Zhang, Li; Xin, Ziqiang; Feng, Tingyong; Chen, Yinghe; Szűcs, Denes
2018-03-01
Recent studies have highlighted the fact that some tasks used to study symbolic number representations are confounded by judgments about physical similarity. Here, we investigated whether the contribution of physical similarity and numerical representation differed in the often-used symbolic same-different, numerical comparison, physical comparison, and priming tasks. Experiment 1 showed that subjective physical similarity was the best predictor of participants' performance in the same-different task, regardless of simultaneous or sequential presentation. Furthermore, the contribution of subjective physical similarity was larger in a simultaneous presentation than in a sequential presentation. Experiment 2 showed that only numerical representation was involved in numerical comparison. Experiment 3 showed that both subjective physical similarity and numerical representation contributed to participants' physical comparison performance. Finally, only numerical representation contributed to participants' performance in a priming task as revealed by Experiment 4. Taken together, the contribution of physical similarity and numerical representation depends on task demands. Performance primarily seems to rely on numerical properties in tasks that require explicit quantitative comparison judgments (physical or numerical), while physical stimulus properties exert an effect in the same-different task.
Not all Anchors Weigh Equally.
Greenstein, Michael; Velazquez, Alexandra
2017-11-01
The anchoring bias is a reliable effect wherein a person's judgments are affected by initially presented information, but it is unknown specifically why this effect occurs. Research examining this bias suggests that elements of both numeric and semantic priming may be involved. To examine this, the present research used a phenomenon wherein people treat numeric information presented differently in Arabic numeral or verbal formats. We presented participants with one of many forms of an anchor that represented the same value (e.g., twelve hundred or 1,200). Thus, we could examine how a concept's meaning and its absolute numeric value affect anchoring. Experiments 1 and 2 showed that people respond to Arabic and verbal anchors differently. Experiment 3 showed that these differences occurred largely because people tend to think of numbers in digit format. This suggests that one's conceptual understanding of the anchored information matters more than its strict numeric value.
NASA Astrophysics Data System (ADS)
Mucha, Waldemar; Kuś, Wacław
2018-01-01
The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.
Numerical Optimization Using Computer Experiments
NASA Technical Reports Server (NTRS)
Trosset, Michael W.; Torczon, Virginia
1997-01-01
Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.
Quantifying a threat: Evidence of a numeric processing bias.
Hamamouche, Karina A; Niemi, Laura; Cordes, Sara
2017-06-01
Humans prioritize the processing of threats over neutral stimuli; thus, not surprisingly, the presence of threats has been shown to alter performance on both perceptual and cognitive tasks. Yet whether the quantification process is disrupted in the presence of threat is unknown. In three experiments, we examined numerical estimation and discrimination abilities in adults in the context of threatening (spiders) and non-threatening (e.g., flowers) stimuli. Results of the numerical estimation task (Experiment 1) showed that participants underestimated the number of threatening relative to neutral stimuli. Additionally, numerical discrimination data reveal that participants' abilities to discriminate between the number of entities in two arrays were worsened when the arrays consisted of threatening entities versus neutral entities (Experiment 2). However, discrimination abilities were enhanced when threatening content was presented immediately before neutral dot arrays (Experiment 3). Together, these studies suggest that threats impact our processing of visual numerosity via changes in attention to numerical stimuli, and that the nature of the threat (intrinsic or extrinsic to the stimulus) is vital in determining the direction of this impact. Intrinsic threat content in stimuli impedes its own quantification; yet threat that is extrinsic to the sets to be enumerated enhances numerical processing for subsequently presented neutral stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.
Cohen, Dale J.; Warren, Erin; Blanc-Goldhammer, Daryn
2013-01-01
The sound |faiv| is visually depicted as a written number word “five” and as an Arabic digit “5.” Here, we present four experiments – two quantity same/different experiments and two magnitude comparison experiments – that assess whether auditory number words (|faiv|), written number words (“five”), and Arabic digits (“5”) directly activate one another and/or their associated quantity. The quantity same/different experiments reveal that the auditory number words, written number words, and Arabic digits directly activate one another without activating their associated quantity. That is, there are cross-format physical similarity effects but no numerical distance effects. The cross-format magnitude comparison experiments reveal significant effects of both physical similarity and numerical distance. We discuss these results in relation to the architecture of numerical cognition. PMID:23624377
ERIC Educational Resources Information Center
Cohen, Dale J.
2010-01-01
Participants' reaction times (RTs) in numerical judgment tasks in which one must determine which of 2 numbers is greater generally follow a monotonically decreasing function of the numerical distance between the two presented numbers. Here, I present 3 experiments in which the relative influences of numerical distance and physical similarity are…
Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers
ERIC Educational Resources Information Center
Thompson, Clarissa A.; Siegler, Robert S.
2010-01-01
We investigated the relation between children's numerical-magnitude representations and their memory for numbers. Results of three experiments indicated that the more linear children's magnitude representations were, the more closely their memory of the numbers approximated the numbers presented. This relation was present for preschoolers and…
An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin
ERIC Educational Resources Information Center
Bailey, James A.
2011-01-01
Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…
Non-robust numerical simulations of analogue extension experiments
NASA Astrophysics Data System (ADS)
Naliboff, John; Buiter, Susanne
2016-04-01
Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.
Numerical solution of the stochastic parabolic equation with the dependent operator coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashyralyev, Allaberen; Department of Mathematics, ITTU, Ashgabat; Okur, Ulker
2015-09-18
In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.
Semantic Processing in the Production of Numerals across Notations
ERIC Educational Resources Information Center
Herrera, Amparo; Macizo, Pedro
2012-01-01
In the present work, we conducted a series of experiments to explore the processing stages required to name numerals presented in different notations. To this end, we used the semantic blocking paradigm previously used in psycholinguist studies. We found a facilitative effect of the semantic blocked context relative to the mixed context for Arabic…
Synesthesia and number cognition in children.
Green, Jennifer A K; Goswami, Usha
2008-01-01
Grapheme-color synesthesia, when achromatic digits evoke an experience of a specific color (photisms), has been shown to be consistent, involuntary, and linked with number concept in adults, yet there have been no comparable investigations with children. We present a systematic study of grapheme-color synesthesia in children aged between 7 and 15 years. Here we show that such children (but not children with phoneme-color synesthesia) experience involuntary difficulties in numerical tasks when digits are presented in colors incongruent with their photisms. Synesthesia in children may thus have important consequences for certain aspects of numerical cognition.
NASA Astrophysics Data System (ADS)
Zhou, B. H.; Jung, H.; Mangelinck-Noël, N.; Nguyen-Thi, H.; Billia, B.; Liu, Q. S.; Lan, C. W.
We present numerical simulations of thermosolutal convection for directional solidification of Al 3.5 wt% Ni and Al 7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al 7 wt% Si, but not in Al 3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant.
Plasma Jet Simulations Using a Generalized Ohm's Law
NASA Technical Reports Server (NTRS)
Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.
2012-01-01
Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
NASA Astrophysics Data System (ADS)
Teil, Maxime; Harthong, Barthélémy; Imbault, Didier; Peyroux, Robert
2017-06-01
Polymeric deformable granular materials are widely used in industry and the understanding and the modelling of their shaping process is a point of interest. This kind of materials often presents a viscoelasticplastic behaviour and the present study promotes a joint approach between numerical simulations and experiments in order to derive the behaviour law of such granular material. The experiment is conducted on a polystyrene powder on which a confining pressure of 7MPa and an axial pressure reaching 30MPa are applied. Between different steps of the in-situ test, the sample is scanned in an X-rays microtomograph in order to know the structure of the material depending on the density. From the tomographic images and by using specific algorithms to improve the images quality, grains are automatically identified, separated and a finite element mesh is generated. The long-term objective of this study is to derive a representative sample directly from the experiments in order to run numerical simulations using a viscoelactic or viscoelastic-plastic constitutive law and compare numerical and experimental results at the particle scale.
ERIC Educational Resources Information Center
Naparstek, Sharon; Safadi, Ziad; Lichtenstein-Vidne, Limor; Henik, Avishai
2015-01-01
The current research examined whether peripherally presented numerical information can affect the speed of number processing. In 2 experiments, participants were presented with a target matrix flanked by a distractor matrix and were asked to perform a comparative judgment (i.e., decide whether the target was larger or smaller than the reference…
Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope
NASA Astrophysics Data System (ADS)
Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.
2018-01-01
A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.
Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs
NASA Astrophysics Data System (ADS)
Tang, Wensheng; Sun, Yajuan; Cai, Wenjun
2017-02-01
In this article, we present a unified framework of discontinuous Galerkin (DG) discretizations for Hamiltonian ODEs and PDEs. We show that with appropriate numerical fluxes the numerical algorithms deduced from DG discretizations can be combined with the symplectic methods in time to derive the multi-symplectic PRK schemes. The resulting numerical discretizations are applied to the linear and nonlinear Schrödinger equations. Some conservative properties of the numerical schemes are investigated and confirmed in the numerical experiments.
A Comparison of Metamodeling Techniques via Numerical Experiments
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2016-01-01
This paper presents a comparative analysis of a few metamodeling techniques using numerical experiments for the single input-single output case. These experiments enable comparing the models' predictions with the phenomenon they are aiming to describe as more data is made available. These techniques include (i) prediction intervals associated with a least squares parameter estimate, (ii) Bayesian credible intervals, (iii) Gaussian process models, and (iv) interval predictor models. Aspects being compared are computational complexity, accuracy (i.e., the degree to which the resulting prediction conforms to the actual Data Generating Mechanism), reliability (i.e., the probability that new observations will fall inside the predicted interval), sensitivity to outliers, extrapolation properties, ease of use, and asymptotic behavior. The numerical experiments describe typical application scenarios that challenge the underlying assumptions supporting most metamodeling techniques.
A Novel Numerical Method for Fuzzy Boundary Value Problems
NASA Astrophysics Data System (ADS)
Can, E.; Bayrak, M. A.; Hicdurmaz
2016-05-01
In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.
Anchoring effects in the judgment of confidence: semantic or numeric priming?
Carroll, Steven R; Petrusic, William M; Leth-Steensen, Craig
2009-02-01
Over the last decade, researchers have debated whether anchoring effects are the result of semantic or numeric priming. The present study tested both hypotheses. In four experiments involving a sensory detection task, participants first made a relative confidence judgment by deciding whether they were more or less confident than an anchor value in the correctness of their decision. Subsequently, they expressed an absolute level of confidence. In two of these experiments, the relative confidence anchor values represented the midpoints between the absolute confidence scale values, which were either explicitly numeric or semantic, nonnumeric representations of magnitude. In two other experiments, the anchor values were drawn from a scale modally different from that used to express the absolute confidence (i.e., nonnumeric and numeric, respectively, or vice versa). Regardless of the nature of the anchors, the mean confidence ratings revealed anchoring effects only when the relative and absolute confidence values were drawn from identical scales. Together, the results of these four experiments limit the conditions under which both numeric and semantic priming would be expected to lead to anchoring effects.
A numerical solution for thermoacoustic convection of fluids in low gravity
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.
1973-01-01
A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.
Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition
ERIC Educational Resources Information Center
Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.
2012-01-01
Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…
NASA Astrophysics Data System (ADS)
Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.
2017-07-01
The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.
Numerical experiments with a symmetric high-resolution shock-capturing scheme
NASA Technical Reports Server (NTRS)
Yee, H. C.
1986-01-01
Characteristic-based explicit and implicit total variation diminishing (TVD) schemes for the two-dimensional compressible Euler equations have recently been developed. This is a generalization of recent work of Roe and Davis to a wider class of symmetric (non-upwind) TVD schemes other than Lax-Wendroff. The Roe and Davis schemes can be viewed as a subset of the class of explicit methods. The main properties of the present class of schemes are that they can be implicit, and, when steady-state calculations are sought, the numerical solution is independent of the time step. In a recent paper, a comparison of a linearized form of the present implicit symmetric TVD scheme with an implicit upwind TVD scheme originally developed by Harten and modified by Yee was given. Results favored the symmetric method. It was found that the latter is just as accurate as the upwind method while requiring less computational effort. Currently, more numerical experiments are being conducted on time-accurate calculations and on the effect of grid topology, numerical boundary condition procedures, and different flow conditions on the behavior of the method for steady-state applications. The purpose here is to report experiences with this type of scheme and give guidelines for its use.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; SanSoucie, Michael P.
2017-08-01
Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.
NASA Astrophysics Data System (ADS)
Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic
2014-03-01
The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.
Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels
2006-05-01
Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single
Benavides-Varela, Silvia; Butterworth, Brian; Burgio, Francesca; Arcara, Giorgio; Lucangeli, Daniela; Semenza, Carlo
2016-01-01
It is currently accepted that certain activities within the family environment contribute to develop early numerical skills before schooling. However, it is unknown whether this early experience influences both the exact and the approximate representation of numbers, and if so, which is more important for numerical tasks. In the present study the mathematical performance of 110 children (mean age 5 years 11 months) was evaluated using a battery that included tests of approximate and exact numerical abilities, as well as everyday numerical problems. Moreover, children were assessed on their knowledge of number information learned at home. The parents of the participants provided information regarding daily activities of the children and socio-demographic characteristics of the family. The results showed that the amount of numerical information learned at home was a significant predictor of participants' performance on everyday numerical problems and exact number representations, even after taking account of age, memory span and socio-economic and educational status of the family. We also found that particular activities, such as board games, correlate with the children's counting skills, which are foundational for arithmetic. Crucially, tests relying on approximate representations were not predicted by the numerical knowledge acquired at home. The present research supports claims about the importance and nature of home experiences in the child's acquisition of mathematics. PMID:26903902
Changes in the Ability to Detect Ordinal Numerical Relationships between 9 and 11 Months of Age
ERIC Educational Resources Information Center
Suanda, Sumarga H.; Tompson, Whitney; Brannon, Elizabeth M.
2008-01-01
When are the precursors of ordinal numerical knowledge first evident in infancy? Brannon (2002) argued that by 11 months of age, infants possess the ability to appreciate the greater than and less than relations between numerical values but that this ability experiences a sudden onset between 9 and 11 months of age. Here we present 5 experiments…
Conservation of Mechanical and Electric Energy: Simple Experimental Verification
ERIC Educational Resources Information Center
Ponikvar, D.; Planinsic, G.
2009-01-01
Two similar experiments on conservation of energy and transformation of mechanical into electrical energy are presented. Both can be used in classes, as they offer numerous possibilities for discussion with students and are simple to perform. Results are presented and are precise within 20% for the version of the experiment where measured values…
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
Numerical study of shock-induced combustion in methane-air mixtures
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Rabinowitz, Martin J.
1993-01-01
The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.
Importance of inlet boundary conditions for numerical simulation of combustor flows
NASA Technical Reports Server (NTRS)
Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.
1983-01-01
Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.
Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106
NASA Astrophysics Data System (ADS)
Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team
2015-11-01
We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.
NASA Astrophysics Data System (ADS)
Khakhalev, P. A.; Bogdanov, VS; Kovshechenko, V. M.
2018-03-01
The article presents analysis of the experiments in the ball mill of 0.5x0.3 m with four different liner types based on DEM modeling. The numerical experiment always complements laboratory research and allow obtaining high accuracy output data. An important property of the numerical experiment is the possibility of visualization of the results. The EDEM software allows calculating trajectory of the grinding bodies and kinetic parameters of each ball for the relative mill speed and the different types of mill’s liners.
NASA Astrophysics Data System (ADS)
Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.
2015-12-01
One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.
Meteoroid/space debris impacts on MSFC LDEF experiments
NASA Technical Reports Server (NTRS)
Finckenor, Miria
1991-01-01
The numerous meteoroid and space debris impacts found on AO171, AO034, S0069, and other MSFC experiments are examined. Besides those impacts found by the Meteoroid and Debris Special Investigative Group at KSC, numerous impacts of less than 0.5 mm were found and photographed. The flux and size distribution of impacts are presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.
Developmental and individual differences in pure numerical estimation.
Booth, Julie L; Siegler, Robert S
2006-01-01
The authors examined developmental and individual differences in pure numerical estimation, the type of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement, and number line. In Experiment 1, kindergartners and 1st, 2nd, and 3rd graders were presented problems involving the numbers 0-100; in Experiment 2, 2nd and 4th graders were presented problems involving the numbers 0-1,000. Parallel developmental trends, involving increasing reliance on linear representations of numbers and decreasing reliance on logarithmic ones, emerged across different types of estimation. Consistent individual differences across tasks were also apparent, and all types of estimation skill were positively related to math achievement test scores. Implications for understanding of mathematics learning in general are discussed. Copyright 2006 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.
2012-10-01
According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.
On the role of entailment patterns and scalar implicatures in the processing of numerals
Panizza, Daniele; Chierchia, Gennaro; Clifton, Charles
2009-01-01
There has been much debate, in both the linguistics and the psycholinguistics literature, concerning numbers and the interpretation of number denoting determiners ('numerals'). Such debate concerns, in particular, the nature and distribution of upper-bounded ('at-least') interpretations vs. lower-bounded ('exact') construals. In the present paper we show that the interpretation and processing of numerals are affected by the entailment properties of the context in which they occur. Experiment 1 established off-line preferences using a questionnaire. Experiment 2 investigated the processing issue through an eye tracking experiment using a silent reading task. Our results show that the upper-bounded interpretation of numerals occurs more often in an upward entailing context than in a downward entailing context. Reading times of the numeral itself were longer when it was embedded in an upward entailing context than when it was not, indicating that processing resources were required when the context triggered an upper-bounded interpretation. However, reading of a following context that required an upper-bounded interpretation triggered more regressions towards the numeral when it had occurred in a downward entailing context than in an upward entailing one. Such findings show that speakers' interpretation and processing of numerals is systematically affected by the polarity of the sentence in which they occur, and support the hypothesis that the upper-bounded interpretation of numerals is due to a scalar implicature. PMID:20161494
Dancing with the SNARC: Measuring spatial-numerical associations on a digital dance mat.
Fischer, Ursula; Moeller, Korbinian; Class, Friderike; Huber, Stefan; Cress, Ulrike; Nuerk, Hans-Christoph
2016-12-01
According to the concept of embodied numerosity, bodily experiences influence the way in which we process numerical magnitude. The development of this influence could be anchored in the spatial ordering of numbers along a mental number line representation, which is measured by effects of spatial-numerical associations. The aim of this study was to investigate whether horizontally oriented full-body movement and visual presentation of a number line both contribute to spatial-numerical associations in children. We presented fourth-graders with 2 magnitude comparison tasks that differed in the relevance of magnitude information. In both tasks, we varied the amount of bodily movement in different response conditions (responding verbally, with a foot tap, or by jumping) and the visual presentation (items were presented with or without a number line). From the data, we calculated 2 spatial-numerical effects and expected to find the strongest effects if a full-body response was combined with a number line presentation. The 2 effects were differentially influenced by response modalities, but not presentation. The SNARC (= Spatial Numerical Association of Response Codes) effect was present in all conditions and was not influenced by our manipulations. In contrast, a new relative numerical congruity effect was influenced by the variations in responses in accordance with our hypotheses. The relative numerical congruity effect results suggest that responses involving bodily movement increase activation of spatial-numerical associations compared to verbal responses. These results are the first to demonstrate such an influence in a full-body approach in elementary schoolchildren. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The emotional valence of a conflict: implications from synesthesia.
Perry, Amit; Henik, Avishai
2013-01-01
According to some synesthetes' reports, their experience involves an emotional sensation in which a conflict between the photism and presented color of a stimulus may evoke a feeling of discomfort. In order to investigate the impact of this experience on performance, two experiments were carried out on two synesthetes and their matched control groups. Experiments were tailored for each synesthete according to her unique photism. Participants were presented with stimuli (numerals or words) in colors and were asked to name the color of the stimulus and to ignore its meaning. Incongruent colors were associated with negative or positive emotional words or with non-emotional words. Not surprisingly, an incongruent color (e.g., 5 presented in yellow to a synesthete that sees 5 in red) slowed down color naming. Conflict situations (e.g., a numeral in an incongruent color) created a negative emotional experience. Most importantly, coherence between a conflict or non-conflict emotional experience and the emotion elicited by the color of the stimulus for a given synesthete modulated performance. In particular, synesthetes were faster in coherent than in incoherent situations. This research contributes to the understanding of emotional experience in synesthesia, and also suggests that synesthesia can be used as an instrument to investigate emotional processes in the wider population.
Real-time feedback control of the plasma density profile on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team
2011-04-01
The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.
Numerically Simulating Collisions of Plastic and Foam Laser-Driven Foils
NASA Astrophysics Data System (ADS)
Zalesak, S. T.; Velikovich, A. L.; Schmitt, A. J.; Aglitskiy, Y.; Metzler, N.
2007-11-01
Interest in experiments on colliding planar foils has recently been stimulated by (a) the Impact Fast Ignition approach to laser fusion [1], and (b) the approach to a high-repetition rate ignition facility based on direct drive with the KrF laser [2]. Simulating the evolution of perturbations to such foils can be a numerical challenge, especially if the initial perturbation amplitudes are small. We discuss the numerical issues involved in such simulations, describe their benchmarking against recently-developed analytic results, and present simulations of such experiments on NRL's Nike laser. [1] M. Murakami et al., Nucl. Fusion 46, 99 (2006) [2] S. P. Obenschain et al., Phys. Plasmas 13, 056320 (2006).
Effects of Numeric Representation of Women on Interest in Engineering as a Career
ERIC Educational Resources Information Center
Creamer, Elizabeth G.
2012-01-01
Little is known about how the presence of women influences undergraduates' experiences in engineering. This paper presents results from a mixed methods, multivariate, and multi-institutional study to determine the impact of the numeric representation of women on the intent to be employed in engineering following graduation. Results from the…
A Functional Measurement Study on Averaging Numerosity
ERIC Educational Resources Information Center
Tira, Michael D.; Tagliabue, Mariaelena; Vidotto, Giulio
2014-01-01
In two experiments, participants judged the average numerosity between two sequentially presented dot patterns to perform an approximate arithmetic task. In Experiment 1, the response was given on a 0-20 numerical scale (categorical scaling), and in Experiment 2, the response was given by the production of a dot pattern of the desired numerosity…
ATM experiment S-056 image processing requirements definition
NASA Technical Reports Server (NTRS)
1972-01-01
A plan is presented for satisfying the image data processing needs of the S-056 Apollo Telescope Mount experiment. The report is based on information gathered from related technical publications, consultation with numerous image processing experts, and on the experience that was in working on related image processing tasks over a two-year period.
On the mechanics of cerebral aneurysms: experimental research and numerical simulation
NASA Astrophysics Data System (ADS)
Parshin, D. V.; Kuianova, I. O.; Yunoshev, A. S.; Ovsyannikov, K. S.; Dubovoy, A. V.
2017-10-01
This research extends existing experimental data for CA tissues [1, 2] and presents the preliminary results of numerical calculations. Experiments were performed to measure aneurysm wall stiffness and the data obtained was analyzed. To reconstruct the geometry of the CAs, DICOM images of real patients with aneurysms and ITK Snap [3] were used. In addition, numerical calculations were performed in ANSYS (commercial software, License of Lavrentyev Institute of Hydrodynamics). The results of these numerical calculations show a high level of agreement with experimental data from previous literature.
Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor
NASA Astrophysics Data System (ADS)
Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.
2017-09-01
The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.
Differences in duration of eye fixation for conditions in a numerical stroop-effect experiment.
Crespo, Antonio; Cabestrero, Raúl; Quirós, Pilar
2009-02-01
Durations of eye fixation were recorded for a numerical Stroop effect experiment. Participants (6 men, 19 women; M age=22 yr.) reported the number of characters present in sequences of variable length (2 to 5 characters) while attempting to ignore the identity of the character. Three conditions were included: congruent (the number of characters and the numeral were matched, e.g., responding "two" to 22), incongruent (the number of characters and the numeral were mismatched, e.g., responding "two" to 55), and control (baseline of stimuli made up of "X"s, e.g., responding "two" to XX). Comparisons among the three conditions produced the longest response times and average durations of fixation for the incongruent condition. The shortest response times and average durations of fixation were obtained for the congruent condition.
Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.
Zhang, Yu; You, Xuqun; Zhu, Rongjuan
2016-07-01
Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space. © The Author(s) 2016.
Human Infants' Preference for Left-to-Right Oriented Increasing Numerical Sequences
de Hevia, Maria Dolores; Girelli, Luisa; Addabbo, Margaret; Macchi Cassia, Viola
2014-01-01
While associations between number and space, in the form of a spatially oriented numerical representation, have been extensively reported in human adults, the origins of this phenomenon are still poorly understood. The commonly accepted view is that this number-space association is a product of human invention, with accounts proposing that culture, symbolic knowledge, and mathematics education are at the roots of this phenomenon. Here we show that preverbal infants aged 7 months, who lack symbolic knowledge and mathematics education, show a preference for increasing magnitude displayed in a left-to-right spatial orientation. Infants habituated to left-to-right oriented increasing or decreasing numerical sequences showed an overall higher looking time to new left-to-right oriented increasing numerical sequences at test (Experiment 1). This pattern did not hold when infants were presented with the same ordinal numerical information displayed from right to left (Experiment 2). The different pattern of results was congruent with the presence of a malleable, context-dependent baseline preference for increasing, left-to-right oriented, numerosities (Experiment 3). These findings are suggestive of an early predisposition in humans to link numerical order with a left-to-right spatial orientation, which precedes the acquisition of symbolic abilities, mathematics education, and the acquisition of reading and writing skills. PMID:24802083
NASA Technical Reports Server (NTRS)
McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran
2014-01-01
The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.
NASA Astrophysics Data System (ADS)
Vriend, Nathalie; Tsang, Jonny; Arran, Matthew; Jin, Binbin; Johnsen, Alexander
2017-11-01
When a mixture of small, smooth particles and larger, coarse particles is released on a rough inclined plane, the initial uniform front may break up in distinct fingers which elongate over time. This fingering instability is sensitive to the unique arrangement of individual particles and is driven by granular segregation (Pouliquen et al., 1997). Variability in initial conditions create significant limitations for consistent experimental and numerical validation of newly developed theoretical models (Baker et al., 2016) for finger formation. We present an experimental study using a novel tool that sets the initial fingering width of the instability. By changing this trigger width between experiments, we explore the response of the avalanche breakup to perturbations of different widths. Discrete particle simulations (using MercuryDPM, Thornton et al., 2012) are conducted under a similar setting, reproducing the variable finger width, allowing validation between experiments and numerical simulations. A good agreement between simulations and experiments is obtained, and ongoing theoretical work is briefly introduced. NMV acknowledges the Royal Society Dorothy Hodgkin Research Fellowship.
Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment
NASA Astrophysics Data System (ADS)
Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus
2014-12-01
Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.
Experimental and numerical study on the strength of all-ceramic crowns
NASA Astrophysics Data System (ADS)
Lu, Chenglin; Zhang, Xiuyin; Zhang, Dongsheng
2008-11-01
Two types of sectioned tooth-like ceramic crowns (IPS Empress 2) were prepared along lingual-facial direction and the fracture process of crowns under contact load was directly monitored with the use of imaging system. The displacement filed resulted from digital image correlation indicate that the fracture mode of real crown is more complicated while the flat crown has the same rupture mode as described by other investigators. Meanwhile numerical simulation was also carried out to support the experiments. Stress distributions in individual layer and interface were presented. Results indicate that the presented experimental and numerical methods are efficient in studying the fracture mechanism of all-ceramic crowns.
Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation
NASA Technical Reports Server (NTRS)
Rule, William K.
1992-01-01
Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.
NASA Technical Reports Server (NTRS)
Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien
2015-01-01
A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
NASA Astrophysics Data System (ADS)
Miedzinska, Danuta; Boczkowska, Anna; Zubko, Konrad
2010-07-01
In the article a method of numerical verification of experimental results for magnetorheological elastomer samples (MRE) is presented. The samples were shaped into cylinders with diameter of 8 mm and height of 20 mm with various carbonyl iron volume shares (1,5%, 11,5% and 33%). The diameter of soft ferromagnetic substance particles ranged from 6 to 9 μm. During the experiment, initially bended samples were exposed to the magnetic field with intensity levels at 0,1T, 0,3T, 0,5T, 0,7 and 1T. The reaction of the sample to the field action was measured as a displacement of a specimen. Numerical calculation was carried out with the MSC Patran/Marc computer code. For the purpose of numerical analysis the orthotropic material model with the material properties of magnetorheological elastomer along the iron chains, and of the pure elastomer along other directions, was applied. The material properties were obtained from the experimental tests. During the numerical analysis, the initial mechanical load resulting from cylinder deflection was set. Then, the equivalent external force, that was set on the basis of analytical calculations of intermolecular reaction within iron chains in the specific magnetic field, was put on the bended sample. Correspondence of such numerical model with results of the experiment was verified. Similar results of the experiments and both theoretical and FEM analysis indicates that macroscopic modeling of magnetorheological elastomer mechanical properties as orthotropic material delivers accurate enough description of the material's behavior.
ERIC Educational Resources Information Center
Syrett, Kristen; Musolino, Julien
2013-01-01
Sentences containing plural numerical expressions (e.g., "two boys") can give rise to two interpretations (collective and distributive), arising from the fact that their representation admits of a part-whole structure. We present the results of a series of experiments designed to explore children's understanding of this distinction…
Yang, Tao; Sezer, Hayri; Celik, Ismail B.; ...
2015-06-02
In the present paper, a physics-based procedure combining experiments and multi-physics numerical simulations is developed for overall analysis of SOFCs operational diagnostics and performance predictions. In this procedure, essential information for the fuel cell is extracted first by utilizing empirical polarization analysis in conjunction with experiments and refined by multi-physics numerical simulations via simultaneous analysis and calibration of polarization curve and impedance behavior. The performance at different utilization cases and operating currents is also predicted to confirm the accuracy of the proposed model. It is demonstrated that, with the present electrochemical model, three air/fuel flow conditions are needed to producemore » a set of complete data for better understanding of the processes occurring within SOFCs. After calibration against button cell experiments, the methodology can be used to assess performance of planar cell without further calibration. The proposed methodology would accelerate the calibration process and improve the efficiency of design and diagnostics.« less
NASA Astrophysics Data System (ADS)
Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.
2018-02-01
In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.
Numerical simulations in the development of propellant management devices
NASA Astrophysics Data System (ADS)
Gaulke, Diana; Winkelmann, Yvonne; Dreyer, Michael
Propellant management devices (PMDs) are used for positioning the propellant at the propel-lant port. It is important to provide propellant without gas bubbles. Gas bubbles can inflict cavitation and may lead to system failures in the worst case. Therefore, the reliable operation of such devices must be guaranteed. Testing these complex systems is a very intricate process. Furthermore, in most cases only tests with downscaled geometries are possible. Numerical sim-ulations are used here as an aid to optimize the tests and to predict certain results. Based on these simulations, parameters can be determined in advance and parts of the equipment can be adjusted in order to minimize the number of experiments. In return, the simulations are validated regarding the test results. Furthermore, if the accuracy of the numerical prediction is verified, then numerical simulations can be used for validating the scaling of the experiments. This presentation demonstrates some selected numerical simulations for the development of PMDs at ZARM.
Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2007-01-01
A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.
NASA Astrophysics Data System (ADS)
Pu, Z.; Yu, Y.
2016-12-01
The prediction of Hurricane Joaquin's hairpin clockwise during 1 and 2 October 2015 presents a forecasting challenge during real-time numerical weather prediction, as tracks of several major numerical weather prediction models differ from each other. To investigate the large-scale environment and hurricane inner-core structures related to the hairpin turn of Joaquin, a series of high-resolution mesoscale numerical simulations of Hurricane Joaquin had been performed with an advanced research version of the Weather Research and Forecasting (WRF) model. The outcomes were compared with the observations obtained from the US Office of Naval Research's Tropical Cyclone Intensity (TCI) Experiment during 2015 hurricane season. Specifically, five groups of sensitivity experiments with different cumulus, boundary layer, and microphysical schemes as well as different initial and boundary conditions and initial times in WRF simulations had been performed. It is found that the choice of the cumulus parameterization scheme plays a significant role in reproducing reasonable track forecast during Joaquin's hairpin turn. The mid-level environmental steering flows can be the reason that leads to different tracks in the simulations with different cumulus schemes. In addition, differences in the distribution and amounts of the latent heating over the inner-core region are associated with discrepancies in the simulated intensity among different experiments. Detailed simulation results, comparison with TCI-2015 observations, and comprehensive diagnoses will be presented.
A numerical tool for reproducing driver behaviour: experiments and predictive simulations.
Casucci, M; Marchitto, M; Cacciabue, P C
2010-03-01
This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.
NASA Astrophysics Data System (ADS)
Figueroa, Aldo; Meunier, Patrice; Cuevas, Sergio; Villermaux, Emmanuel; Ramos, Eduardo
2014-01-01
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, "The diffusive strip method for scalar mixing in two-dimensions," J. Fluid Mech. 662, 134-172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.
Experimental and numerical investigations on melamine wedges.
Schneider, S
2008-09-01
Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.
Numerical investigation of sliding drops on an inclined surface
NASA Astrophysics Data System (ADS)
Legendre, Dominique; Pedrono, Annaig; Interface Group Team
2017-11-01
Despite it apparent simplicity, the behavior of a drop on an inclined solid surface is far to be properly reproduced by numerical simulation. It involves static, hysteresis and dynamic contact line behaviors. Depending on the fluid properties, the hysteresis and the wall inclination, different drop shapes (rounded, corner or pearling drop) can be observed. The 3D numerical simulations of sliding droplets presented in this work are based on a Volume of Fluid (VoF) solver without any interface reconstruction developed in the JADIM code. The surface tension is solved using the classical CSF (Continuum Surface Force) model and a sub grid model is used to describe under hysteresis conditions both the shape, the dissipation of the non resolved scales of a moving contact line. Numerical simulations are compared with the experiments of. The agreement with experiments is found to be very good for both he critical angle of inclination for siding as well as for the specific shapes: rounded, corner and pearling drops. The simulations have been used to extend the range of hysteresis covered by the experiments.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
Spectral method for pricing options in illiquid markets
NASA Astrophysics Data System (ADS)
Pindza, Edson; Patidar, Kailash C.
2012-09-01
We present a robust numerical method to solve a problem of pricing options in illiquid markets. The governing equation is described by a nonlinear Black-Scholes partial differential equation (BS-PDE) of the reaction-diffusion-advection type. To discretise this BS-PDE numerically, we use a spectral method in the asset (spatial) direction and couple it with a fifth order RADAU method for the discretisation in the time direction. Numerical experiments illustrate that our approach is very efficient for pricing financial options in illiquid markets.
Armstrong, Bonnie; Spaniol, Julia; Persaud, Nav
2018-02-13
Clinicians often overestimate the probability of a disease given a positive test result (positive predictive value; PPV) and the probability of no disease given a negative test result (negative predictive value; NPV). The purpose of this study was to investigate whether experiencing simulated patient cases (ie, an 'experience format') would promote more accurate PPV and NPV estimates compared with a numerical format. Participants were presented with information about three diagnostic tests for the same fictitious disease and were asked to estimate the PPV and NPV of each test. Tests varied with respect to sensitivity and specificity. Information about each test was presented once in the numerical format and once in the experience format. The study used a 2 (format: numerical vs experience) × 3 (diagnostic test: gold standard vs low sensitivity vs low specificity) within-subjects design. The study was completed online, via Qualtrics (Provo, Utah, USA). 50 physicians (12 clinicians and 38 residents) from the Department of Family and Community Medicine at St Michael's Hospital in Toronto, Canada, completed the study. All participants had completed at least 1 year of residency. Estimation accuracy was quantified by the mean absolute error (MAE; absolute difference between estimate and true predictive value). PPV estimation errors were larger in the numerical format (MAE=32.6%, 95% CI 26.8% to 38.4%) compared with the experience format (MAE=15.9%, 95% CI 11.8% to 20.0%, d =0.697, P<0.001). Likewise, NPV estimation errors were larger in the numerical format (MAE=24.4%, 95% CI 14.5% to 34.3%) than in the experience format (MAE=11.0%, 95% CI 6.5% to 15.5%, d =0.303, P=0.015). Exposure to simulated patient cases promotes accurate estimation of predictive values in clinicians. This finding carries implications for diagnostic training and practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
NASA Astrophysics Data System (ADS)
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
Synesthesia affects verification of simple arithmetic equations.
Ghirardelli, Thomas G; Mills, Carol Bergfeld; Zilioli, Monica K C; Bailey, Leah P; Kretschmar, Paige K
2010-01-01
To investigate the effects of color-digit synesthesia on numerical representation, we presented a synesthete, called SE, in the present study, and controls with mathematical equations for verification. In Experiment 1, SE verified addition equations made up of digits that either matched or mismatched her color-digit photisms or were in black. In Experiment 2A, the addends were presented in the different color conditions and the solution was presented in black, whereas in Experiment 2B the addends were presented in black and the solutions were presented in the different color conditions. In Experiment 3, multiplication and division equations were presented in the same color conditions as in Experiment 1. SE responded significantly faster to equations that matched her photisms than to those that did not; controls did not show this effect. These results suggest that photisms influence the processing of digits in arithmetic verification, replicating and extending previous findings.
A User's Guide for the Spacecraft Fire Safety Facility
NASA Technical Reports Server (NTRS)
Goldmeer, Jeffrey S.
2000-01-01
The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
Li Li; Daniel R. Miller; Jianghua Sun
2010-01-01
1. Numerous studies have reported the effects of learning or experience on parasitoid host preference and location. However, the integration of pre-imaginal and adult experiences on the subsequent host preference and adult/offspring performance has been rarely tested in hostâparasite interactions. 2. We present direct evidence that theses two kinds of experiences...
Transonic cascade flow prediction using the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Arnone, A.; Stecco, S. S.
1991-01-01
This paper presents results which summarize the work carried out during the last three years to improve the efficiency and accuracy of numerical predictions in turbomachinery flow calculations. A new kind of nonperiodic c-type grid is presented and a Runge-Kutta scheme with accelerating strategies is used as a flow solver. The code capability is presented by testing four different blades at different exit Mach numbers in transonic regimes. Comparison with experiments shows the very good reliability of the numerical prediction. In particular, the loss coefficient seems to be correctly predicted by using the well-known Baldwin-Lomax turbulence model.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit
2017-09-30
The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material.
Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit
2017-01-01
The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material. PMID:28973978
Numerical aerodynamic simulation program long haul communications prototype
NASA Technical Reports Server (NTRS)
Cmaylo, Bohden K.; Foo, Lee
1987-01-01
This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.
Modelling of deformation and recrystallisation microstructures in rocks and ice
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.
2015-04-01
Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.
Statistical analysis of microgravity experiment performance using the degrees of success scale
NASA Technical Reports Server (NTRS)
Upshaw, Bernadette; Liou, Ying-Hsin Andrew; Morilak, Daniel P.
1994-01-01
This paper describes an approach to identify factors that significantly influence microgravity experiment performance. Investigators developed the 'degrees of success' scale to provide a numerical representation of success. A degree of success was assigned to 293 microgravity experiments. Experiment information including the degree of success rankings and factors for analysis was compiled into a database. Through an analysis of variance, nine significant factors in microgravity experiment performance were identified. The frequencies of these factors are presented along with the average degree of success at each level. A preliminary discussion of the relationship between the significant factors and the degree of success is presented.
New method of processing heat treatment experiments with numerical simulation support
NASA Astrophysics Data System (ADS)
Kik, T.; Moravec, J.; Novakova, I.
2017-08-01
In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-12-01
Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.
Residual Stress Analysis in Welded Component.
NASA Astrophysics Data System (ADS)
Rouhi, Shahab; Yoshida, Sanichiro; Miura, Fumiya; Sasaki, Tomohiro
Due to local heating, thermal stresses occur during welding; and residual stress and distortion result remain welding. Welding distortion has negative effects on the accuracy of assembly, exterior appearance, and various strengths of the welded structures. Up to date, a lot of experiments and numerical analysis have been developed to assess residual stress. However, quantitative estimation of residual stress based on experiment may involve massive uncertainties and complexity of the measurement process. To comprehensively understand this phenomena, it is necessary to do further researches by means of both experiment and numerical simulation. In this research, we conduct Finite Element Analysis (FEA) for a simple butt-welded metal plate specimen. Thermal input and resultant expansion are modeled with a thermal expansion FEA module and the resultant constitutive response of the material is modeled with a continuous mechanic FEA module. The residual stress is modeled based on permanent deformation occurring during the heating phase of the material. Experiments have also been carried out to compare with the FEA results. Numerical and experimental results show qualitative agreement. The present work was supported by the Louisiana Board of Regents (LEQSF(2016-17)-RD-C-13).
Observer variability in estimating numbers: An experiment
Erwin, R.M.
1982-01-01
Census estimates of bird populations provide an essential framework for a host of research and management questions. However, with some exceptions, the reliability of numerical estimates and the factors influencing them have received insufficient attention. Independent of the problems associated with habitat type, weather conditions, cryptic coloration, ete., estimates may vary widely due only to intrinsic differences in observers? abilities to estimate numbers. Lessons learned in the field of perceptual psychology may be usefully applied to 'real world' problems in field ornithology. Based largely on dot discrimination tests in the laboratory, it was found that numerical abundance, density of objects, spatial configuration, color, background, and other variables influence individual accuracy in estimating numbers. The primary purpose of the present experiment was to assess the effects of observer, prior experience, and numerical range on accuracy in estimating numbers of waterfowl from black-and-white photographs. By using photographs of animals rather than black dots, I felt the results could be applied more meaningfully to field situations. Further, reinforcement was provided throughout some experiments to examine the influence of training on accuracy.
Non-Linear Lessons from Axisymmetric Vortex Rings
NASA Technical Reports Server (NTRS)
Shariff, Karim; Mansour, Nagi (Technical Monitor)
2001-01-01
For presentation at Northwestern University, May 14-28, 2001, the talk will present two types of phenomena, both recognizable to students of nonlinearity, that are exhibited by axisymmetric vortex rings in numerical and laboratory experiments. (1) The first type of phenomenon is reminiscent of inelastic solitons.
NASA Technical Reports Server (NTRS)
Miller, Richard H.
1992-01-01
A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen
1999-01-01
Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.
Rethinking Library Service: Improving the User Experience with Service Blueprinting
ERIC Educational Resources Information Center
Pretlow, Cassi; Sobel, Karen
2015-01-01
Service blueprinting is a process that businesses use for analyzing and improving service. Originally presented in the Harvard Business Review in 1984, it has retained a strong following ever since. At present, it is experiencing a revival at numerous academic institutions. The authors of this article present the process of service blueprinting.…
A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection
NASA Technical Reports Server (NTRS)
Buell, Jeffrey C.
1988-01-01
A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.
NASA Astrophysics Data System (ADS)
Dutykh, Denys; Hoefer, Mark; Mitsotakis, Dimitrios
2018-04-01
Some effects of surface tension on fully nonlinear, long, surface water waves are studied by numerical means. The differences between various solitary waves and their interactions in subcritical and supercritical surface tension regimes are presented. Analytical expressions for new peaked traveling wave solutions are presented in the dispersionless case of critical surface tension. Numerical experiments are performed using a high-accurate finite element method based on smooth cubic splines and the four-stage, classical, explicit Runge-Kutta method of order 4.
A well-balanced scheme for Ten-Moment Gaussian closure equations with source term
NASA Astrophysics Data System (ADS)
Meena, Asha Kumari; Kumar, Harish
2018-02-01
In this article, we consider the Ten-Moment equations with source term, which occurs in many applications related to plasma flows. We present a well-balanced second-order finite volume scheme. The scheme is well-balanced for general equation of state, provided we can write the hydrostatic solution as a function of the space variables. This is achieved by combining hydrostatic reconstruction with contact preserving, consistent numerical flux, and appropriate source discretization. Several numerical experiments are presented to demonstrate the well-balanced property and resulting accuracy of the proposed scheme.
A general numerical model for wave rotor analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel W.
1992-01-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
Greek Male Early Childhood Educators: Self and Societal Perceptions towards Their Chosen Profession
ERIC Educational Resources Information Center
Rentzou, Konstantina; Ziganitidou, Kiriaki
2009-01-01
In choosing to become early years teachers, men are positioned in a context which is numerically dominated by women. Male early years teachers may feel they experience difficulties, being induced into a predominantly female culture. The present study intended to examine whether Greek male early childhood educators experience difficulties. More…
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fauzi, Ahmad
2017-11-01
Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.
NASA Astrophysics Data System (ADS)
Lamb, M.; Toniolo, H.; Parker, G.
2001-12-01
The slope of the continental margin of the northern Gulf of Mexico is riddled with small basins resulting from salt tectonics. Each such minibasin is the result of local subsidence due to salt withdrawal, and is isolated from neighboring basins by ridges formed due to compensational uplift. The minibasins are gradually filled by turbidity currents, which are active at low sea stand. Experiments in a 1-D minibasin reveal that a turbidity current flowing into a deep minibasin must undergo a hydraulic jump and form a muddy pond. This pond may not spill out of the basin even with continuous inflow. The reason for this is the detrainment of water across the settling interface that forms at the top of the muddy pond. Results of both experiments and numerical modeling of the flow and the evolution of the deposit are presented. The numerical model is the first of its kind to capture both the hydraulic jump and the effect of detrainment in ponded turbidity currents.
NASA Technical Reports Server (NTRS)
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
Research highlights: June 1990 - May 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Linear instability calculations at MSFC have suggested that the Geophysical Fluid Flow Cell (GFFC) should exhibit classic baroclinic instability at accessible parameter settings. Interest was in the mechanisms of transition to temporal chaos and the evolution of spatio-temporal chaos. In order to understand more about such transitions, high resolution numerical experiments for the physically simplest model of two layer baroclinic instability were conducted. This model has the advantage that the numerical code is exponentially convergent and can be efficiently run for very long times, enabling the study of chaotic attractors without the often devastating effects of low-order trunction found in many previous studies. Numerical algorithms for implementing an empirical orthogonal function (EOF) analysis of the high resolution numerical results were completed. Under conditions of rapid rotation and relatively low differential heating, convection in a spherical shell takes place as columnar banana cells wrapped around the annular gap, but with axes oriented along the axis of rotation; these were clearly evident in the GFFC experiments. The results of recent numerical simulations of columnar convection and future research plans are presented.
Spatiotemporal Airy Ince-Gaussian wave packets in strongly nonlocal nonlinear media.
Peng, Xi; Zhuang, Jingli; Peng, Yulian; Li, DongDong; Zhang, Liping; Chen, Xingyu; Zhao, Fang; Deng, Dongmei
2018-03-08
The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.
Calculation to experiment comparison of SPND signals in various nuclear reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien
2015-07-01
In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less
Burger, Stefan; Fraunholz, Thomas; Leirer, Christian; Hoppe, Ronald H W; Wixforth, Achim; Peter, Malte A; Franke, Thomas
2013-06-25
Phase decomposition in lipid membranes has been the subject of numerous investigations by both experiment and theoretical simulation, yet quantitative comparisons of the simulated data to the experimental results are rare. In this work, we present a novel way of comparing the temporal development of liquid-ordered domains obtained from numerically solving the Cahn-Hilliard equation and by inducing a phase transition in giant unilamellar vesicles (GUVs). Quantitative comparison is done by calculating the structure factor of the domain pattern. It turns out that the decomposition takes place in three distinct regimes in both experiment and simulation. These regimes are characterized by different rates of growth of the mean domain diameter, and there is quantitative agreement between experiment and simulation as to the duration of each regime and the absolute rate of growth in each regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel
2014-01-15
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement withmore » quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.« less
Attention Gating in Short-Term Visual Memory.
ERIC Educational Resources Information Center
Reeves, Adam; Sperling, George
1986-01-01
An experiment is conducted showing that an attention shift to a stream of numerals presented in rapid serial visual presentation mode produces not a total loss, but a systematic distortion of order. An attention gating model (AGM) is developed from a more general attention model. (Author/LMO)
Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.; Veltin, Jeremy
2010-01-01
Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.
A simplified parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
Matsuzaki, Ryosuke; Tachikawa, Takeshi; Ishizuka, Junya
2018-03-01
Accurate simulations of carbon fiber-reinforced plastic (CFRP) molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult.
NASA Astrophysics Data System (ADS)
Lezina, Natalya; Agoshkov, Valery
2017-04-01
Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).
Ribbon electron beam formation by a forevacuum plasma electron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimov, A. S., E-mail: klimov@main.tusur.ru; Burdovitsin, V. A.; Grishkov, A. A.
2016-01-15
Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.
Whatever Became of Significant Figures? The Trend Toward Numerical Illiteracy.
ERIC Educational Resources Information Center
Anderlik, Barbara
1980-01-01
Discusses the problems associated with teaching uncertainties in measurements and significant figures. Appendices present an experiment on measurement that introduces uncertainty in measurement, and an exercise in significant figures. (CS)
A tridiagonal parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
NASA Astrophysics Data System (ADS)
Le Touz, N.; Toullier, T.; Dumoulin, J.
2017-05-01
The present study addresses the thermal behaviour of a modified pavement structure to prevent icing at its surface in adverse winter time conditions or overheating in hot summer conditions. First a multi-physic model based on infinite elements method was built to predict the evolution of the surface temperature. In a second time, laboratory experiments on small specimen were carried out and the surface temperature was monitored by infrared thermography. Results obtained are analyzed and performances of the numerical model for real scale outdoor application are discussed. Finally conclusion and perspectives are proposed.
[Why does our heart fibrillate?- or what goats can teach us].
Eckstein, Jens
2014-07-23
Our present knowledge about cardiac electrophysiology is based on numerous experiments and discoveries going back to the Greek antique and ancient Egypt. Exploration of cardiac anatomy was followed by the description of circulation and cardiac physiology in the 17th century. In the early 20th century cardiac electrophysiology became the new field of interest and was studied with the help of numerous animal experiments (squid, rays, dogs, goats, mice and other species). We ought to be grateful for the knowledge and possibilities in modern medicine that were made possible by the great number of researchers, patients and animals that contributed to this.
The route to chaos for the Kuramoto-Sivashinsky equation
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.; Smyrlis, Yiorgos
1990-01-01
The results of extensive numerical experiments of the spatially periodic initial value problem for the Kuramoto-Sivashinsky equation. This paper is concerned with the asymptotic nonlinear dynamics at the dissipation parameter decreases and spatio-temporal chaos sets in. To this end the initial condition is taken to be the same for all numerical experiments (a single sine wave is used) and the large time evolution of the system is followed numerically. Numerous computations were performed to establish the existence of windows, in parameter space, in which the solution has the following characteristics as the viscosity is decreased: a steady fully modal attractor to a steady bimodal attractor to another steady fully modal attractor to a steady trimodal attractor to a periodic attractor, to another steady fully modal attractor, to another periodic attractor, to a steady tetramodal attractor, to another periodic attractor having a full sequence of period-doublings (in parameter space) to chaos. Numerous solutions are presented which provide conclusive evidence of the period-doubling cascades which precede chaos for this infinite-dimensional dynamical system. These results permit a computation of the length of subwindows which in turn provide an estimate for their successive ratios as the cascade develops. A calculation based on the numerical results is also presented to show that the period doubling sequences found here for the Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal constant of 4,669201609... . Some preliminary work shows several other windows following the first chaotic one including periodic, chaotic, and a steady octamodal window; however, the windows shrink significantly in size to enable concrete quantitative conclusions to be made.
Methods for the identification of material parameters in distributed models for flexible structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Crowley, J. M.; Rosen, I. G.
1986-01-01
Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented.
"I Love My Work, but This Is Not My Life": Women of Color in the Academy
ERIC Educational Resources Information Center
Mena, Jasmine A.
2016-01-01
The present study used critical ethnography and intersectionality theory to better understand the experiences of Women of Color (WOC) in the academy. WOC experience numerous and significant challenges in the academy that have the potential to stifle their career growth. Claiming increased acceptance and diversity in the academy without a…
ERIC Educational Resources Information Center
Manseau, Helene; Blais, Martin; Engler, Kim; Bosse, Marie-Andre
2008-01-01
This study presents the perspective of vulnerable Canadian (Quebecker) adolescents defined as such on account of their numerous experiences with potential or actual fatherhood or exposure to sexually transmitted infection. The interviews allowed youth to talk about their experiences with paternity, their sex lives and their views on sex education.…
ERIC Educational Resources Information Center
Nel, Liezel
2017-01-01
In dealing with numerous challenges, higher education instructors need to adapt their pedagogical practices to present students with meaningful, engaged learning experiences that are likely to promote student success and adequately prepare students for the world we live in. As part of this pedagogical transformation instructors also need to…
Turbulence-enhanced bottom melting of a horizontal glacier--lake interface
NASA Astrophysics Data System (ADS)
Keitzl, T.; Mellado, J. P.; Notz, D.
2014-12-01
We use laboratory tank experiments and direct numerical simulations to investigate the meltrates of a horizontal bottom glacier--lake interface as a function of lake temperature. Existing parameterisations of such meltrates are usually based on empirical fits to field observations. To understand the meltrates of an ice--water interface more systematically we study an idealised system in terms of its temperature-driven buoyancy forcing. In such systems, the meltrate can be expressed analytically for a stable stratification. Here we investigate the unstable case and present how the meltrate depends on the lake temperature when the water beneath the ice is overturning and turbulent. We use laboratory tank experiments and direct numerical simulations to study an idealised ice--water boundary. The laboratory tank experiments provide robust observation-based mean-temperature profiles. The numerical simulations provide the full three-dimensional structure of the turbulent flow down to scales not accessible in the laboratory, with a minimum 0.2mm gridspacing. Our laboratory mean-temperature profiles agree well with the numerical simulations and lend credibility to our numerical setup. The structure of the turbulent flow in our simulations is well described by two self-similar subregions, a diffusion-dominated inner layer close to the ice and a turbulence-dominated outer layer far from the ice. We provide an explicit expression for the parameterisation of the meltrate of a horizontal glacier--lake interface as a function of lake temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hua; Shu, Ting, E-mail: mrtingshu@qq.com; Ju, Jinchuan
2014-08-15
We present the analysis and suppression of asymmetric modes in a Ku-band Cerenkov-type oscillator numerically and experimentally. The asymmetric modes generated in the initial experiments were identified to be HE{sub 11}, HE{sub 21}, and HE{sub 31} modes, respectively, by analyzing of the dispersion relationships, the simulation results and the experiment phenomenon. The factors, such as the cathode emission uniformity, the diode voltage, guiding magnetic field, and the concentricity play key roles in the excitation and suppression of these asymmetric modes. In the improved experiments, the asymmetric modes were suppressed effectively. In the improved experiments the asymmetric modes are suppressed effectively,more » and the designed TM{sub 01} mode microwave is generated at a frequency of 13.76 GHz with a power of 1.1 GW, which is in good agreement with numerically predications.« less
An Equation of State for Polymethylpentene (TPX) including Multi-Shock Response
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Gustavsen, Richard; Sanchez, Nathaniel; Bartram, Brian
2011-06-01
The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total-variation-diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Gruneisen EOS based off a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.
An equation of state for polymethylpentene (TPX) including multi-shock response
NASA Astrophysics Data System (ADS)
Aslam, Tariq D.; Gustavsen, Rick; Sanchez, Nathaniel; Bartram, Brian D.
2012-03-01
The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's two-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total variation diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Grüneisen EOS based on a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.
Trescott, Peter C.; Pinder, George Francis; Larson, S.P.
1976-01-01
The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan
2000-01-01
Normal vibrational modes on large spacecraft are excited by crew activity, operating machinery, and other mechanical disturbances. Periodic engine burns for maintaining vehicle attitude and random impulse type disturbances also contribute to the acceleration environment of a Spacecraft. Accelerations from these vibrations (often referred to as g-jitter) are several orders of magnitude larger than the residual accelerations from atmospheric drag and gravity gradient effects. Naturally, the effects of such accelerations have been a concern to prospective experimenters wishing to take advantage of the microgravity environment offered by spacecraft operating in low Earth orbit and the topic has been studied extensively, both numerically and analytically. However, these studies have not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter could use to assess how his/her experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling thereby providing comparative theoretical and experimental data. The modeling, it is hoped will provide a predictive tool that can be used for assessing experiment response to Spacecraft vibrations.
Ultrasound Flow Mapping for the Investigation of Crystal Growth.
Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen
2017-04-01
A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.
Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
NASA Astrophysics Data System (ADS)
Guillén-González, F.; Tierra, G.
2018-02-01
Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.
Hot forming of composite prepreg: Numerical analyses
NASA Astrophysics Data System (ADS)
Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin
2017-10-01
The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.
A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Somogyi, Andy; Tagg, Randall
2007-11-01
We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Lupoglazoff, N.; Vuillot, F.
Some comparisons between firing tests and numerical simulations of vortex shedding via a simple test case called 'C1experimental' are presented. These experiments are performed to validate further numerical simulations, as well as to serve as a tool for facilitating interpretation. At ignition time, spectra of pressure are more complex: it is the effect of vortex pairings. For 6.5-mm burnt, the second longitudinal mode dominates. For 8-mm burnt, the first longitudinal mode dominates. For 11.5-mm burnt, there is only the first longitudinal mode, with a slight shift of the frequency value. Tables are presented which give the pressure oscillation amplitudes of 'C1experimental' with operating pressures, and these amplitudes relative to the corresponding operating pressure.
The Effects Of Earth’s Rotation On The Late Submarine Wake
2017-12-01
had never before encountered. His practical knowledge and real-world experience were beneficial to not only this project, but to numerous other...rotation of the earth. Long-lived vortices were observed during these laboratory experiments , however both the vortices and wakes remained fairly...symmetric. In spite of this, Spedding 2 acknowledged that wakes and vortices in the ocean experience forcing not present in the laboratory and that real
Microwave experiments with left-handed materials
NASA Astrophysics Data System (ADS)
Shelby, Richard Allen
It has previously been predicted that materials that have a simultaneous negative permittivity and negative permeability, called left-handed materials (LHM), will possess very unusual properties, such as negative refraction, inverse Doppler effect, and reversed Cherenkov radiation. In this dissertation I present results from microwave experiments designed to confirm that LHMs will exhibit negative refraction. I also present a discussion about the LHM design, and numerical, electromagnetic simulations. The experiments presented here include transmission experiments, refraction experiments, and surface plasmon experiments. The refraction experiments in Chapter 4 directly observe negative refraction for the first time. The results from the other experiments are consistent with theoretical models and support the claim that negative refraction has been observed. The materials used in the experiments presented here are fabricated, structured materials that contain fiberglass and copper with unit cell parameters on the order of millimeters. Metamaterials have been defined as being composite materials whose bulk properties are different than those of the constituent materials. By this definition, the LHMs used here are metamaterials, so long as the wavelength of the electromagnetic waves being used to probe the LHM are longer than the unit cell parameter.
Numerical tension adjustment of x-ray membrane to represent goat skin kompang
NASA Astrophysics Data System (ADS)
Siswanto, Waluyo Adi; Abdullah, Muhammad Syiddiq Bin
2017-04-01
This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang's membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been develop to help kompang maker to set the tension of x-ray membrane. In the future application, any tradional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The developed numerical tool is useful and handy to calculate the tension of the alternative membrane material.
Numerical Tension Adjustment of X-Ray Membrane to Represent Goat Skin Kompang
NASA Astrophysics Data System (ADS)
Syiddiq, M.; Siswanto, W. A.
2017-01-01
This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang’s membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been used to help kompang maker to set the tension of x-ray membrane. In the future application, any traditional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The numerical tool used is useful and handy to calculate the tension of the alternative membrane material.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
NASA Astrophysics Data System (ADS)
Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath
2018-07-01
One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostermann, Lars; Seidel, Christian
2015-03-10
The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less
"Counting" Serially Presented Stimuli by Human and Nonhuman Primates and Pigeons
ERIC Educational Resources Information Center
Roberts, William A.
2010-01-01
Much of Stewart Hulse's career was spent analyzing how animals can extract patterned information from sequences of stimuli. Yet an additional form of information contained in a sequence may be the number of times different elements occurred. Experiments that required numerical discrimination between different stimulus items presented in sequence…
ERIC Educational Resources Information Center
Nocchi, Susanna; Blin, Françoise
2013-01-01
Notwithstanding their potential for novel approaches to language teaching and learning, Virtual Worlds (VWs) present numerous technological and pedagogical challenges that require new paradigms if the language learning experience and outcomes are to be successful. In this presentation, we argue that the notions of presence and affordance, together…
Analysis of the connection of the timber-fiber concrete composite structure
NASA Astrophysics Data System (ADS)
Holý, Milan; Vráblík, Lukáš; Petřík, Vojtěch
2017-09-01
This paper deals with an implementation of the material parameters of the connection to complex models for analysis of the timber-fiber concrete composite structures. The aim of this article is to present a possible way of idealization of the continuous contact model that approximates the actual behavior of timber-fiber reinforced concrete structures. The presented model of the connection was derived from push-out shear tests. It was approved by use of the nonlinear numerical analysis, that it can be achieved a very good compliance between results of numerical simulations and results of the experiments by a suitable choice of the material parameters of the continuous contact. Finally, an application for an analytical calculation of timber-fiber concrete composite structures is developed for the practical use in engineering praxis. The input material parameters for the analytical model was received using data from experiments.
Numerical bias in bounded and unbounded number line tasks.
Cohen, Dale J; Blanc-Goldhammer, Daryn
2011-04-01
The number line task is often used to assess children's and adults' underlying representations of integers. Traditional bounded number line tasks, however, have limitations that can lead to misinterpretation. Here we present a new task, an unbounded number line task, that overcomes these limitations. In Experiment 1, we show that adults use a biased proportion estimation strategy to complete the traditional bounded number line task. In Experiment 2, we show that adults use a dead-reckoning integer estimation strategy in our unbounded number line task. Participants revealed a positively accelerating numerical bias in both tasks, but showed scalar variance only in the unbounded number line task. We conclude that the unbounded number line task is a more pure measure of integer representation than the bounded number line task, and using these results, we present a preliminary description of adults' underlying representation of integers.
Experiences with two-equation turbulence models
NASA Technical Reports Server (NTRS)
Singhal, Ashok K.; Lai, Yong G.; Avva, Ram K.
1995-01-01
This viewgraph presentation discusses the following: introduction to CFD Research Corporation; experiences with two-equation models - models used, numerical difficulties, validation and applications, and strengths and weaknesses; and answers to three questions posed by the workshop organizing committee - what are your customers telling you, what are you doing in-house, and how can NASA-CMOTT (Center for Modeling of Turbulence and Transition) help.
Dynamic Stability Experiment of Maglev Systems,
1995-04-01
This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an
Metal powder absorptivity: Modeling and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
Metal powder absorptivity: Modeling and experiment
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...
2016-08-10
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
Numerical simulation of heat and mass transport during space crystal growth with MEPHISTO
NASA Technical Reports Server (NTRS)
Yao, Minwu; Raman, Raghu; Degroh, Henry C., III
1995-01-01
The MEPHISTO space experiments are collaborative United States and French investigations aimed at understanding the fundamentals of crystal growth. Microgravity experiments were conducted aboard the USMP-1 and -2 missions on STS-52 and 62 in October 1992 and March 1994 respectively. MEPHISTO is a French designed and built Bridgman type furnace which uses the Seebeck technique to monitor the solid/liquid interface temperature and Peltier pulsing to mark the location and shape of the solid/liquid interface. In this paper the Bridgman growth of Sn-Bi and Bi-Sn under terrestrial and microgravity conditions is modeled using the finite element code, FIDAP*. The numerical model considers fully coupled heat and mass transport, fluid motion and solid/liquid phase changes in the crystal growth process. The primary goals of this work are: to provide a quantitative study of the thermal buoyancy-induced convection in the melt for the two flight experiments; to compare the vertical and horizontal growth configurations and systematically evaluate the effects of various gravity levels on the solute segregation. Numerical results of the vertical and horizontal Bridgman growth configurations are presented.
On the remote sensing of cloud properties from satellite infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H. Y. M.
1984-01-01
A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.
The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip
2014-11-01
A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.
Analysis of the effectiveness of steam retorting of oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, H.R.; Pensel, R.W.; Udell, K.S.
A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less
Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers
Thompson, Clarissa A.; Opfer, John E.
2016-01-01
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688
Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.
Thompson, Clarissa A; Opfer, John E
2016-01-01
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.
The Modulus of Rupture from a Mathematical Point of View
NASA Astrophysics Data System (ADS)
Quintela, P.; Sánchez, M. T.
2007-04-01
The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.
Lee, S; Pan, J J
1996-01-01
This paper presents a new approach to representation and recognition of handwritten numerals. The approach first transforms a two-dimensional (2-D) spatial representation of a numeral into a three-dimensional (3-D) spatio-temporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. A multiresolution critical-point segmentation method is then proposed to extract local feature points, at varying degrees of scale and coarseness. A new neural network architecture, referred to as radial-basis competitive and cooperative network (RCCN), is presented especially for handwritten numeral recognition. RCCN is a globally competitive and locally cooperative network with the capability of self-organizing hidden units to progressively achieve desired network performance, and functions as a universal approximator of arbitrary input-output mappings. Three types of RCCNs are explored: input-space RCCN (IRCCN), output-space RCCN (ORCCN), and bidirectional RCCN (BRCCN). Experiments against handwritten zip code numerals acquired by the U.S. Postal Service indicated that the proposed method is robust in terms of variations, deformations, transformations, and corruption, achieving about 97% recognition rate.
Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites
NASA Astrophysics Data System (ADS)
Lin, Yueguo
2018-05-01
An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.
A basic plasma test for gyrokinetics: GDC turbulence in LAPD
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2017-02-01
Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.
Rammsayer, Thomas H; Verner, Martin
2016-05-01
Perceived duration has been shown to be positively related to task-irrelevant, nontemporal stimulus magnitude. To account for this finding, Walsh's (2003) A Theory of Magnitude (ATOM) model suggests that magnitude of time is not differentiated from magnitude of other nontemporal stimulus characteristics and collectively processed by a generalized magnitude system. In Experiment 1, we investigated the combined effects of stimulus size and numerical quantity, as two nontemporal stimulus dimensions covered by the ATOM model, on duration judgments. Participants were required to reproduce the duration of target intervals marked by Arabic digits varying in physical size and numerical value. While the effect of stimulus size was effectively moderated by target duration, the effect of numerical value appeared to require attentional resources directed to the numerical value in order to become effective. Experiment 2 was designed to further elucidate the mediating influence of attention on the effect of numerical value on duration judgments. An effect of numerical value was only observed when participants' attention was directed to digit value, but not when participants were required to pay special attention to digit parity. While the ATOM model implies a common metrics and generalized magnitude processing for time, size, and quantity, the present findings provided converging evidence for the notion of two qualitatively different mechanisms underlying the effects of nontemporal stimulus size and numerical value on duration judgments. Furthermore, our data challenge the implicit common assumption that the effect of numerical value on duration judgments represents a continuously increasing function of digit magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peryshkin, A. Yu., E-mail: alexb700@yandex.ru; Makarov, P. V., E-mail: bacardi@ispms.ru; Eremin, M. O., E-mail: bacardi@ispms.ru
An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutionsmore » of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.« less
Mathematical modeling of flow in the working part of an acousto-convective drying system
NASA Astrophysics Data System (ADS)
Kravchenko, A. S.; Zhilin, A. A.; Fedorova, N. N.
2018-03-01
The objective of this study was to numerically simulate the nonstationary processes occurring in the acoustic-convective dryer (ACD) channel. In the present work, the problem was solved numerically in a three-dimensional formulation taking into account all features of the ACD duct in real geometry. The processes occurring in the ACD duct were simulated using the ANSYS Fluent 18.0 software. The numerical experiments provided an aggregate picture of the working gas flow in the ACD duct with the features near the subsonic nozzle and the cavity. The results of the numerical calculations were compared with experimental data. The best agreement with the experimental data was obtained for the viscosity model neglecting turbulent effects.
Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver
NASA Astrophysics Data System (ADS)
Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur
2017-12-01
Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.
JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields
NASA Astrophysics Data System (ADS)
Piedrahita-Quintero, Pablo; Trujillo, Carlos; Garcia-Sucerquia, Jorge
2017-05-01
JDiffraction, a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields, is presented. Angular spectrum, Fresnel transform, and Fresnel-Bluestein transform are the numerical algorithms implemented in the methods and functions of the library to compute the scalar propagation of the complex wavefield. The functionality of the library is tested with the modeling of easy to forecast numerical experiments and also with the numerical reconstruction of a digitally recorded hologram. The performance of JDiffraction is contrasted with a library written for C++, showing great competitiveness in the apparently less complex environment of JAVA language. JDiffraction also includes JAVA easy-to-use methods and functions that take advantage of the computation power of the graphic processing units to accelerate the processing times of 2048×2048 pixel images up to 74 frames per second.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Steinetz, B. M.; Kudriavtsev, V. V.; Proctor, M. P.; Kiraly, L. James (Technical Monitor)
2002-01-01
The work presented here concerns the numerical development and simulation of the flow, pressure patterns and motion of a pair of fingers arranged behind each other and axially aligned in-line. The fingers represent the basic elemental component of a Finger Seal (FS) and form a tight seal around the rotor. Yet their flexibility allows compliance with rotor motion and in a passive-adaptive mode complies also with the hydrodynamic forces induced by the flowing fluid. While the paper does not treat the actual staggered configuration of a finger seal, the inline arrangement represents a first step towards that final goal. The numerical 2-D (axial-radial) and 3-D results presented herein were obtained using a commercial package (CFD-ACE+). Both models use an integrated numerical approach, which couples the hydrodynamic fluid model (Navier-Stokes based) to the solid mechanics code that models the compliance of the fingers.
Women and men who have served in Afghanistan/Iraq: coming home.
Beder, Joan; Coe, Ray; Sommer, Darren
2011-01-01
The experience of war changes people - some will acknowledge that the changes are positive and some will feel the opposite or a combination, but that it changes a person cannot be disputed. For those who return, the experience of reintegration to civilian life or as a respite before redeployment can present numerous challenges. The research presented in this article reports the findings on interviews with over 800 service members who had returned from either Afghanistan or Iraq. The Post Deployment Reintegration Scale was used to refine the areas that respondents identified as positive or negative in their reintegration experience. Implications for practice with returning service members are noted.
Socio-economic applications of finite state mean field games.
Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese
2014-11-13
In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system
NASA Astrophysics Data System (ADS)
Lee, Hyun Geun; Choi, Jeong-Whan; Kim, Junseok
2012-02-01
We present a practically unconditionally gradient stable conservative nonlinear numerical scheme for the N-component Cahn-Hilliard system modeling the phase separation of an N-component mixture. The scheme is based on a nonlinear splitting method and is solved by an efficient and accurate nonlinear multigrid method. The scheme allows us to convert the N-component Cahn-Hilliard system into a system of N-1 binary Cahn-Hilliard equations and significantly reduces the required computer memory and CPU time. We observe that our numerical solutions are consistent with the linear stability analysis results. We also demonstrate the efficiency of the proposed scheme with various numerical experiments.
ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.
NASA Astrophysics Data System (ADS)
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
Analysis of the discontinuous Galerkin method applied to the European option pricing problem
NASA Astrophysics Data System (ADS)
Hozman, J.
2013-12-01
In this paper we deal with a numerical solution of a one-dimensional Black-Scholes partial differential equation, an important scalar nonstationary linear convection-diffusion-reaction equation describing the pricing of European vanilla options. We present a derivation of the numerical scheme based on the space semidiscretization of the model problem by the discontinuous Galerkin method with nonsymmetric stabilization of diffusion terms and with the interior and boundary penalty. The main attention is paid to the investigation of a priori error estimates for the proposed scheme. The appended numerical experiments illustrate the theoretical results and the potency of the method, consequently.
Maciejovsky, Boris; Budescu, David V
2013-06-01
Many Web sites provide consumers with product recommendations, which are typically presented by a sequence of verbal reviews and numerical ratings. In three experiments, we demonstrate that when participants switch between formats (e.g., from verbal to numerical), they are more prone to preference inconsistencies than when they aggregate the recommendations within the same format (e.g., verbal). When evaluating recommendations, participants rely primarily on central-location measures (e.g., mean) and less on other distribution characteristics (e.g., variance). We explain our findings within the theoretical framework of stimulus-response compatibility and we make practical recommendations for the design of recommendation systems and Web portals.
Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments
Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.
2015-01-01
In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.
A numerical investigation of head waves and leaky modes in fluid- filled boreholes.
Paillet, Frederick L.; Cheng, C.H.
1986-01-01
Although synthetic borehole seismograms can be computed for a wide range of borehole conditions, the physical nature of shear and compressional head waves in fluid-filled boreholes is poorly understood. Presents a series of numerical experiments designed to explain the physical mechanisms controlling head-wave propagation in boreholes. These calculations demonstrate the existence of compressional normal modes equivalent to shear normal modes, or pseudo-Rayleigh waves, with sequential cutoff frequencies spaced between the cutoff frequencies for the shear normal modes.-from Authors
Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrichs, H., E-mail: henning.ulrichs@uni-muenster.de; Demidov, V. E.; Demokritov, S. O.
2014-01-27
We present a numerical study of magnetization dynamics in a recently introduced spin torque nano-oscillator, whose operational principle relies on the spin-Hall effect—spin-Hall nano-oscillators. Our numerical results show good agreement with the experimentally observed behaviors and provide detailed information about the features of the primary auto-oscillation mode observed in the experiments. They also clarify the physical nature of the secondary auto-oscillation mode, which was experimentally observed under certain conditions only.
Computation of transonic viscous-inviscid interacting flow
NASA Technical Reports Server (NTRS)
Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.
1983-01-01
Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented.
NASA Technical Reports Server (NTRS)
Halliwell, R. S.
1973-01-01
The nature and mechanisms of the apparent simulation of growth originally observed in plants growing in contact with lunar soil during the Apollo project quarantine are examined. Preliminary experiments employing neutron activated lunar soil indicate uptake of a few elements by plants. It was found that while the preliminary neutron activation technique allowed demonstration of uptake of minerals it presented numerous disadvantages for use in critical experiments directed at elucidating possible mechanisms of stimulation.
Bottom-up and top-down attentional contributions to the size congruity effect.
Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J
2016-07-01
The size congruity effect refers to the interaction between the numerical and physical (i.e., font) sizes of digits in a numerical (or physical) magnitude selection task. Although various accounts of the size congruity effect have attributed this interaction to either an early representational stage or a late decision stage, only Risko, Maloney, and Fugelsang (Attention, Perception, & Psychophysics, 75, 1137-1147, 2013) have asserted a central role for attention. In the present study, we used a visual search paradigm to further study the role of attention in the size congruity effect. In Experiments 1 and 2, we showed that manipulating top-down attention (via the task instructions) had a significant impact on the size congruity effect. The interaction between numerical and physical size was larger for numerical size comparison (Exp. 1) than for physical size comparison (Exp. 2). In the remaining experiments, we boosted the feature salience by using a unique target color (Exp. 3) or by increasing the display density by using three-digit numerals (Exps. 4 and 5). As expected, a color singleton target abolished the size congruity effect. Searching for three-digit targets based on numerical size (Exp. 4) resulted in a large size congruity effect, but search based on physical size (Exp. 5) abolished the effect. Our results reveal a substantial role for top-down attention in the size congruity effect, which we interpreted as support for a shared-decision account.
Surface Tension Driven Convection Experiment (STDCE)
NASA Technical Reports Server (NTRS)
Ostrach, Simon; Kamotani, Y.; Pline, A.
1994-01-01
Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.
NASA Astrophysics Data System (ADS)
Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.
2017-02-01
In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.
Three-dimensional analysis of tokamaks and stellarators
Garabedian, Paul R.
2008-01-01
The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807
NASA Astrophysics Data System (ADS)
Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.
2014-05-01
Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.
Practical witness for electronic coherences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Allan S.; Department of Physics, Imperial College London, London; Yuen-Zhou, Joel
2014-12-28
The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse centralmore » frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.« less
Practical witness for electronic coherences.
Johnson, Allan S; Yuen-Zhou, Joel; Aspuru-Guzik, Alán; Krich, Jacob J
2014-12-28
The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.
The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15
NASA Technical Reports Server (NTRS)
Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.
2009-01-01
This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering systems involving capillary interface dynamics.
A review of mechanisms and modelling procedures for landslide tsunamis
NASA Astrophysics Data System (ADS)
Løvholt, Finn; Harbitz, Carl B.; Glimsdal, Sylfest
2017-04-01
Landslides, including volcano flank collapses or volcanically induced flows, constitute the second-most important cause of tsunamis after earthquakes. Compared to earthquakes, landslides are more diverse with respect to how they generation tsunamis. Here, we give an overview over the main tsunami generation mechanisms for landslide tsunamis. In the presentation, a mix of results using analytical models, numerical models, laboratory experiments, and case studies are used to illustrate the diversity, but also to point out some common characteristics. Different numerical modelling techniques for the landslide evolution, and the tsunami generation and propagation, as well as the effect of frequency dispersion, are also briefly discussed. Basic tsunami generation mechanisms for different types of landslides, including large submarine translational landslide, to impulsive submarine slumps, and violent subaerial landslides and volcano flank collapses, are reviewed. The importance of the landslide kinematics is given attention, including the interplay between landslide acceleration, landslide velocity to depth ratio (Froude number) and dimensions. Using numerical simulations, we demonstrate how landslide deformation and retrogressive failure development influence tsunamigenesis. Generation mechanisms for subaerial landslides, are reviewed by means of scaling relations from laboratory experiments and numerical modelling. Finally, it is demonstrated how the different degree of complexity in the landslide tsunamigenesis needs to be reflected by increased sophistication in numerical models.
Smoldering of porous media: numerical model and comparison of calculations with experiment
NASA Astrophysics Data System (ADS)
Lutsenko, N. A.; Levin, V. A.
2017-10-01
Numerical modelling of smoldering in porous media under natural convection is considered. Smoldering can be defined as a flameless exothermic surface reaction; it is a type of heterogeneous combustion which can propagate in porous media. Peatbogs, landfills and other natural or man-made porous objects can sustain smoldering under natural (or free) convection, when the flow rate of gas passed through the porous object is unknown a priori. In the present work a numerical model is proposed for investigating smoldering in porous media under natural convection. The model is based on the assumption of interacting interpenetrating continua using classical approaches of the theory of filtration combustion and includes equations of state, continuity, momentum conservation and energy for solid and gas phases. Computational results obtained by means of the numerical model in one-dimensional case are compared with the experimental data of the smoldering combustion in polyurethane foam under free convection in the gravity field, which were described in literature. Calculations shows that when simulating both co-current combustion (when the smoldering wave moves upward) and counter-current combustion (when the smoldering wave moves downward), the numerical model can provide a good quantitative agreement with experiment if the parameters of the model are well defined.
From the Research Bench to the Teaching Laboratory: Gold Nanoparticle Layering
ERIC Educational Resources Information Center
Oliver-Hoyo, Maria; Gerber, Ralph W.
2007-01-01
The study presents an experimental approach, which is expected to be very useful for a better understanding of the synthetic, mechanistic and measurable properties of gold nanoparticle layering techniques. The experiment is found to serve numerous educational objectives as well.
FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS
This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...
THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR
NASA Astrophysics Data System (ADS)
Macor, A.; de Rijk, E.; Annino, G.; Alberti, S.; Ansermet, J.-Ph.
2011-10-01
A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids.
The mental representations of fractions: adults' same–different judgments
Gabriel, Florence; Szucs, Denes; Content, Alain
2013-01-01
Two experiments examined whether the processing of the magnitude of fractions is global or componential. Previously, some authors concluded that adults process the numerators and denominators of fractions separately and do not access the global magnitude of fractions. Conversely, others reported evidence suggesting that the global magnitude of fractions is accessed. We hypothesized that in a fraction matching task, participants automatically extract the magnitude of the components but that the activation of the global magnitude of the whole fraction is only optional or strategic. Participants carried out same/different judgment tasks. Two different tasks were used: a physical matching task and a numerical matching task. Pairs of fractions were presented either simultaneously or sequentially. Results showed that participants only accessed the representation of the global magnitude of fractions in the numerical matching task. The mode of stimulus presentation did not affect the processing of fractions. The present study allows a deeper understanding of the conditions in which the magnitude of fractions is mentally represented by using matching tasks and two different modes of presentation. PMID:23847562
An Equation of State for Foamed Divinylbenzene (DVB) Based on Multi-Shock Response
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Schroen, Diana; Gustavsen, Richard; Bartram, Brian
2013-06-01
The methodology for making foamed Divinylbenzene (DVB) is described. For a variety of initial densities, foamed DVB is examined through multi-shock compression and release experiments. Results from multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme, utilizing total-variation-diminishing interpolation and an approximate Riemann solver, will be presented as well as the methodology of calibration. It has been previously demonstrated that a single Mie-Gruneisen fitting form can replicate foam multi-shock compression response at a variety of initial densities; such a methodology will be presented for foamed DVB.
Immersed boundary lattice Boltzmann model based on multiple relaxation times
NASA Astrophysics Data System (ADS)
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
Analytical Model For Fluid Dynamics In A Microgravity Environment
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1995-01-01
Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.
Momentum distributions for the quantum delta-kicked rotor with decoherence
Vant; Ball; Christensen
2000-05-01
We report on the momentum distribution line shapes for the quantum delta-kicked rotor in the presence of environment induced decoherence. Experimental and numerical results are presented. In the experiment ultracold cesium atoms are subjected to a pulsed standing wave of near resonant light. Spontaneous scattering of photons destroys dynamical localization. For the scattering rates used in our experiment the momentum distribution shapes remain essentially exponential.
2015 Military Investigation and Justice Experience Survey (MIJES). Overview Report
2016-03-16
FMG) b Defense Manpower Data Center (DMDC) a SRA International, Inc., A CSRA Company Defense Manpower Data Center 4800 Mark Center Drive, Suite... Manpower Data Center (DMDC) is indebted to numerous people for their assistance with the 2015 Military Investigation and Justice Experience Survey (2015...Statistical Analysis Macros to calculate the results presented in this report. Ms. Sue Reinhold provided assistance with programming and merging contact
Numerical modeling of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.
2002-11-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to results obtained from the experiment. The code, Dynamo (Fortran90), allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the curl of the momentum equation governing V are separately or simultaneously solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Power balance in the system has been verified in both mechanically driven and perturbed hydrodynamic, kinematic, and dynamic cases. Evolution of the vacuum magnetic field has been added to facilitate comparison with the experiment. Modeling of the Madison Dynamo eXperiment will be presented.
Making waves round a structured cloak: lattices, negative refraction and fringes
Colquitt, D. J.; Jones, I. S.; Movchan, N. V.; Movchan, A. B.; Brun, M.; McPhedran, R. C.
2013-01-01
Using the framework of transformation optics, this paper presents a detailed analysis of a non-singular square cloak for acoustic, out-of-plane shear elastic and electromagnetic waves. Analysis of wave propagation through the cloak is presented and accompanied by numerical illustrations. The efficacy of the regularized cloak is demonstrated and an objective numerical measure of the quality of the cloaking effect is provided. It is demonstrated that the cloaking effect persists over a wide range of frequencies. As a demonstration of the effectiveness of the regularized cloak, a Young's double slit experiment is presented. The stability of the interference pattern is examined when a cloaked and uncloaked obstacle are successively placed in front of one of the apertures. This novel link with a well-known quantum mechanical experiment provides an additional method through which the quality of cloaks may be examined. In the second half of the paper, it is shown that an approximate cloak may be constructed using a discrete lattice structure. The efficiency of the approximate lattice cloak is analysed and a series of illustrative simulations presented. It is demonstrated that effective cloaking may be obtained by using a relatively simple lattice structure, particularly, in the low-frequency regime. PMID:24062625
NASA Astrophysics Data System (ADS)
Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang
2017-03-01
In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.
Brault, C; Gil, C; Boboc, A; Spuig, P
2011-04-01
On the Tore Supra tokamak, a far infrared polarimeter diagnostic has been routinely used for diagnosing the current density by measuring the Faraday rotation angle. A high precision of measurement is needed to correctly reconstruct the current profile. To reach this precision, electronics used to compute the phase and the amplitude of the detected signals must have a good resilience to the noise in the measurement. In this article, the analogue card's response to the noise coming from the detectors and their impact on the Faraday angle measurements are analyzed, and we present numerical methods to calculate the phase and the amplitude. These validations have been done using real signals acquired by Tore Supra and JET experiments. These methods have been developed to be used in real-time in the future numerical cards that will replace the Tore Supra present analogue ones. © 2011 American Institute of Physics
NASA Technical Reports Server (NTRS)
Starr, D. OC.; Cox, S. K.
1985-01-01
A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.
Damping in Space Constructions
NASA Astrophysics Data System (ADS)
de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik
2014-06-01
Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-29
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.
Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.
2015-03-01
Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimenmore » are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.« less
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-01
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948
Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards
NASA Astrophysics Data System (ADS)
Kudela, Henryk; Kosior, Andrzej
2014-08-01
Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
Validation of the enthalpy method by means of analytical solution
NASA Astrophysics Data System (ADS)
Kleiner, Thomas; Rückamp, Martin; Bondzio, Johannes; Humbert, Angelika
2014-05-01
Numerical simulations moved in the recent year(s) from describing the cold-temperate transition surface (CTS) towards an enthalpy description, which allows avoiding incorporating a singular surface inside the model (Aschwanden et al., 2012). In Enthalpy methods the CTS is represented as a level set of the enthalpy state variable. This method has several numerical and practical advantages (e.g. representation of the full energy by one scalar field, no restriction to topology and shape of the CTS). The proposed method is rather new in glaciology and to our knowledge not verified and validated against analytical solutions. Unfortunately we are still lacking analytical solutions for sufficiently complex thermo-mechanically coupled polythermal ice flow. However, we present two experiments to test the implementation of the enthalpy equation and corresponding boundary conditions. The first experiment tests particularly the functionality of the boundary condition scheme and the corresponding basal melt rate calculation. Dependent on the different thermal situations that occur at the base, the numerical code may have to switch to another boundary type (from Neuman to Dirichlet or vice versa). The main idea of this set-up is to test the reversibility during transients. A former cold ice body that run through a warmer period with an associated built up of a liquid water layer at the base must be able to return to its initial steady state. Since we impose several assumptions on the experiment design analytical solutions can be formulated for different quantities during distinct stages of the simulation. The second experiment tests the positioning of the internal CTS in a parallel-sided polythermal slab. We compare our simulation results to the analytical solution proposed by Greve and Blatter (2009). Results from three different ice flow-models (COMIce, ISSM, TIMFD3) are presented.
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.
Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri
2010-06-01
In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott
2015-11-01
Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.
Chaotic orbits obeying one isolating integral in a four-dimensional map
NASA Astrophysics Data System (ADS)
Muzzio, J. C.
2018-02-01
We have recently presented strong evidence that chaotic orbits that obey one isolating integral besides energy exist in a toy Hamiltonian model with three degrees of freedom and are bounded by regular orbits that isolate them from the Arnold web. The interval covered by those numerical experiments was equivalent to about one million Hubble times in a galactic context. Here, we use a four-dimensional map to confirm our previous results and to extend that interval 50 times. We show that, at least within that interval, features found in lower dimension Hamiltonian systems and maps are also present in our study, e.g. within the phase space occupied by a chaotic orbit that obeys one integral there are subspaces where that orbit does not enter and are, instead, occupied by regular orbits that, if tori, bound other chaotic orbits obeying one integral and, if cantori, produce stickiness. We argue that the validity of our results might exceed the time intervals covered by the numerical experiments.
S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators
NASA Astrophysics Data System (ADS)
Kelley, Christopher; He, Chuan; Corke, Thomas
2009-11-01
The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.
Camacho-Bello, César; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Báez-Rojas, José Javier
2016-01-01
Abstract. A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters α and β of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented. PMID:27014716
QMR: A Quasi-Minimal Residual method for non-Hermitian linear systems
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1990-01-01
The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. A novel BCG like approach is presented called the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.
Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2004-01-01
This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.
Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow
NASA Astrophysics Data System (ADS)
Aida-zade, K. R.; Ashrafova, E. R.
2017-12-01
An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.
Self-similarity of waiting times in fracture systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niccolini, G.; Bosia, F.; Carpinteri, A.
2009-08-15
Experimental and numerical results are presented for a fracture experiment carried out on a fiber-reinforced element under flexural loading, and a statistical analysis is performed for acoustic emission waiting-time distributions. By an optimization procedure, a recently proposed scaling law describing these distributions for different event magnitude scales is confirmed by both experimental and numerical data, thus reinforcing the idea that fracture of heterogeneous materials has scaling properties similar to those found for earthquakes. Analysis of the different scaling parameters obtained for experimental and numerical data leads us to formulate the hypothesis that the type of scaling function obtained depends onmore » the level of correlation among fracture events in the system.« less
NASA Technical Reports Server (NTRS)
Venuturmilli, Rajasekhar; Zhang, Yong; Chen, Lea-Der
2003-01-01
Enclosed flames are found in many industrial applications such as power plants, gas-turbine combustors and jet engine afterburners. A better understanding of the burner stability limits can lead to development of combustion systems that extend the lean and rich limits of combustor operations. This paper reports a fundamental study of the stability limits of co-flow laminar jet diffusion flames. A numerical study was conducted that used an adaptive mesh refinement scheme in the calculation. Experiments were conducted in two test rigs with two different fuels and diluted with three inert species. The numerical stability limits were compared with microgravity experimental data. Additional normal-gravity experimental results were also presented.
Experimental and numerical investigation of a scalable modular geothermal heat storage system
NASA Astrophysics Data System (ADS)
Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof
2017-04-01
Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days of heat extraction. The experiment was performed for the determination of heat losses during a complete thermal loading and extraction cycle. The storage could be charged with 54 kWh of heat energy during thermal loading. 36 kWh could be regained during the extraction period, which translates to a heat loss of 33% during the 10 days of operation. Heat exchanger fluid flow rates and supply temperature were measured during the experiment and used as input for the 3D finite element model. Numerically simulated temperature distribution in the storage, return temperature and heat balances were compared to the measured data and showed that the 3D model accurately reflects the storage behavior. Also the third experiment, consisting of six days of cyclic operation after five days of continuous thermal loading, a good agreement between observed and modelled heat storage behavior is found. In addition to determining the storage performance during cyclic operation, the experiment will also be used to further validate the numerical model. This abstract will present the laboratory setup as well as the experimental data obtained from the experiment. It will also present the modelling approach chosen for the numerical representation of the experiment and give a comparison between measured and modelled temperatures and heat balances for the modular heat storage system.
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
The propagation of sound in tunnels
NASA Astrophysics Data System (ADS)
Li, Kai Ming; Iu, King Kwong
2002-11-01
The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.
Leakage flow simulation in a specific pump model
NASA Astrophysics Data System (ADS)
Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.
2014-03-01
This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.
On numerical instabilities of Godunov-type schemes for strong shocks
NASA Astrophysics Data System (ADS)
Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha
2017-12-01
It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.
Numerical modeling of NI-monitored 3D infiltration experiment
NASA Astrophysics Data System (ADS)
Dohnal, Michal; Dusek, Jaromir; Snehota, Michal; Sacha, Jan; Vogel, Tomas; Votrubova, Jana
2014-05-01
It is well known that the temporal changes of saturated hydraulic conductivity caused by the occurrence of air phase discontinuities often play an important role in water flow and solute transport experiments. In the present study, a series of infiltration-outflow experiments was conducted to test several working hypotheses about the mechanism of air phase trapping. The experiments were performed on a porous sample with artificial internal structure, using three sandy materials with contrasting hydraulic properties. The sample was axially symmetric with continuous preferential pathways and separate porous matrix blocks (the sample was 3.4 cm in diameter and 8.8 cm high). The infiltration experiments were monitored by neutron imaging (NI). The NI data were then used to quantify the water content of the selected sample regions. The flow regime in the sample was studied using a three-dimensional model based on Richards' equation. The equation was solved by the finite element method. The results of the numerical simulations of the infiltration experiments were compared with the measured outflow rates and with the spatial distribution of water content determined by NI. The research was supported by the Czech Science Foundation Project No. 14-03691S.
Computational Simulation of Acoustic Modes in Rocket Combustors
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.
2004-01-01
A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.
Numerical simulation of the wave-induced non-linear bending moment of ships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, J.; Wang, Z.; Gu, X.
1995-12-31
Ships traveling in moderate or rough seas may experience non-linear bending moments due to flare effect and slamming loads. The numerical simulation of the total wave-induced bending moment contributed from both the wave frequency component induced by wave forces and the high frequency whipping component induced by slamming actions is very important in predicting the responses and ensuring the safety of the ship in rough seas. The time simulation is also useful for the reliability analysis of ship girder strength. The present paper discusses four different methods of the numerical simulation of wave-induced non-linear vertical bending moment of ships recentlymore » developed in CSSRC, including the hydroelastic integral-differential method (HID), the hydroelastic differential analysis method (HDA), the combined seakeeping and structural forced vibration method (CSFV), and the modified CSFV method (MCSFV). Numerical predictions are compared with the experimental results obtained from the elastic ship model test of S-175 container ship in regular and irregular waves presented by Watanabe Ueno and Sawada (1989).« less
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.
An approach of traffic signal control based on NLRSQP algorithm
NASA Astrophysics Data System (ADS)
Zou, Yuan-Yang; Hu, Yu
2017-11-01
This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
NASA Astrophysics Data System (ADS)
Rybus, T.; Seweryn, K.
2018-06-01
It is considered to use a manipulator-equipped satellite for performing On-Orbit Servicing (OOS) or Active Debris Removal (ADR) missions. In this paper, several possible approaches are reviewed for end-effector (EE) trajectory planning in the Cartesian space, such as application of the Bézier curves for singularity avoidance and method for trajectory optimization. The results of numerical simulations for a satellite equipped with a 7 degree-of-freedom (DoF) manipulator and results of experiments performed on a planar air-bearing microgravity simulator for a simplified two-dimensional (2D) case with a 2-DoF manipulator are presented. Differences between the free-floating case and the case where Attitude and Orbit Control Systems (AOCS) keep constant position and orientation of the satellite are also shown.
THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR.
Macor, A; de Rijk, E; Annino, G; Alberti, S; Ansermet, J-Ph
2011-10-01
A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids. Copyright © 2011 Elsevier Inc. All rights reserved.
Conforming and nonconforming virtual element methods for elliptic problems
Cangiani, Andrea; Manzini, Gianmarco; Sutton, Oliver J.
2016-08-03
Here we present, in a unified framework, new conforming and nonconforming virtual element methods for general second-order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and nonsymmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H 1- and L 2-error estimates, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the two methods is shown to be comparable.
A projection method for low speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colella, P.; Pao, K.
The authors propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hodge decomposition, they may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate various aspects of the algorithm.
Supercomputer analysis of sedimentary basins.
Bethke, C M; Altaner, S P; Harrison, W J; Upson, C
1988-01-15
Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.
Conforming and nonconforming virtual element methods for elliptic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangiani, Andrea; Manzini, Gianmarco; Sutton, Oliver J.
Here we present, in a unified framework, new conforming and nonconforming virtual element methods for general second-order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and nonsymmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H 1- and L 2-error estimates, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the two methods is shown to be comparable.
NASA Technical Reports Server (NTRS)
Bellmore, C. P.; Reid, R. L.
1980-01-01
Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.
Alameda, Jose Ramon; Cuetos, Fernando; Brysbaert, Marc
2003-08-01
Two experiments are reported in which naming multidigit Arabic numerals was shown to depend on the context in which the numbers were presented. Number naming and number decisions were faster after an associative prime (e.g., 747 preceded by the word Boeing) than after an unrelated prime, both in unmasked and masked priming conditions. On the basis of these findings, we conclude that number naming is not always based on a quantity-based semantically mediated pathway.
Optimal placement of excitations and sensors for verification of large dynamical systems
NASA Technical Reports Server (NTRS)
Salama, M.; Rose, T.; Garba, J.
1987-01-01
The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.
Advances in the computation of transonic separated flows over finite wings
NASA Technical Reports Server (NTRS)
Kaynak, Unver; Flores, Jolen
1989-01-01
Problems encountered in numerical simulations of transonic wind-tunnel experiments with low-aspect-ratio wings are surveyed and illustrated. The focus is on the zonal Euler/Navier-Stokes program developed by Holst et al. (1985) and its application to shock-induced separation. The physical basis and numerical implementation of the method are reviewed, and results are presented from studies of the effects of artificial dissipation, boundary conditions, grid refinement, the turbulence model, and geometry representation on the simulation accuracy. Extensive graphs and diagrams and typical flow visualizations are provided.
NASA Technical Reports Server (NTRS)
Fowlis, W. W. (Editor); Davis, M. H. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.
Myers, Teresa A.; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony
2015-01-01
Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents’ estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an “estimation and reveal” technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed. PMID:25812121
Myers, Teresa A; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony
2015-01-01
Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents' estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an "estimation and reveal" technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed.
NASA Astrophysics Data System (ADS)
Ro, Y.; Kim, E.
2008-12-01
The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale eddy activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea Warm Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale eddy is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima Warm Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea Warm Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung Warm Eddy, and other small and meso-scale eddies on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.
Characterizing the 21-cm absorption trough with pattern recognition and a numerical sampler
NASA Astrophysics Data System (ADS)
Tauscher, Keith A.; Rapetti, David; Burns, Jack O.; Monsalve, Raul A.; Bowman, Judd D.
2018-06-01
The highly redshifted sky-averaged 21-cm spectrum from neutral hydrogen is a key probe to a period of the Universe never before studied. Recent experimental advances have led to increasingly tightened constraints and the Experiment to Detect the Global Eor Signal (EDGES) has presented evidence for a detection of this global signal. In order to glean scientifically valuable information from these new measurements in a consistent manner, sophisticated fitting procedures must be applied. Here, I present a pipeline known as pylinex which takes advantage of Singular Value Decomposition (SVD), a pattern recognition tool, to leverage structure in the data induced by the design of an experiment to fit for signals in the experiment's data in the presence of large systematics (such as the beam-weighted foregrounds), especially those without parametric forms. This method requires training sets for each component of the data. Once the desired signal is extracted in SVD eigenmode coefficient space, the posterior distribution must be consistently transformed into a physical parameter space. This is done with the combination of a numerical least squares fitter and a Markov Chain Monte Carlo (MCMC) distribution sampler. After describing the pipeline's procedures and techniques, I present preliminary results of applying it to the EDGES low-band data used for their detection. The results include estimates of the signal in frequency space with errors and relevant parameter distributions.
SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis
NASA Astrophysics Data System (ADS)
Thiele, Thomas; Siebe, Frank; Gulhan, Ali
2011-05-01
A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.
Experimental realization of dynamo action: present status and prospects
NASA Astrophysics Data System (ADS)
Giesecke, André; Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Nore, Caroline; Léorat, Jacques
2013-07-01
In the last decades, the experimental study of dynamo action has made great progress. However, after the dynamo experiments in Karlsruhe and Riga, the von-Kármán-Sodium (VKS) dynamo is only the third facility that has been able to demonstrate fluid flow driven self-generation of magnetic fields in a laboratory experiment. Further progress in the experimental examination of dynamo action is expected from the planned precession driven dynamo experiment that will be designed in the framework of the liquid sodium facility DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies). In this paper, we briefly present numerical models of the VKS dynamo that demonstrate the close relation between the axisymmetric field observed in that experiment and the soft iron material used for the flow driving impellers. We further show recent results of preparatory water experiments and design studies related to the precession dynamo and delineate the scientific prospects for the final set-up.
On the ability of plant life-history strategies to shape bio-geomorphologic interactions
NASA Astrophysics Data System (ADS)
Schwarz, Christian; van Belzen, Jim; Zhu, ZhenChang; Bouma, Tjeerd; van de Koppel, Johan; Gourgue, Olivier; Temmerman, Stijn
2017-04-01
Previous work studying bio-geomorphologic interactions in intertidal habitats underlined the importance of wetland vegetation shaping their environment (e.g. tidal channel networks). Up to this point the potential of wetland vegetation to shape their environment was linked to their physical plant properties, such as stiffness, stem diameter or stem density. However the effect of life-history strategies, i.e. the mode of plant proliferation such as sexual reproduction from seeds, non-sexual lateral expansion or a combination of the former two was hitherto ignored. We present numerical experiments based on a wetland ecosystem present in the Western Scheldt Estuary (SW, the Netherlands) showing the importance of life-history strategies shaping bio-geomorphologic interactions. We specifically compare two extremes in life-history strategies, (1) one species solely establishing from seeds and relying on their mass recruitment (Salicornia europea); And a second species (Spartina anglica) which relies on a mixed establishment strategy consisting of seed dispersal and asexual lateral expansion through tillering, with a very low seed recruitment success per year. Based on conducted numerical experiments using TELEMAC2D we show that the Spartina-case facilitates relative low channel densities with pronounced channel networks, whereas the Salicornia-case favors high channel densities with less pronounced intertidal channels. The conducted numerical experiments are the first indication showing that plant proliferation strategies exert a major control on emerging patterns in bio-geomorphologic systems. This provides a deeper understanding in the constraining factors and dynamics shaping the emergence and resilience of bio-geomorphologic systems.
NASA Astrophysics Data System (ADS)
Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek
2018-01-01
The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.
Design and Hardware Implementation of a New Chaotic Secure Communication Technique
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
Bernstein modes in a non-neutral plasma column
NASA Astrophysics Data System (ADS)
Walsh, Daniel; Dubin, Daniel H. E.
2018-05-01
This paper presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on finite Larmor radius effects to propagate radially across the column until they are reflected when their frequency matches the upper hybrid frequency. This reflection sets up an internal normal mode on the column and also mode-couples to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, are presented and compared to an analytical Wentzel Kramers Brillouin (WKB) theory. A previous version of the theory [D. H. E. Dubin, Phys. Plasmas 20(4), 042120 (2013)] expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently, its frequency predictions are spuriously shifted with respect to the numerical results presented here. A new version of the WKB theory avoids this approximation using the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also considered, to make contact with experiments that observe cyclotron modes in a multi-species pure ion plasma [M. Affolter et al., Phys. Plasmas 22(5), 055701 (2015)].
PIV measurements of airflow past multiple cylinders
NASA Astrophysics Data System (ADS)
Wodziak, Waldemar; Sobczyk, Jacek
2018-06-01
Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.
Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.
2017-10-01
The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.
Performance evaluation of Bragg coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Öztürk, H.; Huang, X.; Yan, H.; Robinson, I. K.; Noyan, I. C.; Chu, Y. S.
2017-10-01
In this study, we present a numerical framework for modeling three-dimensional (3D) diffraction data in Bragg coherent diffraction imaging (Bragg CDI) experiments and evaluating the quality of obtained 3D complex-valued real-space images recovered by reconstruction algorithms under controlled conditions. The approach is used to systematically explore the performance and the detection limit of this phase-retrieval-based microscopy tool. The numerical investigation suggests that the superb performance of Bragg CDI is achieved with an oversampling ratio above 30 and a detection dynamic range above 6 orders. The observed performance degradation subject to the data binning processes is also studied. This numerical tool can be used to optimize experimental parameters and has the potential to significantly improve the throughput of Bragg CDI method.
Flowfield computation of entry vehicles
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
1990-01-01
The equations governing the multidimensional flow of a reacting mixture of thermally perfect gasses were derived. The modeling procedures for the various terms of the conservation laws are discussed. A numerical algorithm, based on the finite-volume approach, to solve these conservation equations was developed. The advantages and disadvantages of the present numerical scheme are discussed from the point of view of accuracy, computer time, and memory requirements. A simple one-dimensional model problem was solved to prove the feasibility and accuracy of the algorithm. A computer code implementing the above algorithm was developed and is presently being applied to simple geometries and conditions. Once the code is completely debugged and validated, it will be used to compute the complete unsteady flow field around the Aeroassist Flight Experiment (AFE) body.
The Effect of Asymmetric Mechanical and Thermal Loading on Membrane Wrinkling
NASA Technical Reports Server (NTRS)
Blandino, Joseph R.; Johnston, John D.; Miles, Jonathan J.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
Large, tensioned membranes are being considered for future gossamer spacecraft systems. Examples include sunshields, solar sails, and membrane optics. In many. cases a relatively flat membrane with minimal wrinkling is desired. Developing methods to predict and measure membrane wrinkling is important to the future development of gossamer spacecraft. Numerical and experimental data are presented for a 0.5 m square, tensioned membrane. The membrane is subjected to symmetric and asymmetric mechanical loading. Data are also presented for a symmetrically loaded membrane subjected to spot heating in the center. The numerical model shows good agreement with the experiment for wrinkle angle data. There is. also reasonable agreement for the wrinkled area for both isothermal and elevated temperature tests.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.
2013-04-01
New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.
The spikes from Richtmyer-Meshkov instabilities in pused power cylindrical experiments
NASA Astrophysics Data System (ADS)
Rousculp, Chris; Cheng, Baolian; Oro, David; Griego, Jeffrey; Patten, Austin; Neukirch, Levi; Reinovsky, Robert; Turchi, Peter; Bradley, Joeph; Reass, Wlliam; Fierro, Franklin; Saunders, Alexsander; Mariam, Fesseha; Freeman, Matthew; Tang, Zhaowen
2017-06-01
The time evolution of the metal spikes resulting from the Richtmyer-Meshkov instability (RMI) of single-mode perturbations on the inside surface of a tin sample in cylindrical geometry has been measured for the first time. The shock condition was produced by a magnetically driven aluminum flyer utilizing the PHELIX capacitor bank. By varying the flyer velocity, a set of experiments conducted at the Los Alamos National Laboratory has explored the RMI evolution in the different release states (fluid, mixed, solid) of tin. The perturbation inversion and growth rate of the spikes were diagnosed in each experiment with a 21-image proton radiography (pRad) movie. Both theoretical model and numerical simulations are performed. Numerical simulations, theory and experimental data are in good agreement. Detailed analysis of the spike growth rates, comparison to planer geometry, as well as theory and computations will be presented. This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Numerical modelling of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.; Truitt, J. L.
2000-10-01
Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a newly developed 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to the experimental results obtained from the experiment. The code, Dynamo, is in Fortran90 and allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the Navier-Stokes equation governing V are solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependant kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Initial results on magnetic field saturation, generated by the simultaneous evolution of magnetic and velocity fields be presented using a variety of mechanical forcing terms.
Global change and terrestrial hydrology - A review
NASA Technical Reports Server (NTRS)
Dickinson, Robert E.
1991-01-01
This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.
Role of Hydrodynamic and Mineralogical Heterogeneities on Reactive Transport Processes.
NASA Astrophysics Data System (ADS)
Luquot, L.; Garcia-Rios, M.; soler Sagarra, J.; Gouze, P.; Martinez-Perez, L.; Carrera, J.
2017-12-01
Predicting reactive transport at large scale, i.e., Darcy- and field- scale, is still challenging considering the number of heterogeneities that may be present from nm- to pore-scale. It is well documented that conventional continuum-scale approaches oversimplify and/or ignore many important aspects of rock structure, chemical reactions, fluid displacement and transport, which, as a consequence, results in uncertainties when applied to field-scale operations. The changes in flow and reactive transport across the different spatial and temporal scales are of central concern in many geological applications such as groundwater systems, geo-energy, rock building heritage and geological storage... In this presentation, we will discuss some laboratory and numerical results on how local heterogeneities (structural, hydrodynamic and mineralogical) can affect the localization and the rate of the reaction processes. Different flow through laboratory experiments using various rock samples will be presented, from simple monomineral rocks such as limestone samples, and more complex rocks composed of different minerals with a large range of kinetic reactions. A new numerical approach based on multirate water mixing approach will be presented and applied to one of the laboratory experiment in order to analyze and distinguish the effect of the mineralogy distribution and the hydrodynamic heterogeneity on the total reaction rate.
Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing
2014-10-01
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.
Wiechert, W; de Graaf, A A
1997-07-05
The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.
Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)
NASA Technical Reports Server (NTRS)
Gogos, George; Bowen, Brent; Nickerson, Jocelyn S.
2002-01-01
The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved fundamental understanding of droplet combustion may contribute to the clean and safe utilization of fossil fuels (Williams, Dryer, Haggard & Nayagam, 1997, f 2). The present state of knowledge on convective extinction of fuel droplets derives from experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA's Human Exploration and Development of Space (HEDS) microgravity combustion experiment.
Response trajectories capture the continuous dynamics of the size congruity effect.
Faulkenberry, Thomas J; Cruise, Alexander; Lavro, Dmitri; Shaki, Samuel
2016-01-01
In a comparison task involving numbers, the size congruity effect refers to the general finding that responses are usually faster when there is a match between numerical size and physical size (e.g., 2-8) than when there is a mismatch (e.g., 2-8). In the present study, we used computer mouse tracking to test two competing models of the size congruity effect: an early interaction model, where interference occurs at an early representational stage, and a late interaction model, where interference occurs as dynamic competition between response options. In three experiments, we found that the curvature of responses for incongruent trials was greater than for congruent trials. In Experiment 2 we showed that this curvature effect was reliably modulated by the numerical distance between the two stimulus numbers, with large distance pairs exhibiting a larger curvature effect than small distance pairs. In Experiment 3 we demonstrated that the congruity effects persist into response execution. These findings indicate that incongruities between numerical and physical sizes are carried throughout the response process and result from competition between parallel and partially active response options, lending further support to a late interaction model of the size congruity effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Apollo experience report: Manned thermal-vacuum testing of spacecraft
NASA Technical Reports Server (NTRS)
Mclane, J. C., Jr.
1974-01-01
Manned thermal-vacuum tests of the Apollo spacecraft presented many first-time problems in the areas of test philosophy, operational concepts, and program implementation. The rationale used to resolve these problems is explained and examined critically in view of actual experience. The series of 12 tests involving 1517 hours of chamber operating time resulted in the disclosure of numerous equipment and procedural deficiencies of significance to the flight mission. Test experience and results in view of subsequent flight experience confirmed that thermal-vacuum testing of integrated manned spacecraft provides a feasible, cost-effective, and safe technique with which to obtain maximum confidence in spacecraft flight worthiness early in the program.
NASA Astrophysics Data System (ADS)
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
Normal modes of the world's oceans: A numerical investigation using Proudman functions
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Morrow, Dennis
1993-01-01
The numerical modeling of the normal modes of the global oceans is addressed. The results of such modeling could be expected to serve as a guide in the analysis of observations and measurements intended to detect these modes. The numerical computation of normal modes of the global oceans is a field in which several investigations have obtained results during the past 15 years. The results seem to be model-dependent to an unsatisfactory extent. Some modeling areas, such as higher resolution of the bathymetry, inclusion of self-attraction and loading, the role of the Arctic Ocean, and systematic testing by means of diagnostic models are addressed. The results show that the present state of the art is such that a final solution to the normal mode problem still lies in the future. The numerical experiments show where some of the difficulties are and give some insight as to how to proceed in the future.
NASA Astrophysics Data System (ADS)
Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.
2016-10-01
Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.
Determination of adsorption parameters in numerical simulation for polymer flooding
NASA Astrophysics Data System (ADS)
Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu
2018-02-01
A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.
NASA Astrophysics Data System (ADS)
Pantano, Carlos
2005-11-01
We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)
Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J; Dague, Taylor D
2017-03-01
The size congruity effect refers to the interaction between numerical magnitude and physical digit size in a symbolic comparison task. Though this effect is well established in the typical 2-item scenario, the mechanisms at the root of the interference remain unclear. Two competing explanations have emerged in the literature: an early interaction model and a late interaction model. In the present study, we used visual conjunction search to test competing predictions from these 2 models. Participants searched for targets that were defined by a conjunction of physical and numerical size. Some distractors shared the target's physical size, and the remaining distractors shared the target's numerical size. We held the total number of search items fixed and manipulated the ratio of the 2 distractor set sizes. The results from 3 experiments converge on the conclusion that numerical magnitude is not a guiding feature for visual search, and that physical and numerical magnitude are processed independently, which supports a late interaction model of the size congruity effect. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.
2003-01-01
The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.
Cellular structure of lean hydrogen flames in microgravity
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1990-01-01
Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
NASA Astrophysics Data System (ADS)
Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.
2017-12-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation
NASA Astrophysics Data System (ADS)
Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael
2017-11-01
The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.
Universality of the logarithmic velocity profile restored
NASA Astrophysics Data System (ADS)
Luchini, Paolo
2017-11-01
The logarithmic velocity profile of wall-bounded turbulent flow, despite its widespread adoption in research and in teaching, exhibits discrepancies with both experiments and numerical simulations that have been repeatedly observed in the literature; serious doubts ensued about its precise form and universality, leading to the formulation of alternate theories and hindering ongoing experimental efforts to measure von Kármán's constant. By comparing different geometries of pipe, plane-channel and plane-Couette flow, here we show that such discrepancies can be physically interpreted, and analytically accounted for, through an equally universal higher-order correction caused by the pressure gradient. Inclusion of this term produces a tenfold increase in the adherence of the predicted profile to existing experiments and numerical simulations in all three geometries. Universality of the logarithmic law then emerges beyond doubt and a satisfactorily simple formulation is established. Among the consequences of this formulation is a strongly increased confidence that the Reynolds number of present-day direct numerical simulations is actually high enough to uncover asymptotic behaviour, but research efforts are still needed in order to increase their accuracy.
Numerical and experimental study of the dynamics of a superheated jet
NASA Astrophysics Data System (ADS)
Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar
2015-11-01
Flash-boiling is a phenomenon where a liquid experiences low pressures in a system resulting in it getting superheated. The sudden drop in pressures results in accelerated expansion and violent vapour formation. Understanding the physics behind the jet disintegration and flash-boiling phenomenon is still an open problem, with applications in automotive and aerospace combustors. The behaviour of a flash-boiling jet is highly dependent on the input parameters, inlet temperature and pressure. In the present study, the external (outside nozzle) and the internal (inside nozzle) flow characteristics of the two-phase flow has been studied numerically and experimentally. The phase change from liquid to vapour takes place over a finite period of time, modeled sing Homogeneous Relaxation Model (HRM). In order to validate the numerical results, controlled experiments were performed. Optical diagnostic techniques such as Particle Image Velocimetry (PIV) and Shadowgraphy were used to study the flow characteristics. Spray angle, penetration depth, droplet spectra were obtained which provides a better understanding of the break-up mechanism. Linear stability analysis is performed to study the stability characteristics of the jet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, J.; Reynard-Carette, C.; Carette, M.
2015-07-01
The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less
Le Corre, Mathieu; Carey, Susan
2007-11-01
Since the publication of [Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press.] seminal work on the development of verbal counting as a representation of number, the nature of the ontogenetic sources of the verbal counting principles has been intensely debated. The present experiments explore proposals according to which the verbal counting principles are acquired by mapping numerals in the count list onto systems of numerical representation for which there is evidence in infancy, namely, analog magnitudes, parallel individuation, and set-based quantification. By asking 3- and 4-year-olds to estimate the number of elements in sets without counting, we investigate whether the numerals that are assigned cardinal meaning as part of the acquisition process display the signatures of what we call "enriched parallel individuation" (which combines properties of parallel individuation and of set-based quantification) or analog magnitudes. Two experiments demonstrate that while "one" to "four" are mapped onto core representations of small sets prior to the acquisition of the counting principles, numerals beyond "four" are only mapped onto analog magnitudes about six months after the acquisition of the counting principles. Moreover, we show that children's numerical estimates of sets from 1 to 4 elements fail to show the signature of numeral use based on analog magnitudes - namely, scalar variability. We conclude that, while representations of small sets provided by parallel individuation, enriched by the resources of set-based quantification are recruited in the acquisition process to provide the first numerical meanings for "one" to "four", analog magnitudes play no role in this process.
Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco
2017-01-01
A milestone in numerical development is the acquisition of counting principles which allow children to exactly determine the numerosity of a given set. Moreover, a canonical left-to-right spatial layout for representing numbers also emerges during preschool. These foundational aspects of numerical competence have been extensively studied, but there is sparse knowledge about the interplay between the acquisition of the cardinality principle and spatial mapping of numbers in early numerical development. The present study investigated how these skills concurrently develop before formal schooling. Preschool children were classified according to their performance in Give-a-Number and Number-to-position tasks. Experiment 1 revealed three qualitatively different groups: (i) children who did not master the cardinality principle and lacked any consistent spatial mapping for digits, (ii) children who mastered the cardinality principle and yet failed in spatial mapping, and (iii) children who mastered the cardinality principle and displayed consistent spatial mapping. This suggests that mastery of the cardinality principle does not entail the emergence of spatial mapping. Experiment 2 confirmed the presence of these three developmental stages and investigated their relation with a digit comparison task. Crucially, only children who displayed a consistent spatial mapping of numbers showed the ability to compare digits by numerical magnitude. A congruent (i.e., numerically ordered) positioning of numbers onto a visual line as well as the concept that moving rightwards (in Western cultures) conveys an increase in numerical magnitude mark the mastery of a spatial mapping principle. Children seem to rely on this spatial organization to achieve a full understanding of the magnitude relations between digits. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dytman, Steven
2016-03-01
Neutrino cross sections are important both as a key component of neutrino oscillation experiments and as a way to study the axial and vector response in nuclear systems. MINERvA is a neutrino cross section experiment that has been taking data at Fermilab since 2009. The beam energy is well-matched to existing oscillation experiments such as MINOS/MINOS + and NOvA and planned experiments such as DUNE. The experiment has the unique capability to measure cross sections simultaneously with hydrocarbon, iron, and lead targets. Numerous publications have provided new data for neutrino and antineutrino interactions in these targets including quasielastic, pion production, and inclusive processes. This talk will present a series of recent measurements, their relationship to oscillation experiments and to nuclear physics.
Are Arabic and Verbal Numbers Processed in Different Ways?
ERIC Educational Resources Information Center
Kadosh, Roi Cohen; Henik, Avishai; Rubinsten, Orly
2008-01-01
Four experiments were conducted in order to examine effects of notation--Arabic and verbal numbers--on relevant and irrelevant numerical processing. In Experiment 1, notation interacted with the numerical distance effect, and irrelevant physical size affected numerical processing (i.e., size congruity effect) for both notations but to a lesser…
Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility
NASA Astrophysics Data System (ADS)
Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.
2017-05-01
The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.
Fluidic Vectoring of a Planar Incompressible Jet Flow
NASA Astrophysics Data System (ADS)
Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie
2018-06-01
This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.
Experimental and numerical investigations of shock wave propagation through a bifurcation
NASA Astrophysics Data System (ADS)
Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.
2018-02-01
The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.
Numerical framework for the modeling of electrokinetic flows
NASA Astrophysics Data System (ADS)
Deshpande, Manish; Ghaddar, Chahid; Gilbert, John R.; St. John, Pamela M.; Woudenberg, Timothy M.; Connell, Charles R.; Molho, Joshua; Herr, Amy; Mungal, Godfrey; Kenny, Thomas W.
1998-09-01
This paper presents a numerical framework for design-based analyses of electrokinetic flow in interconnects. Electrokinetic effects, which can be broadly divided into electrophoresis and electroosmosis, are of importance in providing a transport mechanism in microfluidic devices for both pumping and separation. Models for the electrokinetic effects can be derived and coupled to the fluid dynamic equations through appropriate source terms. In the design of practical microdevices, however, accurate coupling of the electrokinetic effects requires the knowledge of several material and physical parameters, such as the diffusivity and the mobility of the solute in the solvent. Additionally wall-based effects such as chemical binding sites might exist that affect the flow patterns. In this paper, we address some of these issues by describing a synergistic numerical/experimental process to extract the parameters required. Experiments were conducted to provide the numerical simulations with a mechanism to extract these parameters based on quantitative comparisons with each other. These parameters were then applied in predicting further experiments to validate the process. As part of this research, we have created NetFlow, a tool for micro-fluid analyses. The tool can be validated and applied in existing technologies by first creating test structures to extract representations of the physical phenomena in the device, and then applying them in the design analyses to predict correct behavior.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir
An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less
System Identification of a Vortex Lattice Aerodynamic Model
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.
2001-01-01
The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.
On the lift increments with the occurrence of airfoil tones at low Reynodls numbers
NASA Astrophysics Data System (ADS)
Ikeda, Tomoaki; Fujimoto, Daisuke; Inasawa, Ayumu; Asai, Masahito
2015-11-01
The aeroacoustic effects on the aerodynamics of an NACA 0006 airfoil are investigated experimentally at relatively low Reynolds numbers, Re = 30 , 000 - 70 , 000 . By employing two wind-testing airfoil models at different chord lengths, L = 40 and 100 [mm], the aerodynamic dependence on Mach number is examined at a given Reynolds number. In a particular range of Reynolds number, tonal peaks of trailing-edge noise are obtained from a shorter-chord airfoil, while no apparent tones are observed with longer chord length at a lower Mach number. Surprisingly, the occurrence of a tonal noise leads to a greater lift slope in the present wind-tunnel experiment, evaluated via a PIV approach. The lift curves obtained experimentally at higher Mach numbers agree well with two-dimensional numerical simulations, performed at M = 0 . 2 . At the Mach number, the numerical results clearly indicate the occurrence of an acoustic feedback loop with discrete tones, within a range of angle of attack. A few three dimensional numerical results are also presented. In the simulation at Re = 50 , 000 , the suppression of tonal noise corresponds to the development of a turbulent wedge in the suction-side boundary layer at the angle of attack 4 . 0 [deg.], which agrees with the experiment. This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Grant No. 25420139).
Tabacu, Stefan
2015-01-01
In this paper, a methodology for the development and validation of a numerical model of the human head using generic procedures is presented. All steps required, starting with the model generation, model validation and applications will be discussed. The proposed model may be considered as a dual one due to its capabilities to switch from deformable to a rigid body according to the application's requirements. The first step is to generate the numerical model of the human head using geometry files or medical images. The required stiffness and damping for the elastic connection used for the rigid body model are identified by performing a natural frequency analysis. The presented applications for model validation are related to impact analysis. The first case is related to Nahum's (Nahum and Smith 1970) experiments pressure data being evaluated and a pressure map generated using the results from discrete elements. For the second case, the relative displacement between the brain and the skull is evaluated according to Hardy's (Hardy WH, Foster CD, Mason, MJ, Yang KH, King A, Tashman S. 2001.Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337-368, SAE Paper 2001-22-0016) experiments. The main objective is to validate the rigid model as a quick and versatile tool for acquiring the input data for specific brain analyses.
Singular boundary method for global gravity field modelling
NASA Astrophysics Data System (ADS)
Cunderlik, Robert
2014-05-01
The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.
Improving designer productivity
NASA Technical Reports Server (NTRS)
Hill, Gary C.
1992-01-01
Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting those challenges.
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2018-05-01
In a recent "AstroNote," I described a simple exercise on the mass-luminosity relation for main sequence stars as an example of exposing students in a general education science course of lower mathematical level to the use of quantitative skills such as collecting and analyzing data. Here I present another attempt at a meaningful experience for such students that again involves both the gathering and analysis of numerical data and comparison with accepted result, this time on the relationship of the mass and lifetimes of main sequence stars. This experiment can stand alone or be used as an extension of the previous mass-luminosity relationship experiment.
NASA Astrophysics Data System (ADS)
Dodla, Venkata B.; Srinivas, Desamsetti; Dasari, Hari Prasad; Gubbala, Chinna Satyanarayana
2016-05-01
Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.
The effects of majority versus minority source status on persuasion: a self-validation analysis.
Horcajo, Javier; Petty, Richard E; Briñol, Pablo
2010-09-01
The present research proposes that sources in the numerical majority (vs. minority) can affect persuasion by influencing the confidence with which people hold their thoughts in response to the persuasive message. Participants received a persuasive message composed of either strong or weak arguments that was presented by a majority or a minority source. Consistent with the self-validation hypothesis, we predicted and found that the majority (vs. minority) status of the source increased the confidence with which recipients held their thoughts. As a consequence, majority (vs. minority) sources increased argument quality effects in persuasion when source status information followed message processing (Experiment 1). In contrast, when the information regarding source status preceded (rather than followed) the persuasive message, it validated the perception of the position advocated, reducing message processing. As a consequence of having more confidence in the position advocated before receiving the message, majority (vs. minority) sources reduced argument quality effects in persuasion (Experiment 2). Finally, Experiment 3 isolated the timing of the source status manipulation, revealing that sources in the numerical majority (vs. minority) can increase or decrease persuasion to strong arguments depending on whether source status is introduced before or after processing the message. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Increasing the computational efficient of digital cross correlation by a vectorization method
NASA Astrophysics Data System (ADS)
Chang, Ching-Yuan; Ma, Chien-Ching
2017-08-01
This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.
ERIC Educational Resources Information Center
Laski, Elida V.; Dulaney, Alana
2015-01-01
The present study tested the "interference hypothesis"-that learning and using more advanced representations and strategies requires the inhibition of prior, less advanced ones. Specifically, it examined the relation between inhibitory control and number line estimation performance. Experiment 1 compared the accuracy of adults' (N = 53)…
Selected Mathematics Applications (Level B): Measurement in the Home.
ERIC Educational Resources Information Center
Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.
Presented is one of a series of resource guides designed to provide students with an improved mathematics program. This guide emphasizes hands-on experiences for secondary students through real-life situations focusing on measurement in the home. Students are provided with numerous opportunities to use both customary and metric units in…
Dynamic loading and release in Johnson Space Center Lunar regolith simulant
NASA Astrophysics Data System (ADS)
Plesko, C. S.; Jensen, B. J.; Wescott, B. L.; Skinner McKee, T. E.
2011-10-01
The behavior of regolith under dynamic loading is important for the study of planetary evolution, impact cratering, and other topics. Here we present the initial results of explosively driven flier plate experiments and numerical models of compaction and release in samples of the JSC-1A Lunar regolith simulant.
Gender and Teamwork: An Analysis of Professors' Perspectives and Practices
ERIC Educational Resources Information Center
Beddoes, Kacey; Panther, Grace
2018-01-01
Teamwork is increasingly seen as an important component of engineering education programmes. Yet, prior research has shown that there are numerous ways in which teamwork is gendered, and can lead to negative experiences for women students. This article presents the first interview findings on professors' perspectives on gender and teamwork.…
Writers of the American West: Multicultural Learning Encounters.
ERIC Educational Resources Information Center
Stansfield, John
This book focuses on the childhood and young adult experience of 10 of the American West's most intriguing writers. The book presents autobiographical and other primary sources, biographical sketches, teaching guidelines, and numerous curriculum-driven activities to engage young readers in the works of notable people whose lives were shaped by the…
The Relevance of Parents' Beliefs for Their Involvement in Children's School Life
ERIC Educational Resources Information Center
Bubic, Andreja; Tošic, Antonela
2016-01-01
Parents play a very important role in all aspects of children's experiences, and parental involvement in children's school lives is associated with numerous educational outcomes. Therefore, the present study investigated the role of several parents' demographic characteristics, parental self-efficacy, as well as beliefs regarding the value of…
The Role of Intuitive Approximation Skills for School Math Abilities
ERIC Educational Resources Information Center
Libertus, Melissa E.
2015-01-01
Research has shown that educated children and adults have access to two ways of representing numerical information: an approximate number system (ANS) that is present from birth and allows for quick approximations of numbers of objects encountered in one's environment, and an exact number system (ENS) that is acquired through experience and…
Arithmetic Memory Is Modality Specific.
Myers, Timothy; Szücs, Dénes
2015-01-01
In regards to numerical cognition and working memory, it is an open question as to whether numbers are stored into and retrieved from a central abstract representation or from separate notation-specific representations. This study seeks to help answer this by utilizing the numeral modality effect (NME) in three experiments to explore how numbers are processed by the human brain. The participants were presented with numbers (1-9) as either Arabic digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first (S1) and second (S2) stimuli. The participant's task was to add the first two stimuli together and verify whether the answer (S3), presented simultaneously with S2, was correct. We hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then numbers are retrieved from modality specific memory stores. Indeed, RT depended on the modality of S1 whenever S2 was an Arabic digit which argues against the concept of numbers being stored and retrieved from a central, abstract representation.
Arithmetic Memory Is Modality Specific
Myers, Timothy; Szücs, Dénes
2015-01-01
In regards to numerical cognition and working memory, it is an open question as to whether numbers are stored into and retrieved from a central abstract representation or from separate notation-specific representations. This study seeks to help answer this by utilizing the numeral modality effect (NME) in three experiments to explore how numbers are processed by the human brain. The participants were presented with numbers (1–9) as either Arabic digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first (S1) and second (S2) stimuli. The participant’s task was to add the first two stimuli together and verify whether the answer (S3), presented simultaneously with S2, was correct. We hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then numbers are retrieved from modality specific memory stores. Indeed, RT depended on the modality of S1 whenever S2 was an Arabic digit which argues against the concept of numbers being stored and retrieved from a central, abstract representation. PMID:26716692
Some Aspects on the Mechanical Analysis of Micro-Shutters
NASA Technical Reports Server (NTRS)
Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Lu, Shude
1999-01-01
An array of individually addressable micro-shutters is being designed for spectroscopic applications. Details of the design are presented in a companion paper. The mechanical design of a single shutter element has been completed. This design consists of a shutter blade suspended on a torsion beam manufactured out of single crystal silicon membranes. During operation the shutter blade will be rotated by 90 degrees out of the array plane. Thus, the stability and durability of the beams are crucial for the reliability of the devices. Structures were fabricated using focused ion beam milling in a FEI 620 dual beam machine, and subsequent testing was completed using the same platform. This allowed for short turn around times. We performed torsion and bending experiments to determine key characteristics of the membrane material. Results of measurements on prototype shutters were compared with the predictions of the numerical models. The data from these focused studies were used in conjunction with experiments and numerical models of shutter prototypes to optimize the design. In this work, we present the results of the material studies, and assess the mechanical performance of the resulting design.
Simulating the injection of micellar solutions to recover diesel in a sand column.
Bernardez, Letícia A; Therrien, René; Lefebvre, René; Martel, Richard
2009-01-26
This paper presents numerical simulations of laboratory experiments where diesel, initially present at 18% residual saturation in a sand column, was recovered by injecting a micellar solution containing the surfactant Hostapur SAS-60 (SAS), and two alcohols, n-butanol (n-BuOH), and n-pentanol (n-PeOH). The micellar solution was developed and optimized for diesel recovery using phase diagrams and soil column experiments. Numerical simulations with the compositional simulator UTCHEM agree with the experimental results and show that the entire residual diesel in the sand column was recovered after the downward injection of 5 pore volumes of the micellar solution. Recovery of diesel occurs by enhanced solubility in the microemulsion phase and by mobilization. An additional series of simulations investigated the effects of phase transfer, alcohol partitioning, and component segregation on diesel recovery. These simulations indicate that diesel can be accurately represented in the model by a single component, but that the pseudo-component approach for active matter and the assumption of local phase equilibrium leads to an underestimation of diesel mobilization.
Simulating the injection of micellar solutions to recover diesel in a sand column
NASA Astrophysics Data System (ADS)
Bernardez, Letícia A.; Therrien, René; Lefebvre, René; Martel, Richard
2009-01-01
This paper presents numerical simulations of laboratory experiments where diesel, initially present at 18% residual saturation in a sand column, was recovered by injecting a micellar solution containing the surfactant Hostapur SAS-60 (SAS), and two alcohols, n-butanol ( n-BuOH), and n-pentanol ( n-PeOH). The micellar solution was developed and optimized for diesel recovery using phase diagrams and soil column experiments. Numerical simulations with the compositional simulator UTCHEM agree with the experimental results and show that the entire residual diesel in the sand column was recovered after the downward injection of 5 pore volumes of the micellar solution. Recovery of diesel occurs by enhanced solubility in the microemulsion phase and by mobilization. An additional series of simulations investigated the effects of phase transfer, alcohol partitioning, and component segregation on diesel recovery. These simulations indicate that diesel can be accurately represented in the model by a single component, but that the pseudo-component approach for active matter and the assumption of local phase equilibrium leads to an underestimation of diesel mobilization.
Meteoroid/space debris impacts on MSFC LDEF experiments
NASA Technical Reports Server (NTRS)
Finckenor, Miria
1992-01-01
The many meteoroid and space debris impacts found on A0171, A0034, S1005, and other MSFC experiments are considered. In addition to those impacts found by the meteoroid and debris studies, numerous impacts less than 0.5 mm were found and photographed. The flux and size distribution of impacts is presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.
NASA's supercomputing experience
NASA Technical Reports Server (NTRS)
Bailey, F. Ron
1990-01-01
A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Liberatore, S.; Galmiche, D.; Casner, A.; Huser, G.; Jadaud, J. P.; Villette, B.
2008-05-01
Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002 [1, 2], experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used [3, 4]. We present experimental results and comparisons with numerical simulations.
Mikhailov, A. S.; Zanette, D. H.; Zhai, Y. M.; Kiss, I. Z.; Hudson, J. L.
2004-01-01
We present laboratory experiments on the effects of global coupling in a population of electrochemical oscillators with a multimodal frequency distribution. The experiments show that complex collective signals are generated by this system through spontaneous emergence and joint operation of coherently acting groups representing hierarchically organized resonant clusters. Numerical simulations support these experimental findings. Our results suggest that some forms of internal self-organization, characteristic for complex multiagent systems, are already possible in simple chemical systems. PMID:15263084
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2017-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
Automated Testcase Generation for Numerical Support Functions in Embedded Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Schnieder, Stefan-Alexander
2014-01-01
We present a tool for the automatic generation of test stimuli for small numerical support functions, e.g., code for trigonometric functions, quaternions, filters, or table lookup. Our tool is based on KLEE to produce a set of test stimuli for full path coverage. We use a method of iterative deepening over abstractions to deal with floating-point values. During actual testing the stimuli exercise the code against a reference implementation. We illustrate our approach with results of experiments with low-level trigonometric functions, interpolation routines, and mathematical support functions from an open source UAS autopilot.
Quasistatic packings of droplets in flat microfluidic channels
NASA Astrophysics Data System (ADS)
Kadivar, Erfan
2016-02-01
As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
NASA Astrophysics Data System (ADS)
Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth
2017-11-01
We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.
2–stage stochastic Runge–Kutta for stochastic delay differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah
2015-05-15
This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.
NASA Astrophysics Data System (ADS)
Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.
2018-04-01
We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.
NASA Astrophysics Data System (ADS)
Wang, Qing; Zhao, Xinyu; Ihme, Matthias
2017-11-01
Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).
Taylor bubbles at high viscosity ratios: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar
2015-11-01
The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The effect of optically active turbulence on Gaussian laser beams in the ocean
NASA Astrophysics Data System (ADS)
Nootz, G.; Matt, S.; Jarosz, E.; Hou, W.
2016-02-01
Motivated by the high resolution and data transfer potential, optical imaging and communication methods are intensely investigated for marine applications. The majority of research focuses on overcoming the strong scattering of light by particles present in the ocean. However when operating in very clear water the limiting factor for such applications can be the strongly forward biased scattering from optically active turbulent layers. For this presentation the effect of optically active turbulence on focused Gaussian beams has been studied in the field, in a controlled laboratory test tank, and by numerical simulations. For the field experiments a telescoping rigid underwater sensor structure (TRUSS) was deployed in the Bahamas equipped with a diffractive optics element projecting a matrix of beams towards a fast beam profiler. Image processing techniques are used to extract the beam wander and beam breathing. The results are compared to theoretical values for the optical turbulence strength derived from the measured temperature microstructure at the test side. Laboratory and simulated experiments are carried out in a physical and numerical Rayleigh-Benard convection turbulence tank of the same geometry. A focused Gaussian laser beam is propagated through the test tank and recorded with a camera from the back side of a diffuser. Similarly, a focused Gaussian beam is propagated numerically by means of split-step Fourier method through the simulated turbulence environment. Results will be presented for weak to moderate turbulence as they are most typical for oceanic conditions. Conclusions about the effect on optical imaging and communication applications will be discussed.
Meteorological and air pollution modeling for an urban airport
NASA Technical Reports Server (NTRS)
Swan, P. R.; Lee, I. Y.
1980-01-01
Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.
de Arruda Santos, Leandro; López, Javier Bayod; de Las Casas, Estevam Barbosa; de Azevedo Bahia, Maria Guiomar; Buono, Vicente Tadeu Lopes
2014-04-01
To assess the flexibility and torsional stiffness of three nickel-titanium rotary instruments by finite element analysis and compare the numerical results with the experiment. Mtwo (VDW, Munich, Germany) and RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) size 25, .06 taper (0.25-mm tip diameter, 0.06% conicity) and PTU F1 (Dentsply Maillefer, Ballaigues, Switzerland) instruments were selected for this study. Experimental tests to assess the flexibility and torsional stiffness of the files were performed according to specification ISO 3630-1. Geometric models for finite element analysis were obtained by micro-CT scanning. Boundary conditions for the numerical analysis were based on the specification ISO 3630-1. A good agreement between the simulation and the experiment moment-displacement curves was found for the three types of instruments studied. RaCe exhibited the highest flexibility and PTU presented the highest torsional stiffness. Maximum values of von Mises stress were found for the PTU F1 file (1185MPa) under bending, whereas the values of von Mises stress for the three instruments were quite similar under torsion. The stress patterns proved to be different in Mtwo under bending, according to the displacement orientation. The favorable agreement found between simulation and experiment for the three types of instruments studied confirmed the potential of the numerical method to assess the mechanical behavior of endodontic instruments. Thus, a methodology is established to predict the failure of the instruments under bending and torsion. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Simulating eXtreme Collaboration; LIGO Scientific Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) began searching for gravitational waves in September 2015, with three times the sensitivity of the initial LIGO experiment. Merging black holes are among the most promising sources of gravitational waves for Advanced LIGO, but near the time of merger, the emitted waves can only be computed using numerical relativity. In this talk, I will present new numerical-relativity simulations of merging black holes, made using the Spectral Einstein Code [black-holes.org/SpEC.html], including cases with black-hole spins that are nearly as fast as possible. I will discuss how such simulations will be able to rapidly follow up gravitational-wave observations, improving our understanding of the waves' sources.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1984-01-01
The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Nuterman, Roman; Baklanov, Alexander; Mahura, Alexander
2015-11-01
Atmospheric chemistry dynamics is studied with convection-diffusion-reaction model. The numerical Data Assimilation algorithm presented is based on the additive-averaged splitting schemes. It carries out ''fine-grained'' variational data assimilation on the separate splitting stages with respect to spatial dimensions and processes i.e. the same measurement data is assimilated to different parts of the split model. This design has efficient implementation due to the direct data assimilation algorithms of the transport process along coordinate lines. Results of numerical experiments with chemical data assimilation algorithm of in situ concentration measurements on real data scenario have been presented. In order to construct the scenario, meteorological data has been taken from EnviroHIRLAM model output, initial conditions from MOZART model output and measurements from Airbase database.
An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark W.
2016-01-01
A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
Needham, Brian R
2012-01-01
Improving the patient experience is an issue many healthcare organizations face. However, it is the opinion of this author that the focus on patient satisfaction scores alone is short-sighted and that the most successful organizations will adopt best practices from other industries to deliver a more complete patient experience. This article presents an extensive review of best practices in customer experience from numerous customer-centric industries and postulates as to how the healthcare field might apply them. A new framework for improving patient experience is proposed--one that moves beyond the traditional focus on satisfaction scores to embrace the core differentiating characteristics of the organization.
NASA Astrophysics Data System (ADS)
Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas
2018-03-01
Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.
Numerical models as interactive art
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; van de Pas, B.; Joling, A.
2017-12-01
We capture our understanding of the environment in advanced computer models. We use these numerical models to simulate the growth of deltas, meandering rivers, dune erosion, river floodings, effects of interventions. If presented with care, models can help understand the complexity of our environment and show the beautiful patterns of nature. While the topics are relevant and appealing to the general public the use of numerical models has been limited to technical users. Not many people have appreciations for the pluriform of options, esoteric user interfaces, manual editing of configuration files and extensive jargon. The models are static, you can start them, but then you have to wait, usually hours or more, for the results to become available, not something that you could imagine resulting in an immersive, interactive experience for the general public. How can we go beyond just using results? How can we adapt existing numerical models so they can be used in an interactive environment? How can we touch them and feel them? Here we show how we adapted existing models (Delft3D, Lisflood, XBeach) and reused them in as the basis for interactive exhibitions in museums with an educative goal. We present our structured approach which consists of combining a story, inspiration, a canvas, colors, shapes and interactive elements. We show how the progression from simple presentation forms to interactive art installations.
ERIC Educational Resources Information Center
Lyons, Ian M.; Ansari, Daniel; Beilock, Sian L.
2012-01-01
Are numerals estranged from a sense of the actual quantities they represent? We demonstrate that, irrespective of numerical size or distance, direct comparison of the relative quantities represented by symbolic and nonsymbolic formats leads to performance markedly worse than when comparing 2 nonsymbolic quantities (Experiment 1). Experiment 2…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourdon, Christopher Jay; Olsen, Michael G.; Gorby, Allen D.
The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian (Exp. Fluids, 29, pp. S166-S174, 2000) has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics. Additionally, it was found that the Gaussian particlemore » approximation made in this model does not significantly affect the model's performance. It is also demonstrated that this modified analytical model easily predicts the depth of correlation when viewing into a medium of a different index of refraction than the immersion medium.« less
Numerical simulation of transient hypervelocity flow in an expansion tube
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1992-01-01
Several numerical simulations of the transient flow of helium in an expansion tube are presented in an effort to identify some of the basic mechanisms which cause the noisy test flows seen in experiments. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in experiments. In particular, the discontinuity in tube diameter of the primary diaphragm station introduced a transverse perturbation to the expanding driver gas and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either small amplitude, low frequency noise possibly introduced during shock compression or large amplitude, high frequency noise associated with the passage of the reflected head of the unsteady expansion.
Viscosity Measurement via Drop Coalescence: A Space Station Experiment
NASA Technical Reports Server (NTRS)
Antar, Basil; Ethridge, Edwin C.
2010-01-01
The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.
Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2008-01-01
At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo-Negrete, Diego del; Blazevski, Daniel
2016-04-15
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve
2012-10-01
Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.
Fluid Merging Viscosity Measurement (FMVM) Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin; Lehman, Daniel; Kaukler, William
2007-01-01
The concept of using low gravity experimental data together with fluid dynamical numerical simulations for measuring the viscosity of highly viscous liquids was recently validated on the International Space Station (ISS). After testing the proof of concept for this method with parabolic flight experiments, an ISS experiment was proposed and later conducted onboard the ISS in July, 2004 and subsequently in May of 2005. In that experiment a series of two liquid drops were brought manually together until they touched and then were allowed to merge under the action of capillary forces alone. The merging process was recorded visually in order to measure the contact radius speed as the merging proceeded. Several liquids were tested and for each liquid several drop diameters were used. It has been shown that when the coefficient of surface tension for the liquid is known, the contact radius speed can then determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Experimental and numerical results will be presented in which the viscosity of different highly viscous liquids were determined, to a high degree of accuracy, using this technique.
Numerical Nudging: Using an Accelerating Score to Enhance Performance.
Shen, Luxi; Hsee, Christopher K
2017-08-01
People often encounter inherently meaningless numbers, such as scores in health apps or video games, that increase as they take actions. This research explored how the pattern of change in such numbers influences performance. We found that the key factor is acceleration-namely, whether the number increases at an increasing velocity. Six experiments in both the lab and the field showed that people performed better on an ongoing task if they were presented with a number that increased at an increasing velocity than if they were not presented with such a number or if they were presented with a number that increased at a decreasing or constant velocity. This acceleration effect occurred regardless of the absolute magnitude or the absolute velocity of the number, and even when the number was not tied to any specific rewards. This research shows the potential of numerical nudging-using inherently meaningless numbers to strategically alter behaviors-and is especially relevant in the present age of digital devices.
Numerical Modelling of Smouldering Combustion as a Remediation Technology for NAPL Source Zones
NASA Astrophysics Data System (ADS)
Macphee, S. L.; Pironi, P.; Gerhard, J. I.; Rein, G.
2009-05-01
Smouldering combustion of non-aqueous phase liquids (NAPLs) is a novel concept that has significant potential for the remediation of contaminated industrial sites. Many common NAPLs, including coal tar, solvents, oils and petrochemicals are combustible and capable of generating substantial amounts of heat when burned. Smouldering is a flameless form of combustion in which a condensed phase fuel undergoes surface oxidation reactions within a porous matrix. Gerhard et al., 2006 (Eos Trans., 87(52), Fall Meeting Suppl. H24A) presented proof-of-concept experiments demonstrating the successful destruction of NAPLs embedded in a porous medium via smouldering. Pironi et al., 2008 (Eos Trans., 89(53), Fall Meet. Suppl. H34C) presented a series of column experiments illustrating the self-sustaining nature of the NAPL smouldering process and examined its sensitivity to a variety of key system parameters. In this work, a numerical model capable of simulating the propagation of a smouldering front in NAPL-contaminated porous media is presented. The model couples the multiphase flow code DNAPL3D-MT [Gerhard and Grant, 2007] with an analytical model for fire propagation [Richards, 1995]. The fire model is modified in this work for smouldering behaviour; in particular, incorporating a correlation of the velocity of the smouldering front to key parameters such as contaminant type, NAPL saturation, water saturation, porous media type and air injection rate developed from the column experiments. NAPL smouldering simulations are then validated against the column experiments. Furthermore, multidimensional simulations provide insight into scaling up the remediation process and are valuable for evaluating process sensitivity at the scales of in situ pilot and field applications.
NASA Astrophysics Data System (ADS)
Martsynkovskyy, V. A.; Deineka, A.; Kovalenko, V.
2017-08-01
The article presents forced axial vibrations of the rotor with an automatic unloading machine in an oxidizer pump. A feature of the design is the use in the autoloading system of slotted throttles with mutually inverse throttling. Their conductivity is determined by a numerical experiment in the ANSYS CFX software package.
Facilitating researcher use of flight simulators
NASA Technical Reports Server (NTRS)
Russell, C. Ray
1990-01-01
Researchers conducting experiments with flight simulators encounter numerous obstacles in bringing their ideas to the simulator. Research into how these simulators could be used more efficiently is presented. The study involved: (1) analyzing the Advanced Concepts Simulator software architecture, (2) analyzing the interaction between the researchers and simulation programmers, and (3) proposing a documentation tool for the researchers.
Assessing Sensitivity to Unmeasured Confounding Using a Simulated Potential Confounder
ERIC Educational Resources Information Center
Carnegie, Nicole Bohme; Harada, Masataka; Hill, Jennifer L.
2016-01-01
A major obstacle to developing evidenced-based policy is the difficulty of implementing randomized experiments to answer all causal questions of interest. When using a nonexperimental study, it is critical to assess how much the results could be affected by unmeasured confounding. We present a set of graphical and numeric tools to explore the…
Data-Intensive Scientific Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Goranova, Mariana; Shishedjiev, Bogdan; Juliana Georgieva, Juliana
2012-11-01
The proposed integrated system provides a suite of services for data-intensive sciences that enables scientists to describe, manage, analyze and visualize data from experiments and numerical simulations in distributed and heterogeneous environment. This paper describes the advisor and the converter services and presents an example from the monitoring of the slant column content of atmospheric minor gases.
"Who Am I?": The Biblical Moses as a Metaphor for Teaching
ERIC Educational Resources Information Center
Gravett, Emily O.
2015-01-01
This essay presents Moses, the protagonist of the biblical books of Exodus and Deuteronomy in the Hebrew Bible, as a playful but generative metaphor for current teaching practices and experiences in higher education, including my own. Among numerous similarities (such as the fact that Moses, other teachers, and I are all bound by context), the…
Investigating Convective Heat Transfer with an Iron and a Hairdryer
ERIC Educational Resources Information Center
Gonzalez, Manuel I.; Lucio, Jesus H.
2008-01-01
A simple experimental set-up to study free and forced convection in undergraduate physics laboratories is presented. The flat plate of a domestic iron has been chosen as the hot surface, and a hairdryer is used to generate an air stream around the plate. Several experiments are proposed and typical numerical results are reported. An analysis and…
Monkeys Match and Tally Quantities across Senses
ERIC Educational Resources Information Center
Jordan, Kerry E.; MacLean, Evan L.; Brannon, Elizabeth M.
2008-01-01
We report here that monkeys can actively match the number of sounds they hear to the number of shapes they see and present the first evidence that monkeys sum over sounds and sights. In Experiment 1, two monkeys were trained to choose a simultaneous array of 1-9 squares that numerically matched a sample sequence of shapes or sounds. Monkeys…
An example of a chaotic micromixer: the cross-channel micromixer
NASA Astrophysics Data System (ADS)
Dodge, Arash; Jullien, Marie-Caroline; Lee, Yi-Kuen; Niu, X.; Okkels, Fridolin; Tabeling, Patrick
2004-06-01
In this article dedicated to micromixing, we concentrate here on a particular micromixer - the 'cross-channel micromixer'. This mixer exploits an oscillatory perturbation to induce chaotic trajectories, favoring mixing. We present here theory, numerical simulations and experiments performed on this system. To cite this article: A. Dodge et al., C. R. Physique 5 (2004).
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
NASA Technical Reports Server (NTRS)
Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.
2002-01-01
The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.
Deconvolution of acoustic emissions for source localization using time reverse modeling
NASA Astrophysics Data System (ADS)
Kocur, Georg Karl
2017-01-01
Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind
2017-12-01
Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo
2017-03-01
We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.
Optimization Design of Bipolar Plate Flow Field in PEM Stack
NASA Astrophysics Data System (ADS)
Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong
2017-12-01
A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.
Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz, A.S., E-mail: asanz@iff.csic.es; Davidović, M.; Božić, M.
2015-02-15
Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically,more » giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and momentum representations is considered. • Wave and particle aspects are shown to coexist within the same experiment, thus removing the old wave-corpuscle dichotomy. • A good agreement between numerical simulations and experimental data is found without appealing to best-fit procedures.« less
Study of Wind Effects on Unique Buildings
NASA Astrophysics Data System (ADS)
Olenkov, V.; Puzyrev, P.
2017-11-01
The article deals with a numerical simulation of wind effects on the building of the Church of the Intercession of the Holy Virgin in the village Bulzi of the Chelyabinsk region. We presented a calculation algorithm and obtained pressure fields, velocity fields and the fields of kinetic energy of a wind stream, as well as streamlines. Computational fluid dynamic (CFD) evolved three decades ago at the interfaces of calculus mathematics and theoretical hydromechanics and has become a separate branch of science the subject of which is a numerical simulation of different fluid and gas flows as well as the solution of arising problems with the help of methods that involve computer systems. This scientific field which is of a great practical value is intensively developing. The increase in CFD-calculations is caused by the improvement of computer technologies, creation of multipurpose easy-to-use CFD-packagers that are available to a wide group of researchers and cope with various tasks. Such programs are not only competitive in comparison with physical experiments but sometimes they provide the only opportunity to answer the research questions. The following advantages of computer simulation can be pointed out: a) Reduction in time spent on design and development of a model in comparison with a real experiment (variation of boundary conditions). b) Numerical experiment allows for the simulation of conditions that are not reproducible with environmental tests (use of ideal gas as environment). c) Use of computational gas dynamics methods provides a researcher with a complete and ample information that is necessary to fully describe different processes of the experiment. d) Economic efficiency of computer calculations is more attractive than an experiment. e) Possibility to modify a computational model which ensures efficient timing (change of the sizes of wall layer cells in accordance with the chosen turbulence model).
Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel
1999-01-01
The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.
Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.
Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco
2010-06-13
Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.
NASA Astrophysics Data System (ADS)
Sinou, J.-J.; Loyer, A.; Chiello, O.; Mogenier, G.; Lorang, X.; Cocheteux, F.; Bellaj, S.
2013-09-01
This paper presents an overview of recent experimental and numerical investigations on industrial railway brakes. The goal of the present study is to discuss the relevance of the mechanical modeling strategy for squeal prediction. Specific experimental set-ups based on transient and controlled braking tests are designed for this purpose. Measurements are performed on it to investigate the dynamic behavior of TGV squeal noise and its squeal characterization through experiments. It will be demonstrated that it is possible to build consistent and efficient finite element models to simulate squeal events in TGV brake systems. The numerical strategy will be presented, including not only the modeling of the TGV brake system and the stability analysis, but also the transient nonlinear dynamic and computational process based on efficient reduced basis. This complete numerical strategy allows us to perform relevance squeal prediction on industrial railway brakes. This study comes within the scope of a research program AcouFren that is supported by ADEME (Agence De l'Environnement et de la Maîtrise de l'Energie) concerning the reduction of the squeal noise generated by high power railway disc brakes. experiments with an evolution of the rotational speed of the disc: these tests are called "transient braking tests" and correspond to real braking tests, experiments with a controlled steady rotational speed (i.e. dynamic fluctuations in rotational speed are not significant): these tests are called "controlled braking tests". In the present study, the Continuous Wavelet Transform (CWT) [20] is used to study the time-history responses of the TGV brake system. So, a brief basic theory of the wavelet analysis that transforms a signal into wavelets that are well localized both in frequency and time is presented in this part of the paper. Considering a function f(t), the associated Continuous Wavelet Transform (CWT) corresponds to a wavelet transform given by W(a,b)=∫-∞+∞f(t)ψa,b*(t) dt where ψ(t)={1}/{√{a}}ψ({t-b}/{a}) where a and b define the scale parameter and the time translation factor, respectively. The asterisk ψa,b* indicates the complex conjugate of ψ that are the daughter wavelets (i.e. the dilated and shifted versions of the "'mother"' wavelet ψ that is continuous in both time and frequency). The mother wavelet must satisfy an admissibility criterion in order to get a stably invertible transform.
NASA Technical Reports Server (NTRS)
Newman, P. A.; Anderson, E. C.; Peterson, J. B., Jr.
1984-01-01
An overview is presented of the entire procedure developed for the aerodynamic design of the contoured wind tunnel liner for the NASA supercritical, laminar flow control (LFC), swept wing experiment. This numerical design procedure is based upon the simple idea of streamlining and incorporates several transonic and boundary layer analysis codes. The liner, presently installed in the Langley 8 Foot Transonic Pressure Tunnel, is about 54 ft long and extends from within the existing contraction cone, through the test section, and into the diffuser. LFC model testing has begun and preliminary results indicate that the liner is performing as intended. The liner design results presented in this paper, however, are examples of the calculated requirements and the hardware implementation of them.
Improving designer productivity. [artificial intelligence
NASA Technical Reports Server (NTRS)
Hill, Gary C.
1992-01-01
Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.
Role of soft-iron impellers on the mode selection in the von kármán-sodium dynamo experiment.
Giesecke, André; Stefani, Frank; Gerbeth, Gunter
2010-01-29
A crucial point for the understanding of the von Kármán-sodium (VKS) dynamo experiment is the influence of soft-iron impellers. We present numerical simulations of a VKS-like dynamo with a localized permeability distribution that resembles the shape of the flow driving impellers. It is shown that the presence of soft-iron material essentially determines the dynamo process in the VKS experiment. An axisymmetric magnetic field mode can be explained by the combined action of the soft-iron disk and a rather small alpha effect parametrizing the induction effects of unresolved small scale flow fluctuations.
Numerical study of single and two interacting turbulent plumes in atmospheric cross flow
NASA Astrophysics Data System (ADS)
Mokhtarzadeh-Dehghan, M. R.; König, C. S.; Robins, A. G.
The paper presents a numerical study of two interacting full-scale dry plumes issued into neutral boundary layer cross flow. The study simulates plumes from a mechanical draught cooling tower. The plumes are placed in tandem or side-by-side. Results are first presented for plumes with a density ratio of 0.74 and plume-to-crosswind speed ratio of 2.33, for which data from a small-scale wind tunnel experiment were available and were used to assess the accuracy of the numerical results. Further results are then presented for the more physically realistic density ratio of 0.95, maintaining the same speed ratio. The sensitivity of the results with respect to three turbulence models, namely, the standard k- ɛ model, the RNG k- ɛ model and the Differential Flux Model (DFM) is presented. Comparisons are also made between the predicted rise height and the values obtained from existing integral models. The formation of two counter-rotating vortices is well predicted. The results show good agreement for the rise height predicted by different turbulence models, but the DFM predicts temperature profiles more accurately. The values of predicted rise height are also in general agreement. However, discrepancies between the present results for the rise height for single and multiple plumes and the values obtained from known analytical relations are apparent and possible reasons for these are discussed.
Perceived state of self during motion can differentially modulate numerical magnitude allocation.
Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M
2016-09-01
Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2009-04-01
The QUAGMIRE model has recently been made freely available for public use. QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. This presentation describes the model's main features. QUAGMIRE uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
NASA Astrophysics Data System (ADS)
Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.
2017-12-01
Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.
NASA Astrophysics Data System (ADS)
Derrick, James; Rutherford, Michael; Davison, Thomas; Chapman, David; Eakins, Daniel; Collins, Gareth
2017-06-01
Chondritic meteorites were lithified during solar system formation by compaction of bimodal mixtures of mm-scale, spherical, solidified melt droplets (chondrules) surrounded by a porous matrix of much finer grained dust. A possible compaction mechanism is low-velocity planetesimal collisions, which were common in the early solar system. Mesoscale numerical simulations of such impacts indicate heterogeneous compaction, with large porosity and temperature variations over sub-mm scales in the matrix and chondrules largely unaffected. In particular, compaction and heating are enhanced in front of the chondrule and suppressed in its wake. Such observations may provide a new tool for interpreting evidence for impact in meteorites. Here we present impact experiments that replicate compaction surrounding an individual chondrule using analog materials: Soda Lime glass beads/rods and 70% porous silica powder matrix (Sipernat). Real-time, X-ray imaging of the experiments, combined with mesoscale modelling, provides experimental confirmation of anisotropic matrix compaction surrounding individual chondrules, aligned with the shock direction. JGD is supported by EPSRC studentship funding; GSC are supported by STFC Grant ST/N000803/1.
Numerical Studies of Boundary-Layer Receptivity
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1995-01-01
Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.
NASA Astrophysics Data System (ADS)
Anderson, Charles E., Jr.; O'Donoghue, Padraic E.; Lankford, James; Walker, James D.
1992-06-01
Complementary to a study of the compressive strength of ceramic as a function of strain rate and confinement, numerical simulations of the split-Hopkinson pressure bar (SHPB) experiments have been performed using the two-dimensional wave propagation computer program HEMP. The numerical effort had two main thrusts. Firstly, the interpretation of the experimental data relies on several assumptions. The numerical simulations were used to investigate the validity of these assumptions. The second part of the effort focused on computing the idealized constitutive response of a ceramic within the SHPB experiment. These numerical results were then compared against experimental data. Idealized models examined included a perfectly elastic material, an elastic-perfectly plastic material, and an elastic material with failure. Post-failure material was modeled as having either no strength, or a strength proportional to the mean stress. The effects of confinement were also studied. Conclusions concerning the dynamic behavior of a ceramic up to and after failure are drawn from the numerical study.
Tractable Experiment Design via Mathematical Surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian J.
This presentation summarizes the development and implementation of quantitative design criteria motivated by targeted inference objectives for identifying new, potentially expensive computational or physical experiments. The first application is concerned with estimating features of quantities of interest arising from complex computational models, such as quantiles or failure probabilities. A sequential strategy is proposed for iterative refinement of the importance distributions used to efficiently sample the uncertain inputs to the computational model. In the second application, effective use of mathematical surrogates is investigated to help alleviate the analytical and numerical intractability often associated with Bayesian experiment design. This approach allows formore » the incorporation of prior information into the design process without the need for gross simplification of the design criterion. Illustrative examples of both design problems will be presented as an argument for the relevance of these research problems.« less
Detonation onset following shock wave focusing
NASA Astrophysics Data System (ADS)
Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.
2017-06-01
The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
Towards Large-Scale, Non-Destructive Inspection of Concrete Bridges
NASA Astrophysics Data System (ADS)
Mahmoud, A.; Shah, A. H.; Popplewell, N.
2005-04-01
It is estimated that the rehabilitation of deteriorating engineering infrastructure in the harsh North American environment could cost billions of dollars. Bridges are key infrastructure components for surface transportation. Steel-free and fibre-reinforced concrete is used increasingly nowadays to circumvent the vulnerability of steel rebar to corrosion. Existing steel-free and fibre-reinforced bridges may experience extensive surface-breaking cracks that need to be characterized without incurring further damage. In the present study, a method that uses Lamb elastic wave propagation to non-destructively characterize cracks in plain as well as fibre-reinforced concrete is investigated both numerically and experimentally. Numerical and experimental data are corroborated with good agreement.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1993-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1992-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
An Accurate and Stable FFT-based Method for Pricing Options under Exp-Lévy Processes
NASA Astrophysics Data System (ADS)
Ding, Deng; Chong U, Sio
2010-05-01
An accurate and stable method for pricing European options in exp-Lévy models is presented. The main idea of this new method is combining the quadrature technique and the Carr-Madan Fast Fourier Transform methods. The theoretical analysis shows that the overall complexity of this new method is still O(N log N) with N grid points as the fast Fourier transform methods. Numerical experiments for different exp-Lévy processes also show that the numerical algorithm proposed by this new method has an accuracy and stability for the small strike prices K. That develops and improves the Carr-Madan method.
Evidence of a Love wave bandgap in a quartz substrate coated with a phononic thin layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ting-Wei; Wu, Tsung-Tsong, E-mail: wutt@ntu.edu.tw; Lin, Yu-Ching
This paper presents a numerical and experimental study of Love wave propagation in a micro-fabricated phononic crystal (PC) structure consisting of a 2D, periodically etched silica film deposited on a quartz substrate. The dispersion characteristics of Love waves in such a phononic structure were analyzed with various geometric parameters by using complex band structure calculations. For the experiment, we adopted reactive-ion etching with electron-beam lithography to fabricate a submicrometer phononic structure. The measured results exhibited consistency with the numerical prediction. The results of this study may serve as a basis for developing PC-based Love wave devices.
Predicting multi-wall structural response to hypervelocity impact using the hull code
NASA Technical Reports Server (NTRS)
Schonberg, William P.
1993-01-01
Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.
Numerical study of a scramjet engine flow field
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Weidner, E. H.
1981-01-01
A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed.
NASA Astrophysics Data System (ADS)
Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.
2014-06-01
In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.
On the efficient and reliable numerical solution of rate-and-state friction problems
NASA Astrophysics Data System (ADS)
Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno
2016-03-01
We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.
Numerical modeling of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Tsang, C. F.; Doughty, C.; Kincaid, C. T.
1982-12-01
During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.
NASA Astrophysics Data System (ADS)
Xu, Chang; Huang, Jian; Wang, Yiwei; Wu, Xiaocui; Huang, Chenguang; Wu, Xianqian
2018-03-01
Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.
2015-01-01
Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.
A Numerical Study of the Effects of Curvature and Convergence on Dilution Jet Mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Reynolds, R.; White, C.
1987-01-01
An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.
A numerical study of the effects of curvature and convergence on dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Reynolds, R.; White, C.
1987-01-01
An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.
Numerical study of rotating detonation engine with an array of injection holes
NASA Astrophysics Data System (ADS)
Yao, S.; Han, X.; Liu, Y.; Wang, J.
2017-05-01
This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.
2005-09-01
We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.
Computation of rapidly varied unsteady, free-surface flow
Basco, D.R.
1987-01-01
Many unsteady flows in hydraulics occur with relatively large gradients in free surface profiles. The assumption of hydrostatic pressure distribution with depth is no longer valid. These are rapidly-varied unsteady flows (RVF) of classical hydraulics and also encompass short wave propagation of coastal hydraulics. The purpose of this report is to present an introductory review of the Boussinnesq-type differential equations that describe these flows and to discuss methods for their numerical integration. On variable slopes and for large scale (finite-amplitude) disturbances, three independent derivational methods all gave differences in the motion equation for higher order terms. The importance of these higher-order terms for riverine applications must be determined by numerical experiments. Care must be taken in selection of the appropriate finite-difference scheme to minimize truncation error effects and the possibility of diverging (double mode) numerical solutions. It is recommended that practical hydraulics cases be established and tested numerically to demonstrate the order of differences in solution with those obtained from the long wave equations of St. Venant. (USGS)
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A., E-mail: kaurov@uchicago.edu
The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less
Review of high-sensitivity Radon studies
NASA Astrophysics Data System (ADS)
Wojcik, M.; Zuzel, G.; Simgen, H.
2017-10-01
A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.
Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; ...
2010-11-19
We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e – e – → e – e – (γ) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. In addition, we also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.
Wolf, Emil [University of Rochester, Rochester, New York, United States
2017-12-09
Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.
A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
NASA Astrophysics Data System (ADS)
Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
2000-10-01
Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.
Applications of the generalized information processing system (GIPSY)
Moody, D.W.; Kays, Olaf
1972-01-01
The Generalized Information Processing System (GIPSY) stores and retrieves variable-field, variable-length records consisting of numeric data, textual data, or codes. A particularly noteworthy feature of GIPSY is its ability to search records for words, word stems, prefixes, and suffixes as well as for numeric values. Moreover, retrieved records may be printed on pre-defined formats or formatted as fixed-field, fixed-length records for direct input to other-programs, which facilitates the exchange of data with other systems. At present there are some 22 applications of GIPSY falling in the general areas of bibliography, natural resources information, and management science, This report presents a description of each application including a sample input form, dictionary, and a typical formatted record. It is hoped that these examples will stimulate others to experiment with innovative uses of computer technology.
Resolved-particle simulation by the Physalis method: Enhancements and new capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierakowski, Adam J., E-mail: sierakowski@jhu.edu; Prosperetti, Andrea; Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede
2016-03-15
We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrativemore » simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.« less
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Ulbrich, N.; Sickles, W. L.; Qian, Cathy X.
1992-01-01
A Wall Signature method, the Hackett method, has been selected to be adapted for the 12-ft Wind Tunnel wall interference assessment/correction (WIAC) system in the present phase. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating wall interferences at the model location. The Wall Signature method will be formulated for application to the unique geometry of the 12-ft Tunnel. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method-Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free-air simulation. Each set of wind tunnel/test article numerical simulations provides data to validate the WIAC method. A numerical wind tunnel test simulation is initiated to validate the WIAC methods developed in the project. In the present reported period, the blockage correction has been developed and implemented for a rectangular tunnel as well as the 12-ft Pressure Tunnel. An improved wall interference assessment and correction method for three-dimensional wind tunnel testing is presented in the appendix.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.
The distance effect in numerical memory-updating tasks.
Lendínez, Cristina; Pelegrina, Santiago; Lechuga, Teresa
2011-05-01
Two experiments examined the role of numerical distance in updating numerical information in working memory. In the first experiment, participants had to memorize a new number only when it was smaller than a previously memorized number. In the second experiment, updating was based on an external signal, which removed the need to perform any numerical comparison. In both experiments, distance between the memorized number and the new one was manipulated. The results showed that smaller distances between the new and the old information led to shorter updating times. This graded facilitation suggests that the process by which information is substituted in the focus of attention involves maintaining the shared features between the new and the old number activated and selecting other new features to be activated. Thus, the updating cost may be related to amount of new features to be activated in the focus of attention.
Sensitivity study of a dynamic thermodynamic sea ice model
NASA Astrophysics Data System (ADS)
Holland, David M.; Mysak, Lawrence A.; Manak, Davinder K.; Oberhuber, Josef M.
1993-02-01
A numerical simulation of the seasonal sea ice cover in the Arctic Ocean and the Greenland, Iceland, and Norwegian seas is presented. The sea ice model is extracted from Oberhuber's (1990) coupled sea ice-mixed layer-isopycnal general circulation model and is written in spherical coordinates. The advantage of such a model over previous sea ice models is that it can be easily coupled to either global atmospheric or ocean general circulation models written in spherical coordinates. In this model, the thermodynamics are a modification of that of Parkinson and Washington (1979), while the dynamics use the full Hibler (1979) viscous-plastic rheology. Monthly thermodynamic and dynamic forcing fields for the atmosphere and ocean are specified. The simulations of the seasonal cycle of ice thickness, compactness, and velocity, for a control set of parameters, compare favorably with the known seasonal characteristics of these fields. A sensitivity study of the control simulation of the seasonal sea ice cover is presented. The sensitivity runs are carried out under three different themes, namely, numerical conditions, parameter values, and physical processes. This last theme refers to experiments in which physical processes are either newly added or completely removed from the model. Approximately 80 sensitivity runs have been performed in which a change from the control run environment has been implemented. Comparisons have been made between the control run and a particular sensitivity run based on time series of the seasonal cycle of the domain-averaged ice thickness, compactness, areal coverage, and kinetic energy. In addition, spatially varying fields of ice thickness, compactness, velocity, and surface temperature for each season are presented for selected experiments. A brief description and discussion of the more interesting experiments are presented. The simulation of the seasonal cycle of Arctic sea ice cover is shown to be robust.
NASA Astrophysics Data System (ADS)
Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut
2017-04-01
Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the immersed boundary method we can compute the interactions between fluid, particles and arbitrary boulder shape. We are able to reproduce the exact physical experiment for calibration and verification of the tsunami boulder transport phenomena. First results of the study will be presented. Engel, M.; May, S.M.: Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the Leeward, Antilles. Quaternary Science Reviews 54, 126-141, 2012. Peskin, C.S.: The immersed boundary method. Acta Numerica, 479 - 517, 2002. Pudasaini, S. P.: A general two-phase debris flow model. J. Geophys. Res. Earth Surf., 117, F03010, 2012. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M.: 'Structure-from-Motion' photogrammetry - a low-cost, effective tool for geoscience applications. Geomorphology 179, 300-314, 2012.
Morphing continuum theory for turbulence: Theory, computation, and visualization.
Chen, James
2017-10-01
A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.
NASA Technical Reports Server (NTRS)
Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.
On the chaotic diffusion in multidimensional Hamiltonian systems
NASA Astrophysics Data System (ADS)
Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.
2018-01-01
We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.
NASA Astrophysics Data System (ADS)
Dröske, Nils C.; Förster, Felix J.; Weigand, Bernhard; von Wolfersdorf, Jens
2017-03-01
In this paper, we present a combined experimental and numerical approach to assess the thermal loads and the cooling mechanism of an internally cooled strut injector for a supersonic combustion ramjet. Infrared measurements of the injector surface are conducted at a moderate external flow temperature. In addition, the main flow field is investigated with the LITA technique. Main features of the cooling mechanism are identified based on experimental data. However, a full evaluation can only be obtained using a complex, conjugate CFD simulation, which couples the external and internal flow fields to the heat conduction inside the injector body. Furthermore, numerical simulations are also presented for hot gas conditions corresponding to combustion experiments. Both hydrogen, which would be used as fuel for flight tests, and air are considered as coolants. While the main features of the cooling mechanism will be shown to remain unchanged, the combustor wall temperature is found to have a significant influence on the cooling. This emphasizes the importance and the usefulness of such complex conjugate numerical simulations.
Fully coupled methods for multiphase morphodynamics
NASA Astrophysics Data System (ADS)
Michoski, C.; Dawson, C.; Mirabito, C.; Kubatko, E. J.; Wirasaet, D.; Westerink, J. J.
2013-09-01
We present numerical methods for a system of equations consisting of the two dimensional Saint-Venant shallow water equations (SWEs) fully coupled to a completely generalized Exner formulation of hydrodynamically driven sediment discharge. This formulation is implemented by way of a discontinuous Galerkin (DG) finite element method, using a Roe Flux for the advective components and the unified form for the dissipative components. We implement a number of Runge-Kutta time integrators, including a family of strong stability preserving (SSP) schemes, and Runge-Kutta Chebyshev (RKC) methods. A brief discussion is provided regarding implementational details for generalizable computer algebra tokenization using arbitrary algebraic fluxes. We then run numerical experiments to show standard convergence rates, and discuss important mathematical and numerical nuances that arise due to prominent features in the coupled system, such as the emergence of nondifferentiable and sharp zero crossing functions, radii of convergence in manufactured solutions, and nonconservative product (NCP) formalisms. Finally we present a challenging application model concerning hydrothermal venting across metalliferous muds in the presence of chemical reactions occurring in low pH environments.
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
Interactive Plasma Physics Education Using Data from Fusion Experiments
NASA Astrophysics Data System (ADS)
Calderon, Brisa; Davis, Bill; Zwicker, Andrew
2010-11-01
The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.
NASA Astrophysics Data System (ADS)
Johnson, Daniel; Huerta, E. A.; Haas, Roland
2018-01-01
Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.
NASA Astrophysics Data System (ADS)
Řidký, V.; Šidlof, P.; Vlček, V.
2013-04-01
The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
NASA Astrophysics Data System (ADS)
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
NASA Astrophysics Data System (ADS)
Rossi, R.; Cattani, L.; Mocerino, A.; Bozzoli, F.; Rainieri, S.; Caminati, R.; Pagliarini, G.
2017-11-01
In this paper, we present the numerical analysis of the fully developed ow and heat transfer in pipes equipped with twisted-tape inserts in the laminar to transitional flow regime. The flow Reynolds number ranges from 210 to 3100 based on the pipe diameter, whereas the Prandtl number of the working fluid, a 40% mixture of water and ethylene glycol, is about 45 at the average film temperature. The numerical study is carried out via Scale Adaptive Simulations (SAS) where the k-ω SST model is employed for turbulence modeling. Using SAS and low-dissipation discretization schemes, the present study shows that it is possible to capture the transition from the laminar regime to the pulsating or pseudo-laminar flow regime induced by the twisted-tape at low Reynolds numbers, as well as the transition to moderate turbulent regime at the higher, yet non-turbulent for smooth pipes, range of Reynolds numbers. Numerical results, validated against experiments performed in a dedicated test rig, show very good agreement with measured data and an increase of the friction factor and Nusselt number in the range of 4 to 7 times and 6 to 15 times, respectively, of the values for an empty pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.
2013-01-01
In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony; ...
2018-04-20
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
On the Various Aspects of Publishing Journal Articles and Academic Books
ERIC Educational Resources Information Center
Thompson, Bruce
2016-01-01
A list of important precepts to guide academic publishing is presented based on the author's experience as the author of numerous journal articles, the editor of 4 journals, and the author or editor of 11 books. These precepts cover the full array of the publication, from first conceptualizing a research project through promoting one's own work.…
Peer Reviewing of OER in a Contested Domain--An Activity Theoretical Analysis
ERIC Educational Resources Information Center
Algers, Anne; Ljung, Magnus
2015-01-01
Globally, we experience numerous initiatives to increase the adoption of open educational resources (OER), but quality concerns challenge the adoption. In this study we present an analysis of the peer review process of an OER. The OER under review is produced by the European Commission (EU). It has the goal to teach children about farm animal…
ERIC Educational Resources Information Center
van Oostveen, Roland; Desjardins, François
2013-01-01
The political will to move educational opportunities online is growing for numerous reasons and new mobile technologies are being adopted at unprecedented rates. Such a context presents opportunities to develop online programs and experiments in universities, with new affordances to solve old problems such as access and isolation. This paper…
Ship Motions and Capsizing in Astern Seas
1974-12-01
result of these experiments and concurrent analytical work,a great deal has been learned about the mechanism of capsizing. This...computer time. It does not appear economically feasible using present-generation machines to numerically simulate a complete experimental...a Fast Cargo Liner in San Francisco Bay." Dept. of Naval Archi- tecture, University of Calif., Berkeley. January 1972. (Dept. of Transp
Past, Present and Place: Three Activities from the We Are Wyoming Project
ERIC Educational Resources Information Center
Moran, Peter William; Trent, Allen
2017-01-01
The authors have had numerous opportunities to work with elementary teachers and students, but few of those experiences have been as rewarding as the We Are Wyoming project. During the 2014-2015 school year, they traveled to thirty-six fourth-grade classrooms all over the state teaching the We Are Wyoming project. The unit was a two-day integrated…
Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua
2007-04-01
We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.
A new fictitious domain approach for Stokes equation
NASA Astrophysics Data System (ADS)
Yang, Min
2017-10-01
The purpose of this paper is to present a new fictitious domain approach based on the Nietzsche’s method combining with a penalty method for the Stokes equation. This method allows for an easy and flexible handling of the geometrical aspects. Stability and a priori error estimate are proved. Finally, a numerical experiment is provided to verify the theoretical findings.
NASA Technical Reports Server (NTRS)
Pflaum, Christoph
1996-01-01
A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.
The control effect in a detached laminar boundary layer of an array of normal synthetic jets
NASA Astrophysics Data System (ADS)
Valenzuela Calva, Fernando; Avila Rodriguez, Ruben
2016-11-01
In this work, 3D numerical simulations of an array of three normal circular synthetic jets embedded in an attached laminar boundary layer that separates under the influence of an inclined flap are performed for flow separation control. At the beginning of the present study, three cases are used to validate the numerical simulation with data obtained from experiments. The experimental data is chosen based on the cases which presented higher repeatability and reliability. Simulations showed reasonable agreement when compared with experiments. The simulations are undertaken at three synthetic jet operating conditions, i.e. Case A: L = 2, VR = 0.32; Case B: L = 4, VR = 0.64 and Case C: L = 6, VR = 0.96. The vortical structures produced for each synthetic jet operating condition are hairpin vortices for Case A and tilted vortices for Case B and C, respectively. By examining the spatial wall shear stress variations, the effect on the boundary layer prior to separation of the middle synthetic jet is evaluated. For effective flow control, produced at a relatively low the finding from this study suggests that hairpin vortical structures are more desirable structures. Universidad Nacional Autonoma de Mexico.
He, Jingjing; Zhou, Yibin; Guan, Xuefei; Zhang, Wei; Zhang, Weifang; Liu, Yongming
2016-08-16
Structural health monitoring has been studied by a number of researchers as well as various industries to keep up with the increasing demand for preventive maintenance routines. This work presents a novel method for reconstruct prompt, informed strain/stress responses at the hot spots of the structures based on strain measurements at remote locations. The structural responses measured from usage monitoring system at available locations are decomposed into modal responses using empirical mode decomposition. Transformation equations based on finite element modeling are derived to extrapolate the modal responses from the measured locations to critical locations where direct sensor measurements are not available. Then, two numerical examples (a two-span beam and a 19956-degree of freedom simplified airfoil) are used to demonstrate the overall reconstruction method. Finally, the present work investigates the effectiveness and accuracy of the method through a set of experiments conducted on an aluminium alloy cantilever beam commonly used in air vehicle and spacecraft. The experiments collect the vibration strain signals of the beam via optical fiber sensors. Reconstruction results are compared with theoretical solutions and a detailed error analysis is also provided.
3D nonlinear numerical simulation of the current-convective instability in detached diverter plasma
NASA Astrophysics Data System (ADS)
Stepanenko, Alexander; Krasheninnikov, Sergei
2017-10-01
One of the possible mechanisms responsible for strong radiation fluctuations observed in the recent experiments with detached plasmas at ASDEX Upgrade [Potzel et al., Nuclear Fusion, 2014] can be related to the onset of the current-convective instability (CCI) driven by strong asymmetry of detachment in the inner and outer tokamak divertors [Krasheninnikov and Smolyakov, PoP, 2016]. In this study we present the first results of 3D nonlinear numerical simulations of the CCI in divertor plasma for the conditions relevant to the AUG experiment. The general physical model used to simulate the CCI, qualitative estimates for the instability characteristic growth rate and transverse wavelengths derived for plasma, which is spatially inhomogeneous both across and along the magnetic field lines, are presented. The simulation results, demonstrating nonlinear dynamics of the CCI, provide the frequency spectra of turbulent divertor plasma fluctuations showing good agreement with the available experimental data. This material is based upon the work supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54739 at UCSD and by the Russian Ministry of Education and Science Grant No. 14.Y26.31.0008 at MEPhI.
Lohmann, Johannes; Schroeder, Philipp A; Nuerk, Hans-Christoph; Plewnia, Christian; Butz, Martin V
2018-01-01
Spatial, physical, and semantic magnitude dimensions can influence action decisions in human cognitive processing and interact with each other. For example, in the spatial-numerical associations of response code (SNARC) effect, semantic numerical magnitude facilitates left-hand or right-hand responding dependent on the small or large magnitude of number symbols. SNARC-like interactions of numerical magnitudes with the radial spatial dimension (depth) were postulated from early on. Usually, the SNARC effect in any direction is investigated using fronto-parallel computer monitors for presentation of stimuli. In such 2D setups, however, the metaphorical and literal interpretation of the radial depth axis with seemingly close/far stimuli or responses are not distinct. Hence, it is difficult to draw clear conclusions with respect to the contribution of different spatial mappings to the SNARC effect. In order to disentangle the different mappings in a natural way, we studied parametrical interactions between semantic numerical magnitude, horizontal directional responses, and perceptual distance by means of stereoscopic depth in an immersive virtual reality (VR). Two VR experiments show horizontal SNARC effects across all spatial displacements in traditional latency measures and kinematic response parameters. No indications of a SNARC effect along the depth axis, as it would be predicted by a direct mapping account, were observed, but the results show a non-linear relationship between horizontal SNARC slopes and physical distance. Steepest SNARC slopes were observed for digits presented close to the hands. We conclude that spatial-numerical processing is susceptible to effector-based processes but relatively resilient to task-irrelevant variations of radial-spatial magnitudes.
NASA Astrophysics Data System (ADS)
Kagami, Hiroyuki
2007-05-01
We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004, Smart Materials, Nano-, and Micro-Smart Systems 2006 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we did a few kinds of experiments so as to verify the modified model and reported the results of them through Photomask Japan 2005 and 2006. We could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying. After some trial of various improved experiments we reached the conclusion that the characteristic region didn't appear by reason that water which vaporized slower than organic solvent was used as solvent. Then, in this study, we adopted organic solvent instead of water as solvent for experiments. As a result, that the characteristic region as mentioned above could be seen and we could verify the model more accurately. In this paper, we present verification of the model through above improved experiments for verification using organic solvent.
Variational data assimilation problem for the Baltic Sea thermodynamics
NASA Astrophysics Data System (ADS)
Zakharova, Natalia; Agoshkov, Valery; Parmuzin, Eugene
2015-04-01
The most versatile and promising technology for solving problems of monitoring and analysis of the natural environment is a four-dimensional variational data assimilation of observation data. In such problems not only the development and justification of algorithms for numerical solution of variational data assimilation problems but the properties of the optimal solution play an important role. In this work the variational data assimilation problems in the Baltic Sea water area were formulated and studied. Numerical experiments on restoring the ocean heat flux and obtaining solution of the system (temperature, salinity, velocity, and sea surface height) in the Baltic Sea primitive equation hydrodynamics model with assimilation procedure were carried out. In the calculations we used daily sea surface temperature observation from Danish meteorological Institute, prepared on the basis of measurements of the radiometer (AVHRR, AATSR and AMSRE) and spectroradiometer (SEVIRI and MODIS). The spatial resolution of the model grid with respect to the horizontal variables amounted to 0.0625x0.03125 degree. The results of the numerical experiments are presented. This study was supported by the Russian Foundation for Basic Research (project 13-01-00753, project 14-01-31195) and project 14-11-00609 by the Russian Science Foundation. References: 1 E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 2 Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013. 3 Zalesny V.B., Gusev A.V., Chernobay S.Yu., Aps R., Tamsalu R., Kujala P., Rytkönen J. The Bal-tic Sea circulation modelling and assessment of marine pollution, Russ. J. Numer. Analysis and Math. Modelling, 2014, V 29, No. 2, pp. 129-138.
NASA Astrophysics Data System (ADS)
Sugawara, D.; Imai, K.; Mitobe, Y.; Takahashi, T.
2016-12-01
Coastal lakes are one of the promising environments to identify deposits of past tsunamis, and such deposits have been an important key to know the recurrence of tsunami events. In contrast to tsunami deposits on the coastal plains, however, relationship between deposit geometry and tsunami hydrodynamic character in the coastal lakes has poorly been understood. Flume experiment and numerical modeling will be important measures to clarify such relationship. In this study, data from a series of flume experiment were compared with simulations by an existing tsunami sediment transport model to examine applicability of the numerical model for tsunami-induced morphological change in a coastal lake. A coastal lake with a non-erodible beach ridge was modeled as the target geomorphology. The ridge separates the lake from the offshore part of the flume, and the lake bottom was filled by sand. Tsunami bore was generated by a dam-break flow, which is capable of generating a maximum near-bed flow speed of 2.5 m/s. Test runs with varying magnitude of the bore demonstrated that the duration of tsunami overflow controls the scouring depth of the lake bottom behind the ridge. The maximum scouring depth reached up to 7 cm, and sand deposition occurred mainly in the seaward-half of the lake. A conventional depth-averaged tsunami hydrodynamic model coupled with the sediment transport model was used to compare the simulation and experimental results. In the Simulation, scouring depth behind the ridge reached up to 6 cm. In addition, the width of the scouring was consistent between the simulation and experiment. However, sand deposition occurred mainly in a zone much far from the ridge, showing a considerable deviation from the experimental results. This may be associated with the lack of model capability to resolve some important physics, such as vortex generation behind the ridge and shoreward migration of hydraulic jump. In this presentation, the results from the flume experiment and the numerical modeling will be compared in detail, including temporal evolution of the morphological change. In addition, model applicability and future improvements will be discussed.
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
Testing a model of componential processing of multi-symbol numbers-evidence from measurement units.
Huber, Stefan; Bahnmueller, Julia; Klein, Elise; Moeller, Korbinian
2015-10-01
Research on numerical cognition has addressed the processing of nonsymbolic quantities and symbolic digits extensively. However, magnitude processing of measurement units is still a neglected topic in numerical cognition research. Hence, we investigated the processing of measurement units to evaluate whether typical effects of multi-digit number processing such as the compatibility effect, the string length congruity effect, and the distance effect are also present for measurement units. In three experiments, participants had to single out the larger one of two physical quantities (e.g., lengths). In Experiment 1, the compatibility of number and measurement unit (compatible: 3 mm_6 cm with 3 < 6 and mm < cm; incompatible: 3 cm_6 mm with 3 < 6 but cm > mm) as well as string length congruity (congruent: 1 m_2 km with m < km and 2 < 3 characters; incongruent: 2 mm_1 m with mm < m, but 3 > 2 characters) were manipulated. We observed reliable compatibility effects with prolonged reaction times (RT) for incompatible trials. Moreover, a string length congruity effect was present in RT with longer RT for incongruent trials. Experiments 2 and 3 served as control experiments showing that compatibility effects persist when controlling for holistic distance and that a distance effect for measurement units exists. Our findings indicate that numbers and measurement units are processed in a componential manner and thus highlight that processing characteristics of multi-digit numbers generalize to measurement units. Thereby, our data lend further support to the recently proposed generalized model of componential multi-symbol number processing.
Calculating the metabolizable energy of macronutrients: a critical review of Atwater's results.
Sánchez-Peña, M Judith; Márquez-Sandoval, Fabiola; Ramírez-Anguiano, Ana C; Velasco-Ramírez, Sandra F; Macedo-Ojeda, Gabriela; González-Ortiz, Luis J
2017-01-01
The current values for metabolizable energy of macronutrients were proposed in 1910. Since then, however, efforts to revise these values have been practically absent, creating a crucial need to carry out a critical analysis of the experimental methodology and results that form the basis of these values. Presented here is an exhaustive analysis of Atwater's work on this topic, showing evidence of considerable weaknesses that compromise the validity of his results. These weaknesses include the following: (1) the doubtful representativeness of Atwater's subjects, their activity patterns, and their diets; (2) the extremely short duration of the experiments; (3) the uncertainty about which fecal and urinary excretions contain the residues of each ingested food; (4) the uncertainty about whether or not the required nitrogen balance in individuals was reached during experiments; (5) the numerous experiments carried out without valid preliminary experiments; (6) the imprecision affecting Atwater's experimental measurements; and (7) the numerous assumptions and approximations, along with the lack of information, characterizing Atwater's studies. This review presents specific guidelines for establishing new experimental procedures to estimate more precise and/or more accurate values for the metabolizable energy of macronutrients. The importance of estimating these values in light of their possible dependence on certain nutritional parameters and/or physical activity patterns of individuals is emphasized. The use of more precise values would allow better management of the current overweight and obesity epidemic. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Straub, K. M.; Ganti, V. K.; Paola, C.; Foufoula-Georgiou, E.
2010-12-01
Stratigraphy preserved in alluvial basins houses the most complete record of information necessary to reconstruct past environmental conditions. Indeed, the character of the sedimentary record is inextricably related to the surface processes that formed it. In this presentation we explore how the signals of surface processes are recorded in stratigraphy through the use of physical and numerical experiments. We focus on linking surface processes to stratigraphy in 1D by quantifying the probability distributions of processes that govern the evolution of depositional systems to the probability distribution of preserved bed thicknesses. In this study we define a bed as a package of sediment bounded above and below by erosional surfaces. In a companion presentation we document heavy-tailed statistics of erosion and deposition from high-resolution temporal elevation data recorded during a controlled physical experiment. However, the heavy tails in the magnitudes of erosional and depositional events are not preserved in the experimental stratigraphy. Similar to many bed thickness distributions reported in field studies we find that an exponential distribution adequately describes the thicknesses of beds preserved in our experiment. We explore the generation of exponential bed thickness distributions from heavy-tailed surface statistics using 1D numerical models. These models indicate that when the full distribution of elevation fluctuations (both erosional and depositional events) is symmetrical, the resulting distribution of bed thicknesses is exponential in form. Finally, we illustrate that a predictable relationship exists between the coefficient of variation of surface elevation fluctuations and the scale-parameter of the resulting exponential distribution of bed thicknesses.
Hardness of H13 Tool Steel After Non-isothermal Tempering
NASA Astrophysics Data System (ADS)
Nelson, E.; Kohli, A.; Poirier, D. R.
2018-04-01
A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.
Experiences of women with a diagnosis of breast cancer: a clinical pathway approach.
Lindop, E; Cannon, S
2001-06-01
The study presented in this paper formed the first part of a large survey of breast cancer patients in one health authority in England, UK looking at individual needs expressed by women with a diagnosis of breast cancer. The paper provides an account of the experiences of 12 women with a diagnosis of breast cancer. The women represent a wide age range and different stages of illness. The transcribed accounts of the women were analysed by means of Qualitative Solutions and Research, Non-Numerical Unstructured Data Indexing Searching and Theorising (QSR*NUDIST). The study examined the individual experiences of women with a diagnosis of breast cancer and its aftermath as they passed through different stages related to it. The women's experiences are presented within the conceptual framework of the clinical pathway and their accounts represent their journey along the pathway. Various significant points in this journey are portrayed representing the women's reactions to diagnosis, treatment, femininity and body image, support, family and friends, information and after care.
Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2016-10-01
Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
Low-Frequency Waves in HF Heating of the Ionosphere
NASA Astrophysics Data System (ADS)
Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.
2016-02-01
Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.
Short-range components of nuclear forces: Experiment versus mythology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukulin, V. I.; Platonova, M. N., E-mail: platonova@nucl-th.sinp.msu.ru
2013-12-15
The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditionalmore » concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment.« less
Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.
Garitte, B.; Shao, H.; Wang, X. R.; ...
2017-01-09
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi
2007-07-01
A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature,more » pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garitte, B.; Shao, H.; Wang, X. R.
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
NASA Astrophysics Data System (ADS)
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-08-01
The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.
NASA Astrophysics Data System (ADS)
Weijs, Joost H.; Jeanneret, Raphaël; Dreyfus, Rémi; Bartolo, Denis
2015-03-01
We present experiments and numerical simulations of a microfluidic echo process, in which a large number of droplets interact in a periodically driven viscous fluid [Jeanneret & Bartolo, Nature Comm. 5, 3474 (2013)]. Upon increasing the driving amplitude we demonstrate the collective reversibility loss of the droplet dynamics. In addition we show that this genuine dynamical phase transition is associated with a structural one: at the onset of irreversibility the droplet ensemble self-organises into a random hyperuniform state. Numerical simulations evidence that the purely reversible hydrodynamic interactions together with hard-core repulsion account for most of our experimental findings. Hyperuniformity is relevant for the production of large-band-gap materials, but are difficult to construct both numerically and experimentally. The hydrodynamic echo-process may provide a robust, fast, and simple way to produce hyper uniform structures over a wide range of packing fractions.
Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers.
Rechiman, Ludmila M; Dellavale, Damián; Bonetto, Fabián J
2013-06-01
We study, numerically and experimentally, three different methods to suppress the trajectories of strongly collapsing and sonoluminescent bubbles in a highly viscous sulfuric acid solution. A new numerical scheme based on the window method is proposed to account for the history force acting on a spherical bubble with variable radius. We could quantify the history force, which is not negligible in comparison with the primary Bjerknes force in this type of problem, and results are in agreement with the classical primary Bjerknes force trapping threshold analysis. Moreover, the present numerical implementation reproduces the spatial behavior associated with the positional and path instability of sonoluminescent argon bubbles in strongly gassed and highly degassed sulfuric acid solutions. Finally, the model allows us to demonstrate that spatially stationary bubbles driven by biharmonic excitation could be obtained with a different mode from the one used in previous reported experiments.
CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe
NASA Astrophysics Data System (ADS)
Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin
2017-08-01
In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.
Consistency and convergence for numerical radiation conditions
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
The problem of imposing radiation conditions at artificial boundaries for the numerical simulation of wave propagation is considered. Emphasis is on the behavior and analysis of the error which results from the restriction of the domain. The theory of error estimation is briefly outlined for boundary conditions. Use is made of the asymptotic analysis of propagating wave groups to derive and analyze boundary operators. For dissipative problems this leads to local, accurate conditions, but falls short in the hyperbolic case. A numerical experiment on the solution of the wave equation with cylindrical symmetry is described. A unified presentation of a number of conditions which have been proposed in the literature is given and the time dependence of the error which results from their use is displayed. The results are in qualitative agreement with theoretical considerations. It was found, however, that for this model problem it is particularly difficult to force the error to decay rapidly in time.
NASA Astrophysics Data System (ADS)
Prime, Michael; Vaughan, Diane; Preston, Dean; Oro, David; Buttler, William
2013-06-01
Rayleigh-Taylor instabilities have been widely used to study the deviatoric (flow) strength of solids at high strain rates. More recently, experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/sec using Richtmyer-Meshkov (RM) instabilities. Buttler et al. [J. Fluid Mech., 2012] recently reported experimental results for RM instability growth but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and detailed interpretation from numerical simulations of the Buttler experiments on copper. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data in spite of the PTW model being calibrated on lower strain rate data. The numerical simulations are used to 1) examine various assumptions previously made in an analytical model, 2) to estimate the sensitivity of such experiments to material strength and 3) to explore the possibility of extracting meaningful strength information in the face of complicated spatial and temporal variations of stress, pressure, and temperature during the experiments.
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Horel, Agota; Schiewer, Silke; Misra, Debasmita
2015-09-01
The present research investigated to what extent results obtained in small microcosm experiments can be extrapolated to larger settings with non-uniform concentrations. Microbial hydrocarbon degradation in sandy sediments was compared for column experiments versus homogenized microcosms with varying concentrations of diesel, Syntroleum, and fish biodiesel as contaminants. Syntroleum and fish biodiesel had higher degradation rates than diesel fuel. Microcosms showed significantly higher overall hydrocarbon mineralization percentages (p < 0.006) than columns. Oxygen levels and moisture content were likely not responsible for that difference, which could, however, be explained by a strong gradient of fuel and nutrient concentrations through the column. The mineralization percentage in the columns was similar to small-scale microcosms at high fuel concentrations. While absolute hydrocarbon degradation increased, mineralization percentages decreased with increasing fuel concentration which was corroborated by saturation kinetics; the absolute CO2 production reached a steady plateau value at high substrate concentrations. Numerical modeling using HYDRUS 2D/3D simulated the transport and degradation of the investigated fuels in vadose zone conditions similar to those in laboratory column experiments. The numerical model was used to evaluate the impact of different degradation rate constants from microcosm versus column experiments.
Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.
Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F
2013-01-01
An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, Brian; Jackson, R. Brian
2017-03-08
The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1990-01-01
It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.
NASA Astrophysics Data System (ADS)
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
Inverse problems in the modeling of vibrations of flexible beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Powers, R. K.; Rosen, I. G.
1987-01-01
The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.
NASA Technical Reports Server (NTRS)
Hoff, N J; Boley, Bruno A; Klein, Bertram
1945-01-01
A numerical procedure is presented for the calculation of the stresses in a monocoque cylinder with a cutout. In the procedure the structure is broken up into a great many units; the forces in these units corresponding to specified distortions of the units are calculated; a set of linear equations is established expressing the equilibrium conditions of the units in the distorted state; and the simultaneous linear equations are solved. A fully worked out numerical example, corresponding to the application of a pure bending moment, gave results in good agreement with experiments carried out earlier at the Polytechnic Institute of Brooklyn.
Time reverse modeling of acoustic emissions in a reinforced concrete beam.
Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas
2016-02-01
The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. Copyright © 2015 Elsevier B.V. All rights reserved.
Numerical solution of the Black-Scholes equation using cubic spline wavelets
NASA Astrophysics Data System (ADS)
Černá, Dana
2016-12-01
The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.
NASA Technical Reports Server (NTRS)
Paine, D. A.; Zack, J. W.; Kaplan, M. L.
1979-01-01
The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.
Study of rainfall-induced landslide: a review
NASA Astrophysics Data System (ADS)
Tohari, A.
2018-02-01
Rainfall-induced landslides pose a substantial risk to people and infrastructure. For this reason, there have been numerous studies to understand the landslide mechanism. Most of them were performed on the numerical analysis and laboratory experiment. This paper presents a review of existing research on field hydrological condition of soil slopes leading to the initiation of rainfall-induced landslide. Existing methods to study field hydrological response of slopes are first reviewed, emphasizing their limitations and suitability of application. The typical hydrological response profiles in the slope are then discussed. Subsequently, some significant findings on hydrological condition leading to rainfall-induced landslides are summarized and discussed. Finally, several research topics are recommended for future study.
NASA Astrophysics Data System (ADS)
Vedeneev, V. V.; Kolotnikov, M. E.; Mossakovskii, P. A.; Kostyreva, L. A.; Abdukhakimov, F. A.; Makarov, P. V.; Pyhalov, A. A.; Dudaev, M. A.
2018-01-01
In this paper we present a complex numerical workflow for analysis of blade flutter and high-amplitude resonant oscillations, impenetrability of casing if the blade is broken off, and the rotor reaction to the blade detachment and following misbalance, with the assessment of a safe flight possibility at the auto-rotation regime. All the methods used are carefully verified by numerical convergence study and correlations with experiments. The use of the workflow developed significantly improves the efficiency of the design process of modern jet engine compressors. It ensures a significant reduction of time and cost of the compressor design with the required level of strength and durability.
Numerical experiments in homogeneous turbulence
NASA Technical Reports Server (NTRS)
Rogallo, R. S.
1981-01-01
The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.
Numerical studies of bacterial-carpet microflows
NASA Astrophysics Data System (ADS)
Huber, Greg; Tillberg, Dan; Powers, Thomas R.
2004-03-01
Bacterial carpets are arrays of motile bacteria attached to two-dimensional surfaces. Improved understanding of carpet flows is important in the design of microfluidic devices and transport systems powered by bacterial flagellar motion. In recent experiments by the group of Howard Berg, cells of swarming S. marcescens are stuck to the surface, with most of their flagella free to rotate in the fluid. These studies show modified transport and greatly enhanced diffusion near the active carpet surface. We present theoretical models of the flagella-driven flow, bridging the nano- to the macro-scale, simulate the diffusion and advection of passive tracers, and compare the numerical results with the tracking data of Berg et al.
Photosynthesis-related quantities for education and modeling.
Antal, Taras K; Kovalenko, Ilya B; Rubin, Andrew B; Tyystjärvi, Esa
2013-11-01
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B; Cattaneo, Zaira
2015-10-01
Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants' previous visual experience. In particular, both sighted and early blind individuals' representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e., from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Shrivastava; Brian Williams; Ali S. Siahpush
2014-06-01
There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less
The effect of hand movements on numerical bisection judgments in early blind and sighted individuals
Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B.; Cattaneo, Zaira
2017-01-01
Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants’ previous visual experience. In particular, both sighted and early blind individuals’ representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e. from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction. PMID:26184675
NASA Astrophysics Data System (ADS)
Caranicolas, Nicolaos D.; Zotos, Euaggelos E.
2013-02-01
We investigate the transition from regular to chaotic motion in a composite galaxy model with a disk-halo, a massive dense nucleus and a dark halo component. We obtain relationships connecting the critical value of the mass of the nucleus or the critical value of the angular momentum Lzc, with the mass Mh of the dark halo, where the transition from regular motion to chaos occurs. We also present 3D diagrams connecting the mass of nucleus the energy and the percentage of stars that can show chaotic motion. The fraction of the chaotic orbits observed in the (r,pr) phase plane, as a function of the mass of the dark halo is also computed. We use a semi-numerical method, that is a combination of theoretical and numerical procedure. The theoretical results obtained using the version 8.0 of the Mathematica package, while all the numerical calculations were made using a Bulirsch-Stöer FORTRAN routine in double precision. The results can be obtained in semi-numerical or numerical form and give good description for the connection of the physical quantities entering the model and the transition between regular and chaotic motion. We observe that the mass of the dark halo, the mass of the dense nucleus and the Lz component of the angular momentum, are important physical quantities, as they are linked to the regular or chaotic character of orbits in disk galaxies described by the model. Our numerical experiments suggest, that the amount of the dark matter plays an important role in disk galaxies represented by the model, as the mass of the halo affects, not only the regular or chaotic nature of motion but it is also connected with the existence of the different families of regular orbits. Comparison of the present results with earlier work is also presented.
Abstract number and arithmetic in preschool children.
Barth, Hilary; La Mont, Kristen; Lipton, Jennifer; Spelke, Elizabeth S
2005-09-27
Educated humans use language to express abstract number, applying the same number words to seven apples, whistles, or sins. Is language or education the source of numerical abstraction? Claims to the contrary must present evidence for numerical knowledge that applies to disparate entities, in people who have received no formal mathematics instruction and cannot express such knowledge in words. Here we show that preschool children can compare and add large sets of elements without counting, both within a single visual-spatial modality (arrays of dots) and across two modalities and formats (dot arrays and tone sequences). In two experiments, children viewed animations and either compared one visible array of dots to a second array or added two successive dot arrays and compared the sum to a third array. In further experiments, a dot array was replaced by a sequence of sounds, so that participants had to integrate quantity information presented aurally and visually. Children performed all tasks successfully, without resorting to guessing strategies or responding to continuous variables. Their accuracy varied with the ratio of the two quantities: a signature of large, approximate number representations in adult humans and animals. Addition was as accurate as comparison, even though children showed no relevant knowledge when presented with symbolic versions of the addition tasks. Abstract knowledge of number and addition therefore precedes, and may guide, language-based instruction in mathematics.
NASA Astrophysics Data System (ADS)
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F.; Blackstock, David T.
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less
Nulling interferometry for the darwin mission: laboratory demonstration experiment
NASA Astrophysics Data System (ADS)
Ollivier, Marc; Léger, Alain; Sekulic, Predrag; Labèque, Alain; Michel, Guy
2017-11-01
The DARWIN mission is a project of the European Space Agency that should allow around 2012 the search for extrasolar planets and a spectral analysis of their potential atmosphere in order to evidence gases and particularly tracers of life. The principle of the instrument is based on the Bracewell nulling interferometer. It allows high angular resolution and high dynamic range. However, this concept, proposed more than 20 years ago, has never been experimentally demonstrated in the thermal infrared with high levels of extinction. We present here a laboratory monochromatic experiment dedicated to this goal. A theoretical and numerical approach of the question highlights a strong difficulty: the need for very clean and homogeneous wavefronts, in terms of intensity, phase and polarisation distribution. A classical interferometric approach appears to be insufficient to reach our goals. We have shown theoretically then numerically that this difficulty can be surpassed if we perform an optical filtering of the interfering beams. This technique allows us to decrease strongly the optical requirements and to view very high interferometric contrast measurements with commercial optical pieces. We present here a laboratory interferometer working at 10,6 microns, and implementing several techniques of optical filtering (pinholes and single-mode waveguides), its realisation, and its first promising results. We particularly present measurements that exhibit stable visibility levels better than 99,9% that is to say extinction levels better than 1000.
Data Assimilation by delay-coordinate nudging
NASA Astrophysics Data System (ADS)
Pazo, Diego; Lopez, Juan Manuel; Carrassi, Alberto
2016-04-01
A new nudging method for data assimilation, delay-coordinate nudging, is presented. Delay-coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time-step. Numerical experiments with a low order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an un-optimized formulation of the delay-nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay-coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal-to-decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures.
Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches
NASA Astrophysics Data System (ADS)
Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando
2016-11-01
This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.
Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.
You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu
2018-01-01
Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.
Composition measurements of binary mixture droplets by rainbow refractometry.
Wilms, J; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Langtangen, Hans Petter; Wells, Garth N.
2011-09-01
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model.