binning the data into high paleoelevation (>2 km) and lower paleoelevation (<2 km) sites (according to original interpretations made by the authors of previous studies), we compare the general temporal patterns of temperature change from western North America with those implied by the marine stable isotope record. Within this framework, we begin to evaluate sites of uncertain paleoelevation that cannot be compared with contemporaneous, adjacent low elevation sites. In this compilation, both low and high elevation land temperatures are warmer than today during the Late Cretaceous, reach an apex during the early-middle Eocene and then cool to the Present (sharply from the late Miocene to Pleistocene). The observed pattern matches reasonably well with the coarse temporal pattern of climate change based on the marine oxygen isotope record. Paleobotanical data reflect mean annual temperature (MAT), whereas the clumped isotope data from paleosol and lacustrine carbonates appear to be biased toward summer temperatures. Throughout the Late Mesozoic and Cenozoic, both MAT and summer paleotemperature estimates are higher than modern MAT and summer temperature, but the relatively consistent difference between these records implies a seasonal range in temperature that was similar to modern. Summer temperatures from low paleoelevation sites during the Late Cretaceous to the Early Eocene are relatively warm (30 - 40 degrees C), though these values may include a few degrees of radiant solar heating of the surface. Interestingly, Early Eocene-aged carbonate samples from southwest Montana are cooler on average than other carbonate samples of roughly the same age, but are similar in temperature to samples thought to be at high elevation during the Late Cretaceous. Thus, these samples may reflect high elevation summer temperatures, rather than low elevation temperatures, demonstrating the utility of this combined spatial and temporal approach to evaluating terrestrial paleoenvironmental records.
Determination of gap solution and critical temperature in doped graphene superconductivity
NASA Astrophysics Data System (ADS)
Xu, Chenmei; Yang, Yisong
2017-04-01
It is shown that the gap solution and critical transition temperature are significantly enhanced by doping in a recently developed BCS formalism for graphene superconductivity in such a way that positive gap and transition temperature both occur in arbitrary pairing coupling as far as doping is present. The analytic construction of the BCS gap and transition temperature offers highly effective globally convergent iterative methods for the computation of these quantities. A series of numerical examples are presented as illustrations which are in agreement with the theoretical and experimental results obtained in the physics literature and consolidate the analytic understanding achieved.
Fluoroester Co-Solvents for Low-Temperature Li+ Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar; Prakash, G. K. Surya; Smith, Kiah; Bhalla, Pooja
2009-01-01
Electrolytes comprising LiPF6 dissolved in alkyl carbonate/fluoroester mixtures have been found to afford improved low-temperature performance and greater high-temperature resilience in rechargeable lithium-ion electrochemical cells. These and other electrolytes comprising lithium salts dissolved mixtures of esters have been studied in continuing research directed toward extending the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. The purpose of the present focus on high-temperature resilience in addition to low-temperature performance is to address issues posed by the flammability of the esters and, at temperatures near the upper end (about 55 C) of their intended operating temperature range, by their high chemical reactivity. As used here, high-temperature resilience signifies, loosely, a desired combination of low flammability of an electrolyte mixture and the ability of a cell that contains the mixture to sustain a relatively small loss of reversible charge/discharge capacity during storage in the fully charged condition at high temperature. The selection of fluoroesters for study as candidate electrolyte solvent components to increase high-temperature resilience was prompted in part by the observation that like other halogenated compounds, fluoroesters have low flammability. The fluoroesters investigated in this study include trifluoroethyl butyrate (TFEB), ethyl trifluoroacetate (ETFA), trifluoroethyl acetate (TFEA), and methyl pentafluoropropionate (MPFP). Solvent mixtures were prepared by mixing these fluoroesters with two other esters: ethylene carbonate (EC) and ethyl methyl carbonate (EMC).
Soni, V; Senkov, O N; Gwalani, B; Miracle, D B; Banerjee, R
2018-06-11
Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an "inverted" BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.
Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi
2009-02-01
We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.
Stability of Materials in High Temperature Water Vapor: SOFC Applications
NASA Technical Reports Server (NTRS)
Opila, E. J.; Jacobson, N. S.
2010-01-01
Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.
High-temperature test facility at the NASA Lewis engine components research laboratory
NASA Technical Reports Server (NTRS)
Colantonio, Renato O.
1990-01-01
The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.
Response of the Vegetation-Climate System to High Temperature (Invited)
NASA Astrophysics Data System (ADS)
Berry, J. A.
2009-12-01
High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.
High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610
High accuracy acoustic relative humidity measurement in duct flow with air.
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.
Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators
NASA Astrophysics Data System (ADS)
Loyd, Matthew; Lindsey, Adam; Patel, Maulik; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya
2018-01-01
The distorted-perovskite scintillator materials CsCaI3:Eu and CsSrBr3:Eu prepared as single crystals have shown promising potential for use in radiation detection applications requiring a high light yield and excellent energy resolution. We present a study using high temperature powder X-ray diffraction experiments to examine a deleterious high temperature phase transition. High temperature phases were identified through sequential diffraction pattern Rietveld refinement in GSAS II. We report the linear coefficients of thermal expansion for both high and low temperature phases of each compound. Thermal expansion for both compositions is greatest in the [0 0 1] direction. As a result, Bridgman growth utilizing a seed oriented with the [0 0 1] along the growth direction should be used to mitigate thermal stress.
Stochastic clustering of material surface under high-heat plasma load
NASA Astrophysics Data System (ADS)
Budaev, Viacheslav P.
2017-11-01
The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
NASA Astrophysics Data System (ADS)
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics
NASA Astrophysics Data System (ADS)
Lingner, Julian; Jakob, Gerhard; Letz, Martin
2012-06-01
Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.
al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D
2015-09-01
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.
Cryo-Compression System in a 3000 Ton Multi-Anvil Press
NASA Astrophysics Data System (ADS)
Secco, R. A.; Yong, W.
2016-12-01
Most large volume high pressure devices are capable of high temperature experiments that are typically achieved by using localized resistive heating of a metal foil, graphite or ceramic sleeve inside a thermally insulated sample volume in a high pressure cell. Low temperatures at high pressures are needed for physical property studies of materials that comprise planetary bodies in the outer solar system. However, low temperatures are more difficult to achieve mainly because the massive steel components of the press, which are in good thermal contact with each other under high load, act as large heat reservoirs and pathways that encumber the removal of heat from the pressure cell. We describe a new custom-designed system under development for a 3000 ton multi-anvil press to reach temperatures below 295K at high pressures. The system was designed to remove heat selectively and conductively from the sample volume through six of the eight WC cubes in direct contact with the octahedral pressure cell. Cooling fins made of Cu are sandwiched between, and in thermal contact with, neighboring anvil faces and are each connected to a dedicated Cu heat exchanger chamber through which liquid nitrogen flows. The chamber internal geometry consists of either square pillars that double the internal surface area of the rectangular parallelepiped enclosed volume or continuous walls separated by valleys. Gas from each chamber is vented to the lab through an exhaust pipe. High pressure results will be presented of several temperature monitoring points in the center of the pressure cell and on the surfaces of the WC cubes and steel wedges which recorded the time-dependent cooling progress. Temperature stability tests will also be presented.
Ceramic or metallic? - material aspects of compact heat regenerator energy efficiency
NASA Astrophysics Data System (ADS)
Wnek, M.
2012-05-01
The metal industry cannot afford the financial mismanagement in the era of rising energy prices and thus, the high efficiency devices should be used. In the metallurgical thermal processes the combustion air temperature increasing is one of the methods for obtaining the heat transfer intensification and the furnaces efficiency rising. Therefore the new and effective heating technologies in thermal processes are demanded all the time. The regenerative systems are most effective in terms of the heated air level. The individual regenerators for burners are the newest solutions where the temperature of 1100 °C is reachable for the exhaust temperature of 1200 °C. Based on research results, performed for the assumed exhaust temperature of 1100 °C, the paper presents possibilities of changeable different materials using as a regenerator filling in the aspect of its operation efficiency. Such materials as high-temperature steel, Al2O3 and SiC have been considered. The paper presents the selected data research, dealing with the air combustion temperature obtained for the same type of regenerator filling of considered materials. The fuel consumption reduction and reduction of CO2 emission, for metal regenerator filling, have been presented finally as an economic and environmental aspect accordingly to the air preheated.
Soft-phonon dynamics of the thermoelectric β-SnSe at high temperatures
NASA Astrophysics Data System (ADS)
Chatterji, Tapan; Wdowik, Urszula D.; Jagło, Grzegorz; Rols, Stéphane; Wagner, Frank R.
2018-07-01
Results of inelastic neutron scattering experiments on SnSe single crystals at high temperatures along with theoretical studies based on the density functional theory are reported. Our experiments reveal significant softening of the transverse acoustic branch along the [ 0 , ξ , 0 ] direction in the low-temperature α-SnSe of Pbnm symmetry as temperature approaches Tc = 807 K from below. This process is followed by a condensation of the zone-boundary Y-phonon of the high-temperature β-SnSe with Cmcm symmetry at the onset of phase transition. The employed theoretical approach supports experimental observations and demonstrates that the phase change in SnSe is mediated by an unstable zone-boundary phonon with the Y2+ irreducible representation within the Cmcm symmetry space group of the high-temperature β-SnSe. The present work provides a detailed understanding of the soft-mode dynamics in SnSe and conclusively shows that the α ⇌ β structural transformation in this currently topical thermoelectric material is of displacive type.
Li, X C; Wang, C C; Zhao, J M; Liu, L H
2018-02-10
The optical constants of five highly transparent substrates (polycrystalline BaF 2 , CaF 2 , MgF 2 , ZnSe, and ZnS) were experimentally determined based on a combined technique using both the double optical pathlength transmission method and the ellipsometry method within temperature range 20°C-350°C in the ultraviolet-infrared region (0.2-20 μm). The results show that the refractive index spectra of polycrystalline BaF 2 , CaF 2 , and MgF 2 are similar, but differ from that of polycrystalline ZnSe and ZnS. The thermo-optic coefficient of these highly transparent substrates increases with increasing temperature. The absorption indices show a significant temperature-dependent behavior, which increases with increasing temperature from 20°C to 350°C over the transparent region. For the sake of application, the fitted formulas of the refractive index of the five highly transparent substrates as a function of wavelength and temperature are presented.
Taniya RoyChowdhury; David Graham; Stan Wullschleger
2016-08-29
The dataset consists of respiration and methane production rates obtained from soil microcosm studies carried out under controlled temperature and incubation conditions. Soils represent the low- and high-centered polygon active layers and permafrost (when present) from the NGEE-Arctic Intensive Study Site 1.
NASA Technical Reports Server (NTRS)
Hirschberg, M. H.; Halford, G. R.
1976-01-01
The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.
Adaptive temperature-accelerated dynamics
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Amar, Jacques G.
2011-02-01
We present three adaptive methods for optimizing the high temperature Thigh on-the-fly in temperature-accelerated dynamics (TAD) simulations. In all three methods, the high temperature is adjusted periodically in order to maximize the performance. While in the first two methods the adjustment depends on the number of observed events, the third method depends on the minimum activation barrier observed so far and requires an a priori knowledge of the optimal high temperature T^{opt}_{high}(E_a) as a function of the activation barrier Ea for each accepted event. In order to determine the functional form of T^{opt}_{high}(E_a), we have carried out extensive simulations of submonolayer annealing on the (100) surface for a variety of metals (Ag, Cu, Ni, Pd, and Au). While the results for all five metals are different, when they are scaled with the melting temperature Tm, we find that they all lie on a single scaling curve. Similar results have also been obtained for (111) surfaces although in this case the scaling function is slightly different. In order to test the performance of all three methods, we have also carried out adaptive TAD simulations of Ag/Ag(100) annealing and growth at T = 80 K and compared with fixed high-temperature TAD simulations for different values of Thigh. We find that the performance of all three adaptive methods is typically as good as or better than that obtained in fixed high-temperature TAD simulations carried out using the effective optimal fixed high temperature. In addition, we find that the final high temperatures obtained in our adaptive TAD simulations are very close to our results for T^{opt}_{high}(E_a). The applicability of the adaptive methods to a variety of TAD simulations is also briefly discussed.
NASA Astrophysics Data System (ADS)
Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.
2018-04-01
A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.
Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M; Kovscek, Anthony R
2018-04-01
A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.
Shen, Xiang; Dai, Bin; Xing, Yingbin; Yang, Luyun; Li, Haiqing; Li, Jinyan; Peng, Jingang
2018-05-08
We demonstrated a kind of long-period fiber grating (LPFG), which is manufactured with a thermal diffusion treatment. The LPFG was inscribed on an ultrahigh-numerical-aperture (UHNA) fiber, highly doped with Ge and P, which was able to easily diffuse at high temperatures within a few seconds. We analyzed how the elements diffused at a high temperature over 1300 °C in the UHNA fiber. Then we developed a periodically heated technology with a CO₂ laser, which was able to cause the diffusion of the elements to constitute the modulations of an LPFG. With this technology, there is little damage to the outer structure of the fiber, which is different from the traditional LPFG, as it is periodically tapered. Since the LPFG itself was manufactured under high temperature, it can withstand higher temperatures than traditional LPFGs. Furthermore, the LPFG presents a higher sensitivity to high temperature due to the large amount of Ge doping, which is approximately 100 pm/°C. In addition, the LPFG shows insensitivity to the changing of the environment’s refractive index and strain.
Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg
1995-01-01
A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.
A high-temperature superconducting Helmholtz probe for microscopy at 9.4 T.
Hurlston, S E; Brey, W W; Suddarth, S A; Johnson, G A
1999-05-01
The design and operation of a high-temperature superconducting (HTS) probe for magnetic resonance microscopy (MRM) at 400 MHz are presented. The design of the probe includes a Helmholtz coil configuration and a stable open-cycle cooling mechanism. Characterization of coil operating parameters is presented to demonstrate the suitability of cryo-cooled coils for MRM. Specifically, the performance of the probe is evaluated by comparison of signal-to-noise (SNR) performance with that of a copper Helmholtz pair, analysis of B1 field homogeneity, and quantification of thermal stability. Images are presented to demonstrate the SNR advantage of the probe for typical MRM applications.
High temperature solar receiver
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a high temperature solar thermal receiver is described. A prototype receiver and associated test support (auxiliary) hardware was fabricated. Shakedown and initial performance tests of the prototype receiver were performed. Maximum outlet temperatures of 1600 F were achieved at 100% solar (70-75 kW) input power with 900 F inlet temperatures and a subsequent testing was concluded by a 2550 F outlet run. The window retaining assembly was modified to improve its tolerance for thermal distortion of the flanges. It is shown that cost effective receiver designs can be implemented within the framework of present materials technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A.
2014-12-09
In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.
NASA Astrophysics Data System (ADS)
Greffrath, Fabian; Prieler, Robert; Telle, Rainer
2014-11-01
A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei
2017-07-01
The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, F.J.; Ghoniem, N.M.
The thermodynamic stability of SiC/SiC composite structures proposed for fusion applications is presented in this paper. Minimization of the free energy for reacting species in the temperature range 773-1273 K is achieved by utilizing the NASA-Lewis Chemical Equilibrium Thermodynamics Code (CET). The chemical stability of the matrix (SiC), as well as several potential fiber coatings are studied. Helium coolant is assumed to contain O{sub 2} and water moisture impurities in the range 100-1000 ppm. The work is applied to recent Magnetic and Inertial Confinement Conceptual designs. The present study indicated that the upper useful temperature limit for SiC/SiC composites, frommore » the standpoint of high-temperature corrosion, will be in the neighborhood of 1273 K. Up to this temperature, corrosion of SiC is shown to be negligible. The main mechanism of weight loss will be by evaporation to the plasma side. The presence of a protective SiO{sub 2} condensed phase is discussed, and is shown to result in further reduction of high-temperature corrosion. The thermodynamic stability of C and BN is shown to be very poor under typical fusion reactor conditions. Further development of chemically stable interface materials is required.« less
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1992-01-01
A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the design, development, analytical and experimental evaluation of a new ceramic wafer seal that shows promise of meeting these demands will be addressed. A high temperature seal test fixture was designed and fabricated to measure static seal leakage performance under engine simulated conditions. Ceramic wafer seal leakage rates are presented for engine-simulated air pressure differentials (up to 100 psi), and temperature (up to 1350 F), sealing both flat and distorted wall conditions, where distortions can be as large as 0.15 inches in only an 18 inch span. Seal leakage rates are low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure and wall conditions considered. A seal leakage model developed from externally-pressurized gas film bearing theory is also presented. Predicted leakage rates agree favorably with the measured data for nearly all conditions of temperature and pressure. Discrepancies noted at high engine pressure and temperature are attributed to thermally-induced, non-uniform changes in the size and shape of the leakage gap condition. The challenging thermal environment the seal must operate in places considerable demands on the seal concept and material selection. Of the many high temperature materials considered in the design, ceramics were the only materials that met the many challenging seal material design requirements. Of the aluminum oxide, silicon carbide, and silicon nitride ceramics considered in the material ranking scheme developed herein, the silicon nitride class of ceramics ranked the highest because of their high temperature strength; resistance to the intense heating rates; resistance to hydrogen damage; and good structural properties. Baseline seal feasibility has been established through the research conducted in this investigation. Recommendations for future work are also discussed.
Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics
NASA Astrophysics Data System (ADS)
Aadhavan, R.; Suresh Babu, K.
2017-07-01
Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Li, H.; Liu, X.; Jeffries, J. B.; Hanson, R. K.; Allen, M. G.; Wehe, S. D.; Mulhall, P. A.; Kindle, H. S.
2007-05-01
A near-infrared diode laser sensor is presented that is capable of measuring time-varying gas temperature and water vapour concentration at temperatures up to 1050 K and pressures up to 25 atm with a bandwidth of 7.5 kHz. Measurements with noise-equivalent-absorbances of the order of 10-3 (10-5 Hz-1/2) are made possible in dynamic environments through the use of wavelength modulation spectroscopy (WMS) with second harmonic detection (2f) on two water vapour spectral features near 7203.9 and 7435.6 cm-1. Laser performance characteristics that become important at the large modulation depths needed at high pressures are accounted for in the WMS-2f signal analysis, and the utility of normalization by the 1f signal to correct for variations in laser intensity, transmission and detector gain is presented. Laboratory measurements with the sensor system in a static cell with known temperature and pressure agree to 3% RMS in temperature and 4% RMS in H2O mole fraction for 500 < T < 900 K and 1 < P < 25 atm. The sensor time response is demonstrated in a high-pressure shock tube where shock wave transients are successfully captured, the average measured post-shock temperature agrees within 1% of the expected value, and H2O mole fraction agrees within 8%.
High temperature superconductor current leads
Hull, John R.; Poeppel, Roger B.
1995-01-01
An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.
High temperature superconductor current leads
Hull, J.R.; Poeppel, R.B.
1995-06-20
An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.
New Technologies for Enhanced Environmental Testing on Spacecraft Structures
NASA Astrophysics Data System (ADS)
Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio
2014-06-01
This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.
Some considerations for various positioning systems and their science capabilities
NASA Technical Reports Server (NTRS)
Rey, Charles A.; Merkley, D. R.; Danley, T. J.
1990-01-01
Containerless processing of materials at elevated temperatures is discussed with emphasis on high temperature chemistry, thermophysical properties, materials science, and materials processing. Acoustic and electromagnetic positioning of high temperature melts are discussed. Results from recent ground based experiments, including KC-135 testing of an acoustic levitator, are presented. Some current positioning technologies and the potential for enhancing them are considered. Further, a summary of these technologies and their science capabilities for the development of future experiments is given.
Palladium-chromium static strain gage for high temperature propulsion systems
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1991-01-01
The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.
NASA Astrophysics Data System (ADS)
Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter
2012-07-01
An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.
Ca++ induced hypothermia in a hibernator /Citellus beechyi/
NASA Technical Reports Server (NTRS)
Hanegan, J. L.; Williams, B. A.
1975-01-01
Results of perfusion of excess Ca++ and Na+ into the hypothalamus of the hibernating ground squirrel Citellus beechyi are presented. The significant finding is that perfused excess Ca++ causes a reduction in core temperature when ambient temperature is low (12 C). Ca++ also causes a rise in rectal temperature at high ambient temperature (33 C). Thus hypothalamic Ca++ perfusion apparently causes a nonspecific depression of thermoregulatory control.
Metal-coated optical fibers for high temperature sensing applications
NASA Astrophysics Data System (ADS)
Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz
2017-10-01
An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.
NASA Astrophysics Data System (ADS)
Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme
2016-09-01
Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.
O(-) identified at high temperatures in CaO-based catalysts for oxidative methane dimerization
NASA Technical Reports Server (NTRS)
Freund, F.; Maiti, G. C.; Batllo, F.; Baerns, M.
1990-01-01
A technique called charge-distribution analysis (CDA) is employed to study mobile charge carriers in the oxidation catalysts CaO, CaO with 11 percent Na2O, and CaO with 10 percent La2O3. A threshold temperature of about 550-600 C is identified at which highly mobile charge carriers are present, and the CDA studies show that they are O(-) states. The present investigation indicates the usefulness of CDA in catalysis research with pressed powder samples and gas/solid reactions.
Magnetic refrigeration using flux compression in superconductors
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.
1990-01-01
The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.
Tan, Qiulin; Li, Chen; Xiong, Jijun; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Hong, Yingping; Ren, Zhong; Luo, Tao
2014-01-01
In response to the growing demand for in situ measurement of pressure in high-temperature environments, a high temperature capacitive pressure sensor is presented in this paper. A high-temperature ceramic material-alumina is used for the fabrication of the sensor, and the prototype sensor consists of an inductance, a variable capacitance, and a sealed cavity integrated in the alumina ceramic substrate using a thick-film integrated technology. The experimental results show that the proposed sensor has stability at 850 °C for more than 20 min. The characterization in high-temperature and pressure environments successfully demonstrated sensing capabilities for pressure from 1 to 5 bar up to 600 °C, limited by the sensor test setup. At 600 °C, the sensor achieves a linear characteristic response, and the repeatability error, hysteresis error and zero-point drift of the sensor are 8.3%, 5.05% and 1%, respectively. PMID:24487624
An extended laser flash technique for thermal diffusivity measurement of high-temperature materials
NASA Technical Reports Server (NTRS)
Shen, F.; Khodadadi, J. M.
1993-01-01
Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the thermal diffusivity of high-temperature solid samples of pure Nickel and Inconel 718 superalloys are presented. Preliminary measurements showing surface temperature histories are discussed.
Shape memory alloy resistance behaviour at high altitude for feedback control
NASA Astrophysics Data System (ADS)
Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.
2017-12-01
Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.
NASA Technical Reports Server (NTRS)
Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.
2015-01-01
The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.
Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Wolfinger, K.; Stamm, J. D.
2017-12-01
The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.
NASA Astrophysics Data System (ADS)
Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.
2016-02-01
For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.
NASA Astrophysics Data System (ADS)
Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.
2011-05-01
Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.
Turbo-Brayton cryocooler technology for low-temperature space applications
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.
2003-03-01
High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.
NASA Astrophysics Data System (ADS)
Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem
2017-07-01
This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.
High Temperature, High Power Piezoelectric Composite Transducers
Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.
2014-01-01
Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242
NASA Astrophysics Data System (ADS)
Hanamuro, T.; Umeda, K.; Maeda, K.
2008-12-01
Although there is no known evidence of volcanism during the Pliocene nor the Quaternary in the Kii Peninsula, it has long been recognized to host several hot springs with discharge temperatures greater than 60°C. In addition, numerous small-scale vein-type metal deposits are distributed around the southern part of the peninsula, with a heat source thought to be the Middle Miocene acidic magmatism associated with Kumano Acidic Rocks. The results of the TL (Thermoluminescence), FT (Fission Track) and K-Ar dating of altered rocks from these hot spring areas showed that the vein-type ore deposits and their surrounding altered rocks experienced high temperature hydrothermal alteration related to acidic magmatism in the Middle Miocene, whereas relatively low temperature alteration has occurred since the Pliocene in the Hongu and Totsukawa hot spring areas [Hanamuro et al., 2008]. Chemical and isotope data were obtained for fluid inclusions trapped in hydrothermal minerals in the peripheral parts of the high-temperature hot springs and in vein-type ore deposits. The hot spring inclusions indicate temperatures reached ~100°C with salinities of about 2 wt % (NaCl equiv.). In contrast, the inclusions in the vein-type deposits are characterized by high temperature fluids (>260°C) with high salinity (>5 wt %). The 3He/4He ratios of the hot spring inclusions have relatively high values, generally in agreement with those of the present-day hydrothermal fluids, indicating a significant contribution by deep source gases (i.e., mantle helium). These results suggest that the amagmatic hydrothermal system related to high-temperature hot springs in the southern Kii Peninsula have formed since the Pliocene and were caused by high temperature fluids with a lower crust provenance, presumably supplied from the subducting slab of the Philippine Sea Plate (PHS) [Umeda et al., 2006]. After a hiatus of about 4 Ma, the PHS resumed subduction beneath the SW Japan Arc at around 6 Ma [Kamata and Kodama, 1994]. This indicates that the present-day plate system for the SW Japan arc formed at around 6 Ma and continues to the present day. Although we lack definitive information on the age of hydrothermal alteration, it seems reasonable to infer that the amagmatic hydrothermal activity since about 6 Ma in the southern Kii Peninsula has occurred in a manner synchronous with the present-day plate system of the SW Japan Arc. Reference Hanamuro et al. (2008): Japanese Magazine of Mineralogical and Petrological Sciences, 37, 27-38 (in Japanese with English Abstract). Kamata and Kodama (1994): Journal of Geophysical Research, 233, 69-81. Umeda et al. (2006): Journal of Volcanology and Geothermal Research, 149, 47-61.
NASA Technical Reports Server (NTRS)
Hopkins, D. A.
1984-01-01
A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.
NASA Technical Reports Server (NTRS)
Tower, Leonard K; Gammon, Benson E
1953-01-01
The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.
Quasipermanent magnets of high temperature superconductor - Temperature dependence
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.
1993-01-01
We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.
Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong
2015-10-01
The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.
NASA Astrophysics Data System (ADS)
Mahajan, Sandeep; Haridas, Divya; Ali, S. T.; Munirathnam, N. R.; Sreenivas, K.; Thakur, O. P.; Prakash, Chandra
2014-10-01
In present study we have prepared ferroelectric BaZrxTi1-xO3 (x=0.05) ceramic by conventional solid state reaction route and studied its electrical properties as a function of temperature and frequency. X-ray diffraction (XRD) analysis shows single-phase formation of the compound with orthorhombic crystal structure at room temperature. Impedance and electric modulus spectroscopy analysis in the frequency range of 40 Hz-1 MHz at high temperature (200-600 °C) suggests two relaxation processes with different time constant are involved which are attributed to bulk and grain boundary effects. Frequency dependent dielectric plot at different temperature shows normal variation with frequency while dielectric loss (tanδ) peak was found to obey an Arrhenius law with activation energy of 1.02 eV. The frequency-dependent AC conductivity data were also analyzed in a wide temperature range. In present work we have studied the role of grain and grain boundaries on the electrical behaviour of Zr-doped BaTiO3 and their dependence on temperature and frequency by complex impedance and modulus spectroscopy (CIS) technique in a wide frequency (40 Hz-1 MHz) and high temperature range.
Thales Cryogenics rotary cryocoolers for HOT applications
NASA Astrophysics Data System (ADS)
Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien
2012-06-01
Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.
Hole-doped cuprate high temperature superconductors
NASA Astrophysics Data System (ADS)
Chu, C. W.; Deng, L. Z.; Lv, B.
2015-07-01
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
Lightweight, High-Temperature Radiator for Space Propulsion
NASA Technical Reports Server (NTRS)
Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.
2012-01-01
For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.
Raman and X-Ray Investigation of High-Temperature Methane in the Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Spaulding, D.; Weck, G.; Loubeyre, P.; Mezouar, M.
2016-12-01
The chemistry and equations of state of simple molecular systems are of extreme importance to planetary astrophysics and for accurate characterization of reaction products and pathways at high pressures and temperatures. Simple molecules such as H2O, CO2 and CH4 are model systems for understanding the effects of pressure on chemical bonding. Here we present recent work to conduct fine-scale studies of the vibrational, chemical and structural properties of CH4 at pressures and temperatures up to 12 GPa and 1000K, with particular attention to behavior in the vicinity of the melting curve. We present results from resistive and laser-heating experiments, coupled with Raman spectroscopy. In addition, high P/T synchrotron powder x-ray diffraction provides tight constraints on melting and solid structure. Our results favor a somewhat higher melting curve and lower dissociative stability limit for the CH4 molecule than other recent work.
Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Nirmal; Biswas, Krishanu
2015-08-01
The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.
NASA Technical Reports Server (NTRS)
Wykes, D. H.
1975-01-01
The activity is reported which was conducted for utilizing spin-off Apollo base technology to fabricate a variety of commercial and aerospace related parts that are nonflammable and resistant to high-temperature degradation. Manufacturing techniques and the tooling used to fabricate each of the polyimide/glass structures is discussed. A brief history, tracing the development of high-temperature polyimide resins, is presented along with a discussion of the properties of DuPont's PI 2501/glass material (later redesignated PI 4701/glass). Mechanical and flammability properties of DuPont's PI 2501/glass laminates are compared with epoxy, phenolic, and silicone high-temperature resin/glass material systems. Offgassing characteristics are also presented. A discussion is included of the current developments in polyimide materials technology and the potential civilian and government applications of polyimide materials to reduce fire hazards and increase the survivability of men and equipment.
Note: Low phase noise programmable phase-locked loop with high temperature stability.
Michálek, Vojtěch; Procházka, Ivan
2017-03-01
The design and construction of low jitter programmable phase-locked loop with low temperature coefficient of phase are presented. It has been designed for demanding high precision timing applications, especially as a clock source for event timer with subpicosecond precision. The phase-locked loop itself has a jitter of few hundreds of femtoseconds. It produces square wave with programmable output frequency from 100 MHz to 500 MHz and programmable amplitude of 0.25 V to 1.2 V peak-to-peak, which is locked to 5 MHz or 10 MHz reference frequency common for disciplined oscillators and highly stable clocks such as hydrogen maser. Moreover, it comprises an on-board temperature compensated crystal oscillator for stand-alone usage. The device provides temperature coefficient of the phase lock of 0.9 ps/K near room temperature.
Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; ...
2016-05-13
In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less
Method and apparatus for heat extraction by controlled spray cooling
Edwards, Christopher Francis; Meeks, Ellen; Kee, Robert; McCarty, Kevin
1999-01-01
Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.
Processable high temperature resistant polymer matrix materials
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1975-01-01
A review is presented of studies conducted with addition-cured polyimides, giving particular attention to an improved method involving in situ polymerization of monomer reactants (PMR) on the surface of the reinforcing fibers. The studies show that the PMR approach provides a powerful method for fabricating high performance polymer matrix composites. Significant advantages of the PMR approach are related to the superior high temperature properties of the obtained material, lower cost, greater safety, and processing versatility.
High temperature and frequency pressure sensor based on silicon-on-insulator layers
NASA Astrophysics Data System (ADS)
Zhao, Y. L.; Zhao, L. B.; Jiang, Z. D.
2006-03-01
Based on silicon on insulator (SOI) technology, a novel high temperature pressure sensor with high frequency response is designed and fabricated, in which a buried silicon dioxide layer in the silicon material is developed by the separation by implantation of oxygen (SIMOX) technology. This layer can isolate leak currents between the top silicon layer for the detecting circuit and body silicon at a temperature of about 200 °C. In addition, the technology of silicon and glass bonding is used to create a package of the sensor without internal strain. A structural model and test data from the sensor are presented. The experimental results showed that this kind of sensor possesses good static performance in a high temperature environment and high frequency dynamic characteristics, which may satisfy the pressure measurement demands of the oil industry, aviation and space, and so on.
Molybdenum-rhenium alloy based high-Q superconducting microwave resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vibhor, E-mail: v.singh@tudelft.nl; Schneider, Ben H.; Bosman, Sal J.
2014-12-01
Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from themore » dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.« less
Understanding the high-temperature deformation
NASA Astrophysics Data System (ADS)
Gyurko, Angela M.; Vignoul, Gregory E.; Tien, John K.; Sanchez, Juan M.
1992-11-01
Engineering, University of Texas at Austin, Austin, TX 78712 While much of the high-temperature intermetallics research has centered around Ni3Al and other aluminum-based systems, the present study focuses on the Engel-Brewer Ll2 intermetallic Ir3Zr, which has a melting temperature approaching that of ceramics (2280 °C). Due to limited material availability, the technique of microindentation was used to study both the temperature and time dependence of strength. Because of the widely held belief that certain mechanical properties of intermetallics scale roughly with temperature, Ir3Zr was expected to exhibit high strength. The microhardness was observed to vary from 225 MPa at room temperature to 75 MPa at 1400 °C, which is significantly lower than the behavior of Ni3Al. The activation energy for creep was determined to be 467 kJ/mole, and the stress exponent was found to be 18.2. The ordering energy of this system was calculated to be 0.114 eV. If it can be assumed that high ordering energy correlates to a high antiphase boundary (APB) energy, then the behavior of this system is consistent with a model that predicts highly glissile dislocation cores.
Kitichantaropas, Yasin; Boonchird, Chuenchit; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Auesukaree, Choowong
2016-12-01
High-temperature ethanol fermentation has several benefits including a reduction in cooling cost, minimizing risk of bacterial contamination, and enabling simultaneous saccharification and fermentation. To achieve the efficient ethanol fermentation at high temperature, yeast strain that tolerates to not only high temperature but also the other stresses present during fermentation, e.g., ethanol, osmotic, and oxidative stresses, is indispensable. The C3253, C3751, and C4377 Saccharomyces cerevisiae strains, which have been previously isolated as thermotolerant yeasts, were found to be multiple stress-tolerant. In these strains, continuous expression of heat shock protein genes and intracellular trehalose accumulation were induced in response to stresses causing protein denaturation. Compared to the control strains, these multiple stress-tolerant strains displayed low intracellular reactive oxygen species levels and effective cell wall remodeling upon exposures to almost all stresses tested. In response to simultaneous multi-stress mimicking fermentation stress, cell wall remodeling and redox homeostasis seem to be the primary mechanisms required for protection against cell damage. Moreover, these strains showed better performances of ethanol production than the control strains at both optimal and high temperatures, suggesting their potential use in high-temperature ethanol fermentation.
Tanner, Dwight Q.; Anderson, Chauncey W.
1996-01-01
Ammonia from wastewater-treatment-plant effluent, high pH values, and high temperatures present a potential for chronic ammonia toxicity in the lower reaches of the South Umpqua River; however, actual violations of standards for chronic concentrations were not detected because of diel fluctuations in pH and water temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianqiu Zheng; David Graham
This dataset provides information about organic acids accumulation and ferrous ion concentrations during soil incubations at controlled temperature. Soil cores were collected in 2012 and 2013 from the flat- and high-centered polygon active layers and permafrost (when present) from the NGEE-Arctic Intensive Study Site 1, Barrow, Alaska.
NASA Astrophysics Data System (ADS)
Huang, Ding Wei; Yen, Edward
1989-08-01
We propose a detailed model, combining the concepts from a partition temperature model and wounded nucleon model, to describe high-energy nucleus-nucleus collisions. One partition temperature is associated with collisions at a fixed wounded nucleon number. The (pseudo-) rapidity distributions are calculated and compared with experimental data. Predictions at higher energy are also presented.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1988-01-01
The present invention relates to organic silicon-boron polymers which upon pyrolysis produce high-temperature ceramic materials. More particularly, it relates to the polyorganoborosilanes containing -Si-B- bonds which generate high-temperature ceramic materials (e.g., SiC, SiB4, B4C) upon thermal degradation. The process for preparing these organic silicon-boron polymer precursors are also part of the invention.
ASME Material Challenges for Advanced Reactor Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush
2013-07-01
This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less
Toscani, Siro; Céolin, René; Minassian, Léon Ter; Barrio, Maria; Veglio, Nestor; Tamarit, Josep-Lluis; Louër, Daniel; Rietveld, Ivo B
2016-01-30
The trimorphism of the active pharmaceutical ingredient piracetam is a famous case of polymorphism that has been frequently revisited by many researchers. The phase relationships between forms I, II, and III were ambiguous because they seemed to depend on the heating rate of the DSC and on the history of the samples or they have not been observed at all (equilibrium II-III). In the present paper, piezo-thermal analysis and high-pressure differential thermal analysis have been used to elucidate the positions of the different solid-solid and solid-liquid equilibria. The phase diagram, involving the three solid phases, the liquid phase and the vapor phase, has been constructed. It has been shown that form III is the high-pressure, low-temperature form and the stable form at room temperature. Form II is stable under intermediary conditions and form I is the low pressure, high temperature form, which possesses a stable melting point. The present paper demonstrates the strength of the topological approach based on the Clapeyron equation and the alternation rule when combined with high-pressure measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
An experimental investigation of n-hexane at high temperature and pressure.
Qiao, Erwei; Zheng, Haifei
2018-10-05
At present, no high temperature experiments on phase change are reported. In this study, we have measured the Raman bands ν s (CH 3 ), ν s (CH 2 ), ν as (CH 3 ), and ν as (CH 2 ) of n-hexane in a hydrothermal diamond cell up to 588 K. We determined that the liquid-solid phase transition pressure of n-hexane is 1.17 GPa, and we also gave a number of high temperatures and pressures data on phase change which are not reported previously. In addition, we defined the solidus of n-hexane which can be represented by the equation P = 8.581T-1550.16, and the relation dP/dT = 8.581 which can be used to calculate the thermodynamic parameters for n-hexane in the liquid-solid phase transition. For all we know, the above two equations are presented here for the first time. Furthermore, it is the first report here in a graphic way on high-temperature phase change in n-hexane, and it is also the first to be shown in the 3-D figure. Copyright © 2018 Elsevier B.V. All rights reserved.
DMAC and NMP as Electrolyte Additives for Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar; Lucht, Brett
2008-01-01
Dimethyl acetamide (DMAC) and N-methyl pyrrolidinone (NMP) have been found to be useful as high-temperature-resilience-enhancing additives to a baseline electrolyte used in rechargeable lithium-ion electrochemical cells. The baseline electrolyte, which was previously formulated to improve low-temperature performance, comprises LiPF6 dissolved at a concentration of 1.0 M in a mixture comprising equal volume proportions of ethylene carbonate, diethyl carbonate, and dimethyl carbonate. This and other electrolytes comprising lithium salts dissolved in mixtures of esters (including alkyl carbonates) have been studied in continuing research directed toward extending the lower limits of operating temperatures and, more recently, enhancing the high-temperature resilience of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. Although these electrolytes provide excellent performance at low temperatures (typically as low as -40 C), when the affected Li-ion cells are subjected to high temperatures during storage and cycling, there occur irreversible losses of capacity accompanied by power fade and deterioration of low-temperature performance. The term "high-temperature resilience" signifies, loosely, the ability of a cell to resist such deterioration, retaining as much as possible of its initial charge/discharge capacity during operation or during storage in the fully charged condition at high temperature. For the purposes of the present development, a temperature is considered to be high if it equals or exceeds the upper limit (typically, 30 C) of the operating-temperature range for which the cells in question are generally designed.
High-Pressure Design of Advanced BN-Based Materials.
Kurakevych, Oleksandr O; Solozhenko, Vladimir L
2016-10-20
The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.
ERIC Educational Resources Information Center
Daisley, R. E.
1973-01-01
Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)
Aung, Naing Naing; Crowe, Edward; Liu, Xingbo
2015-03-01
Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.
Optical fiber sensors for high temperature harsh environment applications
NASA Astrophysics Data System (ADS)
Xiao, Hai; Wei, Tao; Lan, Xinwei; Zhang, Yinan; Duan, Hongbiao; Han, Yukun; Tsai, Hai-Lung
2010-04-01
This paper summarizes our recent research progresses in developing optical fiber harsh environment sensors for various high temperature harsh environment sensing applications such as monitoring of the operating conditions in a coal-fired power plant and in-situ detection of key gas components in coal-derived syngas. The sensors described in this paper include a miniaturized inline fiber Fabry-Perot interferometer (FPI) fabricated by one-step fs laser micromachining, a long period fiber grating (LPFG) and a fiber inline core-cladding mode interferometer (CMMI) fabricated by controlled CO2 laser irradiations. Their operating principles, fabrication methods, and applications for measurement of various physical and chemical parameters in a high temperature and high pressure coexisting harsh environment are presented.
Complete equation of state for shocked liquid nitrogen: Analytical developments
Winey, J. M.; Gupta, Y. M.
2016-08-02
The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref.more » Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.« less
A porous ceramic membrane tailored high-temperature supercapacitor
NASA Astrophysics Data System (ADS)
Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei
2018-03-01
The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.
Einstein Observatory coronal temperatures of late-type stars
NASA Technical Reports Server (NTRS)
Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.
1990-01-01
The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2004-01-01
A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).
Structure and properties of starches from Arracacha (Arracacia xanthorrhiza) roots.
Castanha, Nanci; Villar, James; Matta Junior, Manoel Divino da; Anjos, Carlota Boralli Prudente Dos; Augusto, Pedro Esteves Duarte
2018-06-05
Arracacha (Arracacia xanthorrhiza Bancroft) is an underexplored Andean root with a high starch content. In this work, starches from two different varieties of Peruvian arracacha were evaluated and characterized in relation to their granule morphology, molecular structure and properties. The starches presented round or polygonal shapes, with a mean diameter of ~20 μm and B-type granules. They were rich in amylopectin molecules with long chain lengths (with the ability to complex iodine) and some with intermediate sizes (indicating a defective crystalline structure). The starches presented low gelatinization temperature, enthalpy of gelatinization and tendency to retrogradation and high peak apparent viscosity and swelling capacity, even at moderate temperatures (60 °C), characteristics of high interest for industrial purposes. Besides, the starches presented a smooth and elastic gel and a high paste clarity. Overall, the arracacha roots presented attractive properties and can be used as an alternative botanical source for starch extraction. Copyright © 2018 Elsevier B.V. All rights reserved.
Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Varga, D.; Floyd, B.
2011-01-01
This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.
Challenge of Si/SiGe technology to optoelectronics
NASA Astrophysics Data System (ADS)
Chang, C. Y.; Jung, J. G.
1993-01-01
Low temperature epitaxy (LTE) of Si and SiGecanbe performed at a temperature of 550 C or lower. Very promising applications can be opened. Such as high speed/high frequency operations at 90GHZ by constructing heterojunction bipolar transistors. High performance FET'slikepseudomorphic p-channel orn-channel high mobility field effect transistors are presented which canbe composed to perform CMOS operations. Optoelectronic devices such as IRdetectors (1-12um), mutiple quantum well (MOW), disordered superlattice (d-SL) which are the potential candidatesof IR detector and optical sources (e.q. LED, LD etc.) Various physical insights regarding to SiGe heterostructures are presented which includeswave function filter, mass filter as well as band mixing are introduced. Researchesat National Nano Device Laboratory (NDL) which processes the capability of 0.3um Si ULSI technologies and SiGe works as well as lll-V, a-Si/SiGe lines are also presented.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
Coupled field-structural analysis of HGTR fuel brick using ABAQUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, S.; Jain, R.; Majumdar, S.
2012-07-01
High-temperature, gas-cooled reactors (HTGRs) are usually helium-gas cooled, with a graphite core that can operate at reactor outlet temperatures much higher than can conventional light water reactors. In HTGRs, graphite components moderate and reflect neutrons. During reactor operation, high temperature and high irradiation cause damage to the graphite crystal and grains and create other defects. This cumulative structural damage during the reactor lifetime leads to changes in graphite properties, which can alter the ability to support the designed loads. The aim of the present research is to develop a finite-element code using commercially available ABAQUS software for the structural integritymore » analysis of graphite core components under extreme temperature and irradiation conditions. In addition, the Reactor Geometry Generator tool-kit, developed at Argonne National Laboratory, is used to generate finite-element mesh for complex geometries such as fuel bricks with multiple pin holes and coolant flow channels. This paper presents the proposed concept and discusses results of stress analysis simulations of a fuel block with H-451 grade material properties. (authors)« less
NASA Astrophysics Data System (ADS)
Sheehe, Suzanne; O'Byrne, Sean
2017-06-01
The development of a sensor for simultaneous temperature concentration of H2 O and temperature in high speed flows is presented. H2 O is a desirable target sensing species because it is a primary product in combustion systems; both temperature and concentration profiles can be used to assess both the extent of the combustion and the flow field characteristics. Accurate measurements are therefore highly desirable. The sensor uses a vertical-cavity surface emitting laser (VCSEL) scanned at 50 kHz from 7172 to 7186 cm-1. Temperatures and concentrations are extracted from the spectra by fitting theoretical spectra to the experimental data. The theoretical spectra are generated using GENSPECT in conjunction with line parameters from the HITRAN 2012 database. To validate the theoretical spectra, experimental spectra of H2 O were obtained at known temperatures (290-550 K) and pressures (30 torr) in a heated static gas cell. The results show that some theoretical lines deviate from the experimental lines. New line-strengths are calculated assuming that the line assignments and broadening parameters in HITRAN are correct. This data is essential for accurate H2 O concentration and temperature measurements at low pressure and high temperature conditions. US Air Force Asian Office of Aerospace Research and Development Grant FA2386-16-1-4092.
Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2016-01-01
A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumina package with platinum conductor for 500 C low-power silicon carbide (SiC) integrated circuits. The design and electrical performance of this package including parasitic capacitance and parallel conductance of neighboring I/Os from 100 Hz to 1 MHz in a temperature range from room temperature to 550 C are discussed in detail. The parasitic capacitance and parallel conductance of this package in the entire frequency and temperature ranges measured does not exceed 1.5 pF and 0.05 microsiemens, respectively. SiC integrated circuits using this package and compatible printed circuit board have been successfully tested at 500 C for over 3736 hours continuously, and at 700 C for over 140 hours. Some test examples of SiC integrated circuits with this packaging system are presented. This package is the key to prolonged T greater than or equal to 500 C operational testing of the new generation of SiC high temperature integrated circuits and other devices currently under development at NASA Glenn Research Center.
The temperature of unheated bodies in a high-speed gas stream
NASA Technical Reports Server (NTRS)
Eckert, E; Weise, W
1941-01-01
The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.
Spectral band passes for a high precision satellite sounder
NASA Technical Reports Server (NTRS)
Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.
1977-01-01
Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.
High pressure/temperature equation of state of gold silver alloys
NASA Astrophysics Data System (ADS)
Jenei, Zsolt; Lipp, Magnus J.; Klepeis, Jae-Hyun P.; Cynn, Hyunchae; Evans, William J.; Park, Changyong
2012-02-01
Gold-silver alloys crystallize in face centered cubic structures, like their constituent pure elements [McKeehan -- Phys.Rev. 20, 424 (1922)]. The cell parameter of the alloys does not scale linearly with the ratio of Ag/Au. In this work we investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.
Tian, Huimei; Gao, Peike; Chen, Zhaohui; Li, Yanshu; Li, Yan; Wang, Yansen; Zhou, Jiefang; Li, Guoqiang; Ma, Ting
2017-01-01
Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs. PMID:28210252
Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka
2018-04-12
It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest that the exogenous application of boron had a substantial effect on cell membrane stability, sugar mobilization, pollen viability, and spikelet fertility, hence the yield. The cultivars due to their variation in the tolerance level for high temperature stress behaved differently, and at high temperature stress, more response of the application of boron was seen in susceptible cultivars.
NASA Astrophysics Data System (ADS)
Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka
2018-04-01
It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest that the exogenous application of boron had a substantial effect on cell membrane stability, sugar mobilization, pollen viability, and spikelet fertility, hence the yield. The cultivars due to their variation in the tolerance level for high temperature stress behaved differently, and at high temperature stress, more response of the application of boron was seen in susceptible cultivars.
Behavior of hydrogen in alpha-iron at lower temperatures
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1973-01-01
Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Wahish, Amal; Armitage, D.; Hill, B.
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamicsmore » under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Wahish, Amal; Armitage, D.; al-Binni, U.
Our design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950°C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. And while the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopicmore » dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature protonconductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. Finally, the sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.
2006-01-01
Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.
NASA Technical Reports Server (NTRS)
Frey, Bradley J.; Leviton, Douglas B.
2005-01-01
The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.
NASA Technical Reports Server (NTRS)
Frey, Bradley; Leviton, Duoglas
2005-01-01
The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.
National Action Plan on Superconductivity Research and Development
NASA Astrophysics Data System (ADS)
1989-12-01
The Superconductivity Action Plan pursuant to the Superconductivity and Competitiveness Act of 1988 is presented. The plan draws upon contributions from leaders in the technical community of the Federal Government responsible for research and development in superconductivity programs, as well as from the report of the Committee to Advise the President on Superconductivity. Input from leaders in the private sector was obtained during the formulation and review of the plan. Some contents: Coordination of the plan; Technical areas (high temperature superconductivity materials in general, high temperature superconductivity films for sensors and electronics, magnets, large area high temperature superconductivity films, bulk conductors); and Policy areas.
Atmospheric pressure and temperature profiling using near IR differential absorption lidar
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.
1983-01-01
The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.
Selective Emitters for High Efficiency TPV Conversion: Materials Preparation and Characterisation
NASA Astrophysics Data System (ADS)
Diso, D.; Licciulli, A.; Bianco, A.; Leo, G.; Torsello, G.; Tundo, S.; De Risi, A.; Mazzer, M.
2003-01-01
Optimising the spectral emissivity of the IR radiation source in a TPV generator is one of the crucial steps towards high efficiency TPV conversion. In this paper we present different approaches to the preparation of selective emitters to be coupled to high efficiency photovoltaic cells. The emitters are designed to work at a temperature of about 1500K and they have been prepared to be used either as external coatings for the burner or as a structural material for the burner itself. Composite ceramics containing rare earth cations, prepared by slip-casting, with various concentration of rare earths were prepared by Slip Casting and Slurry Coating. Rare earth oxides have been incorporated into different oxide matrices, namely Silica, Alumina, Zirconia and their combination. The final aim was to find the material that exhibits the best performance in terms of both high selective power emission, good efficiency along with acceptable thermo-structural properties (high temperature thermal shock resistance, good strength, no creep). The power density emitted by samples as function of the temperature has been tested in the range 1000nm-5000nm. The high temperature emission measurements and the structural tests indicate that a good compromise between the functional and the thermo-structural properties may be reached. The results of the tests on the emitter coatings carried out in a TPV generator at the operating conditions are also presented in this paper.
Multiple Waveband Temperature Sensor (MWTS)
NASA Technical Reports Server (NTRS)
Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert
2006-01-01
This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.
Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.
Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J
2018-05-02
This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.
Pulsed differential holographic measurements of vibration modes of high temperature panels
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Overoye, K. R.
1972-01-01
Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.
Satellite-Derived Sea Surface Temperature: Workshop-2
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1984-01-01
Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.
NASA Technical Reports Server (NTRS)
Hogancamp, J. V. (Clark); Ming, D. W.; McAdam, A. C.; Archer, P. D.; Morris, R. V.; Bristow, T. F.; Rampe, E. B.; Mahaffy, P. R.; Gellert, R.
2017-01-01
The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected high temperature water releases from mud-stones in the areas of Yellowknife Bay, Pahrump Hills, Naukluft Plateau, and Murray Buttes in Gale crater. Dehydroxylation of phyllosilicates may have caused the high temperature water releases observed in these samples. Because each type of phyllosilicate undergoes dehydroxylation at distinct temperatures, these water releases can be used to help constrain the type of phyllosilicate present in each sample.
NASA Technical Reports Server (NTRS)
Panossian, H. V.; Boehnlein, J. J.
1987-01-01
An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.
Recording Rapidly Changing Cylinder-wall Temperatures
NASA Technical Reports Server (NTRS)
Meier, Adolph
1942-01-01
The present report deals with the design and testing of a measuring plug suggested by H. Pfriem for recording quasi-stationary cylinder wall temperatures. The new device is a resistance thermometer, the temperature-susceptible part of which consists of a gold coating applied by evaporation under high vacuum and electrolytically strengthened. After overcoming initial difficulties, calibration of plugs up to and beyond 400 degrees C was possible. The measurements were made on high-speed internal combustion engines. The increasing effect of carbon deposit at the wall surface with increasing operating period is indicated by means of charts.
Upper temperature limits of tropical marine ectotherms: global warming implications.
Nguyen, Khanh Dung T; Morley, Simon A; Lai, Chien-Houng; Clark, Melody S; Tan, Koh Siang; Bates, Amanda E; Peck, Lloyd S
2011-01-01
Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1), the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.
2017-02-01
Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.
Development and testing of a superconducting link for an IR detector
NASA Technical Reports Server (NTRS)
Caton, R.; Selim, R.
1991-01-01
The development and testing of a ceramic superconducting link for an infrared detector is summarized. Areas of study included the materials used, the electrical contacts, radiation and temperature cycling effects, aging, thermal conductivity, and computer models of an ideal link. Materials' samples were processed in a tube furnace at temperatures of 840 C to 865 C for periods up to 17 days and transition temperatures and critical current densities were recorded. The project achieved better quality high superconducting transition temperature material through improved processing and also achieved high quality electrical contacts. Studies on effects of electron irradiation, temperature cycling, and aging on superconducting properties indicate that the materials will be suitable for space applications. Various presentations and publications on the study's results are reported.
High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers
NASA Technical Reports Server (NTRS)
Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.
1992-01-01
Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.
Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.
Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J
2012-07-03
The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.
High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers
NASA Astrophysics Data System (ADS)
Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.
1992-06-01
Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.
Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement
NASA Astrophysics Data System (ADS)
Goldstein, Robert H.
1986-09-01
Calcium-carbonate cements precipitated in low-temperature, near-surface, vadose environments contain fluid inclusions of variable vapor-to-liquid ratios that yield variable homogenization temperatures. Cements precipitated in low-temperature, phreatic environments contain one-phase, all-liquid fluid inclusions. Neomorphism of unstable calcium-carbonate phases may cause reequilibration of fluid inclusions. Stable calcium-carbonate cements of low-temperature origin, which have been deeply buried, contain fluid inclusions of variable homogenization temperature and variable salt composition. Most inclusion fluids are not representative of the fluids present during cement growth and are more indicative of burial pore fluids. Therefore, low-temperature fluid inclusions probably reequilibrate with burial fluids during progressive burial. Reequilibration is likely caused by high internal pressures in inclusions which result in hydrofracturing. The resulting fluid-inclusion population could contain a nearly complete record of burial fluids in which a particular rock has been bathed. *Present address: Department of Geology, University of Kansas, Lawrence, Kansas 66045
Space applications for high temperature superconductivity - Brief review
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1990-01-01
An overview is presented of materials and devices based on high-temperature superconductivity (HTS) that could have useful space-oriented applications. Of specific interest are applications of HTS technologies to mm and microwave systems, spaceborne and planet-surface sensors, and to magnetic subsystems for robotic, rescue, and docking maneuvers. HTS technologies can be used in optoelectronics, magnetic-field detectors, antennae, transmission/delay lines, and launch/payload coils.
Acceleration of Ions and Electrons by Wave-Particle Interactions
1984-03-31
of cyclotron radiation from high-temperature plasmas including collective effects have been derived and discussed in two recent articles by Freund...however, will be presented in separate articles . In summary, the spontaneous cyclotron emissivity has been calcu- lated using the complete...diation from high-temperature plasmas including collective effects are derived and discussed in two recent articles by Freund and Wu’ and Audenaerde
High temperature composites. Status and future directions
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1982-01-01
A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.
High temperature arc-track resistant aerospace insulation
NASA Technical Reports Server (NTRS)
Dorogy, William
1994-01-01
The topics are presented in viewgraph form and include the following: high temperature aerospace insulation; Foster-Miller approach to develop a 300 C rated, arc-track resistant aerospace insulation; advantages and disadvantages of key structural features; summary goals and achievements of the phase 1 program; performance goals for selected materials; materials under evaluation; molecular structures of candidate polymers; candidate polymer properties; film properties; and a detailed program plan.
Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.
2011-01-01
This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.
Camp, Emma F; Smith, David J; Evenhuis, Chris; Enochs, Ian; Manzello, Derek; Woodcock, Stephen; Suggett, David J
2016-05-25
Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats. © 2016 The Author(s).
Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite
NASA Astrophysics Data System (ADS)
Jyoti, Kanaujiya, Neha; Varma, G. D.
2018-05-01
Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.
Smith, David J.; Evenhuis, Chris; Enochs, Ian; Manzello, Derek; Woodcock, Stephen; Suggett, David J.
2016-01-01
Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50–100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats. PMID:27194698
Thermodynamic properties of OsB under high temperature and high pressure
NASA Astrophysics Data System (ADS)
Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang
2011-09-01
The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.
Structural & oxidation behavior of TiN & AlxTi1-xN coatings deposited by CA-PVD technique
NASA Astrophysics Data System (ADS)
Thorat, Nirmala; Mundotia, Rajesh; Varma, Ranjana; Kale, Ashwin; Mhatre, Umesh; Patel, Nainesh
2018-04-01
Coatings with thermal stability at elevated temperatures are prerequisite for various high speed machining and high temperature applications. The present work compares the oxidation behavior of the AlxTi1-xN coating prepared with different Al composition. Coated samples were tested at different temperatures in the range of 400 - 800 C to study their oxidation behavior. Percentage weight gain of all the samples were evaluated using high accuracy weighing balance. The depth of oxide layers were studied using Calo-test instrument. The XRD analysis was carried out to specify the phase structure. Higher oxidation rate was observed for TiN coating at all the oxidation temperatures. Oxidation rate was higher for Al13Ti87N and Al70Ti30N coatings compared to Al60Ti40N and Al50Ti50N coatings which exhibits better oxygen diffusion barrier at all the temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.de
Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ∼100 K after which it rises again. The same trend—albeit more pronounced—is observed for the c lattice parameter at ∼35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) statemore » to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.« less
Development of a 1 kW, 200 C Mapham Inventor
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad; Gerber, Scott; Bauman, Eric; Overton, Eric; Myers, Ira; Bercaw, Robert
1995-01-01
Electronic systems and components are often exposed to high temperature environment in space-based applications, nuclear power facilities, and geothermal energy extraction fields. A key requirement for these systems is, therefore, to withstand the high temperature exposure while maintaining efficient and reliable operation. Efforts were taken to design and develop a high temperature power inverter capable of 200 C operation. A 1 kW, 20 kHz Mapham inverter was designed and evaluated as a function of temperature at different load levels. The inverter system, excluding its input, control, and logic circuits, was characterized at temperatures from ambient to 200 C at 0%, 50%, and 100% resistive loading. With an applied input voltage of 75 VDC, the inverter produced an output of 250 VAC. The results obtained, which indicate good operational characteristics of the inverter up to 200 C, are presented and discussed.
High-speed spatial scanning pyrometer
NASA Technical Reports Server (NTRS)
Cezairliyan, A.; Chang, R. F.; Foley, G. M.; Miller, A. P.
1993-01-01
A high-speed spatial scanning pyrometer has been designed and developed to measure spectral radiance temperatures at multiple target points along the length of a rapidly heating/cooling specimen in dynamic thermophysical experiments at high temperatures (above about 1800 K). The design, which is based on a self-scanning linear silicon array containing 1024 elements, enables the pyrometer to measure spectral radiance temperatures (nominally at 650 nm) at 1024 equally spaced points along a 25-mm target length. The elements of the array are sampled consecutively every 1 microsec, thereby permitting one cycle of measurements to be completed in approximately 1 msec. Procedures for calibration and temperature measurement as well as the characteristics and performance of the pyrometer are described. The details of sources and estimated magnitudes of possible errors are given. An example of measurements of radiance temperatures along the length of a tungsten rod, during its cooling following rapid resistive pulse heating, is presented.
A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics
Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf
2016-01-01
Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Astrophysics Data System (ADS)
Bents, David J.
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Van Noord, Jonathan
2012-01-01
NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
NASA Astrophysics Data System (ADS)
Matsumoto, Takahiro; Nagata, Yasuaki; Nose, Tetsuro; Kawashima, Katsuhiro
2001-06-01
We show two kinds of demonstrations using a laser ultrasonic method. First, we present the results of Young's modulus of ceramics at temperatures above 1600 °C. Second, we introduce the method to determine the internal temperature distribution of a hot steel plate with errors of less than 3%. We compare the results obtained by this laser ultrasonic method with conventional contact techniques to show the validity of this method.
Thermoacoustic and photoacoustic sensing of temperature.
Pramanik, Manojit; Wang, Lihong V
2009-01-01
We present a novel temperature-sensing technique using thermoacoustic and photoacoustic measurements. This noninvasive method has been demonstrated using a tissue phantom to have high temporal resolution and temperature sensitivity. Because both photoacoustic and thermoacoustic signal amplitudes depend on the temperature of the source object, the signal amplitudes can be used to monitor the temperature. A temperature sensitivity of 0.15 degrees C was obtained at a temporal resolution as short as 2 s, taking the average of 20 signals. The deep-tissue imaging capability of this technique can potentially lead us to in vivo temperature monitoring in thermal or cryogenic applications.
Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo
2011-01-01
In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077
NASA Astrophysics Data System (ADS)
Martinez Salinas, Heber Jair
Proton conductor solid electrolytes CsH2PO4 and In-doped tin pyrophosphate have been investigated as candidates to fill a gap of suitable electrolytes for fuel cells at the intermediate temperature range due their unusually high conductivities between 200 and 300 °C. Unfortunately, in the case of CsH2PO4, complicated experimental conditions, like a humidified environment, or high pressure, are needed to preserve the sought high conducting phase. In the first stage of this work, X-ray diffraction on CsH2PO 4 samples performed in air, and under normal conditions of humidity and pressure, evidence of the cubic phase of CsH2PO4 was observed during short intervals of temperature and time, starting at 215 °C and disappearing completely at 265 °C into a dehydrated phase. An AC impedance spectroscopy experimental setup has been assembled and data has been successfully collected on undoped, and doped CsH2PO 4 samples to investigate the effects of chemical and environmental modifications. Measurements performed in the temperature range 200 - 260 °C, and using the frequency range 1 - 6 MHz, showed that the high conducting phase of undoped CsH2PO4 was present for a very short interval of temperature. Additionally, these measurements showed that nano-silica-doped CsH2PO4, and CsH2PO4 under a humidified environment achieve the highest values of conductivity, above 10-2 S cm-1 among the samples tested. In the second stage of this investigation, AC impedance spectroscopy measurements were successfully performed on CsH2PO4 samples in air, at temperatures from 200 - 260 °C, and in the frequency range 1 - 6 MHz, inside a hermetically sealed stainless-steel chamber, which was designed and assembled in-house. Results showed that the highly conducting phase of CsH2PO 4 was achieved at temperatures measured above 230 °C, reaching conductivity values up to 1.7 x10-2 S cm-1, and remaining stable for over 40 hours. Consequent X-ray diffraction analysis of such samples showed that a monoclinic structure, characteristic of room temperature CsH 2PO4, was the only phase present even after the samples had been heated for over 40 hours at a temperature of 250 °C. By using this novel contraption, this has been the first time that undoped CsH2PO 4 has achieved its high conductivity phase and maintained a stable conductivity for a significant amount of time in air, without the use of a humidified environment, and without high pressure in an AC impedance spectroscopy study. Finally, in-house and synchrotron X-ray diffraction studies performed in the Sn1-xInxP2O7 series showed the cubic structure characteristic of the undoped compound at room temperature remains present up to temperatures of 250 °C. Sn0.9In 0.1P2O7, which is known to have the highest conductivity of the compound series, presented an increased unit cell as compared to the rest of the series when measured in air. However, the increased unit cell was not observed when measured under vacuum or an inert gas. Doping did not produce any major distortions on the P2O7 tetrahedra.
NASA Astrophysics Data System (ADS)
Wang, Y.; Fei, Y.
2006-05-01
Carbon has been proposed to be one of the light elements in the Earth's core. Knowledge of phase relations in the Fe-C system at high pressure and temperature is needed to understand the carbon content in the core and its effect on the physical properties and the temperature of the core. Experimental data in this system at high pressure and temperature are limited. In this study we report new experimental data on melting relations up to 25 GPa. The experiments were performed using piston-cylinder and multi-anvil devices at the Geophysical Laboratory. Mixtures of fine power of pure iron and graphite with different carbon content were prepared as starting materials. The starting materials were loaded into MgO capsules and then compressed to the desired pressures, using various high-pressure cell assemblies that have been calibrated at high pressure. High temperatures were achieved using either graphite heater (<6 GPa) or rhenium heater at higher pressures and measured with a tungsten-rhenium thermocouple. Melting relations were determined with a JEOL JXA-8900 electron microprobe, based on quench textures and chemical composition of the quenched phases. Powder X- ray diffraction technique was also used to identify phases and determine unit cell parameters. A positive slope between the solubility of carbon in metallic iron and pressure was found at elevated temperatures. The eutectic temperature increases with increasing pressure. The liquidus temperature determined in this study is significantly lower than the calculated value in previous study. Our study presents directly experimental measurements of the melting relations in the Fe-C system at high pressure and temperature, which provides better constraints on composition and temperature of the Earth's core.
Ultra-High Temperature Materials Characterization for Propulsion Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Hyers, Robert
2007-01-01
Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.
A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.
Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W
2010-07-01
A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.
Advances in Non-Contact Measurement of Creep Properties
NASA Technical Reports Server (NTRS)
Hyers, Robert; Canepari, Stacy; White, Erica Bischoff; Cretegny, Laurent; Rogers, jan
2009-01-01
As the required service temperatures for superalloys increases, so do the demands on testing for development of these alloys. Non-contact measurement of creep of refractory metals using electrostatic levitation has been demonstrated at temperatures up to 2300 C using samples of only 20-40 mg. These measurements load the spherical specimen by inertial forces due to rapid rotation. However, the first measurements relied on photon pressure to accelerate the samples to the high rotational rates of thousands of rotations per second, limiting the applicability to low stresses and high temperatures. Recent advances in this area extend this measurement to higher stresses and lower-temperatures through the use of an induction motor to drive the sample to such high rotational speeds. Preliminary results on new measurements on new materials will be presented.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-01-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.
Strain-induced high-temperature perovskite ferromagnetic insulator.
Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J; Knize, Randy; Lu, Yalin
2018-03-20
Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO 3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high T C of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO 3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co 2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. Copyright © 2018 the Author(s). Published by PNAS.
Strain-induced high-temperature perovskite ferromagnetic insulator
Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J.; Knize, Randy; Lu, Yalin
2018-01-01
Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain–induced ferromagnetism which does not exist in bulk LaCoO3. The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. PMID:29507211
Mg incorporation in GaN grown by plasma-assisted molecular beam epitaxy at high temperatures
NASA Astrophysics Data System (ADS)
Yang, W. C.; Lee, P. Y.; Tseng, H. Y.; Lin, C. W.; Tseng, Y. T.; Cheng, K. Y.
2016-04-01
The influence of growth conditions on the incorporation and activation of Mg in GaN grown by plasma-assisted molecular beam epitaxy at high growth temperature (>700 °C) is presented. It is found that the highest Mg incorporation with optimized electrical properties is highly sensitive both to the Mg/Ga flux ratio and III/V flux ratio. A maximum Mg activation of ~5% can be achieved at a growth temperature of 750 °C. The lowest resistivity achieved is 0.56 Ω-cm which is associated with a high hole mobility of 6.42 cm2/V-s and a moderately high hole concentration of 1.7×1018 cm-3. Although the highest hole concentration achieved in a sample grown under a low III/V flux ratio and a high Mg/Ga flux ratio reaches 7.5×1018 cm-3, the mobility is suffered due to the formation of defects by the excess Mg. In addition, we show that modulated beam growth methods do not enhance Mg incorporation at high growth temperature in contrast to those grown at a low temperature of 500 °C (Appl. Phys. Lett. 93, 172112, Namkoong et al., 2008 [19]).
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Gozdz, A. S.; Mani, S.
2009-01-01
With the intent of improving the performance of lithium-ion cells at high temperatures, we have investigated the use of a number of electrolyte additives in experimental MCMB- Li(x)Ni(y)Co(1-y)O2 cells, which were exposed to temperatures as high as 80 C. In the present work, we have evaluated the use of a number of additives, namely vinylene carbonate (VC), dimethyl acetamide (DMAc), and mono-fluoroethylene carbonate (FEC), in an electrolyte solution anticipated to perform well at warm temperature (i.e., 1.0M LiPF6 in EC+EMC (50:50 v/v %). In addition, we have explored the use of novel electrolyte additives, namely lithium oxalate and lithium tetraborate. In addition to determining the capacity and power losses at various temperatures sustained as a result of high temperature cycling (cycling performed at 60 and 80 C), the three-electrode MCMB-Li(x)Ni(y)Co(1-y)O2 cells (lithium reference) enabled us to study the impact of high temperature storage upon the solid electrolyte interphase (SEI) film characteristics on carbon anodes (MCMB-based materials), metal oxide cathodes, and the subsequent impact upon electrode kinetics.
Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.
Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M
2016-08-23
Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The initial freezing point temperature of beef rises with the rise in pH: a short communication.
Farouk, M M; Kemp, R M; Cartwright, S; North, M
2013-05-01
This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Current egg washing practices utilize wash water temperatures averaging 49°C, and have been found to increase internal egg temperature by 6.7 to 7.8°C. These high temperatures create a more optimal environment for bacterial growth, including Salmonella Enteritidis (SE), if it is present. SE is the...
Thermal study of the Missouri River in North Dakota using infrared imagery
Crosby, Orlo A.
1971-01-01
The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment. At the present time, thermal additions generated by the powerplants have little effect on the temperature regimen of the Missouri River at high rates of river discharge.
High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...
2017-11-07
Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less
High-temperature magnetostructural transition in van der Waals-layered α -MoCl3
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.
2017-11-01
The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
Diamond detectors for high-temperature transactinide chemistry experiments
NASA Astrophysics Data System (ADS)
Steinegger, Patrick; Dressler, Rugard; Eichler, Robert; Piguet, Dave; Streuli, Silvan; Türler, Andreas
2017-04-01
Here, we present the fabrication details and functional tests of diamond-based α-spectroscopic sensors, dedicated for high-temperature experiments, targeting the chemistry of transactinide elements. Direct heating studies with this sensor material, revealed a current upper temperature threshold for a safe α-spectroscopic operation of Tdet = 453 K . Up to this temperature, the diamond sensor could be operated in a stable manner over long time periods of the order of days. A satisfying resolution of ≈ 50 keVFWHM was maintained throughout all conducted measurements. However, exceeding the mentioned temperature limit led to a pronounced spectroscopic degradation in the range of 453 - 473 K , thereby preventing any further α-spectroscopic application. These findings are in full agreement with available literature data. The presented detector development generally enables the chemical investigation of more short-lived and less volatile transactinide elements and their compounds, yet unreachable with the currently employed silicon-based solid state sensors. In a second part, the design, construction, and α-spectroscopic performance of a 4-segmented diamond detector, dedicated and used for transactinide element research, is given as an application example.
2015-03-16
This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247
Transport and contact-free investigation of REBCO thin film temperature dependent pinning landscapes
NASA Astrophysics Data System (ADS)
Sinclair, John; Jaroszynski, Jan; Hu, Xinbo; Santos, Michael
2013-03-01
Studies of the pinning mechanisms and landscapes of REBa2Cu3Ox (RE=rare earth elements) thin films have been a topic of study in recent years due to, among other reasons, their ability to introduce nonsuperconducting phases and defects. Here we will focus on REBCO thin films with BaZrO3 nanocolumns and other isotropic defects. The evolution of the dominant pinning mechanisms seems to change as a function of temperature even to the point that samples with similar critical current density properties at high temperatures can have distinctly different properties at low temperatures. Earlier work focused on the angular selectivity of the current density profile, though other properties (such as alpha values) can evolve as well. Characteristic results accentuating this evolution of current density properties will be presented. Challenges exist in evaluating these low temperature properties in high magnetic fields, therefore both transport and contact-free results were be presented to compliment the work. Support for this work is provided by the NHMFL via NSF DRM 0654118.
Characterization of a High Current, Long Life Hollow Cathode
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.
2006-01-01
The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.
Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures.
Pfenning, Andreas; Hartmann, Fabian; Rebello Sousa Dias, Mariama; Castelano, Leonardo Kleber; Süßmeier, Christoph; Langer, Fabian; Höfling, Sven; Kamp, Martin; Marques, Gilmar Eugenio; Worschech, Lukas; Lopez-Richard, Victor
2015-06-23
Sensor miniaturization together with broadening temperature sensing range are fundamental challenges in nanothermometry. By exploiting a large temperature-dependent screening effect observed in a resonant tunneling diode in sequence with a GaInNAs/GaAs quantum well, we present a low dimensional, wide range, and high sensitive nanothermometer. This sensor shows a large threshold voltage shift of the bistable switching of more than 4.5 V for a temperature raise from 4.5 to 295 K, with a linear voltage-temperature response of 19.2 mV K(-1), and a temperature uncertainty in the millikelvin (mK) range. Also, when we monitor the electroluminescence emission spectrum, an optical read-out control of the thermometer is provided. The combination of electrical and optical read-outs together with the sensor architecture excel the device as a thermometer with the capability of noninvasive temperature sensing, high local resolution, and sensitivity.
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
NASA Astrophysics Data System (ADS)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.
2014-10-01
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.
Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L
2012-08-15
We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.
PAPER-64 Constraints On Reionization. II. The Temperature of the z =8.4 Intergalactic Medium
NASA Astrophysics Data System (ADS)
Pober, Jonathan C.; Ali, Zaki S.; Parsons, Aaron R.; McQuinn, Matthew; Aguirre, James E.; Bernardi, Gianni; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; DeBoer, David R.; Dexter, Matthew R.; Furlanetto, Steven R.; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C.; Klima, Patricia J.; Kohn, Saul A.; Liu, Adrian; MacMahon, David H. E.; Maree, Matthys; Mesinger, Andrei; Moore, David F.; Razavi-Ghods, Nima; Stefan, Irina I.; Walbrugh, William P.; Walker, Andre; Zheng, Haoxuan
2015-08-01
We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.
Development of an ultra-high temperature infrared scene projector at Santa Barbara Infrared Inc.
NASA Astrophysics Data System (ADS)
Franks, Greg; Laveigne, Joe; Danielson, Tom; McHugh, Steve; Lannon, John; Goodwin, Scott
2015-05-01
The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to develop correspondingly larger-format infrared emitter arrays to support the testing needs of systems incorporating these detectors. As with most integrated circuits, fabrication yields for the read-in integrated circuit (RIIC) that drives the emitter pixel array are expected to drop dramatically with increasing size, making monolithic RIICs larger than the current 1024x1024 format impractical and unaffordable. Additionally, many scene projector users require much higher simulated temperatures than current technology can generate to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024x1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During an earlier phase of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1000K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. Also in development under the same UHT program is a 'scalable' RIIC that will be used to drive the high temperature pixels. This RIIC will utilize through-silicon vias (TSVs) and quilt packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the inherent yield limitations of very-large-scale integrated circuits. Current status of the RIIC development effort will also be presented.
Shock Initiation of Explosives - High Temperature Hot Spots Explained
NASA Astrophysics Data System (ADS)
Bassett, Will
2017-06-01
The pore-collapse mechanism for hot spot creation is currently one of the most intensely studied subjects in the initiation of energetic materials. In the present study, we use 1.5 - 3.5 km s-1 laser-driven flyer plates to impact microgram charges of both polymer-bound and pure pentaerythritol tetranitrate (PETN) while recording the temperature and spatially-averaged emissivity with a high-speed optical pyrometer. The 32-color pyrometer has nanosecond time resolution and a high dynamic range with sensitivity to temperatures from 7000 to 2000 K. Hot spot temperatures of 4000 K at impact are observed in the polymer-bound explosive charges where an elastomeric binder is used to fill void spaces. In pure PETN and more heterogeneous polymer-bound charges, in which significant void space is present, hot spot temperatures of 6000 K are observed, similar to previous reports with significant porosity. We attribute these high temperatures to gas-phase products formed in-situ being compressed under the driving shock. Experiments performed under various gas environments (air, butane, etc.) showed a strong influence on observed temperature upon impact. Control experiments where the PETN in the polymer-bound charges were replaced with sucrose and silica reinforce the result that hot spots are a result of in-situ gas formation from decomposition of organic molecules. US Air Force Office of Scientific Research awards FA9550-14-1-0142 and FA9550-16-1-0042; US Army Research Office award W911NF-13-1-0217; Defense Threat Reduction Agency award HDTRA1-12-1-0011. In collaboration with: Belinda Pacheco and Dana Dlott, University of Illinois at Urbana Champaign.
Thermodynamics and Kinetics of Silicate Vaporization
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Costa, Gustavo C. C.
2015-01-01
Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.
Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility
NASA Technical Reports Server (NTRS)
Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.
2015-01-01
The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.
Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 C
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Pouch, J. J.; Alterovitz, S. A.; Pantic, D. M.; Johnson, G. A.
1988-01-01
The adhesion, friction, and wear behavior of silicon nitride films deposited by low- and high-frequency plasmas (30 kHz and 13.56 MHz) at various temperatures to 700 C in vacuum were examined. The results of the investigation indicated that the Si/N ratios were much greater for the films deposited at 13.56 MHz than for those deposited at 30 kHz. Amorphous silicon was present in both low- and high-frequency plasma-deposited silicon nitride films. However, more amorphous silicon occurred in the films deposited at 13.56 MHz than in those deposited at 30 kHz. Temperature significantly influenced adhesion, friction, and wear of the silicon nitride films. Wear occurred in the contact area at high temperature. The wear correlated with the increase in adhesion and friction for the low- and high-frequency plasma-deposited films above 600 and 500 C, respectively. The low- and high-frequency plasma-deposited thin silicon nitride films exhibited a capability for lubrication (low adhesion and friction) in vacuum at temperatures to 500 and 400 C, respectively.
Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, Juan J; Qualls, A L
2016-01-01
INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less
NASA Astrophysics Data System (ADS)
Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.
2016-11-01
An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.
High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary
NASA Astrophysics Data System (ADS)
Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.
Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.
High temperature corrosion of austenitic stainless steel coils in a direct reduction plant in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez-Islas, J.A.; Campillo, B.; Chaudhary, N.
1996-08-01
The subject of this study is related to the performance of austenitic steels coils and tubes, in a range of temperatures between 425 to 870 C for the transport of reducing gases, in an installation involving the direct reduction of iron-ore by reforming natural gas. Evidence is presented that metal dusting is not the only unique high temperature corrosion mechanism that caused catastrophic failures of austenitic 304 (UNS S30400) coils and HK-40 (UNS J94204) tubes. Sensitization as well as stress corrosion cracking occurred in 304 stainless steel coils, and metal dusting occurred in tubes of HK-40, a high resistance alloy.more » The role of a continuous injection of H{sub 2}S to the process is suggested to avoid the high temperature metal dusting corrosion mechanism found in these kind of installations.« less
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2014-03-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2015-06-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
High-temperature measurement by using a PCF-based Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng
2012-10-01
A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.
Nuclear resonant inelastic X-ray scattering at high pressure and low temperature
Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; ...
2015-01-01
In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe 2As 2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description ofmore » the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu 57Fe 2As 2 at high pressure and low temperature were derived by using this new capability.« less
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-11-22
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.
High-density magnetoresistive random access memory operating at ultralow voltage at room temperature
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-01-01
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527
High Temperature Irradiation-Resistant Thermocouple Performance Improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshua Daw; Joy Rempe; Darrell Knudson
2009-04-01
Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions.more » This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.« less
Normalized Temperature Contrast Processing in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
NASA Astrophysics Data System (ADS)
Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.
1989-05-01
High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.
Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature
NASA Astrophysics Data System (ADS)
Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.
2018-05-01
Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.
QCD equation of state with almost physical quark masses
NASA Astrophysics Data System (ADS)
Cheng, M.; Christ, N. H.; Datta, S.; van der Heide, J.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Petrov, K.; Schmidt, C.; Soeldner, W.; Umeda, T.
2008-01-01
We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nτ=4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140MeV≤T≤800MeV. We present a detailed discussion of finite cutoff effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nτ=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.
Online monitoring of dynamic tip clearance of turbine blades in high temperature environments
NASA Astrophysics Data System (ADS)
Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang
2018-04-01
Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.
Kalla, Adarsh M; Sahu, C; Agrawal, A K; Bisen, P; Chavhan, B B; Sinha, Geetesh
2016-05-01
The present research was intended to develop a small scale butter churn and its performance by altering churning temperature and churn speed during butter making. In the present study, the cream was churned at different temperatures (8, 10 and 12 °C) and churn speeds (35, 60 and 85 rpm). The optimum parameters of churning time (40 min), moisture content (16 %) and overrun (19.42 %) were obtained when cream was churned at churning temperature of 10 °C and churn speed of 60 rpm. Using appropriate conditions of churning temperature and churn speed, high quality butter can be produced at cottage scale.
Supercritical Water Mixture (SCWM) Experiment
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Hegde, Uday G.
2012-01-01
The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.
Multi-range force sensors utilizing shape memory alloys
Varma, Venugopal K.
2003-04-15
The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.
Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.
2009-01-01
Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.
High-pressure Infrared Spectra of Tal and Lawsonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott,H.; Liu, Z.; Hemley, R.
2007-01-01
We present high-pressure infrared spectra of two geologically important hydrous minerals: talc, Mg3Si4O10(OH)2 and lawsonite, CaAl2Si2O7(OH)2{center_dot}H2O,{center_dot}at room temperature. For lawsonite, our data span the far infrared region from 150 to 550 cm-1 and extend to 25 GPa. We combine our new spectroscopic data with previously published high-pressure mid-infrared and Raman data to constrain the Gr{umlt u}neisen parameter and vibrational density of states under pressure. In the case of talc, we present high-pressure infrared data that span both the mid and far infrared from 150 to 3800 cm-1 covering lattice, silicate, and hydroxyl stretching vibrations to a maximum pressure of 30more » GPa. Both phases show remarkable metastability well beyond their nominal maximum thermodynamic stability at simultaneous high-pressure and high-temperature conditions.« less
NASA Astrophysics Data System (ADS)
Goldenstein, C. S.; Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-05-01
The development, validation and demonstration of a two-color tunable diode laser (TDL) absorption sensor for measurements of temperature and H2O in high-pressure and high-temperature gases are presented. This sensor uses first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in harsh, high-pressure environments. Two telecommunications-grade TDLs were used to probe H2O absorption transitions near 1391.7 and 1469.3 nm. The lasers were frequency-multiplexed and modulated at 160 and 200 kHz to enable a measurement bandwidth up to 30 kHz along a single line-of-sight. In addition, accurate measurements are enabled at extreme conditions via an experimentally derived spectroscopic database. This sensor was validated under low-absorbance (<0.05) conditions in shock-heated H2O-N2 mixtures at temperatures and pressures from 700 to 2400 K and 2 to 25 atm. There, this sensor recovered the known temperature and H2O mole fraction with a nominal accuracy of 2.8% and 4.7% RMS, respectively. Lastly, this sensor resolved expected transients with high bandwidth and high precision in a reactive shock tube experiment and a pulse detonation combustor.
Cheng, Chang-Hong; Guo, Zhi-Xun; Ye, Chao-Xia; Wang, An-Li
2018-02-01
The present study was conducted to investigate the effects of astaxanthin on growth performance, biochemical parameters, ROS production, and immune-related gene expressions of the pufferfish (Takifugu obscurus) under high temperature stress. The experimental basal diets supplemented with astaxanthin at the rates of 0 (control), 20, 40, 80, 160, and 320 mg kg -1 were fed to fish for 8 weeks. The results showed that the fish fed diet with 80, 160, and 320 mg kg -1 astaxanthin significantly improved weight gain and specific growth rate. Furthermore, fish fed the moderate dietary astaxanthin increased plasma alkaline phosphatase activities, and decrease plasma aspartate aminotransferase and alanine aminotransferase activities. After the feeding trial, the fish were exposed to high temperature stress for 48 h. The results shown that astaxanthin could suppress ROS production induced by high temperature stress. Meanwhile, compared with the control group, the astaxanthin groups increased SOD, CAT, and HSP70 mRNA levels under high temperature stress. These results showed that the basal diet supplemented with 80-320 mg kg -1 astaxanthin could enhance growth, nonspecific immune responses, and antioxidant defense system and improve resistance against high temperature stress in pufferfish.
A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression
NASA Technical Reports Server (NTRS)
Johnson, Aldie E , Jr; Semonian, Joseph W
1956-01-01
Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.
AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors
NASA Technical Reports Server (NTRS)
Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)
1991-01-01
This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.
NASA Technical Reports Server (NTRS)
Hansen, C Frederick; Heims, Steve P
1958-01-01
Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oßwald, Patrick; Köhler, Markus
A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimentalmore » data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.« less
Characterization of polybenzimidazole (PBI) film at high temperatures
NASA Astrophysics Data System (ADS)
Hammoud, Ahmad N.; Suthar, J. L.
1992-04-01
Polybenzimidazole, a linear thermoplastic polymer with excellent thermal stability and strength retention over a wide range of temperatures, was evaluated for its potential use as the main dielectric in high temperature capacitors. The film was characterized in terms of its dielectric properties in a frequency range of 50 Hz to 100 kilo-Hz. These properties, which include the dielectric constant and dielectric loss, were also obtained in a temperature range from 20 C to 300 C with an electrical stress of 60 Hz, 50 V/mil present. The alternating and direct current breakdown voltages of silicone oil impregnated films as a function of temperature were also determined. The results obtained indicate that while the film remained relatively stable up to 200 C, it exhibited an increase in its dielectric properties as the temperature was raised to 300 C. It was also found that conditioning of the film by heat treatment at 60 C for six hours tended to improve its dielectric and breakdown properties. The results are discussed and conclusions made concerning the suitability of the film as a high temperature capacitor dielectric.
Characterization of polybenzimidazole (PBI) film at high temperatures
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad N.; Suthar, J. L.
1992-01-01
Polybenzimidazole, a linear thermoplastic polymer with excellent thermal stability and strength retention over a wide range of temperatures, was evaluated for its potential use as the main dielectric in high temperature capacitors. The film was characterized in terms of its dielectric properties in a frequency range of 50 Hz to 100 kilo-Hz. These properties, which include the dielectric constant and dielectric loss, were also obtained in a temperature range from 20 C to 300 C with an electrical stress of 60 Hz, 50 V/mil present. The alternating and direct current breakdown voltages of silicone oil impregnated films as a function of temperature were also determined. The results obtained indicate that while the film remained relatively stable up to 200 C, it exhibited an increase in its dielectric properties as the temperature was raised to 300 C. It was also found that conditioning of the film by heat treatment at 60 C for six hours tended to improve its dielectric and breakdown properties. The results are discussed and conclusions made concerning the suitability of the film as a high temperature capacitor dielectric.
Optimization of the thermogauge furnace for realizing high temperature fixed points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Dong, W.; Liu, F.
2013-09-11
The thermogauge furnace was commonly used in many NMIs as a blackbody source for calibration of the radiation thermometer. It can also be used for realizing the high temperature fixed point(HTFP). According to our experience, when realizing HTFP we need the furnace provide relative good temperature uniformity to avoid the possible damage to the HTFP. To improve temperature uniformity in the furnace, the furnace tube was machined near the tube ends with a help of a simulation analysis by 'ansys workbench'. Temperature distributions before and after optimization were measured and compared at 1300 °C, 1700°C, 2500 °C, which roughly correspondmore » to Co-C(1324 °C), Pt-C(1738 °C) and Re-C(2474 °C), respectively. The results clearly indicate that through machining the tube the temperature uniformity of the Thermogage furnace can be remarkably improved. A Pt-C high temperature fixed point was realized in the modified Thermogauge furnace subsequently, the plateaus were compared with what obtained using old heater, and the results were presented in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; ...
2017-10-24
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less
NASA Astrophysics Data System (ADS)
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; Runde, W.; Roback, R.; Williams-Jones, A. E.
2018-02-01
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO22+, UO2Cl+, and UO2Cl2°. UO2Cl3- is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species show fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO2Cl42- and UO2Cl53- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T > 150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO2Cl2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO22+ + Cl- = UO2Cl+ are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO22+ + 2Cl- = UO2Cl2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.
Ultrasound thermography: A new temperature reconstruction model and in vivo results
NASA Astrophysics Data System (ADS)
Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.
2017-03-01
The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.
Results of the Mariner 6 and 7 Mars occultation experiments
NASA Technical Reports Server (NTRS)
Hogan, J. S.; Stewart, R. W.; Rasool, S. I.; Russell, L. H.
1972-01-01
Final profiles of temperature, pressure, and electron density on Mars were obtained for the Mariner 6 and 7 entry and exit cases, and results are presented for both the lower atmosphere and ionosphere. The results of an analysis of the systematic and formal errors introduced at each stage of the data-reduction process are also included. At all four occulation points, the lapse rate of temperature was subdadiabatic up to altitudes in excess of 20 km. A pronounced temperature inversion was present above the surface at the Mariner 6 exit point. All four profiles exhibit a sharp, superadiabatic drop in temperature at high altitudes, with temperatures falling below the frost point of CO2. These results give a strong indication of frozen CO2 in the middle atmosphere of Mars.
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2012-01-27
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.
Formation of SIMOX-SOI structure by high-temperature oxygen implantation
NASA Astrophysics Data System (ADS)
Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji
2015-12-01
We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. L. Davis; J. L. Rempe; D. L. Knudson
Silicon carbide (SiC) temperature monitors 05R4-02-A KG1403 (300 LO) and 05R4-01-A KG1415 (400 LO B) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak irradiation temperatures. HTTL measurements indicate that the peak irradiation temperature for the 300 LO monitor was 295 {+-} 20 C and the peak irradiation temperature for the 400 LO B monitor was 294 {+-} 25 C. Two silicon carbide (SiC) temperature monitors irradiated in the Advanced Test Reactor (ATR) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak temperature during irradiation. These monitors were irradiated as part ofmore » the University of Wisconsin Pilot Project with a target dose of 3 dpa. Temperature monitors were fabricated from high density (3.203 g/cm3) SiC manufactured by Rohm Haas with a nominal size of 12.5 mm x 1.0 mm x 0.75 mm (see Attachment A). Table 1 provides identification for each monitor with an expected peak irradiation temperature range based on preliminary thermal analysis (see Attachment B). Post irradiation calculations are planned to reduce uncertainties in these calculated temperatures. Since the early 1960s, SiC has been used as a post-irradiation temperature monitor. As noted in Reference 2, several researchers have observed that neutron irradiation induced lattice expansion of SiC annealed out when the post-irradiation annealing temperature exceeds the peak irradiation temperature. As noted in Reference 3, INL uses resistivity measurements to infer peak irradiation temperature from SiC monitors. Figure 1 depicts the equipment at the HTTL used to evaluate the SiC monitors. The SiC monitors are heated in the annealing furnace using isochronal temperature steps that, depending on customer needs, can range from 50 to 800 C. This furnace is located under a ventilation hood within the stainless steel enclosure. The ventilation system is activated during heating so that any released vapors are vented through this system. Annealing temperatures are recorded using a National Institute of Standards and Technology (NIST) traceable thermocouple inserted into an alumina tube in the furnace. After each isochronal annealing, the specimens are placed in a specialized fixture located in the constant temperature chamber (maintained at 30 C) for a minimum of 30 minutes. After the 30 minute wait time, each specimen's resistance is measured using the specialized fixture and a calibrated DC power analyzer. This report discusses the evaluation of the SiC monitors and presents the results. Testing was conducted in accordance with Reference 3. Sections 2 and 3 present the data collected for each monitor and provide interpretation of the data. Section 4 presents the evaluated temperature results.« less
LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2010-08-01
Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less
Ultra-high Temperature Emittance Measurements for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Crandall, David
2009-01-01
Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.
Microwave emission characteristics of sea ice
NASA Technical Reports Server (NTRS)
Edgerton, A. T.; Poe, G.
1972-01-01
A general classification is presented for sea ice brightness temperatures with categories of high and low emission, corresponding to young and weathered sea ice, respectively. A sea ice emission model was developed which allows variations of ice salinity and temperature in directions perpendicular to the ice surface.
Flow Characteristics of a Multiple Nozzle Exhaust Gas Eductor System.
1981-03-01
these exhaust gases are a temperatures significantly above those of conventionally powered ships. A few of the problems caused by these high temperatures ...systems designed for marine gas turbine applications must substantially cool exhaust gases , present an exterior stack surface temperature which will not...stack in. H 02 R - Gas constant for air, 53.34 ft-lbf/Ibm-R s - Entropy, Btu/Ibm-R S - Primary dimension of mixing stack T - Absolute temperature , R
Superconducting thermoelectric generator
Metzger, J.D.; El-Genk, M.S.
1994-01-01
Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.
On the determination of growth stress during oxidation of pure zirconium at elevated temperature
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Favergeon, J.; Lahoche, L.; Moulin, G.
2018-07-01
An experimental approach have been proposed to evaluate growth of stress during high temperature oxidation of pure zirconium. The development of stress in the oxide scale has been investigated experimentally in in-situ conditions by combining the Deflection Test in Monofacial Oxidation (DTMO) with Acoustic Emission analysis (AE). Microstructure of the sample were studied by using Scanning Electron Microscopy technique. Oxidation experiments were performed continuously during 24 h at 400 °C and 500 °C in air under normal atmospheric pressure. Taking into account purely elastic behaviour of the material, primary evolution of growth stress developed in the oxide scale during oxidation process have been estimated. Presented study of the Zr/ZrO2 system revealed two opposite phenomena of stress relief when cooling from 400 °C and 500 °C to room temperature. This study is presented as a tool to understand the phenomena of stress evolution in the zirconia layer during isothermal treatment at high temperature and after cooling.
Mineralogy of ash of some American coals: variations with temperature and source
Mitchell, R.S.; Gluskoter, H.J.
1976-01-01
Ten samples of mineral-matter residue were obtained by the radio-frequency low-temperature ashing of subbituminous and bituminous coals. The low-temperature ash samples were then heated progressively from 400 ??C to 1400 ??C at 100 ??C intervals. Mineral phases present at each temperature interval were determined by X-ray diffraction analyses. The minerals originally present in the coals (quartz, kaolinite, illite, pyrite, calcite, gypsum, dolomite, and sphalerite) were all altered to higher temperature phases. Several of these phases, including kaolinite, metakaolinite, mullite, anhydrite, and anorthite, were found only in limited temperature ranges. Therefore the temperature of formation of the ashes in which they occur may be determined. Mineralogical differences were observed between coal samples from the Rocky Mountain Province, the Illinois Basin, and the Appalachians; and as a result of these mineralogical differences, different high-temperature phases resulted as the samples were heated. However, regional generalizations cannot be made until a greater number of samples have been studied. ?? 1976.
David E. Graham; Jianqiu Zheng; Taniya RoyChowdhury
2016-08-31
The dataset consists of respiration and methane production rates and methane oxidation potential obtained from soil microcosm studies carried out under controlled temperature and incubation conditions. Soils cores collected in 2012 represent the flat- and high-centered polygon active layers and permafrost (when present) from the NGEE Arctic Intensive Study Site 1, Barrow, Alaska.
1993-04-02
Misiolek, W.Z. and German, R.M., "Economical Aspects of Experiment Design for Compaction of High Temperature Composites," Proceedings of the American...ten years, the computational capability should be available. For infiltrated matrix depositions, the research has shown that design fiber... designed for manufacturing, was not completed. However, even with present 2-D fabric composite preforms, a two-step deposition procedure, optimized for the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.
1996-05-01
This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.