NASA Astrophysics Data System (ADS)
Alivernini, Mauro; Lai, Zhongping; Frenzel, Peter; Fürstenberg, Sascha; Wang, Junbo; Guo, Yun; Peng, Ping; Haberzettl, Torsten; Börner, Nicole; Mischke, Steffen
2018-07-01
The Late Quaternary lake history of Taro Co and three neighbouring lakes was investigated to reconstruct local hydrological conditions and the regional moisture availability. Ostracod-based water depth and habitat reconstructions combined with OSL and radiocarbon dating are performed to better understand the Taro Co lake system evolution during the Late Quaternary. A high-stand is observed at 36.1 ka before present which represents the highest lake level since then related to a wet stage and resulting in a merging of Taro Co and its neighbouring lakes Zabuye and Lagkor Co this time. The lake level then decreased and reached its minimum around 30 ka. After c. 20 ka, the lake rose above the present day level. A minor low-stand, with colder and drier conditions, is documented at 12.5 cal. ka BP. Taro Co Zabuye and Lagkor Co formed one large lake with a corresponding high-stand during the early Holocene (11.2-9.7 cal. ka BP). After this Holocene lake level maximum, all three lakes shrank, probably related to drier conditions, and Lagkor Co became separated from the Taro Co-Zabuye system at c.7 ka. Subsequently, the lake levels decreased further about 30 m and Taro Co began to separate from Zabuye Lake at around 3.5 ka. The accelerating lake-level decrease of Taro Co was interrupted by a short-term lake level rise after 2 ka BP, probably related to minor variations of the monsoonal components. A last minor high-stand occurred at about 0.8 ka before today and subsequently the lake level of Taro Co registers a slight increase in recent years.
NASA Astrophysics Data System (ADS)
Mercier, Franck; Cazenave, Anny; Maheu, Caroline
2002-04-01
Water level fluctuations of continental lakes are related to regional to global scale climate changes. Water level fluctuations reflect variations in evaporation and precipitation over the lake area and its catchment area. Over such inland water bodies, the satellite altimetry technique offers both a world-wide coverage and a satisfying accuracy. We present here results of lake level variations of 12 African lakes based on 7 years of Topex/Poseidon (T/P) altimetry data acquired between 1993 and 1999. Among the 12 African lakes presented in this study, three are reservoirs whose level fluctuations are mainly driven by anthropogenic usage of the water. Either closed or open, the nine remaining lakes are sensitive indicators of the climate evolution over Africa during the 1990s. Seasonal signals of each lake are clearly identified and filtered out to focus on the interannual fluctuations. Clear correlated regional variations are reported among the east African lakes: several lakes exhibit a regular level decrease between 1993 and 1997, probably due to intense droughts. However, the most spectacular feature is an abrupt water level rise occurring in late 1997-early 1998 and affecting most of the lakes located within the Rift Valley. This major anomalous pattern, explained by a large excess rainfall anomaly occurring in late 1997, is quantified in both space and time domains through an EOF analysis of the lake level height time series. The spatial distribution of the leading mode of lake level height correlates with the dominant mode of precipitation computed over the same time span. Nevertheless, similar rainfall anomaly, but with lesser intensity, occurred in late 1994 without any noticeable consequence on lake level. The precipitation anomaly appears related to the equatorial Indian Ocean warming reported during the 1997-1998 ENSO event.
Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota
Wiche, Gregg J.
1996-01-01
The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake, Lake Alice, and Lake Irvine). Most of the planning studies include options to store water in the Devils Lake Basin and to provide an outlet to the Sheyenne River via Devils Lake or the Stump Lakes. If an outlet is constructed, water-quantity and -quality issues will be considered in designing the operating plan. Therefore, current and accurate hydrologic information is needed to assess the viability of the various options to lower the level of Devils Lake.
Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction
NASA Astrophysics Data System (ADS)
Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.
2013-12-01
Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.
Extent of Pleistocene lakes in the western Great Basin
Reheis, Marith C.
1999-01-01
During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased effective moisture and changes in the size of the Lahontan drainage basin.
Monitoring lake level changes by altimetry in the arid region of Central Asia
NASA Astrophysics Data System (ADS)
Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.
2017-07-01
The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.
Yihdego, Yohannes; Webb, John A
2017-02-01
The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.
Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps
NASA Astrophysics Data System (ADS)
Zlinszky, A.
2009-04-01
Lake Balaton is a large and relatively shallow lake located in western Hungary. The lake is joined by small wetlands on the north shore and larger water-filled valleys on the south separated by and elevated sand bar. These wetlands are assumed to have been connected with Lake Balaton before the water level was artificially lowered in 1893. No regular measurements of the water level of the lake or these wetlands were carried out before the draining of the lake. Most of the wetlands were completely isolated from the water system of the lake after the water level change as roads, railway and holiday homes were built. The low valleys of the southern shore still hold many fishponds, swamps and wet meadows, which are important sanctuaries for rare wetland species, and are often less disturbed than the lake, which is a popular holiday resort. Hydrologic restoration of these wetlands is only possible if accurate information exists on the original, natural state. The 1776 Krieger-map and the first military survey (1782-1785) are the most accurate known maps of the original state of the Lake Balaton area. These maps were surveyed using triangulation and leveling, and are accurate enough to be compared with the present-day situation. Some of the depicted buildings and landmarks still survive and can be used as control points for georeferencing and correcting these maps. Since the bathymetry of the lake and the topography of the surrounding countryside have hardly changed, existing digital elevation models of the present-day relief could be compared to these georeferenced maps. The elevation profile of the lake shore and wetland borders can be calculated by tracing these lines on a Digital Elevation Model. The shore area of Lake Balaton has been filled in and changed, so present-day land topography can not be used to estimate the water level from the elevation profile of the shore line. However, the Krieger-map also shows bathymetric contours, and previous studies have shown that the topography of the lake floor has not changed measurably in the last hundred years. The bathymetric contours of Lake Balaton depicted on the georeferenced Krieger-map were digitized and overlain on the present-day DEM of the lake floor. The elevation profile of these lines was used to calculate the original elevation of the water level of the lake with the accuracy of one meter. The height of the water table around the lake depends closely on the water level of the lake, but wetlands can retain water and thus sustain a higher water table in the tributary valleys than in the lake itself. In order to measure the elevation of the water table around the lake, the borders of the water-logged areas on the southern shore of the lake were also digitized from the sheets of the First Military Survey and traced on a DEM of the hills on the southern side of the lake. The elevation of the water level in these wetlands was calculated based on these profiles. The water level in some valleys adjoining the lake is significantly higher than the water level of the lake itself, which shows that the water balance of these wetlands was mostly independent of the fluctuation of the lake. Some other large wetlands have borders that are in the same elevation as the shores of the lake itself, which shows that these wetlands are in close connection with the lake. The mapping of these historic wetland properties provides a valuable guide for future habitat restoration efforts.
NASA Astrophysics Data System (ADS)
Henkel, Karoline; Haberzettl, Torsten; Miehe, Sabine; Frenzel, Peter; Daut, Gerhard; Dietze, Elisabeth; Kasper, Thomas; Ahlborn, Marieke; Mäusbacher, Roland
2013-04-01
The Tibetan Plateau is the greatest plateau on Earth with an average altitude of 4,500 m asl. Due to its high elevation, large area and significant role in the formation of the Asian Monsoon Systems (e.g., Indian Ocean and East-Asian Summer Monsoon) it is considered to react very sensitive to climate variations. The numerous lake systems on the Tibetan Plateau represent excellent archives reflecting variations in the strength of the monsoon system in terms of hydrological changes expressed in lake level fluctuations. For example, terraces and lacustrine deposits around the saline lake Tangra Yumco indicate lake level highstands up to ~215 m higher than the present lake level. To study Holocene lake level variations we investigated a 3.6 m long sediment core recovered from a peat bog (near the Targo Xian settlement, 30°46'N, 86°40'E) on a recessional lake level terrace ~150 m above the present shoreline of Tangra Yumco. In particular, our analyses of sedimentological (grain size), geochemical (CNS and ICP-OES) and mineralogical (XRD) data allow a detailed and high-resolution interpretation of the hydrological conditions during the Holocene. The existence of two carbonate layers in the Targo Xian record, separated by a sand layer and intercalated in peat sequences at the bottom and top of the core, provide evidence for two stable lake stages at the coring position. Peat at the bottom of the core, which is radiocarbon-dated to 11,130 +130/-345 cal BP, indicates wetland conditions similar to the Recent situation (Miehe et al., submitted). After a transition zone, a layer of pure aragonitic lake marl gives evidence for a lake stage. During this stage, high values of the total inorganic carbon (TIC) and Ca/Ti ratios as well as low C/N ratios point to a stable lake due to wet climatic conditions. This carbonate layer can be correlated with a 2-3 m thick carbonate layer found in outcrops around the present lake Tangra Yumco presenting a high lake level until approx. 2.3 (+/-0.2) ka BP (OSL age, Long et al. 2012). Results of former investigations of other lakes on the Tibetan Plateau (e.g., lake Nam Co (Kasper et al., 2012)) point to a strong Indian Ocean Summer Monsoon during the Early to Mid Holocene. In the presented record, a falling lake level and a possible desiccation of the coring location is shown by a coarse sand layer including gravel. Another lake marl section above is well delimited from the other sections in its mineralogical composition as it is composed by calcite reflecting an additional lake stage at the coring site. This led to the assumption, that this second lake stage was characterized by a smaller lake with a higher detrital input which existed until approx. 930 +45/-135 cal BP. After an oscillation of dry and wet (peat production) phases a constant peat bog developed and is still present. References: Kasper, T. et al. (2012): doi: 10.1016/j.quascirev.2012.02.011 Long, H. et al. (2012): doi: 10.1016/j.quageo.2011.11.005 Miehe et al. (submitted): JOPL
Sedimentary constraints on late Quaternary lake-level fluctuations at Bear Lake, Utah and Idaho
Smoot, J.P.; Rosenbaum, J.G.
2009-01-01
A variety of sedimentological evidence was used to construct the lake-level history for Bear Lake, Utah and Idaho, for the past ???25,000 years. Shorelines provide evidence of precise lake levels, but they are infrequently preserved and are poorly dated. For cored sediment similar to that in the modern lake, grain-size distributions provide estimates of past lake depths. Sedimentary textures provide a highly sensitive, continuous record of lake-level changes, but the modern distribution of fabrics is poorly constrained, and many ancient features have no modern analog. Combining the three types of data yields a more robust lake-level history than can be obtained from any one type alone. When smooth age-depth models are used, lake-level curves from multiple cores contain inconsistent intervals (i.e., one record indicates a rising lake level while another record indicates a falling lake level). These discrepancies were removed and the multiple records were combined into a single lake-level curve by developing age-depth relations that contain changes in deposition rate (i.e., gaps) where indicated by sedimentological evidence. The resultant curve shows that, prior to 18 ka, lake level was stable near the modern level, probably because the lake was overflowing. Between ca. 17.5 and 15.5 ka, lake level was ???40 m below the modern level, then fluctuated rapidly throughout the post-glacial interval. Following a brief rise centered ca. 15 ka ( = Raspberry Square phase), lake level lowered again to 15-20 m below modern from ca. 14.8-11.8 ka. This regression culminated in a lowstand to 40 m below modern ca. 12.5 ka, before a rapid rise to levels above modern ca. 11.5 ka. Lake level was typically lower than present throughout the Holocene, with pronounced lowstands 15-20 m below the modern level ca. 10-9, 7.0, 6.5-4.5, 3.5, 3.0-2.5, 2.0, and 1.5 ka. High lake levels near or above the modern lake occurred ca. 8.5-8.0, 7.0-6.5, 4.5-3.5, 2.5, and 0.7 ka. This lake-level history is more similar to records from Pyramid Lake, Nevada, and Owens Lake, California, than to those from Lake Bonneville, Utah. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Rowe, H. D.; Dunbar, R. B.
2004-09-01
A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.
Velpuri, N.M.; Senay, G.B.; Asante, K.O.
2011-01-01
Managing limited surface water resources is a great challenge in areas where ground-based data are either limited or unavailable. Direct or indirect measurements of surface water resources through remote sensing offer several advantages of monitoring in ungauged basins. A physical based hydrologic technique to monitor lake water levels in ungauged basins using multi-source satellite data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, a digital elevation model, and other data is presented. This approach is applied to model Lake Turkana water levels from 1998 to 2009. Modelling results showed that the model can reasonably capture all the patterns and seasonal variations of the lake water level fluctuations. A composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data is used for model calibration (1998-2000) and model validation (2001-2009). Validation results showed that model-based lake levels are in good agreement with observed satellite altimetry data. Compared to satellite altimetry data, the Pearson's correlation coefficient was found to be 0.81 during the validation period. The model efficiency estimated using NSCE is found to be 0.93, 0.55 and 0.66 for calibration, validation and combined periods, respectively. Further, the model-based estimates showed a root mean square error of 0.62 m and mean absolute error of 0.46 m with a positive mean bias error of 0.36 m for the validation period (2001-2009). These error estimates were found to be less than 15 % of the natural variability of the lake, thus giving high confidence on the modelled lake level estimates. The approach presented in this paper can be used to (a) simulate patterns of lake water level variations in data scarce regions, (b) operationally monitor lake water levels in ungauged basins, (c) derive historical lake level information using satellite rainfall and evapotranspiration data, and (d) augment the information provided by the satellite altimetry systems on changes in lake water levels. ?? Author(s) 2011.
Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.
1994-01-01
Collection and analysis of an extensive set of seismic-reflection profiles and cores from southern Lake Michigan have provided new data that document the history of the lake basin for the past 12,000 years. Analyses of the seismic data, together with radiocarbon dating, magnetic, sedimentologic, isotopic, and paleontologic studies of core samples, have allowed us to reconstruct lake-level changes during this recent part of the lake's history.The post-glacial history of lake-level changes in the Lake Michigan basin begins about 11.2 ka with the fall from the high Calumet level, caused by the retreat of the Two Rivers glacier, which had blocked the northern outlet of the lake. This lake-level fall was temporarily reversed by a major influx of water from glacial Lake Agassiz (about 10.6 ka), during which deposition of the distinctive gray Wilmette Bed of the Lake Michigan Formation interrupted deposition of red glaciolacustrine sediment. Lake level then continued to fall, culminating in the opening of the North Bay outlet at about 10.3 ka. During the resulting Chippewa low phase, lake level was about 80 m lower than it is today in the southern basin of Lake Michigan.The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has fallen about 6 m due to erosion of the Port Huron outlet, a trend around which occurred relatively small (± ∼2 m), short-term fluctuations controlled mainly by climatic changes. These cyclic fluctuations are reflected in the sed-imentological and sediment-magnetic properties of the sediments.
NASA Astrophysics Data System (ADS)
Gibson, D. K.; Bird, B. W.; Wattrus, N. J.; Escobar, J.; Fonseca, H.; Velasco, F.; Polissar, P. J.
2017-12-01
Geophysical analysis of lacustrine seismic stratigraphy at Laguna de Tota (hereafter "Tota"), Boyaca, Colombia, provides a record of lake level fluctuations that ranges from the Late Quaternary to the present. Changes in Tota's volume indicated by off-lap and on-lap sequences show that regional hydroclimate varied considerably during at least the last 40 Ka. Modern lake level variability at Tota has been directly linked to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), suggesting that past lake level changes identified in CHIRP seismic data may provide insight into past Pacific atmosphere-ocean dynamics. Here, we use high-resolution CHIRP data spanning the top 15 meters of sediment column and a preliminary age model based on Holocene sedimentation rates to investigate lake level variability over the past 40 Ka. Our data demonstrates that lake levels at Tota were generally lower between 40 and 30 Ka, experienced rapid and extreme fluctuations between 30 and 20 Ka (including the lowest recorded lake level at Tota during the LGM at 22 Ka), and gradually rose to the present day high stand between 20 and 0 Ka. Although the CHIRP data indicate significant late Quaternary lake level fluctuations, the timing and duration of these events needs to be more firmly constrained with additional investigations combining sediment core collection and analysis, geochronology, and other lake level proxies. Future work combining these methods holds tremendous potential in terms of reconstructing Late Quaternary atmosphere-ocean cycles.
NASA Astrophysics Data System (ADS)
Järvelill, Johanna-Iisebel; Koch, Rein; Raukas, Anto; Vaasma, Tiit
2018-03-01
The present study discusses results of heavy mineral analyses and radioactivity of beach sediments of Lake Peipsi. Such analyses are commonly done globally, but had not yet been conducted for the fourth largest lake in Europe. The average heavy mineral content in Lake Peipsi beach sediments along the northern and western coast is higher than usual for Estonian coastal and Quaternary sediments. Concomitantly, elevated radioactivity levels have been measured in several places, with the highest concentrations observed at Alajõe (1885.5 Bq/kg), which is over five times more than the recommended limit. The aim of the present study is to find sites with higher radioactivity levels, because the northern coast of Lake Peipsi is a well-known recreational area.
NASA Astrophysics Data System (ADS)
Anderson, M. T.; Stamm, J. F.
2014-12-01
The Great Lakes are a highly valued freshwater resource of the United States and Canada. The Lakes are the focus of a science-based restoration program, known as the Great Lakes Restoration Initiative (GLRI). Physical and chemical factors, such as inflows and nutrient loads to the Great Lakes can affect ecosystem function, contribute to the spread of invasive species and increase the occurrence of harmful algal blooms. Since about 1999, water levels in Lakes Superior and Michigan-Huron have been at or below the long-term average (1918 to present). Analyses of streamflow trends for the period 1960 to 2012 in watersheds draining into Lakes Superior and Michigan-Huron showed a long-term decline in average inflows, which helps to explain the persistently below-average lake levels. Recent climatic conditions of October 2013 to August 2014 have contributed to a rapid rise in lake levels, most notably in Lake Superior. Lake Superior recently reached an elevation of 602.56 feet above sea level in August 2014, which is the highest level in 17 years. Coincident with this recovery was the development of a large algal bloom in Lake Erie in August of 2014 that shut down the Toledo, Ohio municipal water supply. These anomalous, extreme deviations from long-term average lake levels will be examined to better understand the forcing factors that contributed to changes in inflow volumes and lake-levels. Particular focus will be given to the climatology of years when changes in lake levels are most pronounced, such as; the measured lake-level declines during 1964-1965 and 1998-2000; and lake-level rises during 1973-1974, 1987-1989, and 2013-2014. The climatology of years with periods of algal blooms will also be examined such as, 2003, 2008, 2011 and 2014.
Lake-level variability and water availability in the Great Lakes
Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.
2007-01-01
In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800 years ago. Within that record is a quasi-periodic rise and fall of about 160 ? 40 years in duration and a shorter fluctuation of 32 ? 6 years that is superimposed on the 160-year fluctuation. Recorded lake-level history from 1860 to the present falls within the longer-term pattern and appears to be a single 160-year quasi-periodic fluctuation. Independent investigations of past climate change in the basin over the long-term period of record confirm that most of these changes in lake level were responses to climatically driven changes in water balance, including lake-level highstands commonly associated with cooler climatic conditions and lows with warm climate periods. The mechanisms underlying these large hydroclimatic anomalies are not clear, but they may be related to internal dynamics of the ocean-atmosphere system or dynamical responses of the ocean-atmosphere system to variability in solar radiation or volcanic activity. The large capacities of the Great Lakes allow them to store great volumes of water. As calculated at chart datum, Lake Superior stores more water (2,900 mi3) than all the other lakes combined (2,539 mi3). Lake Michigan's storage is 1,180 mi3; Lake Huron's, 850 mi3; Lake Ontario's, 393 mi3; and Lake Erie's, 116 mi3. Seasonal lake-level changes alter storage by as much as 6 mi3 in Lake Superior and as little as 2.1 mi3 in Lake Erie. The extreme high and low lake levels measured in recorded lake-level history have altered storage by as much as 31 mi3 in Lake Michigan-Huron and as little as 9 mi3 in Lake Ontario. Diversions of water into and out of the lakes are very small compared to the total volume of water stored in the lakes. The water level of Lake Superior has been regulated since about 1914 and levels of Lake Ontario since about 1960. The range of Lake Superior water-level fluctuations and storage has not been altered greatly by regulation. However, fluctuations on Lake Ontario have been reduced from 6.6 ft preregulation
USDA-ARS?s Scientific Manuscript database
Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been pro...
Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Amosov, Mikhail; Strelkov, Ivan
2017-04-01
A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant precipitations. For example, the paleo-lakes of Bonneville and Lahontan located in the Great Basin, US vividly present the pluvial hypothesis. However, the lake-level of Central Asia and Altiplano altered because of a simultaneous climate cooling and moisture decrease. This phenomenon is called a climate cryoaridization. The moisture reduction in two studied regions is proved by the palinologic data. Beside the fact above, the climate cryoaridization of Altiplano lakes is also confirmed by the data taken from the flatland water bodies of South America that are located to the north of the described region. Even though they had an influence from Amazon convective center with its humid air masses moved towards Altiplano, these flatland lakes used to have lower level at the LGM stage. According to the explained hypothesis, there is one more assumption supporting an increasing effect of cryoaridic lakes. These water bodies occurred on the endorheic basins due to the snow accumulation in the surrounding mountain ranges, hence the snow line moved down closer to the Altiplano valleys.
Paleolakes in the Gobi region of southern Mongolia
NASA Astrophysics Data System (ADS)
Lehmkuhl, Frank; Grunert, Jörg; Hülle, Daniela; Batkhishig, Ochirbat; Stauch, Georg
2018-01-01
Numerous lakes and remnants of paleolakes exist in western and southern Mongolia. For six basins in the area, detailed geomorphological maps were compiled, based on extensive field studies and remote sensing datasets. Several phases of high and low lake levels were reconstructed and dated by radiocarbon and optically stimulated luminescence. During the marine isotope stage (MIS) 6 lakes in southern and western Mongolia mostly disappeared. In contrast, large paleolakes existed during the last interglacial (MIS 5e) and lasted probably until the beginning of the last glacial. These huge lakes were caused by a strong East Asian summer monsoon, which reached southern and even western Mongolia. During the MIS 3 the monsoon was considerably weaker and most of the lakes were relatively small or even disappeared. Higher lake levels of this period were only recorded at the Orog Nuur. However, at this time the lake was fed by glacial melt water from the Khangai Mountains. The MIS 2 was again a very dry period. The previously supposed phase of synchronous high lake levels and glaciations in southern and western Mongolia is not supported by the data presented here. During the Holocene, lakes in the western and southern part of the study area evolved differently. Early Holocene high lake levels were reconstructed for the western lakes, while most of the southern lakes had highest lake levels in the mid-Holocene. These differences can be attributed to different moisture bearing atmospheric systems. In the late Holocene lake levels were generally low and in the last 50 years most lakes completely disappeared due to a strong human usage of the water resources.
Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica
Whittaker, T.E.; Hall, B.L.; Hendy, C.H.; Spaulding, S.A.
2008-01-01
We report on Holocene surface-level variations of Lake Fryxell, Antarctica, as determined from multi-proxy analyses of 18 sediment cores. During this time accumulating sediments were predominantly aeolian sand with algal and carbonate laminae. Based on stratigraphy, mineralogy and diatom assemblages we suggest some carbonate laminae were deposited when lake level dropped, leading to concentration and subsequent precipitation of salts. Although lake level appears to have remained relatively stable throughout the Holocene, minor (<4.5 m below present) lowstands occurred at approximately 6400, 4700, 3800 and ??? 1600 cal. yr BP. The stability of Lake Fryxell during the Holocene contrasts with large-scale variability at other Dry Valleys lakes (eg, Lake Vanda) and with suggestions from chemical diffusion models of a near-desiccation at ???1200 cal. yr BP. The reason for the comparative stability of Lake Fryxell is uncertain, but may be the result of basin morphology and the number, aspect and proximity of meltwater sources. ?? 2008 SAGE Publications.
Dendrochronology and lakes: using tree-rings of alder to reconstruct lake levels
NASA Astrophysics Data System (ADS)
van der Maaten, Ernst; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; van der Maaten-Theunissen, Marieke; Wilmking, Martin
2014-05-01
Climate change is considered a major threat for ecosystems around the world. Assessing its effects is challenging, amongst others, as we are unsure how ecosystems may respond to climate conditions they were not exposed to before. However, increased insight may be obtained by analyzing responses of ecosystems to past climate variability. In this respect, lake ecosystems appear as valuable sentinels, because they provide direct and indirect indicators of change through effects of climate. Lake-level fluctuations of closed catchments, for example, reflect a dynamic water balance, provide detailed insight in past moisture variations, and thereby allow for assessments of effects of anticipated climate change. Up to now, lake-level data are mostly obtained from gauging records and reconstructions from sediments and landforms. However, these records are in many cases only available over relatively short time periods, and, since geoscientific work is highly demanding, lake-level reconstructions are lacking for many regions. Here, we present and discuss an alternative method to reconstruct lake levels, which is based on tree-ring data of black alder (Alnus glutinosa L.). This tree species tolerates permanently waterlogged and temporally flooded conditions (i.e. riparian vegetation), and is often found along lakeshores. As the yearly growth of trees varies depending upon the experienced environmental conditions, annual rings of black alder from lakeshore vegetation likely capture information on variations in water table, and may therefore be used to reconstruct lake levels. Although alder is a relatively short-lived tree species, the frequent use of its' decay-resistant wood in foundations of historical buildings offers the possibility of extending living tree-chronologies back in time for several centuries. In this study, the potential to reconstruct lake-level fluctuations from tree-ring chronologies of black alder is explored for three lake ecosystems in the Mecklenburg Lake District, northeastern Germany. Tree-ring data were collected from black alder forests surrounding the lakes 'Tiefer See', 'Drewitzer See' and 'Großer Fürstenseer See'. At all research sites, increment cores were extracted from at least 15 trees (2 cores per tree) using an increment borer. In the tree-ring lab DendroGreif, these cores were prepared and annual tree-ring widths were measured. Thereafter, site-specific tree-ring chronologies were built using established detrending and standardization procedures. Preliminary results show that the growth of alder reacts upon water level fluctuations. We visually and statistically compare the developed tree-ring chronologies with historical lake-level records, and retrospectively model lake levels. Findings will be presented while critically reflecting upon the quality of these reconstructions.
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus
2017-04-01
Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments in terms of regional and large-scale climate variability during the past.
NASA Astrophysics Data System (ADS)
Leng, M. J.; Baneschi, I.; Zanchetta, G.; Jex, C. N.; Wagner, B.; Vogel, H.
2010-05-01
Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian-Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid's water level was low (high δ18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high δ13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower δ18Ocalcite suggest increase in humidity and lake levels till around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid δ13Corg are complacent, in contrast Lake Prespa shows consistently higher δ13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high δ18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low δ18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest δ18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka δ18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low δ18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.
NASA Astrophysics Data System (ADS)
Leng, M. J.; Baneschi, I.; Zanchetta, G.; Jex, C. N.; Wagner, B.; Vogel, H.
2010-10-01
Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian-Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid's water level was low (high δ18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high δ13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower δ18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, δ13Corg are complacent; in contrast, Lake Prespa shows consistently higher δ13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high δ18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low δ18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest δ18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, δ18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low δ18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, E.; Desimone, D.
Deglaciation of the Hoosic River drainage basin in southwestern Vermont was more complex than previously described. Detailed surficial mapping, stratigraphic relationships, and terrace levels/delta elevations reveal new details in the chronology of glacial Lake Bascom: (1) a pre-Wisconsinan proglacial lake was present in a similar position to Lake Bascom as ice advanced: (2) the northern margin of 275m (900 ft) glacial Lake Bascom extended 10 km up the Vermont Valley; (3) the 215m (705 ft) Bascom level was stable and long lived; (4) intermediate water planes existed between 215m and 190m (625 ft) levels; and (5) a separate ice tonguemore » existed in Shaftsbury Hollow damming a small glacial lake, here named glacial Lake Emmons. This information is used to correlate ice margins to different lake levels. Distance of ice margin retreat during a lake level can be measured. Lake levels are then used as control points on a Lake Bascom relative time line to compare rate of retreat of different ice tongues. Correlation of ice margins to Bascom levels indicates ice retreat was asynchronous between nearby tongues in southwestern Vermont. The Vermont Valley ice tongue retreated between two and four times faster than the Hoosic Valley tongue during the Bascom 275m level. Rate of retreat of the Vermont Valley tongue slowed to one-half of the Hoosic tongue during the 215m--190m lake levels. Factors responsible for varying rates of retreat are subglacial bedrock gradient, proximity to the Hudson-Champlain lobe, and the presence of absence of a calving margins. Asynchronous retreat produced splayed ice margins in southwestern Vermont. Findings from this study do not support the model of parallel, synchronous retreat proposed by many workers for this region.« less
NASA Astrophysics Data System (ADS)
Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.; Brakenridge, G. R.; Ricko, M.
2013-12-01
The USDA/NASA Global Reservoir and Lake Monitor (GRLM) provides satellite-based surface water level products for large reservoirs and lakes around the world. It utilizes a suite of NASA/CNES and ESA radar altimetry data sets and outputs near real time and archival products via a web interface. Several stakeholders utilize the products for applications that focus on water resources management and natural hazards mitigation, particularly in arid and semi-arid regions. The satellite data sets prove particularly useful in un-gauged or poorly gauged basins where in situ data is sparse. Here, we present water-level product examples based on data from the NASA/CNES Jason-2/OSTM mission, and the new ISRO/CNES SARAL mission. We also demonstrate product application from the viewpoint of various end users who have interests ranging from crop production and fisheries, to regional security and climate change. In the current phase of the program the team is also looking to the potential of additional lake/reservoir products such as areal extent (NASA/MODIS), lake volume variations (combined altimetry/imagery), and model-derived water levels, that will enhance the GRLM via improved observation and prediction, and provide a more global lake basin monitoring capability. Surface water level variations for Lake Nasser.
Velpuri, N.M.; Senay, G.B.; Asante, K.O.
2012-01-01
Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance model for (i) quantitative assessment of the impact of basin developmental activities on lake levels and for (ii) forecasting lake level changes and their impact on fisheries. From this study, we suggest that globally available satellite altimetry data provide a unique opportunity for calibration and validation of hydrologic models in ungauged basins. ?? Author(s) 2012.
Geohydrology of the lowland lakes area, Anchorage, Alaska
Zenone, Chester
1976-01-01
Unconsolidated deposits, chiefly of glacial origin, make up the surficial geologic materials in the Anchorage lowland lakes area , the western part of the Anchorage glacial outwash plain. Postglacial accumulation of peat, commonly 5 to 10 feet thick, and the presence of ground water at or very near the surface combine to create the swamp-muskeg terrane of much of the area. Deeper, confined ground water is also present beneath thick silt and clay layers that underlie the surficial deposits. Domestic water supply for the lowland lakes area is provided largely by public-supply wells completed in the deep, confined aquifers. No large perennial streams traverse the area, thus streamflow is not a major parameter in the area 's natural water balance. The major uses of surface water are recreational, including fishing and boating at several of the larger lakes, and private and commercial aircraft operations at Hood-Spenard Lakes floatplane base. The hydrology and water balance of these lakes is complex. Water levels in some lakes appear to be closely related to adjacent ground-water levels. Other lakes are evidently perched above the local water table. The relation of lake level to adjacent ground-water level may vary along the shoreline of a single lake. The effect of residential development practices on lake basin water balance is not completely understood. At Sand Lake, the largest lake in this area of rapid urbanization, the water level has declined about 6 feet since the early 1960's. (Woodard-USGS)
Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations
NASA Astrophysics Data System (ADS)
Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.
2017-12-01
Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.
Forecasting daily lake levels using artificial intelligence approaches
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal; Nikoofar, Bagher
2012-04-01
Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.
Zwirglmaier, Katrin; Keiz, Katharina; Engel, Marion; Geist, Juergen; Raeder, Uta
2015-01-01
The Osterseen Lake District in Bavaria consists of 19 small interconnected lakes that exhibit a pronounced trophic gradient from eutrophic to oligotrophic. It therefore presents a unique model system to address ecological questions regarding niche adaptation and Baas Becking's long standing hypothesis of “everything is everywhere, but the environment selects.” Here, we present the first assessment of the microbial diversity in these lakes. We sampled the lakes in August and December and used 454 pyrosequencing of 16S rRNA amplicons to analyze the microbial diversity. The diversity patterns between lakes and seasons were compared and the bacterial community composition was correlated with key chemical and physical parameters. Distinct patterns of bacterial diversity only emerged at the level of individual OTUs (operational taxonomic units), but not at the level of the major bacterial phyla. This emphasizes the high functional and physiological diversity among bacterial species within a phylum and calls for analysis of biodiversity at the level of OTUs in order to understand fine-scale biogeography. We were able to identify a number of cosmopolitan OTUs as well as specialist OTUs that were restricted to certain lakes or seasons, suggesting adaptation to specific ecological niches. PMID:26579082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, T. III; Street, F.A.; Howe, S.
The goal of the research described in this report is to document the climatic variability over the past 10,000 to 20,000 years in areas in which sites may be designated for the burial of nuclear wastes. Three separate data sets were studied, and the results are presented in three chapters. The first data set consisted of radiocarbon dates documenting past changes in lake levels in lakes and playas in the western United States. The sites were mapped where water levels were higher than the levels today and were presented in a table telling what evidence is available at each site.more » The lake-level fluctuations for the past 24,000 years at sites in the West were also mapped and time series for these fluctuations at four sites were presented. The second data set was a selection of the published radiocarbon-dated pollen diagrams from the western United States. These data are a valuable source of climatic information and complement the geological evidence of lake-level fluctuations in the West. A table is presented that gives the location, elevation, and number of radiocarbon dates for each site. The third data set was a set of fossil pollen data from 20 sites in the upper Midwest. These data were calibrated in terms of precipitation changes over the past 10,000 years, and maps are presented of the estimated precipitation changes between 10,000 and 7000 years ago and between 7000 years ago and today.« less
Lake Level Variation in Small Lakes: Not a Clear Picture
NASA Astrophysics Data System (ADS)
Starratt, S.
2017-12-01
Lake level is a useful tool for identifying regional changes in precipitation and evaporation. Due to the volume of water in large lakes, they may only record large-scale changes in water balance, while smaller lakes may record more subtle variations. However, the record of water level in small lakes is affected by a number of factors including elevation, bathymetry, nutrient load, and aquatic macrophyte abundance. The latest Quaternary diatom records from three small lakes with areas of <10 ha (Hobart Lake, OR, 1458 masl; Swamp Lake, CA, 1554 masl; Favre Lake, NV, 2899 masl) and a larger lake (Medicine Lake, CA, 2036 masl, 154 ha) were compared in this study. All the lakes have a deep central basin (>10 m) surrounded by a shallow (1-2 m) shelf. Changes in the abundance of diatoms representing different life habits (benthic, tychoplanktic, planktic) were used to identify lake level variation. Benthic taxa dominate the assemblage when only the central basin is occupied. As the shallow shelf is flooded, the abundance of tychoplanktic taxa increases. Planktic taxa increase with the establishment of stratification. Favre Lake presents the clearest indication of initial lake level rise (7600-5750 cal yr BP) and intermittent flooding of the shelf for the remainder of the record. Stratification appears to become established only in the last few hundred years. Higher nutrient levels in the early part of the Hobart Lake record lead to a nearly monotypic planktic assemblage which is replaced by a tychoplanktic-dominated assemblage as the lake floods the shelf at about 3500 cal yr BP. The last 500 years is dominated by benthic taxa associated with aquatic macrophytes. The consistent presence of planktic taxa in the Swamp Lake record suggests that the lake was stratified during most of its history, although slight variations in the relative abundances of planktic and tychoplanktic groups occur. The Medicine Lake record shows a gradual increase in planktic species between 11,400 and 5500 cal yr BP, reflecting a gradual increase in stratification. Changes in the abundance of benthic and planktic taxa during the remainder of the record indicate variations in the shallow (<2 m) part of the lake. These results indicate diatom ecological groups show promise as a proxy for lake level reconstructions, and further ground-truthing is necessary.
Fluctuation history of Great Salt Lake, Utah, during the last 13,000 years, part 2
NASA Technical Reports Server (NTRS)
Murchison, Stuart B.
1989-01-01
Great Salt Lake level fluctuations from 13,000 yr B.P. to the present were interpreted by examination of shoreline geomorphic features, shoreline deposits, archeologic sites, isotopic data, and palynologic data. After the conclusion of the Bonneville paleolake cycle, between 13,000 and 12,000 yr B.P. the lake regressed to levels low enough to deposit a littoral oxidized red bed stratum and a pelagic Glauber's salt layer. A late Pleistocene lake cycle occurred between 12,000 and 10,000 yr B.P. depositing several beaches, the highest reaching an altitude of about 4250 ft (1295.3 m). The lake regressed after 10,000 yr B.P., only to rise to 4230 ft (1289.2 m) between 9700 and 9400 yr B.P. and then gradually lower at least 15 ft (4.5 m) or more. Lake levels fluctuated between 4212 and 4180 ft (1284 and 1274 m) for the next 4000 years. A late Holocene lake cycle, constrained by radiocarbon ages between 3440 and 1400 yr B.P., is reported at a highest static level of 4221 ft (1286.5 m). After a lake level drop to altitudes ranging between 4210 and 4205 ft (1283.2 and 1281.6 m), a 4217 ft (1285.7 m) level was reached after 400 yr B.P. This level lowered to 4214 ft (1284.4 m) in the mid to late 1700 s A.D. The lake levels have since stabilized aroung a 4200 ft (1280 m) mean.
Willford, Wayne A.; Bergstedt, Roger A.; Berlin, William H.; Foster, Neal R.; Hesselberg, Robert J.; Mac, Michael J.; Passino, Dora R. May; Reinert, Robert E.; Rottiers, Donald V.
1981-01-01
Although lake trout (Salvelinus namaycush) were considered extinct in Lake Michigan by the mid 1950's, control of the parasitic sea lamprey (Petromyzon marinus) and extensive restocking resulted in an abundance of hatchery-produced lake trout in the lake by the early 1970's. However, no naturally produced yearling or older lake trout have been found in the lake during nearly a decade of assessment sampling. Among the numerous hypotheses proposed to account for this apparent reproductive failure of the planted lake trout, a frequently suggested cause is the well-documented contamination of the fish by toxic substances such as DDT and its metabolites, and polychlorinated biphenyls (PCB's) at concentrations reported as adversely affecting the hatching of eggs and survival of larval fish. However, manually stripped and fertilized eggs of Lake Michigan lake trout have hatched successfully and the fry have survived normally under a variety of hatchery conditions. This observation led to studies at the Great Lakes Fishery Laboratory on the performance and survival of fry hatched from eggs of Lake Michigan lake trout and exposed for 6 months to PCB's (Aroclor 1254) and DDE at concentrations similar to those present in offshore waters and zooplankton of Lake Michigan (10.0 ng/L PCB's and 1.0 ng/L DDE in water; 1.0 μg/g PCB's and 0.1 μg/g DDE in food), and at concentrations 5 and 25 times higher. Cumulative mortality of the fry exposed to simulated Lake Michigan levels of PCB's and DDE for 6 months was 40.7% — nearly twice that of unexposed (control) fry — and mortality at the highest exposure level was 46.5%. Evaluation of the growth, swimming performance, predator avoidance, temperature preference, and metabolism of the fry showed no significant effects attributable to exposure to PCB's and DDE, except for a lowering of preferred temperature at the highest (25x) exposures (the only concentration tested) to each contaminant and (additively) both contaminants combined. Although several factors have undoubtedly contributed to the lack of recruitment of naturally produced lake trout in Lake Michigan, the levels of PCB's and DDE present during the early to mid 1970's were sufficient to significantly reduce survival of any fry produced in the lake and thereby impede restoration of the lake trout population to self-sustainability. The added exposure of the fry to other toxic substances known to be present in the lake could have further reduced survival.
Dynamics of the Ili delta with consideration of fluctuations of the level of Lake Balkhash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdrasilov, S.A.; Tulebaeva, K.A.
1995-02-01
This article examines the dynamics of the Ili delta region of Russia, with consideration of the fluctuations of the level of Lake Balkhash. Level fluctuations over a period of approximately 700 years are reviewed, and numerical data is presented. It is shown that the dynamics of the delta region affect both the amplitude and duration of the cycle of fluctuations of the lake level. In particular, the phase of the delta cycle that started cuts off the peak of the maximum ordinate of the level at the end of the tranasgressive period reduces still more the minimum elevations of themore » lake level at the end of the regressive period. It also accelerates the time of occurence of individual phases of the intrasecular cycle.« less
1978-04-01
Colony Lake. The magnitude of the growth as indicated by projections of chlorophyll ’ a ’ levels made by the eutrophication model will be on the order...projected chloro- phyll ’ a ’ levels are unaffected by these reductions in suspended solids. However, some effects are projected for high flow years...present nutrient levels. Peak chlorophyll ’ a ’ levels of between 10 to 30 pg/l are projected for the reservoir even under pastoral conditions. The figure
NASA Astrophysics Data System (ADS)
Quade, J.; Kaplan, M. R.
2017-12-01
Paleoshorelines around Lago (Lake) Cardiel in southern Argentina (S48.9°, W71.3°; ∼275 m) record substantial changes in lake area over the past 25 ka. Our results combined with previous research show that during the last glacial maximum (or LGM, 23-21 ka), the lake stood at near modern levels, but had nearly dried up by ∼13 ka. Between 11.3 and 10.1 ka the lake reached its highest point (+54-58 m) and greatest extent in at least the last 40 ka. Lake levels dropped thereafter and experienced two lower-lake periods: 8.5-7.5 ka and 5-3.3 ka; and two higher-lake periods: 7.4-6 and ∼5.2 ka. In the last 3.5 ka, the lake has remained generally near or slightly above its present level. The depth and surface area of Lago Cardiel are controlled mainly by precipitation onto the lake and surrounding catchment, air and water temperature, and wind-speed related to local strength of the Southern Hemispheric Westerlies (SHW). Our lake-level reconstruction combined with evidence from other studies suggest that on average the core of the SHW was located well to the north (<45°S) of the Cardiel basin during the deep lake phase associated with the LGM, and was well to the south (>55°S?) during the hydrologic maximum of Cardiel in the early Holocene. The lower phases of the lake at 20.0-11.5, 8.5-7.5, and 5.0-3.3 ka generally correspond to cold conditions in other records, when we infer that the SHW were strongly focused around the latitudes of Cardiel at 49°S.
New paleoreconstruction of transgressive stages in the northern part of Lake Ladoga, NW Russia.
NASA Astrophysics Data System (ADS)
Terekhov, Anton; Sapelko, Tatyana
2016-04-01
Lake Ladoga is one of the largest lakes in the world and the largest in Europe. The watershed of lake Ladoga covers the North-Western part of European Russia and the Eastern Finland. Lake basin is on the border between the Baltic shield and the East European Platform. The most consistent paleoreconstructions of Lake Ladoga history are based on bottom sediments of smaller lakes, which used to be a part of Ladoga in the past. The stages of Ladoga evolution are directly connected with the history of the Baltic Ice Lake (BIL) and of the Ancylus Lake. Water level of these lakes was significant higher than nowadays level. Lake Ladoga in its present limits used to be an Eastern gulf of BIL and Ancylus Lake. The preceding paleoreconstructions of Ladoga water level oscillations were undertaken by G. de Geer, J. Ailio, E. Hyyppä, K. Markov, D. Kvasov, D. Malakhovskiy, M. Ekman, G. Lak, N. Davydova, M. Saarnisto, D. Subetto and others. The new data on multivariate analysis of bottom sediments of lakes which used to belong to Ladoga, collected in the last few years, allows to create several maps of Ladoga transgressive stages in Late Glacial period and post-glacial time. A series of maps showing the extent of Ladoga transgression was created based on lake sediments multivariate analysis and a GIS-modeling using the digital elevation data with an accuracy of several meters and an open-source software (QGIS and SAGA). Due to post-glacial rebound of the lake watershed territory, GIS-modeling should comprise the extent of the glacioisostatic uplift, so the chart of a present-day uplift velocity for Fennoscandia of Ekman and Mäkinen was used. The new digital elevation models were calculated for several moments in the past, corresponding to the most probable dates of smaller lakes isolation from Lake Ladoga. Then, the basin of Ladoga was "filled" with water into GIS program to the levels sufficient for the smaller lakes to join and to split-off. The modern coastlines of Ladoga and of the other water bodies on the discussed territory to compare with transgressive stages were obtained by calculating the Normalized Difference Water Index (NDWI) from Landsat-8 images (http://landsat.usgs.gov/).
NASA Astrophysics Data System (ADS)
Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai
2017-11-01
The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.
Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho
Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.
2009-01-01
Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Kiro, Yael; Goldstein, Steven L.; Garcia-Veigas, Javier; Levy, Elan; Kushnir, Yochanan; Stein, Mordechai; Lazar, Boaz
2017-04-01
Thick halite intervals recovered by the Dead Sea Deep Drilling Project cores show evidence for severely arid climatic conditions in the eastern Mediterranean during the last three interglacials. In particular, the core interval corresponding to the peak of the last interglacial (Marine Isotope Stage 5e or MIS 5e) contains ∼30 m of salt over 85 m of core length, making this the driest known period in that region during the late Quaternary. This study reconstructs Dead Sea lake levels during the salt deposition intervals, based on water and salt budgets derived from the Dead Sea brine composition and the amount of salt in the core. Modern water and salt budgets indicate that halite precipitates only during declining lake levels, while the amount of dissolved Na+ and Cl- accumulates during wetter intervals. Based on the compositions of Dead Sea brines from pore waters and halite fluid inclusions, we estimate that ∼12-16 cm of halite precipitated per meter of lake-level drop. During periods of halite precipitation, the Mg2+ concentration increases and the Na+/Cl- ratio decreases in the lake. Our calculations indicate major lake-level drops of ∼170 m from lake levels of 320 and 310 m below sea level (mbsl) down to lake levels of ∼490 and ∼480 mbsl, during MIS 5e and the Holocene, respectively. These lake levels are much lower than typical interglacial lake levels of around 400 mbsl. These lake-level drops occurred as a result of major decreases in average fresh water runoff, to ∼40% of the modern value (pre-1964, before major fresh water diversions), reflecting severe droughts during which annual precipitation in Jerusalem was lower than 350 mm/y, compared to ∼600 mm/y today. Nevertheless, even during salt intervals, the changes in halite facies and the occurrence of alternating periods of halite and detritus in the Dead Sea core stratigraphy reflect fluctuations between drier and wetter conditions around our estimated average. The halite intervals include periods that are richer and poorer in halite, indicating (based on the sedimentation rate) that severe dry conditions with water availability as low as ∼20% of the present day, continued for periods of decades to centuries, and fluctuated with wetter conditions that spanned centuries to millennia when water availability was ∼50-100% of the present day. These conclusions have potential implications for the coming decades, as climate models predict greater aridity in the region.
NASA Astrophysics Data System (ADS)
Frey, Holger; Haeberli, Wilfried; Huggel, Christian; Linsbauer, Andreas
2010-05-01
Due to the expected atmospheric warming, mountain glaciers will retreat, potentially collapse or even vanish completely during the 21st century. When overdeepened parts of the glacier bed are exposed in the course of glacier retreat, glacier lakes can form. Such lakes have a potential for hydropower production, which is an important source of renewable energy. Furthermore they are important elements in the perception of high-mountain landscapes and they can compensate the loss of landscape attractiveness from glacier shrinkage to a certain degree. However, glacier lakes are also a potential source of serious flood and debris flow hazards, especially in densely populated mountain ranges. Thus, methods for early detection of sites with potential lake formation are important for early planning and development of protection concepts. In this contribution we present a multi-scale approach to detect sites with potential future lake formation on four different levels of detail. The methods are developed, tested and - as far as possible - verified in the Swiss Alps; but they can be applied to mountain regions all over the world. On a first level, potential overdeepenings are estimated by selecting flat parts (slope < 5°) of the current glacier surface based on a digital elevation model (DEM) and digital glacier outlines. The same input data are used on the second level for a manual detection of overdeepenings, which are expected at locations where the following three criteria apply: (a) A distinct increase of the glacier surface slope in down-glacier direction; (b) an enlarged width followed by a narrow glacier part; and (c) regions with compressive flow (no crevasses) followed by extending flow (heavily crevassed). On the third level, more sophisticated approaches to model the glacier bed topography are applied to get more quantitative information on potential future lakes. Based on the results of this level, scenarios of future lake outbursts can be modeled with simple flow routing models. Finally, for potentially critical or dangerous situations, on-site geophysical measurements such as ground penetrating radar applied on different sections of a glacier can be performed on the fourth level to investigate the overdeepenings in more detail. These methods are verified based on historical data from the Trift glacier in the Bernese Alps, where a lake formed in front of the glacier since the 1990s up to the present. Potential future lake scenarios are presented for two regions in the Swiss Alps and the outburst potential of such future lakes is investigated for the Bernina region. The proposed method is an important step towards early detection of new potential flood hazards related to rapid glacier retreat. At the same time, it can form a basis for an integrative risk and benefit management relating to new glacier lakes.
NASA Astrophysics Data System (ADS)
Regmi, D.; Kargel, J. S.; Leonard, G. J.; Haritashya, U. K.; Karki, A.; Poudyal, S.
2017-12-01
With long-term temperature increases due to climate change, glacier lakes in several parts of the world are a fast-developing threat to infrastructure and downstream communities. There are more than 2000 glacier lakes in Nepal; while most pose no significant hazard to people, a comparative few are very dangerous, such as Tso Rolpa, Imja, Barun and Thulagi glacier lakes. The objectives of this study are to present 1) a review of prior glacier lake studies that have been carried out in the Nepal Himalaya; 2) recent research results, including bathymetric studies of the lakes; 3) a summary of possible infrastructure damages, especially multi-million-dollar hydropower projects, that are under threat of glacier lake outburst floods (GLOFs); 4) to present the outcome of the recently completed Imja lake lowering project, which is the highest altitude lake ever controlled by lowering the water level. This project is being undertaken as a response to a scientific ground-based bathymetric and geophysical survey funded by the United Nations Development Program and a satellite-based study of the long-term development of the lake (funded by NASA's SERVIR program, J. Kargel, PI). The objective of the Imja Lake GLOF mitigation project is to lower the water level by three meters to reduce the lake volume, increase the freeboard, and improve the safety of tourism, downstream communities, and the infrastructure of Nepal's Everest region. This GLOF mitigation step taken by Nepal's government to reduce the risk of an outburst flood is a good step to reduce the chances of a GLOF, and to reduce the magnitude of a disaster if a GLOF nonetheless occurs despite our best efforts. We will also present the prospects for the future of Imja Lake, including an outline of possible steps that could further reduce the hazards faced by downstream communities and infrastructure. Key words: Glacier Lakes; GLOF; Hydropower; Imja lake; lake lowering
Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.
2005-01-01
Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.
Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota
Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.
2000-01-01
Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.
NASA Astrophysics Data System (ADS)
Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.
2015-12-01
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.
Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.
2015-01-01
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9–15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world’s largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species. PMID:26644580
Lyons, Robert P; Scholz, Christopher A; Cohen, Andrew S; King, John W; Brown, Erik T; Ivory, Sarah J; Johnson, Thomas C; Deino, Alan L; Reinthal, Peter N; McGlue, Michael M; Blome, Margaret W
2015-12-22
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.
NASA Astrophysics Data System (ADS)
Alborzi, A.; Moftakhari, H.; Azaranfar, A.; Mallakpour, I.; Ashraf, B.; AghaKouchak, A.
2017-12-01
In recent decades, climate change and increase in human water withdrawal, combined, have caused ecological degradation in several terminal lakes worldwide. Among them, the shallow and hyper-saline Urmia Lake in Iran has experienced about 6 meters drawdown in lake level and 80% reduction in surface area. Here, we assess the imposed stress on Urmia Basin's water availability and Lake's ecological condition in response to coupled climate change and human-induced water withdrawal. A generalized river basin decision support system model consisting network flow is developed to simulate the basin-lake interactions under a wide range of scenarios. This model explicitly includes water management infrastructure, reservoirs, and irrigation and municipal water use. Studied scenarios represent a wide range of historic climate and water use scenarios including a historical baseline, future increase in water demand, and also improved water efficiency. In this presentation, we show the lake's water level, as a measure of lake's ecological health, under the compounding effects of the climate condition (top-down) and water use (bottom-up) scenarios. This method illustrates what combinations lead to failure in meeting the lake's ecological level.
NASA Astrophysics Data System (ADS)
Starratt, S. W.; Barron, J. A.; Kneeshaw, T.; Phillips, L.; Lowenstern, J.; Wanket, J. A.
2002-12-01
Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), medium- altitude (2,036 m) lake located within the summit caldera of Medicine Lake volcano, a dormant Quaternary shield volcano located in the southern Cascade Range. During September 1999 and 2000, high-resolution bathymetry, seismic-reflection profiles, and sediment cores were collected from the lake. Twenty six samples from core B100NC-1 (water depth 12.6 m; length 226 cm) were analyzed for physical properties, sediment grain size, diatoms, pollen, and total organic carbon (TOC). Using both 14C (AMS) dating and tephrochronology, the sediments at the bottom of the core are estimated to be 11,000 cal yr B.P., thus yielding an estimated average sedimentation rate of about 21 cm/1,000 yr. The lowermost part of the core (226 cm - ~200 cm) records the transition from glacial to interglacial conditions. During the period from about 11,000-7,200 cal yr B.P., lake level fluctuated between deeper oligotrophic conditions with a diatom flora dominated by Cyclotella spp. and shallower intervals with a diverse benthic flora. The relative low abundance (10-15%) of Abies (fir) pollen and relative high abundance (30-40%) of Artemesia (sagebrush) pollen in this interval suggest drier than present-day conditions. The lowest part of this interval (226 cm - 210 cm) is almost devoid of Cyclotella and may represent an ice-covered lake in which only a small benthic flora could exist around the margins of the lake where light penetration was the greatest. The sediments in this interval are relatively low in TOC and are dominated by glacial flour. From about 7,200 cal yr B.P. to the present, conditions have fluctuated between higher lake levels (three intervals) that are dominated by Cyclotella with a reduced number and diversity of benthic taxa, and lower lake levels (two intervals) during which the abundances of Cyclotella decrease to less than 10%. Relative values of Abies and Pinus (pine) pollen are higher during high lake levels, whereas pollen of aquatic taxa (primarily Isoetes [quillwort]) increases in significance at lower lake levels. Total organic carbon is higher during high stands and lower during low stands. Comparison with recently published multi-proxy studies of the Lake Tahoe-Truckee River-Pyramid Lake drainage system suggest that some of the changes in lake level observed at Medicine Lake between about 7,500-4,500 cal yr B.P. may be regional in nature, while fluctuations over the last 4,500 yr probably reflect conditions affecting only the local watershed.
NASA Astrophysics Data System (ADS)
Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.
2009-12-01
Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a strong influence on contaminant and nutrient dynamics and ecosystem of the lake.
NASA Astrophysics Data System (ADS)
Magny, Michel; Thew, Nigel; Hadorn, Philippe
2003-01-01
Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake-level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus-Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb-2, first part of the Bølling, ca. 14 650-14 450 cal. yr BP) was characterised by a generally low lake-level. A weak rise occurred during this zone. The Juniperus-Hippophaë to Betula zone transition coincided with a lake-level lowering, interrupted by a short-lived but marked phase of higher lake-level recorded at the neighbouring site of Hauterive-Champréveyres, but not present at Hauterive/Rouges-Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb-3, second part of the Bølling, ca 14 450-14 000 cal. yr BP), a marked rise in lake-level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake-level associated with raised values in Artemisia and other non-arboreal pollen. The last part of RPAZ CHb-3 saw a fall in lake-level. The lower lake-levels during RPAZ CHb-2 to early RPAZ CHb-3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake-level punctuating the GI 1e might be linked to the so-called Intra-Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen-isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges-Terres lake-level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1-Preboreal (RPAZ CHb-4b-4c) transition (except for a rise at ca. 11 450-11 400 cal. yr BP), and at the RPAZ CHb-4c-5 (Preboreal-Boreal) transition, following the Preboreal Oscillation (after 11 150 cal. yr BP). The Preboreal Oscillation coincided with higher lake-levels, its end being followed by a rapid expansion of Corylus, Quercus, Ulmus and Tilia. The Hauterive/Rouges-Terres lake-level record suggests that radiocarbon plateau at 12 600, 10 000 and 9500 14C yr BP corresponded to periods of generally lower lake-level. This suggests that an increase in solar activity may have contributed to both climatic dryness and a decrease in atmospheric radiocarbon content.
Engineered river flow-through to improve mine pit lake and river values.
McCullough, Cherie D; Schultze, Martin
2018-05-30
Mine pit lakes may develop at mine closure when mining voids extend below groundwater levels and fill with water. Acid and metalliferous drainage (AMD) and salinity are common problems for pit lake water quality. Contaminated pit lake waters can directly present significant risk to both surrounding and regional communities and natural environmental values and limit beneficial end use opportunities. Pit lake waters can also discharge into surface and groundwater; or directly present risks to wildlife, stock and human end users. Riverine flow-through is increasingly proposed to mitigate or remediate pit lake water contamination using catchment scale processes. This paper presents the motivation and key processes and considerations for a flow-through pit lake closure strategy. International case studies as precedent and lessons for future application are described from pit lakes that use or propose flow-through as a key component of their mine closure design. Chemical and biological processes including dilution, absorption and flocculation and sedimentation can sustainably reduce pit lake contaminant concentrations to acceptable levels for risk and enable end use opportunities to be realised. Flow-through may be a valid mine closure strategy for pit lakes with poor water quality. However, maintenance of existing riverine system values must be foremost. We further suggest that decant river water quality may, in some circumstances, be improved; notably in examples of meso-eutrophic river waters flowing through slightly acidic pit lakes. Flow-through closure strategies must be scientifically justifiable and risk-based for both lake and receptors potentially affected by surface and groundwater transport. Due to the high-uncertainty associated with this complex strategy, biotic and physico-chemical attributes of both inflow and decant river reaches as well as lake should be well monitored. Monitoring should directly feed into an adaptive management framework discussed with key stakeholders with validation of flow-through as a sustainable strategy prior to mine relinquishment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frey, H.; Haeberli, W.; Linsbauer, A.; Huggel, C.; Paul, F.
2010-02-01
In the course of glacier retreat, new glacier lakes can develop. As such lakes can be a source of natural hazards, strategies for predicting future glacier lake formation are important for an early planning of safety measures. In this article, a multi-level strategy for the identification of overdeepened parts of the glacier beds and, hence, sites with potential future lake formation, is presented. At the first two of the four levels of this strategy, glacier bed overdeepenings are estimated qualitatively and over large regions based on a digital elevation model (DEM) and digital glacier outlines. On level 3, more detailed and laborious models are applied for modeling the glacier bed topography over smaller regions; and on level 4, special situations must be investigated in-situ with detailed measurements such as geophysical soundings. The approaches of the strategy are validated using historical data from Trift Glacier, where a lake formed over the past decade. Scenarios of future glacier lakes are shown for the two test regions Aletsch and Bernina in the Swiss Alps. In the Bernina region, potential future lake outbursts are modeled, using a GIS-based hydrological flow routing model. As shown by a corresponding test, the ASTER GDEM and the SRTM DEM are both suitable to be used within the proposed strategy. Application of this strategy in other mountain regions of the world is therefore possible as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheider, W.A.; Brydges, T.G.
A review is presented which summarizes studies performed in Sudbury, Ontario area lakes during 1973-1979 and outlines an ongoing study which began in 1981. All lakes were neutralized with Ca(OH)/sub 2/ and CaCO/sub 3/ resulting in pH changes. Levels increased from 4.1 to 7.5 and remained high during the study. Following neutralization, waterborne levels of Cu were reduced by 48-95% from pretreatment values of 80-1100 ..mu..g/L/sup -1/ and Ni levels declined by 23-91% from pretreatment values of 250-1900 ..mu..gL/sup -1/. An immediate decline in phytoplankton standing stock followed neutralization but levels returned to pretreatment values within a few months. Phytoplanktonmore » community composition changed such that chrysophytes and diatoms replaced Cryptophyceae and Dinophyceae as dominants. Lakes were stocked with brook trout, Iowa darters, brook stickleback and smallmouth bass after neutralization. Extensive netting yielded no fish and mortality was attributed to Cu toxicity. Further lake neutralization experiments are being conducted to test the feasibility of whole-lake or site-specific neutralization to protect aquatic systems from further damage due to acidic precipitation, and to test the feasibility of using neutralization to rehabilitate an acidified, clear-water lake with low Cu and Ni levels to the point of establishing a self-sustaining lake trout population.« less
Metals in fish from the Upper Benue River and lakes Geriyo and Njuwa in northeastern Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eromosele, C.O.; Eromosele, I.C.; Muktar, S.L.M.
Lakes Geriyo and Njuwa occupy natural depressions near the upper Benue River in northeastern Nigeria. The lakes are flooded by the river during the rainy season spanning the months of May to September. Fishing activities on the lakes and river provide fish for consumption by the local communities. Industrial activity around the upper Benue River and the lakes is low and there is no information on other activities with the potential for polluting the Benue River as it flows from neighboring Cameroon. However, an unconfirmed report indicated high levels of lead in the upper Benue River, generally speculated as arisingmore » from biogeometrical factors. Trace elements, some of which are toxic, may accumulate in edible marine organisms to levels which may be deleterious to human health. For the upper Benue River and its associate lakes, Geriyo and Njuwa, there is yet no report of a systematic study to assess the levels of metals in fish found in these waters. This paper presents the results of a study on metal levels in fish collected from Lakes Geriyo and Njuwa and upper Benue River in northeastern Nigeria. 7 refs., 1 fig., 2 tabs.« less
Twichell, D.C.; Cross, V.A.
2009-01-01
Sidescan-sonar imagery collected in Lake Mead during 1999-2001, a period of high lake level, has been used to map the surficial geology of the floor of this large reservoir that formed upon completion of the Hoover Dam in 1935. Four surficial geologic units were identified and mapped: rock exposures and alluvial deposits that existed prior to the formation of the lake and thin post-impoundment sediments ( 1 m) deposited since the lake formed. Exposures of rock are most extensive in the narrow, steep-sided sections of the lake, while alluvial deposits are most extensive on the gentle flanks of the broader basin sections of the lake. Post-impoundment sediment is restricted to the floors of the original river valleys that now lie below lake level. These sediments are thickest in the deltas that form at the mouths of the Colorado River and its tributaries, but cover the entire length of the valley floors of the lake. This sediment distribution is consistent with deposition from turbidity currents. Lake level has dropped more than 30 m between collection of the sidescan imagery and publication of this report. During this time, thick delta deposits have been eroded and redistributed to deeper parts of the lake by turbidity currents. While present-day post-impoundment sediment distribution should be similar to what it was in 2001, the thickness may be greater in some of the deeper parts of the lake now.
Lake Level Changes in the Mono Basin During the Last Deglacial Period
NASA Astrophysics Data System (ADS)
Wang, X.; Ali, G.; Hemming, S. R.; Zimmerman, S. R. H.; Stine, S. W.; Hemming, G.
2014-12-01
Mono Basin, located in the southwestern corner of the US Great Basin, has long been known to have experienced large lake level changes, particularly during the last deglaciation. But until recently it was not possible to establish a reliable lake level time series. We discovered many visually clean, white, shiny, dense calcite samples in the basin, associated with tufa deposits from high terraces. Their low thorium, but high uranium contents allow precise and reproducible U/Th age determinations. A highly resolved history of a minimum lake level through the last deglaciation can therefore be inferred based on sample locations and their ages. We found that the lake level reached ~2030 m asl at ~20.4 ka, evidenced by calcite coatings on a tufa mound at the upper Wilson Creek. The lake then rose to ~2075 m by ~19.1 ka, shown by calcite cements on conglomerates from the Hansen Cut terrace. The lake climbed to at least ~2140 m at ~15.9 ka, indicated by beach calcites from the east Sierra slope. Such timing of the highest lake stand, occurring within Heinrich Stadial 1, is reinforced by U/Th dates on calcite coatings from widespread locations in the basin, including the Bodie Hills and Cowtrack Mountains. The lake then dropped rapidly to ~2075 m at ~14.5 ka. It stood near this height over the next ~300 years, evidenced by a few-centimeter thick, laminated calcite rims on the Goat Ranch tufa mounds. It subsequently plunged to ~2007 m at ~13.8 ka, indicated by calcite coatings from cemetery road tufa mounds. The lake level came back to ~2030 m at ~12.9 ka, as seen in upper Wilson Creek tufa mounds. The lake level had a few fluctuations within the Younger Dryas, and even shot up to ~2075 m at ~12.0 ka. It then fell to levels in accord with Holocene climatic conditions. Relative to the present lake level of ~1950 m, Mono Lake broadly stood high during Heinrich Stadial 1 and Younger Dryas, when the climate was extremely cold over the North Atlantic, and the Asian monsoon was much weakened. When the climate shifted from cold to warm, the lake dropped significantly, during the transition between Heinrich Stadial 1 and the Bølling time interval, and then during the Allerød period. The U/Th ages on the tufa samples therefore not only establish a highly resolved chronology of hydroclimate history in the Mono Basin, but also put the lake level oscillations in a global context.
Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA
Bacon, S.N.; Burke, R.M.; Pezzopane, S.K.; Jayko, A.S.
2006-01-01
Stratigraphic investigations of fluvio-deltaic and lacustrine sediments exposed in stream cuts, quarry walls, and deep trenches east of the Sierra Nevada in Owens Valley near Lone Pine, California have enabled the reconstruction of pluvial Owens Lake level oscillations. Age control for these sediments is from 22 radiocarbon (14C) dates and the identification and stratigraphic correlation of a tephra, which when plotted as a function of age versus altitude, define numerous oscillations in the level of pluvial Owens Lake during the latest Pleistocene and early Holocene. We have constructed a lake-level altitude curve for the time interval ???27,000 cal yr BP to present that is based on the integration of this new stratigraphic analysis with published surface stratigraphic data and subsurface core data. Pluvial Owens Lake regressed from its latest Pleistocene highstands from ???27,000 to ???15,300 cal yr BP, as recorded by ???15 m of down cutting of the sill from the altitudes of ???1160 to 1145 m. By ???11,600 cal yr BP, the lake had dropped ???45 m from the 1145 m sill. This lowstand was followed by an early Holocene transgression that attained a highstand near 1135 m before dropping to 1120 m at 7860-7650 cal yr BP that had not been recognized in earlier studies. The lake then lowered another ???30 m to shallow and near desiccation levels between ???6850 and 4300 cal yr BP. Fluvial cut-and-fill relations north of Lone Pine and well-preserved shoreline features at ???1108 m indicate a minor lake-level rise after 4300 cal yr BP, followed by alkaline and shallow conditions during the latest Holocene. The new latest Quaternary lake-level record of pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra Nevada and will assist regional paleoclimatic models for the western Basin and Range. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernández, Armand; Sáez, Alberto; Bao, Roberto; Raposeiro, Pedro M.; Trigo, Ricardo M.; Doolittle, Sara; Masqué, Pere; Rull, Valentí; Gonçalves, Vítor; Vázquez-Loureiro, David; Rubio-Inglés, María J.; Sánchez-López, Guiomar; Giralt, Santiago
2017-07-01
The location of the Azores Archipelago in the North Atlantic makes this group of islands an excellent setting to study the long-term behavior of large oceanic and atmospheric climate dynamic patterns, such as the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO). Here, we present the impacts of these patterns on Lake Empadadas (Azores Archipelago) from the Medieval Climate Anomaly (MCA) - Little Ice Age (LIA) transition to the present based on sedimentological, geochemical and biological characterizations of the sedimentary record. Multivariate analyses of a number of proxies including X-ray fluorescence (XRF), X-ray diffraction (XRD), total organic and inorganic carbon (TOC and TIC) and diatom life forms abundance reveal that the sedimentary infill evolution has been controlled by (i) fluctuations in the lake level and (ii) variations in organic matter accumulation. Both processes are governed by climate variability and modulated by anthropogenic activities associated with changes on the lake catchment. Changes in these two sedimentary processes have been used to infer five stages: (i) the MCA-LIA transition (ca. 1350-1450 CE) was characterized by a predominantly positive AMO phase, which led to intermediate lake levels and high organic matter concentration; (ii) the first half of the LIA (ca. 1450-1600 CE) was characterized by predominant lowstand conditions and intermediate organic matter deposition mainly related to negative AMO phases; (iii) the second half of the LIA (ca. 1600-1850 CE) was characterized by negative AMO and NAO phases, implying intermediate lake levels and high organic matter deposition; (iv) the Industrial era (ca. 1850-1980 CE) was characterized by the lowest lake level and organic matter accumulation associated with negative AMO phases; and (v) the period spanning between 1980 CE and the present reveals the highest lake levels and low organic matter deposition, being associated with very positive AMO conditions. At decadal-to-centennial scales, the influence of the AMO on Azorean climate plays a larger role than previously thought. In fact, the AMO appears to exert a stronger influence compared to the NAO, which is the main mode of climate variability at shorter time scales.
Microplastics in Taihu Lake, China.
Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong
2016-09-01
In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sifeddine, A.; Meyers, P. A.; Gustavo, A.; Spadano Albuquerque, A. L.; Turcq, B.; Campbello Cordeiro, R.; Abrao, J. J.
2004-12-01
Two cores from Caco Lake, Maranhao State (North Brazil) record different histories of sediment accumulation on the margin and center of the lake that reflect changes in lake level. Seismic profiles, mineralogy and organic geochemical studies, backed by radiocarbon dating, reveal variable climatic and environmental conditions over the last 21 Cal Kyr BP. During the Last Glacial Maximum, regional climate was predominantly dry but was interrupted by short humid phases as reflected by a succession of very thin layers of sand and organic matter. The late glacial climate was relatively wet and included two rapid lake-level increases accompanied by forest expansion. The two wet phases were separated by a phase where the lake level remained stable and the forest changes were marked by the development of cool "Podocarpus" forest. These humid climate periods differed significantly from present warm tropical conditions.. The Holocene period is characterized by progressive increase of lake level, which reaches his maximum at around 7,000 Cal years BP. The period between 4,000 Cal years BP and the present shows high variability in lake level. Comparing with other South American and African records, we conclude that Late Glacial humid conditions were controlled by intensification of the ITCZ or shifts of its position, resulting in southeasterly trade wind variations and in interconnection between northern South America and the Atlantic tropical ocean-atmosphere system. The climatic variability during the Holocene is probably the result of sub-Milankovitch solar cycles and regional responses to these global forcings that are related to Atlantic and Pacific variability and their interconnections.
NASA Astrophysics Data System (ADS)
Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.
2013-12-01
Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers, some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.
Guédron, S; Point, D; Acha, D; Bouchet, S; Baya, P A; Tessier, E; Monperrus, M; Molina, C I; Groleau, A; Chauvaud, L; Thebault, J; Amice, E; Alanoca, L; Duwig, C; Uzu, G; Lazzaro, X; Bertrand, A; Bertrand, S; Barbraud, C; Delord, K; Gibon, F M; Ibanez, C; Flores, M; Fernandez Saavedra, P; Ezpinoza, M E; Heredia, C; Rocha, F; Zepita, C; Amouroux, D
2017-12-01
Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Amosov, Mikhail
2014-05-01
Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and for its west part (the piedmonts of Tien Shan and Pamir Mountains). So it confirms a synchronous aridization in different parts of Central Asia. It was the result of amplification of winter Siberian anticyclone, weakening westerlies and East Asian summer monsoons. The observed discrepancy between vegetation conditions and lake-levels during LGM can be explained by lake-levels dependence on runoff as now from mountains, where snow and glaciers melt. Investigations in the area of Mongun Tayga (Tyva Republic in Russian Federation, Lake Hyargas Nuur basin) suggest that precipitation decreased by 30% during LGM, but at the same time snow accumulation increased due to lower temperature in mountains. Thus, special conditions were provided for climate cryoaridization, when vegetation was degraded due to lowering precipitation, but lake-levels grew due to higher runoff from mountain ranges.
Lake Afrera, a structural depression in the Northern Afar Rift (Red Sea).
Bonatti, Enrico; Gasperini, Elia; Vigliotti, Luigi; Lupi, Luca; Vaselli, Orlando; Polonia, Alina; Gasperini, Luca
2017-05-01
The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake's surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake's bottom area may be considered the equivalent of the "nodal deep" in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake's level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a "wet" stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This "wet" stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.
NASA Astrophysics Data System (ADS)
Forman, S. L.; Wright, D.
2015-12-01
Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is the presence of older, heavily dissected relict beaches up to 175 m above current lake level, which host beach rock and well developed carbonate rich soils. A preliminary OSL age of 145 ka, indicates that these surface are associated with MOI stage 6 and 5. The higher elevation of these beach either reflect tectonic up-warping, a change in elevation of the outlet to the Blue Nile or combination of these processes.
Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.
2006-01-01
The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in NO 3- concentrations resulting from the increased productivity. ?? 2007 Springer Science+Business Media, Inc.
Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China.
Tian, Chang; Pei, Haiyan; Hu, Wenrong; Hao, Daping; Doblin, Martina A; Ren, Ying; Wei, Jielin; Feng, Yawei
2015-11-01
Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.
Shideler, Gerald L.
1994-01-01
Coastal wetland ecosystems along the Great Lakes shorelines are extremely valuable natural resources. They provide numerous environmental and recreational benefits, and they serve as critical habitats for fish and wildlife populations. In general terms, wetlands can be defined as lands transitional between terrestrial and aquatic systems; they are characterized by periodic submergence or a water table at or near the surface and a predominance of hydric soils and hydrophytes. Changes in shoreline positions over time result in concomitant changes in the amount of adjacent coastal wetlands, frequently resulting in a permanent loss of these valuable resources. In the Great Lakes region, the main natural cause of shoreline changes are lake-level fluctuations that result from two interactive factors. One factor is the glacio-isostatic rebound of the lake basins, which has been occurring since the end of the late Wisconsin glaciation to the present. This crustal rebounding has slowly uplifted previous lake outlets, warped and tilted lake basins, and changed lake levels and shoreline positions. On the basis of historic lake-level gauge records, measured modern differential vertical uplift rates range from 0.26 ft/century in the southern part of the Great Lakes drainage basin to 1.74 ft/century in the northern part of the basin (Larsen, 1989). The second factor contributing to lake-level fluctuations is climate variability, which controls the amount of regional precipitation and evaporation, storm frequency, runoff, and resulting lake levels. Climate variability can occur over a wide spectrum of time scales; it can range from seasonal variations, to long-term trends of a few years or decades in duration, to trends lasting hundred of thousands of years. Climatic variations, in conjunction with glacio-isostatic rebound, have resulted in substantial temporal variability of the Great Lakes shorelines and associated wetland tracts during post-glacial times.
The Dynamics of Laurentian Great Lakes Surface Energy Budgets
NASA Astrophysics Data System (ADS)
Spence, C.; Blanken, P.; Lenters, J. D.; Gronewold, A.; Kerkez, B.; Xue, P.; Froelich, N.
2015-12-01
The Laurentian Great Lakes constitute the largest freshwater surface in the world and are a valuable North American natural and socio-economic resource. In response to calls for improved monitoring and research on the energy and water budgets of the lakes, there has been a growing ensemble of in situ measurements - including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms -deployed through an ongoing, bi-national collaboration known as the Great Lakes Evaporation Network (GLEN). The objective of GLEN is to reduce uncertainty in Great Lakes seasonal and 6-month water level forecasts, as well as climate change projections of the surface energy balance and water level fluctuations. Although It remains challenging to quantify and scale energy budgets and fluxes over such large water bodies, this presentation will report on recent successes in three areas: First, in estimating evaporation rates over each of the Great Lakes; Second, defining evaporation variability among the lakes, especially in winter and; Third, explaining the interaction between ice cover, water temperature, and evaporation across a variety of temporal and spatial scales. Research gaps remain, particularly those related to spatial variability and scaling of turbulent fluxes, so the presentation will also describe how this will be addressed with enhanced instrument and platform arrays.
NASA Astrophysics Data System (ADS)
Phartiyal, B.
2016-12-01
The climate system plays an important role in the geomorphological dynamics of a region. The cold, arid, high altitude, tectonically active areas of Ladakh (India) in Trans Himalaya, western Tibetan Plateau is none exception. Noticeable change in the landscape with a shift from fluvial to lacustrine regime at 10000 yrs BP forming big open valley lakes occupying the present day river valleys is attributed to the early Holocene northward advancement of the mean latitudinal position of the summer ITCZ causing wetter conditions in this dry area. The glaciers of the Ladakh range are almost depleted and the northern range glaciers show andrastic retreat in the Quaternary time. Lakes were studied using multi-proxies, to record centennial and decadal scale climatic variability. Spatial and temporal setting of Spituk palaeolake (12600-240 cal yrs BP) along Indus River, was analyzed using multi proxies. The lake that extended for 40-50 km covering an area of 106 km2, was formed after Older Dryas as a result of river blockage by precipitation induced debris flow and seismicity. Two lake phases between 12600-9000 and 5500-3200 cal yrs BP show stable lake conditions and have synchronous relationship between high variation in monsoon intensity, high δ18O values in the Guliya core, rise in temperature and high solar insolation. High magnetic susceptibility and clay content along with diversified diatom and other freshwater algae and land derived organic matter are indicative of fresh water supply leading to high lake level from 4700 yr BP onwards in the present pro-glacial lakes studied. The multi-proxy data provides evidence of much higher and stable lake level during 3700 yr BP and 3000 yr BP onwards due to high water supply in these lake. It is in contrast to the records of weak ISM conditions and low lake level in rest of the part of Indian peninsula during the period. The study also suggests strong western disturbance activity during 4800-3000 yr BP leading to high lake level in this region. The ongoing researches aim to make an inventory/dataset of these records and address the climate-tectonics interaction with respect to the lake outburst consequences.
Kincare, K.A.
2007-01-01
The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography. ?? 2006 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Callaghan, K. L.; Wickert, A. D.; Michael, L.; Fan, Y.; Miguez-Macho, G.; Mitrovica, J. X.; Austermann, J.; Ng, G. H. C.
2017-12-01
Groundwater accounts for 1.69% of the globe's water storage - nearly the same amount (1.74%) that is stored in ice caps and glaciers. The volume of water stored in this reservoir has changed over glacial-interglacial cycles as climate warms and cools, sea level rises and falls, ice sheets advance and retreat, surface topography isostatically adjusts, and patterns of moisture transport reorganize. During the last deglaciation, over the past 21000 years, all of these factors contributed to profound hydrologic change in the Americas. In North America, deglaciation generated proglacial lakes and wetlands along the isostatically-depressed margin of the retreating Laurentide Ice Sheet, along with extensive pluvial lakes in the desert southwest. In South America, changing patterns of atmospheric circulation caused regional and time-varying wetting and drying that led to fluctuations in water table levels. Understanding how groundwater levels change in response to these factors can aid our understanding of the effects of modern climate change on groundwater resources. Using a model that incorporates temporally evolving climate, topography (driven by glacial isostatic adjustment), ice extent, sea level, and spatially varying soil properties, we present our estimates of changes in total groundwater storage in the Americas over the past 21000 years. We estimate depth to water table at 500-year intervals and at a 30-arcsecond resolution. This allows a comparative assessment of changing groundwater storage volumes through time. The model has already been applied to the present day and has proven successful in estimating modern groundwater depths at a broad scale (Fan et al., 2013). We also assess changing groundwater-fed lakes, and compare model-estimated lake sizes and locations to paleorecords of these lakes. Our data- and model-integrated look back at the terminal Pleistocene provides an estimate of groundwater variability under extreme climate change. Preliminary results show changes in groundwater storage within the Americas on the order of tens of centimetres in units of equivalent global sea-level change.
Pathiratne, A; Chandrasekera, L W H U; Pathiratne, K A S
2009-09-01
The present study reports the first analysis of water pollutants in Sri Lankan waters using a suite of biomarkers in Nile tilapia (Oreochromis niloticus) residing in Bolgoda Lake which receives urban, industrial and domestic wastes from multiple sources. The fish were collected from the lake in the dry period (April 2005) and wet periods (September 2005, October 2006) and the levels of biomarkers viz. hepatic ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), metallothioneins, biliary fluorescent aromatic compounds, brain and muscle cholinesterases (ChE) were compared with those of the laboratory reared control fish and the fish obtained from a less polluted water body, Bathalagoda reservoir (reference site). The results revealed that biomarker levels of the fish collected from the reference site were not significantly different from the controls. Hepatic EROD and GST activities in fish from Bolgoda Lake were induced 4.2-16.6 folds and 1.4-3.3 folds respectively compared with the control fish. Analysis of bile in the lake fish revealed recent uptake of naphthalene, pyrene and benzo(a)pyrene type polycyclic aromatic hydrocarbons (PAHs). The induction of EROD activities in feral fish reflects the exposure of fish to aryl hydrocarbon receptor agonists including PAHs present as pollutants in the Bolgoda Lake. Cholinesterase activity in the fish inhabiting one sampling site of Bolgoda Lake was lower (22-40% inhibition) than the activity measured in the control fish indicating the presence of anticholinesterase pollutants in the area. Hepatic metallothionein levels in the lake fish were higher (1.9-3.2 folds) in comparison to the controls indicating metal exposure. The results support the potential use of these biomarkers in Nile tilapia in assessing pollution in tropical water bodies.
Advancing the Explicit Representation of Lake Processes in WRF-Hydro
NASA Astrophysics Data System (ADS)
Yates, D. N.; Read, L.; Barlage, M. J.; Gochis, D.
2017-12-01
Realistic simulation of physical processes in lakes is essential for closing the water and energy budgets in a coupled land-surface and hydrologic model, such as the Weather Research and Forecasting (WRF) model's WRF-Hydro framework. A current version of WRF-Hydro, the National Water Model (NWM), includes 1,506 waterbodies derived from the National Hydrography Database, each of which is modeled using a level-pool routing scheme. This presentation discusses the integration of WRF's one-dimensional lake model into WRF-Hydro, which is used to estimate waterbody fluxes and thus explicitly represent latent and sensible heat and the mass balance occurring over the lakes. Results of these developments are presented through a case study from Lake Winnebago, Wisconsin. Scalability and computational benchmarks to expand to the continental-scale NWM are discussed.
Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.
2002-01-01
The Yellowstone caldera, like many other later Quaternary calderas of the world, exhibits dramatic unrest. Between 1923 and 1985, the center of the Yellowstone caldera rose nearly one meter along an axis between its two resurgent domes (Pelton and Smith, 1979, Dzurisin and Yamashita, 1987). From 1985 until 1995-6, it subsided at about two cm/yr (Dzurisin and others, 1990). More recent radar interferometry studies show renewed inflation of the northeastern resurgent dome between 1995 and 1996; this inflation migrated to the southwestern resurgent dome from 1996 to 1997 (Wicks and others, 1998). We extend this record back in time using dated geomorphic evidence of postglacial Yellowstone Lake shorelines around the northern shore, and Yellowstone River levels in the outlet area. We date these shorelines using carbon isotopic and archeological methods. Following Meyer and Locke (1986) and Locke and Meyer (1994), we identify the modern shoreline as S1 (1.9 ? 0.3 m above the lake gage datum), map paleoshoreline terraces S2 to S6, and infer that the prominent shorelines were cut during intracaldera uplift episodes that produced rising water levels. Doming along the caldera axis reduces the gradient of the Yellowstone River from Le Hardys Rapids to the Yellowstone Lake outlet and ultimately causes an increase in lake level. The 1923-1985 doming is part of a longer uplift episode that has reduced the Yellowstone River gradient to a ?pool? with a drop of only 0.25 m over most of this 5 km reach. We also present new evidence that doming has caused submergence of some Holocene lake and river levels. Shoreline S5 is about 14 m above datum and estimated to be ~12.6 ka, because it post-dates a large hydrothermal explosion deposit from the Mary Bay area (MB-II) that occurred ~13 ka. S4 formed about 8 m above datum ~10.7 ka as dated by archeology and 14C, and was accompanied by offset on the Fishing Bridge fault. About 9.7 ka, the Yellowstone River eroded the ?S-meander?, followed by a ~5 m rise in lake level to S2. The lowest generally recognizable shoreline is S2. It is ~5 m above datum (3 m above S1) and is ~8 ka, as dated on both sides of the outlet. Yellowstone Lake and the river near Fishing Bridge were 5-6 m below their present level about 3-4 ka, as indicated by 14C ages from submerged beach deposits, drowned valleys, and submerged Yellowstone River gravels. Thus, the lake in the outlet region has been below or near its present level for about half the time since a 1 km-thick icecap melted from the Yellowstone Lake basin about 16 ka. The amplitude of two rises in lake and river level can be estimated based on the altitude of Le Hardys Rapids, indicators of former lake and river levels, and reconstruction of the river gradient from the outlet to Le Hardys Rapids. Both between ~9.5 ka and ~8.5 ka, and after ~3 ka, Le Hardys Rapids (LHR) was uplifted about 8 meters above the outlet, suggesting a cyclic deformation process. Older possible rises in lake level are suggested by locations where the ~10.7 ka S4 truncates older shorelines, and valleys truncated by the ~12.6 ka S5 shoreline. Using these controls, a plot of lake level through time shows 5-7 millennial-scale oscillations since 14.5 ka. Major cycles of inflation and deflation are thousands of years long. Le Hardys Rapids has twice been uplifted ~8 m relative to the lake outlet. These two locations span only the central 25% of the historic caldera doming, so that if we use historic doming as a model, total projected uplift would be ~32 m. This ?heavy breathing? of the central part of the Yellowstone caldera may reflect a combination of several possible processes: magmatic inflation, tectonic stretching and deflation, and hydrothermal fluid sealing and inflation followed by cracking of the seal, pressure release, and deflation. Over the entire postglacial period, subsidence has balanced or slightly exceeded uplift as shown by older shorelines that descend towards the caldera axis. We
Projecting Future Water Levels of the Laurentian Great Lakes
NASA Astrophysics Data System (ADS)
Bennington, V.; Notaro, M.; Holman, K.
2013-12-01
The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.
Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.
Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.
2006-01-01
An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a tidally averaged discharge ranging from 1310 to 1510 m3 s-1. ?? 2006 Regents of the University of Colorado.
Evaluating the size and extent of paleolakes in central Tibet during the late Pleistocene
NASA Astrophysics Data System (ADS)
Shi, Xuhua; Furlong, Kevin P.; Kirby, Eric; Meng, Kai; Marrero, Shasta; Gosse, John; Wang, Erchie; Phillips, Fred
2017-06-01
Subhorizontal lake shorelines allow a geodynamic test of the size and extent of a hypothesized paleolake in central Tibet, the East Qiangtang Lake (EQL), during the last interglacial period (marine isotope stage (MIS) 5e). Reconstructions based on relict lake deposits suggest that the EQL would have been 400 m deep and over 66,000 km2. Models of flexural rebound driven by lake recession predict that shorelines near the EQL center, at the present-day location of Siling Co, would have rebounded 60-90 m above their initial elevation. New 36Cl chronology of the highest relict shorelines around Siling Co indicates that they reflect lake levels between 110 and 190 ka. These shorelines, however, are presently >300 m below their predicted elevations, implying a substantially smaller water load. Our results reveal that the expansion of Tibetan lakes during MIS 5e was relatively limited. Instead, individual lakes were supplied by river networks, much as they are today.
Watkins, James M.; Weidel, Brian C.; Fisk, Aaron T.; Rudstam, Lars G.
2017-01-01
Since the mid-1970s, successful Lake Ontario management actions including nutrient load and pollution reductions, habitat restoration, and fish stocking have improved Lake Ontario. However, several new obstacles to maintenance and restoration have emerged. This special issue presents management-relevant research from multiple agency surveys in 2011 and 2012 and the 2013 Cooperative Science and Monitoring Initiative (CSMI), that span diverse lake habitats, species, and trophic levels. This research focused on themes of nutrient loading and fate; vertical dynamics of primary and secondary production; fish abundance and behavior; and food web structure. Together these papers identify the status of many of the key drivers of the Lake Ontario ecosystem and contribute to addressing lake-scale questions and management information needs in Lake Ontario and the other Great Lakes and connecting water bodies.
Climatic data for Mirror Lake, West Thornton, New Hampshire, 1984
Sturrock, A.M.; Buso, D.C.; Scarborough, J.L.; Winter, T.C.
1986-01-01
Research on the hydrology of Mirror lake, (north-central) New Hampshire includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: temperature of lake water surface; dry-bulb and wet-bulb air temperatures; wind speed at 3 levels above the water surface; and solar and atmospheric radiation. Data are collected at raft and land stations. (USGS)
Sensitivity of the East African rift lakes to climate variability
NASA Astrophysics Data System (ADS)
Olaka, L.; Trauth, M. H.
2009-04-01
Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a simple model written on a Matlab code to illustrate the lake volume and area response to climate of surficialy closed, graben shaped and panshaped lake basins. From preliminary results, lake basins that are sensitive to climate variability have a high HI and high aridity index, which will be presented in this conference
NASA Astrophysics Data System (ADS)
Francke, Alexander; Wagner, Bernd; Just, Janna; Sadori, Laura; Masi, Alessia; Vogel, Hendrik; Lindhorst, Katja; Krastel, Sebastian; Dosseto, Anthony; Rothacker, Leo; Leicher, Niklas; Gromig, Raphael
2016-04-01
Lake Ohrid, presumably the oldest lake of Europe located at the border of Macedonia and Albania, is about 30 km long, 15 km wide, and up to 290 m deep. In 2013, an ICDP deep drilling campaign was carried out under the umbrella of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. At the main drill site (DEEP) in the central part of Lake Ohrid, the uppermost 568 m from a total sediment fill of ca. 700 m were recovered. Initial data from core catcher material indicate that the sediment sequence covers more than 1.2 million years. An age model, which is based on 11 tephrostratigragphic tie points and on tuning of biogeochemical proxy data versus orbital parameters reveals that that the upper 247 m of the DEEP site sequence cover the time period between 637 ka (MIS16) and the present. Inhere, we present sedimentological, (bio-)geochemical, environmental magnetic, and pollen data for the time period between MIS6 (191 ka) and MIS5 (71 ka). The data imply that MIS6 was one of the most severe glacial periods, while MIS5 was likely one of the more pronounced interglacial during the past 637 kyrs. The repercussions of these high amplitude climatic and environmental variations during this period are recorded in the sedimentological archive of Lake Ohrid. Previous studies based on hydro-acoustic and sediment core data from the northeastern part of the lake basin have shown that the lake level of Lake Ohrid was likely 60 m lower during MIS6. The ˜60 m lower lake level at Lake Ohrid during MIS6 can at least partly be explained by the ongoing subsidence, which persists in the basin until today. However, in the DEEP site sediments, the MIS6/MIS5 transition occurs at ca. 50 m sediment depth. This implies that climate-induced lake level fluctuation at Lake Ohrid are less severe compared for example to Lake Van (Turkey), were a 260 m lower lake level has been reported for the Younger Dryas. The imprint of the environmental variations between 191 ka and 71 ka can also be seen in the catchment dynamics around the lake. Extraordinary high sedimentation rates, high clastic and negligible authigenic matter concentrations in DEEP site sediments during MIS6 imply enhanced erosion in the catchment. Thereby, elemental ratios (Zr/K) and environmental magnetic data (S-ratio) suggest that predominantly the products of chemical weathered, K-depleted old soils were transported into the lake. In contrast, a low sedimentation rate despite high authigenic matter concentrations during MIS5 implies less erosion in the catchment. In order to obtain more information about the catchment dynamics at Lake Ohrid, future studies will encompass the analyses of uranium and lithium isotopes. U isotopes (234U and 238U) can be used to assess the balance between deep and shallow erosion, while Li isotopes (7Li and 6Li) can inform on the extent of chemical weathering in the sediment source area. The application of these tools on a Late Glacial to Holocene record from Lake Dojran (Macedonia, Greece) has recently shown that climatic perturbations (8.2 and 4.2 cooling event) and anthropogenic land use have a direct impact on the catchment dynamics.
Occurrence of pesticides in fish tissues, water and soil sediment from Manzala Lake and River Nile.
Osfor, M M; Abd el Wahab, A M; el Dessouki, S A
1998-02-01
Pesticides constitute the major source of potential environmental hazard to man and animal as they are present and concentrated in the food chain. This study was conducted on 136 samples of water, sediment and fish for detection and determination of pesticide residues in this ecosystem. Highly significant differences were found in levels of Indian, heptachlor, endrin, dieldrin, P,P'-DDE and propoxur in River Nile water when compared with that of Manzala Lake. Levels of Indian, endrin, malathion and diazinon were significantly higher in soil sediment of Manzala Lake, while the levels of heptachlor, aldrine, P,P'-DDE, DDT, parathion, propoxur and zectran were significantly higher in soil sediment of River Nile. Boury fish of Manzala Lake contained higher levels of heptachlor, aldrin, P,P'-DDE and malathion, while boury fish of River Nile contained a higher level of zectran only. This survey, thus indicated that Manzala Lake and even the River Nile which was used as control are heavily contaminated with chlorinated hydrocarbons (Indian, heptachlor, aldrin, endrin, dieldrin, P,P'-DDE and DDT), organic phosphorus compounds (malathion, dimethoat, diazinon and parathion) and carbamate pesticides (propoxur and zectran).
Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California
NASA Astrophysics Data System (ADS)
Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.
2009-12-01
Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty in the hydrological conceptual model, and increase confidence in the model’s ability to forecast future lake conditions. The Lake Merced Lake-Level Model will help decision-makers with a straightforward, practical analysis of the major contributions to lake-level declines that can be used to support engineering, environmental and other decisions.
NASA Astrophysics Data System (ADS)
Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.
2018-06-01
Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.
Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida
Heinz, Gary H.; Percival, H. Franklin; Jennings, Michael L.
1991-01-01
Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching success of Lake Apopka eggs.
Earth Observations taken by the Expedition 15 Crew
2007-04-30
ISS015-E-05815 (30 April 2007) --- Algae in Great Salt Lake, Utah is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. According to scientists, the Great Salt Lake of northern Utah is a remnant of glacial Lake Bonneville that extended over much of present-day western Utah, and into the neighboring states of Nevada and Idaho, approximately 32,000 to 14,000 years ago. During this time, the peaks of adjacent ranges such as the Promontory and Lakeside Mountains were most likely islands. As climate warmed and precipitation decreased in the region, glaciers that fed melt-water to Lake Bonneville disappeared, and the lake began to dry up. The present-day Great Salt Lake is a terminal lake in that water does not flow out of the lake basin. Water loss through the year is due primarily to evaporation, and when this loss exceeds input of water from rivers, streams, precipitation, and groundwater the lake level decreases. This is particularly evident during droughts. This process of evaporation, together with the relatively shallow water levels (maximum lake depth is around 33 feet), has led to increased salinity (dissolved salt content) of the lake waters. The north arm of the Lake, displayed in this image, typically has twice the salinity of the rest of the lake due to impoundment of water by a railroad causeway that crosses the lake from east to west. This restriction of water flow has led to a striking division in the types of algae and bacteria found in the north and south arms of the lake. In the northern arm (north of the causeway), the red algae Dunaliella Salina and the bacterial species Halo bacterium produce a pronounced reddish cast to the water, whereas the south arm (south of the causeway) is dominated by green algae such as Dunaliella viridis. The Great Salt Lake also supports brine shrimp and brine flies; and is a major stopover point for migratory birds including avocets, stilts, and plovers.
NASA Astrophysics Data System (ADS)
Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael
2017-04-01
During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake levels were synchronous across the northern Dead Sea, although differences do exist. These discrepancies can possibly be explained in part by the tectonic nature of the basin. Within the 5017-1-A section, the interpreted changes in depositional environments derived primarily from the gamma ray log patterns show a good correlation in time with sequence-chronostratigraphic framework, extracted lake level curves and paleohydrological records of other areas worldwide. Sequence stratigraphic analysis presented here allows for a detailed, high resolution examination of the sedimentary sequences in the Northern Dead Sea Basin together with an independent proxy that is an indirect indicator of changes in relative lake level.
NASA Astrophysics Data System (ADS)
Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas
2016-04-01
In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake-level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas de grandes lagos patagónicos. Licenciatura thesis, Universidad Nacional de La Plata, Argentina. Richter, A., Marderwald, E., Hormaechea, J.L., Mendoza, L., Perdomo, R., Connon, G., Scheinert, M., Horwath, M., Dietrich, R. (2015): Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records. Journal of Limnology (accepted), doi:10.4081/jlimnol.2015.1189. Richter A, Hormaechea JL, Dietrich R, Perdomo R, Fritsche M, Del Cogliano D, Liebsch G, Mendoza L, 2009. Anomalous ocean load tide signal observed in lake-level variations in Tierra del Fuego. Geophys. Res. Lett. 36:L05305. Savcenko, R., and W. Bosch (2012), EOT11a - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry. Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Report Number 89.
NASA Astrophysics Data System (ADS)
Ducret, Gabriel; Doin, Marie-Pierre; Lasserre, Cécile; Guillaso, Stéphane; Twardzik, Cedric
2010-05-01
In order to increase our knowledge on the lithosphere rheological structure under the Tibetan plateau, we study the loading response due to lake Siling Co water level changes. The challenge here is to measure the deformation with an accuracy good enough to obtain a correct sensivity to model parameters. InSAR method in theory allow to observe the spatio-temporal pattern of deformation, however its exploitation is limited by unwrapping difficulties linked with temporal decorrelation and DEM errors in sloppy and partially incoherent areas. This lake is a large endhoreic lake at 4500~m elevation located North of the strike-slip right lateral Gyaring Co fault, and just to the south of the Bangong Nujiang suture zone, on which numerous left-lateral strike slip are branching. The Siling Co lake water level has strongly changed in the past, as testified by numerous traces of palaeo-shorelines, clearly marked until 60 m above present-day level. In the last years, the water level in this lake increased by about 1~m/yr, a remarkably fast rate given the large lake surface (1600~km2). The present-day ground subsidence associated to the water level increase is studied by InSAR using all ERS and Envisat archived data on track 219, obtained through the Dragon cooperation program. We chose to compute 750~km long differential interferograms centered on the lake to provide a good constraint on the reference. A redundant network of small baseline interferograms is computed with perpendicular baseline smaller than 500~m. The coherence is quickly lost with time (over one year), particularly to the North of the lake because of freeze-thaw cycles. Unwrapping thus becomes hazardous in this configuration, and fails on phase jumps created by DEM contrasts. The first work is to improve the simulated elevation field in radar geometry from the Digital Elevation Model (here SRTM) in order to exploit the interferometric phase in layover areas. Then, to estimate DEM error, we mix the Permanent Scattered and Small Baseline methods. The aim is to improve spatial and temporal coherence. We use as a reference strong and stable amplitude points or spatially coherent areas, scattered within the SAR scene. We calculate the relative elevation error of every point in the neighbourhood of reference points. A global inversion allows to perform spatial integration of local errors at the radar image scale. Finally, we evaluate how the DEM correct ion of wrapped interferograms improves the unwrapping step. Furthermore, to help unwrapping we also compute and then remove from the wrapped interferograms the residual orbital trend and the phase-elevation relationship due variations in atmospheric stratification. Stack of unwrapped small baseline interferograms show clearly the average subsidence rate around the lake of about 4 mm/yr associated to the present-day water level increase. To compare the observed deformation to the water level elevation changes, we extract from satellite images in the period 1972 to 2009 the water level changes. The deformation signal is discussed in terms of end-members visco-elastic models of the lithosphere and uppermost mantle.
VanDeHey, Justin A.; Sloss, Brian L.; Peeters, Paul J.; Sutton, Trent M.
2009-01-01
Management of commercially exploited fish should be conducted at the stock level. If a mixed stock fishery exists, a comprehensive mixed stock analysis is required for stock-based management. The lake whitefish Coregonus clupeaformis comprises the primary commercial fishery across the Great Lakes. Recent research resolved that six genetic stocks of lake whitefish were present in Lake Michigan, and long-term tagging data indicate that Lake Michigan's lake whitefish commercial fishery is a mixed stock fishery. The objective of this research was to determine the usefulness of microsatellite data for conducting comprehensive mixed stock analyses of the Lake Michigan lake whitefish commercial fishery. We used the individual assignment method as implemented in the program ONCOR to determine the accuracy level at which microsatellite data can reliably identify component populations or stocks. Self-assignment of lake whitefish to their population and stock of origin ranged from > 96% to 100%. Evaluation of genetic stock discreteness indicated a moderately high degree of correct assignment (average = 75%); simulations indicated supplementing baseline data by ∼ 50 to 100 individuals could increase accuracy by up to 4.5%. Simulated mixed stock commercial harvests with known stock composition showed a high degree of correct proportional assignment between observed and predicted harvest values. These data suggest that a comprehensive mixed stock analysis of Lake Michigan's lake whitefish commercial fishery is viable and would provide valuable information for improving management.
Filling of Spirit Lake, Washington, May 18, 1980 to July 31, 1982
Meyer, William; Carpenter, Philip J.
1983-01-01
The rockslide/debris avalanche from the north face of Mount St. Helens that precipitated the volcano 's eruption on May 18, 1980 , blocked outflow from Spirit Lake, Washington. There has been no surface outflow since that time. From May 21, 1980, when the first measurement of lake level was made, to August 1, 1982, Spirit Lake has increased its volume from 122,800 acre-ft to 264 ,000 acre-ft, an increase of 115%. Lake level has risen approximately 54 ft during this period. Hydrologic and geologic properties of the debris dam are unknown, but the materials obviously are easily erodible. Steep walled channels up to 60 ft deep have been eroded into the dam and are extending headward toward the lowest points on the crest. In addition, it appears that the lower areas on the crest of the dam are underlain by ash cloud deposits of low density. Indications are that the debris dam could fail by headward erosion, by overtopping with rapid downcutting, or by ' piping ' and rapid erosion. Each type of failure can produce rapid release of stored lake water with very high discharge rates. On the basis of observed filling rates of the lake over the last two yr and precipitation records at four long-term, low altitude National Weather Service stations, it is expected that normal precipitation will fill the lake to the dam crest in December 1985. This estimate is also based on the assumption that loss of water from the lake by seepage continues at the present rate until December 1985. With normal precipitation during the coming yr (August 1982 through July 1983 the lake will fill to a level 50 ft below the lowest existing point on the crest of the debris dam, which is at 3,532 ft altitude. If precipitation exceeds normal by 1.5 times during this coming year, the lake level will be 40 ft below the 3 ,532-ft crest of the debris dam by the end of July 1983. This same lake level can be reached by the end of March 1983 if precipitation from October through March is twice the winter mean. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Xiao, K.; Griffis, T. J.; Baker, J. M.; Bolstad, P. V.; Erickson, M. D.; Lee, X.; Wood, J. D.; Hu, C.
2017-12-01
Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. For example, the water level of White Bear Lake (WBL) declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The annual evaporation for years 2014 through 2016 were 559±22 mm, 779±81 mm, and 766±11 mm, respectively. The larger evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr-1. Mass balance analysis implied that the lake level declines at WBL during 1986-1990 and 2003-2012 were mainly caused by the coupled low precipitation and high evaporation. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm yr-1 over this century, which is largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.
NASA Technical Reports Server (NTRS)
Strong, A. E. (Principal Investigator)
1974-01-01
The author has identified the following significant results. According to Lake Michigan records, the pH levels have been steadily increasing as the lake becomes more eutrophic. Numerous upwellings during the summer of 1973, beginning with the late July event, appear to be triggering a chemical precipitation of calcium carbonate. The upwelling provides abundant carbon dioxide into the surface water and results in massive blooms of phytoplankton. As the CO2 is utilized by these microscopic plants the pH is increased (acidity decreases) and CaCO3 no longer is able to remain in solution. The precipitation takes place where the phytoplankton are living, near depths of 10 meters. Therefore, the whiting observed by ERTS-1 is only seen in the green band, as red cannot penetrate but a few meters. With these whitings, secci disc readings lower in July from 10-15 meters to 3-5 meters and green, milky water is observed by research vessels. It appears that whitings have been becoming more frequent since the middle 60's but until ERTS-1 the extent had never been realized. Calcium levels are too low, presently, for a similar precipitate in Lakes Huron or Superior. However, whitings have been seen by ERTS-1 in Lakes Erie and Ontario where the calcium ion and pH levels are more like those found in Lake Michigan.
Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan
2015-03-01
Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.
Chivas, Allan R.; Garcı́a, Adriana; van der Kaars, Sander; Couapel, Martine; Holt, Sabine; Reeves, Jessica M.; Wheeler, David J.; Switzer, Adam D.; Murray-Wallace, Colin V.; Banerjee, Debabrata; Price, David M.; Wang, Sue X.; Pearson, Grant; Edgar, N. Terry; Beaufort, Luc; de Deckker, Patrick; Lawson, Ewan; Cecil, C. Blaine
2001-01-01
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km×300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
NASA Astrophysics Data System (ADS)
Dietze, Elisabeth; Slowinski, Michal; Kienel, Ulrike; Zawiska, Izabela; Brauer, Achim
2014-05-01
Deciphering the main processes contributing to lake and landscape evolution in the northern central European lowlands on different temporal scales is one of the main targets of the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association. In the context of future climatic changes especially the hydrological system is a vulnerable landscape component that showed considerably large changes in the recent past. The analysis of lake sediment archives can help to infer long-term dynamics of regional lake and groundwater levels, although available proxy information needs to be studied carefully, as water level changes are only one trigger. Lake Fürstenseer See (53°19'N, 13°12'E, lake level in 2009: 63.3 m a.s.l.) formed after the retreat of the Weichselian ice sheet in a subglacial channel in the direct forefront of the Pommerian ice margin. The ~2 km2 large lake (zmax = 24.5 m) has a (sub-) surficial catchment area of ~(20) 40 km2 including other smaller lakes and peatlands. In the past, the lake system was artificially dammed for the operation of water mills. Located within the well-drained sandur substrate, the lake levels vary with groundwater levels in response to hydrological and catchment-related groundwater recharge. Detrital matter input from fluvial activity can be excluded. Lake sediment cores at four sites along a transect down to 23 m water depth show distinct sediment facies patterns. Stratigraphic descriptions and non-destructive continuous micro-XRF scanning allowed the differentiation of the main sediment facies, which were microscopically described using thin sections. Quantification of total organic and inorganic matter (TOC, TIC, C/N-composition) and discontinuous macrorest, diatom and Cladocera analysis helped to approach the sedimentation history. Stable isotopes of (delta-180, delta-13C) were used for characterization of carbonates. A high amount of non-reworked terrestrial plant remains from prominent facies shifts were dated with AMS-14C and allowed to link the different cores, assess individual sedimentation rates and to evaluate sediment focusing in the lake. Carbonatic and organic gyttjas are the main sedimentary components related mainly to authigenic production. Sometimes, carbonates show detrital mineral structures and correlations with allochthonous components (K, Ti, Si) that can only be provided by reworking of shore and slope material or in times of intense aeolian transport. Sandy facies dominate only at near-shore, steep sites and form distinct layers at the current sediment limit. A robust statistical analysis considering compositional data constraints allows an objective compilation of indications for lake level change from water depth-related habitat changes and shore erosion. They oppose detrital matter input from aeolian processes in times of anthropogenically-cleared forests. A first lake level reconstruction from the Early Holocene to recent times will be presented and linked to climatic and/or anthropogenic drivers of regional hydrological changes.
Isolation and identification of Pathogenic Naegleria from Florida lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellings, F.M.; Amuso, P.T.; Chang, S.L.
1977-12-01
Five cases of primary amoebic meningoencephalitis associated with swimming in freshwater lakes have been recorded in Florida over the past 14 years. The present study demonstrated that pathogenic naegleria, the causative agent, is relatively widespread. Twelve of 26 lakes sampled only once yielded the amoeba. Populations in three of five lakes sampled routinely reached levels of one amoeba per 25 ml of water tested during the hot summer months. Overwintering in freshwater lake bottom sediments was demonstrated, showing that thermal-discharge pollution of waters plays a miniscule, if any, role in the maintenance of pathogenic naegleria in nature in this semitropicalmore » area.« less
NASA Astrophysics Data System (ADS)
Crowe, A. S.
2009-12-01
Beaches throughout the Great Lakes frequently are under health advisories for swimming due to elevated levels of E. coli. Many studies have shown that there are several potential sources of this E. coli (e.g., livestock, sewage treatment facilities, gulls and geese), and several mechanisms for delivering E. coli to the shoreline (e.g., rivers, creeks, storm water drains, currents, waves). But, groundwater is a mechanism for E. coli transport to the shoreline that is typically overlooked. Field studies undertaken at beaches throughout the Great lakes have measured levels of E. coli in the groundwater and sand at the groundwater-lake interface that are commonly over a 1000 times above Recreational Water Quality Guidelines, and that these high levels of E. coli are restricted to a zone below the beach adjacent to and within a few metres of the lake. Groundwater flow below beaches is always towards the shoreline with almost all groundwater discharge occurring at the groundwater-lake interface (i.e., not several or a few metres off-shore). Thus, groundwater discharge of the E. coli from zone represents a substantial and long-term reservoir for E. coli loading to the near shore recreational waters, and presents a potential health risk to swimmers. The high levels of E. coli in the sand and groundwater adjacent to the lake is also due to groundwater-lake interaction. During storms, wave runup and subsequent infiltration of lake water containing E. coli at the swash zone is the primary mechanism for delivering E. coli to the groundwater and sand adjacent to the lake. Field and modeling experiments show that storm events as short as a few hours can introduce substantial levels of E. coli to the groundwater because of the high inward groundwater velocities. However, its migration into the beach away from the shoreline is restricted to a few metres beyond the maximum extent of wave runup because groundwater flow below the beach continues to flow towards the shoreline creating a hydraulic barrier to inland migration of E. coli. Because groundwater discharge velocities following a storm event are much lower than the recharging groundwater velocities during infiltration, E. coli will enter the groundwater and sand much faster than in will discharge. Hence groundwater discharge of E. coli from this zone into the lake represents a long-term and continuous source of E. coli that will challenge regulators and beach managers who are trying to reduce levels of E. coli at swimming beaches throughout the Great Lakes.
Subaqueous geology and a filling model for Crater Lake, Oregon
Nathenson, M.; Bacon, C.R.; Ramsey, D.W.
2007-01-01
Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time. Lake level apparently is limited by leakage through a permeable layer in the northeast caldera wall. The deepest drowned beach approximately corresponds to the base of the permeable layer. Among a group of lake filling models, our preferred one is constrained by the drowned beaches, the permeable layer in the caldera wall, and paleoclimatic data. We used a precipitation rate 70% of modern as a limiting case. Satisfactory models require leakage to be proportional to elevation and the best fit model has a linear combination of 45% leakage proportional to elevation and 55% of leakage proportional to elevation above the base of the permeable layer. At modern precipitation rates, the lake would have taken 420 yr to fill, or a maximum of 740 yr if precipitation was 70% of the modern value. The filling model provides a chronology for prehistoric passage zones on postcaldera volcanoes that ceased erupting before the lake was filled. ?? 2007 Springer Science+Business Media B.V.
RECENT DEVELOPMENTS IN HYDROWEB DATABASE Water level time series on lakes and reservoirs (Invited)
NASA Astrophysics Data System (ADS)
Cretaux, J.; Arsen, A.; Calmant, S.
2013-12-01
We present the current state of the Hydroweb database as well as developments in progress. It provides offline water level time series on rivers, reservoirs and lakes based on altimetry data from several satellites (Topex/Poseidon, ERS, Jason-1&2, GFO and ENVISAT). The major developments in Hydroweb concerns the development of an operational data centre with automatic acquisition and processing of IGDR data for updating time series in near real time (both for lakes & rivers) and also use of additional remote sensing data, like satellite imagery allowing the calculation of lake's surfaces. A lake data centre is under development at the Legos in coordination with Hydrolare Project leaded by SHI (State Hydrological Institute of the Russian Academy of Science). It will provide the level-surface-volume variations of about 230 lakes and reservoirs, calculated through combination of various satellite images (Modis, Asar, Landsat, Cbers) and radar altimetry (Topex / Poseidon, Jason-1 & 2, GFO, Envisat, ERS2, AltiKa). The final objective is to propose a data centre fully based on remote sensing technique and controlled by in situ infrastructure for the Global Terrestrial Network for Lakes (GTN-L) under the supervision of WMO and GCOS. In a longer perspective, the Hydroweb database will integrate data from future missions (Jason-3, Jason-CS, Sentinel-3A/B) and finally will serve for the design of the SWOT mission. The products of hydroweb will be used as input data for simulation of the SWOT products (water height and surface variations of lakes and rivers). In the future, the SWOT mission will allow to monitor on a sub-monthly basis the worldwide lakes and reservoirs bigger than 250 * 250 m and Hydroweb will host water level and extent products from this
Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural?
Nelson, A W; Eitrheim, E S; Knight, A W; May, D; Wichman, M D; Forbes, T Z; Schultz, M K
2017-02-01
Coal is an integral part of global energy production; however, coal mining is associated with numerous environmental health impacts. It is well documented that coal-mine waste can contaminate the environment with naturally-occurring radionuclides from the uranium-238 ( 238 U) decay series. However, the behavior of the final radionuclide in the 238 U-series, i.e., polonium-210 ( 210 Po) arising from coal-mine waste-water discharge is largely unexplored. Here, results of a year-long (2014-2015) field study, in which the concentrations of 210 Po in sediments and surface water of a lake that receives coal-mine waste-water discharge in West Virginia are presented. Initial measurements identified levels of 210 Po in the lake sediments that were in excess of that which could be attributed to ambient U-series parent radionuclides; and were indicative of discharge site contamination of the lake ecosystem. However, control sediment obtained from a similar lake system in Iowa (an area with no coal mining or unconventional drilling) suggests that the levels of 210 Po in the lake are a natural phenomenon; and are likely unrelated to waste-water treatment discharges. Elevated levels of 210 Po have been reported in lake bottom sediments previously, yet very little information is available on the radioecological implications of 210 Po accumulation in lake bottom sediments. The findings of this study suggest that (Monthly Energy Review, 2016) the natural accumulation and retention of 210 Po in lake sediments may be a greater than previously considered (Chadwick et al., 2013) careful selection of control sites is important to prevent the inappropriate attribution of elevated levels of NORM in lake bottom ecosystems to industrial sources; and (Van Hook, 1979) further investigation of the source-terms and potential impacts on elevated 210 Po in lake-sediment ecosystems is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Annual maximum and minimum lake levels for Indiana, 1942-85
Fowler, Kathleen K.
1988-01-01
Indiana has many natural and manmade lakes. Lake-level data are available for 217 lakes. These data were collected during water years 1942-85 by use of staff gages and, more recently, continuous recorders. The period of record at each site ranges from 1 to 43 years. Data from the lake stations have been compiled, and maximum and minimum lake levels for each year of record are reported. In addition to annual maximum and minimum lake levels, each lake station is described by gage location, surface area, drainage area, period of record, datum of gage, gage type, established legal level, lake level control, inlets and outlets, and extremes for the period of record.
Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.
2011-01-01
The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
van Daele, M.; Audemard, F.; Beck, C.; de Batist, M.; van Welden, A.; Moernaut, J.; 2006 Shipboard Party, G.
2008-05-01
In January 2006, 76 high-resolution reflection seismic profiles were acquired in the Gulf of Cariaco, Northeast Venezuela. In the upper 100 m of sedimentary infill, 17 unconformity-bounded sequences were identified and mapped throughout the basin. Up to now, no core or borehole information is available to provide age constraints on these units. The sedimentary infill is cut by several faults, Riedel faults in the central part and the El Pilar fault (one of the main faults of the South American-Caribbean plate boundary) in the southern part of the gulf. The connection of the Gulf of Cariaco with the adjacent Cariaco Basin occurs at a present-day water depth of ~ 55 m. This implies that the gulf was disconnected from the world ocean and functioned as a lake during a large part of the last glacial. The main rivers entering the gulf drain the coastal mountain ranges and tend to form pronounced deltas at their inlet. During times when the gulf was a lake, periods with a dry climate resulted in dramatic lake-level lowstands and even complete desiccation/evaporation. The present-day depths of delta offlap breaks and the presence of lowstand/evaporite deposits can thus be used to estimate sea/lake level at the time of their formation. Detailed analysis of these stratigraphic sea/lake-level indicators allowed reconstructing the sea/lake-level history for the period encompassed by the 17 identified sequences. This sea/lake-level reconstruction also needed to be corrected for tectonic subsidence, affecting different parts of the gulf with different intensity. The reconstructed sea/lake-level curve of the Gulf of Cariaco was compared with the eustatic sea-level curve and with results of previous paleoclimate studies in Venezuela. The striking coherence between the eustatic curve and the amplitudes and absolute heights of successive reconstructed lowstands and highstands compelled us to tune our record to the eustatic curve in order to achieve a rough age estimate for our units. According to this age model, our seismic stratigraphy reaches back to MIS6, and the average sedimentation rate in the central parts of the gulf since MIS5e is 0.92 mm/y. Our data show that reconstructed lake levels in the Gulf of Cariaco, which represent a proxy for climate in NE- Venezuela, are very strongly coupled to the global stadials and interstadials of the last glacial period. Also the Younger Dryas is recognised in the sedimentary record of the Gulf of Cariaco as lowstand deposit resulting from an (almost) complete desiccation. Our data reveal that the stratigraphy of the Gulf of Cariaco holds a very accurate, complete and promising record of eustasy and climate change, at least since the penultimate glacial maximum. The quality of this record and the vicinity to the iconic Cariaco Basin make the Gulf of Cariaco an ideal target for future ocean drilling (or long coring).
NASA Astrophysics Data System (ADS)
Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel
2016-06-01
A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.
NASA Astrophysics Data System (ADS)
Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich
2016-04-01
In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by abrupt changes in the diatom flora, while in Lake Chad water levels decreased substantially. The lakes may have reached their highest levels between 8 and 7 ka cal BP until regressions started at about 6 ka cal BP. Lake Yoa, after a rapid change from freshwater to saline diatom species at that time, is characterized by a progressive lowering of its lake level which is punctuated by short humid episodes after 5 ka cal BP. In Lake Chad, the transition occurring at 5 ka BP is more abrupt, indicating a rapid decrease in freshwater input from tropical regions.
Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.
2016-10-19
Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2) closed-basin lake-level changes reflected groundwater-level changes in the Quaternary, Prairie du Chien, and Jordan aquifers; (3) the installation of outlet-control structures, such as culverts and weirs, resulted in smaller multiyear lake-level changes than lakes without outlet-control structures; (4) water levels in lakes primarily overlying Superior Lobe deposits were significantly more variable than lakes primarily overlying Des Moines Lobe deposits; (5) lake-level declines were larger with increasing mean lake-level elevation; and (6) the frequency of some of these characteristics varies by landscape position. Flow-through lakes and lakes with outlet-control structures were more common in watersheds with more than 50 percent urban development compared to watersheds with less than 50 percent urban development. A comparison of two 35-year periods during 1925–2014 revealed that variability of annual mean lake levels in flow-through lakes increased when annual precipitation totals were more variable, whereas variability of annual mean lake levels in closed-basin lakes had the opposite pattern, being more variable when annual precipitation totals were less variable. Oxygen-18/oxygen-16 and hydrogen-2/hydrogen-1 ratios for water samples from 40 wells indicated the well water was a mixture of surface water and groundwater in 31 wells, whereas ratios from water sampled from 9 other wells indicated that water from these wells receive no surface-water contribution. Of the 31 wells with a mixture of surface water and groundwater, 11 were downgradient from White Bear Lake, likely receiving water from deeper parts of the lake. Age dating of water samples from wells indicated that the age of water in the Prairie du Chien and Jordan aquifers can vary widely across the northeast Twin Cities Metropolitan Area. Estimated ages of recharge for 9 of the 40 wells sampled for chlorofluorocarbon concentrations ranged widely from the early 1940s to mid-1970s. The wide range in estimated ages of recharge may have resulted from the wide range in the open-interval lengths and depths for the wells.Results from stable isotope analyses of water samples, lake-sediment coring, continuous seismic-reflection profiling, and water-level and flow monitoring indicated that there is groundwater inflow from nearshore sites and lake-water outflow from deep-water sites in White Bear Lake. Continuous seismic-reflection profiling indicated that deep sections of White Bear, Pleasant, Turtle, and Big Marine Lakes have few trapped gases and little organic material, which indicates where groundwater and lake-water exchanges are more likely. Water-level differences between White Bear Lake and piezometer and seepage measurements in deep waters of the lake indicate that groundwater and lake-water exchange is happening in deep waters, predominantly downgradient from the lake and into the lake sediment. Seepage fluxes measured in the nearshore sites of White Bear Lake generally were higher than seepage fluxes measured in the deep-water sites, which indicates that groundwater-inflow rates at most of the nearshore sites are higher than lake-water outflow from the deep-water sites.
NASA Astrophysics Data System (ADS)
Murdock, K. J.; Brown, L. L.
2012-12-01
The coastal lake Heimerdalsvatnet is located on the island of Vestvågøya in the Lofoten Islands off the northern coast of Norway. Recently, Balascio et al. (2011) performed a comprehensive investigation of the lake using bathymetric and sub-bottom profiles, bulk geochemistry, diatom assemblages, molecular biomarkers, high resolution X-ray fluorescence (XRF) scans, and magnetic susceptibility to study its geologic history over the past 7800 years. They determined the lake had undergone a regressive sea level sequence and identified three distinct and separate units exemplifying the transition of a restricted marine environment within the lake to a completely freshwater lacustrine setting. Unit I, located at the bottom of the 5.8m sediment core, spans 7800-6500 years before present and is at a period of time when sea level was higher than the edge of the lake basin. Magnetic susceptibility is extremely low during this period, and it is theorized that this is due to stratification within the lake from a density difference between the marine salt water and the influx of freshwater. Unit II is broken into Unit IIa and IIb, making up the transitional period within the lake history from 6500 to 4900 years before present. This phase is marked by fluxes of higher and lower magnetic susceptibility and shifts between more freshwater to brackish water biological markers. Unit III (4900 years to present) has high magnetic susceptibility compared to the other two units, and represents the final stage of the lake as a completely freshwater environment. Questions remain about the lake, such as what was driving the changes in magnetic susceptibility? Was it dilution of the magnetic grains due to higher productivity of organisms within the lake, or is it related to dissolution of magnetite due to anoxic conditions caused by lake stratification? Rock magnetic investigations using magnetic susceptibility, hysteresis parameters, and Curie temperature analyses have led to a better understanding of the causes of the magnetic fluctuations within the lake. In addition to Heimerdalsvatnet providing a wealth of information about sea level changes in the Arctic, it can also offer a unique opportunity to study paleomagnetic data during the Holocene. Initial measurements (performed at the Laboratoire de paléomagnétisme sédimentaire of ISMER) showed reliable paleomagnetic data for the most recent Unit III. However, Units I and II are not as consistent as Unit III. The rock magnetic investigation outlined above is also being used to better constrain the causes of inconsistency within the paleomagnetic record and provide insight as to how the paleomagnetic data can be interpreted at older ages.
Robertson, Dale M.; Rose, William J.; Juckem, Paul F.
2009-01-01
Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There
L-Lake macroinvertebrate community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1996-06-01
To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of manymore » other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.« less
NASA Astrophysics Data System (ADS)
Baker, P. A.; Fritz, S. C.; Seltzer, G. O.; Rigsby, C. A.; Lowenstein, T. K.; Ku, R.
2003-12-01
Seven drill cores were recovered from Lake Titicaca during the NSF/ICDP/DOSECC drilling expedition of 2001. Sub-lake floor drilling depths ranged from 53 to 139 m; water depths ranged from 40 to 232 m; recoveries ranged from 75 to 112 percent. Our most detailed multi-proxy analyses to date have been done on Core 2B raised from the central basin of the lake from 232 m water depth, drilled to 139.26 m sub-lakefloor with 140.61 m of total sediment recovered (101 percent). A basal age of 200 Ka is estimated by linear extrapolation from radiocarbon measurements in the upper 25 m of core; Ar-Ar dating of interbedded ashes and U/Th dating of abiogenic aragonites are underway. The volume and lake level of Lake Titicaca have undergone large changes several times during the late Quaternary. Proxies for these water level changes (each of different fidelity) include the ratio of planktonic-to-benthic diatoms, sedimentary carbonate content, and stable isotopic content of organic carbon. The most recent of these changes, has been described previously from earlier piston cores. In the early and middle Holocene the lake fell below its outlet to 85 m below modern level, lake salinity increased several-fold, and the Salar de Uyuni, which receives overflow from Titicaca, dessicated. In contrast, Lake Titicaca was deep, fresh, and overflowing (southward to the Salar de Uyuni) throughout the last glacial maximum from prior to 25,000 BP to at least 15,000 BP. According to extrapolated ages, the penultimate major lowstand of Lake Titicaca occurred prior to 60,000 BP, when seismic evidence indicates that lake level was about 200 m lower than present. Near the end of this lowstand, the lake also became quite saline. There are at least three, and possibly more, older lowstands, each separated temporally by periods in which the lake freshened dramatically and overflowed. These results will be compared with results from previous drilling in the Salar de Uyuni.
Variation laws and release characteristics of phosphorus on surface sediment of Dongting Lake.
Zhu, Guangrui; Yang, Ying
2018-05-01
The variation trend and growth rate of P were analyzed by the concentration of the phosphorus fraction on surface sediment of Dongting Lake from 2012 to 2016, to reveal the cumulative effect of P in the actual environment. Meanwhile, the adsorption kinetics and adsorption isotherm were employed to examine the P-release possibility of sediment, which predicts the yearly released sediment phosphorus in Dongting Lake. The actual growth rate of TP (Total Phosphorus) is 53 mg·(kg·year) -1 in East Dongting Lake, 39 mg·(kg·year) -1 in South Dongting Lake, and 29 mg·(kg·year) -1 in West Dongting Lake, while the sum of the phosphorus fraction growth rates has little difference from the rate of TP in sediments of the three areas of Dongting Lake. Furthermore, the Elovich model and the Langmuir crossover-type equations are established to present the adsorption characteristic of sediment in Dongting Lake; the result shows that the sediments play a source role for phosphorus in East and South Dongting Lake from zero equilibrium phosphorus concentration (EPC 0 ) in the present situation, but an adsorption effect on TP is shown in West Dongting Lake. When the conditions of environment change are ignored, the maximum P-sorption level in sediments of East Dongting Lake will reach in 2040 according to the actual growth rate of sediments, while that in West Dongting Lake and South Dongting Lake will be in 2046 and 2061, respectively.
Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.
2017-09-05
Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake, and White Bear Lake. Simulated lake-water levels and budgets for Snail Lake and White Bear Lake were affected by 30-percent changes in groundwater withdrawals and 5-percent changes in precipitation in the area, whereas the water level in Big Marine Lake was mainly affected by 5-percent precipitation changes. The effects of groundwater withdrawals on the lake-water levels depend on the number of wells and amount of withdrawals from wells near the lakes. Although lake-water levels are sensitive to precipitation changes, increases in groundwater withdrawals during dry periods exacerbate lake-water level declines. The calibrated, groundwater-flow model is a tool that water-resources managers can use to address future water management issues in the northeast Twin Cities Metropolitan Area.
Koblmüller, Stephan; Salzburger, Walter; Obermüller, Beate; Eigner, Eva; Sturmbauer, Christian; Sefc, Kristina M
2011-06-01
The conditions of phenotypic and genetic population differentiation allow inferences about the evolution, preservation and loss of biological diversity. In Lake Tanganyika, water level fluctuations are assumed to have had a major impact on the evolution of stenotopic littoral species, though this hypothesis has not been specifically examined so far. The present study investigates whether subtly differentiated colour patterns of adjacent Tropheus moorii populations are maintained in isolation or in the face of continuous gene flow, and whether the presumed influence of water level fluctuations on lacustrine cichlids can be demonstrated in the small-scale population structure of the strictly stenotopic, littoral Tropheus. Distinct population differentiation was found even across short geographic distances and minor habitat barriers. Population splitting chronology and demographic histories comply with our expectation of old and rather stable populations on steeper sloping shore, and more recently established populations in a shallower region. Moreover, population expansions seem to coincide with lake level rises in the wake of Late Pleistocene megadroughts ~100 KYA. The imprint of hydrologic events on current population structure in the absence of ongoing gene flow suggests that phenotypic differentiation among proximate Tropheus populations evolves and persists in genetic isolation. Sporadic gene flow is effected by lake level fluctuations following climate changes and controlled by the persistence of habitat barriers during lake level changes. Since similar demographic patterns were previously reported for Lake Malawi cichlids, our data furthermore strengthen the hypothesis that major climatic events synchronized facets of cichlid evolution across the East African Great Lakes. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao
2018-07-01
Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.
Barker, J.L.
1989-01-01
The water quality of the West Branch Lackawaxen River and the limnology of Prompton Lake in northeastern Pennsylvania were studied from October 1986 through September 1987 to determine past and present water-quality conditions in the basin, and to determine the possible effects of raising the lake level on the water quality of the Lake, of the river downstream, and of ground water. Past and present water quality of the West Branch Lackawaxen River and Prompton Lake generally meets State standards for high-quality waters that sup- port the maintenance and propagation of cold-water fishes. However, suggested criteria by the U.S. Environmental Protection Agency intended to control excessive algal growth in the lake are exceeded most, if not all, of the time for nitrogen and most of the time for phosphorus. The average annual total nitrogen load entering the lake is 114 tons. Of this total, 41 tons is inorganic nitrate plus nitrate, 48 tons organic nitrogen, and 25 tons ammonia nitrogen. Estimated annual yields of total nitrogen, inorganic nitrite plus nitrate, organic nitrogen, and ammonia nitrogen are 1.9, 9.7, 0.8, and 0.4 tons/mi2 (tons per square mile), respectively. The average annual phosphorus load is estimated to be 4.7 tons, which is equivalent to a yield of 0.08 tons/mi2. About 62 percent, or 2.9 tons, is dissolved phosphorus that is readily available for plant assimilation. The waters of the West Branch Lackawaxen River and Prompton Lake are decidedly phosphorus limited. The long-term average annual suspended-sediment yield to the lake is about 70 tons/mi2. Life expectancy of the 774 acre-feet of space allocated for sediment loads in the raised pool is estimated to be about 287 years. During the 1987 water year, about 51 percent of the annual sediment load was transported during 7 days by storm-water runoff. The maximum sediment discharge during the study period was 400 tons per day. Lake-profile studies show that thermal and chemical stratification develops in early June and persists through September. Water below a depth of about 20 feet becomes anoxic, or nearly so, by mid-July. Summer concentrations of chlorophyll are indicative of eutropic conditions. Although raising of the lake level is expected to increase the efficiency of the lake in trapping nutrients, the increased depth and volume will reduce the concentrations of available nutrients and, thereby, reduce the eutrophication potential of the lake. The water level in about 30 wells near the lake probably will rise after the lake level is raised, and the well yields probably will increase slightly. Flow of water form the lake to the aquifer as the lake is being raised may temporarily increase mineral content of water in the aquifer. After a new equilibrium is reached, however, water will again flow from the aquifer to the lake, thereby restoring the aquifer's water quality.
An assessment of mean annual precipitation in Rajasthan, India needed to maintain Mid-Holocene lakes
NASA Astrophysics Data System (ADS)
Gill, E.; Rajagopalan, B.; Molnar, P. H.
2013-12-01
Paleo-climate literature reports evidence of freshwater lakes over Rajasthan, a region of northwestern India, during the mid-Holocene (~6ka), where desert conditions prevail in present time. It's suggested that mid-Holocene temperatures were warmer, precipitation was nearly double current levels, and there was an enhanced La Niña-like state. While previous analyses infer the lakes were sustained by generally high precipitation and low evaporation, we provide a systematic analysis on the relevant energy budget quantities and the dynamic relationships between them. We have built a hydrological lake model to reconstruct lake levels throughout the Holocene. Model output is evaporation from the lake. Inputs are precipitation over the lake and catchment runoff, determined using precipitation, Preistley-Taylor evapotranspiration, interception and infiltration. Initial tests of the model have been completed with current climate conditions to ensure accurate behavior. Contemporary runs used station precipitation and temperature data [Rajeevan et al., 2006] for the region surrounding Lake Didwana (27°N 74°E). Digital elevation maps were used to compile lake bathymetry for Lake Didwana. Under current climate conditions, a full Lake Didwana (~ 9 m) empties over the first several years. While lake depth varies yearly, increasing with each monsoon season, variations following the initial decline are minimal (~ × 1.0 m). We ran the model with a 2000-year sequence of precipitation and temperature generated by resampling the observed weather sequences, with a suite of base line fractions of vegetation cover and increased precipitation, with solar insolation appropriate during the mid-Holocene period. Initial runs revealed that precipitation amount and percent of vegetated catchment area influence lake levels, but insolation alone does not. Incrementally changing precipitation (between current levels and a 75% increase) and percent of vegetated area (between 10-90%) reveals that a 50% increase in precipitation alone is not enough to reach the maximum lake levels reported by Enzel et al. [1999] of 7m during the mid-Hoocene. For Lake Didwana to reach maximum levels, both at least 50% more precipitation than today and a vegetated fraction of the catchment of at least 50% is required, but if precipitation were twice that today, and vegetation covered 50% of the area, the lake would have been deeper than 9 m. Future work involves generating precipitation and temperature series for 2000-year long sequences representing the early-, mid-, and late-Holocene using two approaches: k-nearest neighbor and generalized linear model. Using these, we'll run the lake model to determine what combinations of precipitation, evaporation, and other variables are necessary to sustain the lakes. While model runs suggest that monsoon rainfall should increase in a warming world, observations show we are currently in the longest epoch of below-normal south-Asian monsoonal rainfall. By using the mid-Holocene as an analog for a future warming world, this study could expand the understanding of the south-Asian monsoon's potential response to warming.
High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)
NASA Astrophysics Data System (ADS)
Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.
2015-12-01
The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.
NASA Astrophysics Data System (ADS)
Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian
2015-04-01
Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by transient increase of organic sedimentation. Increased deposition of colluvial deposits took place in Late Glacial and again about 200 years ago due to transient deforestation of the lake vicinity. Acknowledgements: This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association.
Jones, Michael L.; Koonce, Joseph F.; O'Gorman, Robert
1993-01-01
The offshore fish community of Lake Ontario is presently dominated by intensively managed, nonnative species: Alewife Alosa pseudoharengus and rainbow smelt Osmerus mordax at the planktivore level and stocked salmonines at the piscivore level. Salmonine stocking rates per unit area of Lake Ontario are the highest in the Great Lakes, and fishery managers are concerned about the sustainability of the fishery under present stocking policies, particularly with the recent collapse of the Lake Michigan fishery for chinook salmon Oncorhynchus tshawytscha. In this paper, we describe and present the results of a simulation model that integrates predator demand estimates derived from bioenergetics, prey and predator population dynamics, and a predation model based on the multiple-species functional response, Model reconstructions of historical alewife biomass trends and salmonine diets corresponded reasonably well with existing data for the period 1978–1992. The simulations suggest that current predator demand does not exceed the threshold beyond which alewife biomass cannot be sustained, but they indicate that the sustainability of the prey fish community is extremely sensitive to fluctuations in overwinter survival of alewife; an additional mortality of 25% in a single winter would be sufficient to cause the collapse of the alewife population. The model includes a number of assumptions and simplifications with a limited empirical basis; better estimates of salmonine survival rates, an evaluation of the importance of spatial and temporal interactions among predators and prey, and incorporation of the effects of recently observed declines in system productivity at lower trophic levels would significantly increase confidence in the model's projections.
Lake-level frequency analysis for Devils Lake, North Dakota
Wiche, Gregg J.; Vecchia, Aldo V.
1996-01-01
Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model for generating precipitation, evaporation, and inflow indicates that the upper lake-level exceedance levels from the water mass-balance model are particularly sensitive to parameter uncertainty. The sensitivity in the upper exceedance levels was caused almost entirely by uncertainty in the fitted probability distributions of the quarterly inflows. A method was developed for using long-term streamflow data for the Red River of the North at Grand Forks to reduce the variance in the estimated mean.Comparison of the annual lake-volume model and the water mass-balance model indicates the upper exceedance levels of the water mass-balance model increase much more rapidly than those of the annual lake-volume model. As an example, for simulation year 5, the 99-percent exceedance for the lake level is 1,417.6 feet above sea level for the annual lake-volume model and 1,423.2 feet above sea level for the water mass-balance model. The rapid increase is caused largely by the record precipitation and inflow in the summer and fall of 1993. Because the water mass-balance model produces lake-level traces that closely match the hydrology of Devils Lake, the water mass-balance model is superior to the annual lake-volume model for computing exceedance levels for the 50-year planning horizon.
Lake-level frequency analysis for Devils Lake, North Dakota
Wiche, Gregg J.; Vecchia, Aldo V.
1995-01-01
Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow.Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lake-volume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lakevolume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines.The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model for generating precipitation, evaporation, and inflow indicates that the upper lake-level exceedance levels from the water mass-balance model are particularly sensitive to parameter uncertainty. The sensitivity in the upper exceedance levels was caused almost entirely by uncertainty in the fitted probability distributions of the quarterly inflows. A method was developed for using long-term streamflow data for the Red River of the North at Grand Forks to reduce the variance in the estimated mean. Comparison of the annual lake-volume model and the water mass-balance model indicates the upper exceedance levels of the water mass-balance model increase much more rapidly than those of the annual lake-volume model. As an example, for simulation year 5, the 99-percent exceedance for the lake level is 1,417.6 feet above sea level for the annual lake-volume model and 1,423.2 feet above sea level for the water mass-balance model. The rapid increase is caused largely by the record precipitation and inflow in the summer and fall of 1993. Because the water mass-balance model produces lake-level traces that closely match the hydrology of Devils Lake, the water mass-balance model is superior to the annual lake-volume model for computing exceedance levels for the 50-year planning horizon.
Yang, Kun; Yu, Zhenyu; Luo, Yi; Yang, Yang; Zhao, Lei; Zhou, Xiaolu
2018-05-15
Global warming and rapid urbanization in China have caused a series of ecological problems. One consequence has involved the degradation of lake water environments. Lake surface water temperatures (LSWTs) significantly shape water ecological environments and are highly correlated with the watershed ecosystem features and biodiversity levels. Analysing and predicting spatiotemporal changes in LSWT and exploring the corresponding impacts on water quality is essential for controlling and improving the ecological water environment of watersheds. In this study, Dianchi Lake was examined through an analysis of 54 water quality indicators from 10 water quality monitoring sites from 2005 to 2016. Support vector regression (SVR), Principal Component Analysis (PCA) and Back Propagation Artificial Neural Network (BPANN) methods were applied to form a hybrid forecasting model. A geospatial analysis was conducted to observe historical LSWTs and water quality changes for Dianchi Lake from 2005 to 2016. Based on the constructed model, LSWTs and changes in water quality were simulated for 2017 to 2020. The relationship between LSWTs and water quality thresholds was studied. The results show limited errors and highly generalized levels of predictive performance. In addition, a spatial visualization analysis shows that from 2005 to 2020, the chlorophyll-a (Chla), chemical oxygen demand (COD) and total nitrogen (TN) diffused from north to south and that ammonia nitrogen (NH 3 -N) and total phosphorus (TP) levels are increases in the northern part of Dianchi Lake, where the LSWT levels exceed 17°C. The LSWT threshold is 17.6-18.53°C, which falls within the threshold for nutritional water quality, but COD and TN levels fall below V class water quality standards. Transparency (Trans), COD, biochemical oxygen demand (BOD) and Chla levels present a close relationship with LSWT, and LSWTs are found to fundamentally affect lake cyanobacterial blooms. Copyright © 2017 Elsevier B.V. All rights reserved.
LEVELS OF SYNTHETIC MUSK COMPOUNDS IN ...
To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for LakeMead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake Mead. Data obtained from analyses of combined effluent streams from three municipal sewage treatment plants, from the effluent-receiving lake water, and from whole carp (Cyprinus carpio) tissue, indicated bioconcentration of synthetic musks in carp (1400-4500 pg/g). That same data were evaluated for the prediction of levels of synthetic musk compounds in fish, using values from the source (sewage treatment plant effluent [STP]). This study confirmed the presence of polycyclic and nitro musks in STP effluent, Lake Mead water, and carp. The concentrations of the polycyclic and nitro musks found in Lake Mead carp were considerably lower than previous studies in Germany, other European countries, and Japan. The carp samples were found to have mostly the mono-amino-metabolites of the nitro musks and intact polycyclic musks, principally HHCB (Galaxolide®) and AHTN (Tonalide®). Finally, the determination of sufficiently high levels of Galaxolide® and 4-amino musk xylene in STP effluent may be used to infer the presence of trace levels of other classes of musk compounds in the lake water. To be presented is an overview of the chemistry, the monitoring methodology, andthe statistical evaluation of con
NASA Astrophysics Data System (ADS)
Goldsmith, Y.; Broecker, W. S.; Polissar, P. J.; Xu, H.; Lan, J.; Zhou, W.; An, Z.; deMenocal, P. B.
2016-12-01
The magnitude, rate and extent of East Asian Monsoon (EAM) rainfall changes during the late Pleistocene-Holocene is reconstructed using the first well-dated northeastern China lake-area record from a closed-lake basin, which enables reconstructing quantitative absolute paleo-rainfall amounts. In addition, compound specific hydrogen isotopes (dDwax) from lake-sediments are used to reconstruct the isotopic composition of rainwater (dP). Lake-levels were 60m higher than present during the early and middle Holocene. Requiring an absolute increase in mean annual rainfall to at least two times higher than today and a 400 km northward expansion. The EAM intensity and northern extent alternated abruptly between wet and dry periods on time scales of a few centuries. Both the onset ( 60 m rise at 11.5 ka BP) and termination ( 35 m drop at 5.5 ka BP) of the Holocene humid period occurred abruptly, within centuries. dDwax is negatively correlated with the lake area record (R2=0.77), showing for the first time, the co-evolution of dP and local rainfall amount. Lake level is also highly correlated with Both North and South Chinese stalagmite records. These results indicate that local distillation is a significant control on dP in East China, and that local rainfall amount is correlated with the intensity of the large EAM system. These results resolve a current debate regarding the use of dP as a proxy for rainfall amount and validate the "intensity-based" interpretations of the Chinese cave deposit records. The lake is located at the modern NW boundary of the EAM, therefore, lake level is governed by the northward extent of the EAM. The covariation of lake level and the intensity of the monsoon indicate that intensity and northward expansion of the EAM are linked and that during intense (weak) EAM periods the EAM northwestern boundary shifts northward (southward).
Mehrian, Majid Ramezani; Hernandez, Raul Ponce; Yavari, Ahmad Reza; Faryadi, Shahrzad; Salehi, Esmaeil
2016-08-01
Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake's water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.
Clam Shell Dredging in Lakes Pontchartrain and Maurepas, Louisiana. Volume 2. Public Comments.
1987-11-01
levels and pattern of distribution of polycyclic aromatic hydrocarbons , is presented, despite the fact that these compounds are identified . . as the...DEIS. Moreover, the DEIS implies that the potential for bioaccumulation of the pollutants present in Lake Ponchartrain is low except for a small...CHEMICAL AIR PRODUCTS SHELL OIL CO SHELL CHEMICAL CIBA GEIGY CORPORATION UNION TEXAS PETROLEUM SAVOIE INDUSTRIES SUNLAND SERVICES VULCAN MATERIAL
Ricklund, Niklas; Kierkegaard, Amelie; McLachlan, Michael S
2010-03-15
Decabromodiphenyl ethane (DBDPE) is a brominated flame retardant (BFR) used as a replacement for the structurally similar decabromodiphenyl ether (decaBDE), which is a regulated environmental contaminant of concern. DBDPE has been found in indoor dust, sewage sludge, sediment, and biota, but little is known about its occurrence and distribution in the environment In this paper, sediment was analyzed from 11 isolated Swedish lakes and along a transect running from central Stockholm through the Stockholm archipelago to the Baltic Sea. DBDPE was present in all samples. In lake sediment, the levels ranged from 0.23 to 11 ng/g d.wt. and were very similar to the levels of decaBDE (0.48-11 ng/g d.wt.). Since the lakes have no known point sources of BFRs, their presence in the sediments provides evidence for long-range atmospheric transport and deposition. In the marine sediment, the DBDPE and decaBDE levels decreased by a factor of 20-50 over 40 km from the inner harbor to the outer archipelago. There the DBDPE and decaBDE levels were similar to the levels in nearby isolated lakes. The results indicate that contamination of the Swedish environment with DBDPE has already approached that of decaBDE, and that this contamination is primarily occurring via the atmosphere.
Hydrologic data for the Walker River Basin, Nevada and California, water years 2010–14
Pavelko, Michael T.; Orozco, Erin L.
2015-12-10
Walker Lake is a threatened and federally protected desert terminal lake in western Nevada. To help protect the desert terminal lake and the surrounding watershed, the Bureau of Reclamation and U.S. Geological Survey have been studying the hydrology of the Walker River Basin in Nevada and California since 2004. Hydrologic data collected for this study during water years 2010 through 2014 included groundwater levels, surface-water discharge, water chemistry, and meteorological data. Groundwater levels were measured in wells, and surface-water discharge was measured in streams, canals, and ditches. Water samples for chemical analyses were collected from wells, streams, springs, and Walker Lake. Chemical analyses included determining physical properties; the concentrations of major ions, nutrients, trace metals, dissolved gases, and radionuclides; and ratios of the stable isotopes of hydrogen and oxygen. Walker Lake water properties and meteorological parameters were monitored from a floating platform on the lake. Data collection methods followed established U.S. Geological Survey guidelines, and all data are stored in the National Water Information System database. All of the data are presented in this report and accessible on the internet, except multiple-depth Walker Lake water-chemistry data, which are available only in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, P.; Vilanova, R.M.; Martinez, C.
2000-05-15
Historical records of the deposition fluxes of polycyclic aromatic hydrocarbons (PAH) in 10 remote high altitude lakes distributed throughout Europe have been studied. Cores from each site were dated radiometrically, and the results were used for the reconstruction of the pollutant changes between 1830 and present. In general, both PAH pyrolytic fluxes and concentrations increased from uniform background levels at the turn of the century to maximum values in 1960--1980. After these peak values a slight decrease to present day levels has been observed in some lakes, though they are still 3--20 times greater than the preindustrial period. Distinctive featuresmore » in the downcore PAH profiles and concentrations between sites allowed for differentiation between five regions in Europe: peripheral areas (Norway and the Liberian Peninsula), Pyrenees and western Alps, central Alps, Tatra Mountains, and the Arctic. Atmospheric PAH inventories were estimated from the vertical integration of sedimentary inventories using {sup 210}Pb to correct for post depositional transport processes. This approach consistently reduces variability among lakes from the same region. The results obtained define the lakes in the Tatra mountains and that on Spits Bergen Island as those of highest and lowest atmospheric PAH input. The other lakes exhibit lower differences although their atmospheric inventory values group consistently with the above-mentioned regions.« less
NASA Astrophysics Data System (ADS)
De Luca, Domenico Antonio; Castagna, Sara; Lasagna, Manuela
2013-04-01
Quarry lakes occur in plains areas due to the extraction of alluvial sand and gravel used for grout and concrete in the construction industry. Excavation depths can reach and intersect the groundwater surface, thus creating a lake. Because of the need to optimize efficiency, the number of active open pit mines has increased in recent years; consequently, the global number of pit lakes will increase in coming decades (Castendyk and Eary 2009; Klapper and Geller 2001; Castro and Moore 2000). Similar to natural lakes, pit lakes are subject to eutrophication process, both during and after quarrying activity; during mining activity, the eutrophic level is strongly controlled by the excavation method. In the Piedmont territory (north-western Italy) there are 70 active quarry lakes, corresponding to approximately 0.1% of the entire plain area. Quarry lakes, located primarily along the main rivers occur in alluvial deposits of the plain area and have average depths between 20 and 30 m (maximum of 60 m deep) and surface areas between 3 and 30 hectares (Castagna 2008). The present study describes the trophic status of 23 active quarry lakes in the Piedmont plain that were evaluated by applying classifications from scientific literature. Currently, the majority of the studied quarry lakes may be defined as mesotrophic or eutrophic according to the trophic state classifications. Based on historic data, lake trophic levels have increased over time, during active mining. At the end of mining activity, further deterioration of water quality was expected, especially for smaller lakes with minimal oxygen stratification and higher levels of nutrients and algal growth. In addition, the paper focuses on the pit lake water quality and pit dimension; From an environmental perspective the excavation of quarry lakes with an appreciable size will likely result in a better safeguard of water quality and enhanced possibilities for lake end use after the cessation of mining. Piedmont quarry lakes, for the most part, have rather large depths (over 20 m), and moreover, unlike natural lakes, this type of lake is not influenced by sewage inputs that are often a primary cause of eutrophication in natural lakes. It was shown that, in Piedmont, lakes with a larger depth and volume generally had a lower tendency towards eutrophication. References Castendyk D, Eary T (2009). The nature and global distribution of pit lakes. In, Mine Pit Lakes: Characteristics, Predictive Modeling, and Sustainability Castendyk, D.; Eary, T. and Park, B. (eds.) Society for Mining Engineering (SME), Colorado, USA, 1-11pp. Klapper H, Geller W (2001) Water quality management of mining lakes - a new field of applied hydrobiology. Acta Hydrochim Hydrobiol, 29: 363-374 Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol, 39(11):1254-1260 Castagna S (2008) Studio delle problematiche idrogeologiche nelle attività estrattive sottofalda per materiali granulari. Ph.D. Thesis.
Dynamics of the Mount Nyiragongo lava lake
NASA Astrophysics Data System (ADS)
Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.
2014-05-01
The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.
Williams, John R.; Galloway, John P.
1986-01-01
The purpose of this report is to make available basic data on radiocarbon dating of 61 organic samples from 40 locations in the western Copper River Basin and adjacent uplands and in the uppermost Matanuska River Valley. The former distribution of late Quaternary glacial lakes and of glaciers as mapped from field work and photo interpretation is provided as background for interpretation of the radiocarbon dates and are the basic data needed for construction of the late Quaternary chronology. The glacial boundaries, formed and expressed by moraines, ice-contact margins, marginal channels, deltas, and other features, are obscured by a drape of glaciolacustrine deposits in a series of glacial lakes. The highest lake, represented by bottom sediments as high as 914 m to 975 m above sea level, extends from Fog Lakes lowland on Susitna River upstream into the northwestern part of the Copper River Basin (the part now draining to Susitna River) where it apparently was held in by an ice border. It was apparently dammed by ice from the Mt. McKinley area, by Talkeetna G1acier, and may have had a temporary drainage threshold at the headwaters of Chunilna Creek. No shorelines have been noted within the map area, although Nichols and Yehle (1961) reported shorelines within the 914-975 m range in the Denali area to the north of that mapped. Recent work by geologic consultants for the Susitna Hydroelectric Project has confirmed the early inferences (Karlstrom, 1964) about the existence of a lake in the Susitna canyon, based originally on drilling by the Bureau of Reclamation about 35 years ago. According to dating of deposits at Tyone Bluff (map locations 0, P), Thorson and others (1981) concluded that a late Wisconsin advance of the glaciers between 11,535 and 21,730 years ago was followed by a brief interval of lacustrine sedimentation, and was preceded by a long period of lake deposition broken by a lowering of the lake between 32,000 and about 25,000 years ago. An alternate interpretation of the late Wisconsin till at Tyone Bluff is that it is a glaciolacustrine diamicton of the 914-975 m lake into which the ice advanced to the Hatchet Lake and to the Old Man moraines. The level of this regional lake in the Susitna drainage and on Heartland Ridge then dropped from over 914 m to about 777 m, to uncover the Tyone Spillway. An intermediate lake level in the Susitna-Tyone-Louise lake region was lowered rapidly by erosion of the spillway to 747 m. The drainage of the 747 m lake was concentrated in the spillway leading west from the West Fork Gulkana River. This spillway or a rock threshold downstream apparently was stable enough to permit formation of basin-wide, apparently undeformed, shoreline systems at 747 m, and, on recession, local shorelines at 717 m and 700 m and lower levels. The level of the 747 m lake that was confined to about 9000 km2 of the present Copper River Basin fluctuated for one or more reasons such as: the volume of ice added to or withdrawn from the system, because of changes in water budget (assuming no outflow), and/or because of temporary releases through the only outlets, perhaps Mentasta Pass, but importantly, the Copper River canyon. The 747 m lake persisted until glaciers had withdrawn to well within the Chugach Mountains, perhaps 10 to 20 km from the present glaciers.
Mandic, Oleg; de Leeuw, Arjan; Vuković, Boško; Krijgsman, Wout; Harzhauser, Mathias; Kuiper, Klaudia F.
2011-01-01
In the Early to Middle Miocene, a series of lakes, collectively termed the Dinaride Lake System (DLS), spread out across the north-western part of the Dinaride–Anatolian continental block. Its deposits, preserved in numerous intra-montane basins, allow a glimpse into the palaeoenvironmental, palaeobiogeographic and geodynamic evolution of the region. Lake Gacko, situated in southern Bosnia and Herzegovina, is one of the constituent lakes of the DLS, and its deposits are excellently exposed in the Gračanica open-cast coal-mine. A detailed study of the sedimentary succession that addresses facies, sediment petrography, geophysical properties, and fossil mollusc palaeoecology reveals repetitive changes in lake level. These are interpreted to reflect changes in the regional water budget. First-order chronologic constraints arise from the integration of radio-isotopic and palaeomagnetic data. 40Ar/39Ar measurements on feldspar crystals from a tephra bed in the upper part of the sedimentary succession indicate a 15.31 ± 0.16 Ma age for this level. The reversed magnetic polarity signal that characterises the larger part of the investigated section correlates to chron C5Br of the Astronomically Tuned Neogene Timescale. Guided by these chronologic data and a detailed cyclostratigraphic analysis, the observed variations in lake-level, evident as two ~ 40-m and seven ~ 10-m scale transgression–regression cycles, are tuned to ~ 400-kyr and ~ 100-kyr eccentricity cycles. From the tuning, it can be inferred that the sediments in the Gacko Basin accumulated between ~ 15.8 and ~ 15.2 Ma. The economically valuable lignite accumulations in the lower part of the succession are interpreted to indicate the development of swamp forests in conjunction with lake-level falls corresponding to ~ 100-kyr eccentricity minima. Pedogenesis, rhizoliths and palustrine carbonate breccias in the upper part of the section reveal long-term aridity coinciding with a ~ 400-kyr eccentricity minimum. Eccentricity maxima are interpreted to trigger lake-level high-stands. These are accompanied by eutrophication events caused by enhanced denudation of the surrounding basement and increased detrital input into the basin. The presented age model proves that Lake Gacko arose during the Middle Miocene Climatic Optimum and that the optimum climatic conditions triggered the formation of this long-lived lake. PMID:21317979
NASA Astrophysics Data System (ADS)
Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.
2017-12-01
The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.
Perrey, Joseph Irving; Corbett, Don Melvin
1956-01-01
The stabilization of lake levels often requires the construction of outlet control structures. A detailed study of past lake-level elevations and other hydologic date is necessary to establish a level that can be maintained and to determine the means necessary for maintaining the established level. Detailed lake-level records for 28 lakes are included in the report, and records for over 100 other lakes data are available in the U.S. Geological Survey Office, Indianapolis, Ind. Evaporation data from the four Class A evaporation station of the U. S. Weather Bureau have been compiled in this report. A table showing the established legal lake level and related data is included.
NASA Astrophysics Data System (ADS)
Ahmed, M. N.; Bird, B. W.; Escobar, J.; Polissar, P. J.
2017-12-01
The Northern Hemisphere (NH) South American Monsoon (SAM) is a significant source of precipitation for the North Andes (north of 0˚) and has major control over regional hydroclimate variability. Holocene-length histories of NH SAM variability are few compared to the Southern Hemisphere (SH), limiting understanding of how these systems are connected on orbital and shorter timescales. Here, we present multi-proxy lake-sediment-based paleoclimate and paleohydrologic reconstructions from Lago de Tota, Colombia, using sedimentological, geochemical and leaf-wax hydrogen isotopic indicators from radiometically dated cores. The results indicate periods of wet and dry climate phases during the past 9000 BP with an average Holocene sedimentation rate 33cm/kyr. An increase in total organic matter (TOM) content and finer grain-size distributions was observed from 8000 to 3200 BP, suggesting a period of high lake level. This was followed by lower TOM and coarser grain sizes, suggesting lower lake levels from 3200 BP to the present. Although Tota's lake level pattern is antiphased with other lake level reconstructions from the NH and SH Andes, it is consistent with hypothesized changes in atmospheric convection over the Andes during the Holocene and the way in which they would be modified by the so-called dry island effect in the Colombian Andes. This suggests that a common forcing mechanism can be invoked to explain differing millennial-scale Andean hydroclimate changes, namely atmospheric convection. Orbital and Pacific atmosphere-forcing are therefore likely to have played a significant role in driving pan-Andean hydroclimate variability based on their inter-hemispheric influence on Andean convection.
Baehr, Arthur L.; Reilly, Timothy J.
2001-01-01
Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake Lackawanna in summer 1999;concentrations ranged from 0.05 to 0.19 ug/L. Lake/ground water interaction is a feasible explanation for the nearly ubiquitous presence of MTBE in ground water. The movement of water from lakes to wells is feasible because many static water levels and essentially all pumped water levels in the wells were below lake levels. Furthermore, diatom fragments were present in samples from the wells. Ambient ground water at Cranberry Lake also may be affected by septic-tank effluent, as indicated by the relation among concentrations of nitrate, boron, and chloroform. This result indicates potential vulnerability of the water supply to contamination by other chemicals and pathogens. Radon in ambient ground water is a concern throughout northern New Jersey. In particular, the median radon concentrations in ground-water samples collected from 14 wells at Cranberry Lake in 1998 and 1999 were 1,282 and 1,046 pCi/L, respectively. The median radon concentration in five ground-water samples collected at Lake Lackawanna in 1999 was 340 pCi/L. Although these values exceed regulatory levels, they are not high relative to radon concentrations measured in northwestern New Jersey. Eight wells in a neighborhood of Cranberry Lake with known MTBE contamination were sampled by the U.S. Geological Survey in summer 1998. MTBE was detected at concentrations greater than or equal to 40 ug/L in five of the wells. Concentrations of TAME, another gasoline oxygenate, were highly correlated with concentrations of MTBE; MTBE concentrations were about 10 times the TAME concentrations. In all samples, however, the concentrations of the BTEX compounds were less than 0.05 ug/L, and the sample from the most highly contaminated well, where the MTBE concentration was 900 ug/L, had no detectable BTEX.
Lake-level variation in the Lahontan basin for the past 50,000 years
Benson, L.V.; Thompson, R.S.
1987-01-01
Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.
NASA Astrophysics Data System (ADS)
Li, JunLi; Fang, Hui; Yang, Liao
2011-12-01
Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.
NASA Astrophysics Data System (ADS)
Zahir, N.; Ali, A.
2015-12-01
The Lake Urmiah has undergone a drastic shrinkage in size over the past few decades. The initial intention of this paper is to present an approach for determining the so called "salient times" during which the trend of the shrinkage process is accelerated or decelerated. To find these salient times, a quasi_continuous curve was optimally fitted to the Topex altimetry data within the period 1998 to 2006. To find the salient points within this period of time, the points of inflections of the fitted curve is computed using a second derivative approach. The water volume was also computed using 16 cloud free Landsat images of the Lake within the periods of 1998 to 2006. In the first stage of the water volume calculation, the pixels of the Lake were segmented using the Automated Water Extraction Index (AWEI) and the shorelines of the Lake were extracted by a boundary detecting operator using the generated binary image of the Lake surface. The water volume fluctuation rate was then computed under the assumption that the two successive Lake surfaces and their corresponding water level differences demonstrate approximately a truncated pyramid. The analysis of the water level fluctuation rates were further extended by a sinusoidal curve fitted to the Topex altimetry data. This curve was intended to model the seasonal fluctuations of the water level. In the final stage of this article, the correlation between the fluctuation rates and the precipitation and temperature variations were also numerically determined. This paper reports in some details the stages mentioned above.
Biogeochemical fluxes in the Glacier Lakes catchments
John O. Reuss; Frank A. Vertucci; Robert C. Musselman; Richard A. Sommerfeld
1993-01-01
These lakes are moderately sensitive to acid deposition; acidification would require precipitation at least as acidic as that presently found in the more heavily impacted areas of eastern North America. Because most snowpack contaminants are released early in the melting process, seasonal acidification pulses would probably occur at much lower levels of acidic inputs...
Glacial lake inventory and lake outburst potential in Uzbekistan.
Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus
2017-08-15
Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Distribution and detoxication of toxaphene in Clayton Lake, New Mexico
Kallman, Burton J.; Cope, Oliver B.; Navarre, Richard J.
1962-01-01
The fate of toxaphene, applied in three treatments at a total calculated concentration of 0.05 p.p.m. to Clayton Lake, New Mexico, was followed over a 1.5-year period. A detailed description of the chromatographic method of analysis is given. Water concentrations of toxaphene were higher in leeshore samples than in windward samples for 2 weeks after the application; toxaphene levels then appeared to reach a constant value of about 0.001 p.p.m. for at least an additional 250 days. Total body concentrations of toxaphene were determined in trout and bullheads present in the lake during the poisoning and in trout placed in the lake in live-cars subsequently. Trout were more susceptible to toxaphene and accumulated lower body levels than bullheads. Bullheads which showed symptoms of toxaphene poisoning when collected had higher levels than did normal-appearing individuals. No difference in levels was observed in live-car trout collected dead as compared to survivors. Aquatic vegetation accumulated high concentrations of toxaphene; low concentrations were found in some sediment samples. The significance of these findings is discussed.
NASA Astrophysics Data System (ADS)
Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim
2015-04-01
Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.
Hydrogeology, hydrologic budget, and water chemistry of the Medina Lake area, Texas
Lambert, Rebecca B.; Grimm, Kenneth C.; Lee, Roger W.
2000-01-01
A three-phase study of the Medina Lake area in Texas was done to assess the hydrogeology and hydrology of Medina and Diversion Lakes combined (the lake system) and to determine what fraction of seepage losses from the lake system might enter the regional ground-water-flow system of the Edwards and (or) Trinity aquifers. Phase 1 consisted of revising the geologic framework for the Medina Lake area. Results of field mapping show that the upper member of the Glen Rose Limestone underlies Medina Lake and the intervening stream channel from the outflow of Medina Lake to the midpoint of Diversion Lake, where the Diversion Lake fault intersects Diversion Lake. A thin sequence of strata consisting primarily of the basal nodular and dolomitic members of the Kainer Formation of the Edwards Group, is present in the southern part of the study area. On the southern side of Medina Lake, the contact between the upper member of the Glen Rose Limestone and the basal nodular member is approximately 1,000 feet above mean sea level, and the contact between the basal nodular member and the dolomitic member is approximately 1,050 feet above mean sea level. The most porous and permeable part of the basal nodular member is about 1,045 feet above mean sea level. At these altitudes, Medina Lake is in hydrologic connection with rocks in the Edwards aquifer recharge zone, and Medina Lake appears to lose more water to the ground-water system along this bedding plane contact. Hydrologic budgets calculated during phase 2 for Medina Lake, Diversion Lake, and Medina/Diversion Lakes combined indicate that: (1) losses from Medina and Diversion Lakes can be quantified; (2) a portion of those losses are entering the Edwards aquifer; and (3) losses to the Trinity aquifer in the Medina Lake area are minimal and within the error of the hydrologic budgets. Hydrologic budgets based on streamflow, precipitation, evaporation, and change in lake storage were used to quantify losses (recharge) to the ground-water system from Medina Lake, Diversion Lake, and Medina/Diversion Lakes combined during October 1995–September 1996. Water losses from Medina Lake to the Edwards/Trinity aquifers ranged from -14.0 to 135 acre-feet per day; Diversion Lake ranged from -1.2 to 93.1 acre-feet per day; and Medina/Diversion Lakes combined ranged from 36.1 to 119 acre-feet per day.Monthly average recharge during December 1995–July 1996 was estimated using an alternative method developed during this study (current study method) and compared to monthly average recharge during December 1995–July 1996 estimated using the existing USGS method and the Trans-Texas method. Recharge to the Edwards aquifer estimated using the current study method was about 69 and 73 percent of the recharge estimated using the USGS and Trans-Texas methods, respectively. The USGS and Trans-Texas methods overestimated recharge from Medina Lake compared to the recharge estimated with the current study method when Medina Lake stage was between about 1,027 and 1,032 feet above mean sea level and underestimated recharge from Medina Lake when lake stage was between about 1,036 and 1,045 feet above mean sea level. The USGS and Trans-Texas methods underestimated recharge from Diversion Lake compared to the recharge estimated with the current study method when Diversion Lake stage was greater than 913 feet above mean sea level and overestimated recharge from Diversion Lake when lake stage was less than 913 feet above mean sea level.The water quality of Medina Lake and Medina River and in selected wells and springs in the Edwards and Trinity aquifers was characterized during phase 3 of the study. Environmental isotope analyses and geochemical modeling also were used to determine where water losses from the lake system might be entering the ground-water-flow system. Isotopic ratios of deuterium, oxygen, and strontium were analyzed in selected surface-water, lake-water, and ground-water samples to trace the isotopic “signature” of the lake water as it mixes with the ground water and to determine the fraction of lake water and ground water in selected Edwards aquifer wells. Isotopic data and geochemical modeling were used to show that lake water is moving into the Edwards aquifer in two fault blocks in the eastern Medina storage unit. One fault block is bounded on the north by the Vandenburg School fault and on the south by the Haby Crossing fault, and the second fault block is bounded on the north by the Diversion Lake fault and on the south by the Haby Crossing fault. In selected Edwards aquifer wells located southwest of Medina Lake and west of Diversion Lake, the proportion of lake water ranged from about 10 to 45 percent. Geochemical modeling using NETPATH confirms the degree of mixing between lake water and aquifer water shown by the isotopes.
Gasoline-Related Compounds in Lakes Mead and Mohave, Nevada, 2004-06
Lico, Michael S.; Johnson, B. Thomas
2007-01-01
The distribution of man-made organic compounds, specifically gasoline-derived compounds, was investigated from 2004 to 2006 in Lakes Mead and Mohave and one of its tributary streams, Las Vegas Wash. Compounds contained in raw gasoline (benzene, toluene, ethylbenzene, xylenes; also known as BTEX compounds) and those produced during combustion of gasoline (polycyclic aromatic hydrocarbon compounds; also known as PAH compounds) were detected at every site sampled in Lakes Mead and Mohave. Water-quality analyses of samples collected during 2004-06 indicate that motorized watercraft are the major source of these organic compounds to the lakes. Concentrations of BTEX increase as the boating season progresses and decrease to less than detectable levels during the winter when few boats are on the water. Volatilization and microbial degradation most likely are the primary removal mechanisms for BTEX compounds in the lakes. Concentrations of BTEX compounds were highest at sampling points near marinas or popular launching areas. Methyl tert-butyl ether (MTBE) was detected during 2004 but concentrations decreased to less than the detection level during the latter part of the study; most likely due to the removal of MTBE from gasoline purchased in California. Distribution of PAH compounds was similar to that of BTEX compounds, in that, concentrations were highest at popular boating areas and lowest in areas where fewer boats traveled. PAH concentrations were highest at Katherine Landing and North Telephone Cove in Lake Mohave where many personal watercraft with carbureted two-stroke engines ply the waters. Lake-bottom sediment is not a sink for PAH as indicated by the low concentrations detected in sediment samples from both lakes. PAH compounds most likely are removed from the lakes by photochemical degradation. PAH compounds in Las Vegas Wash, which drains the greater Las Vegas metropolitan area, were present in relatively high concentrations in sediment from the upstream reaches. Concentrations of PAH compounds were low in water and sediment samples collected farther downstream, thus the bottom sediment in the upstream part of the wash may be an effective trap for these compounds. Bioavailable PAH compounds were present in all samples as determined using the Fluoroscan method. Microtox acute toxicity profiles indicated that Callville Bay in Lake Mead and the two Lake Mohave sites had only minor evidence that toxic compounds are present.
Macrophyte mapping in ten lakes of South Carolina with multispectral SPOT HRV data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, H.E. Jr.
1989-01-01
Fall and spring multispectral SPOT HRV data for 1987 and 1988 were used to evaluate the macrophyte distributions in ten freshwater reservoirs of South Carolina. The types of macrophyte and wetland communities present along the shoreline of the lakes varied depending on the age, water level fluctuations, water quality, and basin morphology. Seasonal satellite data were important for evaluation of the extent of persistent versus non-persistent macrophyte communities in the lakes. This paper contains only the view graphs of this process.
Estimation of nonpoint source loadings of phosphorus for lakes in the Puget Sound region, Washington
Gilliom, Robert J.
1983-01-01
Control of eutrophication of lakes in watersheds undergoing development is facilitated by estimates of the amounts of phosphorus (P) that reach the lakes from areas under various types of land use. Using a mass-balance model, the author calculated P loadings from present-day P concentrations measured in lake water and from other easily measured physical characteristics in a total of 28 lakes in drainage basins that contain only forest and residential land. The loadings from background sources (forest-land drainage and bulk precipitation) to each of the lakes were estimated by methods developed in a previous study. Differences between estimated present-day P loadings and loadings from background sources were attributed to changes in land use. The mean increase in annual P yield resulting from conversion of forest to residential land use was 7 kilograms per square kilometer, not including septic tank system contributions. Calculated loadings from septic systems were found to correlate best with the number of near-shore dwellings around each lake in 1940. The regression equation expressing this relationship explained 36 percent of the sample variance. There was no significant correlation between estimated septic tank system P loadings and number of dwellings present in 1960 or 1970. The evidence indicates that older systems might contribute more phosphorus to lakes than newer systems, and that there may be substantial time lags between septic system installation and significant impacts on lake-water P concentrations. For lakes in basins that contain agricultural land, the P loading attributable to agriculture can be calculated as the difference between the estimated total loading and the sum of estimated loadings from nonagricultural sources. A comprehensive system for evaluating errors in all loading estimates is presented. The empirical relationships developed allow preliminary approximations of the cumulative impact development has had on P loading and the amounts of P loading from generalized land-use categories for Puget Sound lowland lakes. In addition, the sensitivity of a lake to increased loading can be evaluated using the mass-balance model. The data required are presently available for most lakes. Estimates of P loading are useful in developing water-quality goals, setting priorities for lake studies, and designing studies of individual lakes. The suitability of a method for management of individual lakes will often be limited by relatively high levels of uncertainty, especially if the method is used to evaluate relatively small increases in P loading.
Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08
Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.
2010-01-01
Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of Deep Creek Lake, a bathymetric survey of the lake bottom was conducted in 2007. The data collected were used to generate a bathymetric map depicting depth to the lake bottom from a full pool elevation of 2,462 feet (National Geodetic Vertical Datum of 1929). Data were collected along about 90 linear miles across the lake using a fathometer and a differentially corrected global positioning system. As part of a long-term monitoring plan for all surface-water inputs to the lake, streamflow data were collected continuously at two stations constructed on Poland Run and Cherry Creek. The sites were selected to represent areas of the watershed under active development and areas that are relatively stable with respect to development. Twelve months of discharge data are provided for both streams. In addition, five water-quality parameters were collected continuously at the Poland Run station including pH, specific conductance, temperature, dissolved oxygen, and turbidity. Water samples collected at Poland Run were analyzed for sediment concentration, and the results of this analysis were used to estimate the annual sediment load into Deep Creek Lake from Poland Run. To determine sedimentation rates, cores of lake-bottom sediments were collected at 23 locations. Five of the cores were analyzed using a radiometric-dating method, allowing average rates of sedimentation to be estimated for the time periods 1925 to 2008, 1925 to 1963, and 1963 to 2008. Particle-size data from seven cores collected at locations throughout the study area were analyzed to provide information on the amount of fine material in lake-bed sediments. Groundwater levels were monitored continuously in four wells and weekly in nine additional wells during October, November, and December of 2008. Water levels were compared to recorded lake levels and precipitation during the same period to determine the effect of lake-level drawdown and recovery on the adjacent aquifer systems. Water use in the Deep Creek Lake wa
Neurotoxicity of lead, methylmercury, and PCBs in relation to the Great Lakes.
Rice, D C
1995-01-01
There is ample evidence identifying lead, methylmercury, and polychlorinated biphenyls (PCBs) as neurotoxic agents. A large body of data on the neurotoxicity of lead, based on both epidemiologic studies in children and animal models of developmental exposure, reveals that body burdens of lead typical of people in industrialized environments produce behavioral impairment. Methylmercury was identified as a neurotoxicant in both adults and the developing organism based on episodes of human poisoning: these effects have been replicated and extended in animals. High-dose PCB exposure was recognized as a developmental toxicant as a result of several episodes of contamination of cooking oil. The threshold for PCB neurotoxicity in humans is less clear, although research in animals suggests that relatively low-level exposure produces behavioral impairment and other toxic effects. Tissue levels in fish below which human health would not be adversely affected were estimated for methylmercury and PCBs based on calculated reference doses (RfDs) and estimated fish intake. Present levels in fish tissue in the Great Lakes exceed these levels for both neurotoxicants. Great Lakes fish and water do not pose a particular hazard for increased lead intake. However, the fact that the present human body burden is in a range at which functional deficits are probable suggests that efforts should be made to eliminate point sources of lead contamination in the Great Lakes basin. PMID:8635443
Dembkowski, Daniel J.; Miranda, Leandro E.
2014-01-01
We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.
Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia
NASA Astrophysics Data System (ADS)
Roningen, J. M.; Burbey, T. J.
2011-12-01
Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention to mitigate seepage would be required for lake level recovery in the near future.
Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.
2016-10-19
OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling. Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.
Xu, Zhaoan; Li, Tao; Bi, Jun; Wang, Ce
2018-06-20
Natural lakes play a vital role as receiving system of a cocktail of antibiotics (ABs) which have triggered a major health concern. The comparisons of ABs concentrations have been substantially implemented throughout the worldwide range. However, from lake management, the questions are not yet adequately solved: "when and where does the overall pollution level of ABs present more serious, and what AB species dominate". In this study, we detected 22 ABs in water column and sediment bottom in Taihu Lake Basin in January, April, July and October in 2017. Non-metric multi-dimensional scaling (NMDS) was applied to characterize spatiotemporal dissimilarity of ABs concentrations. Combined with a method of summed standardized concentrations, analysis of variance was applied to evaluate the overall pollution level of ABs at different sites and time periods, instead of, traditionally, a comparison of concentration. The results showed that 90% CI of Macrolides, Sulfonamides, Tetracyclines and Quinolones were 0.020-5.646, 0.040-7.887, 0.100-13.308 and 0.130-9.631 ng/L in water column, respectively; and 0.005-1.532, 0.002-0.120, 0.010-0.902 and 0.006-3.972 μg/kg in sediment, respectively. ABs concentrations approximately presented spatial homogeneity in the whole basin which included all main inflow rivers, outflow rivers and the lake body itself. Species composition was seasonally distinct and the overall pollution level was significantly lower in autumn. A critical body residue analysis showed that ABs concentrations presented a neglectable cumulative risk for fish species. This research added to the body of knowledge to develop pollution management strategies on point and non-point source loads for Taihu Lake Basin, and also the methodology provided reference for spatiotemporal characterization of dissolved pollutant in other water bodies. Copyright © 2018 Elsevier B.V. All rights reserved.
Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011
Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.
2013-01-01
The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation indicated the net effect of the non-precipitation terms on the water balance has changed relative to precipitation. The average amount of precipitation required each year to maintain the lake level has increased from 33 inches per year during 1978-2002 to 37 inches per year during 2003-11. The combination of lower precipitation and an increase in groundwater withdrawals can explain the change in the lake-level response to precipitation. Annual and summer groundwater withdrawals from the Prairie du Chien-Jordan aquifer have more than doubled from 1980 through 2010. Results from a regression model constructed with annual lake-level change, annual precipitation minus evaporation, and annual volume of groundwater withdrawn from the Prairie du Chien-Jordan aquifer indicated groundwater withdrawals had a greater effect than precipitation minus evaporation on water levels in the White Bear Lake area for all years since 2003. The recent (2003-11) decline in White Bear Lake reflects the declining water levels in the Prairie du Chien-Jordan aquifer; increases in groundwater withdrawals from this aquifer are a likely cause for declines in groundwater levels and lake levels. Synoptic, static groundwater-level and lake-level measurements in March/April and August 2011 indicated groundwater was potentially flowing into White Bear Lake from glacial aquifers to the northeast and south, and lake water was potentially discharging from White Bear Lake to the underlying glacial and Prairie du Chien-Jordan aquifers and glacial aquifers to the northwest. Groundwater levels in the Prairie du Chien-Jordan aquifer below White Bear Lake are approximately 0 to 19 feet lower than surface-water levels in the lake, indicating groundwater from the aquifer likely does not flow into White Bear Lake, but lake water may discharge into the aquifer. Groundwater levels from March/April to August 2011 declined more than 10 feet in the Prairie du Chien-Jordan aquifer south of White Bear Lake and to the north in Hugo, Minnesota. Water-quality analyses of pore water from nearshore lake-sediment and well-water samples, seepage-meter measurements, and hydraulic-head differences measured in White Bear Lake also indicated groundwater was potentially flowing into White Bear Lake from shallow glacial aquifers to the east and south. Negative temperature anomalies determined in shallow waters in the water-quality survey conducted in White Bear Lake indicated several shallow-water areas where groundwater may be flowing into the lake from glacial aquifers below the lake. Cool lake-sediment temperatures (less than 18 degrees Celsius) were measured in eight areas along the northeast, east, south, and southwest shores of White Bear Lake, indicating potential areas where groundwater may flow into the lake. Stable isotope analyses of well-water, precipitation, and lake-water samples indicated wells downgradient from White Bear Lake screened in the glacial buried aquifer or open to the Prairie du Chien-Jordan aquifer receive a mixture of surface water and groundwater; the largest surface-water contributions are in wells closer to White Bear Lake. A wide range in oxygen-18/oxygen-16 and deuterium/protium ratios was measured in well-water samples, indicating different sources of water are supplying water to the wells. Well water with oxygen-18/oxygen-16 and deuterium/protium ratios that plot close to the meteoric water line consisted mostly of groundwater because deuterium/protium ratios for most groundwater usually are similar to ratios for rainwater and snow, plotting close to meteoric water lines. Well water with oxygen-18/oxygen-16 and deuterium/protium ratios that plot between the meteoric water line and ratios for the surface-water samples from White Bear Lake consists of a mixture of surface water and groundwater; the percentage of each source varies relative to its ratios. White Bear Lake is the likely source of the surface water to the wells that have a mixture of surface water and groundwater because (1) it is the only large, deep lake near these wells; (2) these wells are near and downgradient from White Bear Lake; and (3) these wells obtain their water from relatively deep depths, and White Bear Lake is the deepest lake in that area. The percentages of surface-water contribution to the three wells screened in the glacial buried aquifer receiving surface water were 16, 48, and 83 percent. The percentages of surface-water contribution ranged from 5 to 79 percent for the five wells open to the Prairie du Chien-Jordan aquifer receiving surface water; wells closest to White Bear Lake had the largest percentages of surface-water contribution. Water-balance analysis of White Bear Lake in March and August 2011 indicated a potential discharge of 2.8 and 4.5 inches per month, respectively, over the area of the lake from the lake to local aquifers. Most of the sediments from a 12.4-foot lake core collected at the deepest part of White Bear Lake consisted of silts, sands, and gravels likely slumped from shallower waters, with a very low amount of low-permeability, organic material.
NASA Astrophysics Data System (ADS)
Adams, Kenneth D.; Negrini, Robert M.; Cook, Edward R.; Rajagopal, Seshadri
2015-12-01
Here we present 2000 year long, annually resolved records of streamflow for the Kings, Kaweah, Tule, and Kern Rivers in the southwestern Sierra Nevada of California and consequent lake-level fluctuations at Tulare Lake in the southern San Joaquin Valley. The integrated approach of using moisture-sensitive tree ring records from the Living Blended Drought Atlas to reconstruct annual discharge and then routing this discharge to an annual Tulare Lake water balance model highlights the differences between these two types of paleoclimate records, even when subject to the same forcing factors. The reconstructed streamflow in the southern Sierra responded to yearly changes in precipitation and expressed a strong periodicity in the 2-8 year range over most of the reconstruction. The storage capacity of Tulare Lake caused it to fluctuate more slowly, masking the 2-8 year streamflow periodicity and instead expressing a strong periodicity in the 32-64 year range over much of the record. Although there have been longer droughts, the 2015 water year represents the driest in the last 2015 years and the 2012-2015 drought represents the driest 4 year period in the record. Under natural conditions, simulated Tulare Lake levels would now be at about 60 m, which is not as low as what occurred multiple times over the last 2000 years. This long-term perspective of fluctuations in climate and water supply suggests that different drought scenarios that vary in terms of severity and duration can produce similar lake-level responses in closed lake basins.
NASA Astrophysics Data System (ADS)
Russell, J. M.; Vogel, H.; Bijaksana, S.; Melles, M.
2016-12-01
The Indo-Pacific region plays a critical role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are all hypothesized to exert a dominant control on Indo-Pacific hydroclimate, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to orbital-scale forcings. In 2015 we conducted an ICDP drilling program on Lake Towuti, located near the equator in central Indonesia, one of the only terrestrial sedimentary archives in the region that continuously spans multiple glacial-interglacial cycles. We recovered over 1,000 meters of core including cores though the entire sediment sequence to bedrock. Previously published organic geochemical reconstructions of vegetation from relatively short, 60 kyr long piston from Lake Towuti exhibit strong drying during the Last Glacial Maximum, indicating that central Indonesian hydroclimate is sensitive to forcing from high-latitude ice-sheets. New, inorganic geochemical and mineralogical reconstructions of lake level also indicate a strong half-precessional climate signal during the last 60 kyr in which lake level highstands occur during austral and boreal summer insolation maxima, suggesting that equatorial rainfall varies in response to remote (likely subtropical) insolation forcing of the Asian monsoons. However, the short length of these records limits our understanding of the regional hydroclimatic response to the full range of global climate boundary conditions experienced during the late Quaternary. This presentation will discuss results from the last 60 kyr and present new geochemical reconstructions from the upper 100 m of core from Lake Towuti, dated using magnetic paleointensity, tephrachronology, and optically-stimulated luminescence to span the last 500 kyr BP.
Strand-plain evidence for late Holocene lake-level variations in Lake Michigan
Thompson, T.A.; Baedke, S.J.
1997-01-01
Lake level is a primary control on shoreline behavior in Lake Michigan. The historical record from lake-level gauges is the most accurate source of information on past lake levels, but the short duration of the record does not permit the recognition of long-term patterns of lake-level change (longer than a decade or two). To extend the record of lake-level change, the internal architecture and timing of development of five strand plains of late Holocene beach ridges along the Lake Michigan coastline were studied. Relative lake-level curves for each site were constructed by determining the elevation of foreshore (swash zone) sediments in the beach ridges and by dating basal wetland sediments in the swales between ridges. These curves detect long-term (30+ yr) lake-level variations and differential isostatic adjustments over the past 4700 yr at a greater resolution than achieved by other studies. The average timing of beach-ridge development for all sites is between 29 and 38 yr/ridge. This correspondence occurs in spite of the embayments containing the strand plains being different in size, orientation, hydrographic regime, and available sediment type and caliber. If not coincidental, all sites responded to a lake-level fluctuation of a little more than three decades in duration and a range of 0.5 to 0.6 m. Most pronounced in the relative lake-level curves is a fluctuation of 120-180 yr in duration. This ???150 yr variation is defined by groups of four to six ridges that show a rise and fall in foreshore elevations of 0.5 to 1.5 m within the group. The 150 yr variation can be correlated between sites in the Lake Michigan basin. The ???30 and 150 yr fluctuations are superimposed on a long-term loss of water to the Lake Michigan basin and differential rates of isostatic adjustment.
Hydrogeochemical and lake level changes in the Ethiopian Rift
NASA Astrophysics Data System (ADS)
Alemayehu, Tamiru; Ayenew, Tenalem; Kebede, Seifu
2006-01-01
The Ethiopian Rift is characterized by a chain of lakes varying in size, hydrological and hydrogeological settings. The rift lakes and feeder rivers are used for irrigation, soda extraction, commercial fish farming and recreation, and support a wide variety of endemic birds and wild animals. The level of some lakes shows dramatic changes in the last few decades. Lakes Abiyata and Beseka, both heavily impacted by human activities, show contrasting lake level trends: the level of Abiyata has dropped by about 5 m over three decades while Beseka has expanded from an area of 2.5-40 km 2 over the same span of time. Changes in lake levels are accompanied by dilution in ionic concentration of lake Beseka and increase in salinity of lake Abiyata. Although the principal hydrogeochemical process in the rift lakes is controlled by the input and output conditions and carbonate precipitation, anthropogenic factors such as water diversion for irrigation and soda ash extraction played important role. The recent changes appear to have grave environmental consequences on the fragile rift ecosystem, which demands an integrated basin-wide water management practice. This paper demonstrates the drastic changes of lake levels and associated changes in lake chemistry of the two studied lakes. It also gives the regional hydrogeochemical picture of the other rift lakes that do not show significant response due to climate change and human impact.
Glacial Lake Lind, Wisconsin and Minnesota
Johnson, M.D.; Addis, K.L.; Ferber, L.R.; Hemstad, C.B.; Meyer, G.N.; Komai, L.T.
1999-01-01
Glacial Lake Lind developed in the pre-late Wisconsinan St. Croix River valley, Minnesota and Wisconsin, and lasted more than 1000 yr during the retreat of the Superior lobe at the end of the Wisconsinan glaciation. Lake Lind sediment consists primarily of red varved silt and clay, but also includes mud-flow deposits, nearshore silt (penecontemporaneously deformed in places), nearshore rippled sand, and deltaic sand. Lake Lind varved red clay is not part of glacial Lake Grantsburg, as suggested by earlier authors, because the red varves are separated from overlying glacial Lake Grantsburg silt and clay by a unit of deltaic and fluvial sand. Furthermore, varve correlations indicate that the base of the red varves is younger to the north, showing that the basin expanded as the Superior lobe retreated and was not a lake basin dammed to the southwest by the advancing Grantsburg sublobe. Varve correlations indicate that the Superior lobe retreated at a rate of about 200 m/yr. Uniform winter-clay thickness throughout most of the varve couplets suggests thermal stratification in the lake with clay trapped in the epilimnion; some clay would exit the lake at the outlet prior to winter freeze. Zones of thicker winter-clay layers, in places associated with mud-flow layers, indicate outlet incision, lake-level fall, and shoreline erosion and resuspension of lake clay. The most likely outlet for glacial Lake Lind was in the southwest part of the lake near the present site of Minneapolis, Minnesota. Nearshore sediment indicates that the lake level of glacial Lake Lind was around 280 m. The elevation of the base of the Lake Lind sediments indicates water depth was 20 to 55 m. Evidence in the southern part of the lake basin suggests that the Superior lobe readvanced at least once during the early stages of glacial Lake Lind. Lake Lind ended not by drainage but by being filled in by prograding deltas and outwash plains composed of sand derived from the retreating Superior lobe. It was upon this fluvial surface that the Grantsburg sublobe advanced, depositing till and forming glacial Lake Grantsburg.
Christensen, Victoria G.; Bergman, Andrea L.
2005-01-01
Aerial photography and a geographic information system were used to construct a historical lake record from 1939 to 2001. Lake-level increases match similar increases in precipitation, indicating a strong link between the two. Results show that lake-level increases in Long Lost Lake appear to primarily be due to natural rather than anthropogenic effects.
NASA Astrophysics Data System (ADS)
Zhang, Qi
2017-04-01
Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.
Food Web Topology in High Mountain Lakes
Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne
2015-01-01
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235
Food Web Topology in High Mountain Lakes.
Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne
2015-01-01
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.
NASA Astrophysics Data System (ADS)
Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.
2017-12-01
Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.
NASA Astrophysics Data System (ADS)
Velpuri, N.; Senay, G. B.
2010-12-01
Lake Turkana is one of the lakes in the Great Rift Valley, Africa. This lake has no outlet hence it is considered as closed or endorheic lake. To meet the demand of electricity in the east African region, Ethiopia is currently building Gilgel Gibe-III dam on the Omo River, which supplies up to 80% of the inflows to the Lake Turkana. On completion, this dam would be the tallest dam in Africa with a height of 241 m. As Lake Turkana is highly dependent on the inflows from the Omo River, the construction of this dam could potentially pose a threat to the downstream river valley and to Lake Turkana. This hydroelectric project is arguably one of the most controversial projects in the region. The impact of the dam on the lake is evaluated using Remote Sensing datasets and hydrologic modeling. First, lake water levels (1998-2007) were estimated using the Simplified Lake Water Balance (SLAB) approach which takes in satellite based rainfall estimates, modeled runoff and evapotranspiration data over the Turkana basin. Modeled lake levels were validated against TOPEX/POSIEDON/Jason-1 satellite altimeter data. Validation results showed that the model could capture observed trends and seasonal variations in lake levels. The fact that the lake is endorheic makes it easy to model the lake levels. Using satellite based estimates for the years 1998-2009, future scenarios for rainfall and evapotranspiration were generated using the Monte Carlo simulation approach and the impact of Gilgel Gibe-III dam on the Lake Turkana water levels is evaluated using SLAB approach. Preliminary results indicate that the impact of the dam on the lake would vary with the initial water level in the lake at the time of dam commissioning. It was found that during the initial period of dam/reservoir filling the lake level would drop up to 2-3 m (95% confidence interval). However, on average the lake would stabilize within 10 years from the date of commissioning. The variability within the lake levels due to reduced inflows after the dam commissioning were found to be within the natural variability of the lake (0-5 m). The use of cost free satellite based estimates for runoff and evapotranspiration modeling makes this approach consistent and credible. It is also easy to replicate on any other dam in the world. Results obtained from this approach are very valuable and would aid decision makers and environmentalists in proper decision making.
Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series
NASA Astrophysics Data System (ADS)
Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.
2017-09-01
Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.
Simulating future water temperatures in the North Santiam River, Oregon
NASA Astrophysics Data System (ADS)
Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.
2016-04-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards
NASA Astrophysics Data System (ADS)
Aguilera, E.; Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L.; Raco, B.
2000-04-01
A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (˜14 m) oxic epilimnion overlying a ˜200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification. The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid-SO4-Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a 'memory' of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid-SO4-Cl Crater lakes. The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by ˜4°C or providing heat to hypolimnetic waters or by seismic activity. Although Quilotoa lake contains a huge amount of dissolved CO2(˜3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa are, therefore, recommended.
Berry, J P; Jaja-Chimedza, A; Dávalos-Lind, L; Lind, O
2012-01-01
Compared to the well-characterized health threats associated with contamination of fish and shellfish by algal toxins in marine fisheries, the toxicological relevance of the bioaccumulation of toxins from cyanobacteria (blue-green algae), as the primary toxigenic algae in freshwater systems, remains relatively unknown. Lake Catemaco (Veracruz, Mexico) is a small, tropical lake system specifically characterized by a year-round dominance of the known toxigenic cyanobacterial genus, Cylindrospermopsis, and by low, but detectable, levels of both a cyanobacterial hepatotoxin, cylindrospermopsin (CYN), and paralytic shellfish toxins (PSTs). In the present study, we evaluated, using enzyme-linked immunoassay (ELISA), levels of both toxins in several species of finfish caught and consumed locally in the region to investigate the bioaccumulation of, and possible health threats associated with, these toxins as potential foodborne contaminants. ELISA detected levels of both CYN and PSTs in fish tissues from the lake. Levels were generally low (≤ 1 ng g(-1) tissue); however, calculated bioaccumulation factors (BAFs) indicate that toxin levels exceed the rather low levels in the water column and, consequently, indicated bioaccumulation (BAF >1). A reasonable correlation was observed between measured bioaccumulation of CYN and PSTs, possibly indicating a mutual source of both toxins, and most likely cells of Cylindrospermopsis, the dominant cyanobacteria in the lake, and a known producer of both metabolites. The potential roles of trophic transport in the system, as well as possible implications for human health with regards to bioaccumulation, are discussed.
Simulating the effect of climate extremes on groundwater flow through a lakebed
Virdi, Makhan L.; Lee, Terrie M.; Swancar, Amy; Niswonger, Richard G.
2012-01-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.
A Mathematical Model of Melt Lake Development on an Ice Shelf
NASA Astrophysics Data System (ADS)
Buzzard, S. C.; Feltham, D. L.; Flocco, D.
2018-02-01
The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. Melt lakes have been implicated in ice shelf collapse; Antarctica's Larsen B Ice Shelf was observed to have a large amount of surface melt lakes present preceding its collapse in 2002. Such collapse can affect ocean circulation and temperature, cause habitat loss and contribute to sea level rise through the acceleration of tributary glaciers. We present a mathematical model of a surface melt lake on an idealized ice shelf. The model incorporates a calculation of the ice shelf surface energy balance, heat transfer through the firn, the production and percolation of meltwater into the firn, the formation of ice lenses, and the development and refreezing of surface melt lakes. The model is applied to the Larsen C Ice Shelf, where melt lakes have been observed. This region has warmed several times the global average over the last century and the Larsen C firn layer could become saturated with meltwater by the end of the century. When forced with weather station data, our model produces surface melting, meltwater accumulation, and melt lake development consistent with observations. We examine the sensitivity of lake formation to uncertain parameters and provide evidence of the importance of processes such as lateral meltwater transport. We conclude that melt lakes impact surface melt and firn density and warrant inclusion in dynamic-thermodynamic models of ice shelf evolution within climate models, of which our model could form the basis for the thermodynamic component.
Holocene lake-level fluctuations of Lake Aricota, Southern Peru
Placzek, C.; Quade, Jay; Betancourt, J.L.
2001-01-01
Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.
Derivation of Lake Areas and Elevations for the Mackenzie Basin Using Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Birkett, Charon; Kite, Geoff
1997-01-01
Modelling hydrological processes in large watersheds flowing to the Arctic ocean is one step towards larger-scale modelling of the global water and energy cycles. Models of the Mackenzie River Basin (Northern Canada) are currently available but omit explicit routing of river flows through the three main lakes - Athabasca, Great Slave Lake and Great Bear Lake (Kite et al, 1994). These lakes occupy an area of 65,000 sq km but little gauge information is available. The levels of the lakes are only measured at a few points on the circumferences and river flows are only measured downstream. The hydraulic relationships between level/discharge and level/area/volume are uncertain. It has been previously shown that satellite remote sensing can be utilised in providing measurements of both lake surface area using imaging techniques and lake level using radar altimetry (Birkett, 1994). Here, we explore the application of these techniques to derive the lake levels and areas for the Mackenzie Basin lakes.
Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru
NASA Astrophysics Data System (ADS)
Placzek, Christa; Quade, Jay; Betancourt, Julio L.
2001-09-01
Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.
Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.
2006-01-01
Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 19652000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.
NASA Astrophysics Data System (ADS)
Lim, D. S.; Laval, B.; Slater, G.; Andersen, D.; Airo, A.; Mullins, G.; Schulze-Makuch, D.; Cady, S.; McKay, C.
2005-12-01
Pavilion Lake, B. C., Canada has become the first target site of an on-going NASA effort to investigate the Mars analogue potential of terrestrial lacustrine carbonates. A combination of hypothesis and exploration driven research activities are underway to study the unusual freshwater microbialite structures found in this lake. These structures are of interest in terms of models of Precambrian reefs and may also be relevant to carbonate formation in ancient lakes on Mars. Laval et al. (2000) provides an overview of the morphological characteristics of the microbialites, and explores the physical limnology of Pavilion Lake. Several key hypotheses and questions related to the role of biology in the formation of the microbialites, and the effect of varying light levels on the microbialite morphologies have since resulted from Laval et al., but to date remain unanswered. In August 2004, the Pavilion Lake Research Project (PLRP) was established to commence a new round of investigations into Pavilion Lake, to test hypotheses concerning the factors controlling carbonate formation, and to collect further exploration data related to understanding the lake's limnology and development. Laval et al. classified the differing microbialite structures into four depth categories: shallow to intermediate (5-10m), intermediate (~20m), intermediate to deep (20-30m), and deep facies (30-35m). There is a variation of the morphology and mechanical strength of the structures with depth, which may reflect a change in the relative role of biotic and non-biotic precipitation with lowering light levels. Recent field investigations (August 2005) revealed carbonate structures at depths beyond what was reported in Laval et al. (2000). These new structures appear at 46-55m, and are morphologically distinct from the previously described microbialites. Here we present our current research activities at Pavilion Lake, along with recent data collection results. Excursions to the lake have included the use of SCUBA to sample collect and to install a variety of sensors including a thermistor chain and a Licor light meter. Seepage meters have also been placed in strategic regions of the lake to collect incoming lake groundwater for future chemical limnological analyses and hydrological mapping of the area. In addition, conventional Conductivity/Temperature/Depth (CTD) profiles and water sampling has been conducted during a winter and summer period, and will be presented here. Microbialite samples recovered from each of the discernible morphological depth transects have been investigated for relative variations in d13C isotopic signatures, and the results will presented here.
Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru
NASA Astrophysics Data System (ADS)
Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo
2016-04-01
The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics of glacial lakes and their hazard potential. This phase of glacial lake hazard assessment aims to be geographically comprehensive in order to identify potentially dangerous lakes that may have previously been ignored. A second phase of analysis that includes site visits will be necessary for a thorough analysis at each lake to determine the potential hazard for downstream communities. The objective of the work presented here is to identify potentially dangerous lakes that warrant further study rather than provide a final hazard assessment for each lake of the glacial lake inventory in the Cordillera Blanca. References: Emmer, A. and Vilímek, V.: New method for assessing the potential hazardousness of glacial lakes in the Cordillera Blanca, Peru, Hydrol. Earth Syst. Sci. Discuss., 11, 2391-2439, 2014. UGRH - Unidad de Glaciologia y Recursos Hidricos. Inventario de Lagunas Glaciares del Peru. Ministerio de Agricultura y Riego, Autoridad Nacional del Agua, Direcccion de Conservacion y Planeamiento de Recursos Hidricos, Huaraz, Peru, 2014. Wang, W., Yao, T., Gao, Y., Yang, X., and Kattel, D. B.: A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau, Mountain Res. Develop., 31, 122-130, 2011.
Lombard, Pamela J.
2018-04-30
The U.S. Geological Survey, in cooperation with the International Joint Commission, compiled historical data on regulated streamflows and lake levels and estimated unregulated streamflows and lake levels on Forest City Stream at Forest City, Maine, and East Grand Lake on the United States-Canada border between Maine and New Brunswick to study the effects on streamflows and lake levels if two or all three dam gates are left open. Historical regulated monthly mean streamflows in Forest City Stream at the outlet of East Grand Lake (referred to as Grand Lake by Environment Canada) fluctuated between 114 cubic feet per second (ft3 /s) (3.23 cubic meters per second [m3 /s]) in November and 318 ft3 /s (9.01 m3 /s) in September from 1975 to 2015 according to Environment Canada streamgaging data. Unregulated monthly mean streamflows at this location estimated from regression equations for unregulated sites range from 59.2 ft3 /s (1.68 m3 /s) in September to 653 ft3 /s (18.5 m3 /s) in April. Historical lake levels in East Grand Lake fluctuated between 431.3 feet (ft) (131.5 meters [m]) in October and 434.0 ft (132.3 m) in May from 1969 to 2016 according to Environment Canada lake level data for East Grand Lake. Average monthly lake levels modeled by using the estimated hydrology for unregulated flows, and an outflow rating built from a hydraulic model with all gates at the dam open, range from 427.7 ft (130.4 m) in September to 431.1 ft (131.4 m) in April. Average monthly lake levels would likely be from 1.8 to 5.4 ft (0.55 to 1.6 m) lower with the gates at the dam opened than they have been historically. The greatest lake level changes would be from June through September.
Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.
Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B
2017-04-01
Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, A. D.; Anselmetti, F.; Hodell, D. A.; Brenner, M.; Ariztegui, D.; Islebe, G. A.; Grzesik, D. A.; Mc Kenzie, J. A.; Ploetze, M. L.; Hillesheim, M. B.
2006-12-01
Unlike the collapse of the Classic Maya culture, which may have been related to a series of abrupt droughts on the Yucatan Peninsula in the 9^t^h and 10^t^h centuries AD, less is known about climate change at the time of initial settlement of early Maya civilisations in Petén that occurred during the early preclassic period (~2000 - 1000 BC). We focus on the time period between 2000 and 1000 BC and present sedimentological, geochemical and pollen data from a sediment core taken in Lake Petén Itzà (16° 55'N, 89° 50'W), northern Guatemala, the deepest lake in the lowland Neotropics of Central America. The lake lacks surface outflows so that its water level is very sensitive to changes in the balance between evaporation and precipitation. Our results suggest a lake level lowering, i.e. drier conditions, during pre-Maya times between 2000 and 1000 BC. The lower lake level is marked lithologically by a shift from previously accumulated, laminated, deep-water clay to overlying shallow-water, gastropod-rich sediments, and by an increased amount of autochthonous calcite crystals. Additionally, our new pollen record from Lake Petén Itzà documents a decline of tropical high forest taxa and an increase in pine and secondary taxa between 2000 and 1000 BC. This is interpreted to reflect increased openness of the vegetation, and together with evidence for lake level lowering, points to drier conditions in the region. The oxygen isotopic record from Lake Petén Itzà, however, does not show a significant increase in δ18O values between 2000 and 1000 BC as might be expected as a consequence of an increased evaporation and/or reduced precipitation. So a potential lake level lowering could not be confirmed yet by stable isotope analysis. Evidence for the onset of regional drying around 2000 BC is supported by a coinciding drying trend measured in a marine core off northern Venezuela (Cariaco, ODP Hole 1002C). Furthermore, paleoclimate archives from several lakes in Africa (e.g. low lake level in Lake Bosumtwi (6° 30'N, 1° 25'W) indicate a simultaneous drying phase in the northern tropical regions on both sides of the Atlantic Ocean. In contrast to the northern hemisphere, wetter climate conditions occurred after ~2000 BC in the southern hemisphere (e.g. rising water level in Lake Titicaca (16° 0'S, 69° 0'W). We suggest that these climate patterns occurred as a consequence of a southerly displacement of the mean position of the Atlantic Intertropical Convergence Zone (ITCZ), which controls moisture distribution in tropical latitudes. Climate drying and consequent thinning of the dense tropical forest cover from 2000 - 1000 BC in the Guatemalan lowlands may have promoted the use of slash-and-burn farming practices and initial permanent settlement of early Maya.
NASA Technical Reports Server (NTRS)
Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)
1999-01-01
Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.
The hydrology of Lake Rousseau, west-central Florida
German, E.R.
1978-01-01
Lake Rousseau, about 4 miles southwest of Inglis, Florida, was formed in 1909 by impoundment of the Withlacooche River by Inglis Dam, west of Dunnellon, Florida. The lake was to have been part of the Cross-Florida Barge Canal; a lock and channel associated with the presently inactive project were completed in 1969. Lake Rousseau is about 11 miles long, covers about 4,000 acres, and contains about 34,000 acre-feet of water at the normal pool elevation of 27.5 feet above mean sea level. Inflow to the lake is relatively constant and responds slowly to rainfall. The estimated 100-year peak inflow, 10,400 cubic feet per second, is only 19 percent higher than the 100-year high monthly inflow. Water in Lake Rousseau is a calcium-bicarbonate type and is hard. Mean total phosphorus and organic nitrogen concentrations are considerably lower in Lake Rousseau than in north-central Florida lakes which have been considered to be eutrophic by other investigators, however, the lake supports of prolific aquatic plant community. Dissolved-oxygen concentrations near the water surface are occasionally less than 3 mg/liter. (Woodard-USGS)
Sediment oxygen profiles in a super-oxygenated antarctic lake
NASA Technical Reports Server (NTRS)
Wharton, R. A. Jr; Meyer, M. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M. Jr; Wharton RA, J. r. (Principal Investigator)
1994-01-01
Perennially ice-covered lakes are found in the McMurdo Dry Valleys of southern Victoria Land, Antarctica. In contrast to temperate lakes that have diurnal photic periods, antarctic (and arctic) lakes have a yearly photic period. An unusual feature of the antarctic lakes is the occurrence of O2 at supersaturated levels in certain portions of the water column. Here we report the first sediment O2 profiles obtained using a microelectrode from a perennially ice-covered antarctic lake. Sediment cores collected in January and October 1987 from Lake Hoare in Taylor Valley show oxygenation down to 15, and in some cases, 25 cm. The oxygenation of sediments several centimeters below the sediment-water interface is atypical for lake sediments and may be characteristic of perennially ice-covered lakes. There is a significant difference between the observed January and October sediment O2 profiles. Several explanations may account for the difference, including seasonality. A time-dependent model is presented which tests the feasibility of a seasonal cycle resulting from the long photoperiod and benthic primary production in sediments overlain by a highly oxygenated water column.
NASA Astrophysics Data System (ADS)
Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.
2017-12-01
The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.
NASA Astrophysics Data System (ADS)
van der Schriek, Tim; Giannakopoulos, Christos
2014-05-01
The Mediterranean stands out globally due to its sensitivity to (future) climate change, with future projections predicting an increase in excessive drought events and declining rainfall. Regional freshwater ecosystems are particularly threatened: precipitation decreases, while extreme droughts increase and human impacts intensify (e.g. water extraction, drainage, pollution and dam-building). Many Mediterranean lake-wetland systems have shrunk or disappeared over the past two decades. Protecting the remaining systems is extremely important for supporting global biodiversity and for ensuring sustainable water availability. This protection should be based on a clear understanding of lake-wetland hydrological responses to natural and human-induced changes, which is currently lacking in many parts of the Mediterranean. The interconnected Prespa-Ohrid Lake system is a global hotspot of biodiversity and endemism. The unprecedented fall in water level (~8m) of Lake Megali Prespa threatens this system, but causes remain debated. Modelling suggests that the S Balkan will experience rainfall and runoff decreases of ~30% by 2050. However, projections revealing the potential impact of these changes on future lake level are unavailable as lake regime is not understood. A further drop in lake level may have serious consequences. The Prespa Lakes contribute ~25% of the total inflow into Lake Ohrid through underground karst channels; falling lake levels decrease this discharge. Lake Ohrid, in turn, feeds the Drim River. This entire catchment may therefore be affected by falling lake levels; its water resources are of great importance for Greece, Albania, FYROM and Montenegro (e.g. tourism, agriculture, hydro-energy, urban & industrial use). This new work proves that annual water level fluctuations of Lake Megali Prespa are predominantly related to precipitation during the first 7 months (Oct-Apr) of the hydrological year (Oct-Sep). Lake level is very sensitive to regional and Mediterranean wet-dry events during this period. There are robust indications for a link between lake level and the North Atlantic Oscillation, which is known to strongly influence Mediterranean winter precipitation. Hydro-climatic records show a complicated picture, but tentatively support the conclusion that the unprecedented lake level fall is principally related to climate change. The available fluvial discharge record and most existing snowfall records show statistically significant decreases in annual averages. Annual rainfall only shows a statistically significant decrease of the 25th percentile; 7-month rainfall (Oct-Apr) additionally shows a statistically significant but non-robust decrease of the mean. The modest amount of water extraction (annually: ~14*103m3, ~0.004% of total lake volume) exerts a progressive and significant impact on lake level over the longer term, accounting for ~25% of the observed fall. Lake level lowering ends when lake-surface area shrinkage has led to a decrease in lake-surface evaporation that is equivalent to the amount of water extracted. The adjustment of lake level to stable extraction rates requires two to three decades. This work aims to steer adaptation and mitigation strategies by informing on lake response under different climate change and extraction scenarios. Lake protection is a cost effective solution for supporting global biodiversity and for providing sustainable water resources.
NASA Astrophysics Data System (ADS)
Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.
2017-12-01
The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.
NASA Astrophysics Data System (ADS)
Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.
2014-12-01
Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to determine whether people lived at the tip of the SF peninsula as early as 2000 BP. In October 2014 the Presidio Trust opened a Heritage Gallery that interprets the cultural and natural history of the park for the public. The Mountain Lake sedimentary record is an important component of this exhibit, which includes an epoxy-embedded core from the lake.
Becking, Leontine E; Erpenbeck, Dirk; Peijnenburg, Katja T C A; de Voogd, Nicole J
2013-01-01
The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species.
Becking, Leontine E.; Erpenbeck, Dirk; Peijnenburg, Katja T. C. A.; de Voogd, Nicole J.
2013-01-01
The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species. PMID:24098416
NASA Astrophysics Data System (ADS)
Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin
2017-04-01
The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.
Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes
NASA Astrophysics Data System (ADS)
Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme
2017-04-01
In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM, considered better altimetric surfaces when compared to the ECMWF orography, can be used. When using the model orography, systematic errors up to 3-5 cm are found in the DTC for most of the selected regions, which can induce significant errors in e.g. the determination of mean river profiles or lake level time series. For the Danube River, larger DTC errors up to 10 cm, due to terrain characteristics, can appear. For the WTC, with higher spatial variability, model errors of magnitude 1-3 cm are expected over inland waters. In the Danube region, the comparison of GNSS- and ECMWF-derived WTC has shown that the error in the WTC computed at orography level can be up to 3 cm. WTC errors with this magnitude have been found for all ROI. Although globally small, these errors are systematic and must be corrected prior to the generation of CS-2 Level 2 products. Once computed at the mean profile and mean lake level, the results show that tropospheric corrections have accuracy better than 1 cm. This analysis is currently being extended to S3 data and the first results are shown.
Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels
NASA Astrophysics Data System (ADS)
Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai; Enzel, Yehouda
2013-06-01
A new, detailed lake level curve for Lake Lisan (the Last Glacial Dead Sea) reveals a high frequency of abrupt fluctuations during Marine Isotope Stage 3 (MIS3) compared to the relatively high stand characterizing MIS2, and the significantly lower Holocene lake. The lake level fluctuations reflect the hydrological conditions in the large watershed of the lake, which in turn reflects the hydro-climatic conditions in the central Levant region. The new curve shows that the fluctuations coincide on millennial timescales with temperature variations recorded in Greenland. Four patterns of correlation are observed through the last ice age: (1) maximum lake elevations were reached during MIS2, the coldest interval; (2) abrupt lake level drops to the lowest elevations coincided with the occurrence of Heinrich (H) events; (3) the lake returned to higher-stand conditions along with warming in Greenland that followed H-events; (4) significant lake level fluctuations coincided with virtually every Greenland stadial-interstadial cycle. Over glacial-interglacial time-scales, Northern Hemisphere glacial cooling induces extreme wetness in the Levant, with high lake levels reaching ˜160 m below mean sea level (mbmsl), approximately 240 m above typical Holocene levels of ˜400 mbmsl. These orbital time-scale shifts are driven by expansions of the European ice sheet, which deflect westerly storm tracks southward to the Eastern Mediterranean, resulting in increased sea-air temperature gradients that invoke increased cyclogenesis, and enhanced moisture delivery to the Levant. The millennial-scale lake level drops associated with Greenland stadials are most extreme during Heinrich stadials and reflect abrupt cooling of the Eastern Mediterranean atmosphere and sea-surface, which weaken the cyclogenic rain engine and cause extreme Levant droughts. During the recovery from the effect of Heinrich stadials, the regional climate configuration resumed typical glacial conditions, with enhanced Levant precipitation and a rise in Lake Lisan levels. Similar cyclicity in the transfer of moisture to the Levant affected lake levels during all of the non-Heinrich stadial-interstadial cycles.
NASA Astrophysics Data System (ADS)
van der Schriek, Tim; Varotsos, Konstantinos V.; Giannakopoulos, Christos
2017-04-01
The Mediterranean stands out globally due to its sensitivity to (future) climate change. Projections suggest that the Balkans will experience precipitation and runoff decreases of up to 30% by 2100. However, these projections show large regional spatial variability. Mediterranean lake-wetland systems are particularly threatened by projected climate changes that compound increasingly intensive human impacts (e.g. water extraction, drainage, pollution and dam-building). Protecting the remaining systems is extremely important for supporting global biodiversity. This protection should be based on a clear understanding of individual lake-wetland hydrological responses to future climate changes, which requires fine-resolution projections and a good understanding of the impact of hydro-climate variability on individual lakes. Climate change may directly affect lake level (variability), volume and water temperatures. In turn, these variables influence lake-ecology, habitats and water quality. Land-use intensification and water abstraction multiply these climate-driven changes. To date, there are no projections of future water level and -temperature of individual Mediterranean lakes under future climate scenarios. These are, however, of crucial importance to steer preservation strategies on the relevant catchment-scale. Here we present the first projections of water level and -temperature of the Prespa Lakes covering the period 2071-2100. These lakes are of global significance for biodiversity, and of great regional socio-economic importance as a water resource and tourist attraction. Impact projections are assessed by the Regional Climate Model RCA4 of the Swedish Meteorological and Hydrological Institute (SMHI) driven by the Max Planck Institute for Meteorology global climate model MPI-ESM-LR under two RCP future emissions scenarios, the RCP4.5 and the RCP8.5, with the simulations carried out in the framework of EURO-CORDEX. Temperature, evapo(transpi)ration and precipitation over the Prespa catchment were simulated with this high horizontal resolution (12 × 12 km) regional climate model. Lake temperatures were derived from surface temperatures based on physical models, while water levels were calculated with the lake water balance model. Climate simulations indicate that annual- and wet season catchment precipitation does not significantly change by the end of the century. The median precipitation decreases, while precipitation variability increases. The percentage of annual precipitation falling in the wet season increases by 5-10%, indicating a stronger seasonality in the precipitation regime. Summer (lake) temperatures and lake surface evaporation will rise significantly under both explored climate change scenarios. Lake impact projections indicate that evaporation changes will cause the water level of Lake Megali Prespa to fall by 5m to 840-839m. The increased precipitation variability will cause large inter-annual water level fluctuations. Average water level may fall even further if: (1) drier summers lead to more water abstraction for irrigation, and (2) there is a reduction in winter snowfall/accumulation and thus less discharge. These findings are of key importance for developing sustainable lake water resource management in a region that is highly vulnerable to future climate change and already experiences significant water stress. Research paves the way for innovative management adaptation strategies focussed on decreasing water abstraction, for example through introducing smart irrigation and selecting more water efficient crops.
Oxygen isotope records of Holocene climate variability in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Steinman, Byron A.; Pompeani, David P.; Abbott, Mark B.; Ortiz, Joseph D.; Stansell, Nathan D.; Finkenbinder, Matthew S.; Mihindukulasooriya, Lorita N.; Hillman, Aubrey L.
2016-06-01
Oxygen isotope (δ18O) measurements of authigenic carbonate from Cleland Lake (southeastern British Columbia), Paradise Lake (central British Columbia), and Lime Lake (eastern Washington) provide a ∼9000 year Holocene record of precipitation-evaporation balance variations in the Pacific Northwest. Both Cleland Lake and Paradise Lake are small, surficially closed-basin systems with no active inflows or outflows. Lime Lake is surficially open with a seasonally active overflow. Water isotope values from Cleland and Paradise plot along the local evaporation line, indicating that precipitation-evaporation balance is a strong influence on lake hydrology. In contrast, Lime Lake water isotope values plot on the local meteoric water line, signifying minimal influence by evaporation. To infer past hydrologic balance variations at a high temporal resolution, we sampled the Cleland, Paradise, and Lime Lake sediment cores at 1-60 mm intervals (∼3-33 years per sample on average) and measured the isotopic composition of fine-grained (<63 μm) authigenic CaCO3 in each sample. Negative δ18O values, which indicate wetter conditions in closed-basin lakes, occur in Cleland Lake sediment from 7600 to 2200 years before present (yr BP), and are followed by more positive δ18O values, which suggest drier conditions, after 2200 yr BP. Highly negative δ18O values in the Cleland Lake record centered on ∼2400 yr BP suggest that lake levels were high (and that the lake may have been overflowing) at this time as a result of a substantially wetter climate. Similarly, Paradise Lake sediment δ18O values are relatively low from 7600 to 4000 yr BP and increase from ∼4000 to 3000 yr BP and from ∼2000 yr BP to present, indicating that climate became drier from the middle through the late Holocene. The δ18O record from Lime Lake, which principally reflects changes in the isotopic composition of precipitation, exhibits less variability than the closed-basin lake records and follows a generally increasing trend from the mid-Holocene to present. These results are consistent with several proximal reconstructions of changes in lake-level, precipitation amount, and precipitation isotopic composition and may also reflect the establishment of modern El Niño Southern Oscillation (ENSO) variability in the late Holocene, as inferred from proxy evidence of synoptic ocean-atmosphere changes in the Pacific basin. Results from mid-Holocene (6000 yr BP) climate model simulations conducted as part of the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3) indicate that in much of western North America, the cold season (October-March) was wetter and the warm season (April-September) was considerably drier relative to the late Holocene, leading to an overall drier climate in western North America with enhanced hydroclimatic seasonality. This is consistent with inferences from the Cleland and Paradise δ18O records, which lake modeling experiments indicate are strongly influenced by cold season precipitation-evaporation balance. This also explains apparent inconsistencies between the lake δ18O records and other proxies of hydroclimatic change from the greater Pacific Northwest region that are less sensitive to cold season climate and thus indicate relatively drier conditions during the mid-Holocene. The abrupt negative excursion at ∼2400 yr BP in the Cleland Lake δ18O data, as well as the marked shift to more positive values after this time, demonstrate that gradual changes in ocean-atmosphere dynamics can produce abrupt, non-linear hydroclimate responses in the interior regions of western North America.
Earth Observations taken by Expedition 30 crewmember
2012-01-19
ISS030-E-059398 (19 Jan. 2012) --- Lake Fitri, Chad is featured in this image photographed by an Expedition 30 crew member on the International Space Station. Lake Fitri is an endorheic, or terminal lake in a desert basin in the southern Sahara Desert. Muddy yellow-brown water marks the center of the depression (center), with a ring of dark brown muds and burnt vegetation on the exposed lake floor to the north. The lake shoreline supports a thin line of reed and floating grass vegetation which appears as dark green in the image. Deserts have so little rainfall that many rivers cannot reach the sea, but end at local low points where they form lakes. Here the usually dry Wadi Batha empties into Lake Fitri. Over time, water flow in Wadi Batha has created a large delta, which occupies the entire top left third of the image—a sense of scale is given by the 23–kilometer length of the lake. The lake has been designated under the Ramsar Convention as a wetland of international importance. Other features visible in the image reveal evidence of significant climate change. The dry part of the present lake shows that the lake has been larger in the last several decades. But, as NASA scientists point out, the lake was once many times larger than its present surface area, as shown by numerous sweeping curves of ancient beaches which are now situated many kilometers from the present shoreline, at higher altitudes (upper right). Inland lakes are highly sensitive to the exact equilibrium between the amount of inflow from contributing rivers like Wadi Batha and evaporation. Each beach ridge therefore shows a different lake level and thus a different balance in the lake-river-climate system. A smaller river enters from the south (top right) and cuts through the beach reaches on its way to the lake. The irregular, elongated, tan patches to the west of the lake are linear dunes aligned parallel to the dominant winds which blow from the northeast. The dunes have all formed on the downwind side (southwest) side of the lake since the lake bed and delta provide the sands which have built the dunes. The dunes indicate that during past climatic phases the lake has been almost or completely dry on repeated occasions—often enough for these great dunes, many kilometers long and several meters high, to form even in the lowest parts of the lake. The islands visible in the center of the lake are likewise remnants of dunes. These dunes are smaller than those on the lake margin, presumably because waves from the lake have eroded them. Villages occupy the points of some major dunes, and some islands, where fishermen can gain easy access to the lake.
Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan
NASA Astrophysics Data System (ADS)
Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru
2018-04-01
Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.
Using high hydraulic conductivity nodes to simulate seepage lakes
Anderson, Mary P.; Hunt, Randall J.; Krohelski, James T.; Chung, Kuopo
2002-01-01
In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10−3 m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.
NASA Astrophysics Data System (ADS)
O'Brien, J. F.; Jolly, A. D.; Fournier, N.; Cole-Baker, J.; Hurst, T.; Roman, D. C.
2011-12-01
Volcanic crater lakes are often associated with active hydrothermal systems that induce cyclic behavior in the lake's level, temperature, and chemistry. Inferno Crater Lake, located in the Waimangu geothermal field within the Taupo Volcanic Zone (TVZ) on the North Island of New Zealand exhibits lake level fluctuations of >7m, and temperature fluctuations >40°C with a highly variable periodicity. Seismic and gravity monitoring of Inferno Lake was carried out from December, 2009 - March, 2010 and captured a full cycle of lake fluctuation. Results indicate that this cycle consisted of ~5 smaller fluctuations of ~3m in lake level followed by a larger fluctuation of ~7m. A broadband seismometer recorded strong seismic tremor in the hours leading up to each of the minor and major high stands in lake level. Spectral analysis of the tremor shows dominant frequencies in the range of ~10Hz and a fundamental harmonic frequency located in the 1Hz range. The 1Hz frequency band exhibits gliding spectral lines which increase in frequency at the end of each tremor period. Particle motion analysis of harmonic tremor waveforms indicate a ~100m upward migration of the source location from the onset of tremor until it ceases at the peak of each lake level high stand. Particle motions also indicate an azimuthal migration of the source by ~30° from the overflow outlet region of the lake toward the central vent location during the course of the tremor and lake level increase. Lake water temperature has a direct relationship with lake level and ranges between ~40°C - ~80°C. Gravity fluctuations were also continuously monitored using a Micro-g-LaCoste gPhone relative gravity meter with a 1Hz sampling rate and precision of 1 microgal. These data indicate a direct relationship between lake level and gravity showing a net increase of ~100 microgals between lake level low and high stands. A piezometer located beside the lake indicates an inflow of ground water into the subsoil during periods of lake level increase and outflow of groundwater during lake level decrease resulting in a ~0.5m overall change between high and low stands and suggests that groundwater flow underneath the gravity meter may be playing a significant role in observed gravity changes. Overall, the results are consistent with a hydrothermal system at Inferno Lake consisting of a one-phase liquid layer overlying a 2-phase liquid/gas layer. Heating from below initiates boiling at the boundary between the one- and two-phase regions, and may act as the source of harmonic tremor within the conduit system. The dynamic expansion and collapse of the two-phase layer may modify the resonator geometry and internal properties, producing the harmonic excitation and apparent source position migration. Further study of Inferno Lake's hydrothermal system will aid in understanding its complex nature and that of other volcanic lake-hydrothermal systems.
Biogeochemistry of silica in Devils Lake: Implications for diatom preservation
Lent, R.M.; Lyons, B.
2001-01-01
Diatom-salinity records from sediment cores have been used to construct climate records of saline-lake basins. In many cases, this has been done without thorough understanding of the preservation potential of the diatoms in the sediments through time. The purpose of this study was to determine the biogeochemistry of silica in Devils Lake and evaluate the potential effects of silica cycling on diatom preservation. During the period of record, 1867-1999, lake levels have fluctuated from 427 m above sea level in 1940 to 441.1 m above sea level in 1999. The biogeochemistry of silica in Devils Lake is dominated by internal cycling. During the early 1990s when lake levels were relatively high, about 94% of the biogenic silica (BSi) produced in Devils Lake was recycled in the water column before burial. About 42% of the BSi that was incorporated in bottom sediments was dissolved and diffused back into the lake, and the remaining 58% was buried. Therefore, the BSi accumulation rate was about 3% of the BSi assimilation rate. Generally, the results obtained from this study are similar to those obtained from studies of the biogeochemistry of silica in large oligotrophic lakes and the open ocean where most of the BSi produced is recycled in surface water. During the mid 1960s when lake levels were relatively low, BSi assimilation and water-column dissolution rates were much higher than when lake levels were high. The BSi assimilation rate was as much as three times higher during low lake levels. Even with the much higher BSi assimilation rate, the BSi accumulation rate was about three times lower because the BSi water-column dissolution rate was more than 99% of the BSi assimilation rate compared to 94% during high lake levels. Variations in the biogeochemistry of silica with lake level have important implications for paleolimnologic studies. Increased BSi water-column dissolution during decreasing lake levels may alter the diatom-salinity record by selectively removing the less resistant diatoms. Also, BSi accumulation may be proportional to the amount of silica input from tributary sources. Therefore, BSi accumulation chronologies from sediment cores may be effective records of tributary inflow.
Thompson, Robert S.; Oviatt, Charles G.; Honke, Jeffrey S.; McGeehin, John
2016-01-01
Sediment cores from Great Salt Lake (GSL) provide the basis for reconstructing changes in lakes, vegetation, and climate for the last ~ 40 cal ka. Initially, the coring site was covered by a shallow saline lake and surrounded by Artemisia steppe or steppe-tundra under a cold and dry climate. As Lake Bonneville began to rise (from ~ 30 to 28 cal ka), Pinus and subalpine conifer pollen percentages increased and Artemisia declined, suggesting the onset of wetter conditions. Lake Bonneville oscillated near the Stansbury shoreline between ~ 26 and ~ 24 cal ka, rose to the Bonneville shoreline by ~ 18 cal ka, and then fell to the Provo shoreline, which it occupied until ~ 15 cal ka. Vegetation changed during this time span, albeit not always with the same direction or amplitude as the lake. The pollen percentages of Pinus and subalpine conifers were high from ~ 25 to 21.5 cal ka, indicating cool and moist conditions during the Stansbury oscillation and for much of the rise toward the Bonneville shoreline. Pinus percentages then decreased and Artemisia became codominant, suggesting drier and perhaps colder conditions from ~ 21 to ~ 15 cal ka, when Lake Bonneville was at or near its highest levels.Lake Bonneville declined to a low level by ~ 13 cal ka, while Pinus pollen percentages increased, indicating that conditions remained cooler and moister than today. During the Younger Dryas interval, the brief Gilbert episode rise in lake level was followed by a shallow lake with a stratified water column. This lake rise occurred as Pinus pollen percentages were declining and those of Artemisia were rising (reflecting increasingly dry conditions), after which Artemisia pollen was at very high levels (suggesting cold and dry conditions) for a brief period.Since ~ 10.6 cal ka lacustrine conditions have resembled those of present-day GSL. Pollen spectra for the period from ~ 10.6 to 7.2 cal ka have low levels of conifer pollen and high (for the Holocene) levels of desert and steppe taxa, suggesting generally dry conditions with maximum aridity occurring prior to the deposition of the Mazama tephra (~ 7.6 cal ka). After ~ 10.6 cal ka, Juniperus pollen percentages began to increase and by ~ 7.2 cal ka juniper woodlands were well established on lower mountain slopes. From ~ 7 to 4 cal ka, pollen percentages fluctuated near their mean values for the entire Holocene. The neopluvial (~ 4 to 2 cal ka) was the wettest part of the Holocene, with higher levels of Juniperus pollen and lower levels for steppe and desert taxa than in older Holocene sediments. Pollen percentages for the last ~ 2 cal ka are variable, but generally indicate a return to drier conditions.
Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of late-stage lakes
NASA Astrophysics Data System (ADS)
Horvath, David G.; Andrews-Hanna, Jeffrey C.
2017-08-01
The sedimentary deposits in Gale crater may preserve one of the best records of the early Martian climate during the Late Noachian and Early Hesperian. Surface and orbital observations support the presence of two periods of lake stability in Gale crater—prior to the formation of the sedimentary mound during the Late Noachian and after the formation and erosion of the mound to its present state in the Early Hesperian. Here we use hydrological models and late-stage lake levels at Gale, to reconstruct the climate of Mars after mound formation and erosion to its present state. Using Earth analog climates, we show that the late-stage lakes require wetter interludes characterized by semiarid climates after the transition to arid conditions in the Hesperian. These climates are much wetter than is thought to characterize much of the Hesperian and are more similar to estimates of the Late Noachian climate.
van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; Wilmking, Martin
2015-01-01
In this study, we explore the potential to reconstruct lake-level (and groundwater) fluctuations from tree-ring chronologies of black alder (Alnus glutinosa L.) for three study lakes in the Mecklenburg Lake District, northeastern Germany. As gauging records for lakes in this region are generally short, long-term reconstructions of lake-level fluctuations could provide valuable information on past hydrological conditions, which, in turn, are useful to assess dynamics of climate and landscape evolution. We selected black alder as our study species as alder typically thrives as riparian vegetation along lakeshores. For the study lakes, we tested whether a regional signal in lake-level fluctuations and in the growth of alder exists that could be used for long-term regional hydrological reconstructions, but found that local (i.e. site-specific) signals in lake level and tree-ring chronologies prevailed. Hence, we built lake/groundwater-level reconstruction models for the three study lakes individually. Two sets of models were considered based on (1) local tree-ring series of black alder, and (2) site-specific Standardized Precipitation Evapotranspiration Indices (SPEI). Although the SPEI-based models performed statistically well, we critically reflect on the reliability of these reconstructions, as SPEI cannot account for human influence. Tree-ring based reconstruction models, on the other hand, performed poor. Combined, our results suggest that, for our study area, long-term regional reconstructions of lake-level fluctuations that consider both recent and ancient (e.g., archaeological) wood of black alder seem extremely challenging, if not impossible. PMID:26317768
Lake water levels across the U.S.: What are the spatial patterns and drivers of water level change?
Background Lake water-level changes affect the physical, chemical, and biological condition of lakes; and we expect that disturbances such as land use conversion, water withdrawal, and climate change may alter water-level regimes and impact lake integrity. However, we have a poor...
NASA Astrophysics Data System (ADS)
Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi
2017-04-01
In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.
Review of the hydrologic data-collection network in the St Joseph River basin, Indiana
Crompton, E.J.; Peters, J.G.; Miller, R.L.; Stewart, J.A.; Banaszak, K.J.; Shedlock, R.J.
1986-01-01
The St. Joseph River Basin data-collection network in the St. Joseph River for streamflow, lake, ground water, and climatic stations was reviewed. The network review included only the 1700 sq mi part of the basin in Indiana. The streamflow network includes 11 continuous-record gaging stations and one partial-record station. Based on areal distribution, lake effect , contributing drainage area, and flow-record ratio, six of these stations can be used to describe regional hydrology. Gaging stations on lakes are used to collect long-term lake-level data on which to base legal lake levels, and to monitor lake-level fluctuations after legal levels are established. More hydrogeologic data are needed for determining the degree to which grouhd water affects lake levels. The current groundwater network comprises 15 observation wells and has four purposes: (1) to determine the interaction between groundwater and lakes; (2) to measure changes in groundwater levels near irrigation wells; (3) to measure water levels in wells at special purpose sites; and (4) to measure long-term changes in water levels in areas not affected by pumping. Seven wells near three lakes have provided sufficient information for correlating water levels in wells and lakes but are not adequate to quantify the effect of groundwater on lake levels. Water levels in five observation wells located in the vicinity of intensive irrigation are not noticeably affected by seasonal withdrawals. The National Weather Sevice operates eight climatic stations in the basin primarily to characterize regional climatic conditions and to aid in flood forecasting. The network meets network-density guidelines established by the World Meterological Organization for collection of precipitation and evaporation data but not guidelines suggested by the National Weather Service for density of precipitation gages in areas of significant convective rainfalls. (Author 's abstract)
Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron
Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.
1992-01-01
Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef also contributed to our evaluation of the sanctuary as a site with high potential to support a self-sustaining population of lake trout.
NASA Astrophysics Data System (ADS)
Katzoff, Judith A.
About 20% of the United States, including the regions of the Great Lakes and the Great Salt Lake, has entered a fourth year of record and near-record streamflow and lake levels, according to the U.S. Geological Survey (USGS). From June 3 until June 8, 1986, the Great Salt Lake stood at 1283.77 m above sea level, 0.076 m above the previous record, which was set in 1873. (Records have been kept for the lake since 1847.) On June 8, a dike south of the lake gave way during a windstorm, causing flooding of evaporation ponds used for mineral recovery.As a result of the breach, the lake's level dropped to 1283.65 m above sea level by June 10 but rose to 1283.68 m by June 20. The latest official reading, made on June 30, showed that the lake's level had dropped to 1283.63 m above sea level. According to Tom Ross, chief of the Current Water Conditions Group at the USGS National Center in Reston, Va., this drop represents “a normal seasonal decline brought on by evaporation.”
Natural reservoirs and triggered seismicity: a study of two northern Utah Lakes
NASA Astrophysics Data System (ADS)
Whidden, K. M.; Hansen, K.; Timothy, M.; Boltz, M. S.; Pankow, K. L.; Koper, K. D.
2014-12-01
The Great Salt Lake (GSL) and Utah Lake (UL) in northern Utah are in the middle of the Intermountain Seismic Belt, a band of active seismicity extending from western Montana through central Utah to northern Arizona. The proximity of these water bodies to an active earthquake zone is ideal for an investigation of lake-triggered seismicity. Both GSL and UL are shallow (10 and 4.3 m, respectively). The fresh water UL drains via the Jordan River into the salty GSL, which has no outlet. GSL has an aerial extent of 4400 km2, and the shallow depth and lack of outlet cause the surface area to change greatly as the lake volume increases and decreases. UL is much smaller with an almost constant aerial extent of 385 km2. For each lake, we compare yearly earthquake counts near the lake to yearly average lake level for years 1975-2013. GSL seismicity and lake level data correlate well, with seismicity increasing 3-5 years after lake level rise (cross correlation coefficient=0.56, P-value=0.0005). There is an especially large increase in seismicity in 1989 NE of the GSL following the historic lake level high stand in the mid-1980s. The 1989 seismicity has characteristics of both a swarm and a traditional mainshock/aftershock sequence. We will use a double-difference method (HypoDD) to relocate these earthquakes. UL seismicity does not correlate well with the lake level. The different results for the two lakes could perhaps be explained by the lakes' different sizes and the fact that UL has an outlet while GSL does not. The difference might also be explained by subsurface fluid pathways and available faults for nucleating earthquakes. We will further explore the significance of the GSL seismicity and lake level correlation by generating synthetic earthquake catalogs and cross correlating their yearly earthquake counts with the lake level data.
NASA Astrophysics Data System (ADS)
Gilbertson, M.; Harrison, B. K.; Flood, B. E.; Myrbo, A.; Bailey, J. V.
2013-12-01
The characterization of microbial communities within urban lake sediments may offer a promising method to observe changes in lake geochemistry due to human impact. By mapping the abundances and diversity of microorganisms through the uppermost meter of sediment in three distinctive Minneapolis-St. Paul lakes (Brownie Lake and Twin Lake, both meromictic, and oligomictic Lake McCarrons) using 16S rRNA characterization, our aim was to observe changes in microbial populations across steep geochemical and lithological gradients. Lake McCarrons underwent a process of eutrophication and a shift to bottom water anoxia beginning around 1910 due mostly to agricultural run-off. This shift greatly increased the preservation potential of seasonal sedimentation and finely laminated varve accumulation. The onset of meromixis in Brownie Lake in ~1915 is abrupt and has been attributed to a sudden drop in water level. Twin Lake is perennially meromictic due to the topography of the watershed. The three lakes were sampled by collecting freeze cores in July, 2012 (McCarrons, Brownie) and February, 2013 (Twin) at the deepest locations beneath anoxic to hypoxic bottom waters. The cores were then subsampled with high resolution techniques at places of interest: within individual lamina, across mass flow deposits, and near the onset of laminae preservation (beginning of oxygen-depleted bottom waters). Terminal Restriction Fragment Length Polymorphism (T-RFLP) allows for comparison of the microbial assemblages throughout the sediment columns of each lake and from lake to lake, with a focus on the horizons mentioned previously. The microbial assemblages present in specific horizons are often introduced via sedimentation and are partially derived from community composition at the time of sedimentation. T-RFLP analyses are complemented by mineralogical and lithological descriptions. The lakes have each been subject to their own set of variables and inputs. Brownie Lake contains high levels of Fe and Mn (measured up to 78 and 6 mg/l in bottom waters, respectively, US EPA STORET). The ecology of McCarrons has been greatly disturbed most recently when the lake was targeted by a 2004 aluminum sulfate treatment to counteract high phosphorous levels. Twin Lake has mass flow deposits nearly 5 cm thick, similar to turbidites, likely caused by increased sedimentation from large housing developments on the lake shores. The microbial community in each of the lakes is impacted by these distinct parameters. This study examines variability in microbial community assemblages through time and space within these lake sediments. Changes seen in the ecology of the communities are related to changes in chemical and physical parameters, namely, shifts in lithology and sediment accumulation via the onset of meromixis. Freeze coring exceptionally allows super-high resolution subsampling techniques to identify differences across geochemical gradients and between individual seasonal laminae within each lake and from lake to lake.
Hudon, Christiane; Wilcox, Douglas; Ingram, Joel
2006-01-01
The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.
Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma
Havens, J.S.
1984-01-01
The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.
Simulating the effect of climate extremes on groundwater flow through a lakebed.
Virdi, Makhan L; Lee, Terrie M; Swancar, Amy; Niswonger, Richard G
2013-03-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Mid-Holocene hydrologic model of the Shingobee watershed, Minnesota
Filby, S.K.; Locke, Sharon M.; Person, M.A.; Winter, T.C.; Rosenberry, D.O.; Nieber, J.L.; Gutowski, W.J.; Ito, E.
2002-01-01
A hydrologifc model of the Shingobee Watershed in north-central Minnesota was developed to reconstruct mid-Holocene paleo-lake levels for Williams Lake, a surface-water body located in the southern portion of the watershed. Hydrologic parameters for the model were first estimated in a calibration exercise using a 9-yr historical record (1990-1998) of climatic and hydrologic stresses. The model reproduced observed temporal and spatial trends in surface/groundwater levels across the watershed. Mid-Holocene aquifer and lake levels were then reconstructed using two paleoclimatic data sets: CCM1 atmospheric general circulation model output and pollen-transfer functions using sediment core data from Williams Lake. Calculated paleo-lake levels based on pollen-derived paleoclimatic reconstructions indicated a 3.5-m drop in simulated lake levels and were in good agreement with the position of mid-Holocene beach sands observed in a Williams Lake sediment core transect. However, calculated paleolake levels based on CCM1 climate forcing produced only a 0.05-m drop in lake levels. We found that decreases in winter precipitation rather than temperature increases had the largest effect on simulated mid-Holocene lake levels. The study illustrates how watershed models can be used to critically evaluate paleoclimatic reconstructions by integrating geologic, climatic, limnologic, and hydrogeologic data sets. ?? 2002 University of Washington.
Tekin-Ozan, Selda
2008-10-01
In the present study, some heavy metals (Cu, Fe, Zn and Mn) were seasonally determined in water, sediment and some tissues of fish Tinca tinca from Beyşehir Lake, which is an important bird nesting and visiting area, a water source for irrigation and drinking. In the water, Fe has the highest concentrations among the studied metals. Generally, the metal concentrations increased in the hottest period decreased in warm seasons. Results for levels in water were compared with national and international water quality guidelines, as well as literature data reported for the lakes. Fe was the highest in sediment samples, also Cu and Zn were the highest in spring, while Fe and Mn were in autumn. Among the heavy metals studied, Cu and Mn were below the detection limits in some tissues. Generally, higher concentrations of the tested metals were found in the summer and winter, compared with those during the autumn and spring seasons. High levels of heavy metals were found in liver of T. tinca, while low levels in muscle samples. Metal concentrations in the muscle of examined fish were within the safety permissible levels for human consumption. The present study shows that precautions need to be taken in order to prevent further heavy metal pollution.
Li, Jing-Zhi; Zhu, Xiang; Li, Jing-Bao; Xu, Mei
2013-06-01
By using analytic hierarchy process and entropy method, the evaluation index system and the response relationship model of comprehensive development level of urbanization and comprehensive development and utilization potential of water resources in Dongting Lake District were constructed, with the key affecting factors, their change characteristics, and response characteristics from 2001 to 2010 analyzed. During the study period, the Dongting Lake District was undergoing a rapid development of urbanization, and at a scale expansion stage. The economic and social development level was lagged behind the population and area increase, and the quality and efficiency of urbanization were still needed to be improved. With the advance of urbanization, the water consumption increased yearly, and the water resources utilization efficiency and management level improved steadily. However, the background condition of water resources and their development and utilization level were more affected by hydrological environment rather than urbanization. To a certain extent, the development of urbanization in 2001, 2002, 2005, 2006, 2007, 2009 was slowed down by the shortage of water resources. At present, Dongting Lake region was confronted with the dual task of improving the level and quality of urbanization, and hence, it would be necessary to reform the traditional epitaxial expansion of urbanization and to enhance the water resource support capability.
NASA Astrophysics Data System (ADS)
Vainu, M.
2012-04-01
Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a coniferous forest on the lake catchments, due to which evapotranspiration and subsequently runoff from the catchment decreased. The forest had been destroyed by wildfires during World War II. The water-level rise that the lakes have gone through in the last 20 years has in the case of L. Ahnejärv been caused by changing meteorological conditions (precipitation, air temperature and wind speed). In the case of Lakes Kuradijärv and Martiska the change has been caused by both the raise of groundwater level (caused by the decreasing groundwater abstraction) and the change of meteorological conditions. Therefore the vegetation change on the catchment and changes in meteorological conditions have played as important or, at times, even more important role in the water-level fluctuations than changes in the hydrogeological conditions. Although concentrating on three specific lakes in a specific region, the result of the study indicate the complexity of factors influencing the amount of water stored in a lake at a certain moment. Therefore it manifests a need for improved models in order to improve lake management around the world.
Brown, R.G.
1985-01-01
Long-term trends in cumulative departure from mean annual precipitation suggest that recharge to the drift aquifer in the area has been increasing since the 1940's. The increase in precipitation and recharge corresponds to the observed rise in lake level since 1965 when regular lake-level measurements began. Fluctuations in lake level in the future will depend on changes in recharge to the drift and bedrock aquifers, which is directly related to changes in long-term precipitation patterns.
NASA Astrophysics Data System (ADS)
Jouve, Guillaume; Vidal, Laurence; Adallal, Rachid; Bard, Edouard; Benkaddour, Abdel; Chapron, Emmanuel; Courp, Thierry; Dezileau, Laurent; Hébert, Bertil; Rhoujjati, Ali; Simonneau, Anaelle; Sonzogni, Corinne; Sylvestre, Florence; Tachikawa, Kazuyo; Viry, Elisabeth
2016-04-01
Since the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114.
Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago
Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.
2000-01-01
Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.
Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling.
Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Hamzeh, Saeid
2017-10-18
Preserving aquatic ecosystems and water resources management is crucial in arid and semi-arid regions for anthropogenic reasons and climate change. In recent decades, the water level of the largest lake in Iran, Urmia Lake, has decreased sharply, which has become a major environmental concern in Iran and the region. The efforts to revive the lake concerns the amount of water required for restoration. This study monitored and assessed Urmia Lake status over a period of 30 years (1984 to 2014) using remotely sensed data. A novel method is proposed that generates a lakebed digital elevation model (LBDEM) for Urmia Lake based on time series images from Landsat satellites, water level field measurements, remote sensing techniques, GIS, and 3D modeling. The volume of water required to restore the Lake water level to that of previous years and the ecological water level was calculated based on LBDEM. The results indicate a marked change in the area and volume of the lake from its maximum water level in 1998 to its minimum level in 2014. During this period, 86% of the lake became a salt desert and the volume of the lake water in 2013 was just 0.83% of the 1998 volume. The volume of water required to restore Urmia Lake from benchmark status (in 2014) to ecological water level (1274.10 m) is 12.546 Bm 3 , excluding evaporation. The results and the proposed method can be used by national and international environmental organizations to monitor and assess the status of Urmia Lake and support them in decision-making.
Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress
2007-01-01
A change-potential index (CPI) was used to map the susceptibility of the shoreline to future lake-level change within Apostle Islands, Indiana Dunes, and Sleeping Bear Dunes National Lakeshores (NL) along Lake Superior and Lake Michigan. The CPI in the Great Lakes setting ranks the following in terms of their physical contribution to lake-level related coastal change: geomorphology, regional coastal slope, rate and direction (i.e., rise and fall) of relative lake-level change, historical shoreline change rates, annual ice cover and mean significant wave height. The rankings for each input variable were combined, and an index value calculated for 1-minute bins covering the parks. The CPI highlights those regions where the physical effects of lake-level and coastal change might be the greatest. This approach combines the coastal system's potential for change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the parks' natural susceptibility to the effects of lake-level variation. The CPI provides an objective technique for evaluation and long-term planning by scientists and park managers. The CPI is applied to the National Lakeshores of Apostle Islands, Indiana Dunes, and Sleeping Bear Dunes to test this methodology in lake settings. The National Lakeshores in this study consist of sand and gravel beaches, rock outcrops, and dune and glacial bluffs. The areas within these Great Lakes parks that are likely to experience the most lake-level-related coastal change are areas of unconsolidated sediment where regional coastal slope is low and wave energy is high.
Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.
1997-01-01
A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.
An improved bathymetric model for the modern and palaeo Lake Eyre
NASA Astrophysics Data System (ADS)
Leon, J. X.; Cohen, T. J.
2012-11-01
Here we demonstrate the applicability of using altimetry data and Landsat imagery to provide the most accurate digital elevation model (DEM) of Australia's largest playa lake — Lake Eyre. We demonstrate through the use of geospatial techniques a robust assessment of lake area and volume of recent lake-filling episodes whilst also providing the most accurate estimates of area and volume for larger lake filling episodes that occurred throughout the last glacial cycle. We highlight that at a depth of 25 m Lake Mega-Eyre would merge with the adjacent Lake Mega-Frome to form an immense waterbody with a combined area of almost 35,000 km2 and a combined volume of ~ 520 km3. This would represent a vast water body in what is now the arid interior of the Australian continent. The improved DEM is more reliable from a geomorphological and hydrological perspective and allows a more accurate assessment of water balance under the modern hydrological regime. The results presented using GLAS/ICESat data suggest that earlier historical soundings were correct and the actual lowest topographic point in Australia is - 15.6 m below sea level. The results also contrast nicely the different basin characteristics of two adjacent lake systems: Lake Eyre and Lake Frome.
Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas
NASA Astrophysics Data System (ADS)
Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman
2014-05-01
Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park area.
Dissolved Oxygen Levels in Lake Chabot
NASA Astrophysics Data System (ADS)
Sharma, D.; Pica, R.
2014-12-01
Dissolved oxygen levels are crucial in every aquatic ecosystem; it allows for the fish to breathe and it is the best indicator of water quality. Lake Chabot is the main backup water source for Castro Valley, making it crucial that the lake stays in good health. Last year, research determined that the water in Lake Chabot was of good quality and not eutrophic. This year, an experiment was conducted using Lake Chabot's dissolved oxygen levels to ensure the quality of the water and to support the findings of the previous team. After testing three specifically chosen sites at the lake using a dissolved oxygen meter, results showed that the oxygen levels in the lake were within the healthy range. It was then determined that Lake Chabot is a suitable backup water source and it continues to remain a healthy habitat.
Monitoring the water balance of Lake Victoria, East Africa, from space
NASA Astrophysics Data System (ADS)
Swenson, Sean; Wahr, John
2009-05-01
SummaryUsing satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003-2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as 60 {mm}/{year}, while altimetric data show that lake levels in some large lakes dropped by as much as 1-2 m. The largest declines occurred in Lake Victoria, the Earth's second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake's decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria's water balance to within 17 {mm}/{month}. The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a time series of Lake Victoria discharge with an rms error of about 134 {m}/{s}.
[Ecological protection and sustainable utilization of Erhai Lake, Yunnan].
Yan, Chang-Zhou; Jin, Xiang-Can; Zhao, Jing-Zhu; Shen, Bing; Li, Ning-Bo; Huang, Chang-Zhu; Xiong, Zhong-Hua
2005-09-01
Economic development and increase of population pressure have caused a series of ecological environmental problems of Erhai Lake. These problems include: (1) Quickening of eutrophication process, (2) Decrease of water level and water resources, (3) Habitat deterioration of lakeside zone, and (4) Overfishing and slow depletion of aboriginal fish. Pollutant loading of Erhai Lake is as follows: COD(Cr) 3 008 t x a(-1), TP 137.31 t x a(-1), TN 1 426.35 t x a(-1). According to the mestrophic target of water quality, loading of nitrogen and phosphorus is far above environmental capacity of Erhai Lake. Erhai Lake is now in a pivotal and hypersensitive period of trophic states change, and the position is very critical. Therefore, some countermeasures to solve the problems are presented as follows: (1) Defining the dominant functions of Erhai Lake, (2) Paying attention to the adjustment of the industrial structure and distribution in the course of urbanization, (3) Setting up lakeside zone reserve, (4) Strengthening the control of tourism pollution, (5) Properly adjusting the water level of Erhai Lake, and (6) Some ecological engineering measures for water resources protection in the basin should be taken through collecting and treating of urban sewages, ecological rehabilitating of the main inflowing rivers, constructing of ecological agricultures and improving of rural environment, ecological restoring of aquatic ecosystem, and soil and water conservation.
Bjerklie, David M.; Trombley, Thomas J.; Olson, Scott A.
2014-01-01
Landsat 5 and moderate resolution imaging spectro-radiometer satellite imagery were used to map the area of inundation of Lake Champlain, which forms part of the border between New York and Vermont, during May 2011. During this month, the lake’s water levels were record high values not observed in the previous 150 years. Lake inundation area determined from the satellite imagery is correlated with lake stage measured at three U.S. Geological Survey lake level gages to provide estimates of lake area at different lake levels (stage/area rating) and also compared with the levels of the high-water marks (HWMs) located on the Vermont side of the lake. The rating developed from the imagery shows a somewhat different relation than a similar stage/area rating developed from a medium-resolution digital elevation model (DEM) of the region. According to the rating derived from the imagery, the lake surface area during the peak lake level increased by about 17 percent above the average or “normal” lake level. By using a comparable rating developed from the DEM, the increase above average is estimated to be about 12 percent. The northern part of the lake (north of Burlington) showed the largest amount of flooding. Based on intersecting the inundation maps with the medium-resolution DEM, lake levels were not uniform around the lake. This is also evident from the lake level gage measurements and HWMs. The gage data indicate differences up to 0.5 feet between the northern and southern end of the lake. Additionally, the gage data show day-to-day and intradaily variation of the same range (0.5 foot). The high-water mark observations show differences up to 2 feet around the lake, with the highest level generally along the south- and west-facing shorelines. The data suggest that during most of May 2011, water levels were slightly higher and less variable in the northern part of the lake. These phenomena may be caused by wind effects as well as proximity to major river inputs to the lake. The inundation areas generated from the imagery generally coincide with flood mapping as estimated by the Federal Emergency Management Agency (FEMA) and shown on its digital flood insurance rate maps. Where areas in the flood inundation map derived from the imagery and the FEMA estimated flooded areas differ substantially, this difference may be due to differences between the flood magnitude at the time of the image and the assumed flood condition used for the FEMA modeling and mapping, wind/storage effects not accounted for by the FEMA modeling, and the resolution of the image compared to the DEM used in the FEMA mapping.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-10-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3 > CO 3 > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-01-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965
NASA Astrophysics Data System (ADS)
Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.
2017-12-01
We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.
Predicted effects of proposed new regulation plans on sedge/grass meadows of Lake Ontario
Wilcox, D.A.; Xie, Y.
2008-01-01
Previously described models for predicting the percent of Lake Ontario wetlands that would be occupied by sedge/grass-dominated meadow marsh were used to test four proposed new plans for regulation of lake levels and to make comparisons with the current plan and unregulated conditions. The models for drowned river mouth, barrier beach, open embayment, and protected embayment wetlands assessed responses to lake levels that would be generated by each plan under net total supplies modified from those that occurred from1900 to 2000. In years when reduced supplies would allow meadow marsh regeneration, simulated unregulated lake levels produced the most meadow marsh in all wetland geomorphic types; current Plan 1958DD produced the least. Overall predicted percent meadow marsh under the test plans decreased in the order B+, 2007, D+, and A+, and the latter three plans produced rather similar results in many cases. Lower percentages of meadow marsh under some plans were due to insufficient low lake levels that could allow soils to dry and restrict invasion by cattails, as well as lack of periodic high lake levels that could kill invading upland plants. An assessment of seasonal lake-level characteristics demonstrated that Plan 2007 would reduce mean winter lake levels by 13 cm or more than Plan B+ and springtime lake levels by more than 10 cm. These seasonal differences could result in less winter habitat for muskrats and reduced access to spring spawning habitats for fish such as northern pike. Our model results provide important information for use in the process of selecting a new regulation plan for Lake Ontario.
Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA
Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.
2006-01-01
Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.
Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K
2015-01-01
Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters. © 2014 John Wiley & Sons Ltd.
Spatial and temporal variability of dissolved sulfate in Devils Lake, North Dakota, 1998
Sether, Bradley A.; Vecchia, Aldo V.; Berkas, Wayne R.
1998-01-01
The Devils Lake Basin is a 3,810-squaremile closed subbasin of the Red River of the North Basin (fig. 1). About 3,320 square miles of the total 3,810 square miles is tributary to Devils Lake. The Devils Lake Basin contributes to the Red River of the North Basin when the level of Devils Lake is greater than 1,459 feet above sea level.Lake levels of Devils Lake were recorded sporadically from 1867 to 1890. In 1901, the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 through 1998, the lake level has fluctuated between a minimum of 1,400.9 feet above sea level in 1940 and a maximum of 1,444.7 feet above sea level in 1998 (fig. 2). The maximum, which occurred on July 7, 1998, was 22.1 feet higher than the level recorded in February 1993.The rapid rise in the lake level of Devils Lake since 1993 is in response to abovenormal precipitation and below-normal evaporation from the summer of 1993 through 1998. Because of the rising lake level, more than 50,000 acres of land and many roads around the lake have been flooded. In addition, the water quality of Devils Lake changed substantially in 1993 because of the summer flooding (Williams-Sether and others, 1996). In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) flood mitigation options. Current and accurate hydrologic and water-quality information is needed to assess the effectiveness of the flood mitigation options, which include managing and storing water in the Devils Lake Basin, continuing infrastructure protection, and providing an outlet to the Sheyenne River (Wiche, 1998). As part of the U.S. Army Corps of Engineers Devils Lake emergency outlet feasibility study, the U.S. Geological Survey is modeling lake levels and sulfate concentrations in Devils Lake to simulate operation of an emergency outlet. Accurate simulation of sulfate concentrations in Devils Lake is required to determine potential effects of the outlet on downstream water quality. Historical sulfate concentrations are used to calibrate and verify the model. Most of the Devils Lake water-quality data available before 1998 were obtained from samples collected from the water column about three to four times a year. The samples were collected at one location in each of the Devils Lake major bays (West Bay, Main Bay, East Bay, and East Devils Lake). However, sample collection from only one location in a bay may not give an adequate representation of the water quality of the bay because of factors such as wind, precipitation, temperature, surface- and ground-water inflow, and possible bed-sediment interactions. Thus, spatial variability (the variability within each bay) and temporal variability (the variability with time) of dissolved sulfate need to be determined to evaluate the accuracy of the estimates obtained from the model.
Watts, W.A.; Bradbury, J.P.
1982-01-01
A 1520-cm sediment core from Lake Patzcuaro, Michoacan, Mexico, is 44,000 yr old at the base. All parts of the core have abundant pollen of Pinus (pine), Alnus (alder), and Quercus (oak) with frequent Abies (fir). The interval dated from 44,000 to 11,000 yr ago has a homogeneous flora characterized by abundant Juniperus (juniper) pollen and frequent Artemisia (sagebrush). It is believed to represent an appreciably drier and colder climate than at present. The Holocene at Lake Patzcuaro is characterized by a moderate increase in Pinus pollen and the loss of Juniperus pollen, as the modern type of climate succeeded. Alnus was abundant until about 5000 yr ago; its abrupt decrease with the first appearance of herbaceous weed pollen may reflect the cutting of lake-shore and stream-course alder communities for agricultural purposes, or it may simply reflect a drying tendency in the climate. Pollen of Zea (corn) appears at Lake Patzcuaro along with low peaks of chenopod and grass pollen at 3500 yr B.P. apparently recording a human population large enough to modify the natural environment, as well as the beginning of agriculture. A rich aquatic flora in this phase suggests eutrophication of the lake by slope erosion. In the most recent period corn is absent from the sediments, perhaps reflecting a change in agricultural practices. The environment changes at Lake Patzcuaro are similar to and correlate with those in the Cuenca de Mexico, where diatom stratigraphy from the Chalco basin indicates fluctuations in lake levels and lake chemistry in response to variations in available moisture. Before 10,000 yr ago climates there were cool and dry, and the Chalco basin was occupied by a shallow freshwater marsh that drained north to Lake Texcoco, where saline water accumulated by evaporation. Increases in effective moisture and possible melting of glaciers during the Holocene caused lake levels to rise throughout the Cuenca de Mexico, and Lake Texcoco flooded the Chalco basin with brackish water. After 5000 yr ago such flooding decreased, and shallow freshwater ponds and marshes were restored in the Chalco basin. This environmental change coincides with the appearance of Zea pollen and suggests cultural control of lake levels and salinity. ?? 1982.
Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.
2009-01-01
Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and nearshore runoff and 22 percent from atmospheric deposition. Because Silver Lake is hydraulically mounded above the local groundwater system, little or no input of phosphorus to the lake is from groundwater and septic systems. Silver Lake had previously been incorrectly described as a groundwater flowthrough lake. Phosphorus budgets were constructed for a series of dry years (low water levels) and a series of wet years (high water levels). About 6 times more phosphorus was input to the lake during wet years with high water levels than during the dry years. Phosphorus from erosion represented 13-20 percent of the phosphorus input during years with very high water levels. Results from the Canfield and Bachman eutrophication model and Carlson trophic state index equations demonstrated that water quality in Silver Lake directly responds to changes in external phosphorus input, with the percent change in chlorophyll a being about 80 percent of the percent change in total phosphorus input and the change in Secchi depth and total phosphorus concentrations being about 40 and 50 percent of the percent change in input, respectively. Therefore, changes in phosphorus input should impact water quality. Specific scenarios were simulated with the models to describe the effects of natural (climate-driven) and anthropogenic (human-induced) changes. Results of these scenarios demonstrated that several years of above-normal precipitation cause sustained high water levels and a degradation in water quality, part of which is due to erosion of the shoreline. Results also demonstrated that 1) changes in tributary and nearshore runoff have a dramatic effect on lake-water quality, 2) diverting water into the lake to increase the water level is expected to degrade the water quality, and 3) removal of water to decrease the water level of the lake is expected to have little effect on water quality. Fluctuations in water levels since 1967, when records began for the lake, are representative
Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee
Robbins, C.H.
1985-01-01
Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)
Riley, S.C.; Evans, A.N.
2008-01-01
Thiamine deficiency complex (TDC) causes mortality and sublethal effects in Great Lakes salmonines and results from low concentrations of egg thiamine that are thought to be caused by thiaminolytic enzymes (i.e., thiaminase) present in the diet. This complex has the potential to undermine efforts to restore lake trout Salvelinus namaycush and severely restrict salmonid production in the Great Lakes. Although thiaminase has been found in a variety of Great Lakes fishes, the ultimate source of thiaminase in Great Lakes fishes is currently unknown. We used logistic regression analysis to investigate relationships between thiaminase activity and phylogenetic or ecological characteristics of 39 Great Lakes fish species. The taxonomically more ancestral species were more likely to show thiaminase activity than the more derived species. Species that feed at lower trophic levels and occupy benthic habitats also appeared to be more likely to show thiaminase activity; these variables were correlated with taxonomy, which was the most important predictor of thiaminase activity. Further analyses of the relationship between quantitative measures of thiaminase activity and ecological characteristics of Great Lakes fish species would provide greater insight into potential sources and pathways of thiaminase in Great Lakes food webs. ?? Copyright by the American Fisheries Society 2008.
Remote Sensing Analysis of Volume in Taihu Lake: Application for Icesat/hydroweb and Landsat Data
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.; Lu, Y.; Yue, H.
2018-04-01
In order to evaluate the fluctuation of Taihui Lake, ICESat/Hydroweb and Landsat data recorded from 1975 to 2015 were used to examine changes in lake level and area, derived from Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), which are combined to indirectly evaluate water volume variations and water balance of Taihu Lake. The results show that the time series of lake area and volume variations of Taihu Lake exhibit a gradually increasing trend from 1975 to 2015 and the value rose from 2320.07 km2 and -0.0470 km3, respectively in 1975 to 2341.06 km2 and 0.2759 km3, respectively in 2015. The water level of Taihu Lake demonstrates a fluctuating trend during 1975-2015 and the value changed from 0.9826 m in 1975 to 1.1359 m in 2015. There was a moderate correlation for Taihu Lake (R2 ≈ 0.65) between water level and surface area. The water volume changes was in very good agreement for lake level changes and surface area variations (R2 > 0.85). Combining with lake level and area changes, water balance of Taihu Lake was acquired and it shows a positive water budgets of 0.0092 km3 during past 40 years.
Perennial Lakeshores as an Exploration Target for Microbial Remains on Mars Based on Earth Analogs
NASA Astrophysics Data System (ADS)
Blair, T. C.
2013-12-01
Exploring for evidence of present or past life is a key part of the NASA Mars program. Satellite data show the existence on the Martian surface of several types of potentially habitable settings for past microbial life if it existed, including remnants of former environments still in morphologic context. Of these environments, lakeshores are a prime target for future rover missions because they manifest a past critical interface between atmosphere, sunlit water, and a solid substrate. Case studies were made of possible analog remnants from now desiccated late Pleistocene perennial lakes of the western Basin and Range province, USA, to better understand microbial remains in this setting. These case studies show that the best preserved and most concentrated records of fossil microbial life developed in the upper photic zone of former shorezones where: 1) coeval clastic sedimentation was low; 2) a solid substrate such as coarse clasts or bedrock was present for colonization; 3) lake level was relatively stable for at least a few thousand years; and 4) chemical conditions promoted some mineral precipitation, such as of calcite. Although not a prerequisite, microbial accumulations also are common in the studied Pleistocene lakes where effluent from piedmont groundwater mixed with chemically different lake water either diffusely in the beachface or at springs in the shoreface. Martian river deltas with discernible multi-sequence deposits are a good indicator of past stable levels in associated lakes because such deltaic intervals record a sustained history. An example is the Eberswalde delta. River discharge delivered sediment to build the deltas and concurrently added water to maintain the lakes. A distinction between river deltas and alluvial fans or fan deltas is necessary to identify these targets, and this can easily be achieved using Earth case studies. An appreciation that river deltas are not reclassified as alluvial fans simply because they were abandoned also is needed. Although Martian river delta plain, delta front, and prodelta deposits may contain the remains of microbial life if it existed at the time of deposition, the studied western Basin and Range lakes show that such remains are most abundant and concentrated along former coarse gravelly or rocky shorelines away from the delta, where clear water and a stable substrate prevailed, and fossil dilution by detrital input was low. The elevations of the delta plains provide the target levels for shoreline exploration elsewhere along the lake. The extinct western Basin and Range lakes, such as Lake Manly in Death Valley, further teach that former shorelines readily apparent on satellite imagery may lack a biological or sedimentary record, whereas less obvious or unapparent shoreline segments at key levels may have a bounty of microbial remains. The latter scenario results from partial obscuration of the former shoreline by post-lake weathering, including through erosion or the partial cover by eolian or gravity-driven colluvial sediment.
Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.
Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf
2017-03-22
In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.
Velpuri, Naga Manohar; Senay, Gabriel B.
2012-01-01
Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in-situ datasets. In this study, we used 12 years (1998–2009) of existing multi-source satellite and model-assimilated global weather data. We use calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of Gibe III dam using three different approaches such as (a historical approach, a knowledge-based approach, and a nonparametric bootstrap resampling approach) to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 2 m (95% confidence) compared to the lake level modelled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modelling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam commencement. Areas along the Lake Turkana shoreline that are vulnerable to fluctuations in lake levels were also identified. This study demonstrates the effectiveness of using existing multi-source satellite data in a basic modeling framework to assess the potential hydrological impact of an upstream dam on a terminal downstream lake. The results obtained from this study could also be used to evaluate alternate dam-filling scenarios and assess the potential impact of the dam on Lake Turkana under different operational strategies.
Hughes, G.H.
1979-01-01
The water levels of Lakes Winona and Winnemissett in Volusia County, Fla., correlate reasonably well during dry spells but only poorly during wet spells. Disparities develop mostly at times when the lake levels rise abruptly owing to rainstorms passing over the lake basins. The lack of correlation is attributed to the uneven distribution of the storm rainfall, even though the average annual rainfall at National Weather Service gages in the general area of the lakes is about the same. Analyses of the monthly rainfall data show that the rainfall variability between gages is sufficient to account for most of the disparity between monthly changes in the levels of the two lakes. The total annual rainfall at times may differ between rainfall gages by as much as 15 to 20 inches. Such differences tend to balance over the long term but may persist in the same direction for two or more years, causing apparent anomalies in lake-level fluctuations. (Woodard-USGS)
Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.
2001-01-01
A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with male bullheads from Lake Woodruff. Collectively, our studies indicate the presence of reduced GST protein expression, reduced GST conjugative capacity and altered sex steroid homeostasis in female bullheads from a contaminated field site in Central Florida. The implications of these physiological alterations in terms of pollutant biotransformation and reproduction are discussed. ?? 2001 Elsevier Science B.V. All rights reserved.
Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin
2016-08-15
Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the correction applied to published data from a particular streamgage to produce elevation data referenced to a specified vertical datum.Offsets were applied to water-level data from surveyed streamgages to further evaluate the accuracy and utility of updated reference mark elevations presented in this report. Daily mean water levels from active streamgages surveyed in this study were converted to water-surface elevations referenced to the Canadian Geodetic Vertical Datum of 2013. Graphical comparisons of water-surface elevations for streamgages in Namakan Reservoir, Rainy Lake, and selected rivers are presented (referencing the Canadian Geodetic Vertical Datum of 2013). Offsets presented in this report can be used in the evaluation of rule curves and in flood damage curves that fully assess the benefits of one regulation approach over another. In addition, offsets may be used to calibrate hydraulic models developed for four narrows that connect lakes of Namakan Reservoir, refine digital elevation models, and support modeling studies designed to assess the effects of rule curves on aquatic vegetation, benthic invertebrates, northern pike, and walleye.
Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin
NASA Astrophysics Data System (ADS)
Wang, Xuelu; Liang, Tiangang; Xie, Hongjie; Huang, Xiaodong; Lin, Huilong
2016-07-01
Qinghai Lake basin and the lake have undergone significant changes in recent decades. We examine MODIS-derived grassland vegetation and snow cover of the Qinghai Lake basin and their relations with climate parameters during 2001 to 2010. Results show: (1) temperature and precipitation of the Qinghai Lake basin increased while evaporation decreased; (2) most of the grassland areas improved due to increased temperature and growing season precipitation; (3) weak relations between snow cover and precipitation/vegetation; (4) a significantly negative correlation between lake area and temperature (r=-0.9, p<0.05) and (5) a positive relation between lake level (lake-level difference) and temperature (precipitation). Compared with Namco Lake (located in the inner Tibetan Plateau) where the primary water source of lake level increases was the accelerated melt of glacier/perennial snow cover in the lake basin, for the Qinghai Lake, however, it was the increased precipitation. Increased precipitation explained the improvement of vegetation cover in the Qinghai Lake basin, while accelerated melt of glacier/perennial snow cover was responsible for the degradation of vegetation cover in Namco Lake basin. These results suggest different responses to the similar warming climate: improved (degraded) ecological condition and productive capacity of the Qinghai Lake basin (Namco Lake basin).
Is the water level during dry season in Poyang Lake really lower than before?
NASA Astrophysics Data System (ADS)
Liu, Xiaolong; Yu, Meixiu; Shi, Yong; Luan, Zhenyu; Fu, Dafang
2017-04-01
The Poyang Lake, the largest freshwater lake in China, has attracted world widely attentions in recent years due to it being dammed or not at the Lake's outlet. It was reported that the Poyang Lake water levels have been declining significantly in dry seasons, which resulted in severe water supply, irrigation and ecological flow requirement problems. The purpose of the study was to answer the question that the water level of the Poyang Lake during dry season is really lower than before or not. Based on topographical data, and long-term hydrological and meteorological data from 1950 to 2016, the relationship between the Poyang Lake and the Yangtze River before and after the completion of the Three Gorges Dam, the relationship between the Poyang Lake and its Five major tributaries (Ganjiang River, Fuhe River, Xinjiang River, Raohe River and Xiushui River), and as well as sand mining contributions to the water level in dry seasons of the Poyang Lake were investigated respectively.
Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)
NASA Astrophysics Data System (ADS)
Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd
2013-04-01
The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and elements, minerals, grain size and isotopes were analyzed. Different factor and end-member analysis were applied on the data, resulting in a clear dichotomy between permafrost-influenced and uninfluenced layers. Hence a completely different process composition must be assumed.
Short and long term chemical and isotopic variations of Lake Trasimeno (Italy)
NASA Astrophysics Data System (ADS)
Frondini, Francesco; Dragoni, Walter; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Donnini, Marco; Morgantini, Nicola
2016-04-01
Lake Trasimeno, located in Umbria (central Italy), is a shallow lake of a remarkable naturalistic interest and a significant resource for the economy of the region (Ludovisi and Gaino, 2010; Dragoni, 2004). The Lake Trasimeno has an average area of about 124 km2 with a maximum depth of approximately 5.5 m, has no natural outlet and the volume of water stored is strictly linked to rainfall. In order to limit water level variations in 1898 an efficient outlet was built. At present the water exits from the Lake only when the level reaches a fixed threshold above the outlet channel, so during periods with low precipitation the evaporation becomes the most relevant output from the lake. For instance, between 1989 and 2013 the outlet did not work, and the maximum depth of the lake was reduced to little more than three meters. In the framework of climate change, it is important to understand the changes that could affect Lake Trasimeno in the near future. To this aim it is necessary to individuate the long term trends of the hydrologic, chemical and physical characteristics of the Trasimeno water and distinguish them from the short term variations. At the present it is available a long record of hydrologic data allowing reliable studies on quantitative variations at Lake Trasimeno (Dragoni et al., 2015; Dragoni et al., 2012; Ludovisi and Gaino, 2010), but the definition of the chemical and isotopic trends of lake water it is still a problematic task. On the basis of new chemical and isotopic data, collected from 2006 to 2015, it is possible to observe (i) short term and/or very short (seasonal) variations in temperature, salinity and saturation state with respect to carbonate minerals and a long term trends in isotopic composition of water and total load of mobile species (Cl, Na). The short term variations readily respond to the precipitation regime and are strongly related to lake level; the long term trend is probably related to the progressive increase of near-surface atmospheric temperature observed in the last decades. References - Dragoni W., et al. (2015) - Possible response of two water systems in Central Italy to climatic changes. In "Advances in Watershed Hydrology" (T. Moramarco, S. Barbetta, L. Brocca, Eds), pp.397-424. Publications, LLC, USA. ISBN-13: 978-1-887-20185-8 - Dragoni W., et al. (2012): Bilancio idrico del Lago Trasimeno. In "Tutela Ambientale del lago Trasimeno", a cura di Martinelli A., Libri/Arpa Umbria, pp. 403. ISBN: 978-88-905920-03 (in Italian). - Dragoni W. (2004): The Lake Trasimeno and the Climatic Variations - Il Lago Trasimeno e le Variazioni Climatiche. Progetto informativo dell'assessorato all'Ambiente della Provincia di Perugia, Servizio Gestione e Difesa Idraulica, pp. 60, Perugia. - Ludovisi, A., Gaino, E., 2010. Meteorological and water quality changes in Lake Trasimeno (Umbria, Italy) during the last fifty years. J. Limnol. 69, 174-188.
The effects of water levels on Two Lake Ontario Wetlands
Busch, Wolf-Dieter N.; Osborn, Ronald G.; Auble, Gregor T.
1990-01-01
Lake Ontario's water levels have been regulated since 1959, after the completion of the St. Lawrence River navigation and hydropower development project. The plan used to guide the regulation (1958-D) has been in effect since 1963 (Bryce, 1982). The purpose of the regulation was to prevent extreme high-water levels which increased erosion on the south shore of Lake Ontario, while protecting the interests of commercial navigation and hydropower production in the St. Lawrence River (T. Brown, personal communication, member of the Board of Control). Major user groups have sought further reductions in the range of lake level fluctuations. However, the biological resources, especially the lake influenced wetlands, benefit from the waterlevel fluctuations. Great Lakes wetlands are the most important habitat for wildlife of the region (Tilton and Schwegler, 1978). We provide information here on the responses of wetland plant communities in two wetlands to changes in lake levels over time.
Catalog of crater lakes from Costa Rica
NASA Astrophysics Data System (ADS)
Ramirez, C. J.; Mora-Amador, R.; González, G.
2010-12-01
Costa Rica has a diversity of volcanic crater lakes that can be classified into two groups: hot and cold lakes. The country contains at least 5% of the world's hot lakes. Costa Rica has 2 hot hyperacidic lakes, both of them on active volcanoes, the Rincón de la Vieja (38.0°C, pH = 0 - 1) and the Poás Laguna Caliente (36.1°C - 56°C, pH = 0.55 - 0.74), nowadays the Poás hot lake is the most active crater lake in the world, with more than 200 eruptions only on 2010. One of the most studied cold crater lakes is Irazú (13°C, pH = 3.5), that used to contain bubbling and clear areas of upwelling involving CO2 liberation and subaqueous fumaroles with temperatures up to 50°C, but since 2005 the lake presents an important descend until April 2010 when it disappeared. On February 9, 2003, Irazú's lake underwent a drastic change of color, from clear green to mustard with reddish loops, similar to the color of the waters of Lake Nyos after the gas burst of August 1986. Other studied cold lakes include Botos, Chato, and Tenorio, all at the summit of Quaternary volcanoes as well as Barva and Danta, located in recent pyroclastic cones. Some cold lakes are located in Holocene maar-type explosion craters, among them are Congo, Bosque Alegre, Hule, and Río Cuarto. These last two have undergone repeated rapid reddish color changes over the last 10 years, in association with fish kills and the liberation of apparently sulfurous scents. On March 2010, University of Costa Rica was the host of the 7th Workshop on Volcanic Lakes, part of the Commission of Volcanic Lakes of the IAVCEI, 51 participants from 14 countries attended the workshop; they presented 27 talks and 17 posters, also they visited and sample 4 of the lakes mentioned above (Botos, Irazú, Río Cuarto and Hule). Level of Study: 1: few or no data, 2: regular, 3: acceptable
Dudley, Robert W.; Schalk, Charles W.; Stasulis, Nicholas W.; Trial, Joan G.
2011-01-01
In 2009, the U.S. Geological Survey entered into a cooperative agreement with the International Joint Commission, St. Croix River Board to do an analysis of historical smallmouth bass habitat as a function of lake level for Spednic Lake in an effort to quantify the effects, if any, of historical lake-level management and meteorological conditions (from 1970 to 2009) on smallmouth bass year-class failure. The analysis requires estimating habitat availability as a function of lake level during spawning periods from 1970 to 2009, which is documented in this report. Field work was done from October 19 to 23, and from November 2 to 10, 2009, to acquire acoustic bathymetric (depth) data and acoustic data indicating the character of the surficial lake-bottom sediments. Historical lake-level data during smallmouth bass spawning (May-June) were applied to the bathymetric and surficial-sediment type data sets to produce annual historic estimates of smallmouth-bass-spawning-habitat area. Results show that minimum lake level during the spawning period explained most of the variability (R2 = 0.89) in available spawning habitat for nearshore areas of shallow slope (less than 10 degrees) on the basis of linear correlation. The change in lake level during the spawning period explained most of the variability (R2 = 0.90) in available spawning habitat for areas of steeper slopes (10 to 40 degrees) on the basis of linear correlation. The next step in modeling historic smallmouth bass year-class persistence is to combine this analysis of the effects of lake-level management on habitat availability with meteorological conditions.
Colman, Steven M.; Kelts, K.R.; Dinter, D.A.
2002-01-01
High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.
Impact of Nasser Lake on gravity reduction and geoidal heights for Egypt
NASA Astrophysics Data System (ADS)
Abd-Elmotaal, Hussein A.; Makhloof, Atef; Hassan, Ayman; Ashry, Mostafa
2018-06-01
In the course of the IAG African Geoid Project, it is needed to study the impact of the lakes on the gravity reduction and geoidal heights. The aim of this paper is to study the impact of the water in Nasser Lake on gravity reduction and geoidal heights for Egypt. The determination of the gravimetric geoid is based on the well-known remove-restore technique. The problem of the lakes occurs because the popular programs widely used in practice (e.g., TC-program (Forsberg, 1984)) assume that all positive elevations are filled with rock topography, and all negative elevations are filled with ocean water. This is, however, not true for the case of Nasser Lake, which lies completely above sea level, at about 180 m elevation, with a water depth of about 20 m. The paper presents an approach on estimating the impact of Nasser Lake on gravity reduction and geoidal heights using TC-program with some tricky cases. The results show that the impact of Nasser Lake on both gravity anomalies and geoid undulation is limited to the area of the lake. The impact of Nasser Lake on the gravity anomalies is in the order of sub mgal, while the impact of Nasser lake on the geoid undulation is significant and reaches few centimeters.
NASA Astrophysics Data System (ADS)
Junginger, A.; Vonhof, H.; Foerster, V. E.; Asrat, A.; Cohen, A. S.; Lamb, H. F.; Schaebitz, F.; Trauth, M. H.
2016-12-01
A major challenge in paleo-anthropology is to understand the impact of climatic changes on human evolution. The Hominin Sites and Paleo-lakes Drilling Project (HSPDP) is currently meeting that challenge by providing records that cover the last 3.7 Ma of paleoenvironmental change all located in close proximity to key paleo-anthropological findings in East Africa. One of the cored climatic archives comes from the dried up Chew Bahir basin in southern Ethiopia, where duplicate sediment cores, each 280 m long, are expected to provide valuable insights about East African environmental variability during the last >500 ka. The lake basins in the eastern branch of the East African Rift System today contain mainly shallow and alkaline lakes. However, paleo-shorelines in the form of wave cut notches, shell beds, and beach ridges are common morphological evidences for deep freshwater lakes that have filled the basins up to their overflow level during pronounced humid episodes, such as the African Humid Period (AHP, 15-5 ka). Unfortunately, further back in time, many of those morphological features disappear due to erosion and the estimation of paleo-water depths depend merely on qualitative proxies from core analyses. We here present a new method that shows high potential to translate qualitative proxy signals from sediment core analyses to quantitative climate signals in the Ethiopian Rift. The method aims at water level reconstruction of multiple paleo-lake episodes in the Chew Bahir basin using strontium isotope ratios (87Sr/86Sr, SIR) in lacustrine fossils and microfossils. SIR preserved in lacustrine fossils reflect the lithology of the drained catchment. The catchment of Chew Bahir consists mainly of Precambrian basement rocks producing high SIR in the lake waters. During humid periods, its catchment enlarged when higher elevated paleo-lakes Abaya, Chamo and Awassa were cascading down into Chew Bahir. These basins drain mainly volcanic rocks producing low SIR. First results show such an onset of hydrological connectivity in a pronounced reduction of SIR in the lacustrine fossils of Chew Bahir when the last AHP set in. This new method may help to quantify paleo-lake levels beyond the past 20 ka and may also detect migrational barriers or routes due to the occurrence of synchronous large, connected and deep paleo-lakes.
Fisher, Timothy G.; Loope, Walter L.
2004-01-01
Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.
Liu, Hongxing; Chen, Yaning; Shu, Song; Wu, Qiusheng; Wang, Shujie
2017-01-01
This study utilizes ICESat Release 33 GLA14 data to analyse water level variation of Xinjiang’s lakes and reservoirs from 2003 to 2009. By using Landsat images, lakes and reservoirs with area larger than 1 km2 are numerically delineated with a software tool. Based on ICESat observations, we analyse the characteristics of water level variation in different geographic environments, as well as investigate the reasons for the variation. Results indicate that climatic warming contributes to rising water levels in lakes in mountainous areas, especially for lakes that are recharged by snow and glacial melting. For lakes in oases, the water levels are affected jointly by human activity and climate change, while the water levels of reservoirs are mainly affected by human activity. Comparing the annual average rates of water levels, those of lakes are higher than those of reservoirs in oasis areas. The main reasons for the decreasing water levels in desert regions are the reduction of recharged runoff and high evaporation. By analysing the variation of water levels and water volume in different geologic environments, it is found that water level and volume increased in mountainous regions, and decreased in oasis regions and desert regions. Finding also demonstrate that decreasing volume is greater than increasing volume, which results in decreasing total volume of Xinjiang lakes and reservoirs. PMID:28873094
NASA Astrophysics Data System (ADS)
Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng
2018-06-01
The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of similarly dramatic bathymetric changes in complex floodplain lakes.
NASA Astrophysics Data System (ADS)
Ladd, N.; Dubois, N.; Schubert, C. J.
2015-12-01
Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions. We present the first field assessment of how nutrient availability influences 2H fractionation in freshwater algae, and demonstrate how such measurements can be used to infer past information about anthropogenic nutrient loading.
Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...
Improved inland water levels from SAR altimetry using novel empirical and physical retrackers
NASA Astrophysics Data System (ADS)
Villadsen, Heidi; Deng, Xiaoli; Andersen, Ole B.; Stenseng, Lars; Nielsen, Karina; Knudsen, Per
2016-06-01
Satellite altimetry has proven a valuable resource of information on river and lake levels where in situ data are sparse or non-existent. In this study several new methods for obtaining stable inland water levels from CryoSat-2 Synthetic Aperture Radar (SAR) altimetry are presented and evaluated. In addition, the possible benefits from combining physical and empirical retrackers are investigated. The retracking methods evaluated in this paper include the physical SAR Altimetry MOde Studies and Applications (SAMOSA3) model, a traditional subwaveform threshold retracker, the proposed Multiple Waveform Persistent Peak (MWaPP) retracker, and a method combining the physical and empirical retrackers. Using a physical SAR waveform retracker over inland water has not been attempted before but shows great promise in this study. The evaluation is performed for two medium-sized lakes (Lake Vänern in Sweden and Lake Okeechobee in Florida), and in the Amazon River in Brazil. Comparing with in situ data shows that using the SAMOSA3 retracker generally provides the lowest root-mean-squared-errors (RMSE), closely followed by the MWaPP retracker. For the empirical retrackers, the RMSE values obtained when comparing with in situ data in Lake Vänern and Lake Okeechobee are in the order of 2-5 cm for well-behaved waveforms. Combining the physical and empirical retrackers did not offer significantly improved mean track standard deviations or RMSEs. Based on these studies, it is suggested that future SAR derived water levels are obtained using the SAMOSA3 retracker whenever information about other physical properties apart from range is desired. Otherwise we suggest using the empirical MWaPP retracker described in this paper, which is both easy to implement, computationally efficient, and gives a height estimate for even the most contaminated waveforms.
NASA Astrophysics Data System (ADS)
Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.
2016-12-01
Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.
NASA Astrophysics Data System (ADS)
Lowry, D. P.; Morrill, C.
2011-12-01
Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region receives. Our results indicate that the causes of hydrologic fluctuations are spatially diverse and that future projections will need to consider more than just thermodynamic changes for accurate regional predictions.
NASA Astrophysics Data System (ADS)
Oehlerich, M.; Mayr, C.; Gussone, N.; Hahn, A.; Hölzl, S.; Lücke, A.; Ohlendorf, C.; Rummel, S.; Teichert, B. M. A.; Zolitschka, B.
2015-04-01
First results of strontium, calcium, carbon and oxygen isotope analyses of bulk carbonates from a 106 m long sediment record of Laguna Potrok Aike, located in southern Patagonia are presented. Morphological and isotopic investigations of μm-sized carbonate crystals in the sediment reveal an endogenic origin for the entire Holocene. During this time period the calcium carbonate record of Laguna Potrok Aike turned out to be most likely ikaite-derived. As ikaite precipitation in nature has only been observed in a narrow temperature window between 0 and 7 °C, the respective carbonate oxygen isotope ratios serve as a proxy of hydrological variations rather than of palaeotemperatures. We suggest that oxygen isotope ratios are sensitive to changes of the lake water balance induced by intensity variations of the Southern Hemisphere Westerlies and discuss the role of this wind belt as a driver for climate change in southern South America. In combination with other proxy records the evolution of westerly wind intensities is reconstructed. Our data suggest that weak SHW prevailed during the Lateglacial and the early Holocene, interrupted by an interval with strengthened Westerlies between 13.4 and 11.3 ka cal BP. Wind strength increased at 9.2 ka cal BP and significantly intensified until 7.0 ka cal BP. Subsequently, the wind intensity diminished and stabilised to conditions similar to present day after a period of reduced evaporation during the "Little Ice Age". Strontium isotopes (87Sr/86Sr ratio) were identified as a potential lake-level indicator and point to a lowering from overflow conditions during the Glacial (∼17 ka cal BP) to lowest lake levels around 8 ka cal BP. Thereafter the strontium isotope curve resembles the lake-level curve which is stepwise rising until the "Little Ice Age". The variability of the Ca isotope composition of the sediment reflects changes in the Ca budget of the lake, indicating higher degrees of Ca utilisation during the period with lowest lake level.
Stratification Modelling of Key Bacterial Taxa Driven by Metabolic Dynamics in Meromictic Lakes.
Zhu, Kaicheng; Lauro, Federico M; Su, Haibin
2018-06-22
In meromictic lakes, the water column is stratified into distinguishable steady layers with different physico-chemical properties. The bottom portion, known as monimolimnion, has been studied for the functional stratification of microbial populations. Recent experiments have reported the profiles of bacterial and nutrient spatial distributions, but quantitative understanding is invoked to unravel the underlying mechanism of maintaining the discrete spatial organization. Here a reaction-diffusion model is developed to highlight the spatial pattern coupled with the light-driven metabolism of bacteria, which is resilient to a wide range of dynamical correlation between bacterial and nutrient species at the molecular level. Particularly, exact analytical solutions of the system are presented together with numerical results, in a good agreement with measurements in Ace lake and Rogoznica lake. Furthermore, one quantitative prediction is reported here on the dynamics of the seasonal stratification patterns in Ace lake. The active role played by the bacterial metabolism at microscale clearly shapes the biogeochemistry landscape of lake-wide ecology at macroscale.
Spatially explicit analyses of gastropod biodiversity in ancient Lake Ohrid
NASA Astrophysics Data System (ADS)
Hauffe, T.; Albrecht, C.; Schreiber, K.; Birkhofer, K.; Trajanovski, S.; Wilke, T.
2010-07-01
Spatial heterogeneity of biodiversity arises from evolutionary processes, constraints of environmental factors and the interaction of communities. The quality of such spatial analyses of biodiversity is improved by (i) utilizing study areas with well defined physiogeographical boundaries, (ii) limiting the impact of widespread species, and (iii) using taxa with heterogeneous distributions. These conditions are typically met by ecosystems such as oceanic islands or ancient lakes and their biota. While research on ancient lakes has contributed significantly to our understanding of evolutionary processes, statistically sound studies of spatial variation of extant biodiversity have been hampered by the frequently vast size of ancient lakes, their limited accessibility, and the lack of infrastructure around them. The small European ancient Lake Ohrid provides a rare opportunity for such a reliable spatial study. The comprehensive horizontal and vertical sampling of a species-rich taxon, the Gastropoda, presented here, revealed interesting patterns of biodiversity, which, in part, have not been shown before for other ancient lakes. In a total of 224 locations throughout the Ohrid Basin, representatives of 68 gastropod species with 50 of them being endemic (=73.5%) could be reported. The spatial distribution of these species shows the following characteristics: (i) within Lake Ohrid, the most frequent species are endemic taxa with a wide depth range, (ii) widespread species (i.e. those occurring throughout the Balkans or beyond) are rare and mainly occur in the upper layer of the lake, (iii) while the total number of species decreases with water depth, the share of endemics increases, (iv) the deeper layers of Lake Ohrid appear to have a higher spatial homogeneity of biodiversity and related environmental factors, (v) biotic interaction due to possible spillover effects may contribute to the establishment of hotspots, and (vi) eco-insularity within the Ohrid Basin occurs at two levels, at the level of the lake proper and at the level of the feeder-springs. It is also shown that large scale effects such as type of water body or water depth are mainly responsible for the distribution of biodiversity. In addition, small scale effects like environmental gradients or biotic interaction affect gastropod composition within a particular depth zone.
NASA Astrophysics Data System (ADS)
Fries, K. J.; Kerkez, B.; Gronewold, A.; Lenters, J. D.
2014-12-01
We introduce a novel energy balance method to estimate evaporation across large lakes using real-time data from moored buoys and mobile, satellite-tracked drifters. Our work is motivated by the need to improve our understanding of the water balance of the Laurentian Great Lakes basin, a complex hydrologic system that comprises 90% of the United States' and 20% of the world's fresh surface water. Recently, the lakes experienced record-setting water level drops despite above-average precipitation, and given that lake surface area comprises nearly one third of the entire basin, evaporation is suspected to be the primary driver behind the decrease in water levels. There has historically been a need to measure evaporation over the Great Lakes, and recent hydrological phenomena (including not only record low levels, but also extreme changes in ice cover and surface water temperatures) underscore the urgency of addressing that need. Our method tracks the energy fluxes of the lake system - namely net radiation, heat storage and advection, and Bowen ratio. By measuring each of these energy budget terms and combining the results with mass-transfer based estimates, we can calculate real-time evaporation rates on sub-hourly timescales. To mitigate the cost prohibitive nature of large-scale, distributed energy flux measurements, we present a novel approach in which we leverage existing investments in seasonal buoys (which, while providing intensive, high quality data, are costly and sparsely distributed across the surface of the Great Lakes) and then integrate data from less costly satellite-tracked drifter data. The result is an unprecedented, hierarchical sensor and modeling architecture that can be used to derive estimates of evaporation in real-time through cloud-based computing. We discuss recent deployments of sensor-equipped buoys and drifters, which are beginning to provide us with some of the first in situ measurements of overlake evaporation from Earth's largest lake system, opening up the potential for improved and integrated monitoring and modeling of the Great Lakes water budget.
The history of South American tropical precipitation for the past 25,000 years.
Baker, P A; Seltzer, G O; Fritz, S C; Dunbar, R B; Grove, M J; Tapia, P M; Cross, S L; Rowe, H D; Broda, J P
2001-01-26
Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
Observing a catastrophic thermokarst lake drainage in northern Alaska
Jones, Benjamin M.; Arp, Christopher D.
2015-01-01
The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.
Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin
Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.
1994-01-01
The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional development of geophysical models offer hope for reconciling the field data with our understanding of earth rheology. ?? 1995.
Martin, Pamela A; De Solla, Shane R; Ewins, Peter
2003-01-01
Populations of osprey (Pandion haliaetus) in the Great Lakes basin declined dramatically during the 1950s-1970s due largely to adverse effects of persistent chlorinated hydrocarbons, ingested in their fish prey, on eggshell thickness and adult survival. Nevertheless, these contaminants were not measured in osprey tissues during the decades of decline on the Canadian Great Lakes. Between 1991 and 1995, we monitored recovering osprey populations on the Great Lakes, including Georgian Bay and the St. Marys River area on Lake Huron and the St. Lawrence Islands National Park, as well as at two inland sites within the basin. Current OC levels, even from the most contaminated lakes, were typically lower than those associated with reproductive effects. DDE levels in fresh eggs averaged 1.2-2.9 microg/g, well below the 4.2 microg/g level associated with significant eggshell thinning and shell breakage. Nevertheless, a proportion of eggs from all study areas did exceed this level. PCB levels in eggs seldom exceeded 5 microg/g except in one lake of high breeding density in the Kawartha Lakes inland study area, where the mean sum PCB level was 7.1 microg/g and the maximum concentration measured was 26.5 microg/g. On average, mean reproductive output (0.78-2.75 young per occupied nest) of breeding populations in Great Lakes basin study areas exceeded the threshold of 0.8 young thought necessary to maintain stable populations. We concluded that, although eggs and especially nestling plasma, are useful in reflecting local contaminant levels, ospreys are relatively insensitive, at least at the population level, to health effects of current levels of chlorinated hydrocarbons on the Canadian Great Lakes.
Topographic Constraints on the Evolution and Connectivity of Titan's Lacustrine Basins
NASA Astrophysics Data System (ADS)
Hayes, A. G.; Birch, S. P. D.; Dietrich, W. E.; Howard, A. D.; Kirk, R. L.; Poggiali, V.; Mastrogiuseppe, M.; Michaelides, R. J.; Corlies, P. M.; Moore, J. M.; Malaska, M. J.; Mitchell, K. L.; Lorenz, R. D.; Wood, C. A.
2017-12-01
The topography provided by altimetry, synthetic aperture radar-topography, and stereo radargrammetry has opened new doors for Titan research by allowing for quantitative analysis of morphologic form. Using altimetry measurements, we show that Titan's Maria are consistent with an equipotential surface but that several filled lakes are found to be hundreds of meters above this sea level, suggesting that they exist in isolated or perched basins. Within a given drainage basin, empty lake floors are typically higher than the liquid elevation of nearby lakes/seas, suggesting local subsurface connectivity. The majority of Titan's lakes reside in topographically closed, sharp-edged depressions whose planform curvature suggests lateral expansion through uniform scarp retreat. Many, but not all, empty lake basins exhibit flat floors and hectometer-scale raised rims that present a challenge to formation models. We conclude that dissolution erosion can best match the observed constraints but that challenges remain in the interpretation of formation processes and materials.
Huang, Xianfei; Hu, Jiwei; Li, Cunxiong; Deng, Jiajun; Long, Jian; Qin, Fanxin
2009-12-01
Baihua Lake, a man-made reservoir, is one of the five drinking water sources for Guiyang City in China's southwestern province of Guizhou. In the present research, the distribution and accumulation characteristics of heavy metals (Pb, Cd, As, Cu and Zn) for the sediment of this lake were analyzed by examination of 10 recently collected samples. A method based on toxic-response factor was applied to assess the potential ecological risk of these heavy metals to the water body. For comparison, the two sets of reference data representing the pre-industrial and the local baseline pollution levels were employed to derive the accumulating coefficients for the heavy metals under study. The calculated potential ecological risk indices show that the lake was polluted by heavy metals and both cadmium and arsenic loadings were critical factors responsible for the ecological hazards posed to Baihua Lake by the five elements.
The potential for catastrophic dam failure at Lake Nyos maar, Cameroon
Lockwood, J.P.; Costa, J.E.; Tuttle, M.L.; Nni, J.; Tebor, S.G.
1988-01-01
The upper 40 m of Lake Nyos is bounded on the north by a narrow dam of poorly consolidated pyroclastic rocks, emplaced during the eruptive formation of the Lake Nyos maar a few hundred years ago. This 50-m-wide natural dam is structurally weak and is being eroded at an uncertain, but geologically alarming, rate. The eventual failure of the dam could cause a major flood (estimated peak discharge, 17000 m3/s) that would have a tragic impact on downstream areas as far as Nigeria, 108 km away. This serious hazard could be eliminated by lowering the lake level, either by controlled removal of the dam or by construction of a 680-m-long drainage tunnel about 65 m below the present lake surface. Either strategy would also lessen the lethal effects of future massive CO2 gas releases, such as the one that occurred in August 1986. ?? 1988 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø
2017-12-01
High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.
Juckem, Paul F.; Robertson, Dale M.
2013-01-01
Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging toward the lake. Total groundwater inflow to Shell Lake is small (approximately 5 percent of the water budget) compared with water entering the lake from precipitation (83 percent) and surface-water runoff (13 percent). The MODFLOW model also was used to simulate average annual hydrologic conditions from 1949 to 2009, including effects of the removal of 3 billion gallons of water during 2003–5. The maximum decline in simulated average annual water levels for Shell Lake due to the diversion alone was 3.3 ft at the end of the diversion process in 2005. Model simulations also indicate that although water level continued to decline through 2009 in response to local weather patterns (local drought), the effects of the diversion decreased after the diversion ceased; that is, after 4 years of recovery (2006–9), drawdown attributable to the diversion alone decreased by about 0.6 ft because of increased groundwater inflow and decreased lake-water outflow to groundwater caused by the artificially lower lake level. A delayed response in drawdown of less than 0.5 ft was transmitted through the groundwater-flow system to upgradient lakes. This relatively small effect on upgradient lakes is attributed in part to extensive layers of shallow clay that limit lake/groundwater interaction in the area. Data collected in the lake indicated that Shell Lake is polymictic (characterized by frequent deep mixing) and that its productivity is limited by the amount of phosphorus in the lake. The lake was typically classified as oligotrophic-mesotrophic in June, mesotrophic in July, and mesotrophic-eutrophic in August. In polymictic lakes like Shell Lake, phosphorus released from the sediments is not trapped near the bottom of the lake but is intermittently released to the shallow water, resulting in deteriorating water quality as summer progresses. Because the productivity of Shell Lake is limited by phosphorus, the sources of phosphorus to the lake were quantified, and the response in water quality to changes in phosphorus inputs were evaluated by means of eutrophication models. During 2009, the total input of phosphorus to Shell Lake was 1,730 pounds (lb), of which 1,320 lb came from external sources (76 percent) and 414 lb came from internal loading from sediments in the lake (24 percent). The largest external source was from surface-water runoff, which delivered about 52 percent of the total phosphorus load compared with about 13 percent of the water input. The second largest source was from precipitation (wetfall and dryfall), which delivered 19 percent of the load compared to about 83 percent of the water input. Contributions from septic systems and groundwater accounted for about 3 and 2 percent, respectively. Increased runoff raises water levels in the lake but does not necessarily increase phosphorus loading because phosphorus concentrations in the tributaries decline during increased flow, possibly because of shorter retention times in upstream wetlands. Phosphorus loading to the lake in 2009 represented what occurred after a series of dry years; therefore, this information was combined with data from 2011, a wet year, to estimate phosphorus loading during a range of hydrologic conditions by estimating loading from each component of the phosphorus budget for each year from 1949 to 2011. Comparisons of historical water-quality records with historical water levels and applications of a hydrodynamic model (Dynamic Lake Model, DLM) and empirical eutrophication models were used to understand how changes in water level and the coinciding changes in phosphorus loading affect the water quality of Shell Lake. DLM simulations indicate that large changes in water level (approximately 10 ft) affect the persistence of stratification in the lake. During periods with low water levels, the lake is a well-mixed, polymictic system, with water quality degrading slightly as summer progresses. During periods with high water levels, the lake is more stratified, and phosphorus from internal loading is trapped in the hypolimnion and released later in summer, which results in more extreme seasonality in water quality and better clarity in early summer. Results of eutrophication model simulations using a range in external phosphorus inputs illustrate how water quality in Shell Lake (phosphorus and chlorophyll a concentrations and Secchi depths) responds to changes in external phosphorus loading. Results indicate that a 50-percent reduction in external loading from that measured in 2009 would be required to change phosphorus concentrations from 0.018 milligram per liter (mg/L) (measured in 2009) to 0.012 mg/L (estimated for the mid-1800s from analysis of diatoms in sediment cores). Such reductions in phosphorus loading cannot be accomplished by targeting septic systems or internal loading alone because septic systems contribute only about 3 percent of the phosphorus input to the lake, and internal loading from the sediments of Shell Lake contributes only about 25 percent of phosphorus input. Complete elimination of phosphorus from septic systems and internal loading would decrease the phosphorus concentrations in the lake by 0.003–0.004 mg/L. Therefore, reducing phosphorus concentration in the lake more than by 0.004 mg/L requires decreasing phosphorus loading from surface-water contributions, primarily runoff to the lake. Reconstructed changes in water quality from 1860 to 2010, based on changes in the diatom communities archived in the sediments and eutrophication model simulations, suggest that anthropogenic changes in the watershed (sawmill construction in 1881; the establishment of the village of Shell Lake; and land-use changes in the 1920s, including increased agriculture) had a much larger effect on water quality than the natural changes associated with fluctuations in water level. Although the effects of natural changes in water level on water quality appear to be small, changes in water level do have a modest effect on water quality, primarily manifested as small improvements during higher water levels. Fluctuations in water level, however, have a larger effect on the seasonality of water-quality patterns, with better water quality, especially increased Secchi depths, in early summer during years with high water levels.
Jaynes, M.L.
1994-01-01
Hydrologic, water-quality, and meteorologic data were collected from January 1993 through March 1994 as part of a water-quality investigation of the Upper Catawba River Basin, North Carolina. Specific objectives of the investigation were to characterize the water quality of Rhodhiss Lake, Lake Hickory, and three tributary streams, and to calibrate hydrodynamic water-quality models for the two reservoirs. Sampling locations included 11 sites in Rhodhiss Lake, 14 sites in Lake Hickory, and 3 tributary sites. Tributary sites were located at Lower Creek upstream from Rhodhiss Lake and at Upper Little River and Middle Little River upstream from Lake Hickory. During 21 sampling visits, specific conductance, pH, water temperature, dissolved-oxygen concentration, and water transparency were measured at all sampling locations. Water samples were collected for analysis of biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, suspended sediment, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium from three sites in each reservoir and from the three tributary sites. Chemical and particle-size analyses of bottom material from Rhodhiss Lake and Lake Hickory were performed once during the study. At selected locations, automated instruments recorded water level, streamflow, water temperature, solar radiation, and air temperature at 15-minute intervals throughout the study. Hydrologic data presented in the report include monthly water-level statistics and daily mean values of discharge. Diagrams, tables, and statistical summaries of water-quality data are provided. Meteorologic data in the report include monthly precipitation, and daily mean values of solar radiation and air temperature.
LANDSLIDE DAMMED LAKES AT MOUNT ST. HELENS, WASHINGTON.
Meyer, William; Sabol, Martha A.; Schuster, Robert; ,
1986-01-01
The collapse of the north face of Mount St. Helens on May 18, 1980, and the debris avalanche that resulted blocked outflow from Spirit Lake and Coldwater and South Fork Castle Creeks. Spirit Lake began to increase in size and lakes began to form in the canyons of Coldwater and South Fork Castle Creeks. Coldwater and Castle Lakes would have overtopped their respective blockages in late 1981 or early 1982. Catastrophic flooding would have occurred from the breakout of Coldwater Lake while serious flooding probably would have resulted from the breakout of Castle Lake. As a result, the level of both lakes was stabilized with spillways in 1981. The three blockages are stable against liquefaction and gravitationally induced slope failure. The existence of groundwater in the blockages was observed in piezometers installed between 1981 and 1983. Groundwater mounds with water levels above lake level exist under the crest of all of the blockages.
Alligator diet in relation to alligator mortality on Lake Griffin, FL
Rice, A.N.; Ross, J.P.; Woodward, A.R.; Carbonneau, D.A.; Percival, H.F.
2007-01-01
Alligator mississippiensis (American Alligators) demonstrated low hatch-rate success and increased adult mortality on Lake Griffin, FL, between 1998 and 2003. Dying Lake Griffin alligators with symptoms of poor motor coordination were reported to show specific neurological impairment and brain lesions. Similar lesions were documented in salmonines that consumed clupeids with high thiaminase levels. Therefore, we investigated the diet of Lake Griffin alligators and compared it with alligator diets from two lakes that exhibited relatively low levels of unexplained alligator mortality to see if consumption of Dorosoma cepedianum (gizzard shad) could be correlated with patterns of mortality. Shad in both lakes Griffin and Apopka had high levels of thiaminase and Lake Apopka alligators were consuming greater amounts of shad relative to Lake Griffin without showing mortality rates similar to Lake Griffin alligators. Therefore, a relationship between shad consumption alone and alligator mortality is not supported.
Crater Lake Apoyo Revisited - Population Genetics of an Emerging Species Flock
Geiger, Matthias F.; McCrary, Jeffrey K.; Schliewen, Ulrich K.
2013-01-01
The polytypic Nicaraguan Midas cichlids ( Amphilophus cf. citrinellus) have been established as a model system for studying the mechanisms of speciation and patterns of diversification in allopatry and sympatry. The species assemblage in Crater Lake Apoyo has been accepted as a textbook example for sympatric speciation. Here, we present a first comprehensive data set of population genetic (mtDNA & AFLPs) proxies of species level differentiation for a representative set of individuals of all six endemic Amphilophus species occurring in Crater Lake Apoyo. AFLP genetic differentiation was partitioned into a neutral and non-neutral component based on outlier-loci detection approaches, and patterns of species divergence were explored with Bayesian clustering methods. Substantial levels of admixture between species were detected, indicating different levels of reproductive isolation between the six species. Analysis of neutral genetic variation revealed several A . zaliosus as being introgressed by an unknown contributor, hereby rendering the sympatrically evolving L. Apoyo flock polyphyletic. This is contrasted by the mtDNA analysis delivering a clear monophyly signal with Crater Lake Apoyo private haplotypes characterising all six described species, but also demonstrating different demographic histories as inferred from pairwise mismatch distributions. PMID:24086393
Lake volume monitoring from space
NASA Astrophysics Data System (ADS)
Crétaux, Jean-Francois; Abarca Del Rio, Rodrigo; Berge-Nguyen, Muriel; Arsen, Adalbert; Drolon, Vanessa; Maisongrande, Philippe
2016-04-01
Lakes are integrator of environmental changes occurring at regional to global scale and present a high variety of behaviors on a variety of time scales (cyclic and secular) depending on the climate conditions and their morphology. In addition their crucial importance as water stocks and retaining, given the significant environment changes occurring worldwide at many anthropocentric levels, has increased the necessity of monitoring all its morphodynamics characteristics, say water level, surface (water contour) and volume. The satellite altimetry and satellite imagery together are now widely used for the calculation of lakes and reservoirs water storage changes worldwide. However strategies and algorithms to calculate these characteristics are not straightforward and need development of specific approaches. We intend to present a review of some of these methodologies by using the lakes over the Tibetan Plateau to illustrate some critical aspects and issues (technical and scientific) linked with the survey of climate changes impacts on surface waters from remote sensing data. Many authors have measured water variations using the short period of remote sensing measurements available, although time series are probably too short to lead to definitive conclusions to link these results directly with the framework of climate changes. Indeed, many processes beyond the observations are still uncertain, for example the influence of morphology of the lakes. The time response for a lake to reach new state of equilibrium is one of the key aspects often neglected in the current literature. Observations over long period of time, therein maintaining a constellation of comprehensive and complementary satellite missions with a continuity of services over decades, especially when ground gauges network is too limited is therefore a necessity. In addition, the design of future satellite missions with new instrumental concepts (e.g. SAR, SARin, Ka band altimetry, Ka interferometry) is also suitable for complete monitoring of continental waters.
Godsey, Holly S.; Oviatt, Charles G.; Miller, David M.; Chan, Marjorie A.
2011-01-01
Stratigraphic descriptions and radiocarbon data from eleven field locations are presented in this paper to establish a chronostratigraphic framework for offshore to nearshore deposits of Lake Bonneville. Based on key marker beds and geomorphic position, the deposits are interpreted to have accumulated during the period from the late transgressive phase, through the overflowing phase, into the regressive phase of the lake. Radiocarbon ages of sediments associated with the Provo shoreline indicate that Lake Bonneville dropped rapidly from the Provo shoreline at about 12,600 14C yr BP (15,000 cal yr B.P.). The presence of one or more sand beds in the upper part of the Provo-aged marl indicates rapid lowering of lake level or storm events at the end of the Provo episode. An accurate understanding of the timing and nature of Lake Bonneville's climate-driven regression from the Provo shoreline is critical to correlations with records of regional and hemispheric climate change. The rapid descent of the lake from the Provo shoreline correlates with the decline of Lakes Lahontan and Estancia, and with the onset of the BØlling–AllerØd warming event.
Godsey, H.S.; Oviatt, Charles G.; Miller, D.M.; Chan, M.A.
2011-01-01
Stratigraphic descriptions and radiocarbon data from eleven field locations are presented in this paper to establish a chronostratigraphic framework for offshore to nearshore deposits of Lake Bonneville. Based on key marker beds and geomorphic position, the deposits are interpreted to have accumulated during the period from the late transgressive phase, through the overflowing phase, into the regressive phase of the lake. Radiocarbon ages of sediments associated with the Provo shoreline indicate that Lake Bonneville dropped rapidly from the Provo shoreline at about 12,600 14C yr BP (15,000 cal yr B.P.). The presence of one or more sand beds in the upper part of the Provo-aged marl indicates rapid lowering of lake level or storm events at the end of the Provo episode. An accurate understanding of the timing and nature of Lake Bonneville's climate-driven regression from the Provo shoreline is critical to correlations with records of regional and hemispheric climate change. The rapid descent of the lake from the Provo shoreline correlates with the decline of Lakes Lahontan and Estancia, and with the onset of the B??lling-Aller??d warming event. ?? 2011 Elsevier B.V.
Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa
NASA Astrophysics Data System (ADS)
Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.
Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.
Geochemical and Geophysical Analysis of Holocene-aged Sediments from Southeastern Tulare Lake, CA
NASA Astrophysics Data System (ADS)
Prosser, L.; Jackson, B.; Roza, J.
2015-12-01
Tulare Lake is located in the San Joaquin Valley of California west of the Sierra Nevada mountains (Preston, 1981). The Poso Canal trench locality is located in the southeastern portion of Tulare Lake in the Ton Tachi lake plane south of the Atwell Island sand spit. This area was chosen because these sediments lie beneath a road bed that predates agricultural tilling, preserving late-Holocene lake sediments. Sediments from trench TL13-7C were sampled for geophysical and geochemical analyses in order to create a higher resolution lake-level history during the late-Holocene than had been possible using only lithologic descriptions. The new record is comprised of grain size, clay percentage, carbon/nitrogen (C/N) ratios, total inorganic carbon (TIC), total organic carbon (TOC), and nitrogen (N) analyses taken at 2-cm intervals over 181-cm of section comprising four lithologic units. From oldest to youngest, Unit 1A consists of relatively equal and steady percentages of clay, silt, and sand, and relatively low C/N ratios, TIC, TOC, and N, suggesting an unproductive lake and relatively deep lake levels at this high elevation site. Fluctuating C/N ratios, a steady decrease in clay percentage, and a steady increase in sand percentage in Unit 1B suggests periods of flooding and fluctuating lake levels and eventually shallow evaporative lake conditions, as evidenced by a considerable and sudden increase in TIC (to 4.51%) in Unit 2. In addition to the drastic change in TIC, Unit 2 shows evidence of a large influx of terrestrial organic matter perhaps transported by floods by an increase in sand percentage and two pronounced spikes in C/N ratios to 38 and 65 (Meyers and Lallier-Verges, 1999). Unit 3 shows low but steady levels of clay and sand percentages, and higher but steady levels of silt. Levels of TIC, TOC, C/N, and N are all steady, with relatively higher levels of TOC and N, which are indicators of high lake level and productivity (Cohen, 2003). Unit 4 is very similar to Unit 3, however toward the upper region of the unit, sand percentages increased with a slight increase in TIC, suggesting a relatively shallower lake. This record will be used to test lake-level models for Tulare Lake put forth by Blunt and Negrini (in press) and Jackson (2015).
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, D.; Grigorakou, E.; Koumantakis, J.
2003-04-01
Vegoritis Lake, which is located at Vegoritis closed Basin in West Macedonia, Greece, is the biggest lake in Greece. In 1994 the area of the lake was 35 Km2 with maximum depth 42 m at the northwestern part of the lake. It is the final receiving body of the surface runoff of the hydrological basin. Moreover, it is the surficial appearance of an enormous and not well-known karstic aquifer. Being a closed hydrological basin any interference in surface or groundwater conditions in every part of its area affects the level of the lake. The level of the lake in 1900 was 525 masl, in 1942 was 542 masl reaching the higher level of 543 masl in 1956. The increase of the level of the lake was due to the drainage of Ptolemais (Sarigiol) swamp through Soulou drain ditches that transfer the water in the lake. Since then, a continuous drawdown took place with small periods of rising of water level. Today, the level of the lake is declined in a smaller rate having reached the level of 510 masl. Water coming from the lake has been used in the past, and in some cases still does, for agricultural, industrial and domestic use, for hydropower generation and for the cooling system of power plants. Moreover, P.P.C. (Public Power Corporation of Greece) develops an intense activity in the area with the exploitation of the lignite deposits of the basin and power generation in several Power Plants. Few years ago significant quantities from Vegoritis Lake were used for hydro power of Agras Power Plant. With the elaboration of the existent data (water level measurements, recharge, discharge) the connection between the lowering of the surface of the lake and the subtracted quantities through the Arnissa Tunel the first years of its use, is obvious. The last twenty years the condition has change. Outflow through the Arnissa Tunnel for hydropower has stopped. The continued lowering of the level of the lake is caused, mainly, by overexploitation due to the intense increase of the irrigating land. The dewatering of the aquifers for the protection of the lignite mine seems to have an insignificant influence on the aquatic balance, as the water is discharged again into the streams and rivers of the closed basin.
ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009
NASA Astrophysics Data System (ADS)
Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei
2017-07-01
Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.
ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009
NASA Astrophysics Data System (ADS)
Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei
2018-06-01
Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.
Hydrology of Lake Butler, Orange County, Florida
Smoot, James L.; Schiffer, Donna M.
1984-01-01
Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)
Mitchell, Peter I; Vintró, Luis León; Omarova, Aigul; Burkitbayev, Mukhambetkali; Nápoles, Humberto Jiménez; Priest, Nicholas D
2005-06-01
The concentration of tritium has been determined in well waters, streams and atomic lakes in the Sarzhal, Tel'kem, Balapan and Degelen Mountains areas of the Semipalatinsk Test Site. The data show that levels of tritium in domestic well waters within the settlement of Sarzhal are extremely low at the present time with a median value of 4.4 Bq dm(-3) (95% confidence interval:4.1-4.7 Bq dm(-3)). These levels are only marginally above the background tritium content in surface waters globally. Levels in the atomic craters at Tel'kem 1 and Tel'kem 2 are between one and two orders of magnitude higher, while the level in Lake Balapan is approximately 12,600 Bq dm(-3). Significantly, levels in streams and test-tunnel waters sourced in the Degelen Mountains, the site of approximately 215 underground nuclear tests, are a further order of magnitude higher, being in the range 133,000--235,500 Bq dm(-3). No evidence was adduced which indicates that domestic wells in Sarzhal are contaminated by tritium-rich waters sourced in the Degelen massif, suggesting that the latter are not connected hydrologically to the near-surface groundwater recharging the Sarzhal wells. Annual doses to humans arising from the ingestion of tritium in these well waters are very low at the present time and are of no radiological significance.
NASA Astrophysics Data System (ADS)
Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing
2017-01-01
The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.
NASA Astrophysics Data System (ADS)
Loomis, John; Smith, Adam; Huszar, Paul
2005-08-01
The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be $368 per year for lakefront residents and $59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.
NASA Astrophysics Data System (ADS)
Adams, K. D.; Negrini, R. M.; Rajagopal, S.; Cook, E. R.
2015-12-01
The Central Valley of California is one of the most prolific agricultural areas in the U.S., providing about 25 % of the nation's food. This system is reliant on winter snows in the Sierra Nevada that gradually melt through the spring, but over the last 4 years California has been in the grip of its worst drought of the last 150 years. The question remains, however, how unusual is this drought when compared to previous events over longer time scales? We used moisture sensitive tree-ring chronologies from the Living Blended Drought Atlas of Cook et al. (2010) to reconstruct annual discharges over the last 2000 years for the Kings, Kaweah, Tule, and Kern rivers in the southern Sierra and routed this discharge into a Tulare Lake water balance model to simulate lake-level fluctuations over this same time period. Although the current drought represents the driest consecutive four year period over the past 2000 years, in terms of discharge volumes, there are multiple periods of more severe, longer term drought represented by extended periods of low lake levels. Significant low-lake periods (< 61 m) include 793-814, 906-933, and 1140-1158, all of which occurred during the Medieval Climate Anomaly. Conversely, lake levels were predominately high during the ensuing Little Ice Age, separated by brief periods of low lake levels. Under natural flow conditions, the 1923-1935 drought would have lowered lake level to about 58 m, which is about 2 m lower than where lake level would have been in the current drought. Wavelet analyses of the streamflow and lake-level records reveal different periodicities of drought and wet conditions because lake-level is a state variable that changes relatively slowly, depending on inflow, precipitation on the lake, evaporation rate, and the hypsometry of the basin, whereas streamflow is a flux that responds immediately to climate perturbations. The streamflow records have a dominant period of 2-8 yrs but lake-level fluctuations follow longer periods of >32 yrs, primarily prior to 1300. While the 2-8 yr periodicity may reflect ENSO cycles, the causes of the longer periods in the lake-level record remain unknown.
NASA Astrophysics Data System (ADS)
Junginger, Annett
2017-04-01
A major challenge in paleo-anthropology is to understand the impact of climatic changes on human evolution. The Hominin Sites and Paleo-lakes Drilling Project (HSPDP) is currently meeting that challenge by providing records that cover the last 3.7 Ma of paleoenvironmental change all located in close proximity to key paleo-anthropological findings in East Africa. One of the cored climatic archives comes from the Chew Bahir basin in southern Ethiopia, where duplicate sediment cores provide valuable insights about East African environmental variability during the last 550 ka. The lake basins in the eastern branch of the East African Rift System today contain mainly shallow and alkaline lakes. However, paleo-shorelines in the form of wave cut notches, shell beds, and beach ridges are common morphological evidences for deep freshwater lakes that have filled the basins up to their overflow level during pronounced humid episodes, such as the African Humid Period (15-5 ka). Unfortunately, further back in time, many of those morphological features disappear due to erosion and the estimation of paleo-water depths depend merely on qualitative proxies from core analyses. We here present a method that shows high potential to translate qualitative proxy signals from sediment core analyses to quantitative climate signals in the Ethiopian Rift. The method aims at water level reconstruction in the Chew Bahir basin using strontium isotope ratios (87Sr/86Sr, SIR) in lacustrine microfossils. SIR reflect the lithology of the drained catchment. SIR have changed pronouncedly when higher elevated paleo-lakes Abaya, Chamo and Awassa were overflowing into paleo-lake Chew Bahir. This new method may help to quantify paleo-lake levels beyond the past 20 ka and may also detect migrational barriers or routes due to the occurrence of synchronous large, connected and deep paleo-lakes.
NASA Astrophysics Data System (ADS)
Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.
2014-12-01
87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.
Change in the size of Walker Lake during the past 5000 years
Benson, L.V.; Meyers, P.A.; Spencer, R.J.
1991-01-01
In 1984, a 12-m sediment core (WLC84-8) was taken from the deepest part of Walker Lake. Samples of the core were analysed for diatoms, pollen, carbonate mineralogy, magnesium content, ??18O and ??13C values of the total inorganic fractin, ??18O and ??13C values of Limnocythere ceriotuberosa, ??13C values of the total organic fraction, grain size, and magnetic susceptibility. The data indicate that Walker Lake became shallow and probably desiccated between ???5300-4800 and 2700-2100 yr B.P.. Each of the organic and inorganic proxy indicators of lake size discussed in this paper was useful in determining the presence of the shallow-lake intervals. However, none of the indicators was useful in determining the cause of the shallow-lake intervals. Instead, the types of fish living in Walker Lake prior to 1940 were used to demonstrate that shallow-lake intervals resulted from diversion of the Walker River and not from climatic aridity. Major changes in mineralogy and magnesium content of carbonates and major changes in diatom populations with time were found to be a function of the chemical evolution of Walker Lake combined with changing lake size. The stable isotopes of oxygen and carbon were found to be good indicators of lake volume changes. A lake-level record for Walker Lake constructed from stable-isotope data was found to be similar to a lake-level record constructed using tufa and tree-stump data. Both records indicate relatively high lake levels between 4800-2700 yr B.P., at 1250 yr B.P., and within the last 300 yr. Substantial declines in lake level occurred ???2000 and ???1000 yr B.P. ?? 1991.
A new 10,000 year pollen record from Lake Kinneret (Israel) - first results
NASA Astrophysics Data System (ADS)
Schiebel, V.; Litt, T.; Nowaczyk, N.; Stein, M.; Wennrich, V.
2012-04-01
Lake Kinneret - as part of the Jordan Rift Valley in Israel - is situated in the southern Levant, which is affected by Eastern Mediterranean climate. The present lake level is around 212 m below msl. Lake Kinneret has a surface of ca. 165 km2 and its watershed comprises the Galilee, the Golan Heights, the Hermon Range and the Anti-Lebanon Mountains. Its most important tributary is the Jordan River. The geography of the Lake Kinneret region is characterised by big differences in altitude. Steep slopes rise up to 560 m above the lake level in the west, north, and east. Mount Hermon (2814 m above mean sea level, amsl) is the highest summit of the Anti-Lebanon Range, and Mount Meron (1208 m amsl) located in the Upper Galilee encircle Lake Kinneret within a 100-km range in the northwest. Due to the pattern of average precipitation, distinct plant-geographical territories converge in the region: The Mediterranean and the Irano-Turanian biom (after Zohary). Varying ratios of characteristic pollen taxa representing certain plant associations serve as proxy data for the reconstruction of paleovegetation, paleoenvironment, and paleoclimate. We present a pollen record based on analyses of sediment cores obtained during a drilling campaign on Lake Kinneret in March 2010. A composite profile of 17.8 m length was established by correlating two parallel cores by using magnetic susceptibility data. Our record encompasses the past ca. 10,000 years of a region, which has been discussed as migration corridor of humans to Europe and, being part of the Fertile Crescent, as the cradle of agriculture in West Asia. Conclusions concerning human impact on vegetation and therefore population density can be drawn by analysing changes of ratios of certain plant taxa such as Olea europaea cultivated in this region since the Chalcolithic Period (6,500 BP). In addition, stable isotope data were produced from discrete bulk samples, and the elemental composition of the sediments was determined by XRF-scanning. Caused by a key position within a sensitive climate region of the Near East, the multi-proxy data set of the sedimentary archive of Lake Kinneret hosts a wealth of information that will be used to reconstruct Holocene paleoclimate. Our work is a contribution to the Collaborative Research Centre SFB 806 ('Our Way To Europe'), supported by the Deutsche Forschungsgemeinschaft (DFG), and dealing with culture-environment interaction and human mobility in the Late Quaternary.
NASA Astrophysics Data System (ADS)
Rowe, Harold D.; Guilderson, Thomas P.; Dunbar, Robert B.; Southon, John R.; Seltzer, Geoffrey O.; Mucciarone, David A.; Fritz, Sherilyn C.; Baker, Paul A.
2003-09-01
We present and compare AMS- 14C geochronologies for sediment cores recovered from Lake Titicaca, South America. Radiocarbon dates from three core sites constrain the timing of late Quaternary paleoenvironmental changes in the Central Andes and highlight the site-specific factors that limit the radiocarbon geochronometer. With the exception of mid-Holocene sediments, all cores are generally devoid of macrophyte fragments, thus bulk organic fractions are used to build core chronologies. Comparisons of radiocarbon results for chemically defined fractions (bulk decalcified, humate, humin) suggest that ages derived from all fractions are generally coherent in the post-13,500 yr BP time interval. In the pre-13,500 yr BP time interval, ages derived from humate extracts are significantly younger (300-7000 years) than ages from paired humin residues. Gross age incoherencies between paired humate and humin sub-fractions in pre-13,500 yr BP sediments from all core sites probably reflect the net downward migration of humates. Ages derived from bulk decalcified fractions at our shallow water (90 m) and deep water (230 m) core sites consistently fall between ages derived from humate and humin sub-fractions in the pre-13,500 yr BP interval, reflecting that the bulk decalcified fraction is predominantly a mixture of humate and humin sub-fractions. Bulk decalcified ages from the pre-13,500 yr BP interval at our intermediate depth core site (150 m) are consistently older than humate (youngest) and humin sub-fractions. This uniform, reproducible pattern can be explained by the mobilization of a relatively older organic sub-fraction during and after the re-acidification step following the alkaline treatment of the bulk sediment. The inferred existence of this 'alkali-mobile, acid-soluble' sub-fraction implies a different depositional/post-depositional history that is potentially associated with a difference in source material. While internally consistent geochronologies can be developed for the Lake Titicaca sequence using different organic fractions, mobile organic sub-fractions and fractions containing mobile sub-fractions should generally be avoided in geochronology studies. Consequently, we believe humin and/or bulk decalcified ages provide the most consistent chronologies for the post-13,500 yr BP interval, and humin ages provide the most representative ages for sedimentation prior to 13,500 yr BP interval. Using the age model derived from the deep water core site and a previously published isotope-based lake-level reconstruction, we present a qualitative record of lake level in the context of several ice-core records from the western hemisphere. We find the latest Pleistocene lake-level response to changing insolation began during or just prior to the Bølling/Allerød period. Using the isotope-based lake-level reconstruction, we also find the 85-m drop in lake level that occurred during the mid-Holocene was synchronous with an increase in the variability of ice-core δ18O from a nearby icecap, but was not reflected in any of the polar ice-core records recovered from the interior of Antarctica and Greenland.
NASA Astrophysics Data System (ADS)
Wriston, T.; Smith, G. M.
2017-12-01
Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.
Gray, B.R.; Rogala, J.R.; Houser, J.N.
2013-01-01
Contiguous floodplain lakes ('lakes') have historically been used as study units for comparative studies of limnological variables that vary within lakes. The hierarchical nature of these studies implies that study variables may be correlated within lakes and that covariate associations may differ not only among lakes but also by spatial scale. We evaluated the utility of treating lakes as study units for limnological variables that vary within lakes based on the criteria of important levels of among-lake variation in study variables and the observation of covariate associations that vary among lakes. These concerns were selected, respectively, to ensure that lake signatures were distinguishable from within-lake variation and that lake-scale effects on covariate associations might provide inferences not available by ignoring those effects. Study data represented chlorophyll a (CHL) and inorganic suspended solids (ISS) data from lakes within three reaches of the Upper Mississippi River. Sampling occurred in summer from 1993 through 2005 (except 2003); numbers of lakes per reach varied from 7 to 19, and median lake area varied from 53 to 101 ha. CHL and ISS levels were modelled linearly, with lake, year and lake x year effects treated as random. For all reaches, the proportions of variation in CHL and ISS attributable to differences among lakes (including lake and lake x year effects) were substantial (range: 18%-73%). Finally, among-lake variation in CHL and ISS was strongly associated with covariates and covariate effects that varied by lakes or lake-years (including with vegetation levels and, for CHL, log(ISS)). These findings demonstrate the utility of treating floodplain lakes as study units for the study of limnological variables and the importance of addressing hierarchy within study designs when making inferences from data collected within floodplain lakes.
NASA Astrophysics Data System (ADS)
Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.
2017-02-01
Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.
Morphology, volcanism, and mass wasting in Crater Lake, Oregon
Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.
2002-01-01
Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation. Thereafter, a gradual, climatically modulated rise in lake level to the present 1883 m produced a series of beaches culminating in a modern wave-cut platform, commonly ~40 m wide, where suitable material is present. The new survey reveals landforms that result from intermediate-composition volcanism in rising water, delineates mass wasting and sediment transport into a restricted basin, and yields a more accurate postcaldera history leading to improved assessment of volcanic hazards.
The Paleohydrology of Sluice Pond, NE Massachusetts, and its Regional Significance
Seismic, pollen, stable isotope and lithologic stratigraphies of Sluice Pond, northeastern Massachusetts, were investigated to reconstruct local climate conditions fromthe latest Pleistocene to present. We present a new lake-level curve, constrained largely by acoustic reflectors...
Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes
Linz, Alexandra M.; Crary, Benjamin C.; Shade, Ashley; ...
2017-06-28
Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likelymore » reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “CandidatusOmnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community composition varies by year, a finding which likely applies to other ecosystems and has implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource for anyone seeking to answer their own microbial ecology questions using a multiyear time series.« less
Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linz, Alexandra M.; Crary, Benjamin C.; Shade, Ashley
Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likelymore » reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “CandidatusOmnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community composition varies by year, a finding which likely applies to other ecosystems and has implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource for anyone seeking to answer their own microbial ecology questions using a multiyear time series.« less
Status of Lake Superior’s lower trophic levels
To meet the Fish Community Objectives set for Lake Superior by the Great Lakes Fishery Commission, a key factor is the condition of the lower food web that supports productivity of fisheries. To assess the condition of lower trophic levels and inform the Lake Superior Technical C...
Paleohydrologic record from lake brine on the southern High Plains, Texas
Sanford, W.E.; Wood, W.W.
1995-01-01
The timing of changes in the stage and salinity of Double Lakes of Lynn County, Texas, was estimated using dissolved-chloride profiles across an underlying shale layer. Lake conditions over the past 30 to 50 ka can be inferred from the chloride profiles by using the advective velocity of the pore water through the shale and an appropriate coefficient of molecular diffusion. The profiles suggest that net-evaporative conditions existed over the southern High Plains for the past 50 ka; a period of increasing salinity in the lake began at ~20 ka and reached current levels at ~5 ka. In addition, deflationary conditions were present for at least 4 ka, and likely began or were accelerated during the most recent altithermal period at ~5 ka. -from Authors
Now and Long Ago at Gale Crater, Mars Illustration
2016-12-13
This pair of drawings depicts the same location on Mars at two points in time: now and billions of years ago. The location is in Gale Crater, near the Red Planet's equator. Since August 2012, NASA's Curiosity Mars rover mission has been investigating rock layers in the crater floor and in the crater's central peak (Mount Sharp) for information recorded in the rocks about ancient environmental conditions and how they changed over time. Slide 1 shows a present-day snapshot of the northern half of Gale Crater. North is to the left. The underlying basement is the crust of Mars that forms the crater's rim (left) and central peak (right). About 3.5 billion years ago, rivers brought sediment into the crater, depositing pebbles where the river was flowing more quickly, sand where the river entered a standing body of water in the center of the basin, and silt within this lake. Lake level rose over time as the sediments built up. Eventually they were buried by dry dust. These sediments later turned into the conglomerate, sandstone, mudstone, and duststone rocks that Curiosity has found. Wind then carved the stack of deposits into the present shape of a mountain, which Curiosity is climbing as approximately shown. The basement rock fractured during the initial impact that formed the crater, and the later sediments fractured as they were buried. Slide 2 shows a snapshot in time when a lake was present in the crater. As on Earth, Martian lakes were the surface expression of a much larger lake and groundwater system. Spaces between grains and in fractures were saturated with water at levels below the water table (dashed blue line). This groundwater circulated due to gravity and the topography within and around the crater. In this case, groundwater pressurized under the nearby Martian highlands may have flowed into the crater, where it would be less confined. Groundwater also flowed downward from the lake. As the groundwater circulated, it drove chemical reactions that dissolved some minerals and precipitate others. Habitable environments in ancient Gale Crater -- identified during Curiosity's first year on Mars --expanded both in space and time beyond just the lakes. They extend throughout the subsurface where groundwater was present, and extended in time well after the lakes disappeared, when groundwater continued to circulate through the buried and fractured sediments. The unannotated figure and an animated gif are available at http://photojournal.jpl.nasa.gov/catalog/PIA21255
NASA Astrophysics Data System (ADS)
Neugebauer, I.; Schwab, M. J.; Waldmann, N. D.; Tjallingii, R.; Frank, U.; Hadzhiivanova, E.; Naumann, R.; Taha, N.; Agnon, A.; Enzel, Y.; Brauer, A.
2015-08-01
The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by μXRF scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca 117-75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several meters thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ∼110-108 ± 5 and ∼93-87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during MIS 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in-situ beach deposit. Two intervals of higher lake stands at ∼108-93 ± 6 and ∼87-75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and GI 24 + 23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.
NASA Astrophysics Data System (ADS)
Lofgren, B. M.; Xiao, C.
2016-12-01
The influence of projected climate change on the water levels of the Great Lakes is subject to considerable uncertainty, and methods that have long been used to determine this sensitivity have been discredited. A strong candidate, albeit expensive, to replace problematic methods is to use outputs that result from dynamical downscaling of future climate simulations, focused on the hydroclimate of the Great Lakes basin. We have produced initial estimates of Great Lakes water levels in the mid- and late 21st century using the Weather Research and Forecasting (WRF) model, including its lake module, driven by lateral boundary conditions from the Geophysical Fluid Dynamics Lab Climate Model version 3.0 (GFDL CM3), under RCP4.5 and 8.5 scenarios. Future lake levels are influenced by the balance between projected general increases in precipitation and increases in evapotranspiration from both land and lake in the basin, driven primarily by the surface radiative energy budget and secondarily by air temperature. The net result was drops in lake level of up to 15 cm, in contrast to the results from much-used older methods, which often projected drops exceeding 1 m. Future plans include increased detail in the simulation of water flow overland and in river channels using WRF-Hydro, and full coupling of regional atmospheric systems with 3-dimensional dynamical lake implementation of the Finite Volume Community Ocean Model (FVCOM).
Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elbert, R.A.; Anderson, D.W.
1998-02-01
Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppmmore » for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.« less
NASA Astrophysics Data System (ADS)
Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.
2014-12-01
Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.
Simulating future water temperatures in the North Santiam River, Oregon
Buccola, Norman; Risley, John C.; Rounds, Stewart A.
2016-01-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
Christensen, Victoria G.; Larson, James H.; Maki, Ryan P.; Sandheinrich, Mark B.; Brigham, Mark E.; Kissane, Claire; LeDuc, Jamie F.
2017-01-18
Within Voyageurs National Park in Minnesota, lake levels are controlled by a series of dams to support a variety of uses. Previous research indicates a link between these artificially maintained water levels, referred to as rule curves, and mercury concentrations in fish owing to the drying and rewetting of wetlands and other nearshore areas, which may release methylmercury into the water when inundated. The U.S. Geological Survey, National Park Service, and University of Wisconsin-La Crosse cooperated in a study to assess the importance of lake-level fluctuation and other factors affecting mercury concentrations in Perca flavescens (yellow perch) in the lakes of Voyageurs National Park. For this study, mercury body burdens were determined for young-of-the-year yellow perch collected from the large lakes within Voyageurs National Park during 2013–15. These mercury body burdens were compared to lake levels and water-quality constituents from the same period.Field properties and profiles of lake water quality indicated that Sand Point, Little Vermilion, and Crane Lakes were anoxic at times near the lake bottom sediments, where sulfate-reducing bacteria may convert mercury to methylmercury. The median dissolved sulfate concentration was highest in Crane Lake, the median total organic carbon concentration was highest in Sand Point Lake, and the median total phosphorus concentration was highest in Kabetogama Lake, all of which is consistent with previous research. All lakes had median chlorophyll a concentrations of 3.6 micrograms per liter or less with the exception of Kabetogama Lake, where the median concentrations were 4.3 micrograms per liter for the midlake sites and 7.1 micrograms per liter and 9.0 micrograms per liter for the nearshore sites.Mercury concentrations in sampled fish varied widely between years and among lakes, from 14.7 nanograms per gram in fish samples from Kabetogama Lake in 2015 to 178 nanograms per gram in fish samples from Crane Lake in 2014. Data from this study can be combined with ongoing hydrologic modeling studies to evaluate trends in the mercury body burden of fish and different water-level management scenarios prescribed by the 2000 Rule Curves and the 1970 Rule Curves.
NASA Technical Reports Server (NTRS)
Hidalgo, J. U. (Principal Investigator); Smalley, A. E.; Faller, K. H.; Irvin, M. B.
1973-01-01
The author has identified the following significant results. During the summer of 1972, huge mats of duckweeds (Lemnaceae) appeared on Lake Pontchartrain, a shallow estuary in southeastern Louisiana. In color infrared photography, duckweeds show a characteristic light lavender color, unlike algal mats or water hyacinth, as observed in low level aerial photography. Although at least five species are present in the area, most water coverage is by Lemna minor and Spirodela oligorrhiza. ERTS-1 imagery shows many areas of bayous, swamps, and marginal waters of Lake Pontchartrain covered with duckweeds. Subsequent passes show a seasonal decreases in duckweeds.
Anderson, L.; Abbott, M.B.; Finney, B.P.; Edwards, M.E.
2005-01-01
Lake-level variations at Marcella Lake, a small, hydrologically closed lake in the southwestern Yukon Territory, document changes in effective moisture since the early Holocene. Former water levels, driven by regional palaeohydrology, were reconstructed by multiproxy analyses of sediment cores from four sites spanning shallow to deep water. Marcella Lake today is thermally stratified, being protected from wind by its position in a depression. It is alkaline and undergoes bio-induced calcification. Relative accumulations of calcium carbonate and organic matter at the sediment-water interface depend on the location of the depositional site relative to the thermocline. We relate lake-level fluctuations to down-core stratigraphic variations in composition, geochemistry, sedimentary structures and to the occurrence of unconformities in four cores based on observations of modern limnology and sedimentation processes. Twenty-four AMS radiocarbon dates on macrofossils and pollen provide the lake-level chronology. Prior to 10 000 cal. BP water levels were low, but then they rose to 3 to 4 m below modern levels. Between 7500 and 5000 cal. BP water levels were 5 to 6 m below modern but rose by 4000 cal. BP. Between 4000 and 2000 cal. BP they were higher than modern. During the last 2000 years, water levels were either near or 1 to 2 m below modern levels. Marcella Lake water-level fluctuations correspond with previously documented palaeoenvironmental and palaeoclimatic changes and provide new, independent effective moisture information. The improved geochronology and quantitative water-level estimates are a framework for more detailed studies in the southwest Yukon. ?? 2005 Edward Arnold (Publishers) Ltd.
NASA Astrophysics Data System (ADS)
Marie, Tiphanie; Yesou, Herve; Huber, Claire; De Fraipont, Paul; Uribe, Carlos; Lacaux, Jean-Pierre; Lafaye, Murielle; Lai, Xijun; Desnos, Yves-Louis
2013-01-01
This paper present the method used to determine the areas where schistosomiasis transmission is the higher. A primary work was necessary to this study: identification of potential presence of schistosomiasis japonicum’s vector in Poyang lakeshore area (Jiangxi Province, P.R. China). Results obtained from its first work were crossing with the most risky human activities and with villages to elaborate a level of transmission risk. The first parameter determined concern fishing, which was identified like the most risky activity for schistosomiasis transmission, and fish traps were digitalized using a very high resolution ALOS data. The second parameter is about the risky areas for buffalo grazing, and vector potential presence areas were crossed with village proximity to determine the most risky areas for human transmission. The third parameter built is a level of risk for each village digitalized around Poyang Lake, taking into account the proximity and level of potential presence of vector’s areas.
Polder, A; Müller, M B; Lyche, J L; Mdegela, R H; Nonga, H E; Mabiki, F P; Mbise, T J; Skaare, J U; Sandvik, M; Skjerve, E; Lie, E
2014-08-01
In Tanzania fish is one of the most important protein sources for the rapidly increasing population. Wild fish is threatened by overfishing and pollution from agriculture, industries, mining, household effluents and vector control. To monitor possible implications for public health, the geographical differences of the occurrence and levels of persistent organic pollutants (POPs) in tilapia fish (Oreochromis sp.) from four different Tanzanian lakes were investigated in 2011. Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs) and hexabromocyclododecane (HBCDD) were determined in pooled samples of tilapia muscle from Lake (L) Victoria, L. Tanganyika, L. Nyasa (also called L. Malawi) and L. Babati in Tanzania in 2011. Levels of Σ-DDTs (274 ng/g lipid weight (lw)) and sum of 7 indicator PCBs (Σ-7PCBs) (17 ng/g lw) were significantly higher in tilapia from L. Tanganyika compared to the other lakes. The highest levels of Σ-endosulfan (94 ng/g lw) were detected in tilapia from L. Victoria. Toxaphenes were detected in low levels in fish from L. Tanganyika and L. Babati. Results revealed a geographic difference in the use of DDT and endosulfan between L. Victoria and L. Tanganyika. Low ratios of DDE/DDT in tilapia from L. Tanganyika indicated an on-going use of DDT in the area. Median levels of ΣBDEs, including BDE-209, were highest in L. Victoria (19.4 ng/g lw) and BDE-209 was present in 68% of the samples from this lake. The presence of BDE-209 indicates increasing influence of imported products from heavy industrialized countries. The measured POP levels in the studied tilapia were all below MRLs of EU or were lower than recommended levels, and thus the fish is considered as safe for human consumption. They may, however, pose a risk to the fish species and threaten biodiversity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1991-01-01
Much of central Florida, including this detailed view of Orlando (28.5N, 81.0W) can be seen in this single photo. Disney World is at the top center of the scene and the crescent shaped Lake Tohopekaliga is near the bottom. The large round lakes are believed to be sinkholes formed during glacial times when ocean levels were several hundred feet lower than the present. Linear patterns east of Orlando are thought to be ancient shoreline ridges.
NASA Astrophysics Data System (ADS)
Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.
2009-12-01
Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in the late Holocene (post-3,000 cal yr B.P.). Future research will include analysis of both macro- and micro-charcoal abundances. The charcoal record will augment the suite of data presented here by providing independent evidence of variability in precipitation regimes and drought history. An additional set of cores from a perennial wetland on the eastern edge of the range, Ruby Marsh, will provide a low elevation paleoclimatic counterpoint to this alpine site.
Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loope, D.B.; Swinehart, J.B.
1992-01-01
Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less
Bonte, Matthijs; Zwolsman, John J G
2010-08-01
In this paper we present a modelling study to investigate the impacts of climate change on the chloride concentration and salinisation processes in two man-made freshwater lakes in the Netherlands, Lake IJsselmeer and Lake Markermeer. We used a transient compartmental chloride and water balance model to elucidate the salinisation processes occurring under present conditions and assess future salinisation under two climate forcing scenarios. The model results showed that the Rhine River is the dominant determinant for the chloride concentration in both lakes, followed by drainage of brackish groundwater from the surrounding polders. The results further show that especially during dry years, seawater intrusion through the tidal closure dam is an important source of chloride to Lake IJsselmeer. The results from the climatic forcing scenarios show that Lake IJsselmeer is especially vulnerable to climate-induced salinisation whereas effects on Lake Markermeer are relatively small. Peak chloride concentrations at the raw water intake of the Andijk drinking water facility on Lake IJsselmeer are projected to increase to values above 250 mg/l in the most far-reaching climate change scenario W+ in 2050 for dry years. This is well above the maximum allowable concentration of 150 mg/l for chloride in drinking water. Modelling showed that climate change impacts the chloride concentrations in a variety of ways: 1) an increasing occurrence of low river flows from summer to autumn reduces the dilution of the chloride that is emitted to the Rhine with a constant load thereby increasing its concentration; 2) increased open water evaporation and reduced rainfall during summer periods and droughts increases the chloride concentration in the water; and 3) rises in sea level increase seawater intrusion through the tidal closure dam of Lake IJsselmeer. The processes described here are likely to affect many other tidal rivers or lakes and should be considered when planning future raw water intake stations for drinking water production or agricultural water supply. (c) 2010 Elsevier Ltd. All rights reserved.
Turney, G.L.; Dion, N.P.; Sumioka, S.S.
1986-01-01
Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the lakes in this study appeared to be presently acidified. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Kasper, T.; Haberzettl, T.; Zhu, L.; Maeusbacher, R.
2013-12-01
Lakes as archives of climate and environmental change are well known and well investigated all over the world, also in high mountain areas such as the Tibetan Plateau (TP) which is one of the most important key players in global climate circulation. Lake sediment records in this area, which were subject to lots of paleoenvironmental investigations, are mostly focused on the Holocene, often showing discontinuities due to desiccation or are located at the margin of the TP, such as Lake Qinghai. Here we present the first continuous lake sediment record from the southern central TP from Lake Nam Co, comprising ~24 ka cal BP, i.e., the LGM, the post-Glacial and the entire Holocene. The record reveals environmental changes with varying intensities. Extraordinary high sediment accumulation rates (SAR = 1.3 mm a-1) and quite large quantities of minerogenic input associated with the absence of ostracods during the LGM point to a small lake within a cold and dry environment. Around 19 ka cal BP reduced SAR (~0.3 mm a-1) and the occurrence of ostracods refer to a rising lake level in a moister environment. During the post-Glacial (~16 ka cal BP) changes in the geochemical composition of the sediments and a shift in the pollen composition suggests a change in summer precipitation and wind direction associated with a stronger Indian Ocean Summer Monsoon (IOSM). Major variations in the geochemical parameters between ~12.6 and ~11.6 ka cal BP may reflect the Younger Dryas climate oscillation of the Northern Hemisphere with cool and arid environmental conditions. The most striking hydrological variation within this record occurs at ~9.5 ka cal BP in the early Holocene. A rise in TOC points to enhanced bio-productivity within the lake and the catchment as well as to hampered decomposition of organic matter at the lake floor. Pollen composition refers to alpine meadow vegetation assemblages during this time. This may reflect moist and warm conditions probably associated with a higher lake level and a strong stratification of the water body. Nevertheless, during the mid- and late-Holocene some changes of minor amplitude also occur. Around 4 ka cal BP a short-term increase in Mg points to a dry-event as seen in other monsoon dominated records. The probably most intensive shift to drier conditions with a rapidly falling lake level has been proposed to have occurred around 2 ka cal BP. Even the recent climate warming associated with higher rates of glacier melting, enhanced surface runoff and a rising lake level is reflected by this multi-proxy investigation.
Barnhardt, W.A.; Jaffe, B.E.; Kayen, R.E.; Cochrane, G.R.
2004-01-01
Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3-4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.
Rachol, Cynthia M.; Button, Daniel T.
2006-01-01
As part of the Lake St. Clair Regional Monitoring Project, the U.S. Geological Survey evaluated data collected from surficial streambed and lakebed sediments in the Lake Erie-Lake St. Clair drainages. This study incorporates data collected from 1990 through 2003 and focuses primarily on the U.S. part of the Lake St. Clair Basin, including Lake St. Clair, the St. Clair River, and tributaries to Lake St. Clair. Comparable data from the Canadian part of the study area are included where available. The data are compiled into 4 chemical classes and consist of 21 compounds. The data are compared to effects-based sediment-quality guidelines, where the Threshold Effect Level and Lowest Effect Level represent concentrations below which adverse effects on biota are not expected and the Probable Effect Level and Severe Effect Level represent concentrations above which adverse effects on biota are expected to be frequent.Maps in the report show the spatial distribution of the sampling locations and illustrate the concentrations relative to the selected sediment-quality guidelines. These maps indicate that sediment samples from certain areas routinely had contaminant concentrations greater than the Threshold Effect Concentration or Lowest Effect Level. These locations are the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Big Beaver Creek, Red Run, and Paint Creek. Maps also indicated areas that routinely contained sediment contaminant concentrations that were greater than the Probable Effect Concentration or Severe Effect Level. These locations include the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Red Run, within direct tributaries along Lake St. Clair and in marinas within the lake, and within the Clinton River headwaters in Oakland County.Although most samples collected within Lake St. Clair were from sites adjacent to the mouths of its tributaries, samples analyzed for trace-element concentrations were collected throughout the lake. The distribution of trace-element concentrations corresponded well with the results of a two-dimensional hydrodynamic model of flow patterns from the Clinton River into Lake St. Clair. The model was developed independent from the bed sediment analysis described in this report; yet it showed a zone of deposition for outflow from the Clinton River into Lake St. Clair that corresponded well with the spatial distribution of trace-element concentrations. This zone runs along the western shoreline of Lake St. Clair from L'Anse Creuse Bay to St. Clair Shores, Michigan and is reflected in the samples analyzed for mercury and cadmium.Statistical summaries of the concentration data are presented for most contaminants, and selected statistics are compared to effects-based sediment-quality guidelines. Summaries were not computed for dieldrin, chlordane, hexachlorocyclohexane, lindane, and mirex because insufficient data are available for these contaminants. A statistical comparison showed that the median concentration for hexachlorobenzene, anthracene, benz[a]anthracene, chrysene, and pyrene are greater than the Threshold Effect Concentration or Lowest Effect Level.Probable Effect Concentration Quotients provide a mechanism for comparing the concentrations of contaminant mixtures against effects-based biota data. Probable Effect Concentration Quotients were calculated for individual samples and compared to effects-based toxicity ranges. The toxicity-range categories used in this study were nontoxic (quotients < 0.5) and toxic (quotients > 0.5). Of the 546 individual samples for which Probable Effect Concentration Quotients were calculated, 469 (86 percent) were categorized as being nontoxic and 77 (14 percent) were categorized as being toxic. Bed-sediment samples with toxic Probable Effect Concentration Quotients were collected from Paint Creek, Galloway Creek, the main stem of the Clinton River, Big Beaver Creek, Red Run, Clinton River towards the mouth, Lake St. Clair along the western shore, and the St. Clair River near Sarnia.
Rapid rise of water level for Tibetan lakes: an analysis of the relation with climate
NASA Astrophysics Data System (ADS)
Song, C.; Huang, B.
2013-12-01
The Tibetan Plateau (TP) has a large number of alpine lakes, which are sensitive indicators of climate variability due to minimal disturbances from human activities. Although earlier work has examined lake area and water level changes on the TP in the past several decades, so far, the climate-driven mechanism of lake variations is still not clear. In particular, it is uncertain which climatic factor (increased glacial meltwater caused by climate warming, or precipitation changes, etc.) induced the acceleration of lake growth since mid-1990s. This study examines water level changes of lakes during1990s~2011 by combining satellite Laser altimetry (covering small lakes due to finer footprints, but only during 2003~2009) and Radar altimetry (since 1990s, but only for a few large lakes due to coarse footprints). The precipitation and evaporation changes are also analyzed based on the GPCP data and station observations, which reveal that precipitation on the inner and northeast TP has experienced a significant increase of 2~8 mm/yr since mid-1990s and evaporation of most stations has showed an upward tendency. Two main findings of analyses on the relation of lake expansion and climate variability are summarized as follows: (1) The ICESat altimetry data during 2003~2009 shows that there is no significant difference between the change rates of water level of the 56 glacier-fed lakes and other 40 lakes without glacial meltwater supply, which implies that glacier melting induced by climate warming is probably not the dominating factor of rapid lake expansion. Six pairs of adjacent lakes with and without glacier supply (each pair is assumed under similar climate conditions) in different geographical regions (near the Nyainqêntanglha Mts., east Gangdise Mts., southeast Karakorum Mts., the Kunlun Mts., and the HolXil) were selected to further examine the impact of the glacier melting on lake expansions. Results show that some lakes without glacier supply even have higher growth rates than lakes with larger supply coefficients, which confirms that the rapid lake growth was more related with the precipitation increase rather than the glacial melting. (2) All 14 super-large lakes located in four different climate sub-zones showed a sharp water-level increase during 1995 ~ 2011 from the LEGOS (multiple radar altimetry data sets), but the timing of accelerated growth for lakes in different sub-zones is spatially heterogeneous. The abrupt change points of water level time series match very well with the years of more precipitation. For example, the water level of Lake Qinghai and Ngoring Co on the northeast TP declined in late-1990s and early-2000s, and had a sudden rise in 2004/2005 before keeping a slight increasing trend, which is in good agreement with the precipitation change in this region. The lakes in central Tibet, including Namco and Silingco, showed the earliest accelerated water level growth (since 1996/1997) due to more advanced increasing tendency of precipitation than other regions. In the contrast, temperature showed rapid rising trend in late 1980s and early 1990s which do not coincide with the timing of lake expansion. Thus, the glacier melting is probably not the primary factor of accelerated lake growth on the TP.
Pluvial lakes in the Great Basin of the western United States: a view from the outcrop
Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.
2014-01-01
Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the late Pleistocene and Holocene. Outcrop studies have documented the integration histories of several important drainage basins, including the Humboldt, Amargosa, Owens, and Mojave river systems, that have evolved since the Miocene within the active tectonic setting of the Great Basin; these histories have influenced lake levels in terminal basins. Many pre-late Pleistocene lakes in the western Great Basin were significantly larger and record wetter conditions than the youngest lakes. Outcrop-based lake-level data provide important checks on core-based proxy interpretations; we discuss four such comparisons. In some cases, such as for Lakes Owens and Manix, outcrop and core data synthesis yields stronger and more complete records; in other cases, such as for Bonneville and Lahontan, conflicts point toward reconsideration of confounding factors in interpretation of core-based proxies.
Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping
2017-11-01
Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robertson, Dale M.; Rose, William J.
2011-01-01
To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.
Nustad, Rochelle A.; Wood, Tamara M.; Bales, Jerad D.
2011-01-01
The U.S. Geological Survey in cooperation with the North Dakota Department of Transportation, North Dakota State Water Commission, and U.S. Army Corps of Engineers, developed a two-dimensional hydrodynamic model of Devils Lake and Stump Lake, North Dakota to be used as a hydrologic tool for evaluating the effects of different inflow scenarios on water levels, circulation, and the transport of dissolved solids through the lake. The numerical model, UnTRIM, and data primarily collected during 2006 were used to develop and calibrate the Devils Lake model. Performance of the Devils Lake model was tested using 2009 data. The Devils Lake model was applied to evaluate the effects of an extreme flooding event on water levels and hydrological modifications within the lake on the transport of dissolved solids through Devils Lake and Stump Lake. For the 2006 calibration, simulated water levels in Devils Lake compared well with measured water levels. The maximum simulated water level at site 1 was within 0.13 feet of the maximum measured water level in the calibration, which gives reasonable confidence that the Devils Lake model is able to accurately simulate the maximum water level at site 1 for the extreme flooding scenario. The timing and direction of winddriven fluctuations in water levels on a short time scale (a few hours to a day) were reproduced well by the Devils Lake model. For this application, the Devils Lake model was not optimized for simulation of the current speed through bridge openings. In future applications, simulation of current speed through bridge openings could be improved by more accurate definition of the bathymetry and geometry of select areas in the model grid. As a test of the performance of the Devils Lake model, a simulation of 2009 conditions from April 1 through September 30, 2009 was performed. Overall, errors in inflow estimates affected the results for the 2009 simulation; however, for the rising phase of the lakes, the Devils Lake model accurately simulated the faster rate of rise in Devils Lake than in Stump Lake, and timing and direction of wind-driven fluctuations in water levels on a short time scale were reproduced well. To help the U.S. Army Corps of Engineers determine the elevation to which the protective embankment for the city of Devils Lake should be raised, an extreme flooding scenario based on an inflow of one-half the probable maximum flood was simulated. Under the conditions and assumptions of the extreme flooding scenario, the water level for both lakes reached a maximum water level around 1,461.9 feet above the National Geodetic Vertical Datum of 1929. One factor limiting the extent of pumping from the Devils Lake State Outlet is sulfate concentrations in West Bay. If sulfate concentrations can be reduced in West Bay, pumping from the Devils Lake State Outlet potentially can increase. The Devils Lake model was used to simulate the transport of dissolved solids using specific conductance data as a surrogate for sulfate. Because the transport of dissolved solids was not calibrated, results from the simulations were not actual expected concentrations. However, the effects of hydrological modifications on the transport of dissolved solids could be evaluated by comparing the effects of hydrological modifications relative to a baseline scenario in which no hydrological modifications were made. Four scenarios were simulated: (1) baseline condition (no hydrological modification), (2) diversion of Channel A, (3) reduction of the area of water exchange between Main Bay and East Bay, and (4) combination of scenarios 2 and 3. Relative to scenario 1, mean concentrations in West Bay for scenarios 2 and 4 were reduced by approximately 9 percent. Given that there is no change in concentration for scenario 3, but about a 9-percent reduction in concentration for scenario 4, the diversion of Channel A was the only hydrologic modification that appeared to have the potential to reduce sulfate c
NASA Astrophysics Data System (ADS)
Hock, A. N.; Cabrol, N. A.; Grin, E. A.; Fike, D. A.; Paige, D. A.; 2002 Licancabur Expedition Team
2003-04-01
At approximately 6000 meters above sea level, the crater of Licancabur Volcano (22 50'S, 67 53'W) houses the highest lake in the world, yet remains largely unexplored. In particular, the physical environment of the lake--particularly its stability and any remaining geothermal activity--is not well understood. Using a model for the temperature of maximum density for freshwater as a function of pressure (Eklund), we calculated that the bottom water temperature of the summit lake should be approximately 4 C. However, Leach et al. measured the water temperature at depth to be 6 C. This discrepancy, as well as the observation that the lake remains liquid for much of the year despite sub freezing air temperatures, suggests that there may be a heat source supporting the lake's temperature and biological community. We present the results of two studies here: the goal of this work is to understand the role of geothermal fluid input to the summit lake in terms of energy balance, the physical constraints on endemic biology, and the analogy to ancient martian hydrothermal systems (e.g. volcanic lakes, crater lakes, hot springs, etc.). First, we present physical data from the lake in a new model of energy balance. In situ measurements of pH, temperature, and total dissolved solids suggest that the Licancabur summit lake is a ¨low-activity¨ (as per Pasternack and Varekamp) lake with a diffuse geothermal fluid input. Secondly, mass spectrometry and ion chromatography were used to study water samples taken from the summit lake, as well as two local lagunas and several geothermal springs at the base of the volcano. The case for a hydrothermal system in the summit lake is further strengthened here by preliminary ion chromatography results, which show elevated concentrations of sulfate and chloride with respect to local meteoric waters. Understanding the relationship between the physical environment and biotic community remains the mainstay for future work on this project in an effort to understand this environment--not only as a unique one among terrestrial lakes--but as one that may help us to understand the history of water and life on Mars.
Crumrine, Milo D.; Morgan, David S.
1994-01-01
This report is a compilation of hydrologic, water- quality, and meteorologic data collected in the vicinity of Newberry Volcano near Bend, Oregon. These data were collected, in cooperation with the Bonneville Power Administration, the U.S. Forest Service, and the Bureau of Land Management, to provide baseline data for identifying and assessing the effects of proposed geothermal development in the vicinity of Newberry Volcano. Types of data collected include ground-water levels, lake levels, streamflow, water quality, and meteorologic measurements. Sites that were monitored include: (1) two thermal wells in the caldera, (2) several nonthermal wells in the caldera, (3) four wells outside of the caldera, (4) Paulina Creek, (5) Paulina and East Lakes, (6) hot springs that discharge into Paulina and East Lakes, and (7) meteorologic conditions near Paulina Lake. Data are presented for the period summer 1991 through fall 1993. Water-quality data collected include concentrations of common anions and cations, nutrients, trace elements, radiochemicals, and isotopes. Meteorologic data collected include wind velocity, air temperature, humidity, solar radiation, and precipitation.
NASA Astrophysics Data System (ADS)
Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.
2017-12-01
Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons. These factors would have decreased the contribution of snowmelt from alpine lakes to streams, thus reducing baseflow in rivers at low elevations. By evaluating the stability of alpine lakes throughout the Holocene, we can better assess the future impact of climate change on the transport of snowmelt to vital rivers.
Drainage reversals in Mono Basin during the late pliocene and Pleistocene
Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.
2002-01-01
Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.
Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems
Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.
2013-01-01
Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems. PMID:24223170
Exploratory hydrocarbon drilling impacts to Arctic lake ecosystems.
Thienpont, Joshua R; Kokelj, Steven V; Korosi, Jennifer B; Cheng, Elisa S; Desjardins, Cyndy; Kimpe, Linda E; Blais, Jules M; Pisaric, Michael F J; Smol, John P
2013-01-01
Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems.
The Heritage of the Operational Usda/nasa Global Reservoir and Lake Monitor
NASA Astrophysics Data System (ADS)
Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.
2012-12-01
Satellite radar altimetry has the ability to monitor variations in surface water height for large lakes and reservoirs. A clear advantage is the provision of data where in situ data are lacking or where there is restricted access to ground-based measurements. A USDA/NASA funded program is performing altimetric monitoring of the largest lakes and reservoirs around the world. The near-real time height measurements are currently derived from NASA/CNES Jason-2/OSTM mission data. Archived data are also utilized from the NASA/CNES Topex/Poseidon and Jason-1 missions, the NRL GFO mission, and the ESA ENVISAT mission. Lake level products are output within 1-2 weeks after satellite overpass, a time delay which will improve to a few days as the project moves into its next phase. The USDA/FAS utilize the products for assessing irrigation potential (and thus crop production estimates), and for general observation of high-water status and short-term drought. Other end-users explore the products to study climate trends, observe anthropogenic effects, and to consider water management and regional security issues. This presentation explores the heritage of the Global Reservoir and Lake Monitor (GRLM) which has its origins in the field of ocean surface topography and the exploration of radar altimetry techniques over non-ocean surfaces. The current system closely follows the software design of the historical NASA Ocean Pathfinder Project and utilizes a global lakes catalogue that was created for climate change/aridity studies. The output of lake level products, imagery and information also echoes an earlier trial (UNDP-funded) lakes database which first offered altimetric products via the world wide web and which enabled world-wide interest to be both assessed and highlighted.;
NASA Astrophysics Data System (ADS)
Biancamaria, S.; Frappart, F.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azema, P.; Vu, P. L.; Lubac, B.; Darrozes, J.
2017-12-01
The Tonle Sap lake is the largest freshwater lake in Southeast Asia and is located within the Mekong basin (mainly in Cambodia). It is one of he most productive ecosystem of the world and provide two thirds of Cambodia fish catch. It also plays a unique role on the Mekong basin hydrological cycle: during the monsoon period, the Mekong river partially flows to the lake, whereas during the dry season, the lake flows to the Mekong delta. It is therefore crucial to monitor and take into account this lake to estimate Mekong discharge to the ocean. However, in situ measurements of lake level and river discharge are very sparse (especially during the last decades) and computing lake storage variation from in situ data only is difficult due to the huge annual variation of lake area. That's why, satellite data (nadir radar altimetry and visible imagery) have been used to study its volume variation and its relationship with climate events and Mekong river discharge. Multi-mission altimetry data have been extracted (Topex, ERS-2, ENVISAT, Jason-1, Jason-2, Saral and Jason-3, using CTOH data extraction tools) to derive a lake water level from1993 to 2016, which varies from 3 m to 12 m. Lake area have been computed from MODIS data from 2000 to 2016 and varies from 3,400 km2 to 11,800 km2. These dataset clearly shows a relationship between lake water level and area, which has been used to estimate lake water volume change from 1995 to 2016, with a minimum in 2015 and a maximum in 2011. Lake's droughts and floods can be observed during moderate and strong El Nino/La Nina events, enhanced by the Pacific Decadal Oscillation. Besides, comparison with in situ discharge at the outlet of the Mekong basin (over 1995/2000 time period) shows that lake water level is 20 days time lagged and increases/decreases after Mekong discharge at its outlet. This time lag results of Mekong river partially flowing to the lake. Finally, high correlation between lake level and outlet discharge allows to use lake water level to derive Mekong discharge at its outlet after 2000, when in situ time series are not available anymore to the international scientific community. In the future, to improve time sampling, Sentinel-2 images and data from Sentinel-3 altimeter will be used.
Barriers and Opportunities for Local-level Action on Climate ...
This presentation will highlight findings from a soon-to-be-released report (Climate Change Impacts and Potential Stormwater Responses in the Chesapeake and Great Lakes Regions) that is being developed as a technical input to the National Climate Assessment. The report is the product of a collaborative effort involving the Environmental Protection Agency, the Great Lakes Adaptation Assessment for Cities Project of the Graham Sustainability Institute at the University of Michigan, ICF International, Lake Superior National Estuarine Research Reserve, National Oceanic and Atmospheric Administration Office for Coastal Management, and Old Woman Creek National Estuarine Research Reserve. The report provides key takeaways from eight similar but locally-specific efforts to explore the potential impacts of changing precipitation patterns on stormwater management and consider options (e.g., green infrastructure, low impact development) to address those impacts. The presentation will highlight some of the lessons regarding: incorporating climate change into planning (including dealing with uncertainty); building local capacity; identifying and communicating costs and benefits of green infrastructure; and implementation within the current governance structure. Presentation about workshops held in the Chesapeake Bay and Great Lakes regions to discuss impacts of climate change on stormwater management.
New data on the unresolved paradox of the Tibesti crater paleolakes (Central Sahara, North Chad)
NASA Astrophysics Data System (ADS)
Kroepelin, S.; Darius, F.; Deschamps, P.; Dinies, M.; Hoelzmann, P.; Kuper, J.; Oppenheimer, C.; Soulié-Märsche, I.; Sylvestre, F.
2015-12-01
Recent field work in the volcanic Tibesti Mountains opens a new chapter in the reconstruction of the last climatic cycles in the central Sahara and their lacustrine environments. For the first time, complete lacustrine sections were sampled in the 900 m deep crater of Trou au Natron at Pic Toussidé (3,315 m a.s.l.), and in 800 m deep Era Kohor, the major sub-caldera of Emi Koussi, the Sahara's 3,445 m high peak (photo). The probed diatomites are located 360 and 125 m above the present-day bottom of the calderas. Studies in the 1960s suggested that lake levels in the Trou au Natron were 300-500 m high at 12,400-14,970 uncal. yrs BP. Such lake depths and resulting water volumes, however, are hardly conceivable in view of the limited intake area and precipitation-evaporation ratios which would have required local rainfall by far surpassing estimates for latitudes 19-21°N from the full-Holocene record of Lake Yoa situated 460 or 220 km southeast, and 1,550 or 2,450 m lower. The presentation will examine whether differences in altitude may explain unparalleled lake depths and postglacial humid conditions 4,000-7,000 years earlier than in the surrounding lowlands, and present alternative hypotheses of lake formation in this Saharan key region.
The study of Lake Urmia desiccation: morphometry impress
NASA Astrophysics Data System (ADS)
Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram
2017-04-01
Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.
Lake Erie Water Level Study. Appendix G. Recreational Beaches and Boating.
1981-07-01
economic impact analysis). G-44 I There are two separate phases associated with the development of bene- fits generated at the various water levels in...moorings. The growth factors for the small boat harbor formula (MRI Technical Report No. 5, Economic Impacts of Lake Level Regulation) were developed by...Lakes-St. Lawrence River system. This evaluation was limited to Lakes Erie and Ontario and part of the St. Lawrence River where the
Lake Erie Water Level Study. Main Report.
1981-07-01
of recreational beach activities. Examples include: Rondeau, Long Point and Sandbanks in Canada and Hamlin (New York), Presque Isle ( Pennsylvania ...be most affected by lake level changes. Long Point, Rondeau, Sandusky, and Presque Isle Bays are, due to their shallow nature and sand spit formation...AD-AI14 582 INTERNATIONAL LAKE ERIE REGULATION STUDY BOARD F/9 13/2 LAKE ERIE WATER LEVEL STUDY. MAIN REPORT.(U) UNCLASSIFIED N1.3 iE~hE
Lake hydrologic characteristics related to water levels, such as drawdown distance and evaporative water loss, affect the physical, chemical, and biological condition of lakes. Disturbances such as water withdrawal and changing climate may alter water-level regimes and impact lak...
Automatic Temporal Tracking of Supra-Glacial Lakes
NASA Astrophysics Data System (ADS)
Liang, Y.; Lv, Q.; Gallaher, D. W.; Fanning, D.
2010-12-01
During the recent years, supra-glacial lakes in Greenland have attracted extensive global attention as they potentially play an important role in glacier movement, sea level rise, and climate change. Previous works focused on classification methods and individual cloud-free satellite images, which have limited capabilities in terms of tracking changes of lakes over time. The challenges of tracking supra-glacial lakes automatically include (1) massive amount of satellite images with diverse qualities and frequent cloud coverage, and (2) diversity and dynamics of large number of supra-glacial lakes on the Greenland ice sheet. In this study, we develop an innovative method to automatically track supra-glacial lakes temporally using the Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data. The method works for both cloudy and cloud-free data and is unsupervised, i.e., no manual identification is required. After selecting the highest-quality image within each time interval, our method automatically detects supra-glacial lakes in individual images, using adaptive thresholding to handle diverse image qualities. We then track lakes across time series of images as lakes appear, change in size, and disappear. Using multi-year MODIS data during melting season, we demonstrate that this new method can detect and track supra-glacial lakes in both space and time with 95% accuracy. Attached figure shows an example of the current result. Detailed analysis of the temporal variation of detected lakes will be presented. (a) One of our experimental data. The Investigated region is centered at Jakobshavn Isbrae glacier in west Greenland. (b) Enlarged view of part of ice sheet. It is partially cloudy and with supra-glacial lakes on it. Lakes are shown as dark spots. (c) Current result. Red spots are detected lakes.
Risser, D.W.
1987-01-01
In 1980 Santa Rosa Dam began impounding water on the Pecos River about 7 miles north of Santa Rosa, New Mexico, to provide flood control, sediment control, and storage for irrigation. Santa Rosa Lake has caused changes in the groundwater flow system, which may cause changes in the streamflow of the Pecos River that cannot be detected at the present streamflow gaging stations. Data collected at these stations are used to measure the amount of water available for downstream users. A three-dimensional groundwater flow model for a 950 sq mi area between Anton Chico and Puerto de Luna was used to simulate the effects of Santa Rosa Lake on groundwater flow to a gaining reach of the Pecos River for lake levels of 4,675, 4,715, 4,725, 4,750, 4,776, and 4,797 feet above sea level and durations of impoundment of 30, 90, 182, and 365 days for all levels except 4 ,797 feet. These simulations indicated that streamflow in the Pecos River could increase by as much as 2 cu ft/sec between the dam and Puerto de Luna if the lake level were maintained at 4 ,797 feet for 90 days or 4,776 feet for 1 year. About 90% of this increased streamflow would occur < 0.5 mi downstream from the dam, some of which would be measured at the streamflow gaging station located 0.2 mile downstream from the dam. Simulations also indicated that the lake will affect groundwater flow such that inflow to the study area may be decreased by as much as 1.9 cu ft/sec. This water may leave the Pecos River drainage basin or be diverted back to the Pecos River downstream from the gaging station near Puerto de Luna. In either case, this quantity represents a net loss of water upstream from Puerto de Luna. Most simulations indicated that the decrease in groundwater flow into the study area would be of about the same quantity as the simulated increase in streamflow downstream from the dam. Therefore, the net effect of the lake on the flow of the Pecos River in the study area appears to be negligible. Model simulations indicated that effect of lake levels below 4 ,750 feet on water levels in observation wells completed in the San Andres Limestone could not be distinguished from the effects of other hydrologic stresses. (Author 's abstract)
Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota
Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.
2000-01-01
The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin. At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry. Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997). John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase. The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million. These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels. Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.
2016-12-01
Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.
NASA Astrophysics Data System (ADS)
Shabani, A.; Zhang, X.
2017-12-01
Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.
NASA Astrophysics Data System (ADS)
Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.
2017-06-01
The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological environment at Lake St Lucia and highlights the long-term geomorphic controls that have shaped the recent evolution and natural dynamics of the system. Unlike most coastal lake systems, this system is particularly effective as an archive of geomorphological change. Systems driven by back-barrier modifications, such as Lake St Lucia, highlight how geomorphological changes driven by sediment-supply, climate and sea level can be distributed unevenly over several isolated back-barrier basins.
Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago
2017-07-01
This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.
Zhang, Kun; Xu, Mei; Wu, Qili; Lin, Zhi; Jiang, Fangyuan; Chen, Huan; Zhou, Zhongze
2018-06-04
The Huayanghe Lakes play an important role in the Yangtze floodplain in China and had extremely high water levels during the summer of 2016. Monitoring data was collected in an effort to understand the impact of this change on the crustacean zooplankton composition and abundance and the biomass variation in the Huayanghe Lakes between a regular hydrological cycle (RHC) and an extreme hydrological cycle (EHC). The crustacean zooplankton community composition, abundance, and biomass in the floodplain lakes were markedly affected by the water-level disturbance. The number of species was lower in the RHC, but the mean density and biomass decreased from 93.84 ± 13.29 ind./L and 6.11 ± 0.89 mg/L, respectively, in the RHC to 66.62 ± 10.88 ind./L and 1.22 ± 0.26 mg/L, respectively, in the EHC. Pearson correlations and redundancy analyses revealed the environmental factors with the most significant impact on the crustacean zooplankton community differed between the RHC and EHC cycles. Little previous information exists on the zooplankton in these lakes, and the present study provides data on the zooplankton composition, abundance, and biomass, both at baseline and in response to hydrological changes.
Measurement of suspended solids in lakes and oceans using satellite remote sensing data
NASA Technical Reports Server (NTRS)
Sydor, M. (Principal Investigator)
1980-01-01
Using satellite remote sensing data to measure low concentrations of suspended solids in lakes and oceans requires careful evaluation of background signals from the atmosphere and the water surface. Typical background corrections for Lake Superior are presented and the spectral distribution of the residual radiance from three major categories of turbidity in the lake are determined. The results indicate that for large bodies of water, some general information on atmospheric scattering, water clarity, and the optical properties of suspended solids allows estimates of concentrations of suspended solids to within + or - 0.5 mg/L without using real time ground truth data. Under calibrated conditions the threshold detection level is 0.3 mg/L for the fine particulates dispersed throughout the lake and 1 mg/L for the highly light absorbing effluent from rivers. Comparisons of the minimum reflectance over the open lake areas with reflection from the highly absorbing tannin water from rivers provides a check on the clarity of the atmosphere and the excessive background scatter from the water surface.
Evenset, A; Carroll, J; Christensen, G N; Kallenborn, R; Gregor, D; Gabrielsen, G W
2007-02-15
Migratory seabirds have been linked to localized "hotspots" of contamination in remote Arctic lakes. One of these lakes is Lake Ellasjøen on Bjørnøya in the Barents Sea. Here we provide quantitative evidence demonstrating that even relatively small populations of certain seabird species can lead to major impacts for ecosystems. In the present example, seabird guano accounts for approximately 14% of the contaminant inventory of the Lake Ellasjøen catchment area, approximately 80% of the contaminant inventory of the lake itself, and is approximately thirty times more efficient as a contaminant transport pathway compared to atmospheric long-range transport. We have further shown that this biological transport mechanism is an important contaminant exposure route for ecosystems, responsible for POPs levels in freshwater fish that are an order of magnitude higher than those in Arctic top predators. Given the worldwide presence of seabird colonies in coastal marine areas where resources are also harvested by humans, this biological transport pathway may be a greater source of dietary contamination than is currently recognized with consequent risks for human health.
The present status of the United States commercial fisheries of the Great Lakes
Van Oosten, John
1949-01-01
This review of the trends in production on the Great Lakes suggests that great biological changes have taken place. The general abundance of the choicer varieties, and of some of the less choice fishes, has been lowered considerably; and the prospects are that this level will fall still farther. In addition, the niches occupied by these finer species in the lakes have not been filled by coarser forms. Much of the reduced abundance in modern fishery must be attributed to overfishing or unwise fishing (cisco, whitefish, lake trout, chubs). Part of it we believe was caused by an infectious disease as was true for the smelt; part of it by the parasitic predator, the sea lamprey. Perhaps increased competition for space or food such as might have been brought about by the smelt in Lakes Huron and Michigan or the alewives in Lake Ontario may have played a role. Pollution, too, may have taken its toll. Often we have no better explanation to offer than to state that some unknown change in the environment was responsible.
Tapping rocks for Terror Lake hydro project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieber, O.V.
The Terror Lake hydro project in Alaska is described. Terror Lake is a small alpine lake surrounded by barren glacier-scoured, rocky mountain tops and plateaus that do not retain moisture. The method for obtaining more water for the hydro project in Kodiak is unique. The basic program was to dam up the outlet of Terror Lake and raise the water level 170 ft. from approximately 1250 ft. above sea level to 1420 ft. Although the megawatt output of the project is small, the concept of the Terror Lake Project has an epic scale to it.
Late Quaternary Climate and Vegetation of the Sudanian Zone of Northeast Nigeria
NASA Astrophysics Data System (ADS)
Salzmann, Ulrich; Hoelzmann, Philipp; Morczinek, Irena
2002-07-01
The Lake Tilla crater lake in northeastern Nigeria (10°23'N, 12°08'E) provides a ca. 17,000 14C yr multiproxy record of the environmental history of a Sudanian savanna in West Africa. Evaluation of pollen, diatoms, and sedimentary geochemistry from cores suggests that dry climatic conditions prevailed throughout the late Pleistocene. Before the onset of the Holocene, the slow rise in lake levels was interrupted by a distinct dry event between ca. 10,900 and 10,500 14C yr B.P., which may coincide with the Younger Dryas episode. The onset of the Holocene is marked by an abrupt increase in lake levels and a subsequent spread of Guinean and Sudanian tree taxa into the open grass savanna that predominated throughout the Late Pleistocene. The dominance of the mountain olive Olea hochstetteri suggests cool climatic conditions prior to ca. 8600 14C yr B.P. The early to mid-Holocene humid period culminated between ca. 8500 and 7000 14C yr B.P. with the establishment of a dense Guinean savanna during high lake levels. Frequent fires were important in promoting the open character of the vegetation. The palynological and palaeolimnological data demonstrate that the humid period terminated after ca. 7000 14C yr B.P. in a gradual decline of the precipitation/evaporation ratio and was not interrupted by abrupt climatic events. The aridification trend intensified after ca. 3800 14C yr B.P. and continued until the present.
Booth, R.K.; Jackson, S.T.; Thompson, T.A.
2002-01-01
We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.
NASA Astrophysics Data System (ADS)
Trout-Haney, J. V.; Cottingham, K. L.
2015-12-01
Arctic lakes are often characterized as low-resource environments in which the autotrophic community is limited by factors such as nutrients, temperature, and light. Studies of cyanotoxins have traditionally focused on nutrient-rich lakes with conspicuous blooms, however toxigenic cyanobacteria are confined to neither high nutrient environments nor planktonic taxa. We quantified the occurrence of cyanotoxins across 19 arctic lakes of varying size and depth in the Kangerlussuaq region of southwestern Greenland. Whole lake water microcystins (MC) were detected in all lakes and ranged from low (<5 ng/L) to moderate (>100 ng/L) concentrations. Benthic colonial cyanobacteria of the genus Nostoc are a prominent feature of certain lakes in this region, with estimated densities ranging between 500 and >500,000 colonies per lake. MC were present in the tissue of Nostoc colonies (95% CI, 1638.9 - 3237.6 pg MC (g wet weight)-1) and were actively released by colonies into surrounding water in laboratory trials. These results highlight the potential importance of toxic benthic cyanobacteria in lake ecosystems. Further, we investigated the transfer of these cyanotoxins to other organisms in the lake as well as several mechanisms (i.e., emerging insects, aerosols) that may influence the movement of toxins into the terrestrial ecosystem. The presence and movement of cyanotoxins in the coupled terrestrial-aquatic ecosystem demonstrate that high-latitude lakes can support toxigenic cyanobacteria, and that we may be underestimating the potential for these systems to develop high levels of toxicity in the future.
Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.
Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B
2017-10-01
Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often managed for the clear-water state due to increased value as wildlife habitat. However, our results indicate lake state also influences N biogeochemistry, such that managing shallow lakes for the clear-water state may also mitigate excess N levels at a landscape scale. © 2017 by the Ecological Society of America.
Flynn, Robert H.; Rydlund, Jr., Paul H.; Martin, Daniel J.
2016-03-08
Lake-gage water-surface elevations determined during the 3 days of surveys were converted to water-surface elevations referenced to the North American Vertical Datum of 1988 by using calculated offsets and historical water-surface elevations. In this report, an “offset” refers to the adjustment that needs to be applied to published data from a particular gage to produce elevation data referenced to the North American Vertical Datum of 1988. Offsets presented in this report can be used in the evaluation of water-surface elevations in a common datum for Lake Champlain and the Richelieu River. In addition, the water-level data referenced to the common datum (as determined from the offsets) may be used to calibrate flow models and support future modeling studies developed for Lake Champlain and the Richelieu River.
Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin
NASA Astrophysics Data System (ADS)
Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.
1998-04-01
Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.
Wierda, Michael R; Leith, Katherine F; Roe, Amy S; Grubb, Teryl G; Sikarskie, James G; Best, David A; Pittman, H Tyler; Fuentes, Latice; Simon, Kendall L; Bowerman, William
2016-08-01
The bald eagle (Haliaeetus leucocephalus) is an extensively researched tertiary predator. Studies have delineated information about its life history and the influences of various stressors on its reproduction. Due to the bald eagle's position at the top of the food web, it is susceptible to biomagnification of xenobiotics. The Michigan Department of Environmental Quality implemented a program in 1999 to monitor persistent chemicals including polychlorinated biphenols (PCBs) and dichlorodiphenyltrichloroethane (DDE). The objectives of the present study were to evaluate spatial and temporal trends of PCBs and organochlorine pesticides in nestling bald eagles of Michigan. The authors' study found that concentrations of PCBs and DDE were higher in Great Lakes areas with Lakes Michigan and Lake Huron having the highest concentrations of DDE and Lake Erie having the highest concentrations of PCBs. Temporally (1987-1992, 1999-2003, and 2004-2008) the present study found declines in PCB and DDE concentrations with a few exceptions. Continued monitoring of Michigan bald eagle populations is suggested for a couple of reasons. First, nestling blood contaminant levels are an appropriate method to monitor ecosystem contaminant levels. Second, from 1999 to 2008 PCB and DDE concentrations for 30% and 40%, respectively, of the nestling eagles sampled were above the no observable adverse effect level (NOAEL) for bald eagles. Lastly, with the continued development and deployment of new chemistries a continuous long term monitoring program is an invaluable resource. Environ Toxicol Chem 2016;35:1995-2002. © 2016 SETAC. © 2016 SETAC.
Genetic strategies for lake trout rehabilitation: a synthesis
Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.
1995-01-01
The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.
NASA Astrophysics Data System (ADS)
Brykala, Dariusz; Gierszewski, Piotr; Kaszubski, Michal
2014-05-01
The studies on the conditions of the water and dissolved matter circulation in the young-glacial catchment of the Czechowskie lake (Tuchola Pinewood Forest) have been conducted since 2012. They are implemented on the basis of an organised network monitoring surface water and groundwater. An important aim of the study is to assess the impact of both modern and fossil lakes on the regime of the outflow and the transformation of the water chemical properties. A high stability of the first groundwater table was recorded. During the study period the range of the groundwater level ranged from 0.17 to 0.92 m. In comparison with the small fluctuations in the groundwater level within the sandy outwash areas, a relatively high instability was shown by the shallow waters of the lake terraces. The measurements of the discharge showed that its average value at the outflow from the Czechowskie lake is 30 dm3s-1. It almost equals the total amount of water flowing into the lake through watercourses. The average specific runoff from the basin of the Czechowskie lake was 3 dm3s-1km-2. The total water mineralisation expressed as the sum of the ions is in the range from 70 to 750 mg dm-3. Both surface water, i.e. the water in streams and lakes, and underground water from different depths represent the bicarbonate-calcium-sulphate type characteristic of the young- glacial environment. The results of hydrochemical mapping and the analysis of the ionic composition of the water showed large spatial variability of the physico-chemical properties of the tested waters and, at the same time, high stability of their ionic composition. At the present stage of the research it is possible to identify the water enrichment zones in salts, which are basins of paleolakes filled with the organic-carbonate sediment, and the zones of salt precipitation within the contemporary lakes. The situation described above creates a specific, cascade model of the transformation of chemical properties of water circulating in the catchment. The presented results are a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis - ICLEA - of the Helmholtz Association.
Late Quaternary sedimentary features of Bear Lake, Utah and Idaho
Smoot, J.P.
2009-01-01
Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by over 40 m of water. The subaerial surfaces are indicated by root casts and gypsum-rich soil features. Bear Lake remained at this low state with a minor transgression until ca. 15 ka. A new influx of Bear River water produced a major lake transgression and deposited a thin calcite deposit. Bear Lake quickly dropped to a shallow-water state, accumulating a mixture of calcite and siliciclastic sediment that contains at least two intervals of root-disrupted horizons indicating lake-level drops to more than 40 m below the modern highstand. About 11,500 yr B.P., the lake level rose again through an influx of Bear River water producing another thin calcite layer. The Bear River ceased to flow into the basin and the lake salinity increased, resulting in the aragonite deposition that persisted until modern human activity. The climatic record of Bear Lake sediment is difficult to ascertain by using standard chemical and biological techniques because of variations in the inflow hydrology and the significant amount of erosion and redeposition of chemical and biological sediment components. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Tedesco, D.; Arellano, S.; Galle, B.; Aiuppa, A.
2012-04-01
Between 2007 and 2011 four measurement campaigns (June 2007, July 2010, June 2011 and December 2011) were carried out at the crater rim of Nyiragongo volcano (1° 31'S, 29°15'E, 3470 m.a.s.l.). Nyiragongo volcano is located 15 km north of the million inhabitants strong city of Goma, North Kivu region (DRC) and belongs to the Virunga volcanic chain which is associated with the western branch of the Great Rift Valley. The volcanic activity of Niyragongo is the result caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Nyiragongo is considered one of the most active volcanoes in Africa. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight and a Multi-gas-instrument have been simultaneously applied during all field trips and among others BrO/SO2 and CO2/SO2 ratios were determined. At the various field trips we could observe that the lava lake level frequently changes in height (in the order of minutes up to days and also between the years) and also our measured gas ratios showed variations. Higher CO2/SO2 and BrO2/SO2 levels were generally observed at higher lava lake levels and a decrease of the lava lake was accompanied by a decrease in the BrO/SO2 as well as CO2/SO2 ratio. Ideas to explain the correlation of gas ratios and the lava lake level will be discussed in this presentation and we will especially focus on the June 2011 campaign, because it contains the largest changes, observed during these campaigns. Gas emission changes in correlation with a change in the lava lake level might help to give insights within the magma plumbing system of Nyiragongo volcano and therefore leading to a better understanding of the volcanic behavior and improving the possibilities of forecasting a future eruption.
Wang, Wenfeng; Ndungu, Anne Wairimu; Li, Zhen; Wang, Jun
2017-01-01
Microplastics have been considered as an emerging pollutant in the aquatic environment. However, research about microplastic pollution in inland freshwaters of China is insufficient. The present study investigated the levels of microplastics in surface water of 20 urban lakes and urban reaches of the Hanjiang River and Yangtze River of Wuhan, the largest city in central China. Microplastic concentrations ranged from 1660.0±639.1 to 8925±1591n/m 3 for the studied waters, with the highest concentration found in Bei Lake. Microplastic abundance in lakes varied markedly in space, and negatively correlated with the distance from the city center (p<0.001), which confirmed the important role of anthropogenic factors in microplastic distribution. Urban reaches of the Hanjiang River and Yangtze River were found to have relatively lower levels of microplastics than most of the studied lakes. The major type of microplastics among the studied waters was colored plastic, with fiber being the most frequent shape. More than 80% of microplastics in number had a size of <2mm. Polyethylene terephthalate and polypropylene were the dominant polymer-types of microplastics analyzed. This study provided important reference for better understanding microplastic levels in inland freshwaters. Copyright © 2016 Elsevier B.V. All rights reserved.
Gonkowski, Slawomir; Obremski, Kazimierz; Makowska, Krystyna; Rytel, Liliana; Mwaanga, Edwell Siatambi
2018-10-01
Contamination of food with mycotoxins and the associated possibilities of human intoxication is a serious problem in Africa. One of the most widespread mycotoxins is zearalenone (ZEN), which usually occurs in food of vegetable origin. On the other hand, information about ZEN in products of animal origin in African countries is extremely scanty. During the present study, levels of ZEN and its analogs: α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) were measured by high performance liquid chromatography (HPLC) with fluorescence detection in sun-dried kapenta fish - traditional Zambian food, as well as in the water of Lake Kariba - the main source of kapenta fish in Zambia. This study revealed that levels of ZEN in sun-dried kapenta fish fluctuated from 27.2 μg·kg -1 to 53.9 μg·kg -1 , whereas the contamination of water from Lake Kariba with ZEN is rather minimally similar to the content of ZEN analogs in both kapenta fish and water. The obtained results have shown that sun-dried kapenta fish of Lake Kariba contain ZEN and may contribute to the exposure of consumers to this substance. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bucak, T.; Trolle, D.; Andersen, H. E.; Thodsen, H.; Erdoğan, Ş.; Levi, E. E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M.
2016-12-01
Inter- and intra-annual water level fluctuations and change in water flow regime are intrinsic characteristics of Mediterranean lakes. However, considering the climate change projections for the water-limited Mediterranean region where potential evapotranspiration exceeds precipitation and with increased air temperatures and decreased precipitation, more dramatic water level declines in lakes and severe water scarcity problems are expected to occur in the future. Our study lake, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - under pressure due to water abstraction for irrigated crop farming and climatic changes, and integrated water level management is therefore required. We used an integrated modeling approach to predict the future lake water level of Lake Beyşehir in response to the future changes in both climate and, potentially, land use by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Machine Regression model (ɛ-SVR). We found that climate change projections caused enhanced potential evapotranspiration and reduced total runoff, whereas the effects of various land use scenarios within the catchment were comparatively minor. In all climate scenarios applied in the ɛ-SVR model, changes in hydrological processes caused a water level reduction, predicting that the lake may dry out already in the 2040s with the current outflow regulation considering the most pessimistic scenario. Based on model runs with optimum outflow management, a 9-60% reduction in outflow withdrawal is needed to prevent the lake from drying out by the end of this century. Our results indicate that shallow Mediterranean lakes may face a severe risk of drying out and loss of ecosystem value in near future if the current intense water abstraction is maintained. Therefore, we conclude that outflow management in water-limited regions in a warmer and drier future and sustainable use of water sources are vitally important to sustain lake ecosystems and their ecosystem services.
Water-quality characteristics of selected public recreational lakes and ponds in Connecticut
Healy, D.F.; Kulp, K.P.
1995-01-01
Reconnaissance limnological and lakebed-sediment surveys were conducted in Connecticut during 1989-91 by the U.S. Geological Survey, in cooperation with the Connecticut Department of Environmental Protec- tion, to evaluate water-quality characteristics of selected public recreational lakes and ponds in the State. Limnological surveys were conducted on 49 lakes and ponds selected from a list of 105 publicly owned waterbodies that qualified for water- quality assessments under Section 314 of the Federal Clean Water Act. Lakebed-sediment surveys were conducted in 9 river impoundments and 1 riverine lake below industrial areas and 2 headwater lakes in relatively pristine areas. The limnological surveys consisted of two sampling events--during spring turnover and during the summer stratifi- cation. Each sampling event included depth profiles of water temperature, specific conductance, hydrogen-ion activity, and dissolved oxygen concen- trations; measurements of Secchi disc transparency; and the collection of samples for the analyses of alkalinity, chlorophyll, phosphorus, and nitrogen concentrations. Areal extent and population density of the dominant aquatic macrophytes were qualita- tively noted during the summer sampling event. These water-quality data were used to determine the trophic classification and acidification status of the 49 lakes. The trophic classification yielded the following results: 2 oligotrophic, 8 early mesotrophic, 13 mesotrophic, 5 late mesotrophic, 10 eutrophic, and 11 highly eutrophic lakes. In terms of acidification status, 7 lakes were classified as acid threatened and 42 as not threatened. A Wilcoxon two-tailed signed rank test was used to compare data for 13 lakes and ponds from the present survey with data from the 1973-75 or 1978-79 surveys conducted by the Connecticut Agricultural Experiment Station and Connecticut Department of Environmental Protection. The test showed no significant difference at the 90 percent confidence level for spring nitrogen and summer chlorophyll-a concen- trations, a significant increase at the 90 percent confidence level in summer phosphorus concentra- tions, and a significant decrease at the 95 percent confidence level in summer transparency. For the lakebed-sediment surveys, composite-grab samples were collected from the deepest part of each lake. Samples were analyzed for arsenic, cyanide, organic and inorganic carbon, selected metals, and methylene-extractable, synthetic organic compounds classified by the U.S. Environmental Protection Agency as semi-volatile priority pollutants. Hanover Pond, Eagleville Lake, and West Thompson Lake had three of the four highest concentrations of cadmium, chromium, copper, lead, nickel, zinc, and cyanide. The four lakes with the highest concentrations of arsenic (Aspinook Pond, Fitchville Pond, Mashapaug Pond, and West Thompson Lake) are located in the eastern part of Connecticut. The three samples with the highest mercury concentrations were from Lake Lillinonah and Lake Zoar. There appears to be a positive correlation between the concentrations of cadmium, chromium, copper, lead, nickel, zinc, and cyanide. Only 15 of the 54 synthetic organic compounds analyzed for were detected in 9 of the 12 lakes sampled. Of these 15 compounds, 14 are polycyclic aromatic hydrocarbons and the 15th is a phthalate ester. Hanover Pond had the most compounds detected (9), and phenanthrene was the compound detected in the most lakes (8).
Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".
Callieri, Cristiana; Bertoni, Roberto; Contesini, Mario; Bertoni, Filippo
2014-01-01
Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena), a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.
NASA Astrophysics Data System (ADS)
Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.
2017-12-01
In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.
A 3500 14C yr High-Resolution Record of Water-Level Changes in Lake Titicaca, Bolivia/Peru
NASA Astrophysics Data System (ADS)
Abbott, Mark B.; Binford, Michael W.; Brenner, Mark; Kelts, Kerry R.
1997-03-01
Sediment cores collected from the southern basin of Lake Titicaca (Bolivia/Peru) on a transect from 4.6 m above overflow level to 15.1 m below overflow level are used to identify a new century-scale chronology of Holocene lake-level variations. The results indicate that lithologic and geochemical analyses on a transect of cores can be used to identify and date century-scale lake-level changes. Detailed sedimentary analyses of subfacies and radiocarbon dating were conducted on four representative cores. A chronology based on 60 accelerator mass spectrometer radiocarbon measurements constrains the timing of water-level fluctuations. Two methods were used to estimate the 14C reservoir age. Both indicate that it has remained nearly constant at ˜250 14C yr during the late Holocene. Core studies based on lithology and geochemistry establish the timing and magnitude of five periods of low lake level, implying negative moisture balance for the northern Andean altiplano over the last 3500 cal yr. Between 3500 and 3350 cal yr B.P., a transition from massive, inorganic-clay facies to laminated organic-matter-rich silts in each of the four cores signals a water-level rise after a prolonged mid-Holocene dry phase. Evidence of other significant low lake levels occurs 2900-2800, 2400-2200, 2000-1700, and 900-500 cal yr B.P. Several of the low lake levels coincided with cultural changes in the region, including the collapse of the Tiwanaku civilization.
A Holocene history of dune-mediated landscape change along the southeastern shore of Lake Superior
Loope, Walter L.; Fisher, Timothy G.; Jol, Harry M.; Anderton, John B.; Blewett, William L.
2004-01-01
Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at ~3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.
Stratigraphic framework and lake level history of Lake Kivu, East African Rift
NASA Astrophysics Data System (ADS)
Wood, Douglas A.; Scholz, Christopher A.
2017-10-01
Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.
NASA Astrophysics Data System (ADS)
Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.
2017-05-01
Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.
Great Lakes rivermouths: a primer for managers
Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul
2013-01-01
Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described by the Millennium Ecosystem Assessment (Table1). Collectively, this primer synthesizes existing information in a new way that aims to support management of rivermouths as distinct and important ecosystems. The development and management decisions made around rivermouths today will shape the future of these ecosystems, and the human communities within them, well into the future. 1 The information presented in this paper was derived from discussions and draft documents of the Great Lakes Rivermouth Collaboratory. The Great Lakes Rivermouth Collaboratory was established by the U.S. Geological Survey's Great Lakes Science Center (USGS-GLSC) in collaboration with the Great Lakes Commission to engage the Great Lakes scientific community in sharing and documenting knowledge about freshwater rivermouth ecosystems. For more information, see http://www.glc.org/habitat/Rivermouth-Collaboratory.html.
NASA Astrophysics Data System (ADS)
Westacott, S.; Ingalls, M.; Meixnerova, J.; Betts, M.; Lloyd, M. K.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.
2017-12-01
In 1941 LA County began diverting water from the Mono Lake basin, causing lake level to fall dramatically until 1994 when diversion was substantially discontinued. High sedimentation rate (0.7 cm/yr) in combination with rapid, well-documented environmental change offers a unique opportunity to investigate the isotopic fingerprint of lake level change at a much finer scale than is typically accessible in the geologic record. δ18Ocarb can record lake level in a closed-basin system, but relies on knowing the relative contributions from carbonate precipitated from lake water and from authigenic carbonates, both of which are expected to exist in alkaline lake sediments. Here, we combine δ18Ocarb with clumped isotope thermometry (T(Δ47)) on a 70 cm sediment core to "unmix" the carbonate sources and reconstruct δ18Owater of Mono Lake over the past 116 years. Carbonate from the upper 10 cm of the sediment core yields a T(Δ47) of 26°C, reflecting surface water carbonate precipitation during late summer. Carbonates from sediment depths greater than 10cm yield a consistent T(Δ47) of 9.6°C, warmer than today's bottom waters, suggesting dissolution and reprecipitation of originally "warm" carbonate deposited from the water column alongside "cold" water of a different δ18Ow than Mono Lake surface water. A clumped isotope mixing model (Defliese & Lohmann, 2015) used to calculate the relative contributions of the two carbonate precipitates, corroborated by mirrored shifts in δ13Corg and δ13Ccarb down-core, suggests that about half of the carbonate found in the lower 60 cm of the sediment core is authigenic. As an example of how this strategy can be applied to older strata with looser constraints on primary composition, we also analysed the Pleistocene Wilson Creek Formation—lake sediments from Mono Lake's predecessor, Lake Russell. Although Pleistocene Lake Russell should have been cooler than modern Mono Lake, T(Δ47) values were similar to those of modern sediments, suggesting that potentially more of Lake Russell carbonates formed at or near the surface. Clumped isotope analysis thus holds significant potential to improve our interpretation of sedimentary carbonates as proxies for lake level and other paleo-environmental conditions.
NASA Astrophysics Data System (ADS)
Larose, R.; Lee, S.; Lane, T.
2015-12-01
Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.
Yager, Richard M.; Metz, P.A.
2004-01-01
Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T
NASA Astrophysics Data System (ADS)
Khan, T.; Perlinger, J. A.; Urban, N. R.
2017-12-01
Certain toxic, persistent, bioaccumulative, and semivolatile compounds known as atmosphere-surface exchangeable pollutants or ASEPs are emitted into the environment by primary sources, are transported, deposited to water surfaces, and can be later re-emitted causing the water to act as a secondary source. Polychlorinated biphenyl (PCB) compounds, a class of ASEPs, are of major concern in the Laurentian Great Lakes because of their historical use primarily as additives to oils and industrial fluids, and discharge from industrial sources. Following the ban on production in the U.S. in 1979, atmospheric concentrations of PCBs in the Lake Superior region decreased rapidly. Subsequently, PCB concentrations in the lake surface water also reached near equilibrium as the atmospheric levels of PCBs declined. However, previous studies on long-term PCB levels and trends in lake trout and walleye suggested that the initial rate of decline of PCB concentrations in fish has leveled off in Lake Superior. In this study, a dynamic multimedia flux model was developed with the objective to investigate the observed levelling off of PCB concentrations in Lake Superior fish. The model structure consists of two water layers (the epilimnion and the hypolimnion), and the surface mixed sediment layer, while atmospheric deposition is the primary external pathway of PCB inputs to the lake. The model was applied for different PCB congeners having a range of hydrophobicity and volatility. Using this model, we compare the long-term trends in predicted PCB concentrations in different environmental media with relevant available measurements for Lake Superior. We examine the seasonal depositional and exchange patterns, the relative importance of different process terms, and provide the most probable source of the current observed PCB levels in Lake Superior fish. In addition, we evaluate the role of current atmospheric PCB levels in sustaining the observed fish concentrations and appraise the need for continuous atmospheric PCB monitoring by the Great Lakes Integrated Atmospheric Deposition Network. By combining the modeled lake and biota response times resulting from atmospheric PCB inputs, we predict the time scale for safe fish consumption in Lake Superior.
Osteological evidence of genetic divergence of lake trout (Salvelinus namaycush) in Lake Superior
Burnham-Curtis, Mary K.; Smith, Gerald R.
1994-01-01
Three phenotypes of Salvelinus namaycush in Lake Superior, the lean, siscowet, and bumper, are traditionally identified primarily by fat content and body shape. Their taxonomic status is in question because of intermediates as well as the possibility that the diagnostic characters are ecophenotypic. Two osteological characters, the dorsal opercular notch (first recorded by Agassiz in his description of the siscowet) and radii on the anterodorsal part of the supraethmoid, differ between most leans and siscowets. The notch in the opercle near its articulation with the hyomandibular bone is present in humpers, usually present in siscowets, and usually absent in leans. Radii on the anterodorsal surface of the supraethmoid bone usually are found in siscowets and humpers but usually are absent in leans. The correlations among these characters and other features of the phenotype indicate a significant level of differentiation between the three phenotypes. Available evidence suggests that the differentiation is genetic. The frequency of mixed phenotypes is evidence of limited gene flow among the phenotypes. The siscowet and humper phenotypes apparently originated in Lake Superior in postglacial time.
Information Mining of Spatio-Temporal Evolution of Lakes Based on Multiple Dynamic Measurements
NASA Astrophysics Data System (ADS)
Feng, W.; Chen, J.
2017-09-01
Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes' area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1) the swap dynamic degree (SDD) reflects the space activity of lakes in the study period. 2) the attenuation dynamic degree (ADD) reflects the net attenuation of lakes into non-lake areas. 3) the fragmentation dynamic degree (FDD) reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation - fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.
Hulun Lake's ecological health and evaluation of its' eutrophication
NASA Astrophysics Data System (ADS)
Li, W.; Yang, W.; Wang, X.; Huang, J.; Sun, B.; Li, X.
2013-12-01
Hulun Lake is the largest lake in the north of china. The special geological location determines its important position in regional environmental protection. In terms of Hulun Lake's current situation, this paper chooses the indexes of lake system, lake structure and lake condition. Based on the calculation of these indexes and related theory , the evaluation standards of Hulun Lake's ecological healthy system are worked out. The author used Analytic Hierarchy Process to determine the weight of each indicator layer and criteria layer, and then applied fuzzy-pattern recognition model to calculate, finally, identifying the status of Hulun Lake according to the degrees of all levels. At the same time, the author used an integrated nutrition state index method to do the eutrophication assessment. Evaluation results show that the current status of Hulun Lake is healthy and it is in the moderate level of eutrophication.
Davis, N.K.; Locke, W. W.; Pierce, K.L.; Finkel, R.C.
2006-01-01
Cosmogenic surface exposure ages of glacial boulders deposited in ice-marginal Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest ice-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920-930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the ice-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide ice sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide ice sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka. ?? 2005 Elsevier B.V. All rights reserved.
Simulation of a proposed emergency outlet from Devils Lake, North Dakota
Vecchia, Aldo V.
2002-01-01
From 1993 to 2001, Devils Lake rose more than 25 feet, flooding farmland, roads, and structures around the lake and causing more than $400 million in damages in the Devils Lake Basin. In July 2001, the level of Devils Lake was at 1,448.0 feet above sea level1, which was the highest lake level in more than 160 years. The lake could continue to rise to several feet above its natural spill elevation to the Sheyenne River (1,459 feet above sea level) in future years, causing extensive additional flooding in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin as well. The outlet simulation model described in this report was developed to determine the potential effects of various outlet alternatives on the future lake levels and water quality of Devils Lake.Lake levels of Devils Lake are controlled largely by precipitation on the lake surface, evaporation from the lake surface, and surface inflow. For this study, a monthly water-balance model was developed to compute the change in total volume of Devils Lake, and a regression model was used to estimate monthly water-balance data on the basis of limited recorded data. Estimated coefficients for the regression model indicated fitted precipitation on the lake surface was greater than measured precipitation in most months, fitted evaporation from the lake surface was less than estimated evaporation in most months, and ungaged inflow was about 2 percent of gaged inflow in most months. Dissolved sulfate was considered to be the key water-quality constituent for evaluating the effects of a proposed outlet on downstream water quality. Because large differences in sulfate concentrations existed among the various bays of Devils Lake, monthly water-balance data were used to develop detailed water and sulfate mass-balance models to compute changes in sulfate load for each of six major storage compartments in response to precipitation, evaporation, inflow, and outflow from each compartment. The storage compartments--five for Devils Lake and one for Stump Lake--were connected by bridge openings, culverts, or natural channels that restricted mixing between compartments. A numerical algorithm was developed to calculate inflow and outflow from each compartment. Sulfate loads for the storage compartments first were calculated using the assumptions that no interaction occurred between the bottom sediments and the water column and no wind- or buoyancy-induced mixing occurred between compartments. However, because the fitted sulfate loads did not agree with the estimated sulfate loads, which were obtained from recorded sulfate concentrations, components were added to the sulfate mass-balance model to account for the flux of sulfate between bottom sediments and the lake and for mixing between storage compartments. Mixing between compartments can occur during periods of open water because of wind and during periods of ice cover because of water-density differences between compartments. Sulfate loads calculated using the sulfate mass-balance model with sediment interaction and mixing between compartments closely matched sulfate loads computed from historical concentrations. The water and sulfate mass-balance models were used to calculate potential future lake levels and sulfate concentrations for Devils Lake and Stump Lake given potential future values of monthly precipitation, evaporation, and inflow. Potential future inputs were generated using a scenario approach and a stochastic approach. In the scenario approach, historical values of precipitation, evaporation, and inflow were repeated in the future for a particular sequence of historical years. In the stochastic approach, a statistical time-series model was developed to randomly generate potential future inputs. The scenario approach was used to evaluate the effectiveness of various outlet alternatives, and the stochastic approach was used to evaluate the hydrologic and water-quality effects of the potential outlet alternatives that were selected on the basis of the scenario analysis. Given potential future lake levels and sulfate concentrations generated using either the scenario or stochastic approach and potential future ambient flows and sulfate concentrations for the Sheyenne River receiving waters, daily outlet discharges could be calculated for virtually any outlet alternative. For the scenario approach, future ambient flows and sulfate concentrations for the Sheyenne River were generated using the same sequence of years used for generating water-balance data for Devils Lake. For the stochastic approach, a procedure was developed for generating daily Sheyenne River flows and sulfate concentrations that were "in-phase" with the generated water-balance data for Devils Lake. Simulation results for the scenario approach indicated that neither of the West Bay outlet alternatives provided effective flood-damage reduction without exceeding downstream water-quality constraints. However, both Pelican Lake outlet alternatives provided significant flood-damage reduction with only minor downstream water-quality changes. The most effective alternative for controlling rising lake levels was a Pelican Lake outlet with a 480-cubic-foot-per-second pump capacity and a 250-milligram-per-liter downstream sulfate constraint. However, this plan is costly because of the high pump capacity and the requirement of a control structure on Highway 19 to control the level of Pelican Lake. A less costly, though less effective for flood-damage reduction, plan is a Pelican Lake outlet with a 300-cubic-foot-per-second pump capacity and a 250-milligram-per-liter downstream sulfate constraint. The plan is less costly because the pump capacity is smaller and because the control structure on Highway 19 is not required. The less costly Pelican Lake alternative with a 450-milligramper- liter downstream sulfate constraint rather than a 250-milligram-per-liter downstream sulfate constraint was identified by the U.S. Army Corps of Engineers as the preferred alternative for detailed design and engineering analysis. Simulation results for the stochastic approach indicated that the geologic history of lake-level fluctuations of Devils Lake for the past 2,500 years was consistent with a climatic history that consisted of two climate states--a wet state, similar to conditions during 1980-99, and a normal state, similar to conditions during 1950-78. The transition times between the wet and normal climatic periods occurred randomly. The average duration of the wet climatic periods was 20 years, and the average duration of the normal climatic periods was 120 years. The stochastic approach was used to generate 10,000 independent sequences of lake levels and sulfate concentrations for Devils Lake for water years 2001-50. Each trace began with the same starting conditions, and the duration of the current wet cycle was generated randomly for each trace. Each trace was generated for the baseline (natural) condition and for the Pelican Lake outlet with a 300-cubic-foot-per-second pump capacity and a 450-milligram-per-liter downstream sulfate constraint. The outlet significantly lowered the probabilities of future lake-level increases within the next 50 years and did not substantially increase the probabilities of reaching low lake levels or poor water-quality conditions during the same period.
Complex interactions in Lake Michigan’s rapidly changing ecosystem
Vanderploeg, Henry A.; Bunnell, David B.; Carrick, Hunter J.; Hook, Tomas O.
2015-01-01
For over 30 years, Lake Michigan’s food web has been in a constant state of transition from reductions in nutrient loading and proliferation of invasive species at multiple trophic levels. In particular, there has been concern about impacts from the invasive predatory cercopagids (Bythotrephes longimanus and Cercopagis pengoi) and expanding dreissenid mussel and round goby populations. This special issue brings together papers that explore the status of the Lake Michigan food web and the factors responsible for these changes, and suggests research paths that must be taken for understanding and predicting system behavior. This introductory paper describes the special issue origin, presents an overview of the papers, and draws overarching conclusions from the papers.
Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes
NASA Technical Reports Server (NTRS)
Chase, P. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Bands 6 and 7 have fine structure as obtained by proper selection of digital levels in processing the CCT's. This is contrary to the imagery density received. This means that the small lakes can be classified in IR for different types of water masses. At least four distinct water masses have been determined for test lakes. They are shoreline, shallow water, and two deep waters. One deep water is patchy and presents difficulty in training set selection. The excellent weather and a completely successful field test form a significant happening. It required 12 orbits over the test area before perfect weather occurred.
Effects of the human activities on the water level process of the Poyang Lake
NASA Astrophysics Data System (ADS)
Zhao, Jun-kai; Chen, Li; Yang, Yun-xian
2017-12-01
The hydrological cycles in basin is profoundly affected by human activities. Yangtze River is a world class river with complex river-lake relations in the middle reaches. As the Three Gorges Reservoir (TGR) and other controlled reservoirs in the main stream and tributaries have been put into operation, the water regimes of the main stream in the middle reaches and Poyang Lake have been changed by water impounding and sediments trapping, clean water discharged from reservoirs, accelerating the evolution of the relationship of river and lake. After entering the 21st century, autumn droughts become more serious in Poyang Lake basin; the relationship between river and lake becomes tense. In light of the hydrological data in Poyang Lake since 2000s, this article made quantitative analyses of the influences of the human activities on the variation of the Poyang Lake level by authors. The results indicate that the main stream of Yangtze River, particularly the regulation of Three Gorges Reservoir, exerts a profound influence on the variation process of the Poyang Lake level. The regulation influence of the Upper Reach of the Yangtze River’s Reservoir Group (URYRRG) could spread to Tangyin area in the middle of the lake in October.
Hydrologic relations between lakes and aquifer in a recharge area near Orlando, Florida
Lichtler, William F.; Hughes, G.H.; Pfischner, F.L.
1976-01-01
The three lakes investigated in Orange County, Florida, gain water from adjoining water-table aquifer and lose water to Floridan aquifer by downward leakage. Net seepage (net exchange of water between lake and aquifers) can be estimated by equation S = AX + BY, where S is net seepage, X represents hydraulic gradient between lake and water-table aquifer, A is lumped parameter representing effect of hydraulic conductivity and cross-sectional area of materials in flow section of water-table aquifer, Y is head difference between lake level and potentiometric surface of Floridan aquifer, and B is lumped parameter representing effect of hydraulic conductivity, area, and thickness of materials between lake bottom and Floridan aquifer. If values of S, X, and Y are available for two contrasting water-level conditions, coefficients A and B are determinable by solution of two simultaneous equations. If the relation between lake and ground-water level is the same on all sides of the lake--with regard to each aquifer--and if X and Y are truly representative of these relations, then X and Y terms of equation provide valid estimates of inflow to lake from water-table aquifer and outflow from lake to Floridan aquifer. (Woodard-USGS)
Owens, Randall W.; Dittman, Dawn E.
2003-01-01
In Lake Ontario, the diets of slimy sculpin Cottus cognatus and lake whitefish Coregonus clupeaformis shifted from a diet dominated by the burrowing amphipod, Diporeia, and to a lesser extent, Mysis, to a more diverse diet, after Diporeia collapsed, to one dominated by Mysis and prey that were formerly less important or uncommon such as Chironomidae, Oligochaeta, and Ostracoda. Additionally, lake whitefish still preyed on native mollusks like Sphaeriidae and Gastropoda, but also preyed on exotic mollusks, Dreissena spp., which are swallowed intact and subsequently crushed in its muscular stomach. Whether Diporeia was abundant (1992) or scarce (1999), selection indices for Diporeia by slimy sculpins was positive, suggesting that Diporeia was a preferred prey. Unlike lake whitefish, slimy sculpins avoided Dreissena; therefore, energy diverted to Dreissena production was a real loss for slimy sculpins. The shifts in the diet of these benthic fishes corresponded with drastic changes in the benthic community between 1992 and 1999. The collapse of Diporeia, formerly the most abundant macroinvertebrate in the benthic community, along with sharp declines in the abundance of Oligochaeta and Sphaeriidae, coincided with the establishment and rapid expansion of Dreissena bugensis, the quagga mussel, and to a lesser degree Dreissena polymorpha, the zebra mussel. It appears that the Diporeia population first collapsed at depths >70 m in southeastern Lake Ontario by autumn 1992, at shallower depths in the eastern Lake Ontario by 1995, and along the entire south shore line at depths <100 m, and perhaps in some areas >100 m by 1999. In response to the disappearance of Diporeia, populations of two native benthivores, slimy sculpin and lake whitefish, collapsed in eastern Lake Ontario, perhaps due in part to starvation, because Diporeia was their principal prey. Presently, alternative food resources do not appear sufficient to sustain these two benthivores at their former levels of abundance. We do not expect slimy sculpin and lake whitefish to recover unless Diporeia returns to earlier levels of abundance.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Fries, K. J.; Gronewold, A.; Lenters, J. D.
2014-12-01
While overlake evaporation is a major component of the Great Lakes' water balance, our scientific understanding of the climatic drivers of evaporation and its effects on water levels is significantly impeded by limited data. Existing measurement methods, such as eddy covariance, are not easily implemented in offshore applications. As such, there are only a handful of sites making direct, overlake measurements of evaporation on the entire Great Lakes, where the lake surface area comprises nearly one third of the entire basin. Long-term forecasts of water levels are thus very uncertain, particularly relating to climatic forcing, which is known to be a major driver of evaporation. We present a novel sensor architecture which is deployed on buoys, both tethered and drifting, to provide real-time measurements of overlake evaporation across the Great Lakes. Our system is comprised of a hierarchy of low-power, cost-effective sensor nodes, which carry out on-board computations to estimate evaporation in real-time. An ultra-low power microcontroller samples a suite of sensors to compute evaporation based on the Bowen ratio energy budget approach. The readings are then transmitted via satellite modules to a cloud-based server infrastructure for real-time updated scientific analysis and forecasting. Initial assessment of our new satellite drifter platform indicates robust field performance, validating its use in ongoing efforts to deploy a large-scale evaporation observation network across the Great Lakes basin.
Outdoor Education Guide-Handbook, Waukesha Public Schools.
ERIC Educational Resources Information Center
Vitale, Joseph A.
Designed by the Waukesha Public Schools (Wisconsin) specifically for an elementary level three-day camping trip at Camp Phantom Lake, this outdoor education guide presents some activities which suggest adaptation. Activity directions, plans, worksheets, evaluation sheets, and illustrations are presented in sequential order for the following…
NASA Astrophysics Data System (ADS)
Wang, Y.; Finney, B.; Wooller, M. J.
2007-12-01
Several techniques are available to examine the isotopic composition of historic lake waters, providing data that can subsequently be used to examine environmental changes. Recently-developed techniques are the stable oxygen isotope analysis of subfossil chironomid (Diptera: Chironomidae) head capsules (mostly chitin) preserved in lake sediments and stable hydrogen isotope analyses directly on bulk sediments. An advantage of using δ18O of chironomids is that the chitinous chironomid headcapsules preserve well in lake sediments, retaining the stable oxygen isotope signature of the lake in which they lived. An advantage of δD analyses of bulk sediments is that a sediment core can be analyzed relatively easily and when the %C (total organic carbon) and %H profiles correlate the data can be used to infer past δD changes of the organics in the sediments. We present results from these analyses of a lake sediment core from Idavain Lake (58°46'N, 155°57'W, 223m above sea level) in southwest Alaska in concert with other paleolimnological proxies, including δ15N, δ13C, LOI, magnetic susceptibility, organic content and opal concentrations for a better understanding of paleolimnological changes since deglaciation for the region. Our preliminilary result shows that downcore shifts of δ18O analyzed from chironomid head capsules coincide well with LOI and pollen changes. The δD of sediments and TOM showed large magnitude changes and reflected the relative lake level changes during the record. This study aim to test the correlation between stable isotope analyese on chiornomid head capsules, lake water, and bulk sediments. In the addition, our study will add to the relatively small database of paleoenvironmental reconstructions from terrestrial sites in Southwest Alaska.
NASA Astrophysics Data System (ADS)
Nathenson, M.; Smith, G. I.; Robinson, J. E.; Stauffer, P. H.; Zigler, J. L.
2010-12-01
George Smith’s career-long study of the surface geology of the Searles Valley was recently published by the USGS (Smith, 2009, online and printed). The co-authors of this abstract are the team responsible for completing the publication from the original materials. Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated is fully revealed by cores taken from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. Although this outcrop record is discontinuous, it provides direct evidence of the lake’s water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Most of this study concerns sediments of the newly described Searles Lake Formation, whose deposition spanned the period between about 150 ka and 2 ka. The outcrop record is documented in six geologic maps (scales: 1:50,000 and 1:10,000). The Searles Lake Formation is divided into seven main units. The depositional intervals of the units that make up the Searles Lake Formation are determined primarily by correlation with subsurface deposits that are dated by radiocarbon ages on organic carbon and U-series dates on salts. Shorelines, the most obvious geologic expressions of former lakes, are abundant around Searles Valley. Erosional shorelines have cut as much as 100 m into brecciated bedrock; depositional shorelines (beaches or tufa benches) are common, but their deposits tend to be thin. Combining the subsurface evidence of lake history with the outcrop record allows the history of lake fluctuations to be reconstructed for the period between about 150 ka and the present. Translating this record of lake fluctuations into paleohydrologic and paleoclimatic histories is complicated by uncertainties as to which of the several components of climate affected runoff volumes and lake-surface evaporation. A simplified model, however, suggests that the flow of the Owens River stayed between 2.5 and 4.5 times its present flow volume for most of the past 150 ky. Its flow exceeded this range only about 14 percent of the time, and it fell below this range only 4 percent of the time—which includes the present. In fact, the past 10 ky is clearly the driest period during the past 150 ky in the Owens River drainage. Smith, G.I., 2009, Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California: U.S. Geological Survey Professional Paper 1727, 115 p., 4 plates.
Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter
2005-12-01
Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes.
Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level
Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun
2015-01-01
Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...
High levels of MHC class II allelic diversity in lake trout from Lake Superior
Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.
2000-01-01
Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.
Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem
NASA Astrophysics Data System (ADS)
Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.
2006-12-01
Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.
NASA Astrophysics Data System (ADS)
Jones, Laura K.; Kyle, Philip R.; Oppenheimer, Clive; Frechette, Jedediah D.; Okal, Marianne H.
2015-03-01
A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.
NASA Astrophysics Data System (ADS)
Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.
2009-12-01
The Sandhills region of western Nebraska comprises the largest stabilized dune field in the western hemisphere. Although situated in a semi-arid climate, the sandy soils allow a significant fraction of the ambient precipitation to drain through and recharge the underlying Ogallala aquifer. As part of the larger High Plains aquifer that extends from South Dakota down to Texas, the Sandhills region provides an abundant groundwater resource for the surrounding area and is heavily utilized for irrigation. Located within a semi-arid climate, fluctuations in groundwater recharge in the Sandhills are likely to be highly sensitive to changes in climate and the regional water balance. Important to this water balance are the numerous seepage lakes which exist throughout the region. Where present, however, these lakes evaporate rapidly as a result of the warm, dry, sunny, and windy conditions. Many of the lakes are highly saline and often support a diverse wetland ecosystem. A field study of one of these lakes was initiated in 2007 to examine the effects of climate variability on the energy and water balance of the lake. In particular, we measured incoming and outgoing solar and longwave radiation over the surface of the lake, as well as lake and sediment temperatures, salinity, water levels, and ancillary meteorological variables. The lake is shallow, with a depth of roughly 30 cm, but is observed to undergo significant variations in water level relative to its mean depth and is almost completely drying up during some periods. Salinity values undergo similarly large variations and are found to respond relatively rapidly to precipitation and evaporation “events.” Energy balance estimates of lake evaporation yield values that are well in excess of the ambient precipitation, suggesting significant inputs from groundwater. These evaporation measurements correspond closely with mass-transfer estimates, except during periods when the lake becomes dry enough to elevate surface temperatures, causing the mass transfer formulation to break down. Finally, we find that interannual variations in the energy, water, and salt balance of the lake are significant, suggesting that long-term monitoring of lakes in the Sandhills (and similar semi-arid regions) is required in order to establish a “representative” record.
Modeling a Glacial Lake Outburst Flood Process Chain: The Case of Lake Palcacocha and Huaraz, Peru
NASA Astrophysics Data System (ADS)
Chisolm, Rachel; Somos-Valenzuela, Marcelo; Rivas Gomez, Denny; McKinney, Daene C.; Portocarrero Rodriguez, Cesar
2016-04-01
One of the consequences of recent glacier recession in the Cordillera Blanca, Peru, is the risk of Glacial Lake Outburst Floods (GLOFs) from lakes that have formed at the base of retreating glaciers. GLOFs are often triggered by avalanches falling into glacial lakes, initiating a chain of processes that may culminate in significant inundation and destruction downstream. This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha, the source of a previously catastrophic GLOF on December 13, 1941, 1800 people in the city of Huaraz, Peru. The chain of processes simulated here includes: (1) avalanches above the lake; (2) lake dynamics resulting from the avalanche impact, including wave generation, propagation, and run-up across lakes; (3) terminal moraine overtopping and dynamic moraine erosion simulations to determine the possibility of breaching; (4) flood propagation along downstream valleys; and (5) inundation of populated areas. The results of each process feed into simulations of subsequent processes in the chain, finally resulting in estimates of inundation in the city of Huaraz. The results of the inundation simulations were converted into flood intensity and hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Three avalanche events with volumes ranging from 0.5-3 x 106 m3 were simulated, and two scenarios of 15 m and 30 m lake lowering were simulated to assess the potential of mitigating the hazard level in Huaraz. For all three avalanche events, three-dimensional hydrodynamic models show large waves generated in the lake from the impact resulting in overtopping of the damming-moraine. Despite very high discharge rates (up to 63.4 x 103 m3/s), the erosion from the overtopping wave did not result in failure of the damming-moraine when simulated with a hydro-morphodynamic model using excessively conservative soil characteristics that provide very little erosion resistance. With the current lake level, all three avalanche events result in inundation in Huaraz, and the resulting hazard map shows a total affected area of 2.01 km2, most of which is in the high-hazard category. Lowering the lake has the potential to reduce the affected area by up to 35% resulting in a smaller portion of the inundated area in the high-hazard category.
1979-12-18
feet, the crews were in- structed to take additional measurements. At very long beaches, such as at Presque Isle State Park, in Pennsylvania , the...REGULATION ON BEACHES AND BOATING FACILITIES- LAKES ERIE AND) ONTARIO AND CONNECTING WATERWAYS -I RECREATION BEACHES INVENTORY 3 December 18, 1979 Contract...CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Impacts of Lake Level Regulation on Beaches and Boating Facilities--Lake Erie and
Kay, Robert T.; Trugestaad, Aaron
1998-01-01
The Bauman Park Lake occupies a former sand and gravel quarry in the Village of Cherry Valley, Illinois. The lake is eutrophic, and nuisance growths of algae and aquatic macrophytes are supported by nutrients (nitrogen and phosphorus) that are derived primarily from ground-water inflow, the main source of water for the lake. The lake has an average depth of about 18 feet, a maximum depth of about 28 feet, and a volume of 466 acre-feet at a stage of about 717 feet above sea level. The lake also is subject to thermal stratification, and although most of the lake is well oxidized, nearly anoxic conditions were present at the lake bottom during part of the summer of 1996. 4,648 pounds of nitrogen compounds were added to the Bauman Park Lake from May 1996 through April 1997. Phosphorus compounds were derived primarily from inflow from ground water (68.7 percent), sediments derived from shoreline erosion (15.6 percent), internal regeneration (11.7 percent), waterfowl excrement (1.6 percent), direct precipitation and overland runoff (1.2 percent), and particulate matter deposited from the atmosphere (1.2 percent). Nitrogen compounds were derived from inflow from ground water (62.1 percent), internal regeneration (19.6 percent), direct precipitation and overland runoff (10.1 percent), particulate matter deposited from the atmosphere (3.5 percent), sediments derived from shoreline erosion (4.4 percent), and waterfowl excrement (0.3 percent). About 13 pounds of phosphorus and 318 pounds of nitrogen compounds flow out of the lake to ground water. About 28 pounds of nitrogen is removed by denitrification. Algae and aquatic macrophytes utilize nitrate, nitrite, ammonia, and dissolved phosphorus. The availability of dissolved phosphorus in the lake water controls algal growth. Uptake of the nutrients, by aquatic macrophytes and algae, temporarily removes nutrients from the water column but not from the lake basin. Because the amount of nutrients entering the lake greatly exceeds the amount leaving, the nutrients are concentrated in the sediments at the lake bottom, where they can be used by the rooted aquatic macrophytes and released to the water column when the proper geochemical conditions are present.
Hydrologic and geochemical approaches for determining ground-water flow components
Hjalmarson, H.W.; Robertson, F.N.
1991-01-01
Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.
Wiche, Gregg J.; Lent, Robert M.; Rannie, W. F.
1996-01-01
On the basis of three sediment-based chronologies, Fritz et al. ( 1994) concluded that during the ’Little Ice Age’ (about AD 1500 to 1850), the Devils Lake Basin generally had less effective moisture (precipitation minus evaporation) and warmer temperatures than at present. In this comment, we argue that historic data indicate that runoff and effective moisture were greater than at present. The largest nineteenth-century floods (AD 1826, 1852 and 1861) were significantly greater than the twentiethcentury floods, and flooding in the Red River of the North Basin occurred more frequently from AD 1800 to 1870 than since 1870. Between AD 1776 and 1870, the ratio of wet to dry years was about 2 to 1. Mean temperatures in all seasons were cooler for 1850-70 than for 1931-60. Lake levels of Devils Lake during the first half of the nineteenth century were higher than they are today, and, even when Devils Lake was almost dry, the salinity was less than the ’diatom-inferred’ salinity values that Fritz et al. (1994) estimated for 1800 through about 1850. We acknowledge the importance of high-resolution palaeoclimatic records, but interpretation of these records must be consistent with historic information.
Mehanna, Sahar F; Abd El-Azim, Hoda; Belal, Aisha A
2016-08-01
The lakes' fisheries play an important role in Egyptian economy. In 1980s, they provided more than 50 % of harvested fish in Egypt but now their contribution to the Egypt fish production decreased to only 12.5 % in 2012. Lake Timsah, one of the Suez Canal lakes, faced many challenges that lead to serious changes in its water and fish quality, fish production, as well as the catch composition. The present work investigated the impact of pollution, food availability, and excessive fishing mortality on the haffara production in lake Timsah. The distribution of four heavy metals (Pb, Zn, Ni, and Fe) was detected seasonally in water and in muscles, gills, and livers of Rhabdosargus haffara, during 2012 through 2013. Fe and Zn were presented by high values in liver, while Pb and Ni in gills. Generally, the lowest concentrations of all metals were found in muscles. The recorded crustacean organisms (the main food of haffara) decreased from 12 species and 32,079 organisms⁄m(2) in 2012 to only 7 species and 7290 organisms⁄m(2) in 2013 while the amphipods completely disappeared. This serious change was due to the severe pollution in the lake. A logistic surplus production model was fitted to the catch per unit effort indices, to estimate the maximum sustainable yield and the optimum level of fishing effort. The results revealed that haffara stock at lake Timsah is overfished, and the estimated precautionary target reference points advised the reduction of fishing effort by about 30-50 %.
Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution
Spencer, R.J.; Eugster, H.P.; Jones, B.F.
1985-01-01
Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.
Krohelski, James T.; Lin, Yu-Feng; Rose, William J.; Hunt, Randall J.
2002-01-01
Model results suggest that the increase in regional ground-water recharge resulted in increased ground-water flow to the lake, which in turn resulted in increased lake stages. Simulation results of withdrawal of water from Fish Lake at 500 gallons per minute, assuming 1990?98 climatic conditions, indicate that after 1 year of pumping the stage of Fish and Mud Lakes would be reduced more than 1 foot and the stage of Crystal Lake would be reduced by less than 0.2 foot. When pumping is stopped, the lake stages would recover to near pre-pumping levels within about 3 years. When pumping is extended to 5 years, Fish and Mud Lake stage would be reduced by a maximum of 3.8 feet and Crystal Lake stage is reduced a maximum of 0.8 feet. After 4 years of recovery, Fish and Mud Lake stages are within 0.9 foot of prepumping levels and Crystal Lake stage is within 0.7 foot.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Zhang, Q.; Werner, A. D.; Tan, Z. Q.
2017-10-01
A previous modeling study of the lake-floodplain system of Poyang Lake (China) revealed complex hysteretic relationships between stage, storage volume and surface area. However, only hypothetical causal factors were presented, and the reasons for the occurrence of both clockwise and counterclockwise hysteretic functions were unclear. The current study aims to address this by exploring further Poyang Lake's hysteretic behavior, including consideration of stage-flow relationships. Remotely sensed imagery is used to validate the water surface areas produced by hydrodynamic modeling. Stage-area relationships obtained using the two methods are in strong agreement. The new results reveal a three-phase hydrological regime in stage-flow relationships, which assists in developing improved physical interpretation of hysteretic stage-area relationships for the lake-floodplain system. For stage-area relationships, clockwise hysteresis is the result of classic floodplain hysteretic processes (e.g., restricted drainage of the floodplain during recession), whereas counterclockwise hysteresis derives from the river hysteresis effect (i.e., caused by backwater effects). The river hysteresis effect is enhanced by the time lag between the peaks of catchment inflow and Yangtze discharge (i.e., the so-called Yangtze River blocking effect). The time lag also leads to clockwise hysteresis in the relationship between Yangtze River discharge and lake stage. Thus, factors leading to hysteresis in other rivers, lakes and floodplains act in combination within Poyang Lake to create spatial variability in hydrological hysteresis. These effects dominate at different times, in different parts of the lake, and during different phases of the lake's water level fluctuations, creating the unique hysteretic hydrological behavior of Poyang Lake.
Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.
1996-01-01
Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.
Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.
2013-01-01
Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.
NASA Astrophysics Data System (ADS)
Neugebauer, I.; Schwab, M. J.; Waldmann, N. D.; Tjallingii, R.; Frank, U.; Hadzhiivanova, E.; Naumann, R.; Taha, N.; Agnon, A.; Enzel, Y.; Brauer, A.
2016-01-01
The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (µXRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ˜ 110-108 ± 5 and ˜ 93-87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at ˜ 108-93 ± 6 and ˜ 87-75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.
NASA Astrophysics Data System (ADS)
Song, Chunqiao; Sheng, Yongwei; Ke, Linghong; Nie, Yong; Wang, Jida
2016-09-01
Glacial lakes, as an important component of the cryosphere in the southeastern Tibetan Plateau (SETP) in response to climate change, pose significant threats to the downstream lives and properties of people, engineering construction, and ecological environment via outburst floods, yet we currently have limited knowledge of their distribution, evolution, and the driving mechanism of rapid expansions due to the low accessibility and harsh natural conditions. By integrating optical imagery, satellite altimetry and digital elevation model (DEM), this study presents a regional-scale investigation of glacial lake dynamics across two river basins of the SETP during 1988-2013 and further explores the glacial-hydrogeomorphic process of rapidly expanding lakes. In total 1278 and 1396 glacial lakes were inventoried in 1988 and 2013, respectively. Approximately 92.4% of the lakes in 2013 are not in contact with modern glaciers, and the remaining 7.6% includes 27 (1.9%) debris-contact lakes (in contact with debris-covered ice) and 80 (5.7%) cirque lakes. In categorizing lake variations, we found that debris-contact proglacial lakes experienced much more rapid expansions (∼75%) than cirque lakes (∼7%) and non-glacier-contact lakes (∼3%). To explore the cause of rapid expansion for these debris-contact lakes, we further investigated the mass balance of parent glaciers and elevation changes in lake surfaces and debris-covered glacier tongues using time-series Landsat images, ICESat altimetry, and DEM. Results reveal that the upstream expansion of debris-contact proglacial lakes was not directly associated with rising water levels but with a geomorphological alternation of upstream lake basins caused by melting-induced debris subsidence at glacier termini. This suggests that the hydrogeomorphic process of glacier thinning and retreat, in comparison with direct glacial meltwater alone, may have played a dominant role in the recent glacial lake expansion observed across the SETP. Our findings assist in understanding the expansion mechanism of debris-contact proglacial lakes, which facilitates early recognition of potential glacial lake hazards in this region.
NASA Astrophysics Data System (ADS)
Dokou, Z.; Kheirabadi, M.; Nikolopoulos, E. I.; Moges, S. A.; Bagtzoglou, A. C.; Anagnostou, E. N.
2017-12-01
Ethiopia's high inter-annual variability in local precipitation has resulted in droughts and floods that stress local communities and lead to economic and food insecurity. Better predictions of water availability can supply farmers and water management authorities with critical guidance, enabling informed water resource allocation and management decisions that will in turn ensure food and water security in the region. The work presented here focuses on the development and calibration of a groundwater model of the Lake Tana region, one of the most important sub-basins of the Blue Nile River Basin. Groundwater recharge, which is the major groundwater source in the area, depends mainly on the seasonality of precipitation and the spatial variation in geology. Given that land based precipitation data are sparse in the region, two approaches for estimating groundwater recharge were used and compared that both utilize global atmospheric reanalysis driven by remote sensing datasets. In the first approach, the reanalysis precipitation dataset (ECMWF reanalysis adjusted based on GPCC) together with evapotranspiration and surface run-off estimates are used to calculate the groundwater recharge component using water budget equations. In the second approach, groundwater recharge estimates (subsurface runoff) are taken directly from a Land Surface model (FLDAS Noah), provided at a monthly time scale and 0.1˚ x 0.1˚ spatial resolution. The reanalysis derived recharge rates in both cases are incorporated into the groundwater model MODFLOW, which in combination with a Lake module that simulates the Lake water budget, offers a unique capability of improving the predictability of groundwater and lake levels in the Lake Tana basin. Model simulations using the two approaches are compared against in-situ observations of groundwater and lake levels. This modeling effort can be further used to explore climate variability effects on groundwater and lake levels and provide guidance to governments and development agencies for more efficient management of the water resources of this important region. Acknowledgment: This material is based upon work supported by the National Science Foundation under Grant No. 1545874.
Lava lake activity at the summit of Kīlauea Volcano in 2016
Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian
2018-04-10
The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The gas emissions created volcanic air pollution (vog) that affected large areas of the Island of Hawai‘i. The summit eruption has been a major attraction for visitors in Hawai‘i Volcanoes National Park. During 2016, the rising lake levels allowed the lake and its spattering to be more consistently visible from public viewing areas, enhancing the visitor experience. The U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) closely monitors the summit eruption and keeps emergency managers and the public informed of activity.
Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA
Reheis, Marith; Miller, David M.; McGeehin, John P.; Redwine, Joanna R.; Oviatt, Charles G.; Bright, Jordon E.
2015-01-01
An outcrop-based lake-level curve, constrained by ~ 70 calibrated 14C ages on Anodonta shells, indicates at least 8 highstands between 45 and 25 cal ka BP within 10 m of the 543-m upper threshold of Lake Manix in the Mojave Desert of southern California. Correlations of Manix highstands with ice, marine, and speleothem records suggest that at least the youngest three highstands coincide with Dansgaard–Oeschger (D–O) stadials and Heinrich events 3 and 4. The lake-level record is consistent with results from speleothem studies in the Southwest that indicate cool wet conditions during D–O stadials. Notably, highstands between 43 and 25 ka apparently occurred at times of generally low levels of pluvial lakes farther north as interpreted from core-based proxies. Mojave lakes may have been supported by tropical moisture sources during oxygen-isotope stage 3, perhaps controlled by southerly deflection of Pacific storm tracks due to weakening of the sea-surface temperature gradient in response to North Atlantic climate perturbations.
Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.
2011-01-01
Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.
Quantitative assessment of glacial fluctuations in the level of Lake Lisan, Dead Sea rift
NASA Astrophysics Data System (ADS)
Rohling, Eelco J.
2013-06-01
A quantitative understanding of climatic variations in the Levant during the last glacial cycle is needed to support archaeologists in assessing the drivers behind hominin migrations and cultural developments in this key region at the intersection between Africa and Europe. It will also foster a better understanding of the region's natural variability as context to projections of modern climate change. Detailed documentation of variations in the level of Lake Lisan - the lake that occupied the Dead Sea rift during the last glacial cycle - provides crucial climatic information for this region. Existing reconstructions suggest that Lake Lisan highstands during cold intervals of the last glacial cycle represent relatively humid conditions in the region, but these interpretations have remained predominantly qualitative. Here, I evaluate realistic ranges of the key climatological parameters that controlled lake level, based on the observed timing and amplitudes of lake-level variability. I infer that a mean precipitation rate over the wider catchment area of about 500 mm y-1, as proposed in the literature, would be consistent with observed lake levels if there was a concomitant 15-50% increase in wind speed during cold glacial stadials. This lends quantitative support to previous inferences of a notable increase in the intensity of Mediterranean (winter) storms during glacial periods, which tracked eastward into the Levant. In contrast to highstands during ‘regular’ stadials, lake level dropped during Heinrich Events. I demonstrate that this likely indicates a further intensification of the winds during those times.
Mau, D.P.
2002-01-01
The Lake Olathe watershed, located in northeast Kansas, was investigated using bathymetric survey data and reservoir bottom-sediment cores to determine sediment deposition, water-quality trends, and transport of nutrients (phosphorus and nitrogen species), selected trace elements, selected pesticides, and diatoms as indicators of eutrophic (organic-enriched and depleted oxygen supply) conditions. To determine sediment deposition and loads, bathymetric data from Cedar Lake and Lake Olathe, both located in the Lake Olathe watershed, were collected in 2000 and compared to historical topographic data collected when the lakes were built. Approximately 338 acre-feet of sediment deposition has occurred in Cedar Lake since dam closure in 1938, and 317 acre-feet has occurred at Lake Olathe since 1956. Mean annual sediment deposition was 5.45 acre-feet per year (0.89 acre-feet per year per square mile) for Cedar Lake and 7.0 acre-feet per year (0.42 acre-feet per year per square mile) for Lake Olathe. Mean annual sediment loads for the two reservoirs were 9.6 million pounds per year for Cedar Lake and 12.6 million pounds per year for Lake Olathe. Mean concentrations of total phosphorus in bottom-sediment samples from Cedar Lake ranged from 1,370 to 1,810 milligrams per kilogram, and concentrations in bottom-sediment samples from Lake Olathe ranged from 588 to 1,030 milligrams per kilogram. The implication of large total phosphorus concentrations in the bottom sediment of Cedar Lake is that inflow into Cedar Lake is rich in phosphorus and that adverse water-quality conditions could affect water quality in downstream Lake Olathe through discharge of water from Cedar Lake to Lake Olathe via Cedar Creek. Mean annual phosphorus loads transported from the Lake Olathe watershed were estimated to be 14,700 pounds per year for Cedar Lake and 9,720 pounds per year for Lake Olathe. The mean annual phosphorus yields were estimated to be 3.74 pounds per acre per year for Cedar Lake and 0.91 pound per acre per year for Lake Olathe. Phosphorus yields in the Cedar Lake watershed were largest of the six Kansas impoundment watersheds recently studied. Concentrations of total ammonia plus organic nitrogen as nitrogen in bottom sediment increased from upstream to downstream in both Cedar Lake and Lake Olathe. Mean concentrations of total ammonia plus organic nitrogen as nitrogen (N) ranged from 2,000 to 2,700 milligrams per kilogram in bottom-sediment samples from Cedar Lake and from 1,300 to 2,700 milligrams per kilogram in samples from Lake Olathe. There was no statistical significance between total ammonia plus organic nitrogen as nitrogen and depth of bottom sediment. Concentrations of six trace elements in bottom sediment from Cedar Lake and Lake Olathe (arsenic, chromium, copper, lead, nickel, and zinc) exceeded the U.S. Environmental Protection Agency Threshold Effects Levels (TELs) sediment-quality guidelines for aquatic organisms in sediment except for one lead concentration. Probable Effects Levels (PELs) for trace elements, however, were not exceeded at either lake. Organochlorine and organophosphate insecticides were not detected in bottom-sediment samples from either Cedar Lake or Lake Olathe, but the acetanilide herbicides alachlor and metolachlor were detected in sediment from both lakes. The U.S. Environmental Protection Agency has not proposed TEL or PEL guideline concentrations for bottom sediment for any of the organophosphate, acetanilide, or triazine pesticides. The diatoms (microscopic, single-celled organisms) Cyclotella bodanica, an indicator of low organic-enriched water, and Cyclotella meneghiniana, an indicator of organic-enriched water, were both present in bottom sediment from Lake Olathe. The presence of both of these diatoms suggests varying periods of low and high eutrophication in Lake Olathe from 1956 to 2000. The concentrations of two species in bottom sediment from Cedar Lake, Aulacoseira cf alpigena and Cyclotella meneg
2011 Joint Science Education Project: Research Experience in Polar Science
NASA Astrophysics Data System (ADS)
Wilkening, J.; Ader, V.
2011-12-01
The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on different common ecosystems within the Kangerlussuaq area.
Controls on lava lake level at Halema`uma`u Crater, Kilauea Volcano
NASA Astrophysics Data System (ADS)
Patrick, M. R.; Orr, T. R.
2013-12-01
Lava level is a fundamental measure of lava lake activity, but very little continuous long-term data exist worldwide to explore this aspect of lava lake behavior. The ongoing summit eruption at Kilauea Volcano began in 2008 and is characterized by an active lava lake within the eruptive vent. Lava level has been measured nearly continuously at Kilauea for several years using a combination of webcam images, laser rangefinder, and terrestrial LIDAR. Fluctuations in lava level have been a common aspect of the eruption and occur over several timescales. At the shortest timescale, the lava lake level can change over seconds to hours owing to two observed shallow gas-related processes. First, gas pistoning is common and is driven by episodic gas accumulation and release from the surface of the lava lake, causing the lava level to rise and fall by up to 20 m. Second, rockfalls into the lake trigger abrupt gas release, and lava level may drop as much as 10 m as a result. Over days, cyclic changes in lava level closely track cycles of deflation-inflation (DI) deformation events at the summit, leading to level changes up to 50 m. Rift zone intrusions have caused large (up to 140 m) drops in lava level over several days. On the timescale of weeks to months, the lava level follows the long-term inflation and deflation of the summit region, resulting in level changes up to 140 m. The remarkable correlation between lava level and deflation-inflation cycles, as well as the long-term deformation of the summit region, indicates that the lava lake acts as a reliable 'piezometer' (a measure of liquid pressure in the magma plumbing system); therefore, assessments of summit pressurization (and rift zone eruption potential) can now be carried out with the naked eye. The summit lava lake level is closely mirrored by the lava level within Pu`u `O`o crater, the vent area for the 30-year-long eruption on Kilauea's east rift zone, which is 20 km downrift of the summit. The coupling of these lava levels implies an efficient hydraulic connection between the summit and east rift zone vents. This connection has been indicated previously with geophysical data and is reinforced in a new quantitative manner with lava level data. Lastly, the current lava level at the summit is significantly lower than the mean level measured in the crater during continuous lava lake activity in the early 1900s. This is probably because the ongoing eruption at Pu`u `O`o 'taps' the magma supplied to the summit reservoir. Should the Pu`u `O`o eruption stop, the lava level at the summit would certainly rise in response. The precise correspondence between lava lake level and deformation of the summit implies that the lake level is a good indication of the pressure state of the magma reservoir. Tracking lava level over time may therefore provide an indication of the potential for future changes in eruptive activity. Such an observation has clear relevance for monitoring analogous open-vent basaltic volcanoes, especially where other measures of volcanic activity, like seismic or deformation measurements, may be lacking.
NASA Astrophysics Data System (ADS)
Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas
2017-04-01
Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.
Kulp, T.R.; Han, S.; Saltikov, C.W.; Lanoil, B.D.; Zargar, K.; Oremland, R.S.
2007-01-01
Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter-1). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter-1), intermediate (100 to 200 g liter-1), and high (>300 g liter-1) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.
Czekalski, Nadine; Berthold, Tom; Caucci, Serena; Egli, Andrea; Bürgmann, Helmut
2012-01-01
At present, very little is known about the fate and persistence of multiresistant bacteria (MRB) and their resistance genes in natural aquatic environments. Treated, but partly also untreated sewage of the city of Lausanne, Switzerland is discharged into Vidy Bay (Lake Geneva) resulting in high levels of contamination in this part of the lake. In the present work we have studied the prevalence of MRB and resistance genes in the wastewater stream of Lausanne. Samples from hospital and municipal raw sewage, treated effluent from Lausanne’s wastewater treatment plant (WTP) as well as lake water and sediment samples obtained close to the WTP outlet pipe and a remote site close to a drinking water pump were evaluated for the prevalence of MRB. Selected isolates were identified (16S rRNA gene fragment sequencing) and characterized with regards to further resistances, resistance genes, and plasmids. Mostly, studies investigating this issue have relied on cultivation-based approaches. However, the limitations of these tools are well known, in particular for environmental microbial communities, and cultivation-independent molecular tools should be applied in parallel in order to take non-culturable organisms into account. Here we directly quantified the sulfonamide resistance genes sul1 and sul2 from environmental DNA extracts using TaqMan real-time quantitative PCR. Hospital sewage contained the highest load of MRB and antibiotic resistance genes (ARGs). Wastewater treatment reduced the total bacterial load up to 78% but evidence for selection of extremely multiresistant strains and accumulation of resistance genes was observed. Our data clearly indicated pollution of sediments with ARGs in the vicinity of the WTP outlet. The potential of lakes as reservoirs of MRB and potential risks are discussed. PMID:22461783
Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.
2004-01-01
Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the upper Bear River had to be flowing into the Bonneville basin during highstands of other late Quaternary lake cycles: carbonates from the Little Valley (130-160 ka) and Cutler Dam (59 ?? 5 ka) lake cycles returned 87Sr/86Sr ratios of 0.71166 and 0.71207, respectively, and are too low to be produced by a lake without the upper Bear River input. ?? 2004 Geological Society of America.
Wilcox, D.A.; Kowalski, K.P.; Hoare, H.L.; Carlson, M.L.; Morgan, H.N.
2008-01-01
Photointerpretation studies were conducted to evaluate vegetation changes in wetlands of Lake Ontario and the upper St. Lawrence River associated with regulation of water levels since about 1960. The studies used photographs from 16 sites (four each from drowned river mouth, barrier beach, open embayment, and protected embayment wetlands) and spanned a period from the 1950s to 2001 at roughly decadal intervals. Meadow marsh was the most prominent vegetation type in most wetlands in the late 1950s when water levels had declined following high lake levels in the early 1950s. Meadow marsh increased at some sites in the mid-1960s in response to low lake levels and decreased at all sites in the late 1970s following a period of high lake levels. Typha increased at nearly all sites, except wave-exposed open embayments, in the 1970s. Meadow marsh continued to decrease and Typha to increase at most sites during sustained higher lake levels through the 1980s, 1990s, and into 2001. Most vegetation changes could be correlated with lake-level changes and with life-history strategies and physiological tolerances to water depth of prominent taxa. Analyses of GIS coverages demonstrated that much of the Typha invasion was landward into meadow marsh, largely by Typha x glauca. Lesser expansion toward open water included both T. x glauca and T. angustifolia. Although many models focus on the seed bank as a key component of vegetative change in wetlands, our results suggest that canopy-dominating, moisture-requiring Typha was able to invade meadow marsh at higher elevations because sustained higher lake levels allowed it to survive and overtake sedges and grasses that can tolerate periods of drier soil conditions.
NASA Astrophysics Data System (ADS)
Morris, J.; Stoner, J. S.; Reilly, B. T.; Hatfield, R. G.; Konyndyk, D.; Abbott, M. B.; Finkenbinder, M. S.; Hillman, A. L.
2016-12-01
In order to better understand climate trends in the late Pleistocene and Holocene in southeast Oregon, we present a sedimentological analysis of Fish Lake, Harney County, Oregon. Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) sits on the west slope of Steens Mountain, a fault-block mountain of Miocene basalt, adjacent to a glacial moraine. The present environment is high desert with sub alpine steppe vegetation, receiving approximately 12" of precipitation annually. The lake was cored in August 2013 with a series of overlapping drives, correlated by six distinct tephra and magnetic susceptibility. The composite section provides a 7.5 m continuous record of at least the last 13 ka, constrained by an age model built with 13 terrestrial macrofossil 14C dates. The recovered sediments, consisting of fine terrigenous and biogenous material in varying proportions, were analyzed with computed tomography (CT) scans, x-ray fluorescence (XRF) scans, magnetic measurements, loss on ignition (LOI), and sediment grain-size. CT and LOI data reveal a low density, high organic interval in the early Holocene ( 8.5-11 ka) with relatively coarse and well-sorted grain-size, suggesting an extended period of low lake level and low precipitation. Sediment grain-sizes are variable through the middle and late Holocene with high amplitude longer period features from 3 ka to the present. We investigate these grain-size fluctuations in the context of regional Holocene records.
NASA Astrophysics Data System (ADS)
Farhadzadeh, A.; Hashemi, M. R.
2016-02-01
Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.
The Lake Towuti Drilling Project: A New, 1-Million Year Record of Indo-Pacific Hydroclimate
NASA Astrophysics Data System (ADS)
Russell, J. M.; Bijaksana, S.; Vogel, H.; Melles, M.; Crowe, S.; Fajar, S. J.; Hasberg, A. K.; Ivory, S.; Kallmeyer, J.; Kelly, C. S.; Kirana, K. H.; Morlock, M.; Tamuntuan, G. H.; Wicaksono, S. A.
2015-12-01
The Indo-Pacific region plays an integral role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to these global forcings. New paleoclimate records spanning multiple glacial-interglacial cycles are therefore required to document the region's hydroclimatic response to the full range of global climate boundary conditions observed during the late Quaternary. Lake Towuti is located in central Indonesia and is the only known terrestrial sedimentary archive in the region that spans multiple glacial-interglacial cycles. From May - July, 2015, the Towuti Drilling Project, consisting of nearly 40 scientists from eight countries, recovered over 1,000 meters of new sediment core from Lake Towuti. This includes cores though the entire sediment column to bedrock, which likely provide a >1-million-year records of regional hydroclimate. On-site borehole and sediment core logging data document major shifts in sediment composition, including transitions from lake clays to peats, calcareous sediments, and gravels. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we aim to test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale hydrologic change during the last ~1 million years.
Gale, Robert W.; Orazio, Carl E.; McKee, Michael J.
2009-01-01
This report presents the results of a study to determine polychlorinated biphenyl, organochlorine pesticide, and polybrominated diphenylether flame retardant concentrations in selected fishes from lakes and streams across Missouri. Fillets were collected from each fish sample and after homogenization, compositing, and preparation, analyte concentrations were determined with dual column capillary gas chromatography-electron-capture detection. Total concentrations of polychlorinated biphenyls in samples ranged from background levels of about 50 to 300 nanograms per gram. In samples with elevated contaminant concentrations, chlordanes, DDT-related chemicals, and dieldrin constituted the primary classes of pesticides present, and ranged from 5 to 75 nanograms per gram. Total concentrations of polybrominated diphenyl ethers in samples ranged from background levels of 5 to 86 nanograms per gram. Channel catfish from the upper and lower Blue River and lake sturgeon from the Mississippi River at Saverton exhibited different polybrominated diphenyl ethers ratios. Concentrations of polychlorinated biphenyls, chlordanes, DDT-related compounds, and polybrominated diphenyl ethers all were greatest in samples of channel catfish from the upper and lower Blue River, and in samples of lake sturgeon from the Mississippi River at Saverton.
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh
2015-04-01
Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.
Lofgren, B.M.; Quinn, F.H.; Clites, A.H.; Assel, R.A.; Eberhardt, A.J.; Luukkonen, C.L.
2002-01-01
The results of general circulation model predictions of the effects of climate change from the Canadian Centre for Climate Modeling and Analysis (model CGCM1) and the United Kingdom Meteorological Office's Hadley Centre (model HadCM2) have been used to derive potential impacts on the water resources of the Great Lakes basin. These impacts can influence the levels of the Great Lakes and the volumes of channel flow among them, thus affecting their value for interests such as riparians, shippers, recreational boaters, and natural ecosystems. On one hand, a hydrological modeling suite using input data from the CGCM1 predicts large drops in lake levels, up to a maximum of 1.38 m on Lakes Michigan and Huron by 2090. This is due to a combination of a decrease in precipitation and an increase in air temperature that leads to an increase in evaporation. On the other hand, using input from HadCM2, rises in lake levels are predicted, up to a maximum of 0.35 m on Lakes Michigan and Huron by 2090, due to increased precipitation and a reduced increase in air temperature. An interest satisfaction model shows sharp decreases in the satisfaction of the interests of commercial navigation, recreational boating, riparians, and hydropower due to lake level decreases. Most interest satisfaction scores are also reduced by lake level increases. Drastic reductions in ice cover also result from the temperature increases such that under the CGCM1 predictions, most of Lake Erie has 96% of its winters ice-free by 2090. Assessment is also made of impacts on the groundwater-dependent region of Lansing, Michigan.
Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP)
NASA Astrophysics Data System (ADS)
Mislan; Gaffar, A. F. O.; Haviluddin; Puspitasari, N.
2018-04-01
A natural hazard information and flood events are indispensable as a form of prevention and improvement. One of the causes is flooding in the areas around the lake. Therefore, forecasting the surface of Lake water level to anticipate flooding is required. The purpose of this paper is implemented computational intelligence method namely Adaptive Neural Network Backpropagation (ANNBP) to forecasting the Lake Cascade Mahakam. Based on experiment, performance of ANNBP indicated that Lake water level prediction have been accurate by using mean square error (MSE) and mean absolute percentage error (MAPE). In other words, computational intelligence method can produce good accuracy. A hybrid and optimization of computational intelligence are focus in the future work.
NASA Astrophysics Data System (ADS)
Fortin, V.; Durnford, D.; Gaborit, E.; Davison, B.; Dimitrijevic, M.; Matte, P.
2016-12-01
Environment and Climate Change Canada has recently deployed a water cycle prediction system for the Great Lakes and St. Lawrence River. The model domain includes both the Canadian and US portions of the watershed. It provides 84-h forecasts of weather elements, lake level, lake ice cover and surface currents based on two-way coupling of the GEM numerical weather prediction (NWP) model with the NEMO ocean model. Streamflow of all the major tributaries of the Great Lakes and St. Lawrence River are estimated by the WATROUTE routing model, which routes the surface runoff forecasted by GEM's land-surface scheme and assimilates streamflow observations where available. Streamflow forecasts are updated twice daily and are disseminated through an OGC compliant web map service (WMS) and a web feature service (WFS). In this presentation, in addition to describing the system and documenting its forecast skill, we show how it is being used by clients for various environmental prediction applications. We then discuss the importance of two-way coupling, land-surface and hillslope modelling and the impact of horizontal resolution on hydrological prediction skill. In the second portion of the talk, we discuss plans for implementing a similar system at the national scale, using what we have learned in the Great Lakes and St. Lawrence watershed. Early results obtained for the headwaters of the Saskatchewan River as well as for the whole Nelson-Churchill watershed are presented.
Dreissenid mussels from the Great Lakes contain elevated thiaminase activity
Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.
2009-01-01
We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.
Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang
2016-04-04
Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of water quality and a 12-year remote sensing mapping (2003-2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4(+)-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration.
NASA Astrophysics Data System (ADS)
Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang
2016-04-01
Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of water quality and a 12-year remote sensing mapping (2003-2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4+-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration.
Earth Observations taken by the Expedition 10 crew
2004-12-04
ISS010-E-09366 (4 December 2004) --- New Yorks Finger Lakes region is featured in this digital image photographed by an Expedition 10 crewmember on the International Space Station. Shapes of the snow-covered hills are accented by the low sun angles, and contrast with the darker, finger-shaped lakes filling the regions valleys. Scientists believe the steep, roughly parallel valleys and hills of the Finger Lakes region were shaped by advancing and retreating ice sheets that were as much as 2 miles deep during the last ice age. River valleys were scoured into deep troughs; many are now filled with lakes. The two largest lakes, Seneca and Cayuga, are so deep that the bases of their lakebeds are below sea level. The cities of Rochester, Syracuse and Ithaca are included in this field-of-view, as seen from the Space Station. These three cities enjoy large seasonal snowpacks, thanks to the influence of the Great Lakes producing lake-effect snowstorms. According to NASA scientists studying the Space Station imagery, despite its reputation for long winters, the region is balmy compared with the glacial climate present when the landscape was carved. Scientists believe, at the time of the greatest ice extent, yearly average temperatures over northern North America were several degrees lower than today.
Deribe, Ermias; Rosseland, Bjørn Olav; Borgstrøm, Reidar; Salbu, Brit; Gebremariam, Zinabu; Dadebo, Elias; Skipperud, Lindis; Eklo, Ole Martin
2014-08-01
Dietary intake of fish containing organic contaminants poses a potential threat to human health. In the present work, an assessment has been carried out to look at the human health risk associated with consumption of fish contaminated with organochlorine pesticides (OCPs) and polychlorinated biphenyles (PCBs) in certain fish species collected from Lake Hawassa, Ethiopia. The health risk assessment was made by comparing the concentrations of OCPs and PCBs in fish muscle tissues with reference doses given in the USEPA guidelines. Dichlorodiphenyltrichloroethanes (DDTs), endosulfans, PCBs and chloridanes were identified in fish species collected from Lake Hawassa. The most predominant pesticides were DDTs, with mean concentrations of ΣDDT ranging from 19 to 56 ng g(-1) wet weights. The highest concentrations of DDTs were found in Barbus intermedius, representing the highest trophic level. PCBs, DDT and endosulfan concentrations found in B. intermedius exceeded the reference dose for children between the ages of 0-1 year (with hazard index of above 1.0). Therefore, consumption of fish from a high trophic level (e.g. B. intermedius) from Lake Hawassa may pose a special health risk to children.
Adams, K.D.; Goebel, Thomas; Graf, K.; Smith, G.M.; Camp, A.J.; Briggs, R.W.; Rhode, D.
2008-01-01
The Great Basin of the western U.S. contains a rich record of late Pleistocene and Holocene lake-level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial-temporal relationships between these records in the Lahontan basin to consider whether lake-level fluctuations across the Pleistocene-Holocene transition controlled distribution of archaeological sites. We use the reasonably well-dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230-1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief Paleoindian and early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (???1220-1225 in) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. ?? 2008 Wiley Periodicals, Inc.
Bing, Haijian; Wu, Yanhong; Liu, Enfeng; Yang, Xiangdong
2013-07-01
Sediments from four lakes in the mid-low reaches of the Yangtze River, Taibai Lake, Longgan Lake, Chaohu Lake and Xijiu Lake, were chosen to evaluate their enrichment state and history. The state of heavy metal enrichment was at a low level in the sediment of Taibai Lake and Longgan Lake. The enrichment state of Co, Cr and Ni was also low in the sediment of Chaohu Lake and Xijiu Lake, while Cu, Pb and Zn enrichment reached a higher level. Mass accumulation fluxes were calculated to quantitatively evaluate the anthropogenic contribution to heavy metals in the sediment. The anthropogenic accumulation fluxes were lower in the sediment of Taibai Lake and Longgan Lake compared with the other two lakes, where heavy metals, especially Cu, Pb and Zn, were mainly from anthropogenic sources. Heavy metal accumulation did not vary greatly in the sediment of Taibai Lake and Longgan Lake, while that in Chaohu Lake and Xijiu Lake increased since the 1950s and substantially increased since the 1980s, although a decrease occurred since 2000 AD in Xijiu Lake. Heavy metal enrichment was strongly related to human activities in the catchment. The development of urbanization and industrialization was much more rapid in the catchments of Chaohu Lake and Xijiu Lake than of the other two lakes, and thus large amounts of anthropogenically sourced heavy metals were discharged into the lakes, which resulted in a higher contamination risk. However, human activities in the Longgan Lake and Taibai Lake catchments mainly involved agriculture, which contributed a relatively small portion of heavy metals to the lakes.
High Resolution Environmental Magnetic Study of a Holocene Sedimentary Record from Zaca Lake, Ca
NASA Astrophysics Data System (ADS)
Platzman, E. S.; Lund, S.; Kirby, M. E.; Feakins, S. J.
2012-12-01
Magnetic studies of Holocene lake sediments recovered from Zaca lake have yielded a 3000-year high resolution record of environmental variability and paleolimnology. Zaca lake is a small oligomictic lake ~12m deep situated 730 m above sea level in the steep canyons of the San Rafael mountains, NW of Santa Barbara. Throughout much of the year Zaca lake is anaerobic below 7m. Hydrogen sulfide, fed into the lake via runoff and local sulphur springs, is present throughout the hypolimnion with concentrations sometime exceeding 30 mg/ l. During the summer months when the lake is stratified, light colored carbonate rich microlaminae are formed; and often during the winter months when the lake overturns, killing the anaerobic bacteria, black microlamina rich in iron sulfide are deposited on the lake floor, creating a stratigraphy reflecting patterns of environmental variability on annual to millennial scales. Samples for magnetic analysis were obtained from 8.5 m of core recovered from the central region of Zaca lake. Ages, constrained using radiocarbon chronostratigraphy, yielded sedimentation rates of 2-10 mm/yr with an average rate of 3 mm per yr over the 3000 yr interval. Parameters reflecting decadal scale variability in magnetic concentration (susceptibility, ARM, SIRM) and grainsize (ARM/Chi) were measured every 2 cm. Additional rock magnetic tests, including thermal demagnetization of three component IRM, were applied at selected intervals to constrain the magnetic mineralogy. These data were combined with analyses of clastic grain size, % calcium carbonate and % organics to create a multiproxy record of environmental variability. Results show that Zaca lake has had a complex depositional history. Anthropogenic effects associated with European colonization are present in the upper meters. Most notable, however, is a dramatic shift in the magnetic parameters and mineralogy between the upper and lower half of the core (circa 1300 ybp) indicating a shift in regime, and very different processes may have affected the magnetic signal. Zaca lake sediments also record a pronounced cyclicity at a variety of timescales. In addition to a documented mm scale cyclicity, cyclicity at the 1 cm (multi-year) and 10 cm (decadal) scales may reflect rainfall patterns and fire history of the central California coast ranges.
Chemical quality of surface waters in Devils Lake basin, North Dakota
Swenson, Herbert; Colby, Bruce R.
1955-01-01
Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has fallen slowly. Hydrologic changes that may have caused Devils Lake to alter from a very large, moderately deep lake of fresh water to a small, shallow body of brackish water are discussed and evaluated on the basis of scanty information. During several years of average precipitation, temperature, and evaporation, Devils Lake and lakes upstream should receive nearly a quarter of an inch of runoff annually from the drainage area of about 3,000 square miles. Approximately 55 square miles of tributary area would be required to maintain each square mile of lake surface. However, runoff, expressed as percentage of the average, differs greatly from year to year. The amount of runoff retained in upstream lakes also Varies greatly. For these two reasons, annual inflow to Devils Lake is extremely variable. Because many waterways in this basin have no surface outlets at normal stages, runoff collects in depressions, is concentrated by evaporation, and forms saline or alkaline lakes. The chemical and physical properties of the lake waters vary chiefly with changes in lake stage and volume of inflow. Scattered records from 1899 to 1923 and more comprehensive data from 1948 to 1952 show a range of salt concentration from 6,130 to 25,000 parts per million (ppm) in the water of Devils Lake. Although concentration has varied, the chemical composition of the dissolved solids has not changed appreciably. Lake waters are more concentrated in the lower part of the basin, downstream from Devils Lake. For periods of record the salt concentration ranged from 14,932 to 62,000 ppm in East Devils Lake and from 19,000 to 106,000 ppm in east Stump Lake. Current and past tonnages of dissolved solids in Devils Lake, East Bay Devils Lake, East Devils Lake, and east and west Stump Lakes were computed from concentrations and from altitude-capacity curves for each lake. Neither the average rate of diversion of water to restore Devils Lake to a higher level nor the quality of the divert
Disappearing Twelvemile Lake in Alaska's Discontinuous Permafrost: Scoping Analysis of Water Budget
NASA Astrophysics Data System (ADS)
Jepsen, S. M.; Voss, C. I.; Walvoord, M. A.; Minsley, B. J.; Rose, J.; Smith, B. D.
2011-12-01
The number and size of lakes in northern high-latitude regions have undergone significant changes over the last 3 decades or longer, possibly in association with climate warming. In the Yukon Flats Basin (YFB) of interior Alaska, a region underlain by discontinuous permafrost, these changes have not been uniform among lake drainage basins, suggesting the importance of local processes that are not well understood. As an example in the YFB, Twelvemile Lake has decreased in area by 60% since 1984, while neighboring Buddy Lake, 2 km to the southeast, has shown no significant change (see Figure). The objective of this study is to evaluate physical mechanisms that could account for the lowering of Twelvemile Lake, using a combination of water flux approximations, historical climate data and the permafrost distribution as interpreted from airborne electromagnetics (AEM). All possible in- and out-flux pathways to the lake are considered and compared with the observed rate of change in the lake's volume, to rank the importance of each pathway as a contributor to the change in lake level. Results from the AEM survey suggest the presence of a ~200 m diameter open-talik beneath the lake, and subsurface, channel-shaped depressions in the permafrost table ("channels") that may direct shallow groundwater (GW) flow into or out of the lake basin. An increase in potential evapotranspiration of only ~2 cm yr-1 from the period of 1950-1980 to 1981-2010 is found to be insignificant relative to the observed 13 cm yr-1 rate of lake level lowering since the early 1980's. Thus, alternative water pathways are needed to explain the lake level change. The following four processes are shown to potentially have a significant contribution to the observed rate of lake level change: (i) Reduced water inputs from decreased snowpacks; (ii) Increased infiltration of snowmelt due to changes in wintertime ice content of subnivean soil; (iii) Changes in GW flow through inlet and outlet channels to the lake basin due to ground ice dynamics; (iv) Changes in GW flow to the lake resulting from lateral ice aggradation or degradation in the open-talik. In conclusion, the lowering of Twelvemile Lake may result from a combination of processes that are operating in addition to those commonly associated with thermokarst lakes.
NASA Astrophysics Data System (ADS)
Chisolm, R. E.; McKinney, D. C.
2014-12-01
Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has threatened citizens living in the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level, but the lake has since grown to the point where it is once again dangerous. Overhanging ice from the glaciers above and a relatively low freeboard make the lake vulnerable to avalanches and landslides. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics. Three-dimensional lake modeling in the context of glacial hazards is not common, but 3D simulations can enhance our understanding of avalanche-generated impulse waves and their downstream impacts. In this work, a 3D hydrodynamic model is used to simulate the generation of an impulse wave from an avalanche falling into the lake, wave propagation, and overtopping of the terminal moraine. These results are used as inputs to a downstream model to predict the impact from a GLOF. As lowering the level of the lake is the most likely mitigation alternative, several scenarios are considered to evaluate the impact from avalanche events with a reduction in the lake level. The results of this work can be used to evaluate the effectiveness of the current lake management system and potential lake-lowering alternatives. Use of a robust 3D lake model enables more accurate predictions of peak flows during GLOF events and the time scales of these events so that mitigation strategies can be developed that reduce the risk to communities living downstream of hazardous lakes.
New insights into the paleoenvironment of northern Israel during the Last Glacial
NASA Astrophysics Data System (ADS)
Miebach, Andrea; Chen, Chunzhu; Schwab, Markus J.; Lev, Lilach; Stein, Mordechai; Litt, Thomas
2016-04-01
Archaeological findings in the vicinity of the Dead Sea rift display the outstanding role of the region for reconstructing human history. The environmental settings of the historical developments are obtained from the sedimentary sections that were accumulated in the lakes occupying the tectonic depressions along the rift. Here, we focus on the vegetation history in the vicinity of the Sea of Galilee (Lake Kinneret), northern Israel, during MIS2 when the lake reached its high stands and even merged with the southern Lake Lisan at an elevation of ~ 170 m below sea level (cf. Hazan et al., 2005). A continuous vegetation and climate record could provide valuable insights into the environmental context of human developments. We analyzed pollen from sediment cores that were drilled at the Ohalo II archaeological site at the southwestern shore of the Sea of Galilee. New radiocarbon dates refined the age-depth model. Most of the cores comprise laminated authigenic calcites and detritus material that was deposited between ~27,000 to 22,000 years before present. The Sea of Galilee is currently the lowest freshwater lake on the Earth (209 m below mean sea level). It is situated in the Mediterranean climate and vegetation zone of northern Israel. Further to the south and east, the Mediterranean biome is displaced by steppe and desert due to considerably lower precipitations. Our results suggest that a steppe with dwarf shrubs, herbs, and grasses predominated in northern Israel during the Last Glacial. In contrast to the Holocene, there was no vegetation belt of the Mediterranean biome in the vicinity of the Sea of Galilee. Deciduous oaks were the dominant trees, although they only occurred in limited amounts. Trees and shrubs were almost absent during most arid periods. While the pollen data may indicate semiarid conditions (less precipitation) in the vicinity of the Sea of Galilee, the high lake levels and deposition of authigenic calcite require enhanced freshwater input to the lake. Thus, other environmental factors might have affected the pollen patterns or controlled the freshwater input to the lake. Reference: Hazan, N., Stein, M., Agnon, A., Marco, S., Nadel, D., Negendank, J. F. W., Schwab, M. J., and Neev, D. (2005): The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63: 60-77.
NASA Satellite Scares Up An Eerie Image of Haunted Lakes and Ghost Ships
2011-10-29
NASA Terra satellite presents this false color view of portions of Wisconsin and Michigan, including Devil Lake, Druid Lake, Ghost Lake, Spider Lake, and Witches Lake in Wisconsin; and Bat Lake, Corpse Pond and Witch Lake in Michigan.
Educators' Guide to Great Lakes Materials: Books, Films, Maps and Pamphlets for Classroom Use.
ERIC Educational Resources Information Center
Johnson, Pam
This annotated bibliography presents Great Lakes information for grades six through nine classroom use. It is meant to facilitate and encourage Great Lakes study, particularly of Lakes Michigan and Superior. Material is presented on history, science, lake management, environmental concerns, and recreational use. Included are both fiction and…
2. DETAIL VIEW SHOWING WOODEN CRIBBING WITH LOWERED LAKE LEVEL, ...
2. DETAIL VIEW SHOWING WOODEN CRIBBING WITH LOWERED LAKE LEVEL, EAST DAM, LOOKING NORTHEAST (View is middle of the perimeter showing in MT-88-A-1 above.) - Three Bears Lake & Dams, East Dam, North of Marias Pass, East Glacier Park, Glacier County, MT
Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology
NASA Astrophysics Data System (ADS)
Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.
2012-12-01
There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.
NASA Astrophysics Data System (ADS)
Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara
2017-04-01
Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.
Late Holocene Lake Level Fluctuations at Laguna Arapa, Peru and Connections to Human Demography
NASA Astrophysics Data System (ADS)
Hillman, A. L.; Abbott, M. B.; Werne, J. P.; Arkush, E.; Thompson, L. G.; Ferland, T.; Holmes, E.; Puhnaty, C.; Woods, A.
2016-12-01
The relationship between variations in hydroclimate and human demography on the Peruvian Altiplano has significant implications for understanding how people in the past have adapted to changes in freshwater resources. To investigate these human-environmental interactions, this project presents a 2,000 year sediment record from Laguna Arapa, a large lake that is <20 km NW of Lake Titicaca. Using sedimentology and stratigraphy as well as a suite of organic geochemical proxies including fecal 5β-stanols and leaf waxes (long chain n-alkanoic acids), we aim to tie together proxies of human population with indicators of regional hydroclimate. Preliminary results of sedimentology and stratigraphy show notable transitions from sand to silt to clay, suggesting rising lake level sequences at 500 and 700 AD. The last 1,300 years of sediment are characterized by alternating layers of organic rich material with abundant charcoal and black inorganic clay, suggesting intermittent periods of aridity and/or anthropogenic fire-setting. These layers are particularly frequent during the Medieval Climate Anomaly, which was characterized by dry and warm conditions. These results agree well with other records of hydroclimate from regional lakes as well as accumulation rate and temperature from the Quelccaya ice cap. Organic geochemical work is currently in progress and shows promise for linking together proxies of human demography with hydroclimate to understand the relationship between human settlement and climate change.
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Young, D. A.; Carter, S. P.
2006-12-01
Ice-penetrating radar records across the Antarctic Ice Sheet show regions with strong flat mirror-like reflections from the subglacial interface that are interpreted to be from subglacial lakes. The majority of subglacial lakes are found in East Antarctica, primarily in topographically low areas of basins beneath the thick ice divides. Occasionally lakes are observed "perched" at higher elevations within local depressions of rough morphological regions. In addition, a correlation between the "onset" of enhanced glacial flow and subglacial lakes was identified. The greatest concentration of known lakes was found in the vicinity of Dome C. A second grouping of lakes lying near Ridge B includes Lake Vostok and several smaller lakes. Subglacial lakes were also discovered near the South Pole, within eastern Wilkes Land, west of the Transantarctic Mountains, and within West Antarctica's Whitmore Mountains. Aside from Lake Vostok, typical lengths of subglacial lakes were found to range from a few to about 20 kilometers. A recent inventory includes 145 subglacial lakes. Approximately 81% of detected lakes lie at elevations less than a few hundred meters above sea level while the majority of the remaining lakes are "perched" at higher elevations. We present the locations from the subglacial lake inventory on local "ice divides" calculated from the satellite derived surface elevations with and find the distance of each lake from these divides. Most significantly, we found that 66% of the lakes identified lie within 50 km of a local ice divide and 88% lie within 100 km of a local divide. In particular, note that lakes located far from the Dome C/Ridge B cluster and even those associated with very narrow catchments lie either on or within a few tens of kilometers of the local divide marked by the catchment boundary. The distance correlation of subglacial lakes with local ice divides leads to a fundamental question for the evolution of subglacial lake environments: Does the evolving ice sheet control the location of subglacial lakes or does the fixed lithospheric character necessary for lake formation constrain the evolution of ice sheet catchments? To begin to answer these questions, we assess the distributions of classes of lakes defined by their reflection character. These classes include bright specular ("definite") lakes, dim specular lakes and bright non-specular ("fuzzy") lakes. Interestingly, it is the fuzzy lakes that do not strongly correlate with ice divides. We show specific examples of off-divide lake system hydrology from the Byrd Glacier catchment in East Antarctica and Kamb Ice Stream in West Antarctica.
A post-Calumet shoreline along southern Lake Michigan
Capps, D.K.; Thompson, T.A.; Booth, R.K.
2007-01-01
The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.
ERTS-B applications to Minnesota resource management
NASA Technical Reports Server (NTRS)
Sizer, J. E. (Principal Investigator)
1976-01-01
The author has identified the following significant results. The shape, pattern, and extent of surface water (e.g. lakes) can be readily mapped. Comparing detailed maps of several lakes in Itasca County with the areas classified as water by the LANDSAT data shows that some lakes have changed considerably since they were mapped. Due to several droughts this year (1976), the water level in most lakes has dropped. At this time, it seems feasible that LANDSAT digital tape data estimate lake water level change, due to the 1976 drought conditions.
Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, B. L.; Roelke, Daniel; Brooks, Bryan
A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife andmore » Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.« less
Anderton, John B.; Loope, Walter L.
1995-01-01
A stratigraphic analysis of buried soils within the Grand Sable Dunes, a dune field perched 90 m above the southern shore of Lake Superior, reveals a history of eolian activity apparently linked with lake-level fluctuations over the last 5500 yr. A relative rise in the water plane of the Nipissing Great Lakes initially destabilized the lakeward bluff face of the Grand Sable plateau between 5400 and 4600 14C yr B.P. This led to the burial of the Sable Creek soil by eolian sediments derived from the bluff face. Subsequent episodes of eolian activity appear to be tied to similar destabilizing events; high lake levels may have initiated at least four and perhaps eleven episodes of dune building as expressed by soil burials within the dunes. Intervening low lake levels probably correlate with soil profile development, which varies from the well-developed Sable Creek Spodosol catena to thin organic layers containing in-place stumps and tree trunks. Paleoecological reconstructions available for the area do not imply enough climatic change to account for the episodic dune activity. Burial of soils by fine-fraction sediments links dune-building episodes with destabilization of the lower lake-facing bluff, which is rich in fines.
Bright, Jordon; Kaufman, D.S.; Forester, R.M.; Dean, W.E.
2006-01-01
Oxygen and carbon isotopes from a continuous, 120-m-long, carbonate-rich core from Bear Lake, Utah-Idaho, document dramatic fluctuations in the hydrologic budget of the lake over the last 250,000 yr. Isotopic analyses of bulk sediment samples capture millennial-scale variability. Ostracode calcite was analyzed from 78 levels, mainly from the upper half of the core where valves are better preserved, to compare the isotopic value of purely endogenic carbonate with the bulk sediment, which comprises both endogenic and detrital components. The long core exhibits three relatively brief intervals with abundant endogenic aragonite (50??10%) and enriched ??18O and ??13C. These intervals are interpreted as warm/dry periods when the lake retracted into a topographically closed basin. We correlate these intervals with the interglacial periods of marine oxygen-isotope stages 1, 5e, and 7a, consistent with the presently available geochronological control. During most of the time represented by the core, the lake was fresher than the modern lake, as evidenced by depleted ??18O and ??13C in bulk-sediment carbonate. ?? 2006 Elsevier Ltd. All rights reserved.
Evolution of Lake Turkana level at the end of the African Humid Period: modalities and forcings
NASA Astrophysics Data System (ADS)
Nutz, A.; Schuster, M.
2015-12-01
The African Humid Period (AHP), ca. 11,000 to 5,000 years ago, is a major phase that had significant impacts on the environments, ecosystems, and human occupation of Africa over several millennia. One of the most marked aspects stemming from an increase in rainfall during this climate period was the creation of numerous regional lakes and the recording of highstands for these waterbodies. The termination of the AHP is known to have been time-transgressive depending on the location, being either abrupt or gradual, thereby highlighting the complex interaction among multiple forcings and responses. Lake Turkana is one of the great lakes of the East African Rift where chronology of the AHP termination has already been investigated. In this study, the delta complex of the Turkwel River is analyzed using trajectory analysis in order to provide modalities of lake level decline during that time. Trajectories reveal six slightly descending (slope gradient: >0° to 0.4°) plateaus separated by four abrupt steps having higher slope gradients (1° to 3.8°). These abrupt steps reveal repeated short-lived strong increases in the rate of lake level decline that are superimposed on the relatively steady lake level decrease characterizing this period. This marks a stepwise forced regression at the end of the AHP in the Lake Turkana. We correlate the short-lived increases in the rate of lake level decline with short-lived abrupt decreases of solar irradiance. Through the termination of the AHP, the abrupt decreases in solar irradiance modulated the continuous precessional-based reduction of solar insulation that drastically impacted monsoon activity (i.e. rainfall) and led to variations in lake levels as a response. This suggests that short-term solar variability is able to modulate longer-term orbitally-driven climate trends having significant impacts in terms of hydrology and the regional continental environments.
NASA Astrophysics Data System (ADS)
Dughila, A.; Iancu, O. G.; Romanescu, G. T.
2012-04-01
The present study aims at investigating the concentrations and distribution levels of a series of trace elements in water and sediment samples collected from six storage lakes located in the Jijia catchment - NE of Romania. The lakes are multi-purpose water reservoirs, three of them being mainly used as a source of municipal drinking water, or for fishing, irrigation for the farms in the area, protection against floods and the regulation of river flows. By contrast, agricultural wastes, fertilizers, raw sewage effluents and road runoff constitute the predominant anthropogenic sources, which supply the lakes in question with Cd, Cu, Pb and Zn. The present study was conducted on a series of 63 sediment samples and 18 water samples, collected from the same locations, in order to establish the distribution levels of certain trace elements from the water through sediments. Sediment cores were collected from two sections across each lake by means of a motor boat, using a system that consists of a graduated sampling tube (0.9 m in length and 72.5 mm in diameter) made of Plexiglas (Eijkelkamp sample tube guide). Prior to the analyses, the samples were air-dried, ground and homogenized using an agate mortar, oven-dried at 50 °C for 6 days and then sieved through 63 µm sieves. The sediment and water samples were subjected to a digestion technique with concentrated nitric acid using a microwave oven (Berghof type), and analyzed for the following elements: Pb, Zn, Cu, Cd, Cr and Ni. The total concentration of the elements was measured through atomic absorption spectrometry (AAS) with an RSD of < 10 % from solutions. The vertical distribution of most elements in the cores examined could be characterized as relatively uniform, with higher concentrations for those collected from the lakes which are more influenced by anthropogenic factors, compared to those situated in forested areas. The lake-water quality characteristics were below the recommended drinking water standards imposed by the current legislation (MMGA Ord. No. 161/16.02.2006 - Normative regarding the classification of surface waters in order to establish the ecological status of water bodies, which combines European and Romanian provisions), with the exception of copper (with very high concentrations in all the water samples), lead and cadmium. Keywords: AAS, Jijia catchment (Romania), lake water, sediment core, trace elements
Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa
NASA Astrophysics Data System (ADS)
Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.
2009-12-01
The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.
Freehafer, Douglas A.; Pierson, Oliver
2004-01-01
In the fall of 2002, the Onondaga Lake Partnership (OLP) formed a Geographic Information System (GIS) Planning Committee to begin the process of developing a comprehensive watershed geographic information system for Onondaga Lake. The goal of the Onondaga Lake Partnership geographic information system is to integrate the various types of spatial data used for scientific investigations, resource management, and planning and design of improvement projects in the Onondaga Lake Watershed. A needs-assessment survey was conducted and a spatial data framework developed to support the Onondaga Lake Partnership use of geographic information system technology. The design focused on the collection, management, and distribution of spatial data, maps, and internet mapping applications. A geographic information system library of over 100 spatial datasets and metadata links was assembled on the basis of the results of the needs assessment survey. Implementation options were presented, and the Geographic Information System Planning Committee offered recommendations for the management and distribution of spatial data belonging to Onondaga Lake Partnership members. The Onondaga Lake Partnership now has a strong foundation for building a comprehensive geographic information system for the Onondaga Lake watershed. The successful implementation of a geographic information system depends on the Onondaga Lake Partnership’s determination of: (1) the design and plan for a geographic information system, including the applications and spatial data that will be provided and to whom, (2) the level of geographic information system technology to be utilized and funded, and (3) the institutional issues of operation and maintenance of the system.
Managing the financial risk of low water levels in Great Lakes with index-based contracts
NASA Astrophysics Data System (ADS)
Meyer, E.; Characklis, G. W.; Brown, C. M.; Moody, P.
2014-12-01
Low water levels in the Great Lakes have recently had significant financial impacts on the region's commercial shipping, responsible for transporting millions of dollars' worth of bulk goods each year. Low lake levels can significantly affect shipping firms, as cargo capacity is a function of draft, or the distance between water level and the ship's bottom. Draft increases with weight, and lower lake levels force ships to reduce cargo to prevent running aground in shallow harbors, directly impacting the finances of shipping companies. Risk transfer instruments may provide adaptable, yet unexplored, alternatives for managing these financial risks, at significantly less expense than more traditional solutions (e.g., dredging). Index-based financial instruments can be particularly attractive as contract payouts are directly linked to well-defined transparent metrics (e.g., lake levels), eliminating the need for subjective adjustors, as well as concerns over moral hazard. In developing such instruments, a major challenge is identifying an index that is well correlated with financial losses, and thus a contract that reliably pays out when losses are experienced (low basis risk). In this work, a relationship between lake levels and shipping revenues is developed, and actuarial analyses of the frequency and magnitude of revenue losses is completed using this relationship and synthetic water level data. This analysis is used to develop several types of index-based contracts. A standardized suite of binary contracts is developed, with each indexed to lake levels and priced according to predefined thresholds. These are combined to form portfolios with different objectives (e.g. options, collars), with optimal portfolio structure and length of coverage determined by limiting basis risk and contract cost, using simulations over the historic dataset. Results suggest that portfolios of these binary contracts can substantially reduce the risk of financial losses during periods of low lake level at a cost of only 1-3% of total revenues.
Hydrology of Central Florida Lakes - A Primer
Schiffer, Donna M.
1998-01-01
INTRODUCTION Lakes are among the most valued natural resources of central Florida. The landscape of central Florida is riddled with lakeswhen viewed from the air, it almost seems there is more water than land. Florida has more naturally formed lakes than other southeastern States, where many lakes are created by building dams across streams. The abundance of lakes on the Florida peninsula is a result of the geology and geologic history of the State. An estimated 7,800 lakes in Florida are greater than 1 acre in surface area. Of these, 35 percent are located in just four counties (fig. 1): Lake, Orange, Osceola, and Polk (Hughes, 1974b). Lakes add to the aesthetic and commercial value of the area and are used by many residents and visitors for fishing, boating, swimming, and other types of outdoor recreation. Lakes also are used for other purposes such as irrigation, flood control, water supply, and navigation. Residents and visitors commonly ask questions such as Whyare there so many lakes here?, Why is my lake drying up (or flooding)?, or Is my lake spring-fed? These questions indicate that the basic hydrology of lakes and the interaction of lakes with ground water and surface water are not well understood by the general population. Because of the importance of lakes to residents of central Florida and the many questions and misconceptions about lakes, this primer was prepared by the U.S. Geological Survey (USGS) in cooperation with the St. Johns River Water Management District and the South Florida Water Management District. The USGS has been collecting hydrologic data in central Florida since the 1920s, obtaining valuable information that has been used to better understand the hydrology of the water resources of central Florida, including lakes. In addition to data collection, as of 1994, the USGS had published 66 reports and maps on central Florida lakes (Garcia and Hoy, 1995). The main purpose of this primer is to describe the hydrology of lakes in central Florida, the interactions between lakes and ground- and surface-waters, and to describe how these interactions affect lake water levels. Included are descriptions of the basic geology and geomorphology of central Florida, origins of central Florida lakes, factors that affect lake water levels, lake water quality, and common methods of improving water quality. The geographic area discussed in this primer is approximate (fig. 1) and includes west and east-central Florida, extending from the Gulf of Mexico to the Atlantic Ocean coastlines, northward into Marion, Putnam, and Flagler Counties, and southward to Lake Okeechobee. The information presented here was obtained from the many publications available on lakes in central Florida, as well as from publications on Florida geology, hydrology, and primers on ground water, surface water, and water quality. Many publications are available that provide more detailed information on lake water quality, and this primer is not intended as an extensive treatise on that subject. The reader is referred to the reference section of this primer for sources of more detailed information on lake water quality. Lakes discussed in this report are identified in figure 2. Technical terms used in the report are shown in bold italics and are defined in the glossary. The classification of some water bodies as lakes is highly subjective. What one individual considers a lake another might consider a pond. Generally, any water- filled depression or group of depressions in the land surface could be considered a lake. Lakes differ from swamps or wetlands in the type and amount of vegetation, water depth, and some water-quality characteristics. Lakes typically have emergent vegetation along the shoreline with a large expanse of open water in the center. Swamps or wetlands, on the other hand, are characterized by a water surface interrupted by the emergence of many varieties of plant life, from saw grasses to cypress trees. Lakes may be na
Rettig, S.A.; Bortleson, Gilbert C.
1983-01-01
An intensive limnological study of Shasta Lake was made in conjunction with the California Department of Water Resources during the 1977 drought. Water-quality data were collected from March 1977 through September 1978 at six lake stations and four lake tributary stations. Data collected during and after the drought were compared. Lake water quality is described as a function of lake morphometry, climate, hydrology, and reservoir hydraulics. Results indicate Shasta Lake is a warm monomictic lake. Tributary inflow to the lake and outflow through the dam generate density currents which promote mixing at depth and the development of an extensive metalimnion. During the drought, record low lake levels resulted in the exposure of an extensive nearshore sediment zone. Resuspended sediments caused a deterioration of water quality. The most notable effects, in comparison with post-drought conditions, were decreased light penetration, increased dissolved-solids concentration and specific conductance, decreased dissolved-oxygen concentrations, and elevated nutrient levels. A hypolimnetic anoxic condition was observed at the upstream stations of the lake. (USGS)
The Provo shoreline of Lake Bonneville: Chapter 7
Miller, David
2016-01-01
G.K. Gilbert studied the Bonneville basin 150 years ago and his findings have largely stood the test of time: The Provo shoreline, the most prominent geomorphic feature of Lake Bonneville, reflects threshold-stabilized overflow of the lake after the Bonneville flood and before a drier climate caused the lake to shrink. Subsequent refinements in chronology allow the Provo lake to be identified as about 18.2–14.8 cal ka BP, and stratigraphic studies show that the lake was gradually growing deeper during that time. Because the lake deepened through time as isostatic rebound occurred, individual landforms in general reflect processes operating for a small part of the ~ 3400 year of Provo time. Opportunities remain to improve our knowledge of the Provo lake; topics include (1) refinement of lake levels using delta and beach stratigraphy; (2) improved understanding of lake water chemistry and its role in determining deep-water sediment and cave deposits, which have disparate interpretations; (3) identifying processes at the threshold that caused the lake level to rise; and (4) identifying climate variability signals during Provo time.
Satellite-based Paleo and Recent Lake Changes across the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Sheng, Y.; Luo, J.; Shah, C. A.; Kroll, C. N.; Li, X.; Yao, T.; Wu, Y.
2007-12-01
The Tibetan Plateau, home to the world's largest high-altitude lake group, is experiencing significant climate change with a pronounced temperature rise of 0.16°C per decade. Tibetan lakes have been impacted greatly, and in return they serve as a sensitive indicator of regional and global climate and water cycle variability. Past lake dynamics is essential for us to better understand the current and inferred future lake changes. Owing to fact that paleo lake shores have been extensively preserved on this remote plateau, paleo lake change since the late Pleistocene (about 25 ka BP) can be inferred with the assistance of digital elevation models from paleo shorelines visible on high-resolution imagery. We have recovered the lake extent more than 650 major contemporary lakes occupying a total area of 21,613 km2, and it turns out that these lakes were broken from original 173 late Pleistocene mega lakes. The total lake area shrinkage and water loss are conservatively estimated at 42,109 km2 and 2,936 km3 respectively. Nearly two-thirds of late Pleistocene lake area has disappeared. More recent lake dynamics over the past 30 years is monitored using archived satellite data, and only minor changes are found in most areas. The detected paleo and recent lake changes exhibit strong spatial patterns. Three distinct zones of paleo changes can be identified trending in the northeast to the southwest direction. Lakes in the first zone have only minor water-level drops (less than 20 meters). The second zone is the moderate zone, with 20-60 meter water level drops. Lakes in the third zone have the greatest water-level drop, up to 285 meters. Paleo shorelines are found extensively in this zone. The spatial distribution of the zones is found highly related to the Quaternary glaciation patterns. Glacial dynamics and stream network changes and other factors may explain the detected recent lake changes. It is found that glacial dynamics has the greatest impact on the detected paleo and recent lake changes, and will continue to play a critical role on Tibetan lake dynamics in the near future.
Application of a Lower Food Resulting from Aquatic Invasive Species in Lake Michigan
Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model construct has been applied in two phases to investigate ecosystem-level responses and effects corresponding with...
Crew Earth Observations (CEO) taken during Expedition 8
2003-11-08
ISS008-E-05649 (8 November 2003) --- Lake Titicaca was featured in this image taken by one of the Expedition 8 crewmembers onboard the International Space Station (ISS). Lake Titicaca, at an elevation of 12,507 feet in the Andean Altiplano, is the highest large lake in the world. More than 120 miles long and 50 miles wide, it was the center of Incan civilization, and today straddles the boundary between Peru and Bolivia. Scientists have studied indicators of the water level changes over time to tease out information about precipitation shifts in the high Andes and the South American tropics. Following are some observations by NASA scientists who are studying this imagery: Because the lake occupies the low point of the Altiplano, much of the water of the high plateau eventually trickles into the lake. And because it is surrounded by mountains, very little of Lake Titicacas water drains out -- the Rio Desguadero is the only major outflow river. So, like a bathtub with no drain, this large and deep lake (with depths of several hundred feet) has become the collecting basin for thousands of years of sediment. These sediments and their fossils contain clues about past climate conditions. The restricted outflow of the lake creates conditions where even shorter, interannual climate cycles (like El Niño /Southern Oscillation) impact Lake Titicacas water levels. Recent lake level variations have been several meters, with low levels occurring during regional droughts of El Niños. Right now, the region is relatively wet. In this image, the dark greens of the wetlands along the shallower margins of the lake contrast strongly with the surrounding desert. But the even large cities like Puno, Peru (100,000 people) are difficult to discern from the surrounding countryside.
NASA Astrophysics Data System (ADS)
Gronewold, A.; Bruxer, J.; Smith, J.; Hunter, T.; Fortin, V.; Clites, A. H.; Durnford, D.; Qian, S.; Seglenieks, F.
2015-12-01
Resolving and projecting the water budget of the North American Great Lakes basin (Earth's largest lake system) requires aggregation of data from a complex array of in situ monitoring and remote sensing products that cross an international border (leading to potential sources of bias and other inconsistencies), and are relatively sparse over the surfaces of the lakes themselves. Data scarcity over the surfaces of the lakes is a particularly significant problem because, unlike Earth's other large freshwater basins, the Great Lakes basin water budget is (on annual scales) comprised of relatively equal contributions from runoff, over-lake precipitation, and over-lake evaporation. Consequently, understanding drivers behind changes in regional water storage and water levels requires a data management framework that can reconcile uncertainties associated with data scarcity and bias, and propagate those uncertainties into regional water budget projections and historical records. Here, we assess the development of a historical hydrometeorological database for the entire Great Lakes basin with records dating back to the late 1800s, and describe improvements that are specifically intended to differentiate hydrological, climatological, and anthropogenic drivers behind recent extreme changes in Great Lakes water levels. Our assessment includes a detailed analysis of the extent to which extreme cold winters in central North America in 2013-2014 (caused by the anomalous meridional upper air flow - commonly referred to in the public media as the "polar vortex" phenomenon) altered the thermal and hydrologic regimes of the Great Lakes and led to a record setting surge in water levels between January 2014 and December 2015.
NASA Astrophysics Data System (ADS)
Davis, Tom R.; Harasti, David; Smith, Stephen D. A.; Kelaher, Brendan P.
2016-11-01
Climate change induced sea level rise will affect shallow estuarine habitats, which are already under threat from multiple anthropogenic stressors. Here, we present the results of modelling to predict potential impacts of climate change associated processes on seagrass distributions. We use a novel application of relative environmental suitability (RES) modelling to examine relationships between variables of physiological importance to seagrasses (light availability, wave exposure, and current flow) and seagrass distributions within 5 estuarine embayments. Models were constructed separately for Posidonia australis and Zostera muelleri subsp. capricorni using seagrass data from Port Stephens estuary, New South Wales, Australia. Subsequent testing of models used independent datasets from four other estuarine embayments (Wallis Lake, Lake Illawarra, Merimbula Lake, and Pambula Lake) distributed along 570 km of the east Australian coast. Relative environmental suitability models provided adequate predictions for seagrass distributions within Port Stephens and the other estuarine embayments, indicating that they may have broad regional application. Under the predictions of RES models, both sea level rise and increased turbidity are predicted to cause substantial seagrass losses in deeper estuarine areas, resulting in a net shoreward movement of seagrass beds. Seagrass species distribution models developed in this study provide a valuable tool to predict future shifts in estuarine seagrass distributions, allowing identification of areas for protection, monitoring and rehabilitation.
Features of lava lake filling and draining and their implications for eruption dynamics
Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.
2009-01-01
Lava lakes experience filling, circulation, and often drainage depending upon the style of activity and location of the vent. Features formed by these processes have proved difficult to document due to dangerous conditions during the eruption, inaccessibility, and destruction of features during lake drainage. Kilauea Iki lava lake, Kilauea, Hawai'i, preserves many such features, because lava ponded in a pre-existing crater adjacent to the vent and eventually filled to the level of, and interacted with, the vent and lava fountains. During repeated episodes, a cyclic pattern of lake filling to above vent level, followed by draining back to vent level, preserved features associated with both filling and draining. Field investigations permit us to describe the characteristic features associated with lava lakes on length scales ranging from centimeters to hundreds of meters in a fashion analogous to descriptions of lava flows. Multiple vertical rinds of lava coating the lake walls formed during filling as the lake deepened and lava solidified against vertical faces. Drainage of the lake resulted in uneven formation of roughly horizontal lava shelves on the lakeward edge of the vertical rinds; the shelves correlate with stable, staggered lake stands. Shelves either formed as broken relict slabs of lake crust that solidified in contact with the wall or by accumulation, accretion, and widening at the lake surface in a dynamic lateral flow regime. Thin, upper lava shelves reflect an initially dynamic environment, in which rapid lake lowering was replaced by slower and more staggered drainage with the formation of thicker, more laterally continuous shelves. At all lava lakes experiencing stages of filling and draining these processes may occur and result in the formation of similar sets of features. ?? Springer-Verlag 2009.
NASA Astrophysics Data System (ADS)
Philobbos, Emad R.; Essa, Mahmoud A.; Ismail, Mustafa M.
2015-01-01
Siliciclastic and carbonate sediments were laid down in southern Wadi Qena and around the Qena Nile bend (Middle Egypt) in a lacustrine-alluvial environment which dominated a relatively wide lake, the "Qena Lake" that interrupted the Nile course during the Neogene time. These sediments are represented mainly by the oldest dominantly lacustrine chocolate brown mudstones of the Khuzam Formation that accumulated nearer to the center of that lake (now forming a 185 m terrace above sea level), overlain by the dominantly lacustrine carbonates and marls of the Durri Formation which accumulated during semi-arid conditions, mainly nearer to the periphery of the lake (now forming 170, 180 and 185 m terraces a.s.l. in the studied sections). The water level of the "Qena Lake" reached 240 m. above sea level, as indicated by the maximum carbonate elevation reached in the region. Finally fanglomerates of the Higaza Formation with its chert and limestone conglomerates accumulated during torrential periods at higher elevations (forming 240, 300 and 400 m terraces a.s.l.). These three formations accumulated in this particular area before and during the unroofing of the basement rocks of the Eastern Desert, west of the watershed. According to the known Early Miocene initial development of the Nile Valley, beside the occurrence of similar deposits of Oligocene age along the eastern side of the basement range, the earlier known Pliocene age given for these sediments in the Qena area is here questioned. It might belong to earlier Miocene?-Pliocene times. As the basement rocks of the Eastern Desert were still covered by Cretaceous-Paleogene sedimentary rocks while the Khuzam, Durri and Higaza Formations were accumulating in the Qena Lake region, it is believed, contrary to the belief of some authors, that the basement rocks of the Eastern Desert were not the source of these sediments. The carbonate petrographic study, beside the X-ray, and the11 major oxides and 22 trace elements analyses, all point to that the mudrock sediments of the oldest Neogene Khuzam and Durri Formations of the "Qena Lake" phase were carried out and entered the area of southern Wadi Qena and around the Qena Nile bend mainly from the south. The intermediate igneous rocks of southern Egypt and northern Sudan were the main source areas. Additional contributions had possibly come from the weathering of the non-marine to brackish Cretaceous (pre-Campanian) shales of southern Egypt. Accumulation of conglomerates with mixed igneous and sedimentary clasts followed (forming 7 terraces in Wadi Qena, ranging from 240 m in the north to 140 m a.s.l. in the south), constituting the newly introduced Late Pliocene formation; El Heita Formation. These conglomerates were mainly drained from the then exposed basement rocks of the middle parts of Wadi Qena, and cut through the older Neogene sediments. Later on, after the lake became connected to the northern parts of the Nile Valley, the lake water level was lowered to 180 m a.s.l., and another lake with this lower level was formed (Isawiyya Lake). With the successive lowering of water level the younger well known Issawia, Qena, Abbassia and Dandara Formations accumulated successively; nearer to, and within, the present Nile Valley.
Transient modelling of lacustrine regressions: two case studies from the Andean Altiplano
NASA Astrophysics Data System (ADS)
Condom, Thomas; Coudrain, Anne; Dezetter, Alain; Brunstein, Daniel; Delclaux, François; Jean-Emmanuel, Sicart
2004-09-01
A model was developed for estimating the delay between a change in climatic conditions and the corresponding fall of water level in large lakes. The input data include: rainfall, temperature, extraterrestrial radiation and astronomical mid-month daylight hours. The model uses two empirical coefficients for computing the potential evaporation and one parameter for the soil capacity. The case studies are two subcatchments of the Altiplano (196 000 km2), in which the central low points are Lake Titicaca and a salar corresponding to the desiccation of the Tauca palaeolake. During the Holocene, the two catchments experienced a 100 m fall in water level corresponding to a decrease in water surface area of 3586 km2 and 55 000 km2, respectively. Under modern climatic conditions with a marked rainy season, the model allows simulation of water levels in good agreement with the observations: 3810 m a.s.l. for Lake Titicaca and lack of permanent wide ponds in the southern subcatchment. Simulations were carried out under different climatic conditions that might explain the Holocene fall in water level. Computed results show quite different behaviour for the two subcatchments. For the northern subcatchment, the time required for the 100 m fall in lake-level ranges between 200 and 2000 years when, compared with the present conditions, (i) the rainfall is decreased by 15% (640 mm/year), or (ii) the temperature is increased by 5.5 °C, or (iii) rainfall is distributed equally over the year. For the southern subcatchment (Tauca palaeolake), the time required for a 100 m decrease in water level ranges between 50 and 100 years. This decrease requires precipitation values lower than 330 mm/year.
Metz, Patricia A.; Sacks, Laura A.
2002-01-01
The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study lakes, which is additional evidence of the limited confinement at Round Lake. A comparison of the water quality and lake-bottom sediments at the three lakes indicate that Round Lake is strongly influenced by the addition of large quantities of calcium-bicarbonate enriched augmentation water. Round Lake had higher alkalinity, pH, calcium and dissolved oxygen concentrations, specific conductance, and water clarity than the two non-augmented lakes. Round Lake was generally saturated to supersaturated with respect to calcite, but was undersaturated when augmentation was low and after high rainfall periods. Calcium carbonate has accumulated in the lake sediments from calcite precipitation, from macrophytes such as Nitella sp., and from the deposition of carbonate-rich mollusk shells, such as Planerbella sp., both of which thrive in the high alkalinity lake water. Lake-bottom sediments and aquatic biota at Round Lake had some of the highest radium-226 activity levels measured in a Florida lake. The high radium-226 levels (27 disintegrations per minute per dry mass) can be atrributed to augmenting the lake with ground water from the Upper Floridan aquifer. Although the ground water has relatively low levels of radium-226 (5.8 disintegrations per minute per liter), the large volumes of ground water added to the lake for more than 30 years have caused radium-226 to accumulate in the sediments and lake biota.The Round Lake basin had higher calcium and bicarbonate concentrations in the surficial aquifer than at the non-augmented lakes, which indicates the lateral leakage of calcium-bicarbonate enriched lake water into the surficial aquifer. Deuterium and oxygen-18 data indicated that water in well nests near the lake consists of as much as 100 percent lake leakage, and water from the augmentation well had a high percentage of recirculated lake water (between 59 and 73 percent lake leakage). The ground water surrounding Round Lake was undersaturated with respect to calcite, indicating that the water is capable of dissolving calcite in the underlying limestone aquifer. Annual and monthly ground-water outflow (lake leakage) was significantly higher at Round Lake than at the non-augmented lakes for the 3-year study period. Minimum estimates of the total annual ground-water inflow and outflow were made from monthly net ground-water flow values. Based on these estimates, total annual groundwater outflow from Round Lake was more than 10 times higher than for the non-augmented lakes. Local ground-water pumping, augmentation, and hydrogeologic factors are responsible for the high net ground-water outflow at Round Lake. Localized ground-water pumping causes the head difference between the lake and the Upper Floridan aquifer to increase, which increases lake leakage and results in lower lake levels. Augmenting the lake further increases the head difference between the lake, the water table, and the Upper Floridan aquifer, which results in an increase in lateral and vertical lake leakage. The lack of confinement or breaches in the intermediate confining unit facilitates the downward movement of this augmented lake water back into the Upper Floridan aquifer. The increase in ground-water circulation in the leakage-dominated hydrogeologic setting at Round Lake has made the basin more susceptible to karst activity (limestone dissolution, subsidence, and sinkhole formation)
NASA Astrophysics Data System (ADS)
Petticrew, Ellen; Owens, Philip; Albers, Sam
2016-04-01
On 4th August 2014, the tailings impoundment of the Mount Polley copper and gold mine in British Columbia failed. Material from the impoundment (surface area = 2.7 km2) flowed into nearby Polley Lake and Hazeltine Creek, before discharging into Quesnel Lake, a large (ca. 100 km long, >500 m deep), relatively pristine lake. Initial estimates suggest that approximately 25 Mm3 of tailings (water and solids) and eroded soils and surficial materials from Hazeltine Creek were delivered to Quesnel Lake, raising the lake by 7.7 cm. Much of this material was deposited at the bottom of Quesnel Lake but a plume of fine-grained sediment (D50 of ca. 1 μm) remained suspended in the water column. The impact of the distribution of this sediment was monitored over the next 15 months using water column profiling for temperature, conductivity, fluorescence and turbidity with depth. The plume movement was regulated by natural processes associated with the physical limnology of this large fjord lake, specifically, seiche events which transferred suspended particles both up-lake, against the flow regime, and down-lake into the Quesnel River. Samples of lake water and bottom sediment taken from the impacted area show elevated levels of total metals and other elements, which may have important ecosystem implications in this watershed. Indeed, the breach occurred at a time when a peak run of sockeye salmon were returning to their natal streams in the Quesnel basin. Zooplankton sampling for metals was initiated in fall 2014 to determine up take of metals into the food web. This poster describes the failure of the impoundment dam and presents results of sampling the aquatic environment over the first fifteen months of impact.
NASA Astrophysics Data System (ADS)
Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.
2011-04-01
A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ 18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake's hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ 18O values decrease. Past lake-water δ 18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ 18O, supplemented by those in carbonate and organic δ 13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ˜AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ˜AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ 18O, a similarly small, stratified, alkaline lake located ˜250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.
NASA Astrophysics Data System (ADS)
Loomis, S. E.; Russell, J. M.; Kelly, M. A.; Eggermont, H.; Verschuren, D.
2013-12-01
Tropical lapse rate variability on glacial/interglacial time scales has been hotly debated since the publication of CLIMAP in 1976. Low-elevation paleotemperature reconstructions from the tropics have repeatedly shown less warming from the Last Glacial Maximum (LGM) to present than reconstructions from high elevations, leading to widespread difficulty in estimating the true LGM-present temperature change in the tropics. This debate is further complicated by the fact that most paleotemperature estimates from high elevations in the tropics are derived from pollen- and moraine-based reconstructions of altitudinal shifts in vegetation belts and glacial equilibrium line altitudes (ELAs). These traditional approaches rely on the assumption that lapse rates have remained constant through time. However, this assumption is problematic in the case of the LGM, when pervasive tropical aridity most likely led to substantial changes in lapse rates. Glycerol dialkyl glycerol tetraethers (GDGTs) can be used to reconstruct paleotemperatures independent of hydrological changes, making them the ideal proxy to reconstruct high elevation temperature change and assess lapse rate variability through time. Here we present two new equatorial paleotemperature records from high elevations in East Africa (Lake Rutundu, Mt. Kenya and Lake Mahoma, Rwenzori Mountains, Uganda) based on branched GDGTs. Our record from Lake Rutundu shows deglacial warming starting near 17 ka and a mid-Holocene thermal maximum near 5 ka. The overall amplitude of warming in the Lake Rutundu record is 6.8×1.0°C from the LGM to the present, with mid-Holocene temperatures 1.6×0.9°C warmer than modern. Our record from Lake Mahoma extends back to 7 ka and shows similar temperature trends to our record from Lake Rutundu, indicating similar temporal resolution of high-elevation temperature change throughout the region. Combining these new records with three previously published GDGT temperature records from different elevations in East Africa (Sacred Lake, Lake Tanganyika, and Lake Malawi), we are able to reconstruct a continuous record of lapse rates and freezing level heights (FLHs) back to the LGM. We find that tropical lapse rates have varied widely over the last 22 ky, with the largest (lowest) lapse rate (FLH) around the LGM, while the smallest (highest) lapse rate (FLH) occurs during the mid-Holocene, confirming the amplification of warming at high altitudes between the LGM and present. These lapse rate and FLH reconstructions match records of regional hydrological variability, confirming the importance of glacial/interglacial humidity variations on altitudinal temperature gradients in the tropics. Furthermore, the FLH record largely matches records of tropical glacier ELA changes, indicating that warming from LGM-present was likely amplified at high altitudes throughout the tropics.
Sorensen, J.A.; Kallemeyn, L.W.; Sydor, M.
2005-01-01
A three-year (2001−2003) monitoring effort of 14 northeastern Minnesota lakes was conducted to document relationships between water-level fluctuations and mercury bioaccumulation in young-of-the-year (YOY) yellow perch (Perca flavescens) collected in the fall of each year at fixed locations. Six of those lakes are located within or adjacent to Voyageurs National Park and are influenced by dams on the outlets of Rainy and Namakan lakes. One site on Sand Point Lake coincides with a location that has nine years of previous monitoring suitable for addressing the same issue over a longer time frame. Mean mercury concentrations in YOY yellow perch at each sampling location varied significantly from year to year. For the 12-year monitoring site on Sand Point Lake, values ranged from 38 ng gww-1 in 1998 to 200 ng gww-1 in 2001. For the 14-lake study, annual mean concentrations ranged by nearly a factor of 2, on average, for each lake over the three years of record. One likely factor responsible for these wide variations is that annual water-level fluctuations are strongly correlated with mercury levels in YOY perch for both data sets.
Great Lakes fish consumption advisories: is mercury a concern?
Bhavsar, Satyendra P; Awad, Emily; Mahon, Chris G; Petro, Steve
2011-10-01
The majority of the restrictive fish consumption advisories for the Canadian waters of the Great Lakes issued by the Ontario Ministry of the Environment, Canada based on the most restrictive contaminant, are attributed to polychlorinated biphenyls (PCBs) and dioxins/furans. Mercury currently causes about <1-2.5% and 9-16% of the restrictive advisories for the general population (GP) and sensitive population of children under 15 and women of child-bearing age (SP), respectively (the St. Lawrence River is not considered here). Toxaphene causes minor restrictions. At present it is not clear that if PCBs and dioxins/furans were to decrease below their fish consumption advisory guidelines, current fish mercury levels would replace some, most or all of the consumption restrictions. In order to examine this, location-, species- and size-specific fish consumption advisories were calculated for a "mercury only" scenario by disregarding the presence of the other contaminants. In the absence of other contaminants, mercury would replace some of the current advisories caused by other contaminants; however, the overall advisories would be minimally to moderately restrictive (<1-7% for GP; 13-32% for SP). Almost half of the Great Lake blocks considered here would have more than double the unrestricted consumption advisories than they currently have, with Lake Ontario showing the greatest improvement. Certain size ranges of each species across the main basins of the Canadian waters of the Great Lakes would be deemed safe for unrestricted consumption. However, at least some sizes of a number of species from certain locations of each lake would still have "do not eat" advisories issued for the SP, although these restrictions would be minimal for Lake Erie. These results suggest that the current mercury levels in the Canadian Great Lakes fish are of very minor concern for the GP and of moderate concern for the SP.
Ballesteros, M L; Hued, A C; Gonzalez, M; Miglioranza, K S B; Bistoni, M A
2017-07-01
The objective of this work was to evaluate the health status of an economic and ecologically important fish species from Mar Chiquita Lake, a RAMSAR site located in Cordoba, Argentina, relative to the levels of selected persistent organic pollutants (POPs) in lake water and fish tissues. Odontesthes bonariensis was used as a model species, and its health was estimated by means of histological indices in gills and liver. Sampling was performed according to rainy and dry seasons (i.e. dry, rainy and post-rainy). Gill and liver histopathology were evaluated by semi-quantitative indices and morphometric analysis. Although epithelial lifting in gills and lipid degeneration in liver were frequently registered, they are considered as reversible if environmental conditions improve. During rainy and post-rainy seasons fish presented significantly higher scores of liver and total indices. These higher index scores were correlated with increased levels of POPs in gill and liver tissue. Therefore, preventive measures are needed to mitigate the entry of these compounds into the lake.
What happens to near-shore habitat when lake and reservoir water levels decline?
Water management and drought can lead to increased fluctuation and declines in lake and reservoir water levels. These changes can affect near-shore physical habitat and the biotic assemblages that depend upon it. Structural complexity at the land-water interface of lakes promote...
NASA Astrophysics Data System (ADS)
Sylvestre, Florence; Perez, Liseth; Paillès, Christine; Schwalb, Antje; Kutterolf, Steffen; Brenner, Mark; Curtis, Jason; Ariztegui, Daniel; Anselmetti, Flavio; Hodell, David
2016-04-01
Orbital precession is thought to have been the major mechanism that drove precipitation and temperature changes in the tropics during the Quaternary. Other mechanisms, however, such as the rate of meridional overturning of the ocean, tropical carbon production, atmospheric methane and water vapour, and hence the modes of tropical ocean-atmosphere interactions, need to be considered. Few sites are suitable to explore the sensitivity of these different components of the climate system or their relative contributions to climate conditions through time. We present new, continuous, high-resolution paleoenvironmental and paleoclimate results from a long sediment sequence collected in Lake Petén Itzá, northern Guatemala. The composite core (PI-6) was dated using radiocarbon and tephra stratigraphy and spans the last ~85 ka. We inferred past conditions using aquatic bioindicators (diatoms, ostracods) that are abundant in the sediment and respond rapidly to climate and environmental changes, especially lake-level changes. Lake-level highstands occurred during the intervals 80-61 ka, 40-32 ka, 23-16 ka, and with a lower-amplitude episode between 47 and 45 ka. Sharp transitions from humid to arid, and arid to humid conditions are recorded during Heinrich events H1, H2, H3, and H4, whereas H5 and H6 correspond to persistent low lake levels. Lake-level fluctuations are largely in phase with precession cycles, except before 50 ka. Lake status, however, is not always in phase with expectations from insolation forcing. For instance, during MIS 4 (ca. 71-57 ka) and the Last Glacial Maximum (ca. 23-19 ka), lake level was high in Petén Itzá, implying moister conditions, whereas low lake level would be expected because of the southerly position of the ITCZ during those times. The moist conditions are attributed to intensified cold air masses during glacial stages, coming mainly from the North American interior and bringing precipitation during winter (Hodell et al., 2008). Moreover, between 80 and 61 ka, fresher sea surface waters are inferred from the adjacent oceans, associated with globally warmer temperatures, implying moister conditions for the Yucatán Peninsula (Leduc et al., 2007). Our results highlight shifts through time in the major forcing mechanisms that triggered water-level changes in Lake Petén Itzá. These new paleoenvironmental proxy data will be useful for selecting parameters to be included in future modelling experiments that test forcing of tropical climatic changes during the late Quaternary. Hodell, D.A., Anselmetti, F.S., Ariztegui, D., Brenner, M., Curtis, J.H., Gilli, A., Grzesik, D.A., Guilderson, T.J., Muller, A.D., Bush, M.B., Correa-Metrio, Y.A., Escobar, J., and Kutterolf, S., 2008. An 85-ka Record of Climate Change in Lowland Central America, Quaternary Science Reviews, 27, 1152- 1165. Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., Bard, E., 2007. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature, 445, 908-911.
Gamete ripening and hormonal correlates in three strains of lake trout
Foster, N.R.; O'Connor, D.V.; Schreck, C.B.
1993-01-01
In our 2-year laboratory study of hatchery-reared adult lake trout Salvelinus namaycush of the Seneca Lake, Marquette (Lake Superior Lean), and Jenny Lake strains, we compared gamete ripening times and changes in plasma concentrations of seven hormones. If interstrain differences in these traits were found, such differences might help explain the apparent failure of stocked fish of these strains to develop large, naturally reproducing populations in the Great Lakes. The complex temporal changes in plasma hormone levels that occur during sexual maturation in lake trout have not been previously described. We detected little evidence of temporal isolation that would prevent interbreeding among the three strains. Strain had no effect on ovulation date (OD) in either year. Strain did not affect spermiation onset date (SOD) in year 1 but did in year 2, when the mean SOD of Jenny Lake males was earlier than that of Seneca Lake males but not different from that of Marquette males. Hormonal data were normalized around ODs for individual females and SODs for individual males. In females, estradiol-17β (E2) was highest 8 weeks before the OD; the highest testosterone (T) level occurred 6 weeks before the OD, and the next highest level occurred simultaneously with the highest level of 11-ketotestosterone (11-KT) 2 weeks before the OD. Plasma levels of 17∝-hydroxy-20β-dihydroprogesterone (DHP) peaked 1 week before the OD, then abruptly declined immediately after. Cortisol (F), triiodothyronine (T3), and thyroxine (T4) were highly variable, but F was the only hormone that showed no trend with week in either year. In males, plasma E2 levels were highest 3 weeks before the SOD, highest levels of T and of 11-KT occurred simultaneously 2 weeks after the SOD, and DHP peaked 5 weeks after the SOD and 3 weeks after the highest levels of T and 11-KT. As in females, plasma levels of F, T3, and T4 were highly variable, and F was the only hormone that showed no trend with week in either year. Strain had no effect on any hormones in females and only on T and F in males. The lack of pronounced interstrain differences in gamete ripening dates and reproductive endocrinology and the similarity of the temporal patterns and relative concentrations of hormones to those reported for other salmonids suggest nothing unusual or dysfunctional about these reproductive traits that would impede lake trout rehabilitation in the Great Lakes.
2006-03-01
ISS012-E-20585 (9 March 2006) --- A portion of Lake Poopo is featured in this image photographed by an Expedition 12 crewmember on the International Space Station. Lake Poopo sits high in the Bolivian Andes, catching runoff from its larger neighbor to the north - Lake Titicaca (not shown) - by way of the Desaguadero River (muddy area at the north end of the lake). Because Lake Poopo is very high in elevation (roughly 3400 meters or 11,000 feet above sea level), very shallow (generally less than 3 meters or 9 feet), and the regional climate is very dry, small changes in precipitation in the surrounding basin have large impacts on the water levels and areal extent of Lake Poopo. When the lake fills during wet periods, Poopo drains from the south end into Salar de Coipasa (not shown). Water levels in Poopo are important because it is one of South Americas largest saline lakes, and a prime stop for migratory birds, including flamingoes. Last November, water levels had dropped, exposing large tracts of salt and mud flats. A wet and cool period between December and the end of February resulted in flooding of Poopo with muddy waters from the Desaguadero River. NASA managers have tasked the station crew to track such changes, which are related to regional weather patterns. Lake Poopos sensitivity to precipitation in the high Andes (possibly reflecting larger climate cycles) provides an excellent visual indicator of these trends.
2006-03-09
ISS012-E-20586 (9 March 2006) --- A portion of Lake Poopo is featured in this image photographed by an Expedition 12 crewmember on the International Space Station. Lake Poopo sits high in the Bolivian Andes, catching runoff from its larger neighbor to the north - Lake Titicaca (not shown) - by way of the Desaguadero River (muddy area at the north end of the lake). Because Lake Poopo is very high in elevation (roughly 3400 meters or 11,000 feet above sea level), very shallow (generally less than 3 meters or 9 feet), and the regional climate is very dry, small changes in precipitation in the surrounding basin have large impacts on the water levels and areal extent of Lake Poopo. When the lake fills during wet periods, Poopo drains from the south end into Salar de Coipasa (not shown). Water levels in Poopo are important because it is one of South Americas largest saline lakes, and a prime stop for migratory birds, including flamingoes. Last November, water levels had dropped, exposing large tracts of salt and mud flats. A wet and cool period between December and the end of February resulted in flooding of Poopo with muddy waters from the Desaguadero River. NASA managers have tasked the station crew to track such changes, which are related to regional weather patterns. Lake Poopos sensitivity to precipitation in the high Andes (possibly reflecting larger climate cycles) provides an excellent visual indicator of these trends.
Meteorological factors affecting the sudden decline in Lake Urmia's water level
NASA Astrophysics Data System (ADS)
Arkian, Foroozan; Nicholson, Sharon E.; Ziaie, Bahareh
2018-01-01
Lake Urmia, in northwest Iran, is the second most saline lake in the world. During the past two decades, the level of water has markedly decreased. In this paper, climate of the lake region is investigated by using data from four meteorological stations near the lake. The data include climatic parameters such as temperature, precipitation, humidity, wind speed, sunshine hours, number of rain days, and evaporation. Climate around the lake is examined by way of climate classification in the periods before and after the reduction in water level. Rainfall in the lake catchment is also evaluated using both gauge and satellite data. The results show a significant decreasing trend in mean annual precipitation and wind speed and an increasing trend in annual average temperature and sunshine hours at the four stations. Precipitation and wind speed have decreased by 37 mm and 2.7 m/s, respectively, and the mean annual temperature and sunshine hours have increased by 1.4 °C and 41.6 days, respectively, over these six decades. Only the climate of the Tabriz region is seen to have significantly changed, going from semiarid to arid. Gauge records and satellite data show a large-scale decreasing trend in rainfall since 1995. The correlation between rainfall and year-to-year changes in lake level is 0.69 over the period 1965 to 2010. The relationship is particularly strong from the early 1990s to 2005. This suggests that precipitation has played an important role in the documented decline of the lake.
Mazzoni, Michela; Boggio, Emanuela; Manca, Marina; Piscia, Roberta; Quadroni, Silvia; Bellasi, Arianna; Bettinetti, Roberta
2018-05-30
Despite DDT and PCB having been banned for about 40 years, they are still detectable in the environment. In the present research we specifically investigated the trophic transfer of these organochlorine contaminants (OC) through a pelagic food web of a deep lake in Northern Italy (Lake Como) over time. Zooplankton and fish were sampled each season of a year and OC concentrations and the carbon and nitrogen isotopic ratios were measured. By using stable isotopes, the direct trophic relationship between pelagic zooplankton and zooplanktivorous fish was confirmed for Alosa agone only in summer. Based on this result, the biomagnification factor normalized on the trophic level (BMF TL ) for organic contaminants was calculated. BMF TL values were within the range 0.9-1.9 for DDT isomers and 1.6-4.9 for some PCB congeners (PCB 95, PCB 101, PCB 149, PCB 153, PCB 138 - present both in zooplankton and in fish and representing >60% of the PCB contamination), confirming the biomagnification of these compounds in one of the two zooplanktivorous fish species of the lake. Copyright © 2018. Published by Elsevier B.V.
Leachable Li and Mg Evidence for Hydrological Changes in the Mono Basin, CA, USA
NASA Astrophysics Data System (ADS)
Sahajpal, R.; Hemming, N.; Zimmerman, S. R.; Hemming, S. R.
2007-12-01
Hydrology in closed basin lakes, such as Mono Lake of the US western Great Basin, is sensitive to regional climate changes. Lake level history of the Mono Basin has been put into a precise age framework using the paleomagnetic intensity of the Wilson Creek Formation sediments to North Atlantic records, and accordingly Greenland's GISP2 oxygen isotope record (Zimmerman et al., 2006, EPSL, v. 252, pp. 94- 106). This allows correlation of the lake level indicators and Greenland climate at high resolution. The physical evidence for lake level, based on the association of strata in near shore terraces, can be confidently correlated to proxies of lake chemistry preserved in the strata. We have tested the application of leachable Li, following the procedure developed by Bischoff et al. (1997, Quaternary Research, v. 48, pp. 313-325) for Owens Lake. At Owens Lake there is a positive correlation between salinity based on diatoms with leachable Li concentrations. In contrast, at Mono Lake the leachable Li concentration follows the bulk carbonate concentration, generally correlating low lake levels (high salinity) with low leachable Li concentrations. Our preferred explanation for both the carbonate and leachable Li concentrations is based on the fact that the Mono Basin rarely overflows, and therefore precipitation of minerals during evaporation leads to chemical divides (Garrels and Mackenzie., 1967, in "Equilibrium Concepts in Natural Water Systems", W. Stumm, Ed., pp. 222-242). As Li behaves conservatively compared to elements like Ca2+ and Mg2+, it might be expected that the leachable Li would be higher when lake level is lower. However, the host for the Li appears to be Mg-smectite. Therefore, the concentration of leachable Li in the sediment is controlled by the concentration of Mg-smectite, as well as the Li/Mg of the water from which the Mg- smectite precipitated and the Kd of the Li into the Mg-smectite. We are studying the Li and Mg systematics of these samples in order to deconvolve these factors and contribute to paleo-hydrological studies of this and other closed basin lakes.