Communicating River Level Data and Information to Stakeholders with Different Interests
NASA Astrophysics Data System (ADS)
Macleod, K.; Sripada, S.; Ioris, A.; Arts, K.; van der Wal, R.
2012-12-01
There is a need to increase the effectiveness of how river level data are communicated to a range of stakeholders with an interest in river level information to increase the use of data collected by regulatory agencies. Currently, river level data is provided to members of the public through a web site without any formal engagement with river users having taken place. In our research project called wikiRivers, we are working with the suppliers of river level data as well as the users of this data to explore and improve from the user perspective how river level data and information is made available online. We are focusing on the application of natural language generation technology to create textual summaries of river level data tailored for specific interest groups. These tailored textual summaries will be presented among other modes of information presentation (e.g. maps and visualizations) with the aim to increase communication effectiveness. Natural language generation involves developing computational models that use non-linguistic input data to produce natural language as their output. Acquiring accurate correct system knowledge for natural language generation is a key step in developing such an effective computer software system. In this paper we set out the needs for this project based on discussions with the stakeholder who supplies the river level data and current cyberinfrastructure and report on what we have learned from those individuals and groups who use river level data. Stages in the wikiRivers stakeholder identification, engagement and cyberinfrastructure development. S1- interviews with collectors and suppliers of river level data. S2- river level data stakeholder analysis, including analysis of their interests in individual river networks in Scotland and what they require from the cyberinfrastructure. S3-5 Iterative development and testing of cyberinfrastructure and modelling of river level data with domain and stakeholder knowledge.
Valuing river characteristics using combined site choice and participation travel cost models.
Johnstone, C; Markandya, A
2006-08-01
This paper presents new welfare measures for marginal changes in river quality in selected English rivers. The river quality indicators used include chemical, biological and habitat-level attributes. Economic values for recreational use of three types of river-upland, lowland and chalk-are presented. A survey of anglers was carried out and using these data, two travel cost models were estimated, one to predict the numbers of trips and the other to predict angling site choice. These models were then linked to estimate the welfare associated with marginal changes in river quality using the participation levels as estimated in the trip prediction model. The model results showed that higher flow rates, biological quality and nutrient pollution levels affect site choice and influence the likelihood of a fishing trip. Consumer surplus values per trip for a 10% change in river attributes range from pound 0.04 to pound 3.93 ( pound 2001) depending on the attribute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.G. Crook Company; United States. Bonneville Power Administration
1993-07-01
This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.
NASA Astrophysics Data System (ADS)
Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr
2018-01-01
This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie
Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less
Studying the impact of climate change on flooding in 12 river basins using CCSM4 output
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.
2011-12-01
The goal of this study is to analyze the impact of climate change on flood frequency changes in twelve large river basins by assessing the changes in upper catchment precipitation as well as the impact of sea-level rise at the river mouths. Using the recently released model output of the CCSM4 for upper catchment precipitation in twelve large river basins as well as the sea-level rise anomalies at the respective river mouths, we assess the impact of climate change on the return periods of flooding in the individual basins. Upper catchment precipitation, discharge as well as annual mean thermosteric sea-level rise are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. In a next step, return levels are compared from both 20th century and future model simulations for time slices at 2030, 2050, 2070 and 2090. It can be seen that what is e.g. a 20 year flood in present-day climate has a return period of ~15/10 years (RCP 2.6/8.5) in 2070. This effect strengthens as time progresses in the 21st century. Especially in low-lying countries such as Bangladesh, changes in sea-level rise can be expected to influence present-day flood characteristics. Sea-level rise anomalies for the 21st century are taken from CCSM4 model output at each of the river mouths. The backwater effect of sea-level rise can be estimated by referring to the geometry of the river channel and calculating an effective additional discharge both at the river mouth and inland. Judging from our work, the increase in effective discharge due to sea-level rise cannot be neglected when discussing flooding in the respective river basins. Impact of sea-level rise on changes in return levels will be investigated further. To blend both precipitation and sea-level effects together, we use extreme-value theory to calculate how the tails of the current river discharge distribution in both the lower and middle reaches of the river basins will be impacted by changing climate.
Conservation biology of the Cross River gorilla (Gorilla gorilla diehli)
NASA Astrophysics Data System (ADS)
Bergl, Richard Alexander
The Cross River gorilla (Gorilla gorilla diehli), a recently revived fourth subspecies of gorilla, is the most endangered and poorly studied ape taxon. Only about 300 Cross River gorillas remain and these gorillas occur in at least eleven different localities. This dissertation presents a population-wide assessment of threats to this population based on molecular genetic data, satellite imagery and demographic modeling. I used DNA extracted from non-invasively collected fecal samples to amplify eleven microsatellite loci for population genetic analysis. Microsatellite data suggested that a complex population structure is present in the Cross River gorilla, with three genetically identifiable subpopulations present. Though levels of gene flow between certain subpopulations were low, there is evidence that reproductive contact persists between many of the subpopulations. The genetic data also demonstrate that levels of diversity in the Cross River population are not evenly distributed across subpopulations, and that one subpopulation has higher levels of variability than the others. In a genus-wide comparison, levels of genetic diversity in the Cross River gorilla were comparable to those of the similarly small populations of the mountain gorilla ( Gorilla beringei beringei) in Bwindi and the Virunga volcanoes, but showed lower levels of diversity than a sample from a large, continuous population of Gorilla gorilla gorilla at Mondika, Central African Republic. Genetic data also showed strong evidence of a population bottleneck in the Cross River gorilla, but not in the other three gorilla populations examined. I used analysis of remotely-sensed data from the Landsat satellite to assess the extent and pattern of land cover distribution across the Cross River gorilla's range. Considerable potential gorilla habitat remains within the range of the Cross River gorilla and each gorilla locality is at least tenuously connected by forest. Finally, I developed a model-based population viability analysis for the Cross River gorilla. Demographic modeling suggested that both population structure and variables associated with female reproductive output most influence population growth in the Cross River gorilla. Taken together, the results of my study are encouraging for the conservation of the Cross River gorilla population, and highlight the resilience of these animals in the face of human activities. Conservation efforts should promote connectivity between gorilla localities and foster the growth of their population. The methods I applied could provide useful insights into patterns of population structure and migration for a wide range of animal taxa.
Metals in fish from the Upper Benue River and lakes Geriyo and Njuwa in northeastern Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eromosele, C.O.; Eromosele, I.C.; Muktar, S.L.M.
Lakes Geriyo and Njuwa occupy natural depressions near the upper Benue River in northeastern Nigeria. The lakes are flooded by the river during the rainy season spanning the months of May to September. Fishing activities on the lakes and river provide fish for consumption by the local communities. Industrial activity around the upper Benue River and the lakes is low and there is no information on other activities with the potential for polluting the Benue River as it flows from neighboring Cameroon. However, an unconfirmed report indicated high levels of lead in the upper Benue River, generally speculated as arisingmore » from biogeometrical factors. Trace elements, some of which are toxic, may accumulate in edible marine organisms to levels which may be deleterious to human health. For the upper Benue River and its associate lakes, Geriyo and Njuwa, there is yet no report of a systematic study to assess the levels of metals in fish found in these waters. This paper presents the results of a study on metal levels in fish collected from Lakes Geriyo and Njuwa and upper Benue River in northeastern Nigeria. 7 refs., 1 fig., 2 tabs.« less
Verhaert, Vera; Covaci, Adrian; Bouillon, Steven; Abrantes, Katya; Musibono, Dieudonné; Bervoets, Lieven; Verheyen, Erik; Blust, Ronny
2013-09-01
The present study aimed to evaluate the occurrence of persistent organic pollutants (POPs: (PCBs, PBDEs, DDTs, HCHs, CHLs and HCB) in sediments and biota from the middle Congo River Basin (CRB) and to investigate their trophic transfer through the aquatic food web using nitrogen stable isotope ratios. To our knowledge, no data on levels of POPs in sediment and biota from the CRB are present in the literature, and studies on trophic transfer and biomagnification profiles of POPs using δ(15)N are scarce in tropical regions. POP levels in the sediment and biota were low, with exception of total PCB levels found in fish from the Itimbiri River (1.4 to 44ng/g ww). Compared to concentrations found in fish from pristine to relatively industrial developed areas, the ∑PCB levels in fish from the Itimbiri were high, indicating the presence of a local PCB contamination source in this catchment. Based on minimum risk level criteria formulated by ATSDR, the consumption of PCB contaminated fish from the Itimbiri river poses a potential risk for humans. The POP levels in biota were not significantly related to the POP levels in sediments, and the BSAF concept (Biota-Sediment Accumulation Factor) was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants in the present study. With increasing trophic levels, a significant increase in PCB 95, 101, 110, 138, 146, 149, 153, 174, 180 & 187 and p,p'-DDT in Itimbiri and BDE 47 & 99 in Itimbiri, Aruwimi & Lomami river basins was observed. Trophic magnification factors were higher than 1, indicating that biomagnification occurs through the tropical food web. Copyright © 2013 Elsevier Ltd. All rights reserved.
Harman, Christopher; Grung, Merete; Djedjibegovic, Jasmina; Marjanovic, Aleksandra; Sober, Miroslav; Sinanovic, Kemo; Fjeld, Eirik; Rognerud, Sigurd; Ranneklev, Sissel Brit; Larssen, Thorjørn
2013-02-01
The Stockholm Convention, which aspires to manage persistent organic pollutants (POPs) at the international level, was recently ratified in Bosnia and Herzegovina (BiH). Despite this fact, there is in general a paucity of data regarding the levels of POPs in the environment in BiH. In the present study, screening for POPs was conducted in one of the country's major rivers, the Bosna. A two-pronged approach was applied using passive samplers to detect the freely dissolved and bioavailable concentrations in the water phase and sediment analysis to provide an integrated measure of historical contamination. At several places along the river, the concentrations of polycyclic aromatic hydrocarbons (PAH) were high and exhibited potential for both chronic and acute effects to biota. River water also showed elevated concentrations of PAH, up to 480 ng L(-1) near the city of Doboj, and diagnostic ratios suggested combustion sources for the contamination present in both types of sample. The levels of the other contaminants measured-polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers--were generally low in the water phase. However, PCBs and some OCPs were present in river sediments at levels which breach the international criteria and thus suggest potential for ecological damage. Additionally, the levels of heptachlor breached these criteria in many of the sites investigated. This study presents the first screening data for some of these Stockholm Convention relevant compounds in BiH and reveals both low concentrations of some chemical groups, but significant point sources and historic contamination for others.
Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River
NASA Astrophysics Data System (ADS)
Bacopoulos, P.
2015-12-01
There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.
Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin).
Laperche, Valérie; Hellal, Jennifer; Maury-Brachet, Régine; Joseph, Bernard; Laporte, Pierre; Breeze, Dominique; Blanchard, François
2014-01-01
Use of mercury (Hg) for gold-mining in French Guiana (up until 2006) as well as the presence of naturally high background levels in soils, has led to locally high concentrations in soils and sediments. The present study maps the levels of Hg concentrations in river sediments from five main rivers of French Guiana (Approuague River, Comté River, Mana River, Maroni River and Oyapock River) and their tributaries, covering more than 5 450 km of river with 1 211 sampling points. The maximum geological background Hg concentration, estimated from 241 non-gold-mined streams across French Guiana was 150 ng g(-1). Significant differences were measured between the five main rivers as well as between all gold-mining and pristine areas, giving representative data of the Hg increase due to past gold-mining activities. These results give a unique large scale vision of Hg contamination in river sediments of French Guiana and provide fundamental data on Hg distribution in pristine and gold-mined areas.
NASA Astrophysics Data System (ADS)
Bakker, Mark
2010-08-01
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.
Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto
2017-07-01
In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.
Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington
Fasser, E.T.; Julich, R.J.
2010-01-01
Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.
Bacterial Pollution in River Waters and Gastrointestinal Diseases
Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A.
2017-01-01
Currently, one of Mexico’s most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk. PMID:28471407
Bacterial Pollution in River Waters and Gastrointestinal Diseases.
Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A
2017-05-04
Currently, one of Mexico's most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.
Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.
1996-01-01
Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.
Effects of climate change on water quality in the Yaquina ...
As part of a larger study to examine the effect of climate change (CC) on estuarine resources, we simulated the effect of rising sea level, alterations in river discharge, and increasing atmospheric temperatures on water quality in the Yaquina Estuary. Due to uncertainty in the effects of climate change, initial model simulations were performed for different steady river discharge rates that span the historical range in inflow, and for a range of increases in sea level and atmospheric temperature. Model simulations suggest that in the central portion of the estuary (19 km from mouth), a 60-cm increase in sea level will result in a 2-3 psu change in salinity across a broad range of river discharges. For the oligohaline portion of the estuary, salinity increases associated with a rise in sea level of 60 cm are only apparent at low river discharge rates (< 50 m3 s-1). Simulations suggest that the water temperatures near the mouth of the estuary will decrease due to rising sea level, while water temperatures in upriver portions of the estuary will increase due to rising atmospheric temperatures. We present results which demonstrate how the interaction of changes in river discharge, rising sea level, and atmospheric temperature associated with climate change produce non-linear patterns in the response of estuarine salinity and temperature, which vary with location inside the estuary and season. We also will discuss the importance of presenting results in a mann
Zinc-65 in marine organisms along the Oregon and Washington coasts.
WATSON, D G; DAVIS, J J; HANSON, W C
1961-06-09
The concentration of zinc-65 in marine animals and plants near the mouth of the Columbia River is presented. Amounts of radiozinc found in the biota diminished rapidly with the distance from the river mouth. The highest levels were found in plankton, algae, and mollusks. Of the human foods, oysters exhibited the highest levels.
Kotinagu, Korrapati; Krishnaiah, Nelapati
2015-04-01
The present study was conducted to find the organochlorine pesticide (OCP) and organophosphorus pesticide (OPP) residues in fodder and milk samples along Musi river belt, India. Fodder and milk samples collected from the six zones of Musi river belt, Hyderabad India were analyzed by gas chromatography with electron capture detector for OCP residues and pulsated flame photometric detector for the presence of OPP residues. The gas chromatographic analysis of fodder samples of Zone 5 of Musi river showed the residues of dicofol at concentration of 0.07±0.0007 (0.071-0.077). Among organophosphorus compounds, dimetheoate was present in milk samples collected from Zone 6 at a level of 0.13±0.006 (0.111-0.167). The residues of OCPs, OPPs and cyclodies were below the detection limit in the remaining fodder and milk samples collected from Musi river belt in the present study. The results indicate that the pesticide residues in fodder and milk samples were well below the maximum residue level (MRL) values, whereas dicofol in fodder and dimethoate in milk were slightly above the MRL values specified by EU and CODEX.
Kotinagu, Korrapati; Krishnaiah, Nelapati
2015-01-01
Aim: The present study was conducted to find the organochlorine pesticide (OCP) and organophosphorus pesticide (OPP) residues in fodder and milk samples along Musi river belt, India. Materials and Methods: Fodder and milk samples collected from the six zones of Musi river belt, Hyderabad India were analyzed by gas chromatography with electron capture detector for OCP residues and pulsated flame photometric detector for the presence of OPP residues. Results: The gas chromatographic analysis of fodder samples of Zone 5 of Musi river showed the residues of dicofol at concentration of 0.07±0.0007 (0.071-0.077). Among organophosphorus compounds, dimetheoate was present in milk samples collected from Zone 6 at a level of 0.13±0.006 (0.111-0.167). The residues of OCPs, OPPs and cyclodies were below the detection limit in the remaining fodder and milk samples collected from Musi river belt in the present study. Conclusion: The results indicate that the pesticide residues in fodder and milk samples were well below the maximum residue level (MRL) values, whereas dicofol in fodder and dimethoate in milk were slightly above the MRL values specified by EU and CODEX. PMID:27047132
McGuire, V.L.
2016-12-29
The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. More than 95 percent of the water withdrawn from the High Plains aquifer is used for irrigation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). The Republican River Basin is 15.9 million acres (about 25,000 square miles) and is located in northeast Colorado, northern Kansas, and southwest Nebraska. The Republican River Basin overlies the High Plains aquifer for 87 percent of the basin area. Water-level declines had begun in parts of the High Plains aquifer within the Republican River Basin by 1964. In 2002, management practices were enacted in the Middle Republican Natural Resources District in Nebraska to comply with the Republican River Compact Final Settlement. The U.S. Geological Survey, in cooperation with the Middle Republican Natural Resources District, completed a study of water-level changes in the High Plains aquifer within the Republican River Basin from 2002 to 2015 to enable the Middle Republican Natural Resources District to assess the effect of the management practices, which were specified by the Republican River Compact Final Settlement. Water-level changes determined from this study are presented in this report.Water-level changes from 2002 to 2015 in the High Plains aquifer within the Republican River Basin, by well, ranged from a rise of 9.4 feet to a decline of 43.2 feet. The area-weighted, average water-level change from 2002 to 2015 in this part of the aquifer was a decline of 4.5 feet.
Dynamic Modeling and Grid Interaction of a Tidal and River Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Donegan, James
This presentation provides a high-level overview of the deployment of a river generator installed in a small system. The turbine dynamics of a river generator, electrical generator, and power converter are modeled in detail. Various simulations can be exercised, and the impact of different control algorithms, failures of power switches, and corresponding impacts can be examined.
NASA Astrophysics Data System (ADS)
Kim, D.; Lee, H.; Jung, H. C.; Beighley, E.; Laraque, A.; Tshimanga, R.; Alsdorf, D. E.
2016-12-01
Rivers and wetlands are very important for ecological habitats, and it plays a key role in providing a source of greenhouse gases (CO2 and CH4). The floodplains ecosystems depend on the process between the vegetation and flood characteristics. The water level is a prerequisite to an understanding of terrestrial water storage and discharge. Despite the lack of in situ data over the Congo Basin, which is the world's third largest in size ( 3.7 million km2), and second only to the Amazon River in discharge ( 40,500 m3 s-1 annual average between 1902 and 2015 in the main Brazzaville-Kinshasa gauging station), the surface water level dynamics in the wetlands have been successfully estimated using satellite altimetry, backscattering coefficients (σ0) from Synthetic Aperture Radar (SAR) images and, interferometric SAR technique. However, the water level estimation of the Congo River remains poorly quantified due to the sparse orbital spacing of radar altimeters. Hence, we essentially have limited information only over the sparsely distributed the so-called "virtual stations". The backscattering coefficients from SAR images have been successfully used to distinguish different vegetation types, to monitor flood conditions, and to access soil moistures over the wetlands. However, σ0 has not been used to measure the water level changes over the open river because of very week return signal due to specular scattering. In this study, we have discovered that changes in σ0 over the Congo River occur mainly due to the water level changes in the river with the existence of the water plants (macrophytes, emergent plants, and submersed plant), depending on the rising and falling stage inside the depression of the "Cuvette Centrale". We expand the finding into generating the multi-temporal water level maps over the Congo River using PALSAR σ0, Envisat altimetry, and Landsat Normalized Difference Vegetation Index (NDVI) data. We also present preliminary estimates of the river discharge using the water level maps.
Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana
2016-01-01
The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.
Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces
NASA Technical Reports Server (NTRS)
Merritts, Dorothy J.; Vincent, Kirk R.; Wohl, Ellen E.
1994-01-01
Along three rivers at the Mendocino triple junction, northern California, strath, cut, and fill terraces have formed in response to tectonic and eustatic processes. Detailed surveying and radiometric dating at multiple sites indicate that lower reaches of the rivers are dominated by the effects of oscillating sea level, primarily aggradation and formation of fill terraces during sea level high stands, alternating with deep incision during low stands. A eustasy-driven depositional wedge extends tens of kilometers upstream on all rivers (tapering to zero thickness). This distance is greater than expected from studies of the effects of check dams on much smaller streams elsewhere, due in part to the large size of these rivers. However, the change in gradient is nearly identical to other base level rise studies: the depositional gradient is about half that of the original channel. Middle to upper reaches of each river are dominated by the effects of long-term uplift, primarily lateral and vertical erosion and formation of steep, unpaired strath terraces exposed only upstream of the depositional wedge. Vertical incision at a rate similar to that of uplift has occurred even during the present sea level high stand along rivers with highest uplift rates. Strath terraces have steeper gradients than the modern channel bed and do not merge with marine terraces at the river mouth; consequently, they cannot be used to determine altitudes of sea level high stands. Strath formation is a continuous process of response to long-term uplift, and its occurrence varies spatially along a river depending on stream power, and hence position, upstream. Strath terraces are found only along certain parts of a coastal stream: upstream of the aggradational effects of oscillating sea level, and far enough downstream that stream power is in excess of that needed to transport the prevailing sediment load. For a given size river, the greater the uplift rate, the greater the rate of vertical incision and, consequently, the less the likelihood of strath terrace formation and preservation.
Fasser, E.T.; Julich, R.J.
2009-01-01
Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.
Occurrence of pesticides in fish tissues, water and soil sediment from Manzala Lake and River Nile.
Osfor, M M; Abd el Wahab, A M; el Dessouki, S A
1998-02-01
Pesticides constitute the major source of potential environmental hazard to man and animal as they are present and concentrated in the food chain. This study was conducted on 136 samples of water, sediment and fish for detection and determination of pesticide residues in this ecosystem. Highly significant differences were found in levels of Indian, heptachlor, endrin, dieldrin, P,P'-DDE and propoxur in River Nile water when compared with that of Manzala Lake. Levels of Indian, endrin, malathion and diazinon were significantly higher in soil sediment of Manzala Lake, while the levels of heptachlor, aldrine, P,P'-DDE, DDT, parathion, propoxur and zectran were significantly higher in soil sediment of River Nile. Boury fish of Manzala Lake contained higher levels of heptachlor, aldrin, P,P'-DDE and malathion, while boury fish of River Nile contained a higher level of zectran only. This survey, thus indicated that Manzala Lake and even the River Nile which was used as control are heavily contaminated with chlorinated hydrocarbons (Indian, heptachlor, aldrin, endrin, dieldrin, P,P'-DDE and DDT), organic phosphorus compounds (malathion, dimethoat, diazinon and parathion) and carbamate pesticides (propoxur and zectran).
Lane, R.C.; Julich, R.J.; Justin, G.B.
2013-01-01
Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.
Dubey, Vineet Kumar; Sarkar, Uttam Kumar; Pandey, Ajay; Lakra, Wazir Singh
2013-09-01
In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species) in river Ken and omnivorous (23 species) in Betwa. The trophic level score of carnivorous species was recorded similar (33.33%) in both rivers, whereas omnivorous species were mostly found in Betwa (36.51%) than Ken (28.07%). Relatively undisturbed sites of Betwa (B1, B2 and B3) and Ken (K2, K3 and K5) were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (> 0.32) as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases), and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.
Riverbank Collapse on the lower Murray River: recent phenomenon or long-term geomorphic process?
NASA Astrophysics Data System (ADS)
De Carli, E.; Hubble, T.; Jaksa, M.; Clarke, S. L.; Airey, D.; O'Toole, J.; Carpenter, G.
2013-12-01
The lower Murray River connects the Murray-Darling River Basin to the Southern Ocean and drains 14% of Australia's landmass. During the Millennium Drought (1997-2011) record low inflows for the Basin were recorded and the lower Murray River received only 19% of its long-term average inflow for 2008-2009, causing the pool-level in the lowermost reaches near Goolwa to fall 1 m below sea level. This event triggered widespread mass failure in the alluvial river banks and ground subsidence in some river-adjacent floodplain deposits between Blanchetown and Lake Alexandrina. Multi-beam bathymetry, sediment core and geotechnical data are presented for a number of sites investigated between Mannum and White Sands. Interpretation of this data indicates three different bank-failure slide morphologies present in the banks and adjacent channel. Type 1, ';recent' (2009-2011) deep-seated rotational slumps characterised by distinct, sharply-defined failure scars and associated debris fields of angular blocks shed from the failure site. Type 2, ';relatively-recent' shallow planar-failures, with less well-defined smoother failure scars and associated debris fields of smoothed or rounded blocks and pinnacles. Type 3, ';relatively-old' shallow planar-failures characterised by subdued relief slump scars that do not present an associated debris field. It is suspected that successive floods or high-flow events progressively erode and redistribute material, smoothing the landslide scars and redistributing the slide-debris deposits. Bank-failure and the delivery of material from the slides into the channel is interpreted as an ongoing and long-term geomorphic characteristic of the lower Murray River, rather than a new phenomenon that occurred as a response to unusually low river levels during the Millennium Drought. The larger size and rotational style of the recent Type 1 failures is most likely to be a consequence of the drought and anthropogenic modifications of the river channel and banks, e.g. construction of the barrages preventing seawater ingress into the channel and small levee and embankment construction. Figure 1) Location of the lower Murray River (red outline) within the Murray-Darling Basin, Australia. Figure 2) Multibeam bathymetry of Woodlane Reserve, Mypolonga, South Australia. Note the different bank-failure slide morphologies, Types 1, 2 & 3.
NASA Astrophysics Data System (ADS)
Macleod, Christopher Kit; Braga, Joao; Arts, Koen; Ioris, Antonio; Han, Xiwu; Sripada, Yaji; van der Wal, Rene
2016-04-01
The number of local, national and international networks of online environmental sensors are rapidly increasing. Where environmental data are made available online for public consumption, there is a need to advance our understanding of the relationships between the supply of and the different demands for such information. Understanding how individuals and groups of users are using online information resources may provide valuable insights into their activities and decision making. As part of the 'dot.rural wikiRivers' project we investigated the potential of web analytics and an online survey to generate insights into the use of a national network of river level data from across Scotland. These sources of online information were collected alongside phone interviews with volunteers sampled from the online survey, and interviews with providers of online river level data; as part of a larger project that set out to help improve the communication of Scotland's online river data. Our web analytics analysis was based on over 100 online sensors which are maintained by the Scottish Environmental Protection Agency (SEPA). Through use of Google Analytics data accessed via the R Ganalytics package we assessed: if the quality of data provided by Google Analytics free service is good enough for research purposes; if we could demonstrate what sensors were being used, when and where; how the nature and pattern of sensor data may affect web traffic; and whether we can identify and profile these users based on information from traffic sources. Web analytics data consists of a series of quantitative metrics which capture and summarize various dimensions of the traffic to a certain web page or set of pages. Examples of commonly used metrics include the number of total visits to a site and the number of total page views. Our analyses of the traffic sources from 2009 to 2011 identified several different major user groups. To improve our understanding of how the use of this national network of river level data may provide insights into the interactions between individuals and their usage of hydrological information, we ran an online survey linked to the SEPA river level pages for one year. We collected over 2000 complete responses to the survey. The survey included questions on user activities and the importance of river level information for their activities; alongside questions on what additional information they used in their decision making e.g. precipitation, and when and what river pages they visited. In this presentation we will present results from our analysis of the web analytics and online survey, and the insights they provide to understanding user groups of this national network of river level data.
Urresti-Estala, Begoña; Carrasco-Cantos, Francisco; Vadillo-Pérez, Iñaki; Jiménez-Gavilán, Pablo
2013-03-15
Determine background levels are a key element in the further characterisation of groundwater bodies, according to Water Framework Directive 2000/60/EC and, more specifically, Groundwater Directive 2006/118/EC. In many cases, these levels present very high values for some parameters and types of groundwater, which is significant for their correct estimation as a prior step to establishing thresholds, assessing the status of water bodies and subsequently identifying contaminant patterns. The Guadalhorce River basin presents widely varying hydrogeological and hydrochemical conditions. Therefore, its background levels are the result of the many factors represented in the natural chemical composition of water bodies in this basin. The question of determining background levels under objective criteria is generally addressed as a statistical problem, arising from the many aspects involved in its calculation. In the present study, we outline the advantages of applying two statistical techniques applied specifically for this purpose: (1) the iterative 2σ technique and (2) the distribution function, and examine whether the conclusions reached by these techniques are similar or whether they differ considerably. In addition, we identify the specific characteristics of each approach and the circumstances under which they should be used. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Jian-Dong; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Sun, Cui-Ci; Wu, Mei-Lin
2015-10-01
The Pearl River delta, one of the most prosperous economically region in China, has experienced significant contaminant inputs. However, the dynamics of pollutants in the Pearl River estuary and the adjacent coastal areas are still unclear at present. In the paper, distribution and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in the surface sediments of the Pearl River estuary. The total PAHs concentrations ranged from 126.08 to 3828.58 ng/g with a mean value of 563.52 ng/g, whereas the highest PAHs were observed in Guangzhou channel. Among the U.S. Environmental Protection Agency's 16 priority PAHs, PAHs with 3-4 rings exhibited relative higher levels. A positive relationship was found between PAHs and total organic carbon. The source analysis further showed that the major sources of PAHs in the Pearl River estuary were originated from the pyrolytic inputs, reflecting a mixed energy structure such as wood, coal and petroleum combustion. In summary, although PAHs in Lingding Bay and the adjacent coastal areas of the Pearl River estuary exhibited a relatively low pollution level, the relatively high pollution level of PAHs in Guangzhou channel will be attended.
1992 Columbia River Salmon Flow Measures Options Analysis/EIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and onemore » private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.« less
River rehabilitation for the delivery of multiple ecosystem services at the river network scale.
Gilvear, David J; Spray, Chris J; Casas-Mulet, Roser
2013-09-15
This paper presents a conceptual framework and methodology to assist with optimising the outcomes of river rehabilitation in terms of delivery of multiple ecosystem services and the benefits they represent for humans at the river network scale. The approach is applicable globally, but was initially devised in the context of a project critically examining opportunities and constraints on delivery of river rehabilitation in Scotland. The spatial-temporal approach highlighted is river rehabilitation measure, rehabilitation scale, location on the stream network, ecosystem service and timescale specific and could be used as initial scoping in the process of planning rehabilitation at the river network scale. The levels of service delivered are based on an expert-derived scoring system based on understanding how the rehabilitation measure assists in reinstating important geomorphological, hydrological and ecological processes and hence intermediate or primary ecosystem function. The framework permits a "total long-term (>25 years) ecosystem service score" to be calculated which is the cumulative result of the combined effect of the number of and level of ecosystem services delivered over time. Trajectories over time for attaining the long-term ecosystem service score for each river rehabilitation measures are also given. Scores could also be weighted according to societal values and economic valuation. These scores could assist decision making in relation to river rehabilitation at the catchment scale in terms of directing resources towards alternative scenarios. A case study is presented of applying the methodology to the Eddleston Water in Scotland using proposed river rehabilitation options for the catchment to demonstrate the value of the approach. Our overall assertion is that unless sound conceptual frameworks are developed that permit the river network scale ecosystem services of river rehabilitation to be evaluated as part of the process of river basin planning and management, the total benefit of river rehabilitation may well be reduced. River rehabilitation together with a 'vision' and framework within which it can be developed, is fundamental to future success in river basin management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Occurrence and risk assessment of antibiotics in river water in Hong Kong.
Deng, Wenjing; Li, Na; Zheng, Hailong; Lin, Huiying
2016-03-01
The occurrence and distribution of six typical antibiotics in the main rivers of Hong Kong were investigated using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). The results revealed that the antibiotics were widely distributed in the area studied. Of the target antibiotics, ofloxacin was the most frequently detected in the rivers, with a detection rate of 69.6% and a median concentration of 0.7ng/L. Sulfadimidine (n.d-580.4ng/L) and doxycycline (n.d-82.2ng/L), with detection frequencies of 65.2% and 30.4%, respectively, were found at the same level as in rivers in North America, Spain, France, Australia, and in the Yangtze and Pearl Rivers of China, while the other target antibiotics were found at lower levels. According to the ratios of the measured environmental concentration to the predicted no-effect concentration, ofloxacin and doxycycline could present a medium to low ecological risk to algae, while sulfonamides posed no obvious ecological risk to the relevant aquatic organisms (algae, Daphnia magna, and fish). A high detection rate of antibiotics occurred in densely populated areas, revealing that population activities might be greatly contributing to the increasing levels of antibiotics in the area. Thus, the residues of antibiotics present in the waters of Hong Kong need to be closely monitored. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulistyowati, Riny; Sujono, Hari Agus; Musthofa, Ahmad Khamdi
2017-06-01
Due to the high rainfall, flood often occurs in some regions, especially in the area adjacent to the river banks that led to the idea to make the river water level detection system as a flood early warning. Several researches have produced flood detection equipment based on ultrasonic sensors and android as flood early warning system. This paper reported the results of a field test detection equipment to measure the river water level of the Bengawansolo River that was conducted in three villages in the district of Bungah, Dukun, and Manyar in Gresik regency. Tests were conducted simultaneously for 21 hours during heavy rainfall. The test results demonstrated the accuracy of the equipment of 97.28% for all categories of observation. The application of AFD (Android Flood Detection) via android smartphone demonstrated its precision in conveying the information of water level as represented by the status of SAFE, STAND, WARNING, and DANGER. Some charts presented from the analysis of data was derived from the data acquisition time of testing that can be used as an evaluation of flooding at some points prone to flood.
Hudon, Christiane; Wilcox, Douglas; Ingram, Joel
2006-01-01
The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.
Flood forecasting using non-stationarity in a river with tidal influence - a feasibility study
NASA Astrophysics Data System (ADS)
Killick, Rebecca; Kretzschmar, Ann; Ilic, Suzi; Tych, Wlodek
2017-04-01
Flooding is the most common natural hazard causing damage, disruption and loss of life worldwide. Despite improvements in modelling and forecasting of water levels and flood inundation (Kretzschmar et al., 2014; Hoitink and Jay, 2016), there are still large discrepancies between predictions and observations particularly during storm events when accurate predictions are most important. Many models exist for forecasting river levels (Smith et al., 2013; Leedal et al., 2013) however they commonly assume that the errors in the data are independent, stationary and normally distributed. This is generally not the case especially during storm events suggesting that existing models are not describing the drivers of river level in an appropriate fashion. Further challenges exist in the lower sections of a river influenced by both river and tidal flows and their interaction and there is scope for improvement in prediction. This paper investigates the use of a powerful statistical technique to adaptively forecast river levels by modelling the process as locally stationary. The proposed methodology takes information on both upstream and downstream river levels and incorporates meteorological information (rainfall forecasts) and tidal levels when required to forecast river levels at a specified location. Using this approach, a single model will be capable of predicting water levels in both tidal and non-tidal river reaches. In this pilot project, the methodology of Smith et al. (2013) using harmonic tidal analysis and data based mechanistic modelling is compared with the methodology developed by Killick et al. (2016) utilising data-driven wavelet decomposition to account for the information contained in the upstream and downstream river data to forecast a non-stationary time-series. Preliminary modelling has been carried out using the tidal stretch of the River Lune in North-west England and initial results are presented here. Future work includes expanding the methodology to forecast river levels at a network of locations simultaneously. References Hoitink, A. J. F., and D. A. Jay (2016), Tidal river dynamics: Implications for deltas, Rev. Geophys., 54, 240-272 Killick, R., Knight, M., Nason, G.P., Eckley, I.A. (2016) The Local Partial Autocorrelation Function and its Application to the Forecasting of Locally Stationary Time Series. Submitted Kretzschmar, Ann and Tych, Wlodek and Chappell, Nick A (2014) Reversing hydrology: estimation of sub-hourly rainfall time-series from streamflow. Env. Modell Softw., 60. pp. 290-301 D. Leedal, A. H. Weerts, P. J. Smith, & K. J. Beven. (2013). Application of data-based mechanistic modelling for flood forecasting at multiple locations in the Eden catchment in the National Flood Forecasting System (England and Wales). HESS, 17(1), 177-185. Smith, P., Beven, K., Horsburgh, K., Hardaker, P., & Collier, C. (2013). Data-based mechanistic modelling of tidally affected river reaches for flood warning purposes: An example on the River Dee, UK. , Q.J.R. Meteorol. Soc. 139(671), 340-349.
Adams, Gregory P.; Bergman, D.L.; Pruitt, D.J.; May, J.E.; Kurklin, J.K.
1994-01-01
Ground water in the Quaternary alluvium and terrace deposits associated with the Cimarron River in northwestern Oklahoma is used extensively for irrigation, municipal, stock, and domestic supplies. The data in this report were collected as part of an investigation to provide State water managers with the quantitative knowledge necessary to manage the ground-water resource effectively. The investigation was conducted by the U.S. Geological Survey in cooperation with the Oklahoma Geological Survey. The information presented in this report include data collected in the field from 1985 through 1989, and unpublished data compiled from files of the U.S. Geological Survey and the Oklahoma Water Resources Board. Data include well and test-bole records, consisting of ground-water levels, depth of wells, principal aquifer, and primary use of water. Water levels include continuous, daily, monthly, and periodic measure- ments for selected wells. Concentrations of common chemical constituents, selected trace elements, organic analyses, and tritium analyses of water samples from wells completed in the Cimarron River alluvium and terrace deposits and Permian geologic units are reported. Winter and summer base-flow discharge measurements of the Cimarron River and its Tributaries are presented together with water-quality data from the measuring sites. Continuous water-level and precipitation-gage data are presented graphically. Locations of data- collection sites are shown on plates.
Watkins, F.A.; Laughlin, C.P.; Hayes, E.C.
1977-01-01
This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for September 1977. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 900 wells and springs. The potentiometric surface is shown by 5-foot contours except in the Fernandina Beach area where 10- and 20-foot contours are used to show the deep cone of depression. This is the first map covering the entire St. Johns River Water Management District and vicinity for September, a high water-level period. The potentiometric surface ranged from 130 feet above mean sea level in Polk County to 131 feet below sea level in Nassau County. (Woodard-USGS)
Kincare, K.A.
2007-01-01
The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography. ?? 2006 Springer Science+Business Media B.V.
Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes
NASA Astrophysics Data System (ADS)
Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme
2017-04-01
In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM, considered better altimetric surfaces when compared to the ECMWF orography, can be used. When using the model orography, systematic errors up to 3-5 cm are found in the DTC for most of the selected regions, which can induce significant errors in e.g. the determination of mean river profiles or lake level time series. For the Danube River, larger DTC errors up to 10 cm, due to terrain characteristics, can appear. For the WTC, with higher spatial variability, model errors of magnitude 1-3 cm are expected over inland waters. In the Danube region, the comparison of GNSS- and ECMWF-derived WTC has shown that the error in the WTC computed at orography level can be up to 3 cm. WTC errors with this magnitude have been found for all ROI. Although globally small, these errors are systematic and must be corrected prior to the generation of CS-2 Level 2 products. Once computed at the mean profile and mean lake level, the results show that tropospheric corrections have accuracy better than 1 cm. This analysis is currently being extended to S3 data and the first results are shown.
Kieffer, S.W.
1985-01-01
At Crystal Creek, a debris fan was emplaced in 1966, constricting the channel of the Colorado River to about 0.25 of its upstream width between 1967 and 1983, forming a major rapid. The hydraulics of Crystal Creek rapid are described, and an analysis is presented to support the hypothesis that the major wave in the rapid was a normal wave (one type of hydraulic jump). Hydraulic jumps rarely occur in natural river channels with erodible beds, but one was present at Crystal Rapid because of the unusually severe constriction of the Colorado River by the 1966 debris fan. A quantitative model for river debris fan shapes is proposed and is used to estimate prehistoric flood levels from the observed constrictions: the 0.5 value of river constriction found at the more mature debris fans in the Grand Canyon suggests that peak flood discharges of approximately 11 320 m3/s have occurred. -from Author
Urke, H A; Kristensen, T; Arnekleiv, J V; Haugen, T O; Kjærstad, G; Stefansson, S O; Ebbesson, L O E; Nilsen, T O
2013-01-01
High levels of hybridization between Atlantic salmon Salmo salar and brown trout Salmo trutta have been reported in the River Driva. This study presents the underlying mechanisms of development of seawater (SW) tolerance and marine migration pattern for S. salar×S. trutta hybrids. Migrating S. salar×S. trutta hybrid smolts caught in the River Driva, Norway (a river containing Gyrodactylus salaris), displayed freshwater (FW) gill Na(+), K(+) -ATPase (NKA) activity levels of 11·8 µmol ADP mg protein h(-1), which were equal to or higher than activity levels observed in S. salar and S. trutta smolts. Following 4 days of SW exposure (salinity 32·3), enzyme activity remained high and plasma ion levels were maintained within the normal physiological range observed in S. salar smolts, indicating no signs of ion perturbations in S. salar×S. trutta hybrids. SW exposure induced an increase in NKA α1b-subunit mRNA levels with a concurrent decrease in α1a levels. Salmo salar×S. trutta post-smolts migrated rapidly through the fjord system, with increasing speed with distance from the river, as is often seen in S. salar smolts. The present findings suggest that S. salar×S. trutta smolts, as judged by the activity and transcription of the NKA system, regulation of plasma ion levels and migration speed more closely resemble S. salar than S. trutta. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
The investigation of chemical quality of water in tidal rivers
Keighton, Walter B.
1954-01-01
This report has been prepared for the guidance of personnel of the Water Resources Division who are engaged in water-quality investigations of tidal rivers. The study of tidal rivers is beset with many complexities not present in the investigation of non-tidal rivers. The periodic rise and fall of the tide may result in a corresponding periodic change in salinity at a sampling location on the tidal river. When the fresh water discharge is low, saline water may intrude up-river, and any factor changing the relative elevations of the ocean and the mean river level has an effect on the extent of salt-water intrusion. Variations in water composition between samples taken at several locations up or down river, at different depths, or at several locations across the stream are likely to be more pronounced than for similar sets of samples from a non-tidal stream. The nature of these variations and factors responsible for them are discussed, and the need for consideration of them in planning a sampling routine is stressed. The nature and mechanism of ocean-water intrusion in tidal rivers is discussed and sampling procedures for its detection are described. lllustrative examples - mostly from the work of the United States Geological Survey or State agencies - show various methods for correlating and presenting data from quality-of-water surveys of tidal rivers. Each tidal river presents an individual problem which can best be understood from a study of the factors involved. To that end the report is supplemented by an annotated bibliography of selected publications in the field.
Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.
2018-01-01
The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between ~ 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level ~ 5.1–4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for ~ 200–300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting ~ 4.8–4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network.
NASA Astrophysics Data System (ADS)
Bhadra, T.; Hazra, S.; Ghosh, S.; Barman, B. C.
2016-12-01
The Indian Sundarban, situated on the western tide-dominated part of the Ganges delta was formed by the sedimentation of the Ganges and its tributaries. Freshwater is a scarce resource in the Sundarban though it is traversed by rivers. Most of the rivers of Western Ganges Delta, which used to nourish the Sundarban, have become defunct with the passage of time. To ensure sustainable flow and to enhance the flow-dependent ecosystem services in this region, assessment of environmental flows within the system is required. A pilot assessment of environment flows, supported by IUCN has been carried out in some specific river reaches of Western Ganges Delta under the present study. The holistic Building Block Methodology (BBM) has been modified and used for the assessment of environmental flows. In the modified BBM, three distinctive blocks namely Hydro-Morphology, Ecology and Socio-Economy have been selected and indicators like Ganges Dolphin (Platanista gangetica), Sundari tree (Heritiera fomes) and Hilsa fish (Tenualosa ilisha) etc. have been determined to assess the environmental flows. As the discharge data of the selected rivers are restricted in the public domain, the SWAT model has been run to generate the discharge data of the classified rivers. The Hydraulic model, HEC-RAS has been calibrated in the selected River reaches to assess the habitat availability and its changes for indicator species under different flow condition. The study reveals that River Bhagirathi-Hugli requires 150-427 cumec additional water in monsoon and 850-1127 cumec additional water in post-monsoon months for Hilsa migration, whereas 327-486 cumec additional water in pre-monsoon and dry season and 227-386 cumec additional water in post-monsoon months are required for Dolphin movement. Flow requirement of river Ichhamati has also been estimated under the present study. The total required flow for the Sundarban ecosystem to reduce the salinity level from 30ppt to 14ppt during the dry and pre-monsoon months has been estimated as 1700 cumec. The pilot study observes that the present level of flow in the river systems is inadequate to sustain the ecosystem function and the in-stream flow requirement is more than the presently available flow. Keyword: Building Block Methodology, Environmental Flows, HEC-RAS, Indian Sundarban, SWAT.
Bernaś, Rafał; Poćwierz-Kotus, Anita; Dębowski, Piotr; Wenne, Roman
2016-04-01
The genetic relationship between original Atlantic salmon populations that are now extinct in the southern Baltic Sea and the present-day populations has long been controversial. To investigate and clarify this issue, we successfully genotyped individuals of the historical populations from the Oder and Vistula Rivers using DNA extracted from dried scales with the Atlantic salmon single nucleotide polymorphism array. Our results showed a global F ST of 0.2515 for all pairs of loci, which indicates a high level of genetic differentiation among the groups analyzed in this study. Pairwise F ST values were significant for all comparisons and the highest values were found between present-day reintroduced Slupia River salmon and extinct Vistula River Atlantic salmon. Bayesian analysis of genetic structure revealed the existence of substructures in the extirpated Polish populations and three main clades among studied stocks. The historical salmon population from the Oder River was genetically closer to present-day salmon from the Neman River than to the historical salmon from the Vistula River. Vistula salmon clearly separated from all other analyzed salmon stocks. It is likely that the origins of the Atlantic salmon population from the Morrum River and the Polish historical native populations are different.
Using a weight of evidence approach for assessing ...
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2009-2010 remediation project took place in the lower 8.8 miles of the river where urban and industrial activities have had a detrimental impact on the river as a beneficial resource. The primary COCs at the site are PCBs, PAHs, inorganics (principally lead), and oil and grease. Approximately 260,000 yd3 of contaminated sediments were removed from the study reach. Removal was accomplished through dredging in targeted areas within 3 reaches of the river where COCs exceeded a target level. The overall objectives of this research effort are twofold: 1) Develop chemical, physical, and biological tools and approaches to evaluate the quantity and sources of post-dredge residuals; and 2) Develop an approach to quantify remedial effectiveness using chemical, physical, and biological tools and approaches. This presentation will focus on 2 of the biological tools: assessing response of various trophic levels to changes in tissue concentrations of PCBs and PAHs and DNA damage in Brown Bullheads. From 2009-2013, pre- and post-remedy sampling of fishes representative of different trophic levels was conducted via electroshocking and fyke net sampling. Fishes collected were largemouth bass, brown bullhead,
Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho
Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.
2009-01-01
Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C. L.; King, W. D.
Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H 2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.
Monitoring River Water Levels from Space: Quality Assessment of 20 Years of Satellite Altimetry Data
NASA Astrophysics Data System (ADS)
Bercher, Nicolas; Kosuth, Pascal
2013-09-01
This paper presents the results of 20 years of validation of altimetry data for the monitoring of river water levels using a standardized method. The method was initially developed by Cemagref (2006-2011, [5, 6, 3]), now Irste ´a, its implementation is now pursued at LEGOS.Our initial statement was: "what if someone1 wants to use satellite measurements of river water levels ?" The obvious question that comes to mind is "what the quality of the data ?". Moreover, there's also a need - a demand from data producers, to monitor products quality in a standardized fashion.We addressed such questions and have developped a method to assess the quality of, so called, "Alti-Hydro Products". The method was implemented for the following Alti-Hydro products (and automatically derived from a L2 product*) : AVISO* (Topex/Poseidon, Jason-2), CASH project (Topex/Poseidon), HydroWeb (Topex/Poseidon, ENVISAT), River & Lake Hydrology (ERS-2, ENVISAT) and PISTACH* (Jason-2).
Geologic features of the Connecticut Valley, Massachusetts, as related to recent floods
Jahns, Richard Henry
1947-01-01
This report gives the results of a geologic study of certain features that bear upon the recent flood behavior of rivers flowing in the Massachusetts part of the Connecticut Valley. It is in part an outline of the physiographic history of the Connecticut River, a 'history that is treated in progressively greater detail as it concerns events occurring from Mesozoic time to the present, and in part a discussion of erosional and depositional processes associated with the extraordinary floods of March 1936 and September 1938. The Connecticut River flows southward through Massachusetts in a broad lowland area of more than 400 square miles and is joined in this area by four large tributaries, the Deerfield and Westfield Rivers from the west and the Millers and Chicopee Rivers from the east. The lowland area, or :Connecticut Valley province, is flanked on the west by the Berkshire Hills, a, deeply incised uplifted plateau, and on the east by the central upland, or Worcester .County plateau, a lower upland marked by rolling topography. Most of the broad, relatively flat valley floor is underlain by Triassic sedimentary rocks. Rising above it, however, are the prominent Holyoke-Mount Tom and Deerfield Ranges, which consist in large part of dark-colored igneous rocks, also of Triassic age. There is evidence of several cycles of erosion in central western Massachusetts, the last two of which are of Tertiary age and appear to have reached nature and very youthful stages of topographic development, respectively. Immediately prior to the glacial epoch, therefore, the Connecticut River flowed in a fairly narrow, deep gorge, which it had incised in the rather flat 5ottom of the valley that it had formed at an earlier stage. A Pleistocene crustal subsidence probably of several hundred feet, for which there has been only partial compensation in postglacial time, was responsible for the present position of much of this gorge below sea level. That an estuary does not now occupy the gorge is due to a filling by glacial debris, notably by sediments deposited in late glacial lakes. Following disappearance of the last ice sheet and draining of the associated, lakes, the Connecticut River resumed existence and began a new chapter in its history. In those areas where the river regained its preglacial course, it now flows on sediments considerably above the rock floor of the old gorge. Where the gorge was narrow and deep, the upper parts of its walls have confined the postglacial river within rather narrow limits, as in the northern part of the state. Where it was sufficiently wide to be filled by glacial sediments over large areas, the postglacial river has meandered broadly, as in the area north of the Holyoke-Mount Tom Range. In two areas in Massachusetts and in one immediately south in Connecticut, however, the river was forced from its preglacial gorge, and its new channel has been superimposed on bedrock, with development of rapids and falls. Each of these postglacial rock channels acts as a spillway whose level controls the local base level of the river as far upstream as the next spillway. These spillways are not to be confused with other, more spectacular gorges, which are of preglacial origin and in which the present river does not flow on bedrock. The Recent Connecticut has formed extensive flood plains and terraces through repeated sequences of erosion by lateral corrosion and downward scour, followed by deposition of .silt and sand veneers. These features, although irregular in detail, appear to be assignable to five general levels, whose means are approximately 49, 37, 30, 18, and 10 feet above present mean river level. In addition, an 80-foot terrace in the northern part of the valley was left perched, in its present position when the Connecticut abandoned its course over. a rock barrier near Turners Falls in favor of an adjacent much lower gap. The normal terraces and flood plains, slope very gently away from their riverw
Johannessen, Gro S.; Wennberg, Aina C.; Nesheim, Ingrid; Tryland, Ingun
2015-01-01
Surface water is used for irrigation of food plants all over the World. Such water can be of variable hygienic quality, and can be contaminated from many different sources. The association of contaminated irrigation water with contamination of fresh produce is well established, and many outbreaks of foodborne disease associated with fresh produce consumption have been reported. The objective of the present study was to summarize the data on fecal indicators and selected bacterial pathogens to assess the level of fecal contamination of a Norwegian river used for irrigation in an area which has a high production level of various types of food commodities. Sources for fecal pollution of the river were identified. Measures implemented to reduce discharges from the wastewater sector and agriculture, and potential measures identified for future implementation are presented and discussed in relation to potential benefits and costs. It is important that the users of the water, independent of intended use, are aware of the hygienic quality and the potential interventions that may be applied. Our results suggest that contamination of surface water is a complex web of many factors and that several measures and interventions on different levels are needed to achieve a sound river and safe irrigation. PMID:26090611
Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.
2017-05-31
Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper Umatilla River Basin during 1951–2010 is about 9.6 inches per year (in/yr). Annual recharge from precipitation for water year 2010 ranged from 3 in. in the lowland area to about 30 in. in the Blue Mountains. Using Kahle and others (2011) data and methods from the Columbia Plateau regional model, average annual recharge from irrigation is estimated to be about 2.2 in/yr for the 13 square miles of irrigated land in the upper Umatilla River Basin.Groundwater discharges to streams throughout the year and is a large component of annual streamflow in the upper Umatilla River Basin. Upward vertical hydraulic gradients near the Umatilla River indicate the potential for groundwater discharge. Groundwater discharge to the Umatilla River generally occurs in the upper part of the basin, upstream from the main stem.Groundwater development in the upper Umatilla River Basin began sometime after 1950 (Davies-Smith and others, 1988; Gonthier and Bolke, 1991). By water year 2010, groundwater use in the upper Umatilla River Basin was approximately 11,214 acre-feet (acre-ft). Total groundwater withdrawals for the study area were estimated at 7,575 acre-ft for irrigation, 3,173 acre-ft for municipal use, and 466 acre-ft for domestic use.Total groundwater flow into or from the study area depends locally on geology and hydraulic head distribution. Estimates of subsurface flow were calculated using the U.S. Geological Survey Columbia Plateau regional groundwater flow model. Net flux values range from 25,000 to 27,700 acre-ft per year and indicate that groundwater is moving out of the upper Umatilla River Basin into the lower Umatilla River Basin.Water level changes depend on storage changes within an aquifer, and storage changes depend on the storage properties of the aquifer, as well as recharge to or discharge from the aquifer. Groundwater level data in the upper Umatilla River Basin are mostly available from wells in Columbia River basalt units, which indicate areas of long-term water level declines in the Grande Ronde basalt unit near Pendleton and Athena, Oregon. Groundwater levels in the Wanapum basalt unit do not show long-term declines in the upper Umatilla River Basin. Because of pumping, some areas in the upper Umatilla River Basin have shown a decrease, or reversal, in the upward vertical head gradient.Key data needs are improvement of the spatial and temporal distribution of water-level data collection and continued monitoring of streamflow gaging sites. Additionally, refinement of recharge estimates would enhance understanding of the processes that provide the groundwater resources in the upper Umatilla River Basin.
Population dynamics modeling of introduced smallmouth bass in the upper Colorado River basin
Breton, André R.; Winkelman, Dana L.; Bestgen, Kevin R.; Hawkins, John A.
2014-01-01
The purpose of these analyses was to identify an effective control strategy to further reduce smallmouth bass in the upper Colorado River basin from the current level. Our simulation results showed that “the surge”, an early to mid-summer increase in electrofishing effort targeting nest-guarding male smallmouth bass, should be made a core component of any future smallmouth bass management strategy in the upper basin. Immigration from off channel reservoirs is supporting smallmouth bass popualtions in the Yampa River and our modeling analyses suggest that smallmouth bass in Little Yampa Canyon might go extinct in a few years under the present level of exploitation.
Impact of rehabilitation of Assiut barrage, Nile River, on groundwater rise in urban areas
NASA Astrophysics Data System (ADS)
Dawoud, Mohamed A.; El Arabi, Nahed E.; Khater, Ahmed R.; van Wonderen, Jan
2006-08-01
To make optimum use of the most vital natural resource of Egypt, the River Nile water, a number of regulating structures (in the form of dams and barrages) for control and diversion of the river flow have been constructed in this river since the start of the 20th century. One of these barrages is the Assiut barrage which will require considerable repairs in the near future. The design of the rehabilitation of the barrage includes a headpond with water levels maintained at a level approximately 0.60 m higher than the highest water level in the headpond of the present barrage. This development will cause an increase of the seepage flow from the river towards the adjacent agricultural lands, Assiut Town and villages. The increased head pond level might cause a rise of the groundwater levels and impedance of drainage outflows. The drainage conditions may therefore be adversely affected in the so-called impacted areas which comprise floodplains on both sides of the Nile for about 70 km upstream of the future barrage. A rise in the groundwater table, particularly when high river levels impede drainage, may result in waterlogging and secondary salinization of the soil profile in agricultural areas and increase of groundwater into cellars beneath buildings in the urban areas. In addition, a rise in the groundwater table could have negative impact on existing sanitation facilities, in particular in the areas which are served with septic tanks. The impacts of increasing the headpond level were assessed using a three-dimensional groundwater model. The mechanisms of interactions between the Nile River and the underlying Quaternary aquifer system as they affect the recharge/discharge processes are comprehensively outlined. The model has been calibrated for steady state and transient conditions against historical data from observation wells. The mitigation measures for the groundwater rise in the urban areas have been tested using the calibrated mode.
Vandermarken, T; Croes, K; Van Langenhove, K; Boonen, I; Servais, P; Garcia-Armisen, T; Brion, N; Denison, M S; Goeyens, L; Elskens, M
2018-06-01
The Zenne River, crossing the Brussels region (Belgium) is an extremely urbanized river impacted by both domestic and industrial effluents. The objective of this study was to monitor the occurrence and activity of Endocrine Active Substances (EAS) in river water and sediments in the framework of the Environmental Quality Standards Directive (2008/105/EC and 2013/39/EU). Activities were determined using Estrogen and Dioxin Responsive Elements (ERE and DRE) Chemical Activated Luciferase Gene Expression (CALUX) bioassays. A potential contamination source of estrogen active compounds was identified in the river at an industrial area downstream from Brussels with a peak value of 938 pg E2 eq./L water (above the EQS of 0.4 ng/L) and 195 pg E2 eq./g sediment. Estrogens are more abundantly present in the sediments than in the dissolved phase. Principal Component Analysis (PCA) showed high correlations between Suspended Particulate Matter (SPM), Particulate (POC) and Dissolved Organic Carbon (DOC) and estrogenic EAS. The dioxin fractions comply with previous data and all were above the United States Environmental Protection Agency (US EPA) low-level risk, with one (42 pg TCDD eq./g sediment) exceeding the high-level risk value for mammals. The self-purifying ability of the Zenne River regarding estrogens was examined with an in vitro biodegradation experiment using the bacterial community naturally present in the river. Hill coefficient and EC 50 values (Effective Concentration at 50%) revealed a process of biodegradation in particulate and dissolved phase. The estrogenic activity was decreased by 80%, demonstrating the ability of self-purification of estrogenic compounds in the Zenne River. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Byrne, C. F.; Stone, M. C.
2016-12-01
Anthropogenic alterations to rivers and floodplains, either in the context of river engineering or river restoration efforts, have no doubt impacted channel-floodplain connectivity in the majority of developed river systems. River management strategies now often strive to retain or improve ecological integrity of floodplains. Therefore, there is a need to quantify the hydrodynamic processes that have implications for river geomorphology and ecology within the channel-floodplain interface. Because field quantification of these processes is extremely difficult, new methods in hydrodynamic modeling can help to inform river science. This research focused on the assessment of channel-floodplain flow dynamics using two-dimensional hydrodynamic modeling and presents various methods of hydrodynamic process quantification in unsteady flow scenarios. The objectives of this research were to: (1) quantify the small-scale processes of mass and momentum transfer from the main channel to the floodplain; and (2) assess how these processes accrue to meaningful levels to affect the large-scale process of flood wave attenuation. This was achieved by modeling the heavily manipulated Albuquerque Reach of the Rio Grande in New Mexico. Results are presented as mass and momentum fluxes along the channel-floodplain boundaries with a focus on the application of these methods to unsteady flood wave modeling. In addition, quantification of downstream flood wave attenuation is presented as attenuation ratios of discharge and stage, as well as wave celerity. Mass and momentum fluxes during flood waves are shown to be highly variable over spatial and temporal scales and demonstrate the implications of lateral surface connectivity. Results from this research and further application of the methods presented here can help river scientists better understand the dynamics of flood processes especially in the context of process-based river restoration.
Epiguruk: a late Quaternary environmental record from northwestern Alaska
Hamilton, T.D.; Ashley, G.M.
1993-01-01
Epiguruk, a prominent bluff along the Kobuk River in northwestern Alaska, exposes a rich depositional record of Quaternary eolian and fluvial sand, with associated loess, paleosols, and periglacial features. Three major complexes of alluvial and eolian deposits are separated by two conspicuous organic-rich paleosols which formed during cool-moist interstadial intervals. Sediments between the two paleosols include eolian, channel, and floodplain deposits that formed during alluviation of the Kobuk River to a height of about 12m above the present level. The youngest depositional complex, which overlies the upper paleosol, is divisible into late Wisconsinan and Holocene components and into fluvial-channel, flood-plain, eolian-dune, sand-sheet, loess, and pond facies. Eolian sand from the active Kobuk sand sea overloaded the river during late Wisconsinan time, causing it to alluviate to about 13m above its modern level. The Holocene record reflects erosion and deposition by a small southern Tributary to the Kobuk River, downcutting by the Kobuk River toward its modern level, and subsequent erosion across a meander belt nearly 8km wide. 66 radiocarbon ages, many from rooted shrubs, provide a firm chronology for the past 35 k.y. at Epiguruk. -from Authors
Coherence between coastal and river flooding along the California coast
Odigie, Kingsley O.; Warrick, Jonathan
2018-01-01
Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal coherence of fluvial and oceanic water levels.
NASA Astrophysics Data System (ADS)
Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.
2018-01-01
The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level 5.1-4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for 200-300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting 4.8-4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network. Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology".
Advance, Retreat, and Halt of Abrupt Gravel-Sand Transitions in Alluvial Rivers
NASA Astrophysics Data System (ADS)
Blom, Astrid; Chavarrías, Víctor; Ferguson, Robert I.; Viparelli, Enrica
2017-10-01
Downstream fining of bed sediment in alluvial rivers is usually gradual, but often an abrupt decrease in characteristic grain size occurs from about 10 to 1 mm, i.e., a gravel-sand transition (GST) or gravel front. Here we present an analytical model of GST migration that explicitly accounts for gravel and sand transport and deposition in the gravel reach, sea level change, subsidence, and delta progradation. The model shows that even a limited gravel supply to a sand bed reach induces progradation of a gravel wedge and predicts the circumstances required for the gravel front to advance, retreat, and halt. Predicted modern GST migration rates agree well with measured data at Allt Dubhaig and the Fraser River, and the model qualitatively captures the behavior of other documented gravel fronts. The analysis shows that sea level change, subsidence, and delta progradation have a significant impact on the GST position in lowland rivers.
Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam
NASA Astrophysics Data System (ADS)
Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki
2002-09-01
Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.
Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models
NASA Astrophysics Data System (ADS)
Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter
2015-04-01
Hydrological models are developed and used for flood forecasting and water resources management. Such models rely on a variety of input and calibration data. In general, and especially in data scarce areas, remote sensing provides valuable data for the parameterization and updating of such models. Satellite radar altimeters provide water level measurements of inland water bodies. So far, many studies making use of satellite altimeters have been based on data from repeat-orbit missions such as Envisat, ERS or Jason or on synthetic wide-swath altimetry data as expected from the SWOT mission. This work represents one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, using data from CryoSat-2. We present an application where CryoSat-2 data is used to improve a hydrodynamic model of the Ganges and Brahmaputra river basins in South Asia set up in the DHI MIKE 11 software. The model's parameterization and forcing is mainly based on remote sensing data, for example the TRMM 3B42 precipitation product and the SRTM DEM for river and subcatchment delineation. CryoSat-2 water levels were extracted over a river mask derived from Landsat 7 and 8 imagery. After calibrating the hydrological-hydrodynamic model against observed discharge, simulated water levels were fitted to the CryoSat-2 data, with a focus on the Brahmaputra river in the Assam valley: The average simulated water level in the hydrodynamic model was fitted to the average water level along the river's course as observed by CryoSat-2 over the years 2011-2013 by adjusting the river bed elevation. In a second step, the cross section shapes were adjusted so that the simulated water level dynamics matched those obtained from Envisat virtual station time series. The discharge calibration resulted in Nash-Sutcliffe coefficients of 0.86 and 0.94 for the Ganges and Brahmaputra. Using the Landsat river mask, the CryoSat-2 water levels show consistency along the river and are in good accordance with other products, such as the SRTM DEM. The adjusted hydrodynamic model reproduced the average water level profile along the river channel with a higher accuracy than a model based on the SRTM DEM. Furthermore, the amplitudes as observed in Envisat virtual station time series could be reproduced fitting simple triangular cross section shapes. A hydrodynamic model prepared in such a way provides water levels at any point along the river and any point in time, which are consistent with the multi-mission altimetric dataset. This means it can for example be updated by assimilation of near real-time water level measurements from CryoSat-2 improving its flood forecasting capability.
RIVER LEVEL ESTIMATION USING ARTIFICIAL NEURAL NETWORK FOR URBAN SMALL RIVER IN TIDAL REACH
NASA Astrophysics Data System (ADS)
Takasaki, Tadakatsu; Kawamura, Akira; Amaguchi, Hideo
Prediction of water level in small rivers is great interest for flood control in an urban area located in the river mouth. The tidal river water level is affected by not only flood discharge but also tide, atmospheric pressure, wind direction and speed. We propose a method of estimating river water level considering these factors using an artificial neural network model for the Kanda River located in the center of Tokyo. The effects by those factors are quantitatively investigated. As for the effects by the atmospheric pressure, river water level rises about 7cm per 5hPa increase of the pressure regardless of river discharge under the conditions of 1m/s wind speed and north wind direction. The accurate rating curve for the tidal river is finally obtained.
Pollution of the River Niger and its main tributaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nwokedi, G.I.C.; Obodo, G.A.
1993-08-01
The River Niger system, with a length of about 4200 kilometers, and a discharge volume of 190 cubic kilometers, per year is the third largest river in Africa, and the largest in West Africa. It serves as an important waterway for the transportation of goods and provides rich agricultural flood basins for the cultivation of food and vegetables. Also it is a major source of animal proteins in form of fishes, snails and other aquatics. Above all the River and its tributaries represent the main source of domestic water supply for the rural communities, and water for irrigation. Therefore theremore » is a need to establish the nature and present levels of pollutants in the river, and the contribution made by the tributaries to the gross pollution level. A number of studies have been reported. Martins reported on the geochemistry of the River Niger while Nriagu; Livingstone; and Imevbore provided some chemical data on the upper reaches around and above its confluence with River Benue at Lokoja. Ajayi and Osibanjo reported on the chemical properties of some tributaries above the confluence of the Niger and the Benue. So far no work has been reported on the lower reaches of the Niger where contributions of the Benue and other major tributaries are significant, and where there are large settlements on its banks and the banks of the tributaries. This work aims at establishing base-line levels of the various pollutants and their sources. 12 refs., 1 fig., 2 tabs.« less
Wong, Koe Wei; Yap, Chee Kong; Nulit, Rosimah; Hamzah, Mohd Suhaimi; Chen, Soo Kien; Cheng, Wan Hee; Karami, Ali; Al-Shami, Salman Abdo
2017-01-01
The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo ), enrichment factors (EF), contamination factor (C f ) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d ), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit.
Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island
Craft, P.A.
2001-01-01
Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as estimates of depth to bedrock and depth to water table, as well as indications of underlying geologic structure, were obtained from geophysical surveys. Site-specific geologic data were collected during the drilling of observation wells and test holes. These data include depth to bedrock or refusal, depth to water table, and lithologic information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Dennis L.
1985-01-01
The lower Flathead System Canada Goose Study was initiated to determine population trends and the effects of water level fluctuations on nest and brood habitat on the southern half of Flathead Lake and the lower Flathead River as a result of the operations of Kerr Dam. This report presents data collected during the 1984 field season as part of an ongoing project. Geese used Pablo, Kicking Horse, Ninepipe Reservoirs heavily during late summer and fall. Use of the river by geese was high during the winter, when the reservoirs were frozen, and during the breeding period. Most breeding geese leftmore » the river after broods fledged. Thirteen percent of the artificial tree nest structures on the river were used by nesting geese. Goose nest initiation on the river peaked the last week in March through the first week in April, and hatching peaked the first week in May. Predation was the most significant cause of nest loss on the river, and nest loss by flooding was not observed. Avian predation was the single largest factor contributing to nest loss on the lake. Habitat use was studied in 4 brood areas on the river and 8 brood areas on the lake, and available habitat was assessed for 2 portions of both the lake and the river. Brood habitat use was significantly different from the available habitat in all areas studied. On the lower river, broods used wheat fields, gravel bars, and shrub habitats. On the upper river, coniferous forest and shrub habitats were preferred. On the West Bay of the lake, brood areas consisted primarily of lawns and tall herbaceous habitat, while on the South Bay, marshes dominated the brood areas studied. Water levels on the river and lake affect both accessibility of these areas to brooding geese, and the ecology of the habitats preferred by geese. 43 refs., 24 figs., 31 tabs.« less
Data-Logging--A Plug-and-Play Oxygen Probe?
ERIC Educational Resources Information Center
Warne, Peter
1997-01-01
Presents an experiment on collecting data while measuring the dissolved-oxygen levels in Thames River tap water straight from the water mains and dissolved-oxygen levels in rainwater containing Hornwort water weed over 24 hours. (Author/ASK)
A weight of evidence approach for assessing remediation of ...
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation project took place in the lower 8.8 miles of the river where urban and industrial activities impacted the river as a beneficial resource. Sediment was removed at designated locations based on a surface weighted average concentration model where PCB and PAH levels exceeded targeted levels. This presentation will focus on three biological tools: assessing response of tissue concentrations of PCBs and PAHs, DNA damage in Brown Bullhead and macroinvertebrate biotic condition as measured by Ohio EPA Lacustrine Index of Community Integrity (LICI). From 2009-2013 and again in 2015, pre- and post-remedy sampling of fishes representative of different trophic levels was conducted via electroshocking and fyke net sampling. The study area was divided into 3 river reaches (reaches 2, 3, & 4 numbered from down- to upstream). Fish were collected by electro-shocking or fyke netting across an entire reach where Largemouth Bass, Brown Bullhead, White Sucker, Pumpkinseed, Gizzard Shad, Bluntnose Minnow and Emerald Shiner. Blood samples were collected from 10 Brown Bullheads from each reach and processed in the field and laboratory using Comet Assay methods.Two different configurations of multiplate samplers (Hest
Hydraulic analysis of Chenango River, Broome County, New York in relation to state highway plan
Dunn, Bernard
1981-01-01
Hydraulic analyses of the 50- and 100-year floods in a 3.2 mile reach of the Chenango River in the towns of Fenton and Chenango in New York were made to determine the effects of two alternative bridge designs on flood levels. Neither design would cause more than a 0.1-foot increase in water level of the 50-year flood nor more than a 0.2-foot increase in water level of the 100-year flood above levels that would occur during these floods under present channel conditions. The discharges used in the analyses were 55,200 cubic feet per second for the 50-year flood and 63,000 cubic feet per second for the 100-year flood. Mean flow velocities and water-surface elevations at 17 cross sections are given for both bridge designs and are compared with those that would occur under present conditions. (USGS)
Tucci, Patrick
1982-01-01
A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)
Chen, Hong; Han, Jianbo; Zhang, Can; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin
2017-12-01
A simultaneous sampling campaign was undertaken to study the pollution by 21 per- and polyfluoroalkyl substances (PFASs) in rivers, drain outlets and their receiving Bohai Sea of China. Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) are being used as fluorinated alternatives and they were included in this study. In comparison with other regions and countries, high concentrations of ∑ 21 PFASs in seawater samples from the Bohai Sea, ranging from 5.03 to 41 700 ng/L (median: 64.8 ng/L), were observed. The spatial distribution of PFAS levels in this sea area was in the ranking of Laizhou Bay > Liaodong Bay > Bohai Bay > other sea areas. By comparing the levels and composition profiles of PFASs in the seawater and their sources (rivers and drain outlets), it was concluded that rivers and drain outlets are the primary sources of PFAS contamination to the Bohai Sea. These PFAS levels varied seasonally among the rivers and drain outlets, but statistically significant changes were not observed. Levels of 6:2 and 8:2 Cl-PFESAs in rivers, drain outlets and receiving sea were firstly reported in the present study. Relatively high concentrations of 6:2 Cl-PFESA were found in drain outlets, ranging from below method limits of quantification (MLQ) to 7600 ng/L, but 8:2 Cl-PFAES detection was infrequent and all median concentration below MLQ. Mass discharges to the sea of 6:2 Cl-PFESA from rivers and drain outlets to the sea were estimated to be 37 and 17 kg/y, respectively. Copyright © 2017. Published by Elsevier Ltd.
Forest resources of the south Arkansas delta
R.K. Winters
1939-01-01
The portion of Arkansas treated in this report is a former flood plain of Mississippi River, through which the Arkansas, the White, the Mississippi, and other rivers have cut new channels and developed a later flood plain at a lower level. The soils and topography differ accordingly on the two sites. The present flood plains, or bottoms, are generally flat; wheareas...
ERIC Educational Resources Information Center
Varis, Olli; And Others
1993-01-01
Presents one approach to handling the trade-off between reducing uncertainty in environmental assessment and management and additional expenses. Uses the approach in the evaluation of three alternatives for a real time river water quality forecasting system. Analysis of risk attitudes, costs and uncertainty indicated the levels of socioeconomic…
Carolina bays of the Savannah River Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalles, J.F.; Sharitz, R.R.; Gibbons, J.W.
1989-01-01
Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.
Gale, Robert W.; Orazio, Carl E.; McKee, Michael J.
2009-01-01
This report presents the results of a study to determine polychlorinated biphenyl, organochlorine pesticide, and polybrominated diphenylether flame retardant concentrations in selected fishes from lakes and streams across Missouri. Fillets were collected from each fish sample and after homogenization, compositing, and preparation, analyte concentrations were determined with dual column capillary gas chromatography-electron-capture detection. Total concentrations of polychlorinated biphenyls in samples ranged from background levels of about 50 to 300 nanograms per gram. In samples with elevated contaminant concentrations, chlordanes, DDT-related chemicals, and dieldrin constituted the primary classes of pesticides present, and ranged from 5 to 75 nanograms per gram. Total concentrations of polybrominated diphenyl ethers in samples ranged from background levels of 5 to 86 nanograms per gram. Channel catfish from the upper and lower Blue River and lake sturgeon from the Mississippi River at Saverton exhibited different polybrominated diphenyl ethers ratios. Concentrations of polychlorinated biphenyls, chlordanes, DDT-related compounds, and polybrominated diphenyl ethers all were greatest in samples of channel catfish from the upper and lower Blue River, and in samples of lake sturgeon from the Mississippi River at Saverton.
The monitoring of eco-hydrological parameters within the LIFE Ljubljanica Connects project
NASA Astrophysics Data System (ADS)
Sapač, Klaudija; Šraj, Mojca; Zabret, Katarina; Brilly, Mitja; Vidmar, Andrej
2016-04-01
The main objectives of the Ljubljanica Connects project arising from the need to improve the living conditions in the Ljubljanica River for endangered fish species. The history of improving the conditions dates back more than 100 years ago with the construction of fish passages at the obstacles on the Ljubljanica River. As part of the project the fish passages were reconstructed and upgraded to improve river connectivity. But for the survival of fish and other aquatic organisms in the river also adequate living conditions are necessary which can be determined by measurements of individual parameters of water quality. Within the LIFE Ljubljanica Connects project we have established continuous eco-hydrological monitoring of water level and temperature at 17 measuring sites and concentration of dissolved oxygen at 3 measuring sites along the Ljubljanica River and its tributaries. Water level data are input data for the hydrological model of Ljubljanica River, while water temperature and concentration of dissolved oxygen are the basic indicators of the quality of the water. The purpose of this paper is to present the measuring equipment of eco-hydrological monitoring, the first feedback on the results of measured water temperature and the concentration of dissolved oxygen in the Ljubljanica River, and the advantages and importance of such monitoring.
NASA Astrophysics Data System (ADS)
Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz
2014-05-01
This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.
Contreras, Daniel A.; Keefer, David K.
2009-01-01
Channeling of water through a variety of architectural features represents a significant engineering investment at the first millennium B.C. ceremonial center of Chavín de Huántar in the Peruvian Central Andes. The site contains extensive evidence of the manipulation of water, apparently for diverse purposes. The present configuration of the two local rivers, however, keeps available water approximately 9m below the highest level of water-bearing infrastructure in the site. Geomorphic and archaeological investigation of the fluvial history of the Wacheqsa River has revealed evidence that the Chavín-era configuration of the Wacheqsa River was different. A substantially higher water level, likely the result of a local impoundment of river water caused by a landslide dam, made the provision of water for the hydrologic system within the site a more readily practical possibility. We review what is known of that system and argue that the fluvial history of the Wacheqsa River is critical to understanding this aspect of hydrologic engineering and ritual practice at Chavín. This study demonstrates the relative rapidity and archaeological relevance of landscape change in a dynamic environment.
Impact simulation of shrimp farm effluent on BOD-DO in Setiu River
NASA Astrophysics Data System (ADS)
Chong, Michael Sueng Lock; Teh, Su Yean; Koh, Hock Lye
2017-08-01
Release of effluent from intensive aquaculture farms into a river can pollute the receiving river and exert negative impacts on the aquatic ecosystem. In this paper, we simulate the effects of effluent released from a marine shrimp aquaculture farm into Sg Setiu, focusing on two critical water quality parameters i.e. DO (dissolved oxygen) and BOD (biochemical oxygen demand). DO is an important constituent in a river in sustaining water quality, with levels of DO below 5 mg/L deemed undesirable. DO levels can be depressed by the presence of BOD and other organics that consume DO. Water quality simulations in conjunction with management of effluent treatment can suggest mitigation measures for reducing the adverse environmental impact. For this purpose, an in-house two-dimensional water quality simulation model codenamed TUNA-WQ will be used for these simulations. TUNA-WQ has been undergoing regular updates and improvements to broaden the applicability and to improve the robustness. Here, the model is calibrated and verified for simulation of DO and BOD dynamics in Setiu River (Sg Setiu). TUNA-WQ simulated DO and BOD in Setiu River due to the discharge from a marine shrimp aquaculture farm will be presented.
Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota
Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.
2000-01-01
Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.
Young, Shuh-Sen; Yang, Hsi-Nan; Huang, Da-Ji; Liu, Su-Miao; Huang, Yueh-Han; Chiang, Chung-Ting; Liu, Jin-Wei
2014-07-14
After decades of strict pollution control and municipal sewage treatment, the water quality of the Tanshui River increased significantly after pollution mitigation as indicated by the River Pollution Index (RPI). The pollution level of the estuarine region decreased from severe pollution to mostly moderately impaired. The most polluted waters are presently restricted to a flow track length between 15-35 km relative to the river mouth. From July 2011 to September 2012, four surveys of fish and benthic macroinvertebrates were conducted at 45 sampling sites around the Tanshui River basin. The pollution level of all the study area indicated by the RPI could also be explained by the Family Biotic Index (FBI) and Biotic Index (BI) from the benthic macroinvertebrate community, and the Index of Biotic Integrity (IBI) of the fish community. The result of canonical correlation analysis between aquatic environmental factors and community structure indicated that the community structure was closely related to the level of water pollution. Fish species richness in the estuarine area has increased significantly in recent years. Some catadromous fish and crustaceans could cross the moderate polluted water into the upstream freshwater, and have re-colonized their populations. The benthic macroinvertebrate community relying on the benthic substrate of the estuarine region is still very poor, and the water layer was still moderately polluted.
Numerical Model of Transitory Flood Flow in 2005 on River Timis
NASA Astrophysics Data System (ADS)
Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad
2017-10-01
The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.
Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.
2011-01-01
In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.
Camargo, M; Giarrizzo, T; Jesus, A J S
2015-08-01
The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.
NASA Astrophysics Data System (ADS)
Fachrurrozi, Muhammad; Saparudin; Erwin
2017-04-01
Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.
Nel, Holly A; Dalu, Tatenda; Wasserman, Ryan J
2018-01-15
Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Demirci, E.; Baykal, C.; Guler, I.
2016-12-01
In this study, hydrodynamic conditions due to river discharge, wave action and sea level fluctuations within a seven month period and the morphological response of the Manavgat river mouth are modeled with XBeach, a two-dimensional depth-averaged (2DH) numerical model developed to compute the natural coastal response during time-varying storm and hurricane conditions (Roelvink et al., 2010). The study area shows an active behavior on its nearshore morphology, thus, two jetties were constructed at the river mouth between years 1996-2000. Recently, Demirci et al. (2016) has studied the impacts of an excess river discharge and concurrent wave action and tidal fluctuations on the Manavgat river mouth morphology for the duration of 12 days (December 4th and 15th, 1998) while the construction of jetties were carried on. It is concluded that XBeach has presumed the final morphology fairly well with the calibrated set of input parameters. Here, the river mouth modeled at a further past date before the construction of jetties with the similar set of input parameters (between August 1st, 1995-March 8th, 1996) to reveal the drastic morphologic change near the mouth due to high river discharge and severe storms happened in a longer period of time. Wave climate effect is determined with the wave hindcasting model, W61, developed by Middle East Technical University-OERC with the NCEP-CFSR wind data as well as the sea level data. River discharge, wave and sea level data are introduced as input parameters in the XBeach numerical model and the final output morphological change is compared with the final bed level measurements. References:Demirci, E., Baykal, C., Guler, I., Ergin, A., & Sogut, E. (postponed). Numerical Modelling on Hydrodynamic Flow Conditions and Morphological Changes Using XBeach Near Manavgat River Mouth. Accepted as Oral presentation at the 35thInt. Conf. on Coastal Eng., Istanbul, Turkey. Guler, I., Ergin, A., Yalçıner, A. C., (2003). Monitoring Sediment Transport Processes at Manavgat River Mouth, Antalya Turkey. COPEDEC VI, 2003, Colombo, Sri Lanka Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., Lescinski, J. and McCall, R., (2010). XBeach Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft Univ. of Technology. Report June, 21, 2010 version 6.
NASA Astrophysics Data System (ADS)
Barbieri, A.; Pizzuto, J.; O'Neal, M. A.; Rhoades, E.
2007-12-01
Mercury was introduced into the South River from the 1930s to the 1950s from an industrial plant in Waynesboro, Virginia. Mercury contamination in fish tissue continues to exceed acceptable levels. The contaminated sediments in the river's floodplains are probably the present source of mercury to the South River ecosystem. Locating and determining the extent and depositional history of these deposits are important for understanding the mercury cycle in the river as well as for remediation plans. The South River is a sinuous, single thread alluvial river with frequent bedrock exposures along its bed and banks. Overbank deposits are discontinuous and thin. Rates of lateral migration by the South River are extremely low, averaging 0.02 m/yr, and the river has been influenced by mill dams along a 19 km study reach. This 19 km section of the 37 km river reach was selected for the study because of its high concentration of Hg. Six different categories of floodplain deposits dating from 1937-2005 have been identified throughout the river using studies of historical aerial photographs in a GIS framework, field mapping, dendro- and radionuclide dating, grain size and Hg analysis. Not surprisingly, traditional depositional models of meandering rivers do not apply. Floodplain depositional units include mill dam deposits, point bar/bench deposits, concave bank bench deposits, islands, cattle deposits, and tributary confluences deposits. The most important deposits for sequestering historic mercury are those that also store the most silt and clay. These include mill dam deposits, point bar/bench deposits, concave bank deposits, and tributary confluence deposits. Many of these deposits represent reservoirs of mercury-contaminated sediments that could supply significant amounts of mercury into the river presently and in the future.
Basile, A; Sorbo, S; Cardi, M; Lentini, M; Castiglia, D; Cianciullo, P; Conte, B; Loppi, S; Esposito, S
2015-04-01
The effects of freshwater pollution in the highly contaminated river Sarno (Campania, Southern Italy) have been evaluated using bags containing the aquatic plant Lemna minor (Lemnacee, Arales), in order to determine morpho-physiological modifications as a response to pollutants. The exposition of Lemna bags for 7 days on three different sites along the river path showed alterations in chloroplasts and vacuoles shape and organization. Moreover, some specimens were exposed in vitro at the same heavy metal (HM) concentrations measured in the polluted sites of the river, and compared with data from the bag experiment; to verify the dose and time dependent effects, samples were exposed to HM in vitro at concentrations ranging from 10(-6) to 10(-4)M up to 7 days. Transmission electron microscopy (TEM) observations on in vitro plants confirmed that ultrastructural alterations affected most of plastids and the shape of different subcellular structures, namely vacuoles; in in vitro stressed specimens, Heat Shock Proteins 70 (Hsp70) levels changed, in dependence of changing levels of HM measured in different sites along the river path. Thus L. minor exhibited a possible correlation between the levels of HM pollution and Hsp70 occurrence; interestingly, the data presented showed that copper specifically increased Hsp70 levels at concentrations detected in polluted river waters, whereas cadmium and lead did not; on the other side, the latter represent highly toxic elements when specimens were exposed to higher levels in vitro. The effects of specific elements in vitro are compared to those observed in bags exposed along the river path; thus results are examined in order to propose L. minor as an organism able to be utilized to monitor heavy metals pollution; the possibility of using Hsp70s as specific markers of HM pollution is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Wirt, Laurie
1994-01-01
This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.
Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.
2002-01-01
The Yellowstone caldera, like many other later Quaternary calderas of the world, exhibits dramatic unrest. Between 1923 and 1985, the center of the Yellowstone caldera rose nearly one meter along an axis between its two resurgent domes (Pelton and Smith, 1979, Dzurisin and Yamashita, 1987). From 1985 until 1995-6, it subsided at about two cm/yr (Dzurisin and others, 1990). More recent radar interferometry studies show renewed inflation of the northeastern resurgent dome between 1995 and 1996; this inflation migrated to the southwestern resurgent dome from 1996 to 1997 (Wicks and others, 1998). We extend this record back in time using dated geomorphic evidence of postglacial Yellowstone Lake shorelines around the northern shore, and Yellowstone River levels in the outlet area. We date these shorelines using carbon isotopic and archeological methods. Following Meyer and Locke (1986) and Locke and Meyer (1994), we identify the modern shoreline as S1 (1.9 ? 0.3 m above the lake gage datum), map paleoshoreline terraces S2 to S6, and infer that the prominent shorelines were cut during intracaldera uplift episodes that produced rising water levels. Doming along the caldera axis reduces the gradient of the Yellowstone River from Le Hardys Rapids to the Yellowstone Lake outlet and ultimately causes an increase in lake level. The 1923-1985 doming is part of a longer uplift episode that has reduced the Yellowstone River gradient to a ?pool? with a drop of only 0.25 m over most of this 5 km reach. We also present new evidence that doming has caused submergence of some Holocene lake and river levels. Shoreline S5 is about 14 m above datum and estimated to be ~12.6 ka, because it post-dates a large hydrothermal explosion deposit from the Mary Bay area (MB-II) that occurred ~13 ka. S4 formed about 8 m above datum ~10.7 ka as dated by archeology and 14C, and was accompanied by offset on the Fishing Bridge fault. About 9.7 ka, the Yellowstone River eroded the ?S-meander?, followed by a ~5 m rise in lake level to S2. The lowest generally recognizable shoreline is S2. It is ~5 m above datum (3 m above S1) and is ~8 ka, as dated on both sides of the outlet. Yellowstone Lake and the river near Fishing Bridge were 5-6 m below their present level about 3-4 ka, as indicated by 14C ages from submerged beach deposits, drowned valleys, and submerged Yellowstone River gravels. Thus, the lake in the outlet region has been below or near its present level for about half the time since a 1 km-thick icecap melted from the Yellowstone Lake basin about 16 ka. The amplitude of two rises in lake and river level can be estimated based on the altitude of Le Hardys Rapids, indicators of former lake and river levels, and reconstruction of the river gradient from the outlet to Le Hardys Rapids. Both between ~9.5 ka and ~8.5 ka, and after ~3 ka, Le Hardys Rapids (LHR) was uplifted about 8 meters above the outlet, suggesting a cyclic deformation process. Older possible rises in lake level are suggested by locations where the ~10.7 ka S4 truncates older shorelines, and valleys truncated by the ~12.6 ka S5 shoreline. Using these controls, a plot of lake level through time shows 5-7 millennial-scale oscillations since 14.5 ka. Major cycles of inflation and deflation are thousands of years long. Le Hardys Rapids has twice been uplifted ~8 m relative to the lake outlet. These two locations span only the central 25% of the historic caldera doming, so that if we use historic doming as a model, total projected uplift would be ~32 m. This ?heavy breathing? of the central part of the Yellowstone caldera may reflect a combination of several possible processes: magmatic inflation, tectonic stretching and deflation, and hydrothermal fluid sealing and inflation followed by cracking of the seal, pressure release, and deflation. Over the entire postglacial period, subsidence has balanced or slightly exceeded uplift as shown by older shorelines that descend towards the caldera axis. We
Technical developments in the Chalk River AMS program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, H.R.; Chant, L.; Cornett, R.J.J.
1995-12-01
The Chalk River AMS Program is centered on measurements of {sup 36}Cl and {sup 129}I with particular emphasis on samples related to nuclear activities including environmental monitoring, high level waste management, and nuclear safeguards. We are presently pursuing improvements in the areas of the gas-filled magnet, the ion source and data handling. Progress to date in these areas will be reported.
Prime, Thomas; Brown, Jennifer M.; Plater, Andrew J.
2015-01-01
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community. PMID:25710497
Prime, Thomas; Brown, Jennifer M; Plater, Andrew J
2015-01-01
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.
Zhou, Haidong; Ying, Tianqi; Wang, Xuelian; Liu, Jianbo
2016-01-01
Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from
NASA Astrophysics Data System (ADS)
Zhou, Haidong; Ying, Tianqi; Wang, Xuelian; Liu, Jianbo
2016-10-01
Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from
Graf, Julia B.; Marlow, Jonathan E.; Rigas, Patricia D.; Jansen, Samuel M.D.
1997-01-01
Sixty-six cross sections on the Colorado River in 11-kilometer reachesdownstream from the Paria and Little Colorado Rivers were monitoredfrom June 1992 to August 1995 to provide data to evaluate the effectof releases from Glen Canyon Dam on channel-sand storage and fordevelopment of multidimensional flow and sediment-transport models.Most of the network of monumented cross sections was established andfirst measured JuneSeptember 1992. Data collected from June 1992through February 1994 were published in a previous report. Crosssections downstream from the Paria River were remeasured six timesbetween April 1994 and August 1995. Most sections downstream from theLittle Colorado River were remeasured four times in the same timeperiod. Each measurement consisted of 10 passes across the section,and data presented are the mean section and the standard deviationfrom the mean. Measured depths were converted to bed elevations usingwater-surface elevations measured or estimated for each reach. A linemarked at regular intervals was strung across the river between thesection end points and used to provide horizontal-position control. AWilcoxon rank-sum test was applied to the data, and bed-elevationdifferences between successive measurements that were statisticallysignificant at the 5-percent significance level were identified andused to compute the difference in cross-sectional area frommeasurement to measurement. Changes in sand storage computed forselected cross sections are presented. Changes in area at most of theselected cross sections during the period presented in this reportwere smaller than those measured during the period covered bythe previous report. The largest changes over the monitoring periodpresented in this report were measured at section p22 (+115 squaremeters) downstream from the Paria River and at sections lb1 (+209square meters) and lc2 (156 square meters) downstream from theLittle Colorado River. This report presents selected data from themeasurements made from April 1994 through August 1995 in graphicalform and describes the electronic form of the entire data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
This Record of Decision (ROD) presents the selected remedial action plan for the Ohio River Park Superfund Site (the Site) in Allegheny County, Pennsylvania. The remedial action plan in this document is presented as the permanent remedy for controlling the groundwater at the Site. This remedy is comprised of: monitoring of natural attenuation processes to measure changes in contaminant concentrations in groundwater plume at the Site until the cleanup levels are achieved; deed restriction preventing residential use of groundwater at the Site.
Savoie, Jennifer G.; Lyford, Forest P.; Clifford, Scott
1999-01-01
In March and April 1998, a network of water-to-vapor diffusion samplers was installed along the Cochato River at the Baird & McGuire Superfund Site in Holbrook, Massachusetts, where a plume of volatile organic compounds (VOCs) is present in ground water. The purpose of installing the sampler network was to determine if VOCs were present in river-bottom sediments while a ground-water extraction system was operating and after the system had been shut down for two weeks. Water-to-water diffusion samplers placed at selected locations provided supplemental information about concentrations of VOCs in pore water in the river-bottom sediments. Water levels in piezometers and river stage were measured concurrently to determine if ground water was discharging to the river. Benzene, toluene, ethylbenzene and xylenes (BTEX compounds) were detected in water-tovapor and water-to-water diffusion samplers located in the area where the plume is known to pass beneath the river for both pumping and nonpumping conditions. Concentrations of total BTEX compounds in water-to-vapor diffusion samplers ranged from non-detect upriver and downriver from the plume area to greater than 200 parts per million by volume in the plume area. Concentrations of total BTEX compounds were not significantly different for pumping than for non-pumping conditions. Concentrations of total BTEX compounds in water-to-water diffusion samplers ranged from non-detect to 680 micrograms per liter. The limited number of water-to-water diffusion samplers did not indicate that concentrations were higher for pumping or non-pumping conditions. Trichloroethylene and tetrachloroethylene also were detected in water-to-vapor diffusion samplers downriver from the area where the BTEX compounds were detected. Water levels in four piezometers were consistently higher than the river stage, indicating an upward hydraulic gradient and ground-water discharge to the river. The concentrations of VOCs in riverbottom sediments and the upward hydraulic gradients observed indicate that contaminants from the Baird & McGuire ground-water plume were discharging to the Cochato River during the study period for both pumping and non-pumping conditions.
Trinh, Son B; Hiscock, Kevin M; Reid, Brian J
2012-11-01
Mechanistic insights into the relative contribution of sorption and biodegradation on the removal of the herbicide isoproturon (IPU) are reported. (14)C-radiorespirometry indicated very low levels of catabolic activity in IPU-undosed and IPU-dosed (0.1, 1, 100 μg L(-1)) river water (RW) and groundwater (GW) (mineralisation: <2%). In contrast, levels of catabolic activity in IPU-undosed and IPU-dosed river sediment (RS) were significantly higher (mineralisation: 14.5-36.9%). Levels of IPU catabolic competence showed a positive log-linear relationship (r(2) = 0.768) with IPU concentration present. A threshold IPU concentration of between 0.1 μg L(-1) and 1 μg L(-1) was required to significantly (p < 0.05) increase levels of catabolic activity. Given the EU Drinking Water Directive limit for a single pesticide in drinking water of <0.1 μg L(-1) this result suggests that riverbed sediment infiltration is potentially an appropriate 'natural' means of improving water quality in terms of pesticide levels at concentrations that are in keeping with regulatory limits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Brightbill, Robin A.; Limbeck, Robert; Silldorff, Erik; Eggleston, Heather L.
2011-01-01
The Delaware River Basin Commission is charged with establishing water-quality objectives for the tidal and non-tidal portions of the Delaware River, which include developing nutrient standards that are scientifically defensible. The U.S. Geological Survey, in cooperation with the Delaware River Basin Commission and the Academy of Natural Sciences, studied the effects of nutrient enrichment in the upper, middle, and lower sections of the non-tidal Delaware River. Algal samples were collected from the natural habitat using rock scrapes and from the artificial nutrient enrichment samplers, Matlock periphytometers. The knowledge gained from this study is to be used in helping determine appropriate nutrient criteria for the Delaware River in the oligotrophic, mesotrophic, and eutrophic sections of the river and is a first step toward gathering data that can be used in selecting nutrient effect levels or criteria thresholds for aquatic-life use protection. This report describes the methods for data collection and presents the data collected as part of this study.
Lovelace, Wendell M.
2002-01-01
This report presents water-level measurements and chlorideconcentrations in water from selected wells completed in aquifers in Louisiana. The data were collected during the period January1988-October 1997. Water-level data are presented for 109 wells, and chloride data are presented for 45 wells. Hydrographs and summaries of water-level trends are presented for wellscompleted in aquifers throughout the State. Chlorographs and summaries of chloride trends are presented for wells completed in the Mississippi River alluvial and Sparta aquifers; Chicot aquifer system; and Gramercy, Norco, and Gonzales-New Orleans aquifers. Data are presented in graphical and tabular formats.
Junqueira, Marilia Vilela; Friedrich, Günther; Pereira de Araujo, Paulo Roberto
2010-04-01
Based upon several years of experience in investigations with macrozoobenthos in rivers in the states of Minas Gerais and Rio de Janeiro, a biological assessment system has been developed to indicate pollution levels caused by easily degradable organic substances from sewers. The biotic index presented here is aimed at determining water's saprobic levels and was, therefore, named the "Saprobic Index for Brazilian Rivers in Minas Gerais and Rio de Janeiro states" (ISMR). For this purpose, saprobic valences and weights have been established for 122 taxa of tropical macrozoobenthos. Investigations were carried out in little, medium sized and big rivers in mountains and plains. Through ISMR, a classification of water quality and the respective cartographic representation can be obtained. Data collection and treatment methods, as well as the limitations of the biotic index, are thoroughly described. ISMR can also be used as an element to establish complex multimetric indexes intended for an ecological integrity assessment, where it is essential to indicate organic pollution.
Oliveira, André H B; Cavalcante, Rivelino M; Duaví, Wersângela C; Fernandes, Gabrielle M; Nascimento, Ronaldo F; Queiroz, Maria E L R; Mendonça, Kamila V
2016-01-15
Between the 1940s and 1990s, immeasurable amounts of organochlorine pesticides (OCPs) were used in endemic disease control campaigns and agriculture in the tropical semi-arid regions of Brazil. The present study evaluated the legacy of banned OCP usage, considering the levels, ecological risk and dependence on sediment physicochemical properties for the fate and distribution in the Jaguaribe River. The sum concentration of OCPs (ΣOCPs) ranged from 5.09 to 154.43 ng·g(-1), comparable to the levels found in other tropical and subtropical regions that have traditionally used OCPs. The environmental and geographical distribution pattern of p,p-DDT, p,p-DDD and p,p-DDE shows that the estuarine zone contained more than 3.5 times the levels observed in the fluvial region, indicating that the estuary of the Jaguaribe River is a sink. The temporal pattern indicates application of dichloro-diphenyl-trichloroethanes (DDTs) in the past; however, there is evidence of recent input of these pesticides. High ecological risk was observed for levels of γ-hexachlorocyclohexanes (γ-HCH) and heptachlor, and moderate ecological risk was observed for levels of DDTs in sediments from the Jaguaribe River. The heptachlor, γ-HCH and hexachlorobenzene (HCB) concentrations depend on the organic and inorganic fractions of sediment from the Jaguaribe River, whereas the p,p-DDE, p,p-DDD, p,p-DDT and α-endosulfan concentrations depend solely on the organic fraction of the sediment.
Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian
2017-02-01
The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.
Young, Shuh-Sen; Yang, Hsi-Nan; Huang, Da-Ji; Liu, Su-Miao; Huang, Yueh-Han; Chiang, Chung-Ting; Liu, Jin-Wei
2014-01-01
After decades of strict pollution control and municipal sewage treatment, the water quality of the Tanshui River increased significantly after pollution mitigation as indicated by the River Pollution Index (RPI). The pollution level of the estuarine region decreased from severe pollution to mostly moderately impaired. The most polluted waters are presently restricted to a flow track length between 15–35 km relative to the river mouth. From July 2011 to September 2012, four surveys of fish and benthic macroinvertebrates were conducted at 45 sampling sites around the Tanshui River basin. The pollution level of all the study area indicated by the RPI could also be explained by the Family Biotic Index (FBI) and Biotic Index (BI) from the benthic macroinvertebrate community, and the Index of Biotic Integrity (IBI) of the fish community. The result of canonical correlation analysis between aquatic environmental factors and community structure indicated that the community structure was closely related to the level of water pollution. Fish species richness in the estuarine area has increased significantly in recent years. Some catadromous fish and crustaceans could cross the moderate polluted water into the upstream freshwater, and have re-colonized their populations. The benthic macroinvertebrate community relying on the benthic substrate of the estuarine region is still very poor, and the water layer was still moderately polluted. PMID:25026081
River Runoff Estimates on the Basis of Satellite-Derived Surface Currents and Water Levels
NASA Astrophysics Data System (ADS)
Gruenler, S.; Romeiser, R.; Stammer, D.
2007-12-01
One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, permits current measurements by ATI in an experimental mode of operation. Based on numerical simulations, we present first findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated and a dedicated data synthesis system for river discharge estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test sites. High-resolution three- dimensional current fields in the Elbe river (Germany) from a numerical model of the German Federal Waterways Engineering and Research Institute (BAW) are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. For example, runoff estimates on the basis of measured surface current fields and river widths from TerraSAR-X and water levels from radar altimetry are simulated. Despite the simplicity of some of the applied methods, the results provide quite comprehensive pictures of the Elbe river runoff dynamics. Although the satellite-based river runoff estimates exhibit a lower accuracy in comparison to traditional gauge measurements, the proposed measuring strategies are quite promising for the monitoring of river discharge dynamics in regions where only sparse in-situ measurements are available. We discuss the applicability to a number of major rivers around the world.
Mobility of nutrients and trace metals during weathering in the late Archean
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-08-01
The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible dissolved Cr in Archean river water. However, amorphous Cr(OH)3 representing easily-weatherable Cr-bearing minerals dissolved totally during the weathering simulations, resulting in concentrations of Cr(III) in the river water of up to 0.14 μmolar, higher than at the present-day. Late Archean weathering of accessory chalcopyrite produced chalcocite and bornite, and extremely low concentrations of Cu (<10-15 molar) because of the low solubilities of the copper sulfides. However, pulses of either O2,g or HNO3 produced native copper, chalcocite, and bornite, much more hematite, and river water containing levels of dissolved Cu comparable to the present-day. Copper mineralogy predicted by weathering models might provide a new correlation with evidence from studies of copper mineral evolution. Overall, our results implied that the redox state of the atmosphere, the pH of surface waters, and the availability of easily-weatherable minerals are all important factors controlling the dissolution of trace elements in river water. Interpretation of the sedimentary signatures of trace elements should consider not only the redox state but also the pH and availability of accessory minerals.
NASA Astrophysics Data System (ADS)
Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan
2014-01-01
The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.
Historical Sediment Sources and Delivery on the Lower Mississippi River
NASA Astrophysics Data System (ADS)
Dahl, T. A.; Biedenharn, D. S.; Little, C. D.
2015-12-01
The development of the Lower Mississippi River (LMR) and its floodplain for navigation and flood control has been ongoing since the 18th century, with the most concerted efforts occurring as a result of the Flood Control Act (FCA) of 1928 following the Great Flood of 1927. The Mississippi River and Tributaries (MR&T) Project that was spawned from the FCA of 1928 has produced a massive, comprehensive system for flood control and channel stabilization that includes levees, channel improvements, and floodways, as well as tributary reservoirs and other basin improvements. Additionally, the development of the river for safe and dependable navigation has generated a substantial engineering effort involving river training structures, meander cutoffs, and dredging. The historical, and present-day morphology of the LMR reflects an integration of all these engineering interventions (and the process-responses they have triggered in the fluvial system), combined with natural drivers of channel change and evolution, including floods and droughts, hurricanes, neotectonic activity, geologic outcrops, climate change, and relative sea-level rise. In response to the complex requirements in navigation, flood risk reduction, and environmental restoration, all with multiple stakeholders, the U.S. Army Corps of Engineers created the Mississippi River Geomorphology & Potamology (MRG&P) Program. The goals of the MRG&P are to advance the knowledge of the geomorphology of the LMR and to transfer this technology to improve and sustain long-term management of the system. The results presented herein come from several MRG&P studies. The historical river morphology, and particularly the sources and delivery of sediments have changed dramatically over the past two centuries. In this presentation, the changes in sediment sources, and the manner in which this sediment is delivered through the channel system from the early 1800s to present-day is described.
Periphyton as a bioindicator of mercury pollution in a temperate torrential river ecosystem.
Zižek, Suzana; Milačič, Radmila; Kovač, Nives; Jaćimović, Radojko; Toman, Mihael J; Horvat, Milena
2011-10-01
Mercury presents a potential risk to the environment and humans, especially in its methylated form. It is among the highest priority environmental pollutants. River Idrijca (Slovenia) is highly contaminated with mercury due to past mercury mining. The aim of this work was to investigate whether the periphyton community in rivers such as Idrijca is a suitable indicator of Hg pollution and of changes in mercury methylation and could serve as an early warning system of increased input of MeHg in the food chain. Periphyton is the only site of primary production in temperate torrential rivers such as Idrijca and is therefore an important link in the food chain. It is also a potential site of Hg accumulation and its introduction to higher trophic levels. Our aim was to assess the response of the periphyton to seasonal and spatial variations in mercury levels and to evaluate its potential as an early warning system of changes in mercury reactivity and mobilization The results indicate that periphyton in a torrential river is too complex and unpredictable to be used as a sole indicator of mercury concentrations and changes in the river. Nevertheless, it can complement environmental measurements due to its importance in the riverine food web. Copyright © 2011 Elsevier Ltd. All rights reserved.
Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo
2005-07-01
Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.
Carbon, nitrogen, and phosphorus transport by world rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meybeck, M.
1982-04-01
The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolvedmore » organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.« less
NASA Astrophysics Data System (ADS)
Vergnes, Jean-Pierre; Habets, Florence
2018-05-01
This study aims to assess the sensitivity of river level estimations to the stream-aquifer exchanges within a hydrogeological model of the Upper Rhine alluvial aquifer (France/Germany), characterized as a large shallow aquifer with numerous hydropower dams. Two specific points are addressed: errors associated with digital elevation models (DEMs) and errors associated with the estimation of river level. The fine-resolution raw Shuttle Radar Topographic Mission dataset is used to assess the impact of the DEM uncertainties. Specific corrections are used to overcome these uncertainties: a simple moving average is applied to the topography along the rivers and additional data are used along the Rhine River to account for the numerous dams. Then, the impact of the river-level temporal variations is assessed through two different methods based on observed rating curves and on the Manning formula. Results are evaluated against observation data from 37 river-level points located over the aquifer, 190 piezometers, and a spatial database of wetlands. DEM uncertainties affect the spatial variability of the stream-aquifer exchanges by inducing strong noise and unrealistic peaks. The corrected DEM reduces the biases between observations and simulations by 22 and 51% for the river levels and the river discharges, respectively. It also improves the agreement between simulated groundwater overflows and observed wetlands. Introducing river-level time variability increases the stream-aquifer exchange range and reduces the piezometric head variability. These results confirm the need to better assess river levels in regional hydrogeological modeling, especially for applications in which stream-aquifer exchanges are important.
NASA Astrophysics Data System (ADS)
Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao
2018-07-01
Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.
NASA Astrophysics Data System (ADS)
Tuttenuj, Daniel; Wetter, Oliver
2016-04-01
The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers in Switzerland. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet systematically analysed the period from 1446-1542 and could prove a large number of pre-instrumental flood events of river Rhine, Birs, Birsig and Wiese in Basel. All in all the weekly led account books contained 54 Rhine flood events, whereas chroniclers and annalists only recorded seven floods during the same period. This is a ratio of almost eight to one. This large difference points to the significantly sharper "observation skills" of the account books towards smaller floods, which may be explained by the fact that bridges can be endangered by relatively small floods because of driftwood, whereas it is known that chroniclers or annalists were predominantly focussing on spectacular (extreme) flood events. We [Oliver Wetter and Daniel Tuttenuj] are now able to present first preliminary results of reconstructed peak water levels and peak discharges of pre instrumental river Aare-, Emme-, Limmat-, Reuss-, Rhine- and Saane floods. These first results clearly show the strengths as well as the limits of the data and method used, depending mainly on the river types. Of the above mentioned rivers only the floods of river Emme could not be reconstructed whereas the long-term development of peak water levels and peak discharges of the other rivers clearly correlate with major local and supra-regional Swiss flood corrections over time. PhD student Daniel Tuttenuj is going to present the results of river Emme and Saane, whereas Dr Oliver Wetter is going to present the results for the other rivers and gives a first insight on long-term recurring periods of smaller river Birs, Birsig, Rhine and Wiese flood events based on the analysis of the weekly led account books "Wochenausgabenbücher der Stadt Basel" (see Abstract Oliver Wetter).
Konieczki, A.D.; Anderson, S.R.
1990-01-01
Flow in the Gila River from the flood of October 1983 infiltrated the stream channel and recharged the groundwater system along the Gila River floodplain from Ashurst-Hayden Dam to the confluence with the Salt River. Changes in groundwater levels from January 1983 to March 1984 confirmed the occurrence of recharge to the groundwater system. The average water level change for 74 wells was +24.2 ft. The water-level rise was greatest in the reach from river mile 15 to river mile 22, where the average water level change for 10 wells was +59.4 ft. The average water level increase for 28 miles from river mile 40 to river mile 71 was +14.2 ft. Estimates of recharge from January 1983 to March 1984 ranged from 440,000 to 640, 000 acre-ft. A water budget method and a water level change method were used to estimate the recharge to the aquifer. At least 46% to 66% of the recharge was the result of streamflow infiltration from the Gila River during October 1983 to February 1984. The increase in aquifer storage was one to two times greater than the quantity of groundwater pumped from the Gila River Indian Reservation during the 10 years preceding the flood. (USGS)
NASA Astrophysics Data System (ADS)
Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén
2007-10-01
This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.
Mercury exposure and effects on cavity-nesting birds from the Carson River, Nevada
Custer, Christine M.; Custer, T.W.; Hill, E.F.
2007-01-01
Mercury (Hg) concentrations were 15-40 times higher in the eggs and livers of tree swallows (Tachycineta bicolor) and house wrens (Troglodytes aedon) that nested along the Carson River at and below Dayton, Nevada than in the same species above the mining-impacted areas. Hg contamination was mainly the result of processing mills in the 1800s that used Hg to separate gold and silver from ore. The exposure pattern of tree swallows and house wrens along the Carson River was consistent with their trophic status (i.e., lower levels in liver tissue of aquatic insectivores than in piscivorous birds nesting nearby). Even though they are aquatic insectivores, tree swallows and house wrens were exposed to the same amount of Hg as piscivores in the Florida Everglades; this indicated the extreme level of Hg contamination in the Carson River. Only 70-74% of the eggs hatched. This was less than the nationwide average for these two species that generally hatch ???85% of eggs. Although the sample size was small, Hg might be impacting reproductive end points in cavity-nesting birds from the Carson River. Other trace elements were present at background concentrations. ?? 2006 Springer Science+Business Media, Inc.
Karouna-Renier, Natalie K.; White, Carl; Perkins, Christopher R.; Schmerfeld, John J.; Yates, David
2014-01-01
Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.
NASA Astrophysics Data System (ADS)
Bond, C. E.; Howell, J.; Butler, R.
2016-12-01
With an increase in flood and storm events affecting infrastructure the role of weather systems, in a changing climate, and their impact is of increasing interest. Here we present a new workflow integrating crowd sourced imagery from the public with UAV photogrammetry to create, the first 3D hydrograph of a major flooding event. On December 30th 2015, Storm Frank resulted in high magnitude rainfall, within the Dee catchment in Aberdeenshire, resulting in the highest ever-recorded river level for the Dee, with significant impact on infrastructure and river morphology. The worst of the flooding occurred during daylight hours and was digitally captured by the public on smart phones and cameras. After the flood event a UAV was used to shoot photogrammetry to create a textured elevation model of the area around Aboyne Bridge on the River Dee. A media campaign aided crowd sourced digital imagery from the public, resulting in over 1,000 images submitted by the public. EXIF data captured by the imagery of the time, date were used to sort the images into a time series. Markers such as signs, walls, fences and roads within the images were used to determine river level height through the flood, and matched onto the elevation model to contour the change in river level. The resulting 3D hydrograph shows the build up of water on the up-stream side of the Bridge that resulted in significant scouring and under-mining in the flood. We have created the first known data based 3D hydrograph for a river section, from a UAV photogrammetric model and crowd sourced imagery. For future flood warning and infrastructure management a solution that allows a realtime hydrograph to be created utilising augmented reality to integrate the river level information in crowd sourced imagery directly onto a 3D model, would significantly improve management planning and infrastructure resilience assessment.
Present-day vertical deformation of the Cascadia margin, Pacific Northwest, United States
NASA Astrophysics Data System (ADS)
Mitchell, Clifton E.; Vincent, Paul; Weldon, Ray J., III; Richards, Mark A.
1994-06-01
We estimate present-day uplift rates along hte Cascadia Subduction Zone in California, Oregon, and Washington in the Pacific Northwest, United States, by utilizing repeated leveling surveys and tide guage records. These two independent data sets give similar profiles for latitudinal variation of contemporary uplift rates along the coast. Uplift rates are extended inland through east-west leveling lines that connect the north-south line along hte coast to the north-south line along the inland valleys just west of the Cascades. The results are summarized as a contour map of present day uplift rates for the western Pacific Northwest. We find that rates of present day uplift vary latitudinally along the coast to the inland valleys. Long-term tial records of Neah Bay, Astoria, and Crescent City indicate uplift of land relative to sea level of 1.6 +/- 0.2, 0.0 +/- 0.2, 0.9 +/- 0.2 mm/yr, respectively (+/- 1 standard error). Unlike previous estimates of relative sea level change at Astoria, we adjust for discharge effects of the Columbia River, including human managment influences. After approximating an absolute framework by using 1.8 +/- 0.1 mm/yr to compensate for global sea level rise, results indicate that much of the western Pacific Northwest is rising at rates between 0 and 5 mm/ur. The most rapid uplift rates are near the coast, particularly near the Olympic Peninsula, the mouth of the Columbia River, Cape Blanco, and Cape Mendocino. Two axes of uplift are identified: one trends northeast from the southwest Oregon coast, and the other strends south-southeasterly from the Olympic Peninsula to the Columbia River. The Puget Sound vicinity and a small east-west region from the north cnetral Oregon coast ot he inland Willamette Valley are subiding at rates up to 1 mm/ur. We interpret the overall pattern of rapid present day uplift to be generated by interseismic strain accumulation in the subduction zone. This interseismic elastic strain accumulation implies significant seismic hazard.
NASA Astrophysics Data System (ADS)
Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai
2017-04-01
Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models encompass the estuary of River Yanshui, and measured upstream river discharges were used to simulate the interactions among tide, current, and wave near the estuary of Yanshui River. Our preliminary results showed that with only the effect of rainwater discharge, the maximum surface level of the river during the storm near the estuary was 1.4 m, which is not higher than the river embankments. With the storm surge, the river level at the same location was 2.2 m. With the storm surge and sea-level rise, the maximum river levels near the estuary were 3.6 m and 3.9 m for 2050 and 2100 scenarios, respective. These levels were higher than the embankment height of 3 m. This showed that due to higher sea-level, the area near the estuary will be flooded.
NASA Astrophysics Data System (ADS)
Sampath, D. M. R.; Boski, T.
2016-12-01
In the context of rapid sea-level rise in the 21st century, the reduction of fluvial sediment supply due to the regulation of river discharge represents a major challenge for the management of estuarine ecosystems. Therefore, the present study aims to assess the cumulative impacts of the reduction of river discharge and projected sea-level rise on the morphological evolution of the Guadiana estuary during the 21st century. The assessment was based on a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters and empirical knowledge of the system. As methods applied to estimate environmental flows do not take into consideration the fluvial discharge required to maintain saltmarsh habitats and the impact of sea-level rise, simulations were carried out for ten cases in terms of base river flow and sea-level rise so as to understand their sensitivity on the deepening of saltmarsh platforms. Results suggest saltmarsh habitats may not be affected severely in response to lower limit scenarios of sea-level rise and sedimentation. A similar behaviour can be expected even due to the upper limit scenarios until 2050, but with a significant submergence afterwards. In the case of the upper limit scenarios under scrutiny, there was a net erosion of sediment from the estuary. Multiplications of amplitudes of the base flow function by factors 1.5, 2, and 5 result in reduction of the estimated net eroded sediment volume by 25, 40, and 80%, respectively, with respect to the net eroded volume for observed river discharge. The results also indicate that defining the minimum environmental flow as a percentage of dry season flow (as done presently) should be updated to include the full spectrum of natural flows, incorporating temporal variability to better anticipate scenarios of sea-level rise during this century. As permanent submergence of intertidal habitats can be significant after 2050, due to the projected 79 cm rise of sea-level by the year 2100, a multi-dimensional approach should be adopted to mitigate the consequences of sea-level rise and strong flow regulations on the ecosystem of the Guadiana Estuary.
Sources and Transformations of Carbon and Nitrogen in the Potomac River Estuary
NASA Astrophysics Data System (ADS)
Pennino, M. J.; Kaushal, S.; Murthy, S.
2011-12-01
Urbanization has altered the transport of nitrogen (N) and carbon (C) in river ecosystems, making it important to understand how rivers are responding to these increased inputs of C and N. This study examines the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform N and C inputs from the world's largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected monthly for one year, along longitudinal transects of the Potomac River. Water samples were analyzed for the major dissolved and particulate forms of C and N. Nitrate stable isotopes were used to trace the fate of wastewater nitrate, as well as how other nitrate sources vary downriver. Sources of carbon downriver were traced using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Historical influent and effluent data on C and N levels were also compared with regional population growth data, climate change data, and long-term interannual records of C and N levels within downstream stations along the Potomac River. Improvements in treatment technology over the past two decades have shown significant decreases in effluent nitrogen levels, with corresponding decreases overtime of nutrients at downstream sampling stations. Levels of nitrate show increases within the vicinity of the wastewater treatment outfall, but decrease rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Total organic carbon levels show a smaller decrease downstream, resulting in an increase in the C:N ratio downstream. Longitudinal river chemistry data also show that dissolved inorganic nitrogen goes down while total organic nitrogen goes up with distance downriver, indicating biological transformations are taking place along the river. Preliminary data from fluorescence EEMs suggested that more humic-like organic matter is important above the wastewater treatment plant, but more protein-like organic matter is present below the treatment plant. However, this fluorescence signal from wastewater organic matter disappears within 2-4 km downriver, indicating rapid processing of the labile organic matter within the river. Nitrate isotope data for both upriver and downriver samples show a signal from manure or sewage inputs, indicating a potential influence from animal farms upstream in the Potomac. However, only the downriver samples show evidence for denitrification. Additionally, the higher 15N isotope levels of nitrate, which are characteristic of wastewater sources, disappear by 20 km downriver. Majors rivers like the Potomac may have a huge capacity for transforming and processing large carbon and nitrogen inputs within a short distance. Greater knowledge of how land management and climate change impacts these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
NASA Astrophysics Data System (ADS)
Sugai, T.; Sato, T.
2015-12-01
This paper compared grain size, thickness, and lithological character of ten fluvial gravel layers formed during the glacial sea-level lowstands intervening inner bay mud layers deposited during the interglacial marine transgressional periods since the last 900 ka by integrated analyses of sediment cores including 600 m deep onein the Nobi plain, central Japan. Linkages between river long profile changes and sea-level and climate changes will be discussed. The Nobi basin is one of the representative delta type alluvial lowlands in Japan dominated by longitudinal drainage system named Kiso river system flowing southward from central Japan Alps with abundant water and sediment discharges. The basin bounded by the Yoro fault on the west has been tilted westward by the repetitive faulting activity. The basin stratigraphy and its stacking patterns suggest uniform and rapid subsidence and tilting rates of the basin with the maximum value of 1 mm yr-1 and 10-4 kyr-1 respectively produced by the Yoro fault activity under the W-E compressional regional stress field during the middle and late Quaternary periods. Tephrochronological, paleomagnetic, geochemical, and diatom analyses enabled to identify ten times repeated marine transgression-regression sequences correlated with full glacial-interglacial sea-level changes during the last 900 ka. All of the ten sequence boundaries were characterized by fluvial gravel layers were formed by the Kiso river system. The mean maximum gravel size is proportional to the magnitude of sea level lowering inferred from MIS curve, i.e. gravels deposited in MIS 12 and 16 are the largest, and those in MIS 14 and 8 are the smallest since MIS 16. This suggests that the longitudinal profile of the Kiso river system has been adjusting to the sea level changes and that the steeper longitudinal profile formed in the lower sea level periods can transport larger gravels to the drilling sites. In fact the present river bed gravel size is in proportion with the tractive force and mainly controlled by slope of the rive long-profile.
Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma
Havens, J.S.
1984-01-01
The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.
Li, Qifeng; Zhang, Yueqing; Lu, Yonglong; Wang, Pei; Suriyanarayanan, Sarvajayakesavalu; Meng, Jing; Zhou, Yunqiao; Liang, Ruoyu; Khan, Kifayatullah
2018-08-01
Xiaoqing River, located in the Laizhou Bay of Bohai Sea, is heavily polluted by various pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), perfluoroalkyl acids (PFAAs), bisphenol A (BPA) and pharmaceutical and personal care products (PPCPs). The aim of this study is to identify the relative risks of such contaminants that currently affect the coastal ecosystem. The median and highest concentrations of PFAAs and perfluorooctanoic acid (PFOA) were 3.23 μg L -1 and 325.28 μg L -1 , and 0.173 μg L -1 and 276.24 μg L -1 , respectively, which were ranked higher when compared with global level concentrations. To assess the relative risk levels of perfluorooctane sulfonic acid (PFOS), PFOA, and other contaminants in the upstream and downstream of the Xiaoqing River and in its tributary, a risk ranking analysis was carried out. Copper (Cu), Zinc (Zn), and arsenic (As) showed the highest risk values in the Xiaoqing River, while the relative risks of PFOA and PFOS differed across the various segments. The risk ranking of PFOA was the second highest in the tributary and the fourth highest in the downstream portion of the river, whereas the PFOS was found to be the lowest in all the segments. Heavy metals and PFOA are the main chemicals that should be controlled in the Xiaoqing River. The results of the present study provide a better understanding of the potential ecological risks of the contaminants in Xiaoqing River. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp
NASA Astrophysics Data System (ADS)
Bueche, S. M.; Xu, Y. J.; Reiman, J. H.
2017-12-01
The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.
Quantifying and Projecting Relative Sea-Level Rise in The Deltaic Regions
NASA Astrophysics Data System (ADS)
Shum, C. K.; Chung-Yen, K.; Calmant, S.; Yang, T. Y.; Guo, Q.; Jia, Y.; Ballu, V.; Guo, J.; Karptychev, M.; Krien, Y.; Kusche, J.; Tseng, K. H.; Wan, J.; Uebbing, B.
2017-12-01
Half of the world's population lives within 200 km of coastlines. Accelerated sea-level rise, compounded by effects of population growth, severe land subsidence due to fluvial sediment compaction/load, and anthropogenic oil and natural gas and ground water extraction, tectonic motion, and the increasing threat of more intense and more frequent cyclone-driven storm surges, have exacerbated the vulnerability of many of world's deltaic regions, including the Bangladesh and the Mississippi River Deltas. At present, understanding and quantifying the natural and anthropogenic processes governing these solid Earth vertical motion processes remain elusive to enable addressing coastal vulnerability due to current and future projection of relative sea-level rise for deltaic regions at the regional scales. Bangladesh, a low-lying and one of the most densely populated countries in the world located at the Bay of Bengal, is prone to transboundary monsoonal flooding, and is believed to be aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. The Mississippi River Deltaic region has been severely subsiding due primarily to fluvial sediment compaction and load during the last 10 centuries, oil/gas and groundwater extractions, and commercial developments, making it vulnerable to sea-level rise hazards. Here we present results of global geocentric sea-level rise, 1950-2016, separating vertical land motion at global tide gauge datum, by integrating tide gauge and radar altimeter records in a novel sea-level reconstruction scheme, focusing on the Mississippi River and the Bangladesh Deltas. We then integrate the resulting sea level estimates with historic imageries, GPS and InSAR data, as well as sediment isostatic and load model predicted present-day land subsidence, to constrain the 3D land motion to study the impacts of various scenarios of future relative sea level projections on the Bangladesh Delta to the end of the 21st Century and beyond.
NASA Astrophysics Data System (ADS)
Changjiang, Xu; Dongdong, Zhang
2018-06-01
As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.
Hermans, C.; Erickson, J.; Noordewier, T.; Sheldon, A.; Kline, M.
2007-01-01
Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Myo Lin, Nay; Rutten, Martine
2017-04-01
The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir
Hermans, Caroline; Erickson, Jon; Noordewier, Tom; Sheldon, Amy; Kline, Mike
2007-09-01
Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible.
Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun
2016-08-15
As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. Copyright © 2016 Elsevier B.V. All rights reserved.
Denny, Jane F.; Foster, D.S.; Worley, C.R.; Irwin, Barry J.
2011-01-01
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, Mich., and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the riverbed of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the geophysical and sample data collected from the St. Clair River, May 29-June 6, 2008, as part of the International Upper Great Lakes Study, a 5-year project funded by the International Joint Commission of the United States and Canada to examine whether physical changes in the St. Clair River are affecting water levels within upper Great Lakes, to assess regulation plans for outflows from Lake Superior, and to examine the potential effect of climate change on the Great Lakes water levels (http://www.iugls.org). This document makes available the data that were used in a separate report, U.S. Geological Survey Open-File Report 2009-1137, which detailed the interpretations of the Quaternary geologic framework of the region. This report includes a description of the high-resolution acoustic and sediment-sampling systems that were used to map the morphology, surficial sediment distribution, and underlying geology of the Upper St. Clair River during USGS field activity 2008-016-FA (http://quashnet.er.usgs.gov/cgi-bin/datasource/public_ds_info.pl?fa=2008-016-FA). Video and photographs of the riverbed were also collected and are included in this data release. Future analyses will be focused on substrate erosion and its effects on river-channel morphology and geometry. Ultimately, the International Upper Great Lakes Study will attempt to determine where physical changes in the St. Clair River affect water flow and, subsequently, water levels in the Upper Great Lakes.
NASA Astrophysics Data System (ADS)
Willson, C. S.
2011-12-01
Over the past several thousand years the Mississippi River has formed one of the world's largest deltas and much of the Louisiana coast. However, in the last 100 years or so, anthropogenic controls have been placed on the system to maintain important navigation routes and for flood control resulting in the loss of the natural channel shifting necessary for replenishment of the deltaic coast with fresh sediment and resources. In addition, the high relative sea level rise in the lowermost portion of the river is causing a change in the distributary flow patterns of the river and deposition center. River and sediment diversions are being proposed as way to re-create some of the historical distribution of river water and sediments into the delta region. In response to a need for improving the understanding of the potential for medium- and large-scale river and sediment diversions, the state of Louisiana funded the construction of a small-scale physical model (SSPM) of the lower ~76 river miles (RM). The SSPM is a 1:12,000 horizontal, 1:500 vertical, highly-distorted, movable bed physical model designed to provide qualitative and semi-quantitative results regarding bulk noncohesive sediment transport characteristics in the river and through medium- and large-scale diversion structures. The SSPM was designed based on Froude similarity for the hydraulics and Shields similarity for sand transport and has a sediment time scale of 1 year prototype to 30 minutes model allowing for decadal length studies of the land building potential of diversions. Annual flow and sediment hydrographs were developed from historical records and a uniform relative sea level rise of 3 feet in 100 years is used to account for the combined effects of eustatic sea level rise and subsidence. Data collected during the experiments include river stages, dredging amounts and high-resolution video of transport patterns within the main channel and photographs of the sand deposition patterns in the diversion receiving areas. First, the similarity analysis that went into the model design along with a discussion of the resulting limitations will be presented. Next, calibration and validation results will be shown demonstrating the ability of the SSPM to capture the general lower Mississippi River sediment transport trends and deposition patterns. Third, results from a series of diversion experiments will be presented to semi-quantitatively show the effectiveness of diversion locations, sizes, and operating strategies on the quantities of sand diverted from the main river and the changes in main channel dredging volumes. These results will are then correlated with recent field and numerical studies of the study area. This talk will then close with a brief discussion of a new and improved physical model that will cover a larger domain and be designed to provide more quantitative results.
Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin
NASA Astrophysics Data System (ADS)
Hatting, Karina; Santos, Roberto V.; Sondag, Francis
2014-05-01
The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni-Madeira River. This river has a larger difference in the Sr isotopic composition between the diluted and solid phases, which has been assigned to the high level of weathering of its sediment source area. In the Beni-Madeira River sub-basin dominates weathering of silicate rocks, while in the Marañón-Solimões River sub-basin there also weathering of carbonate and evaporitic rocks.
NASA Astrophysics Data System (ADS)
Yang, R.; Liu, J. T.; Fan, D.; Burr, G.; Lin, H. L.; Chen, T.
2016-02-01
Taiwan is located in the collision zone of two tectonic plates, and receives impacts from the monsoons and typhoons. They contribute to the high sediment load delivered to the sea by small mountainous rivers on this island. The disproportionally large sediment load and the rising sea level constitute a favorable receiving-basin condition for the formation of river deltas. In this study, FATES-HYPERS team drilled two bore-holes on both sides of the Zhuoshui River mouth in central Taiwan. The length of each core was 104m (JRD-S) and 98m (JRD-N). Through AMS 14C dating from over 70 samples in each core a reliable age model was established to reconstruct the paleoenvironment of at the Zhuoshui River mouth during late Quaternary. These transitions indicate that the paleo-river mouth began to develop a transgressive-estuarine system at 10,000 yr BP, when the paleo-river mouth was inundated by the rising sea. The sediments that were come from Zhuoshui River accumulated slower than the sea-level rise. This resulted in gradually deeper environment. The evidence of maximum flooding surface (MFS) suggests transgression progressed until 5700 yr BP. Combined with findings from previous studies the position of MFS display a shallowing trend from the south to north. This implies that the deposition rate in the north was higher than that in the south. Therefore it is reasonable to assume that the paleo-river mouth was located north to the present position. After the sea level became stable, because of large terrestrial sediments discharge the paleo-river mouth was soon switched from a transgressive system to an aggradational delta system. The Zhuoshui River delta, unlike many well-known river delta systems, is limited by the depth of the Taiwan Strait. Shallow water depth and energetic hydrodynamics result in the non-deposition of muddy sediments near the river mouth. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. Moreover, the offshore morphology influenced the tidal current that become parallel to the shoreline in a short distance from the shore. The currents enabled the delta to develop a parallel coast tidal ridge at the delta front. This creates a unique depositional model for the Zhuoshui River delta.
Preliminary technical data summary No. 3 for the Defense Waste Processing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, L.F.
1980-05-01
This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)
García-Gil, Alejandro; Vázquez-Suñe, Enric; Schneider, Eduardo Garrido; Sánchez-Navarro, José Ángel; Mateo-Lázaro, Jesús
2014-07-01
The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Panin, Andrei; Adamiec, Grzegorz; Buylaert, Jan-Pieter; Matlakhova, Ekaterina; Moska, Piotr; Novenko, Elena
2017-06-01
In valleys of the River Seim and its tributaries in the middle Dnieper basin (west-central Russian Plain), two low terraces (T1, 10-16 m, and T0, 5-7 m above the river) and a floodplain (2-4 m) with characteristic large and small palaeochannels exist. A range of field and laboratory techniques was applied and ∼30 new numerical ages (OSL and 14C dates) were obtained to establish a chronology of incision and aggradation events that resulted in the current valley morphology. Two full incision/aggradation rhythms and one additional aggradation phase from the previous rhythm were recognized in the Late Pleistocene - Holocene climate cycle. The following events were detected. (1) Late MIS 5 - early MIS 4: aggradation of Terrace T1 following the deep incision at the end of MIS 6. (2) Late MIS 4 (40-30 ka): incision into Terrace T1 below the present-day river, formation of the main scarp in the bottom of the valley between Terrace T1 and Terrace T0/Floodplain levels. (3) MIS 2: aggradation of Terrace T0, lateral migrations of a shallow braided channel located few meters above the present-day river since ∼25 ka through the LGM. (4) 18-13 ka: incision into Terrace T0 below the modern river. Multiple-thread channels concentrated in a single flow that at some places formed large meanders. In the period 15-13 ka, high floods that rose above the present-day floods left large levees and overbank loams on Terrace T0. (5) Younger Dryas - Holocene transition: aggradation up to the modern channel level, transformation of large Late Glacial to small Holocene meanders. The established incision/aggradation rhythms are believed to be manifested over the Central Russian Plain outside the influence of ice sheets in the north and base level changes in the south. The two-phase deepening of the valley occurred in the last quarter of the last glacial epoch but can not be attributed directly to the glacial-interglacial transition. Both the detected incision events correspond to relatively warm climate phases - late MIS 3, post-LGM warming including the Bølling-Allerød interstadial. Anomalously large size of the preserved river palaeochannels prove that the post-LGM incision phase was induced by a climatically forced large increase of water runoff. Considerable increase of water discharges is considered the most probably cause for the late MIS 4 incision phase also. Therefore river incision seems to have been governed rather by changing water runoff that oscillated in phase shift with the thermal regime.
Natural Risks at the Bottom Side of Ameca River, in the State Limits of Jalisco and Nayarit, Mexico
NASA Astrophysics Data System (ADS)
Pinedo, K. G.; Maciel, R.; Pena, L. E.; García García, E. X.; Ramos Chavez, C.
2016-12-01
At world-wide level, the population centers are exposed to natural risks and more those that are located to borders of the rivers, where hydrometeorological and geologic phenomenon are conjugated, and even increased by the action of the man. From 1911 to 2015, the disasters registered in the world due to flood by river overflowing were 2 701, with 2 545 affected 224 110, of which 60 229 747 lost their homes and 4 449 031 deads, causing therefore an economic loss of approximately $549 052 761 dollars. The case of study is the low part of the Ameca River, the one of the main rivers of the states of Jalisco and Nayarit in the west zone of Mexico. It is interesting, since it have its mouth near the tourist area (with considerable affluence at national level), with infrastructure (airport and bridges) and towns of both referred states; as well because at the pass of the years, this river have had overflows affecting municipalities, bridges and loss of mangrove swamp. In order to determine the feasible impacts to happen with the overflow of the Ameca River, the aerial photographs of area of study and satellite images were analyzed (historical and present), likewise information of the river basin physical environment generated by INEGI with special emphasis in the low part of the river basin and a campaign of work field, to delimit the zones that have shown some affectation. The objective of this investigation is to contribute to the risk analysis of the adjacent localities to the river, with the purpose of diminishing the impact in the population. As preliminary results appear maps with boundaries of paleo-channels, which mark the zone of influence during overflows of the Ameca River, the towns which can be affected and the population exposed.
Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.
2012-01-01
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.
Sele coastal plain flood risk due to wave storm and river flow interaction
NASA Astrophysics Data System (ADS)
Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela
2016-04-01
Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub-critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.
Frantine-Silva, W; Ferreira, D G; Nascimento, R H C; Fracasso, J F; Conte, J E; Ramos, F P; Carvalho, S; Galindo, B A
2015-12-29
Most studies of diversity and genetic structure in neotropical fish have focused on commercial species from large rivers or their reservoirs. However, smaller tributaries have been identified as an important alternative migratory route, with independent pools of genetic diversity. In this context, the present study aimed to evaluate genetic diversity and structure in five neotropical fish species from a region of Laranjinha River in the upper Paraná River basin. PCR-RAPD (random amplified polymorphic DNA) markers were used to characterize around 40 individuals of each species distributed upstream and downstream of Corredeira Dam that interrupts the river. The descriptive index of genetic diversity (P = 30.5-82%; HE 0.122-0.312) showed that the populations have acceptable levels of genetic diversity. The values for Nei's genetic distance (DN min 0.0110 and max 0.0306) as well as the genetic structure index and the analysis of molecular variance (AMOVA, ϕST min 0.0132 and max 0.0385) demonstrated low, but significant levels of genetic structure. Bayesian analysis of assignment found two k clusters, including several individuals with mixed ancestry for all populations from the five species analyzed. These findings along with historical data on rainfall and the low dimensions of the dam studied here support the hypothesis that periodic floods enable the transit of individuals between different localities mitigating the differentiation process between populations.
Antarctic ice shelf potentially stabilized by export of meltwater in surface river.
Bell, Robin E; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J; Zappa, Christopher J; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang
2017-04-19
Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.
Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River
NASA Technical Reports Server (NTRS)
Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang
2017-01-01
Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Water quality in the Schuylkill River, Pennsylvania: the potential for long-lead forecasts
NASA Astrophysics Data System (ADS)
Block, P. J.; Peralez, J.
2012-12-01
Prior analysis of pathogen levels in the Schuylkill River has led to a categorical daily forecast of water quality (denoted as red, yellow, or green flag days.) The forecast, available to the public online through the Philadelphia Water Department, is predominantly based on the local precipitation forecast. In this study, we explore the feasibility of extending the forecast to the seasonal scale by associating large-scale climate drivers with local precipitation and water quality parameter levels. This advance information is relevant for recreational activities, ecosystem health, and water treatment (energy, chemicals), as the Schuylkill provides 40% of Philadelphia's water supply. Preliminary results indicate skillful prediction of average summertime water quality parameters and characteristics, including chloride, coliform, turbidity, alkalinity, and others, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic. Water quality parameter trends, including historic land use changes along the river, association with climatic variables, and prediction models will be presented.
Floodplain Connectivity and implications for flooding and floodplain function
NASA Astrophysics Data System (ADS)
Barrow, E.
2017-12-01
Regime theory suggests that floodplains should be inundated on average once every two years to maintain form and function of both the river and the floodplain. Natural disconnection along non-alluvial reaches and where the river has moved to flow against terrace edges is to be expected, however, disconnectivity caused by river management is now affecting increasing lengths of watercourses. This study utilises aerial Lidar data to determine the relative height difference between the watercourse and adjacent valley bottoms to assess the degree of disconnectivity along main river systems across Cumbria in the UK. The results reveal that many rivers are now poorly connected to their floodplains which are now largely non-functional. Floodplain geomorphic units, although often present, are currently inactive and water table levels are reduced resulting in a loss of wetland in favour of ruderal species tolerant of drier conditions. The causes of such widespread disconnectivity may be attributed to historic dredging and straightening of these rivers and revetment and riparian tree planting has further exacerbated the problem restricting lateral activity and the subsequent development of new areas of connected floodplain. The high degree of disconnection has implications for future river management and river restoration and these are discussed.
Schramm, H.L.; Cox, M.S.; Tietjen, T.E.; Ezell, A.W.
2009-01-01
Alterations to the lower Mississippi River-floodplain ecosystem to facilitate commercial navigation and to reduce flooding of agricultural lands and communities in the historic floodplain have changed the hydrologic regime. As a result, the flood pulse usually has a lower water level, is of shorter duration, has colder water temperatures, and a smaller area of floodplain is inundated. Using average hydrologic conditions and water temperatures, we used established nitrogen and phosphorus processes in soils, an aquatic ecosystem model, and fish bioenergetic models to provide approximations of nitrogen and phosphorus flux in Mississippi River flood waters for the present conditions of a 2-month (mid-March to mid-May) flood pulse and for a 3-month (mid-March to mid-June), historic flood pulse. We estimated that the soils and aquatic biota can remove or sequester 542 and 976 kg nitrogen ha-1 during the present and historic hydrologic conditions, respectively. Phosphorus, on the other hand, will be added to the water largely as a result of anaerobic soil conditions but moderated by biological uptake by aquatic biota during both present and historic hydrologic conditions. The floodplain and associated water bodies may provide an important management opportunity for reducing downstream transport of nitrogen in Mississippi River waters. ?? 2009, The Society of Wetland Scientists.
Water Demand Management Strategies and Challenges in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Kuhn, R. E.
2016-12-01
Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.
Risk assessment of nonylphenol and its ethoxylates in U.S. river water and sediment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, J.A.; Adams, W.J.; Guiney, P.D.
1994-12-31
A comprehensive program addressing the risks of nonylphenol (NP) and its ethoxylates (NPE) in aquatic environments of the United States has been undertaken by the Alkyl Phenol Ethoxylates Panel of the Chemical Manufacturers Association cooperating with EPA. Several hundred million pounds of NPE surfactants are used in the US each year. Nonylphenol can be an intermediate product of degradation of nonylphenol ethoxylates. A survey of those river reaches most likely to contain NPE and NP residues was conducted based on a random sample of a subset of the EPA River Reach File defined by certain selection criteria. Applying enhanced analyticalmore » techniques, little or no NP and NPE were found in river water at most locations, while low levels were usually detected in sediment. Acute and chronic toxicity tests using a variety of organisms have also been completed. New results are presented for shrimp, fish, tadpoles, midges, and algae. The risk of NP to the aquatic environment is examined by comparison of observed levels with toxicity benchmarks, and by application of equilibrium partitioning theory to calculate sediment interstitial chemical concentrations.« less
Tychsen, Paul C.; Swenson, Herbert A.
1950-01-01
The Heart River irrigation project, in southwestern North Dakota, lies in the Missouri Plateau section of the Great Plains physiographic province, which extends from the Missouri escarpment to and beyond the western border of the State. The area ranges in altitude from 1,620 to 2,275 feet and locally has strong relief. The floor of the Heart River Valley is underlain by alluvial deposits of Quaternary age. In the westernmost part of the areas the Fort Union formation of Paleocene (Tertiary) age forms the valley sides, but in a downstream direction the Cannonball and Ludlow formations, here undifferentiated, also of Paleocene age, crop out in the valley sides and underlie progressively broader areas of the upland surface. The Hell Creek formation of Upper Cretaceous age appears above stream level only in the stretch of the valley between the center of T. 136 N., R. 85 W., and the northeastern part of T.. 137 N., R. 84 W. Glacial Drift, which once covered the whole area, now has been almost entirely removed by erosion except for .scattered boulders on the uplands. The Cannonball and Ludlow unit and the Fort Union formation yield, moderate supplies of ground water, and the river alluvium yields more abundant supplies. At the present rate of withdrawal and with normal precipitation there is little danger of seriously depleting the supply. In 1946 the average depth to water in observation wells in the Heart River Valley was 19 feet, whereas the depth to water in observation wells in the upland averaged 30 feet. The Dickinson area is small and is about 45 miles upstream from the Heart River irrigation project. Ground-water levels in the Dickinson municipal well field have declined considerably within recent years, but the impounding of Heart River water is expected to insure a more adequate water supply for the town. Samples of ground water from four wells in the lower Heart River Valley were analyzed to determine the present mineral character of the waters in this region. Waters from shallow and deep wells in the Dickinson area were analyzed to assist in determining the practicability of further utilization of ground water as a public supply. A map showing areas of the least-mineralized ground water in the Dickinson area is presented and the need of further exploratory work is discussed.
Sea level variability influencing coastal flooding in the Swan River region, Western Australia
NASA Astrophysics Data System (ADS)
Eliot, Matt
2012-02-01
Coastal flooding refers to the incidence of high water levels produced by water level fluctuations of marine origin, rather than riverine floods. An understanding of the amplitude and frequency of high water level events is essential to foreshore management and the design of many coastal and estuarine facilities. Coastal flooding events generally determine public perception of sea level phenomena, as they are commonly associated with erosion events. This investigation has explored the nature of coastal flooding events affecting the Swan River Region, Western Australia, considering water level records at four sites in the estuary and lower river, extending from the mouth of the Swan River to 40 km upstream. The analysis examined the significance of tides, storms and mean sea level fluctuations over both seasonal and inter-annual time scales. The relative timing of these processes is significant for the enhanced or reduced frequency of coastal flooding. These variations overlie net sea level rise previously reported from the coastal Fremantle record, which is further supported by changes to the distribution of high water level events at an estuarine tidal station. Seasonally, coastal flooding events observed in the Swan River region are largely restricted to the period from May to July due to the relative phases of the annual mean sea fluctuation and biannual tidal cycle. Although significant storm surge events occur outside this period, their impact is normally reduced, as they are superimposed on lower tidal and mean sea level conditions. Over inter-annual time scales tide, storminess and mean sea level produce cycles of enhanced and depressed frequency of coastal flooding. For the Swan River region, the inter-annual tidal variation is regular, dominated by the 18.6 year lunar nodal cycle. Storminess and mean sea level variations are independent and irregular, with cycles from 3 to 10 year duration. Since 1960, these fluctuations have not occurred in phase, suggesting that recent historic records may not provide a real indication of inundation risk, exclusive of factors linked to climate change. The burst-like nature of coastal flooding incidents, with respect to frequency, has implications for both public perception and coastal management effort. The result, when combined with sea level rise, produces step-like change, with short periods of frequent coastal flooding, followed by extended, slowly varying quiescent periods. This presents challenges for coastal managers to incorporate variability into projections of future management needs, and to ensure that public and political recognition of coastal flooding hazard is not downplayed during quiet periods.
Experimental investigation of channel avulsion frequency on river deltas under rising sea levels
NASA Astrophysics Data System (ADS)
Silvestre, J.; Chadwick, A. J.; Steele, S.; Lamb, M. P.
2017-12-01
River deltas are low-relief landscapes that are socioeconomically important; they are home to over half a billion people worldwide. Many deltas are built by cycles of lobe growth punctuated by abrupt channel shifts, or avulsions, which often reoccur at a similar location and with a regular frequency. Previous experimental work has investigated the effect of hydrodynamic backwater in controlling channel avulsion location and timing on deltas under constant sea level conditions, but it is unclear how sea-level rise impacts avulsion dynamics. We present results from a flume experiment designed to isolate the role of relative sea-level rise on the evolution of a backwater-influenced delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin. The experimental delta grew under subcritical flow, a persistent backwater zone, and a range of sea level rise rates. Without sea level rise, lobe progradation produced in-channel aggradation and periodic avulsions every 3.6 ± 0.9 hours, which corresponded to when channels aggraded to approximately one-half of their flow depth. With a modest rate of sea-level rise (0.25 mm/hr), we observed enhanced aggradation in the backwater zone, causing channels to aggrade more quickly and avulse more frequently (every 2.1 ± 0.6 hours). In future work, we expect further increases in the rate of relative sea-level rise to cause avulsion frequency to decrease as the delta drowns and the backwater zone retreats upstream. Experimental results can serve as tests of numerical models that are needed for hazard mitigation and coastal sustainability efforts on drowning deltas.
ERIC Educational Resources Information Center
National Geographic World, 1983
1983-01-01
Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)
Scaling issues in sustainable river basin management
NASA Astrophysics Data System (ADS)
Timmerman, Jos; Froebich, Jochen
2014-05-01
Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting (national and international laws and agreements), the institutional setting (the formal networks), information management (the information collection and dissemination system), and financing systems (the public and private sources that cover the water management costs). These elements are usually designed for a specific level and are ideally aligned with the other levels. The presentation will go into detail on connecting the different elements of the water management regime between different levels as well as on the overarching governance issues that play a role and will present opportunities and limitations of the linking options.
Great expectations: Flow restoration and sediment transport in the Waimea River, Kaua'i
NASA Astrophysics Data System (ADS)
Gomez, Basil
2018-04-01
Conventional and novel observations made in the Waimea River basin between 1960 and 1995 permit the total riverine mass flux to be estimated and the influence that flow restoration will have on sediment dynamics in the river's lower reaches to be assessed. Flows between the threshold for sediment transport ( 6.0 m3 s-1) and the most effective flow (80.7 m3 s-1) recur annually and transport 60% of the Waimea River's suspended sediment load. Discharges of this magnitude essentially were unaffected by plantation era agricultural diversions of 2.3 ± 0.7 m3 s-1. The modern-day mass flux from the Waimea River basin is 155 ± 38 t km-2 y-1, and comparison with an independent cosmogenic nuclide-based estimate implies that it has remained at about this level for the past 10 ky. Previous work indicated that: (i) most of the sand the Waimea River transports to the coast is derived from steep, rapidly eroding, sparsely vegetated, bedrock-dominated hillslopes; and (ii) the sediment transport regime of the Waimea River is supply-limited at very high discharges (recurrence interval > 2.5 years). Consequently, major floods tend to remove sand from the estuary. Climate change has caused a statewide decline in heavy rainfall, and a commensurate decline in the magnitude of peak flows in the basin's pristine, undiverted headwaters over the past 97 years. The effect this secular change in climate presently is having on streamflow was foreshadowed in the late 1970s by a naturally occurring, warm Pacific Decadal Oscillation phase reduction in the magnitude of flows with low exceedance probabilities. Additionally, the controlling base level at the river mouth has risen and been displaced seaward. Simple proportionality approximations show that, for a constant sediment supply, aggradation will occur if either the magnitude of flows with a low exceedance probability declines and/or base level rises. Thus, anthropogenic stresses on Waimea River's lower reaches are not derived from the within-basin influence agricultural diversions exert on the flow regime and will not be resolved by restoring flow to the river. These stresses primarily accrue from extrinsic factors that will continue to influence the river's hydrologic and sediment transport regimes until global, offsetting, climate-ameliorating measures are implemented.
Changing Course - the Baird Team Solution: a Delta for All
NASA Astrophysics Data System (ADS)
Nairn, R. B.
2016-02-01
The Changing Course Design competition was initiated to evaluate options for re-positioning the mouth of the Mississippi River and modifying the management of the Lower Mississippi River to support the 2017 Master Plan for the Louisiana coast. This paper will present the findings of one of the selected competitors: the Baird Team and their "Delta for All" approach. A key to success in the future management of the lower Mississippi River is the development of an integrated, holistic approach to management that recognizes the need to harness the full land/wetland building and restorative potential of the river at the same time as improving flood protection and navigation. Fundamentally the Baird solution recognized the underlying geomorphic challenges of the Delta: it receives three to four times less sediment from the Mississippi River than it did historically and sea level is rising two to three times faster than it did historically and is predicted to rise much faster in the future. The result will be a smaller delta in the future. Our approach seeks to harness as close to 100% of the land building potential of the river to make the smaller future delta as large as possible. This compares to the 2012 State Master Plan which would harness approximately 50% of the land-building potential. Our approach also recognizes that the further inland new distributary mouths and associated sub-deltas are located, the greater the delta building potential. Our approach builds with the river by creating and managing new river distributaries that are opened and closed every 50 years or so to build new sub-deltas within a defined sustainable delta footprint. By placing the last outlet somewhere in the vicinity of English Turn the lower Mississippi River would become a tidal channel. These two simple concepts of harnessing 100% of the river and placing the last outlet near English Turn result in immediate and significant benefits for flood protection and navigation. Through the elements of our approach the level of flood protection for New Orleans and surrounding areas would be increased from a 1/100 year to approximately 1/1000 year level. By making the lower river a tidal channel, costly future maintenance dredging costs for a 50 ft navigation channel would be mostly eliminated and expansion of navigation and shipping facilities would be possible.
Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong
2017-08-15
Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.
Wang, Wenfeng; Ndungu, Anne Wairimu; Li, Zhen; Wang, Jun
2017-01-01
Microplastics have been considered as an emerging pollutant in the aquatic environment. However, research about microplastic pollution in inland freshwaters of China is insufficient. The present study investigated the levels of microplastics in surface water of 20 urban lakes and urban reaches of the Hanjiang River and Yangtze River of Wuhan, the largest city in central China. Microplastic concentrations ranged from 1660.0±639.1 to 8925±1591n/m 3 for the studied waters, with the highest concentration found in Bei Lake. Microplastic abundance in lakes varied markedly in space, and negatively correlated with the distance from the city center (p<0.001), which confirmed the important role of anthropogenic factors in microplastic distribution. Urban reaches of the Hanjiang River and Yangtze River were found to have relatively lower levels of microplastics than most of the studied lakes. The major type of microplastics among the studied waters was colored plastic, with fiber being the most frequent shape. More than 80% of microplastics in number had a size of <2mm. Polyethylene terephthalate and polypropylene were the dominant polymer-types of microplastics analyzed. This study provided important reference for better understanding microplastic levels in inland freshwaters. Copyright © 2016 Elsevier B.V. All rights reserved.
Tyor, Anil K; Pahwa, Kanika
2018-05-01
River Yamuna is under constant menace due to pollution levels beyond limit, ensuing chronic poisoning of aquatic biota. Induction of oxidative stress and cellular deformities is a common effect in fish. The present study aimed in assessing impact of environmental pollutants on gonad (testis) of Clarias gariepinus from Wazirabad barrage (entry site) and Okhla barrage (exit site) of river Yamuna in Delhi segment. Antioxidant enzymes assays viz. Super oxide dismutase (SOD), catalase (CAT) and ferric reducing antioxidant power (FRAP); thiobarbituric acid reactive substance assay (TBARS) for determining level of lipid peroxidation and histology for analysis of degenerative changes were employed as biomarkers. The results depicted signs of environmental contamination, hallmarked by significant increase (p < 0.001) in TBARs level (µmol/g wet tissue); significant decrease (p < 0.001) in SOD, CAT (U/mg protein) and FRAP value (U/mg tissue) in response to greater pollution at Okhla barrage as compared to Wazirabad barrage. Degenerative changes viz. unorganized seminiferous tubules, extensive vacuolization in germ cells, inflammatory lesions, greater vacant spaces and condensation of tubular cells prevailed in 75%, 85%, 80%, 80%, and 65% specimens respectively from Okhla barrage. Hence, the selected biomarkers highlighted the existence of greater prooxidative compounds at the exit site resulting in stressful condition for fish in river basin.
10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING ...
10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING THE RIVER HEIGHT INDICATOR, ONE OF THE FIVE GATE OPENINGS, AND MOORINGS, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
Risser, D.W.
1987-01-01
In 1980 Santa Rosa Dam began impounding water on the Pecos River about 7 miles north of Santa Rosa, New Mexico, to provide flood control, sediment control, and storage for irrigation. Santa Rosa Lake has caused changes in the groundwater flow system, which may cause changes in the streamflow of the Pecos River that cannot be detected at the present streamflow gaging stations. Data collected at these stations are used to measure the amount of water available for downstream users. A three-dimensional groundwater flow model for a 950 sq mi area between Anton Chico and Puerto de Luna was used to simulate the effects of Santa Rosa Lake on groundwater flow to a gaining reach of the Pecos River for lake levels of 4,675, 4,715, 4,725, 4,750, 4,776, and 4,797 feet above sea level and durations of impoundment of 30, 90, 182, and 365 days for all levels except 4 ,797 feet. These simulations indicated that streamflow in the Pecos River could increase by as much as 2 cu ft/sec between the dam and Puerto de Luna if the lake level were maintained at 4 ,797 feet for 90 days or 4,776 feet for 1 year. About 90% of this increased streamflow would occur < 0.5 mi downstream from the dam, some of which would be measured at the streamflow gaging station located 0.2 mile downstream from the dam. Simulations also indicated that the lake will affect groundwater flow such that inflow to the study area may be decreased by as much as 1.9 cu ft/sec. This water may leave the Pecos River drainage basin or be diverted back to the Pecos River downstream from the gaging station near Puerto de Luna. In either case, this quantity represents a net loss of water upstream from Puerto de Luna. Most simulations indicated that the decrease in groundwater flow into the study area would be of about the same quantity as the simulated increase in streamflow downstream from the dam. Therefore, the net effect of the lake on the flow of the Pecos River in the study area appears to be negligible. Model simulations indicated that effect of lake levels below 4 ,750 feet on water levels in observation wells completed in the San Andres Limestone could not be distinguished from the effects of other hydrologic stresses. (Author 's abstract)
Elliott, Caroline M.; Jacobson, Robert B.
2006-01-01
A multiscale geomorphic classification was established for the 39-mile, 59-mile, and adjacent segments of the Missouri National Recreational River administered by the National Park Service in South Dakota and Nebraska. The objective of the classification was to define naturally occurring clusters of geomorphic characteristics that would be indicative of discrete sets of geomorphic processes, with the intent that such a classification would be useful in river-management and rehabilitation decisions. The statistical classification was based on geomorphic characteristics of the river collected from 1999 orthophotography and the persistence of classified units was evaluated by comparison with similar datasets for 2003 and 2004 and by evaluating variation of bank erosion rates by geomorphic class. Changes in channel location and form were also explored using imagery and maps from 1993-2004, 1941 and 1894. The multivariate classification identified a hierarchy of naturally occurring clusters of reach-scale geomorphic characteristics. The simplest level of the hierarchy divides the river from segments into discrete reaches characterized by single and multithread channels and additional hierarchical levels established 4-part and 10-part classifications. The classification system presents a physical framework that can be applied to prioritization and design of bank stabilization projects, design of habitat rehabilitation projects, and stratification of monitoring and assessment sampling programs.
Upstream effects of dams on alluvial channels: state-of-the-art and future challenges
NASA Astrophysics Data System (ADS)
Liro, Maciej
2017-04-01
More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland
Variability Matters: New Insights into Mechanics of River Avulsions on Deltas and Their Deposits
NASA Astrophysics Data System (ADS)
Ganti, V.
2015-12-01
River deltas are highly dynamic, often fan-shaped depositional systems that form when rivers drain into a standing body of water. They host over a half billion people and are currently under threat of drowning and destruction by relative sea-level rise, subsidence, and anthropogenic interference. Deltas often develop planform fan shapes through avulsions, whereby major river channel shifts occur via "channel jumping" about a spatial node, thus determining their fundamental length scale. Emerging theories suggest that the size of delta lobes is set by backwater hydrodynamics; however, these ideas are difficult to test on natural deltas, which evolve on centennial to millennial timescales. In this presentation, I will show results from the first laboratory delta built through successive deposition of lobes that maintain a constant size that scales with backwater hydrodynamics. The characteristic size of deltas emerges because of a preferential avulsion node that remains fixed spatially relative to the prograding shoreline, and is a consequence of multiple river floods that produce persistent morphodynamic river-bed adjustment within the backwater zone. Moreover, river floods cause erosion in the lowermost reaches of the alluvial river near their coastline, which may leave erosional boundaries in the sedimentary record that may appear similar to those previously interpreted to be a result of relative sea-level fall. I will discuss the implications of these findings in the context of sustainability management of deltas, decoding their stratigraphic record, and identifying ancient standing bodies of water on other planets such as Mars. Finally, I will place this delta study in a broader context of recent work that highlights the importance of understanding and quantifying variability in sedimentology and geomorphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.
Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflowmore » zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.« less
Davis, J. Hal
2000-01-01
Ground water contaminated by the chlorinated organic compounds trichloroethene (TCE), cis-dichloroethene (DCE), and vinyl chloride (VC) has been found in the surficial aquifer beneath the Naval Aviation Depot at the U.S. Naval Air Station, Jacksonville, Florida. The affected area is designated Operable Unit 3 (OU3) and covers 134 acres adjacent to the St. Johns River. Site-specific ground-water flow modeling was conducted at OU3 using MODFLOW, and solute-transport modeling was conducted using MT3DMS. Simulations using a low dispersivity value, which resulted in the highest concentration discharging to the St. Johns River, gave the following results. At 60 years traveltime, the highest concentration of TCE associated with the Area C plume had discharged to St. Johns River at a level that exceeded 1x103 micrograms per liter (ug/L). At 100 years traveltime, the highest concentration of TCE associated with the Area D plume had discharged to the river at a level exceeding 3x103 ug/L. At 200 years traveltime, the Area B plume had not begun discharging to the river. Simulations using a first-order decay rate half-life of 13.5 years (the slowest documented) at Area G caused the TCE to degrade before reaching the St. Johns River. If the ratio of the concentrations of TCE to cis-DCE and VC remained relatively constant, these breakdown products would not reach the river. However, the actual breakdown rates of cis-DCE and VC are unknown. Simulations were repeated using average dispersivity values with the following results. At 60 years traveltime, the highest concentration of TCE associated with the Area C plume had discharged to St. Johns River at a level exceeding 4x102 ug/L. At 100 years traveltime, the highest concentration of TCE associated with the Area D plume had discharged to the river at a level exceeding 1x103 ug/L. At 200 years traveltime, the Area B plume had not begun discharging to the river. 'Pump and treat' was simulated as a remedial alternative. The concentration of TCE at Area B trended rapidly downward; however, one isolated pocket of TCE remained because of the low-permeability sediments present at this area. The concentration of TCE at Area C trended rapidly downward and was below 1 ug/L in about 16 years. The concentration of TCE at Area D also trended rapidly downward and was below 1 mg/L in about 18 years.
NASA Astrophysics Data System (ADS)
Kaur, Jasmit; Walia, Harpreet; Mabwoga, Samson Okongo; Arora, Saroj
2017-06-01
The present study entails the investigation of mutagenic and genotoxic effect of surface water samples collected from 13 different sites of the Harike wetland using the histidine reversion point mutation assay in Salmonella typhimurium (TA98) strain and plasmid nicking assay using pBR322, respectively. The physicochemical characterization of water samples using different parameters was conducted for water quality monitoring. Heavy metal analysis was performed to quantify the toxic components present in water samples. It was observed that although the water samples of all the sites demonstrated mutagenic as well as genotoxic activity, the effect was quite significant with the water samples from sites containing water from river Satluj, i.e., site 1 (upstream Satluj river), site 2 (Satluj river) and site 3 (reservoir Satluj). The high level of pollution due to industrial effluents and agricultural run-off at these sites may engender the genotoxicity and mutagenicity of water samples.
NASA Astrophysics Data System (ADS)
Clarke, R. T.
2012-04-01
During the voyage of HMS Beagle, Charles Darwin sailed in a small boat along the River Paraná, a major tributary of the la Plata drainage system. He wrote about the occurrence of severe droughts (the latest of which had been termed the "gran seco") alternating with periods of severe flooding. From reports received, he concluded that these events appeared to be cyclic with a period "of about fifteen years". Because extended periods of low flow in Brazilian rivers are of immense economic importance, the presentation describes a search for the material which led Darwin to this conclusion. A prolonged period of low flow in another la Plata tributary - the River Paraguay - not unlike the "gran seco" reported by Darwin, has occurred more recently; if such low flows were to recur in the future, the consequences would be severe for a region where more than 70% of energy is supplied by hydropower. A priori considerations suggest the use of statistical long-memory models for predicting River Paraguay water-levels, and some preliminary results from their use are presented.
Assessment of Long-Term Changes in River Stage of the Lowermost Mississippi River
NASA Astrophysics Data System (ADS)
Joshi, S.; Xu, Y. J.
2016-02-01
Long-term changes in river stage can reflect dynamics of river beds. Such changes in the lower reach of a river entering the sea can also indicate sea level rise and land subsidence. The lowermost Mississippi River has experienced changes in its stages over the past several decades which, however, have not been studied yet. Comprehensive analysis of long-term changes in stages of this river can aid in understanding its route downstream and differentiate between sediment erosion and deposition mechanics at several of its sites. In this study, we utilize long-term records on river stages along a 320-km reach of the lowermost Mississippi River from the Old River Control Structure to New Orleans in order to assess the channel dynamics of the highly engineered river. Eight locations along the reach are selected, including Red River Landing, Bayou Sara, St. Francisville, Baton Rouge, Dolandsonville, College Point, Bonnet Carre, and Carrolton. River stages at the locations are analyzed under the low-, medium-, and high-flow conditions over the past three decades. Changes in slope of the river stages between these locations are determined based on difference in their river stages and length of their reach. Preliminary results from this study show that the river stages drop systematically as the river moves downstream. The drop is very low from Red River Landing to Baton Rouge; it suddenly increases from Baton Rouge to the next site at Bonnet Carre, then decreases for the next few sites up to Carrolton. We also found that some river reaches experienced deposition while other river reaches had erosion during the past decades. This paper will present major findings in long term changes in lowermost Mississippi river stages and their slopes. It will also discuss implications of these findings for sediment accumulation and possible river diversion locations.
The CI-Flow Project: A System for Total Water Level Prediction from the Summit to the Sea
2011-11-01
round and may be applied to all types of coastal storms , including intense cool- season extratropical cyclones (i.e., nor’easters). In addition...associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface Within this project, Cl-FLOW addresses...presented for Hurricane Isabel (2003), Hurricane Earl (20I0), and Tropical Storm Nicole (2010) for the Tar -Pamlico and Neuse River basins of North
Transient Flow through an Unsaturated Levee Embankment during the 2011 Mississippi River Flood
NASA Astrophysics Data System (ADS)
Jafari, N.; Stark, T.; Vahedifard, F.; Cadigan, J.
2017-12-01
The Mississippi River and corresponding tributaries drain approximately 3.23 million km2 (1.25 million mi2) or the equivalent of 41% of the contiguous United States. Approximately 2,600 km ( 1,600 miles) of earthen levees presently protect major urban cities and agricultural land against the periodic Mississippi River floods within the Lower Mississippi River Valley. The 2011 flood also severely stressed the levees and highlighted the need to evaluate the behavior of levee embankments during high water levels. The performance of earthen levees is complex because of the uncertainties in construction materials, antecedent moisture contents, hydraulic properties, and lack of field monitoring. In particular, calibration of unsaturated and saturated soil properties of levee embankment and foundation layers along with the evaluation of phreatic surface during high river stage is lacking. Due to the formation of sand boils at the Duncan Point Levee in Baton Rouge, LA during the 2011 flood event, a reconnaissance survey was conducted to collect pore-water pressures in the sand foundation using piezometers and identifying the phreatic surface at the peak river level. Transient seepage analyses were performed to calibrate the foundation and levee embankment material properties using field data collected. With this calibrated levee model, numerical experiments were conducted to characterize the effects of rainfall intensity and duration, progression of phreatic surface, and seasonal climate variability prior to floods on the performance of the levee embankment. For example, elevated phreatic surface from river floods are maintained for several months and can be compounded with rainfall to lead to slope instability.
Constructing Palaeo-DEMs in landscape evolution: example of the Geren catchment, Turkey
NASA Astrophysics Data System (ADS)
van Gorp, Wouter; Schoorl, Jeroen M.; Veldkamp, Tom; Maddy, Darrel; Demir, Tuncer; Aytac, Serdar
2017-04-01
How to reconstruct the past landscape and how does this influence your modelling results? This is an important paradigma in the soilscape and landscape evolution modelling community. Here an example of Turkey will be presented where a 300 ka LEM simulation requested to the thoroughly think about the initial landscape as an important input. What information can be used to know the morphology of a landscape 300 ka ago? The Geren catchment, a tributary of the upstream Gediz river near Kula, Turkey, has been influenced by base level changes during the Late Pleistocene and Holocene. Different lavaflows have blocked the Gediz and Geren river several times over in the timespan of the last 300 ka -200 Ka and in the recent Holocene. The heavily dissected Geren catchment shows a landscape evolution which is more complex than just a reaction on these base level changes. The steps and inputs of the palaeo DEM reconstruction will be presented and the modelling results will be presented. Keywords: Digital Elevation Model, Palaeo DEMs, Numerical modelling
Clarke, John S.; West, Christopher T.
1998-01-01
Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is characterized by local flow near outcrop areas to the north, changing to intermediate flow and then regional flow downdip (southeastward) as the aquifers become more deeply buried. Water levels in these deeper aquifers show a pronounced response to topography and climate in the vicinity of outcrops, and diminish southeastward where the aquifer is more deeply buried. Stream stage and pumpage affect ground-water levels in these deeper aquifers to varying degrees throughout the study area. The geologic characteristics of the Savannah River alluvial valley substantially control the configuration of potentiometric surfaces, ground-water-flow directions, and stream-aquifer relations. Data from 18 shallow borings indicate incision into each aquifer by the paleo Savannah River channel and subsequent infill of permeable alluvium, allowing for direct hydraulic connection between aquifers and the Savannah River along parts of its reach. This hydraulic connection may be the cause of large ground-water discharge to the river near Jackson, S.C., where the Gordon aquifer is in contact with Savannah River alluvium, and also the cause of lows or depressions formed in the potentiometric surfaces of confined aquifers that are in contact with the alluvium. Ground water in these aquifers flows toward the depressions. The influence of the river is diminished downstream where the aquifers are deeply buried, and upstream and downstream ground-water flow is possibly separated by a water divide or 'saddle'. Water-level data indicate that saddle features probably exist in the Gordon aquifer and Dublin aquifer system, and also might be present in the Midville aquifer system. Ground-water levels respond seasonally or in long term to changes in precipitation, evapotranspiration, pumpage, and river stage. Continuous water-level data and water-levels measured in a network of 271 wells during the Spring (May) and Fall (October) in 1992, indicate that seasonal water-level changes generally are
Caldwell, Rodney R.; Bowers, Craig L.
2003-01-01
Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.
NASA Astrophysics Data System (ADS)
Kimiaghalam, Navid; Goharrokhi, Masoud; Clark, Shawn P.; Ahmari, Habib
2015-10-01
Riverbank erosion on the Red River in Winnipeg, Manitoba has raised concerns over the last 20 years and more. Although several recent studies have shown that fluvial erosion can reduce riverbank stability and promote geotechnical slope failure, there are too few that have focused on this phenomenon. The present study includes field measurements, experimental testing, and numerical modelling to quantify fluvial erosion through a 10 km reach of the Red River. Results have shown that seasonal freeze-thaw processes can dramatically reduce the critical shear stress and increase erodibility of the riverbanks. Moreover, a simple method has been employed using hydrodynamic numerical models to define the applied shear stresses on the river banks based on the river water level, which will be useful for further research and design purposes. The TEMP/W numerical model was used to define seasonal frost depth to estimate freeze-thaw effects. Finally all field measurements, experimental and numerical models results were used to predict annual fluvial erosion through this reach of the river.
Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.
2000-01-01
Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water-surface profiles of the Colorado River from Laguna Dam to about the downstream limit of perennial flow at Morelos Dam. The accounting surface extends outward from the edges of the flood plain to the subsurface boundary of the river aquifer. Maps at a scale of 1:100,000 show the extent of the river aquifer and elevation of the accounting surface downstream from Laguna Dam in Arizona and California.
Goldstein, F.J.; Weight, W.D.
1982-01-01
The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.
Lopes, Vitor Sergio Almeida; Riente, Roselene Ribeiro; da Silva, Alexsandro Araújo; Torquilho, Delma Falcão; Carreira, Renato da Silva; Marques, Mônica Regina da Costa
2016-09-15
A single method modified for monitoring of emerging contaminants in river water was developed for large sample volumes. Water samples from rivers of the lagoon system in the city of Rio de Janeiro (Brazil) were analyzed by the SPE-HPLC-MS-TOF analytical method. Acetaminophen was detected in four rivers in the concentration range of 0.09μgL(-1) to 0.14μgL(-1). Salicylic acid was also found in the four rivers in the concentration range of 1.65μgL(-1) to 4.81μgL(-1). Bisphenol-A was detected in all rivers in the concentration range of 1.37μgL(-1) to 39.86μgL(-1). Diclofenac was found in only one river, with concentration of 0.22μgL(-1). The levels of emerging organic pollutants in the water samples of the Jacarepaguá hydrographical basin are significant. The compounds are not routinely monitored and present potential risks to environmental health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Engineered river flow-through to improve mine pit lake and river values.
McCullough, Cherie D; Schultze, Martin
2018-05-30
Mine pit lakes may develop at mine closure when mining voids extend below groundwater levels and fill with water. Acid and metalliferous drainage (AMD) and salinity are common problems for pit lake water quality. Contaminated pit lake waters can directly present significant risk to both surrounding and regional communities and natural environmental values and limit beneficial end use opportunities. Pit lake waters can also discharge into surface and groundwater; or directly present risks to wildlife, stock and human end users. Riverine flow-through is increasingly proposed to mitigate or remediate pit lake water contamination using catchment scale processes. This paper presents the motivation and key processes and considerations for a flow-through pit lake closure strategy. International case studies as precedent and lessons for future application are described from pit lakes that use or propose flow-through as a key component of their mine closure design. Chemical and biological processes including dilution, absorption and flocculation and sedimentation can sustainably reduce pit lake contaminant concentrations to acceptable levels for risk and enable end use opportunities to be realised. Flow-through may be a valid mine closure strategy for pit lakes with poor water quality. However, maintenance of existing riverine system values must be foremost. We further suggest that decant river water quality may, in some circumstances, be improved; notably in examples of meso-eutrophic river waters flowing through slightly acidic pit lakes. Flow-through closure strategies must be scientifically justifiable and risk-based for both lake and receptors potentially affected by surface and groundwater transport. Due to the high-uncertainty associated with this complex strategy, biotic and physico-chemical attributes of both inflow and decant river reaches as well as lake should be well monitored. Monitoring should directly feed into an adaptive management framework discussed with key stakeholders with validation of flow-through as a sustainable strategy prior to mine relinquishment. Copyright © 2018 Elsevier B.V. All rights reserved.
Adeogun, Aina O; Chukwuka, Azubuike V; Okoli, Chukwunonso P; Arukwe, Augustine
2016-01-01
The distributions of polychlorinated biphenyl (PCB) congeners were determined in sediment and muscle of the African sharptooth catfish (Clarias gariepinus) from the Ogun and Ona rivers, southwest Nigeria. In addition, the effect of PCB congeners on condition factor (CF) and associated human health risk was assessed using muscle levels for a noncarcinogenic hazard quotient (HQ) calculation. Elevated concentrations of high-molecular-weight (HMW) PCB congeners were detected in sediment and fish downstream of discharge points of both rivers. A significant reduction in fish body weight and CF was observed to correlate with high PCB congener concentrations in the Ona River. A principal component (PC) biplot revealed significant site-related PCB congener distribution patterns for HMW PCB in samples from the Ogun River (71.3%), while the Ona River (42.6%) showed significant PCB congener patterns for low-molecular-weight (LMW) congeners. Biota-sediment accumulation factor (BSAF) was higher downstream for both rivers, presenting PCB congener-specific accumulation patterns in the Ona River. Significant decreases in fish body weight, length and CF were observed downstream compared to upstream in the Ona River. The non-carcinogenic HQ of dioxin-like congener 189 downstream in both rivers exceeded the HQ = 1 threshold for children and adults for both the Ogun and Ona rivers. Overall, our results suggest that industrial discharges contribute significantly to PCB inputs into these rivers, with potential for significant health implications for neighboring communities that utilize these rivers for fishing and other domestic purposes.
NASA Astrophysics Data System (ADS)
Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.
2015-12-01
During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to explore processes across a wide range of temporal and spatial scales. The presentation will provide insights (& many animations) illustrating river morphodynamics & resulting landscapes formed as a result of sea level oscillations. [Image: The incised 3.2e6 km^2 Sundaland domain @ 431ka
Van Looy, Kris; Piffady, Jérémy
2017-11-01
Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even bring metapopulation strength and persistence up to a level above the current level. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J. P.
2013-12-01
Land subsidence in river deltas is a global problem. It heightens storm surges, salinates groundwater, intensifies river flooding, destabilizes infrastructure and accelerates shoreline retreat. Measurements of delta subsidence typically rely on point measures such as GPS devices, tide gauges or extensometers, but spatial coverage is needed to fully assess risk across river deltas. Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a satellite-based technique that can provide maps of ground deformation with mm to cm-scale vertical resolution. We apply D-InSAR to the coast of the Yellow River Delta in China, which is dominated by aquaculture facilities and has experienced severe coastal erosion in the last twenty years. We extract deformation patterns from dry land adjacent to aquaculture facilities along the coast, allowing the first measurements of subsidence at a non-urban delta shoreline. Results show classic cones-of-depression surrounding aquaculture facilities, likely due to groundwater pumping. Subsidence rates are as high as 250 mm/y at the largest facility on the delta. These rates exceed local and global average sea level rise by nearly two orders of magnitude. If these rates continue, large aquaculture facilities in the area could induce more than a meter of relative sea level rise every five years. Given the global explosion in fish farming in recent years, these results also suggest that similar subsidence and associated relative sea level rise may present a significant hazard for other Asian megadeltas. False-color MODIS image of the Yellow River delta in September 2012. Water appears dark blue, highlighting the abundance of aquaculture facilities along the coast. Green land is primarily agricultural; brown is urban. Red boxes indicate locations of aquaculture facilities examined in this study. Figure from Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J.P.M., (2013), Land Subsidence at Aquaculture Facilities in the Yellow River Delta, Geophysical Research Letters, in press.
Mississippi River Delta, Louisiana as seen from STS-62
1994-03-05
STS062-85-021 (4-18 March 1994) --- The Mississippi River is the largest river system in North America. Its delta is a typical example of the bird's foot class of river deltas. It drains nearly 3 1/2 million square kilometers of real estate and is estimated to carry 2.4 billion kilograms (more than 500 million tons) of sand, silt, and clay to the Gulf of Mexico annually. Most of this sediment is deposited as a delta at the mouth of the river where the velocity of the river water is slowed and its ability to transport sediment is accordingly diminished. Continued deposition at such a site progrades the delta or extends it seaward into the Gulf as much as 150 meters each year until such time as a flooding episode finds a shorter more efficient channel to deliver sediment-laden river waters to the Gulf. At that time the old delta is abandoned and the river begins to build a new delta. In time, compaction of the sediment in the old delta causes it to subside forming first marshes, then bays. This and the modifying effects of coastal waves eventually allow the sea to reclaim much of the temporary land area of the delta. This sequence has repeated itself over and over again at the Mississippi Delta. In this photograph, the present day active Balize delta is shown. According to NASA scientists it is the youngest of the recent delta lobes having begun its seaward pro-gradation only some 600 - 800 years ago. The main channel of the river is 2 kilometers wide and 30 - 40 meters deep. Natural levees here are almost 1 kilometer wide and 3 to 4 meters above sea level. Along the active distributaries of the lower delta, natural levees are less than 100 meters wide and generally less than 0.5 meters above sea level. The bird's foot appearance of deltas such as this is characteristic of low coastal energy conditions - that is, low levels of tidal fluctuation and generally low wave energy. The interdistributary bays are extremely shallow, usually less than a few meters, and contain brackish to normal marine waters except during times of flooding, when fresh water fills the bays. Sedimentation within the bays is very slow, occurring only during flood periods. Along the west side of the river, a highway has been built southeastward to Venice.
Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.
Propagation of solutes and pressure into aquifers following river stage rise
NASA Astrophysics Data System (ADS)
Welch, Chani; Cook, Peter G.; Harrington, Glenn A.; Robinson, Neville I.
2013-09-01
Water level rises associated with river flow events induce both pressure and solute movement into adjacent aquifers at vastly different rates. We present a simple analytical solution that relates the travel time and travel distance of solutes into an aquifer following river stage rise to aquifer properties. Combination with an existing solution for pressure propagation indicates that the ratio of solute to pressure travel times is proportional to the ratio of the volume of water stored in the aquifer before the river stage rise and the volume added by the stage rise and is independent of hydraulic conductivity. Two-dimensional numerical simulations of an aquifer slice perpendicular to a river demonstrate that the solutions are broadly applicable to variably saturated aquifers and partially penetrating rivers. The solutions remain applicable where river stage rise and fall occur, provided that regional hydraulic gradients are low and the duration of the river stage rise is less than pressure and solute travel times to the observation point in the aquifer. Consequently, the solutions provide new insight into the relationships between aquifer properties and distance and time of solute propagation and, in some cases, may be used to estimate system characteristics. Travel time metrics obtained for a flood event in the Cockburn River in eastern Australia using electrical conductivity measurements enabled estimates of aquifer properties and a lateral extent of river-aquifer mixing of 25 m. A detailed time series of any soluble tracer with distinctly different concentrations in river water and groundwater may be used.
Deformation analysis and prediction of bank protection structure with river level fluctuations
NASA Astrophysics Data System (ADS)
Hu, Rui; Xing, Yixuan
2017-04-01
Bank structure is an important barrier to maintain the safety of the embankment. The deformation of bank protection structure is not only affected by soil pressure caused by the excavation of the riverway, but also by the water pressure caused river water level fluctuations. Thus, it is necessary to establish a coupled soil-water model to analyze the deformation of bank structure. Based on Druck-Prager failure criteria and groundwater seepage theory, a numerical model of bank protection structure with consideration of the pore water pressure of soil mass is established. According to the measured river level data with seasonal fluctuating, numerical analysis of the deformation of bank protection structure is implemented. The simulation results show that the river water level fluctuation has clear influence on the maximum lateral displacement of the pile. Meanwhile, the distribution of plastic zone is related to the depth of groundwater level. Finally, according to the river water level data of the recent ten years, we analyze the deformation of the bank structure under extreme river level. The result shows that, compared with the scenario of extreme high river level, the horizontal displacement of bank protection structure is larger (up to 65mm) under extreme low river level, which is a potential risk to the embankment. Reference Schweiger H F. On the use of drucker-prager failure criteria for earth pressure problems[J]. Computers and Geotechnics, 1994, 16(3): 223-246. DING Yong-chun,CHENG Ze-kun. Numerical study on performance of waterfront excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):515-521. Wu L M, Wang Z Q. Three gorges reservoir water level fluctuation influents on the stability of the slope[J]. Advanced Materials Research. Trans Tech Publications, 2013, 739: 283-286.
Dependency of high coastal water level and river discharge at the global scale
NASA Astrophysics Data System (ADS)
Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.
2017-12-01
It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.
NASA Astrophysics Data System (ADS)
Sikes, K.; Chadwick, A. J.; Lamb, M. P.; Fuller, B. M.
2016-12-01
Predicting the frequency of river channel avulsions and the rate of land-loss on deltas is important for hazard mitigation, ecological protection, and coastal sustainability, especially given modern rates of relative sea level rise. Previous work has investigated the effect of hydrodynamic backwater in mediating sedimentation patterns and channel avulsions on deltas, but the effect of sea-level rise on backwater-influenced deltas has yet to be explored in experiments. We will present preliminary results from a flume experiment designed to explore the role of sea-level rise on the evolution of a backwater-mediated delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin under subcritical flow conditions. We used periodic flood events with different discharges to produce persistent non-uniform flow with a backwater length of 1m. Using a combination of image processing and topographic scans, we will characterize the frequency of backwater-mediated avulsions and the evolution of discrete deltaic lobes under a series of steady sea-level rise rates of different magnitude. We predict that, under moderate rise rates, enhanced aggradation will cause channels to avulse at an accelerated pace, replenishing inactive lobes more quickly and naturally acting to mitigate the extent of drowning along the delta shoreline. However, for higher rise rates, we hypothesize that rapid shoreline retreat may shift the backwater zone upstream, leading to the complete abandonment of deltaic lobes.
Zipper, Carl E.; Beaty, Braven; Johnson, Gregory C.; Jones, Jess W.; Krstolic, Jennifer Lynn; Ostby, Brett J.K.; Wolfe, William J.; Donovan, Patricia
2014-01-01
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water- and sediment-quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery-raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed-sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water- and sediment-quality concerns for mussel conservation in the Clinch River.
Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1988 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, Michael R.; Willms, Roger A.; Scholz, Allan T.
1989-10-01
The purpose of this study is to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This report contains the findings of the first year of the study. Chinook salmon (Oncorhynchus tshawytscha (Walbaum)) and steelhead (Oncorhynchus mykiss (Richardson)) were present in the Pend Oreille River prior to the construction of Grand Coulee Dam. The river also contained native cutthroat trout (Oncorhynchus clarki (Richardson)), bull trout (Salvelinus confluentus (Walbaum)) and mountain whitefish (Prosopium williamsoni (Girard)). Rainbow trout were planted in the river and some grew to lengths in excess of 30 inches. With the constructionmore » of Box Canyon Dam, in 1955, the most productive section of the river was inundated. Following the construction of the dam the trout fishery declined and the populations of spiny ray fish and rough fish increased. The objectives of the first year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in fish in the river and four selected tributaries; fish growth rates; the feeding habits and abundance of preferred prey; the migration patterns; and the total fishing pressure, catch per unit effort, and total harvest by conducting a year-round creel survey. 132 refs.« less
Niger River Discharge and the Connection to the West African Monsoon Over the Last 25 kyr
NASA Astrophysics Data System (ADS)
Patten, J.; Marcantonio, F.; Slowey, N. C.; Schmidt, M. W.; Parker, A. O.; Thomas, D. J.
2016-12-01
The intensity of the West African monsoon is directly tied to the shifting of the Inter-Tropical Convergence Zone and global-scale climate variability. As the West African monsoon varies through time, it affects the precipitation that occurs within the Niger River basin and the Niger River's discharge into the eastern equatorial Atlantic Ocean. The accumulation of marine sediments on the continental slope offshore of the Niger Delta reflects these processes. We seek to better understand how related environmental processes have varied as climate and sea level changed during the latter part of the last glacial-interglacial cycle. Here we present results from our ongoing investigation of sediments collected offshore of the Niger Delta that reflect such changes. The concentrations of 230Th, 232Th, and 234U in the sediments have been measured and combined with ages from radiocarbon dates and planktonic foraminiferal δ18O stratigraphies to estimate how the rate of sediment accumulation has varied through time. This record is considered together with measurements of sediment CaCO3 content and grain-size distribution to better understand the relative importance of environmental processes that control the flux of sediments and thorium to the seafloor - scavenging by particles settling through the water column versus the transport of sediments downslope by turbidity flows. We present xs230Th-derived 232Th fluxes that we suggest approximate the amount of fine-grained detrital material delivered from the Niger River to our sites. We anticipate that the importance of these competing processes will vary as climate/sea-level change influences the flux of sediments from the Niger River and the transport of these sediments to the slope.
ERS-ENVISAT radar altimetry over the Amazon basin
NASA Astrophysics Data System (ADS)
Santos da Silva, J.; Calmant, S.; Rotunno Filho, O. C.; Seyler, F.; Mansur, W. J.; Cochonneau, G.
2009-12-01
Since the launch of satellite embarking radar altimeters in the late 80’s, scientists have investigated the feasibility of using these ocean-dedicated data over the continental waters. In fact, satellite radar altimetry is being recognized as a powerful tool to obtain time series of water stage consistent to those obtained by conventional in situ gauge stations. In addition, this technology has been proved to provide reliable information about the dynamics of large water bodies such as lakes and inner seas. However, the results should be deeply examined as we shift the analysis to water levels acquired during satellite crosses over rivers. Yet, hydrologists are still reluctant in using these data, as neither the neces¬sary time sampling nor accuracy is achieved, leading to endless debates in specialized workshops. Noteworthy to highlight, few published studies are dedicated to an in depth assessment of the radar altimetry over rivers, in¬cluding comparisons with water levels at fluviometric gauges. In this work, we present an extensive analysis of the quality of times series of river stages that we have constructed in the Amazon basin for a variety of water bodies such as large rivers, narrow stems, lakes and flooded areas using radar altimeters embarked on¬board ERS-2 and ENVISAT. The approach includes the sensitivity to the raw data processing methodology such as the tracking algorithm, the data selection at the crossings between satellite track and river bed (so-called virtual stations) and correction for off-nadir effects. The VALS toolbox was developed to process altimetry data at virtual stations under the framework of this study. Results of internal validation at cross-overs and external validation by comparison with in situ gauges are presented.
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.
2016-12-01
Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.
NASA Astrophysics Data System (ADS)
Shabani, A.; Zhang, X.
2017-12-01
Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.
NASA Astrophysics Data System (ADS)
Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme
2017-04-01
This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space-time pattern will be discussed as well as the subsequent possible strategies for data assimilation into models (and eventually highlight a generalized approach toward multi-mission data processing). Notably, in case of data assimilation along the course of rivers, the river slope might be estimated and compensated for, in order to produce local water level "pseudo time series" at arbitrary locations, and specifically at model's inlets.
SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY
NASA Astrophysics Data System (ADS)
Pennino, M. J.; Kaushal, S.
2009-12-01
Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease downstream. Ecological stoichiometric ratios along the river indicate increases in C/N ratios downstream, but no corresponding trend with C/P ratios. The N/P ratios increased directly below the treatment plant and then decreased gradually downstream. The C/N/P ratios remained level until the last two sampling stations within 20 miles of the Chesapeake Bay, where there is a large increase. Despite large inputs, there may be large variations in sources and ecological stoichiometry along rivers and estuaries, and knowledge of these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.
Gashi, Fatbardh; Frančišković-Bilinski, Stanislav; Bilinski, Halka; Troni, Naser; Bacaj, Mustafë; Jusufi, Florim
2011-04-01
The main goal of this work was to suggest to authorities concerned a monitoring network on main rivers of Kosovo. We aim to suggest application of WFD (Water Framework Directive) in Kosovo as soon as possible. Our present chemical research could be the first step towards it, giving an opportunity to plan the monitoring network in which pollution locations will be highlighted. In addition to chemical, future ecological studies could be performed. Waters of the rivers Drini i Bardhë, Morava e Binçës, Lepenc and Sitnica, which are of supra-regional interest, are investigated systematically along the river course. Sediments of these rivers were also investigated at the same monitoring points and results have recently been published by us. In this paper we present results of mass concentrations of eco-toxic metals: Cu(II), Pb(II), Cd(II), Zn(II) and Mn(II) in waters of four main rivers of Kosovo, using Anodic Stripping Voltammetry (ASV), Atomic Absorption Spectrophotometry (AAS) and Ultraviolet-Visible (UV-VIS) Spectrometry. Also some physico-chemical parameters are determined: water temperature, electrical conductivity, pH, alkalinity, total hardness and temporary hardness. Results of concentrations of eco-toxic metals in water are compared with concentrations found in sediments at the same locations. Statistical methods are applied to determine anomalous regions Classification of waters at each sampling station of our work was tentatively performed based on metal indicators, using Croatian standards. Our results are showing that concentrations of Zn in all waters are low and pose no risk for living organisms. Exception is water at S5 station, where concentration is above permanent toxic level. Concentrations of Pb and Mn are high at D5 station on Drini i Bardhë River (14 km from boarder to Albania) and at all stations along Sitnica River. Cadmium in high concentrations which is above permanent toxic level is measured in water only at two stations, one (M1) on Morava e Binçës River and the other (S5) on Sitnica River (56 km from boarder to Serbia). Comparison with available results from the past shows that water pollution with respect to toxic elements decreased since 1989, what is explained with closing of heavy industry since then. Continuation of water and sediment monitoring using more than one experimental technique is highly recommended, particularly at locations S2 and S5 with anomalous concentrations of toxic elements, as well as establishing of permanent network of monitoring stations by Kosovo authorities. Remediation of sediments at polluted locations in Sitnica River would be desirable.
Past and present floods in South Moravia
NASA Astrophysics Data System (ADS)
Brázdil, Rudolf; Chromá, Kateřina; Řezníčková, Ladislava; Valášek, Hubert; Dolák, Lukáš; Stachoň, Zdeněk; Soukalová, Eva; Dobrovolný, Petr
2015-04-01
Floods represent the most destructive natural phenomena in the Czech Republic, often causing great material damage or loss of human life. Systematic instrumental measurements of water levels in Moravia (the eastern part of the Czech Republic) started mainly in the 1880s-1890s, while for discharges it was in the 1910s-1920s. Different documentary evidence allows extension of our knowledge about floods prior the instrumental period. The paper presents long-term flood chronologies for four South Moravian rivers: the Jihlava, the Svratka, the Dyje and the Morava. Different documentary data are used to extract floods. Taxation records are of particular importance among them. Since the mid-17th century, damage to property and land (fields, meadows, pastures or gardens) entitled farmers and landowners to request a tax relief. Related documents of this administration process kept mainly in Moravian Land Archives in Brno allow to obtain detail information about floods and their impacts. Selection of floods in the instrumental period is based on calculation of N-year return period of peak water levels and/or peak discharges for selected hydrological stations of the corresponding rivers (with return period of two years and more). Final flood chronologies combine floods derived from both documentary data and hydrological measurements. Despite greater inter-decadal variability, periods of higher flood frequency are c. 1821-1850 and 1921-1950 for all four rivers; for the Dyje and Morava rivers also 1891-1900. Flood frequency fluctuations are further compared with other Central European rivers. Uncertainties in created chronologies with respect to data and methods used for compilation of long-term series and anthropogenic changes in river catchments are discussed. The study is a part of the research project "Hydrometeorological extremes in Southern Moravia derived from documentary evidence" supported by the Grant Agency of the Czech Republic, reg. no. 13-19831S.
Pedro, F; Maltchik, L; Bianchini, I
2006-05-01
The dynamics of aquatic macrophytes in intermittent rivers is generally related to the characteristics of the resistance and resilience of plants to hydrologic disturbances of flood and drought. In the semi-arid region of Brazil, intermittent rivers and streams are affected by disturbances with variable intensity, frequency, and duration throughout their hydrologic cycles. The aim of the present study is to determine the occurrence and variation of biomass of aquatic macrophyte species in two intermittent rivers of distinct hydrologic regimes. Their dynamics were determined with respect to resistance and resilience responses of macrophytes to flood and drought events by estimating the variation of biomass and productivity throughout two hydrologic cycles. Twenty-one visits were undertaken in the rewetting, drying, and drought phases in a permanent puddle in the Avelós stream and two temporary puddles in the Taperoá river, state of Paraíba, Northeast Brazil. The sampling was carried out by using the square method. Floods of different magnitudes occurred during the present study in the river and in the stream. The results showed that floods and droughts are determining factors in the occurrence of macrophytes and in the structure of their aquatic communities. The species richness of the aquatic macrophyte communities was lower in the puddles of the river and stream subject to flood events, when compared to areas where the run-off water is retained. At the beginning of the recolonization process, the intensity of the floods was decisive in the productivity and biomass of the aquatic macrophytes in the Taperoá river and the Avelós stream. In intermediate levels of disturbance, the largest values of productivity and biomass and the shortest time for starting the recolonization process occurred.
NASA Astrophysics Data System (ADS)
Wetter, Oliver; Tuttenuj, Daniel
2016-04-01
Part I: Dr. Oliver Wetter. (Oeschger Centre for Climate Change Research, University of Bern, Switzerland) Part II: PhD student Daniel Tuttenuj (Oeschger Centre of Climate Change Research, University of Bern, Switzerland) The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet systematically analysed the period from 1446-1542 and could prove a large number of pre-instrumental flood events of river Rhine, Birs, Birsig and Wiese in Basel. All in all the weekly led account books contained 54 Rhine flood events, whereas chroniclers and annalists only recorded seven floods during the same period. This is a ratio of almost eight to one. This large difference points to the significantly sharper "observation skills" of the account books towards smaller floods, which may be explained by the fact that bridges can be endangered by relatively small floods because of driftwood, whereas it is known that chroniclers or annalists were predominantly focussing on spectacular (extreme) flood events. We [Oliver Wetter and Daniel Tuttenuj] are now able to present first preliminary results of reconstructed peak water levels and peak discharges of pre instrumental river Aare-, Emme-, Limmat-, Reuss-, Rhine- and Saane floods. These first results clearly show the strengths as well as the limits of the data and method used, depending mainly on the river types. Of the above mentioned rivers only the floods of river Emme could not be reconstructed whereas the long-term development of peak water levels and peak discharges of the other rivers clearly correlate with major local and supra-regional Swiss flood corrections over time. PhD student Daniel Tuttenuj is going to present the results for river Emme and Saane (see Abstract Daniel Tuttenuj), whereas Dr Oliver Wetter is going to present the results for the other rivers and gives a first insight on long-term recurring periods of smaller river Birs-, Birsig-, Rhine- and Wiese flood events based on the analysis of the weekly led account books "Wochenausgabenbücher der Stadt Basel" (see also Abstract of Daniel Tuttenuj).
Rocha, Luciana S; Lopes, I; Lopes, Cláudia B; Henriques, Bruno; Soares, Amadeu M V M; Duarte, Armando C; Pereira, Eduarda
2014-01-01
In the present work, the efficiency of rice husk to remove Hg(II) from river waters spiked with realistic environmental concentrations of this metal (μg L(-1) range) was evaluated. The residual levels of Hg(II) obtained after the remediation process were compared with the guideline values for effluents discharges and water for human consumption, and the ecotoxicological effects using organisms of different trophic levels were assessed. The rice husk sorbent proved to be useful in decreasing Hg(II) contamination in river waters, by reducing the levels of Hg(II) to values of ca. 8.0 and 34 μg L(-1), for an Hg(II) initial concentration of 50 and 500 μg L(-1), respectively. The remediation process with rice husk biowaste was extremely efficient in river waters spiked with lower levels of Hg(II), being able to eliminate the toxicity to the exposed organisms algae Pseudokirchneriella subcapitata and rotifer Brachionus calyciflorus and ensure the total survival of Daphnia magna species. For concentrations of Hg(II) tenfold higher (500 μg L(-1)), the remediation process was not adequate in the detoxification process, still, the rice husk material was able to reduce considerably the toxicity to the bacteria Vibrio fischeri, algae P. subcapitata and rotifer B. calyciflorus, whose responses where fully inhibited during its exposure to the non-remediated river water. The use of a battery of bioassays with organisms from different trophic levels and whose sensitivity revealed to be different and dependent on the levels of Hg(II) contamination proved to be much more accurate in predicting the ecotoxicological hazard assessment of the detoxification process by means of rice husk biowaste.
Rice, Karen C.; Bennett, Mark; Shen, Jian
2011-01-01
As a result of climate change and variability, sea level is rising throughout the world, but the rate along the east coast of the United States is higher than the global mean rate. The U.S. Geological Survey, in cooperation with the City of Newport News, Virginia, conducted a study to evaluate the effects of possible future sea-level rise on the salinity front in two tributaries to Chesapeake Bay, the York River, and the Chickahominy/James River estuaries. Numerical modeling was used to represent sea-level rise and the resulting hydrologic effects. Estuarine models for the two tributaries were developed and model simulations were made by use of the Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D), developed by the Virginia Institute of Marine Science. HEM-3D was used to simulate tides, tidal currents, and salinity for Chesapeake Bay, the York River and the Chickahominy/James River. The three sea-level rise scenarios that were evaluated showed an increase of 30, 50, and 100 centimeters (cm). Model results for both estuaries indicated that high freshwater river flow was effective in pushing the salinity back toward Chesapeake Bay. Model results indicated that increases in mean salinity will greatly alter the existing water-quality gradients between brackish water and freshwater. This will be particularly important for the freshwater part of the Chickahominy River, where a drinking-water-supply intake for the City of Newport News is located. Significant changes in the salinity gradients for the York River and Chickahominy/James River estuaries were predicted for the three sea-level rise scenarios. When a 50-cm sea-level rise scenario on the York River during a typical year (2005) was used, the model simulation showed a salinity of 15 parts per thousand (ppt) at river kilometer (km) 39. During a dry year (2002), the same salinity (15 ppt) was simulated at river km 45, which means that saltwater was shown to migrate 6 km farther upstream during a dry year than a typical year. The same was true of the Chickahominy River for a 50-cm sea-level rise scenario but to a greater extent; a salinity of 4 ppt was simulated at river km 13 during a typical year and at river km 28 during a dry year, indicating that saltwater migrated 15 km farther upstream during a dry year. Near a drinking-water intake on the Chickahominy River, for a dry year, salinity is predicted to more than double for all three sea-level rise scenarios, relative to a typical year. During a typical year at this location, salinity is predicted to increase to 0.006, 0.07, and more than 2 ppt for the 30-, 50-, and 100-cm rise scenarios, respectively.
NASA Astrophysics Data System (ADS)
Sitzia, T.; Picco, L.; Ravazzolo, D.; Comiti, F.; Mao, L.; Lenzi, M. A.
2016-07-01
We compared three gravel-bed rivers in north-eastern Italy (Brenta, Piave, Tagliamento) having similar bioclimate, geology and fluvial morphology, but affected by different intensities of anthropogenic disturbance related particularly to hydropower dams, training works and instream gravel mining. Our aim was to test whether a corresponding difference in the interactions between vegetation and geomorphological patterns existed among the three rivers. In equally spaced and sized plots (n = 710) we collected descriptors of geomorphic conditions, and presence-absence of woody species. In the less disturbed river (Tagliamento), spatial succession of woody communities from the floodplain to the channel followed a profile where higher elevation floodplains featured more developed tree communities, and lower elevation islands and bars were covered by pioneer communities. In the intermediate-disturbed river (Piave), islands and floodplains lay at similar elevation and both showed species indicators of mature developed communities. In the most disturbed river (Brenta), all these patterns were simplified, all geomorphic units lay at similar elevations, were not well characterized by species composition, and presented similar persistence age. This indicates that in human-disturbed rivers, channel and vegetation adjustments are closely linked in the long term, and suggests that intermediate levels of anthropogenic disturbance, such as those encountered in the Piave River, could counteract the natural, more dynamic conditions that may periodically fragment vegetated landscapes in natural rivers.
Chase, Katherine J.
2014-01-01
Major floods in 1996 and 1997 intensified public debate about the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to carry out a cumulative effects study on the main stem of the Yellowstone River. The cumulative effects study is intended to provide a basis for future management decisions within the watershed. Streamflow statistics, such as flow-frequency data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated low-flow frequency data and general monthly and annual statistics for unregulated and regulated streamflow conditions for the Upper Yellowstone and Bighorn Rivers for the 1928–2002 study period; these data are presented in this report. Unregulated streamflow represents flow conditions during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period.
Latent resonance in tidal rivers, with applications to River Elbe
NASA Astrophysics Data System (ADS)
Backhaus, Jan O.
2015-11-01
We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.
Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl
2015-07-14
The groundwater-level measurements were used to construct a generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system. Groundwater-level altitudes measured in nonflowing and flowing wells used to construct the potentiometric-surface map ranged from 6,451 to 7,307 feet (excluding four unmeasured flowing wells used for contour construction purposes). The potentiometric-surface map indicates that groundwater in the study area generally moves from north to south, but this pattern of flow is altered locally by groundwater divides, groundwater discharge to the Green River, and possibly to a tributary river (Big Sandy River) and two reservoirs (Fontenelle and Big Sandy Reservoirs).
Autin, W.J.
1993-01-01
The Holocene geomorphic history of southeastern Louisiana's middle Amite River is recorded in the stratigraphy of three alloformations, identified in decreasing age as the Watson (WAT), Denham Springs (DS), and Magnolia Bridge (MAG). The WAT meander belt formed by at least 9000 yr B.P., when sea level was lower and the Amite River was tributary to a larger ancestral drainage basin. The DS became an active meander belt by at least 3000 yr B.P., in response to relative sea-level rise and eastward progradation of the Mississippi River delta plain. The MAG developed its meander belt, in part, during the European settlement of the drainage basin, and is now attempting to adjust to modern anthropogenic influences. Geomorphic influences on the middle Amite River floodplain have temporal and spatial components that induce regional- and local-scale effects. Regional extrinsic influences caused meander belt avulsion that produced alloformations. However, local influences produced intrinsic geomorphic thresholds that modified channel morphology within a meander belt but did not induce alloformation development. Base-level influences of the relative sea-level rise and the Mississippi River delta plain were so dominant that the effects of possible climate change were not recognized in the Holocene Amite River system.
This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explor...
Cox, Marisa H.; Hatch, Christine
2003-01-01
Temperature, water level elevation, stage height, and river discharge data for this report were collected in and adjacent to the Russian River from Hopland to Guerneville, CA over a four-year period from 1998 to 2002 to establish baselines for long-term water quality, water supply and habitat. Data files presented in this report were collected by the USGS and the Sonoma County Water Agency's Engineering Resource and Planning, and Natural Resource Divisions. Temperature data were collected in single-channel submersible microloggers or temperature data were collected simultaneously with water-elevation data in dual-channel down-hole data loggers. Stream stage and streamflow data were collected at USGS stream gaging stations located near Hopland, Healdsburg, and Guerneville over a 130 km reach of the Russian River. During the period of record stream flow ranged from 3 to 1458 m3/s. Stream temperature ranged from 8 to 29 oC while groundwater temperature ranged from 10 to 38 oC. Stream stage varied 5 m seasonly, while ground-water level varied 19 m over the same time scale.
NASA Astrophysics Data System (ADS)
Besset, M.; Anthony, E.; Sabatier, F.
2016-12-01
The influence of physical processes on river deltas has long been identified, mainly on the basis of delta morphology. A cuspate delta is considered as wave-dominated, a delta with finger-like extensions is characterized as river-dominated, and a delta with estuarine re-entrants is considered tide-dominated (Galloway, 1975). The need for a more quantitative classification is increasingly recognized, and is achievable through quantified combinations, a good example being Syvitski and Saito (2007) wherein the joint influence of marine power - wave and tides - is compared to that of river influence. This need is further justified as deltas become more and more vulnerable. Going forward from the Syvitski and Saito (2007) approach, we confront, from a large database on 60 river deltas, the maximum potential power of waves and the tidal range (both representing marine power), and the specific stream power and river sediment supply reflecting an increasingly human-impacted river influence. The results show that 45 deltas (75%) have levels of marine power that are significantly higher than those of specific stream power. Five deltas have sufficient stream power to counterbalance marine power but a present sediment supply inadequate for them to be statistically considered as river-dominated. Six others have a sufficient sediment supply but a specific stream power that is not high enough for them to be statistically river-dominated. A major manifestation of the interplay of these parameters is accelerated delta erosion worldwide, shifting the balance towards marine power domination. Deltas currently eroding are mainly influenced by marine power (93%), and small deltas (< 300 km2 of deltaic protuberance) are the most vulnerable (82%). These high levels of erosion domination, compounded by accelerated subsidence, are related to human-induced sediment supply depletion and changes in water discharge in the face of the sediment-dispersive capacity of waves and currents.
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Guo, Xinyu; Zhao, Liang
2018-01-01
Using a three-dimensional coupled biophysical model, we simulated the responses of a lowtrophic ecosystem in the East China Sea (ECS) to long-term changes in nutrient load from the Changjiang (Yangtze) River over the period of 1960-2005. Two major factors affected changes in nutrient load: changes in river discharge and the concentration of nutrients in the river water. Increasing or decreasing Changjiang discharge induced different responses in the concentrations of nutrients, phytoplankton, and detritus in the ECS. Changes in dissolved inorganic nitrogen (DIN), silicate (SIL), phytoplankton, and detritus could be identified over a large area of the ECS shelf, but changes in dissolved inorganic phosphate (DIP) were limited to a small area close to the river mouth. The high DIN:DIP and SIL:DIP ratios in the river water were likely associated with the different responses in DIN, DIP, and SIL. As DIP is a candidate limiting nutrient, perturbations in DIP resulting from changes in the Changjiang discharge are quickly consumed through primary production. It is interesting that an increase in the Changjiang discharge did not always lead to an increase in phytoplankton levels in the ECS. Phytoplankton decreases could be found in some areas close to the river mouth. A likely cause of the reduction in phytoplankton was a change in the hydrodynamic field associated with the river plume, although the present model is not suitable for examining the possibility in detail. Increases in DIN and DIP concentrations in the river water primarily led to increases in DIN, DIP, phytoplankton, and detritus levels in the ECS, whereas decreases in the SIL concentration in river water led to lower SIL concentrations in the ECS, indicating that SIL is not a limiting nutrient for photosynthesis, based on our model results from 1960 to 2005. In both of the above-mentioned cases, the sediment accumulation rate of detritus exhibited a large spatial variation near the river mouth, suggesting that core sample data should be carefully interpreted.
Holistic Sustainability Assessment of Agricultural Rainwater Harvesting
We present a methodology for holistic sustainability assessment of green infrastructure, applied to agricultural rainwater harvesting (RWH) in the Albemarle-Pamlico river basin. It builds upon prior work in the region through the use of detailed, crop-level management information...
Nikoleris, Lina; Hansson, Maria C
2015-01-15
Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.
2017-12-01
Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that other shorelines within Twofold Bay are seemingly unaffected by the Towamba River, and most shorelines in southeast Australia receive minimal fluvial sediment input, further emphasises the need to consider nearshore sediment reserves in order to accurately determine sea-level rise impacts on sandy shorelines.
NASA Astrophysics Data System (ADS)
Howard, Alan D.; Tierney, Heather E.
2012-01-01
A landform evolution model is used to investigate the historical evolution of a fluvial landscape along the Potomac River in Virginia, USA. The landscape has developed on three terraces whose ages span 3.5 Ma. The simulation model specifies the temporal evolution of base level control by the river as having a high-frequency component of the response of the Potomac River to sea level fluctuations superimposed on a long-term epeirogenic uplift. The wave-cut benches are assumed to form instantaneously during sea level highstands. The region is underlain by relatively soft coastal plain sediments with high intrinsic erodibility. The survival of portions of these terrace surfaces, up to 3.5 Ma, is attributable to a protective cover of vegetation. The vegetation influence is parameterized as a critical shear stress to fluvial erosion whose magnitude decreases with increasing contributing area. The simulation model replicates the general pattern of dissection of the natural landscape, with decreasing degrees of dissection of the younger terrace surfaces. Channel incision and relief increase in headwater areas are most pronounced during the relatively brief periods of river lowstands. Imposition of the wave-cut terraces onto the simulated landscape triggers a strong incisional response. By qualitative and quantitative measures the model replicates, in a general way, the landform evolution and present morphology of the target region.
Water level response to hydropower development in the upper Mekong River.
Li, Shaojuan; He, Daming
2008-05-01
Environmental changes and their transboundary influences on the Mekong watercourse system have been an international research focus in recent years, but the opinions and results related to the impacts of upper Mekong River dams are quite different. In this paper, based on the records of water levels from 1960 to 2003 at three mainstream sites in the upper Mekong River, a quantitative examination has been undertaken into characteristics of the mainstream water-level process at multiple timescales and its response to cascade development. The major results are: i) Annual mean, wet period mean, and the mean water levels during the period between March and April (PBMA period) exhibit a significant increasing trend at Jiuzhou and Yunjinghong sites, which are influenced by large-scale factors such as climate change and solar activity. ii) The interdecadal and interannual variations of annual mean, annual maximum, and wet period mean water levels at three sites show similar features during the dam construction period. iii) The interdecadal variations of PBMA period water level show a gradual increase at Gajiu and Yunjinghong sites but a falling trend at Jiuzhou; these trends confirm that there is some regulation on the flow in the dry season caused by the two existing dams. iv) The downstream effects of the present dams on water levels are very limited at the annual mean and wet season mean levels, not apparent at the monthly and yearly timescales, and relatively significant at daily and hourly timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuccio, V.F.
The purposes of the study are to (1) present burial histories representative of the northwestern and southwestern parts of the Powder River Basin (south of lat 45 N.), (2) show the maximum level of thermal maturity for the Steele Member and its Shannon Sandstone Bed, and (3) show the source-rock potential and timing of petroleum generation for the Steele. It is hoped that data presented in the study will also lead to a better understanding of the burial and temperature history of the Shannon Sandstone Bed, an understanding crucial for diagenetic studies, fluid-flow modeling, and reservoir-rock characterization.
Williams, John R.; Galloway, John P.
1986-01-01
The purpose of this report is to make available basic data on radiocarbon dating of 61 organic samples from 40 locations in the western Copper River Basin and adjacent uplands and in the uppermost Matanuska River Valley. The former distribution of late Quaternary glacial lakes and of glaciers as mapped from field work and photo interpretation is provided as background for interpretation of the radiocarbon dates and are the basic data needed for construction of the late Quaternary chronology. The glacial boundaries, formed and expressed by moraines, ice-contact margins, marginal channels, deltas, and other features, are obscured by a drape of glaciolacustrine deposits in a series of glacial lakes. The highest lake, represented by bottom sediments as high as 914 m to 975 m above sea level, extends from Fog Lakes lowland on Susitna River upstream into the northwestern part of the Copper River Basin (the part now draining to Susitna River) where it apparently was held in by an ice border. It was apparently dammed by ice from the Mt. McKinley area, by Talkeetna G1acier, and may have had a temporary drainage threshold at the headwaters of Chunilna Creek. No shorelines have been noted within the map area, although Nichols and Yehle (1961) reported shorelines within the 914-975 m range in the Denali area to the north of that mapped. Recent work by geologic consultants for the Susitna Hydroelectric Project has confirmed the early inferences (Karlstrom, 1964) about the existence of a lake in the Susitna canyon, based originally on drilling by the Bureau of Reclamation about 35 years ago. According to dating of deposits at Tyone Bluff (map locations 0, P), Thorson and others (1981) concluded that a late Wisconsin advance of the glaciers between 11,535 and 21,730 years ago was followed by a brief interval of lacustrine sedimentation, and was preceded by a long period of lake deposition broken by a lowering of the lake between 32,000 and about 25,000 years ago. An alternate interpretation of the late Wisconsin till at Tyone Bluff is that it is a glaciolacustrine diamicton of the 914-975 m lake into which the ice advanced to the Hatchet Lake and to the Old Man moraines. The level of this regional lake in the Susitna drainage and on Heartland Ridge then dropped from over 914 m to about 777 m, to uncover the Tyone Spillway. An intermediate lake level in the Susitna-Tyone-Louise lake region was lowered rapidly by erosion of the spillway to 747 m. The drainage of the 747 m lake was concentrated in the spillway leading west from the West Fork Gulkana River. This spillway or a rock threshold downstream apparently was stable enough to permit formation of basin-wide, apparently undeformed, shoreline systems at 747 m, and, on recession, local shorelines at 717 m and 700 m and lower levels. The level of the 747 m lake that was confined to about 9000 km2 of the present Copper River Basin fluctuated for one or more reasons such as: the volume of ice added to or withdrawn from the system, because of changes in water budget (assuming no outflow), and/or because of temporary releases through the only outlets, perhaps Mentasta Pass, but importantly, the Copper River canyon. The 747 m lake persisted until glaciers had withdrawn to well within the Chugach Mountains, perhaps 10 to 20 km from the present glaciers.
Hashim, Sarfraz; Yuebo, Xie; Ahmad, Fiaz; Arslan, Chaudhry; Saifullah, Muhammad
2015-01-01
To protect against the environmental pollution, the present research was undertaken to enumerate the Bacterial Technologies (BTs) on the restoration of polluted urban rivers, that is, Fenghu-Song Yang River (FSR) and Xuxi River (XXR). Experimental research accounted for the physiochemical parameters (pH; temperature; dissolved oxygen (DO); chemical oxygen demand (COD); total phosphorus (TP); total nitrogen (TN); and ammonia nitrogen (NH3N)) before and after the BT operation. The results declared that the BT is efficient to restore the polluted rivers up to reliable condition. These results were analyzed by using multivariate statistical techniques (principal component analysis (PCA) and cluster analysis (CA)). These techniques interpreted the complex data sets and expressed the point source information about the water quality of these rivers at SA5, SA6, and SB3 under highly polluted regions. For better understanding, water quality index (WQI) was applied to compute the single numeric value. WQI results are evidence of the above results which prove the water quality of both rivers faced under outrageous condition (below 50 WQI scores) before the BT treatment, but, after the treatment, the rivers were restored from fair to good level (above 50 WQI scores) and overall output of these scores was quite similar to detect the point source of pollution. These results described an abrupt recovery of the urban rivers up to reliable condition for aquatic organism and clear effluents from the rivers.
Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate
NASA Astrophysics Data System (ADS)
Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.
2017-12-01
Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.
Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V
2014-08-19
Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin).
NASA Astrophysics Data System (ADS)
McKenna, M. H.; Simpson, C. P.; Jordan, A. M.
2017-12-01
Navigating the Mississippi River in Vicksburg, MS is known to be difficult for barge traffic in even the best of conditions due to the river's sharp bend 2 km north of the Highway 80 Bridge. When river levels rise, the level of difficulty in piloting barges under the bridge rises. Ongoing studies by the U.S. Army Engineer Research and Development Center (ERDC) are investigating infrasound as a means to correlate the low frequency acoustics generated by the river with the presence of hazardous conditions observed during flood stage, i.e., rough waters and high currents, which may lead to barge-bridge impacts. The Denied Area Monitoring and Exploitation of Structures (DAMES) Array at the ERDC Vicksburg, MS campus is a persistent seismic-acoustic array used for structural monitoring and explosive event detection. The DAMES Array is located 4.3 km from the Mississippi River/Highway 80 Bridge junction and recorded impulsive sub-audible acoustic signals, similar to an explosive event, from barge-bridge collisions that occurred between 2011 and 2017. This study focuses on five collisions that occurred during January 2016, which resulted in closing the river for barge transit and the Highway 80 Bridge for rail transit for multiple days until safety inspections were completed. The Highway 80 Bridge in Vicksburg, MS is the only freight-crossing over the Mississippi River between Baton Rouge, LA and Memphis, TN, meaning delays from these closings have significant impacts on all transit of goods throughout the Southeastern United States. River basin data and regional meteorological data have been analyzed to find correlations between the river conditions in January 2016, and recorded infrasound data with the aim of determining the likelihood that hazardous conditions are present on the river. Frequency-wavenumber analysis was used to identify the transient signals associated with the barge-bridge impacts and calculate the backazimuth to their source. Then, with the use of Sandia National Laboratory's Infratool, the collected infrasound data were analyzed before, during, and after each collision to identify patterns in the continuous-wave acoustics associated with the river's turbulence at the bend in the river 2 km north of the bridge. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.
Water quality assessment of the River Nile system: an overview.
Wahaab, Rifaat A; Badawy, Mohamed I
2004-03-01
The main objective of the present article is to assess and evaluate the characteristics of the Nile water system, and identify the major sources of pollution and its environmental and health consequences. The article is also aimed to highlight the importance of water management via re-use and recycle of treated effluents for industrial purpose and for cultivation of desert land. An intensive effort was made by the authors to collect, assess and compile the available data about the River Nile. Physico-chemical analyses were conducted to check the validity of the collected data. For the determination of micro-pollutants, Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC) were used. Heavy metals were also determined to investigate the level of industrial pollution in the river system. The available data revealed that the river receives a large quantity of industrial, agriculture and domestic wastewater. It is worth mentioning that the river is still able to recover in virtually all the locations, with very little exception. This is due to the high dilution ratio. The collected data confirmed the presence of high concentrations of chromium and manganese in all sediment samples. The residues of organo-chlorine insecticides were detected in virtually all locations. However, the levels of such residues are usually below the limit set by the WHO for use as drinking water. The most polluted lakes are Lake Maryut and Lake Manzala. Groundwater pollution is closely related to adjacent (polluted) surface waters. High concentrations of nutrients, E. coli, sulfur, heavy metals, etc. have been observed in the shallow groundwater, largely surpassing WHO standards for drinking water use. A regular and continuous monitoring scheme shall be developed for the River Nile system. The environmental law shall be enforced to prohibit the discharge of wastewater (agricultural, domestic or industrial) to River Nile system.
Li, Qifeng; Wang, Tieyu; Zhu, Zhaoyun; Meng, Jing; Wang, Pei; Suriyanarayanan, Sarvajayakesavalu; Zhang, Yueqing; Zhou, Yunqiao; Song, Shuai; Lu, Yonglong; Yvette, Baninla
2017-01-01
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are extremely persistent in the environment, and have the potential for long-range transport. The present study focused on the Daling River and its tributary, a larger river flowing into Liaodong Bay of the Bohai Sea. Recent studies have shown the elevated levels of PFOS and PFOA in the Daling River. Hence, the objective of this study was to investigate the seasonal changes, fate and transport modeling of PFOS and PFOA concentrations using one-dimensional DHI MIKE-11 river model. We designed three scenarios to assess the risk of PFOS and PFOA in surface water: the measured concentrations, constant maximum and the magnitude of a continuous constant load. The mean absolute errors divided by the mean of measured concentrations were 41-64% for PFOS and 29-36% for PFOA. The result indicated that PFOS and PFOA in the downstream of the Daling River would not reach a harmful level with the current load. The fluorochemical parks contributed an average of 44.57% of the total PFOS and 95.44% of the total PFOA flow that reached the estuary. The mass flow was observed as 1.74 kg y -1 for PFOS and 40.57 kg y -1 for PFOA to the Bohai Sea. These modeling results may be useful for monitoring the status and trends of emerging POPs and will help the determination of the risk to both humans and wildlife, in the estuarine and coastal areas of the Bohai Sea, China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki
2014-12-15
Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stets, Edward G.; Kelly, Valerie J.; Broussard, Whitney P.; Smith, Thor E.; Crawford, Charles G.
2012-01-01
Nutrient pollution in the form of excess nitrogen and phosphorus inputs is a well-known cause of water-quality degradation that has affected water bodies across the Nation throughout the 20th century. The recognition of excess nutrients as pollution developed later than the recognition of other water-quality problems, such as waterborne illness, industrial pollution, and organic wastes. Nevertheless, long-term analysis of nutrient pollution is fundamental to our understanding of the current magnitude of the problem, as well the origins and the effects. This report describes the century-scale changes in water quality across a range streams in order to place current water-quality concerns in historical context and presents this history on a national scale as well as for selected river reaches. The primary focus is on nutrient pollution, but the development and societal responses to other water-quality problems also are considered. Land use and agriculture in the selected river reaches also are analyzed to consider how these factors may relate to nutrient pollution. Finally, the availability of relevant nutrient and inorganic carbon data are presented for the selected river reaches. Sources of these data included Federal agencies, State-level reports, municipal public works facilities, public health surveys, and sanitary surveys. The availability of these data extends back more than a century for most of the selected river reaches and suggests that there is a tremendous opportunity to document the development of nutrient pollution in these river reaches.
Time and Origin of Cichlid Colonization of the Lower Congo Rapids
Schwarzer, Julia; Misof, Bernhard; Ifuta, Seraphin N.; Schliewen, Ulrich K.
2011-01-01
Most freshwater diversity is arguably located in networks of rivers and streams, but, in contrast to lacustrine systems riverine radiations, are largely understudied. The extensive rapids of the lower Congo River is one of the few river stretches inhabited by a locally endemic cichlid species flock as well as several species pairs, for which we provide evidence that they have radiated in situ. We use more that 2,000 AFLP markers as well as multilocus sequence datasets to reconstruct their origin, phylogenetic history, as well as the timing of colonization and speciation of two Lower Congo cichlid genera, Steatocranus and Nanochromis. Based on a representative taxon sampling and well resolved phylogenetic hypotheses we demonstrate that a high level of riverine diversity originated in the lower Congo within about 5 mya, which is concordant with age estimates for the hydrological origin of the modern lower Congo River. A spatial genetic structure is present in all widely distributed lineages corresponding to a trisection of the lower Congo River into major biogeographic areas, each with locally endemic species assemblages. With the present study, we provide a phylogenetic framework for a complex system that may serve as a link between African riverine cichlid diversity and the megadiverse cichlid radiations of the East African lakes. Beyond this we give for the first time a biologically estimated age for the origin of the lower Congo River rapids, one of the most extreme freshwater habitats on earth. PMID:21799840
Using remote sensing for validation of a large scale hydrologic and hydrodynamic model in the Amazon
NASA Astrophysics Data System (ADS)
Paiva, R. C.; Bonnet, M.; Buarque, D. C.; Collischonn, W.; Frappart, F.; Mendes, C. B.
2011-12-01
We present the validation of the large-scale, catchment-based hydrological MGB-IPH model in the Amazon River basin. In this model, physically-based equations are used to simulate the hydrological processes, such as the Penman Monteith method to estimate evapotranspiration, or the Moore and Clarke infiltration model. A new feature recently introduced in the model is a 1D hydrodynamic module for river routing. It uses the full Saint-Venant equations and a simple floodplain storage model. River and floodplain geometry parameters are extracted from SRTM DEM using specially developed GIS algorithms that provide catchment discretization, estimation of river cross-sections geometry and water storage volume variations in the floodplains. The model was forced using satellite-derived daily rainfall TRMM 3B42, calibrated against discharge data and first validated using daily discharges and water levels from 111 and 69 stream gauges, respectively. Then, we performed a validation against remote sensing derived hydrological products, including (i) monthly Terrestrial Water Storage (TWS) anomalies derived from GRACE, (ii) river water levels derived from ENVISAT satellite altimetry data (212 virtual stations from Santos da Silva et al., 2010) and (iii) a multi-satellite monthly global inundation extent dataset at ~25 x 25 km spatial resolution (Papa et al., 2010). Validation against river discharges shows good performance of the MGB-IPH model. For 70% of the stream gauges, the Nash and Suttcliffe efficiency index (ENS) is higher than 0.6 and at Óbidos, close to Amazon river outlet, ENS equals 0.9 and the model bias equals,-4.6%. Largest errors are located in drainage areas outside Brazil and we speculate that it is due to the poor quality of rainfall datasets in these areas poorly monitored and/or mountainous. Validation against water levels shows that model is performing well in the major tributaries. For 60% of virtual stations, ENS is higher than 0.6. But, similarly, largest errors are also located in drainage areas outside Brazil, mostly Japurá River, and in the lower Amazon River. In the latter, correlation with observations is high but the model underestimates the amplitude of water levels. We also found a large bias between model and ENVISAT water levels, ranging from -3 to -15 m. The model provided TWS in good accordance with GRACE estimates. ENS values for TWS over the whole Amazon equals 0.93. We also analyzed results in 21 sub-regions of 4 x 4°. ENS is smaller than 0.8 only in 5 areas, and these are found mostly in the northwest part of the Amazon, possibly due to same errors reported in discharge results. Flood extent validation is under development, but a previous analysis in Brazilian part of Solimões River basin suggests a good model performance. The authors are grateful for the financial and operational support from the brazilian agencies FINEP, CNPq and ANA and from the french observatories HYBAM and SOERE RBV.
The contribution of sea-level rise to flooding in large river catchments
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.
2012-12-01
Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.
Continental hydrology from satellite multi-sensor data and in situ observations
NASA Astrophysics Data System (ADS)
Kouraev, A. V.
2009-04-01
Continental waters represent a tiny part of the total water amount on Earth, but play a major role in climate variability and have paramount importance for terrestrial ecosystems and human needs. They are an integral part of the global climate system with important links and feedbacks generated through its influence on surface energy and moisture fluxes between continental water, atmosphere and oceans. It is important to well understand what are temporal and spatial scales of variability of continental waters, what are teleconnections, feedbacks and mechanisms responsible for the changes, what are natural and anthropogenic causes of recent and historical changes in the hydrometeorological parameters. In this respect, continental hydrology is one of the research fields where acquired knowledge and understanding of natural processes will benefit from combination of conventional observations with data from SMOS and other Earth Observation satellites. We present studies of two key regions where SMOS data have the potential to significantly expand the potential of scientific and applied studies: a) Western Siberia and b) Euphrates-Tigris river system. Main part of the Western Siberia is covered by Ob' river system; which will be the main object of study for this region. This river basin is characterised by large flooded areas, frequently described as the biggest world swamp. Wetlands are also an important source of methane and source/sink for the CO2. Although wetlands played a key role in the natural variations of carbon cycle during the last climatic cycles, their temporal and spatial variations are still poorly modelled. As a consequence, it is very difficult to predict the effect of their variations with climate change and the resulting effect on the carbon cycle for the next decades. Water resources of the extensive Euphrates-Tigris (ET) river basin have vital importance for people living on its watershed, and for its ecosystems. This river basin also provides freshwater input into the Arabian Gulf, affecting fishery, marine biology and biogeochemistry. ET basin is shared by several countries and is extensively used for irrigation and other types for water consumption. Cascades of large reservoirs are constructed in each of the four countries. Information on hydrological regime of the ET basin (water level in the reservoirs, amount of diverted water, river level and discharge) has paramount importance for studies of natural and anthropogenic influence on ET river system, and freshwater input into the Arabian Gulf. We present the results of studies for these two regions basing on our existing experience of using in situ data together with remote sensing techniques such as radar altimetry (TOPEX/Poseidon, Jason-1, GFO, ENVISAT), radiometry (SMMR, SSM/I), optical data (MODIS, Landsat) and space gravimetry data (GRACE). We analyse several parameters: a) water level in reservoirs and wetlands, b) river level and river discharge, c) water abundance and flooded area extent, and d) snow and ice cover (for Western Siberia). Research has been done in the framework of the Russian-French cooperation GDRI CAR-WET-SIB, French ANR IMPACT-Boreal project, and SMOS AO No. 4648.
4. A river level view of the Broad Street bridge ...
4. A river level view of the Broad Street bridge and Columbus skyline from the railroad truss north of the bridge. - Broad Street Bridge, Spanning Scioto River at U.S. Route 40 (Broad Street), Columbus, Franklin County, OH
Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui
2013-12-01
Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.
Exploring a Hydrological Concept through Children's Drawings.
ERIC Educational Resources Information Center
Dove, J. E.; Everett, L. A.; Preece, P. F. W.
1999-01-01
Examines children's (n=306) drawings of a river basin to determine their understanding of scientific concepts related to the water cycle. Presents exemplars of five levels of understanding and analysis of the drawings' orientation and content. Contains 24 references. (Author/WRM)
Smith, Gregory A.
2003-01-01
The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.
Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River
NASA Astrophysics Data System (ADS)
Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.
2017-12-01
Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River, while ocean tide can also propagate into this region. By considering the influence of Tonle Sap Lake and the Mekong River through multi-variable regression analysis, the forecasting results from Prek Kdam to Chau Doc/Tan Chau reach RMSE from about 0.3 - 0.65 m and correlation coefficient about 0.93- 0.97 with 5-day lead time.
Kelly, Brian P.
2001-01-01
The source of water is important to the ecological function of Missouri River flood-plain wetlands. There are four potential sources of water to flood-plain wetlands: direct flow from the river channel during high river stage, ground-water movement into the wetlands in response to river-stage changes and aquifer recharge, direct precipitation, and runoff from surrounding uplands. Concurrent measurements of river stage, rainfall, ground-water level, and wetland stage were compared for two Missouri River flood-plain wetlands located near Rocheport, Missouri, to characterize the spatial and temporal relations between river stage, rainfall, ground-water levels and wetland stage, determine the source of water to each wetland, and compare measured and estimated stage and ground-water levels at each site. The two sites chosen for this study were wetland NC-5, a non-connected, 50 feet deep scour constantly filled with water, formed during the flood of 1993, and wetland TC-1, a shallow, temporary wetland intermittently filled with water. Because these two wetlands bracket a range of wetland types of the Missouri River flood plain, the responses of other Missouri River wetlands to changes in river stage, rainfall, and runoff should be similar to the responses exhibited by wetlands NC-5 and TC-1. For wetlands deep enough to intersect the ground-water table in the alluvial aquifer, such as wetland NC-5, the ground-water response factor can estimate flood-plain wetland stage changes in response to known river-stage changes. Measured maximum stage and ground-water-level changes at NC-5 fall within the range of estimated changes using the ground-water response factor. Measured maximum ground-water-level changes at TC-1 are similar to, but consistently greater than the estimated values, and are most likely the result of alluvial deposits with higher than average hydraulic conductivity located between wetland TC-1 and the Missouri River. Similarity between ground-water level and stage hydrography at wetland NC-5 indicate that ground-water-level fluctuations caused by river-stage changes control the stage of wetland NC-5. A 2-day lag time exists between river-stage changes and ground water and stage changes at wetland NC-5. The lack of a measurable response of wetland NC-5 stage to rainfall indicate that rainfall is not a large source of water to wetland NC-5. Stage in wetland TC-1 only increased at high river stage in June and July 1999, and from runoff caused by local rainfall during the winter. The 2-day lag time between peak stages at wetland TC-1 and peak Missouri River stages compared to the 1-day lag time between Missouri River stage and ground-water peaks at wetland TC-1 indicates ground-water flow does not directly affect wetland stage at TC-1, but surface-water flow does affect wetland stage at TC-1 during high river stage. Comparing wetland TC-1 stage to potential water sources indicates the most likely explanation for the rise in stage at wetland TC-1 is surface runoff supplied via seepage through the levees and upward flow of ground water through alluvial deposits of higher hydraulic conductivity during high river stage. The rate of decrease in wetland TC-1 stage was limited by the rate at which ground-water level decreased. Stage response to rainfall at wetland TC-1 during the winter months and no response to greater rainfall amounts during spring and summer months indicate that evapotranspiration may limit the affect of rainfall on stage at wetland TC-1 during the growing season.
Grubbs, J.W.; Crandall, C.A.
2007-01-01
Exchanges of water between the Upper Floridan aquifer and the Lower Suwannee River were evaluated using historic and current hydrologic data from the Lower Suwannee River Basin and adjacent areas that contribute ground-water flow to the lowest 76 miles of the Suwannee River and the lowest 28 miles of the Santa Fe River. These and other data were also used to develop a computer model that simulated the movement of water in the aquifer and river, and surface- and ground-water exchanges between these systems over a range of hydrologic conditions and a set of hypothetical water-use scenarios. Long-term data indicate that at least 15 percent of the average annual flow in the Suwannee River near Wilcox (at river mile 36) is derived from ground-water discharge to the Lower Suwannee and Lower Santa Fe Rivers. Model simulations of ground-water flow to this reach during water years 1998 and 1999 were similar to these model-independent estimates and indicated that ground-water discharge accounted for about 12 percent of the flow in the Lower Suwannee River during this time period. The simulated average ground-water discharge to the Lower Suwannee River downstream from the mouth of the Santa Fe River was about 2,000 cubic feet per second during water years 1998 and 1999. Simulated monthly average ground-water discharge rates to this reach ranged from about 1,500 to 3,200 cubic feet per second. These temporal variations in ground-water discharge were associated with climatic phenomena, including periods of strong influence by El Ni?o-associated flooding, and La Ni?a-associated drought. These variations showed a relatively consistent pattern in which the lowest rates of ground-water inflow occurred during periods of peak flood levels (when river levels rose faster than ground-water levels) and after periods of extended droughts (when ground-water storage was depleted). Conversely, the highest rates of ground-water inflow typically occurred during periods of receding levels that followed peak river levels.
NASA Astrophysics Data System (ADS)
Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia
2005-02-01
We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.
NASA Astrophysics Data System (ADS)
Wang, Houjie; Saito, Yoshiki; Zhang, Yong; Bi, Naishuang; Sun, Xiaoxiao; Yang, Zuosheng
2011-09-01
The five largest rivers in East and Southeast Asia (Yellow, Yangtze, Pearl, Red and Mekong) are important contributors of terrigenous sediment to the western Pacific Ocean. Although they have annually delivered ~ 2000 × 10 9 kg of sediment to the ocean since 1000 yr BP, they presently contribute only ~ 600 × 10 9 kg/yr, which is reverting to a level typical of the relatively undisturbed watersheds before the rise in human activities in East and Southeast Asia at 2000 yr BP. During the most recent decades flow regulation by dams and sediment entrapment by reservoirs, as well as human-influenced soil erosion in the river basins, have sharply reduced the sediment delivered from the large river basins to the ocean. We constructed a time series of data on annual water discharges and sediment fluxes from these large rivers to the western Pacific Ocean covering the period 1950-2008. These data indicate that the short-term (interannual scale) variation of sediment flux is dominated by natural climatic oscillations such as the El Niño/La Niña cycle and that anthropogenic causes involving dams and land use control the long-term (decadal scale) decrease in sediment flux to the ocean. In contrast to the relatively slow historical increase in sediment flux during the period 2000-1000 yr BP, the recent sediment flux has been decreased at an accelerating rate over centennial scales. The alterations of these large river systems by both natural and anthropogenic forcing present severe environmental challenges in the coastal ocean, including the sinking of deltas and declines in coastal wetland areas due to the decreasing sediment supply. Our work thus provides a regional perspective on the large river-derived sediment flux to the ocean over millennial and decadal scales, which will be important for understanding and managing the present and future trends of delivery of terrigenous sediment to the ocean in the context of global change.
Studying the impact of climate change on flooding in large river basins
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Hopson, T.; Gilleland, E.; Lamarque, J.-F.; Hu, A.; Simmer, C.
2012-04-01
Assessing the potential impact of global climate change on hydrological extremes becomes crucial for regions such as Bangladesh, where a high population density results in a large exposure to risks associated with extreme flooding. In addition, low-lying countries such as Bangladesh are especially vulnerable to sea-level rise and its influence on present-day flood characteristics. By combining the impact of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths, we attempt to analyze the development of flood characteristics such as frequency and magnitude in large river basins. Since flood duration is also of great importance to people exposed to flooding, the development of the number of days with extreme flooding is evaluated for possible trends in the future. Data used includes historical observations from the Global Runoff Data Centre, while recently released model output for upper catchment precipitation and annual mean thermosteric sea-level rise is taken from the four CCSM4 1° 20th Century ensemble members, as well as from six CCSM4 1° ensemble members for the reference concentration pathway scenarios RCP8.5, 6.0, 4.5 and 2.6. A peak-over-threshold approach is used to quantify the expected future changes in flood return levels, where discharge exceedances over a certain threshold are fit to a Generalized Pareto Distribution. Return levels are compared from both 20th century and future model simulations for time slices at 2030, 2050, 2070 and 2090. It can be seen that return periods of flood events decrease as the 21st century progresses in all RCP scenarios, with this shift most pronounced in RCP 8.5. The evaluation of flood duration, or the number of days with discharges above a certain threshold, yields an increase. While the number of days with flooding increases in all RCP scenarios, with the largest increase seen at the end of the 21st century, this increase is only statistically significant for RCP 8.5. Finally, we study how sea-level rise governs the flooding behavior further upstream by calculating the effective additional discharge due to the backwater effect of sea-level rise. Sea-level rise anomalies for the 21st century are taken from CCSM4 model output at each of the river mouths. Judging from our work, the increase in effective discharge due to sea-level rise cannot be neglected when discussing flooding in the respective river basins. Impact of sea-level rise on changes in return levels will be investigated further by using extreme-value theory to calculate how the tails of the current river discharge distribution will be shifted by changing climate.
NASA Astrophysics Data System (ADS)
Vrzel, Janja; Solomon, D. Kip; Blažeka, Željko; Ogrinc, Nives
2018-01-01
River basin aquifers are common sites for drinking water wells as bank filtration can be a cost effective pretreatment technology. A groundwater vulnerability to pollution depends on a groundwater mean residence time and on a relative contribution of river water versus local precipitation to groundwater. Environmental isotopes of oxygen and hydrogen (δ18O and δ2H), tritium (3H) and concentrations of nitrate (NO3-) were used to investigate hydrological pathways, mean residence time and interactions between surface water and groundwater in the Ljubljansko polje aquifer system in Slovenia. δ18O and δ2H values indicate a spatial variability of the influence of individual groundwater sources inside the aquifer - local precipitation and the Sava River water. Fractions of river water in groundwater depend on the depth of perforated screens in the pumping wells and their distance from the Sava River. It was estimated that groundwater at wells Kleče 11, Hrastje 3, and Hrastje 8 is mostly composed of recently infiltrated local precipitation, while the Sava River is the dominant source of groundwater at the well Jarški prod 1. Groundwater at wells Kleče 8, Kleče 12, and Jarški prod 3 contains on average between 41% and 48% of the Sava River water. The 3H and 3H/3He methods indicate short mean residence time of groundwater present at Jarški prod (2-7 years) and Hrastje (7-8 years). A small fraction (<10%) of old groundwater is present at Kleče. Furthermore, infiltration of local precipitation influenced the levels of NO3- at Hrastje. These data extend our understanding of groundwater flow in the Ljubljansko polje aquifer system, interactions between the Sava River water/local precipitation and groundwater, and the utility of isotope tracers in evaluating the spatial distribution of groundwater vulnerability to pollution.
Light, Helen M.; Darst, Melanie R.; Grubbs, J.W.
1995-01-01
This report describes progress and interim results of the second year of a 4-year study. The purpose of the 4-year study is to describe aquatic habitat types in the Apalachicola River floodplain and quantify the amount of habitat inundated by the river at various stages. Final results will be used to determine possible effects of altered flows on floodplain habitats and their associated fish communities. The study is being conducted by the U.S. Geological Survey in cooperation with the Northwest Florida Water Management District as part of a comprehensive study of water needs throughout two large river basins in Florida, Georgia, and Alabama. By the end of the second year, approxi- mately 80 to 90 percent of field data collection was completed. Water levels at 56 floodplain and main channel locations at study sites were read numerous times during low water and once or twice during high water. Rating curves estimating the relationship between stage at a floodplain site and flow of the Apalachicola River at Chattahoochee are presented for 3 sites in the upper river. Elevation, substrate type, and amount of vegetative structure were described at 27 cross sections representing eight different floodplain tributary types at upper, middle, and lower river study sites. A summary of substrate and structure information from all cross sections is presented. Substrate and structure characteristics of floodplain habitats inundated when river flow was at record low flow, mean annual low flow, and mean flow are described for 3 cross sections in the upper river. Digital coverage of high-altitude infra-red aerial photography was processed for use in a Geographic Information System which will be used to map aquatic habitats in the third year of the study. A summary of the literature on fish utilization of floodplain habitats is described. Eighty-one percent of the species collected in the main channel of the Apalachicola River are known to occur in floodplain habitats of eastern rivers.
Liu, Kam-biu
2017-01-01
Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries. PMID:28282415
Yao, Qiang; Liu, Kam-Biu
2017-01-01
Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.
Freedom Space for Rivers: A Sustainable Management Approach to Enhance River Resilience
NASA Astrophysics Data System (ADS)
Biron, Pascale M.; Buffin-Bélanger, Thomas; Larocque, Marie; Choné, Guénolé; Cloutier, Claude-André; Ouellet, Marie-Audray; Demers, Sylvio; Olsen, Taylor; Desjarlais, Claude; Eyquem, Joanna
2014-11-01
River systems are increasingly under stress and pressure from agriculture and urbanization in riparian zones, resulting in frequent engineering interventions such as bank stabilization or flood protection. This study provides guidelines for a more sustainable approach to river management based on hydrogeomorphology concepts applied to three contrasted rivers in Quebec (Canada). Mobility and flooding spaces are determined for the three rivers, and three levels of "freedom space" are subsequently defined based on the combination of the two spaces. The first level of freedom space includes very frequently flooded and highly mobile zones over the next 50 years, as well as riparian wetlands. It provides the minimum space for both fluvial and ecological functionality of the river system. On average for the three studied sites, this minimum space was approximately 1.7 times the channel width, but this minimum space corresponds to a highly variable width which must be determined from a thorough hydrogeomorphic assessment and cannot be predicted using a representative average. The second level includes space for floods of larger magnitude and provides for meanders to migrate freely over a longer time period. The last level of freedom space represents exceptional flood zones. We propose the freedom space concept to be implemented in current river management legislation because it promotes a sustainable way to manage river systems, and it increases their resilience to climate and land use changes in comparison with traditional river management approaches which are based on frequent and spatially restricted interventions.
Influence of dams on river-floodplain dynamics in the Elwha River, Washington
Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.
2008-01-01
The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.
Dai, Guohua; Wang, Bin; Fu, Chaochen; Dong, Rui; Huang, Jun; Deng, Shubo; Wang, Yujue; Yu, Gang
2016-04-01
This study analyzed 15 pharmaceuticals and personal care products (PPCPs) in two rivers with different urbanization levels in the surrounding watershed (urban and suburb) in Beijing, China. Along the rivers, effluent samples from wastewater treatment plants (WWTPs) and wastewater samples from direct discharge outlets were also collected to reveal their possible contribution to the occurrence of PPCPs in these two rivers. Among the 15 PPCPs, 14 compounds were detected with caffeine (maximum 11,900 ng L(-1)) being the dominant compound. The total concentration of the detected PPCPs in direct discharge outlets (median 4706 ng L(-1)) was much higher than that in river waters (2780 ng L(-1)) and WWTP effluents (1971 ng L(-1)). The suburban-influenced Liangshui River had significantly higher PPCP concentrations compared to the urban-influenced Qing River due to more input of untreated wastewater from direct discharge outlets. Source apportionment showed that approximately 55% of the total PPCPs were contributed by untreated wastewater in the suburban-influenced river. Finally, ecological risk assessment has been regarded as a necessary part of general research. According to the environmental risk assessment results, caffeine, trimethoprim and metoprolol were found to be the most critical compounds, due to their high risk quotient values. The results of the present study can provide useful information for future PPCP pollution control and sustainable water management in Beijing, China.
Removing Dams: Project-Level Policy and Scientific Research Needs (Invited)
NASA Astrophysics Data System (ADS)
Graber, B.
2010-12-01
More than 800 dams have been removed around the country, mostly “small” dams, under 25 feet in height. The total number of removals, however, is small relative to the number of deteriorating dams and the ecological impacts those structures continue to have on native riverine species and natural river function. The number of dam removal projects is increasing as aging dams continue to deteriorate and riverine species continue to decline. Practitioners and regulators need to find cost-effective project approaches that minimize short-term environmental impacts and maximize long-term benefits while keeping project costs manageable. Dam removals can be a regulatory challenge because they inherently have short-term impacts in order to achieve larger, self-sustaining, long-term benefits. These short-term impacts include sediment movement, construction access roads, and habitat conversion from lacustrine to riverine. Environmental regulations are designed to prevent degradation and have presented challenges for projects designed to benefit the environment. For example, a short-term release of sediment may exceed water quality standards for some period of time, but lead to a long-term beneficial project. Other regulatory challenges include permitting the loss of wetland area for increased native river function, or allowing the release of some level of contaminated sediment when the downstream sediment is similarly contaminated. Dam removal projects raise a range of engineering and scientific questions on effective implementation techniques such as appropriate sediment management approaches, construction equipment access approaches, invasive species management, channel/floodplain reconstruction, and active versus passive habitat rehabilitation. While practitioners have learned and refined implementation approaches over the last decade, more input is needed from researchers to help assess the effectiveness of those techniques, and to provide more effective techniques. Applied research is needed to provide management tools for practitioners on questions such as: How do we determine the quantity of sediment that is acceptable to release downstream without causing long-term harm to habitat? How can we estimate how much sediment rivers naturally carry in places where there are no sediment gauges? Will the release of coarse-grain sediment help build habitat structure downstream or will it smother habitat? What is the trajectory of habitat quality in an impoundment wetland and is it justifiable to use self-sustainability as an argument to allow a reduction in wetland area for native river habitat? Will having construction equipment working in the flowing river channel do less harm than dewatering a river channel for a longer period of time? American Rivers staff have collectively had an active involvement in more than one hundred dam removal projects. In this presentation, an American Rivers geomorphologist will pose the questions that need to be answered to reduce project-level policy challenges and allow the implementation of cost-effective dam removal projects.
Is the water level during dry season in Poyang Lake really lower than before?
NASA Astrophysics Data System (ADS)
Liu, Xiaolong; Yu, Meixiu; Shi, Yong; Luan, Zhenyu; Fu, Dafang
2017-04-01
The Poyang Lake, the largest freshwater lake in China, has attracted world widely attentions in recent years due to it being dammed or not at the Lake's outlet. It was reported that the Poyang Lake water levels have been declining significantly in dry seasons, which resulted in severe water supply, irrigation and ecological flow requirement problems. The purpose of the study was to answer the question that the water level of the Poyang Lake during dry season is really lower than before or not. Based on topographical data, and long-term hydrological and meteorological data from 1950 to 2016, the relationship between the Poyang Lake and the Yangtze River before and after the completion of the Three Gorges Dam, the relationship between the Poyang Lake and its Five major tributaries (Ganjiang River, Fuhe River, Xinjiang River, Raohe River and Xiushui River), and as well as sand mining contributions to the water level in dry seasons of the Poyang Lake were investigated respectively.
Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming
NASA Astrophysics Data System (ADS)
Bliss, A. K.; Stamper, B.
2017-12-01
Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.
The Planform Mobility of Large River Channel Confluences
NASA Astrophysics Data System (ADS)
Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul
2017-04-01
Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock record.
Munné, Antoni; Prat, Narcís
2004-11-01
The Water Framework Directive (WFD), approved at the end of 2000 by the European Union, proposes the characterization of river types through two classification systems (A and B) (Annex II of the WFD), thereby obtaining comparable reference sites and improving the management of aquatic systems. System A uses fixed categories of three parameters to classify rivers: three altitude ranges, four basin size ranges, and three geological categories. In the other hand, System B proposes to establish river types analyzing different factors considered as obligatory and optional. Here, we tested Systems A and B in the Catalan River Basin District (NE Spain). The application of System A results in 26 river types: 8 in the Pyrenees and 18 in the Iberic-Macaronesian ecoregions. This number would require the establishment of a complex management system and control of the ecological status in a relatively small river basin district. We propose a multivariant system to synthesize the environmental descriptors and to define river types using System B. We use five hydrological, seven morphological, five geological, and two climatic variables to discriminate among river types. This method results in fewer river type categories than System A but is expected to achieve the same degree of differentiation because of the large number of descriptors considered. Two levels are defined in our classification method using System B. Five "river types," defined at large scale (1:1,000,000), are mainly discriminated by annual runoff coefficient, air temperature, and discharge. This level is useful and could facilitate comparisons of results among European river basin districts. The second level defines 10 "subtypes of river management," mainly discriminated by geology in the basin and flow regime. This level is more adequate at local scale (1:250,000) and provides a useful tool for management purposes in relatively small and heterogeneous river basin districts.
Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia
NASA Astrophysics Data System (ADS)
Tananaev, Nikita I.
2016-01-01
Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.
Bellelli, E; Bracchi, U; Sansebastiano, G
1976-01-01
The results relating to the research carried out on the river Po upstream and downstream Cremona town, at Casalmaggiore and at the mouths of the right side tributaries Arda-Ongina and Taro in the period 1971-72 are reported in the present note. The samplings took place once every month and on the same day flow measurements were effected by the Magistracy of the river Po in the five stations. The results of this first series of sampling have shown a good stability of the water quality of the river Po, in the different seasons and in the different hydrological conditions. No significative differences were poi nted out for the most part of the determined parameters between the stations upstream and downstream Cremona and Casalmaggiore, except the turbid load (turbidity, suspended matter at 105 degrees C, setteable solids) which presented at Casalmaggiore an average value absolutely higher than the calculated one which was achieved considering concentrations and river flow at Cremona and at the mouths of Arda-Ongina and Taro. With few exceptions the water quality keeps a good level for fish life and its actual pollution degree let us think it possible to improve the situation in a short time. Only microbiological parameters are excepted, as they exceed the proposed limits for recreation and bathing uses (W.Q.C.).
Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion
Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.
2007-01-01
Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.
Mustafayev, M J; Mekhtiev, A A
2014-01-01
The paper deals with study by the method of solid-phase indirect immunoenzyme analysis of levels of the novel serotonin-modulated anticonsolidation protein (SMAP) that is directly correlated with serotonin level as well as of biomarker cytochrome P-450 in the liver, gills, and brain of the eastern alburnoid (Alburnoides bipunctatus eichwaldi) caught in the rivers Khudat, Akstafachai, Kura, and Araks flowing at the territory of Azerbaijan. There was revealed a marked downregulation of cytochrome P-450 and SMAP in the liver and gills of the fish caught in the Akstafachai River relatively to values in the fish from the Khudat River not contaminated with pollutants. In the liver and gills in the fish from the Kura and Araks rivers, a significant differently directed changes of the cytochrome P-450 and SMAP levels were observed: downregulations of the cytochrome P-450 versus an upregulation of SMAP. In the brain of the fish from the River Akstafachai there was observed some downregulation of cytochrome P-450, whereas in fish from the Kura and Araks rivers--a significant upregulation of the SMAP level. The obtained results are analyzed from standpoint of processes of adaptation and disadaptation of aquatic organisms to impact of pollutants.
González-Merizalde, Max V; Menezes-Filho, José A; Cruz-Erazo, Claudia Teresa; Bermeo-Flores, Santos Amable; Sánchez-Castillo, María Obdulia; Hernández-Bonilla, David; Mora, Abrahan
2016-08-01
Artisanal and small-scale gold-mining activities performed in mountain areas of the Southern Ecuadorian Amazon have incorporated several heavy metals into the aquatic systems, thus increasing the risk of exposure in populations living in adjacent zones. Therefore, the objective of this study was to evaluate the contamination levels of mercury (Hg) and manganese (Mn) in several rivers of the Nangaritza River basin and assess the exposure in school-aged children residing near the gold-mining zones. River water and sediment samples were collected from a highly contaminated (HEx) and a moderately contaminated (MEx) zones. Hair Mn (MnH) and urinary Hg (HgU) levels were determined in school-aged children living in both zones. High concentrations of dissolved Mn were found in river waters of the HEx zone (between 2660 and 3990 µg l(-1)); however, Hg levels, in general, were lower than the detection limit (DL; <1.0 µg l(-1)). Similarly, Mn levels in sediments were also increased (3090 to 4086 µg g(-1)). Median values of MnH in children of the HEx and MEx zones were 5.5 and 3.4 µg g(-1), respectively, whereas the median values of HgU concentrations in children living in the HEx and MEx zones were 4.4 and 0.62 µg g-creat(-1), respectively. Statistically significant differences were observed between both biomarkers in children from the HEx and MEx zones. In addition, boys presented significantly greater MnH levels in both zones. The greater MnH values were found in children living in alluvial areas, whereas children living in the high mountain areas, where some ore-processing plants are located close to or inside houses and schools, had the greater HgU concentrations. In summary, the data reported in this paper highlights that artisanal and small-scale gold-mining activities can not only produce mercurial contamination, that can also release other heavy metals (such as Mn) that may pose a risk to human health.
Antarctic ice shelf potentially stabilized by export of meltwater in surface river
NASA Astrophysics Data System (ADS)
Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang
2017-04-01
Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.
Earl C. Leatherberry; David W. Lime; Jerrilyn Lavarre Thompson
1980-01-01
Participation in river recreation has been expanding at a rapid rate. This paper reviews selected phenomenon associated with the growing popularity of rivers as recreational resources. The paper will: (1) describe the river recreation resource (the supply situation); (2) present selected indicators of increased river recreation use (the demand situation); (3) present...
Fluoroquinolones in the Wenyu River catchment, China: Occurrence simulation and risk assessment.
Hao, Xuewen; Cao, Yan; Zhang, Lai; Zhang, Yongyong; Liu, Jianguo
2015-12-01
Concern is increasing regarding the environmental impact of the high usage rate and intensive release of antibiotics used for human and animal therapy in major urban areas of China. In the present study, regional environmental distribution simulations and risk assessments for 3 commonly used fluoroquinolones in the Wenyu River catchment were conducted using a typical catchment model widely used in Europe. The fluoroquinolone antibiotics investigated (ofloxacin, norfloxacin, and ciprofloxacin) are consumed at high levels for personal health care in China. These antibiotics were simulated in the aquatic environment of the Wenyu River catchment across the Beijing City area for annual average concentrations, with regional predicted environmental concentrations (PECs) of approximately 711 ng/L, 55.3 ng/L, and 22.2 ng/L and local PECs up to 1.8 µg/L, 116 ng/L, and 43 ng/L, respectively. Apart from hydrological conditions, the concentrations of fluoroquinolones were associated closely with the sewage treatment plants (STPs) and their serving population, as well as hospital distributions. The presence of these fluoroquinolones in the catchment area of the present study showed significant characteristics of the occurrence of pharmaceuticals in the aquatic environment in an urban river, with typical "down-the-drain" chemicals. Significantly high concentrations of specific antibiotics indicated non-negligible risks caused by the intensive use in the local aquatic environment in a metropolitan area, particularly ofloxacin in upstream Shahe Reservoir, middle stream and downstream Qing River, and Liangma River to the Ba River segment. Specific treatment measures for these pharmaceuticals and personal care products in STPs are required for such metropolitan areas. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Bai, Rui; Tiejian, Li; Huang, Yuefei; Jiaye, Li; Wang, Guangqian; Yin, Dongqin
2015-12-01
The increasing resolution of Digital Elevation Models (DEMs) and the development of drainage network extraction algorithms make it possible to develop high-resolution drainage networks for large river basins. These vector networks contain massive numbers of river reaches with associated geographical features, including topological connections and topographical parameters. These features create challenges for efficient map display and data management. Of particular interest are the requirements of data management for multi-scale hydrological simulations using multi-resolution river networks. In this paper, a hierarchical pyramid method is proposed, which generates coarsened vector drainage networks from the originals iteratively. The method is based on the Horton-Strahler's (H-S) order schema. At each coarsening step, the river reaches with the lowest H-S order are pruned, and their related sub-basins are merged. At the same time, the topological connections and topographical parameters of each coarsened drainage network are inherited from the former level using formulas that are presented in this study. The method was applied to the original drainage networks of a watershed in the Huangfuchuan River basin extracted from a 1-m-resolution airborne LiDAR DEM and applied to the full Yangtze River basin in China, which was extracted from a 30-m-resolution ASTER GDEM. In addition, a map-display and parameter-query web service was published for the Mississippi River basin, and its data were extracted from the 30-m-resolution ASTER GDEM. The results presented in this study indicate that the developed method can effectively manage and display massive amounts of drainage network data and can facilitate multi-scale hydrological simulations.
NASA Astrophysics Data System (ADS)
Castillo, Miguel; Bishop, Paul; Jansen, John D.
2013-01-01
A sudden drop in river base-level can trigger a knickpoint that propagates throughout the fluvial network causing a transient state in the landscape. Knickpoint retreat has been confirmed in large fluvial settings (drainage areas > 100 km2) and field data suggest that the same applies to the case of small bedrock river catchments (drainage areas < 100 km2). Nevertheless, knickpoint recession on resistant lithologies with structure that potentially affects the retreat rate needs to be confirmed with field-based data. Moreover, it remains unclear whether small bedrock rivers can absorb base-level fall via knickpoint retreat. Here we evaluate the response of small bedrock rivers to base-level fall on the isle of Jura in western Scotland (UK), where rivers incise into dipping quartzite. The mapping of raised beach deposits and strath terraces, and the analysis of stream long profiles, were used to identify knickpoints that had been triggered by base-level fall. Our results indicate that the distance of knickpoint retreat scales to the drainage area in a power law function irrespective of structural setting. On the other hand, local channel slope and basin size influence the vertical distribution of knickpoints. As well, at low drainage areas (~ 4 km2) rivers are unable to absorb the full amount of base-level fall and channel reach morphology downstream of the knickpoint tends towards convexity. The results obtained here confirm that knickpoint retreat is mostly controlled by stream discharge, as has been observed for other transient landscapes. Local controls, reflecting basin size and channel slope, have an effect on the vertical distribution of knickpoints; such controls are also related to the ability of rivers to absorb the base-level fall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.
Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetlandmore » hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones« less
Goldstein, R.M.
1995-01-01
Available data on the ecology of aquatic organisms in the Red River of the North Basin, a study unit of the U.S. Geological Survey's National Water-Quality Assessment program, were collated from numerous sources. Lack of information for invertebrates and algae precluded a general summary of distribution and ecology throughout the basin. Data on fish species distributions in the major streams of the Red River of the North Basin were analyzed based on the drainage area of the stream and the number of ecoregions the stream flowed through. Species richness increased with both drainage area (log drainage area in square kilometers, R2=0.41, p=0.0055) and the number of ecoregions a river flowed through. However, theses two factors are autocorrelated because the larger the drainage, the more likely that the river will flow through more than one ecoregion. A cluster analysis identified five river groups based on similarity of species within the fish community. Analysis of trophic and taxonomic composition provided justification for the cluster groups. There were significant differences (p=0.05) in the trophic composition of the river cluster groups with respect to the number of predator species, omnivore species, benthic insectivore species, and general insectivore species. Although there were no significant differences in the number of species in the bass and sunfish family or the sucker family, the number of species in the minnow family and the darter subfamily were different (p=0.05) among the groups identified by cluster analysis. Data on contaminant concentrations in fish from the Red River of the North indicated that most trace elements and organochlorine compounds present in tissues were not at levels toxic to fish or humans. Minnesota and North Dakota have issued a fish consumption advisory based on levels of mercury and (or) PCBs found in some species.
Hornewer, Nancy J.
2014-01-01
Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.
NASA Astrophysics Data System (ADS)
Smith, R. A.; Alexander, R. B.; Schwarz, G. E.
2003-12-01
Determining the effects of land use change (e.g. urbanization, deforestation) on water quality at large spatial scales has been difficult because water quality measurements in large rivers with heterogeneous basins show the integrated effects of multiple factors. Moreover, the observed effects of land use changes on water quality in small homogeneous stream basins may not be indicative of downstream effects (including effects on such ecologically relevant characteristics as nutrient levels and elemental ratios) because of loss processes occurring during downstream transport in river channels. In this study we used the USGS SPARROW (Spatially-Referenced Regression on Watersheds) models of total nitrogen (TN) and total phosphorus (TP) in streams and rivers of the conterminous US to examine the effects of various aspects of land use change on nutrient concentrations and flux from the pre-development era to the present. The models were calibrated with data from 370 long-term monitoring stations representing a wide range of basin sizes, land use/cover classes, climates, and physiographies. The non-linear formulation for each model includes 20+ statistically estimated parameters relating to land use/cover characteristics and other environmental variables such as temperature, soil conditions, hill slope, and the hydraulic characteristics of 2200 large lakes and reservoirs. Model predictions are available for 62,000 river/stream channel nodes. Model predictions of pre-development water quality compare favorably with nutrient data from 63 undeveloped (reference) sites. Error statistics are available for predictions at all nodes. Model simulations were chosen to compare the effects of selected aspects of land use change on nutrient levels at large and small basin scales, lacustrine and coastal receiving waters, and among the major US geographic regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heil, T.P.; Lindsay, R.C.
1990-08-01
Extracts from Large Toothed Aspen (Populous grandidenta Michx.) and Jack Pine (Pinus banksiana Lamb.) contained many odor compounds found in flavor-tainted walleye from the Wisconsin River, including alkylphenols. Aspen wood contained 8 ppb of 2-isopropylphenol, and river sediments also contained low ppb levels of many alkylphenols, including 2-isopropylphenol. Thiophenol and thiocresol which sporadically cause offensive sulfury taints in Wisconsin River fish were also found in river sediment. Quantitative analysis of fish for alkylphenols supported a hypothesis involving a food chain-mediated seasonal fluctuation of alkylphenol levels in fish. Thiophenols are postulated to be derived from pulp mill activities on the river.
Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2001-2002 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Todd D.
2002-10-01
The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 spawners present day (Johnson et al. 1997). Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline in this species in the Columbia River. The timing of seasonal changes in river flow and watermore » temperatures is perhaps the most critical factor in structuring the freshwater life history of chum salmon (Johnson et al. 1997). This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. The recovery strategy for Lower Columbia River chum as outlined in the Hatchery Genetic Management Plan (HGMP) for the Grays River project has four main tasks. First, determine if remnant populations of Lower Columbia River chum salmon exist in Lower Columbia River tributaries. Second, if such populations exist, develop stock-specific recovery plans that would involve habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of Lower Columbia River chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce the extinction risk to Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction of Lower Columbia River chum salmon into the Chinook River basin. The Duncan Creek project has two goals: (1) re-introduction of chum into Duncan Creek by providing off channel high quality spawning and incubation areas and (2) to simultaneously evaluate natural re-colonization and a supplementation strategy where adults are collected and spawned artificially at a hatchery. The eggs from these artificial crossings are then either incubated at Duncan Creek or incubated and the fry reared at the hatchery to be released back into Duncan Creek. Tasks associated with the first goal include: (1) removing mud, sand and organics present in four of the creek branches and replace with gravels expected to provide maximum egg-to-fry survival rates to a depth of at least two feet; (2) armoring the sides of these channels to reduce importation of sediment by fish spawning on the margins; (3) planting native vegetation adjacent to these channels to stabilize the banks, trap silt and provide shade; (4) annual sampling of gravel in the spawning channels to detect changes in gravel composition and sedimentation levels.« less
NASA Astrophysics Data System (ADS)
Aalto, R. E.; Cremon, E.; Dunne, T.
2017-12-01
How continental-scale rivers respond to climate, geology, and sea level change is not well represented in morphodynamic models. Large rivers respond to influences less apparent in the form and deposits of smaller streams, as the huge scales require long time periods for changes in form and behavior. Tectonic deformation and excavation of resistant deposits can affect low gradient continental-scale rivers, thereby changing flow pathways, channel slope and sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley topography. Nowhere are such scales of morphodynamic response grander than the Amazon River, as described in papers by L.A.K. Mertes. Field-based understanding has improved over the intervening decades, but mechanistic models are needed to simulate and synthesize key morphodynamic components relevant to the construction of large river valleys, with a focus on the Amazon. The Landscape-Linked Environmental Model (LLEM) utilizes novel massively parallel computer architectures to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per compute unit) lowland dispersal systems. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic deformation, and provides a 3D record of created stratigraphy and underlying bedrock. We used LLEM to simulate the development of the main valley of the Amazon over the last million years, exploring the propagation of incision waves and system dissection during glacial lowstands, followed by rapid valley filling and extreme lateral mobility of channels during interglacials. We present metrics, videos, and 3D fly-throughs characterizing how system development responds to key assumptions, comparing highly detailed model outcomes against field-documented reality.
Sedimentary framework of the Potomac River estuary, Maryland
Knebel, Harley J.; Martin, E. Ann; Glenn, J.L.; Needell, Sally W.
1981-01-01
Analyses of seismic-reflection profiles, sediment cores, grab samples, and side-scan sonar records, along with previously collected borehole data, reveal the characteristics, distribution, and geologic history of the shallow strata beneath the Potomac River estuary. The lowermost strata are sediments of the Chesapeake Group (lower Miocene to lower Pleistocene) that crop out on land near the shore but are buried as much as 40 m below the floor of the estuary. The top of these sediments is an erosional unconformity that outlines the Wisconsinan valley of the Potomac River. This valley has a sinuous trend, a flat bottom, a relief of 15 to 34 m, and axial depths of 34 to 54 m below present sea level. During the Holocene transgression of sea level, the ancestral valley was filled with as much as 40 m of sandy and silty, fluvial-to-shallow estuarine sediments. The fill became the substrate for oyster bars in the upper reach and now forms most marginal slopes of the estuary. Since sea level approached its present position (2,000 to 3,000 yr ago), the main channel has become the locus of deposition for watery, gray to black clay or silty clay, and waves and currents have eroded the heterogeneous Quaternary sediments along the margins, leaving winnowed brown sand on shallow shoreline flats. Pb-210 analyses indicate that modern mud is accumulating at rates ranging from 0.16 to 1.80 cm/yr, being lowest near the mouth and increasing toward the head of the estuary. This trend reflects an increased accumulation of fine-grained fluvial sediments near the turbidity maximum, similar to that found in nearby Chesapeake Bay. The present annual accumulation of mud is about 1.54 million metric tons; the cumulative mass is 406 million metric tons.
Fritts, Andrea; Knights, Brent C.; Lafrancois, Toben D.; Bartsch, Lynn; Vallazza, Jon; Bartsch, Michelle; Richardson, William B.; Karns, Byron N.; Bailey, Sean; Kreiling, Rebecca
2018-01-01
Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate variance structures for fatty acids and stable isotopes (i.e. δ13C and δ15N) of seston, threeridge mussels, hydropsychid caddisflies, gizzard shad, and bluegill across spatial scales (10s-100s km) in large rivers of the Upper Mississippi River Basin, USA that were sampled annually for two years, and to evaluate the implications of this variance on the design and interpretation of trophic studies. The highest variance for both isotopes was present at the largest spatial scale for all taxa (except seston δ15N) indicating that these isotopic signatures are responding to factors at a larger geographic level rather than being influenced by local-scale alterations. Conversely, the highest variance for fatty acids was present at the smallest spatial scale (i.e. among individuals) for all taxa except caddisflies, indicating that the physiological and metabolic processes that influence fatty acid profiles can differ substantially between individuals at a given site. Our results highlight the need to consider the spatial partitioning of variance during sample design and analysis, as some taxa may not be suitable to assess ecological questions at larger spatial scales.
Jiang, Yonghai; Li, Mingxiao; Guo, Changsheng; An, Da; Xu, Jian; Zhang, Yuan; Xi, Beidou
2014-10-01
In this study, the occurrence and distribution of sixteen antibiotics belonging to four groups in surface water, sediment and groundwater samples from the Wangyang River (WYR), a typical river receiving sewage discharges were investigated. Laboratory analyses revealed that antibiotics were widely distributed in the studied area. The aqueous samples were unavoidably contaminated with antibiotics, and the target antibiotics present in high levels were oxytetracycline, tetracycline, chlortetracycline, ofloxacin, sulfamethoxazole, and trimethoprim, with maximum concentrations of the individual contaminant at 3.6×10(5), 9.7×10(3), 6.9×10(4), 1.2×10(4), 4.8×10(3), and 1.1×10(3) ng L(-1), respectively. Oxytetracycline, tetracycline, ciprofloxacin and roxithromycin were the most frequently detected compounds in sediment samples, with maximum concentrations of the individual contaminant at 1.6×10(5), 1.7×10(4), 2.1×10(3) and 2.5×10(3) ng g(-1), respectively. The results also revealed that the high intensity of aquaculture activities could contribute to the increasing levels of antibiotics in the area. According to the ratios of measured environmental concentration (MEC) to predicted no-effect concentration (PNEC), chlortetracycline, tetracycline, ofloxacin, ciprofloxacin, erythromycin-H2O and sulfamethoxazole may present possible environmental risk to Pseudokirchneriella subcapitata, Synechococcus leopoliensis and M. aeruginosa. Attention should be given to the long-term ecological effects caused by the continuous discharge of antibiotics in the WYR area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stamos, Christina L.; Huff, Julia A.; Predmore, Steven K.; Clark, Dennis A.
2004-01-01
The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During March and April 2004, the U.S. Geological Survey and other agencies made almost 900 water-level measurements in about 740 wells in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with historical data, changes in ground-water levels. A water-level contour map was drawn using data from 500 wells, providing coverage for most of the basins. In addition, 26 long-term (as much as 74 years) hydrographs were constructed which show water-level conditions throughout the basins, 9 short-term (1992 to 2004) hydrographs were constructed which show the effects of recharge and discharge along the Mojave River, and a water-level-change map was compiled to compare 2002 and 2004 water levels throughout the basins. The water-level change data show that in the Mojave River ground-water basin, more than one half (102) of the wells had water-level declines of 0.5 ft or more and almost one fifth (32) of the wells had declines greater than 5 ft. between 2002 and 2004. The water-level change data also show that about one tenth (17) of the wells compared in the Mojave River ground-water basin had water level increases of 0.5 ft or more. Most of the water-level increases were the result of stormflow in the Mojave River during March 2004, which resulted in recharge to wells in the floodplain aquifer mainly along the river in the Alto subarea and the Transition zone, and along the river east of Barstow. In the Morongo ground-water basin, nearly one half (55) of the wells had water-level declines of 0.5 ft or more, and about one tenth (13) of the wells had declines greater than 5 ft. The Warren subbasin, where artificial-recharge operations in Yucca Valley (pl. 1) have caused water levels to rise, had water-level increases of as much as about 97 ft since 2002.
Burger, J; Gaines, K F; Boring, C S; Stephens, W L; Snodgrass, J; Gochfeld, M
2001-10-01
Levels of contaminants in fish are of considerable interest because of potential effects on the fish themselves, as well as on other organisms that consume them. In this article we compare the mercury levels in muscle tissue of 11 fish species from the Savannah River, as well as selenium levels because of its known protective effect against mercury toxicity. We sampled fish from three stretches of the river: upstream, along, and downstream the Department of Energy's Savannah River Site, a former nuclear material production facility. We test the null hypothesis that there were no differences in mercury and selenium levels in fish tissue as a function of species, trophic level, and location along the river. There were significant interspecific differences in mercury levels, with bowfin (Amia calva) having the highest levels, followed by largemouth bass (Micropterus salmoides) and pickerel (Esox niger). Sunfish (Lepomis spp.) had the lowest levels of mercury. As expected, these differences generally reflected trophic levels. There were few significant locational differences in mercury levels, and existing differences were not great, presumably reflecting local movements of fish between the sites examined. Selenium and mercury concentrations were positively correlated only for bass, perch (Perca flavescens), and red-breasted sunfish (Lepomis auritus). Mercury levels were positively correlated with body mass of the fish for all species except American eel (Anguilla rostrata) and bluegill sunfish (L. macrochirus). The mercury and selenium levels in fish tissue from the Savannah River are similar to or lower than those reported in many other studies, and in most cases pose little risk to the fish themselves or to other aquatic consumers, although levels in bowfin and bass are sufficiently high to pose a potential threat to high-level consumers. Copyright 2001 Academic Press.
Schiner, George R.; Hayes, Eugene C.
1981-01-01
This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1981. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made in approximately 1,000 wells and at several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area 20 and 40-foot intervals are used to show a deep cone of depression. The potentiometric surface ranged from 122 feet above NGVD (National Geodetic Vertical Datum of 1929) in Polk County to 125 feet below NGVD in Nassau County. Water levels were at record lows in many counties due to lack of rainfall. Declines were as much as 10 feet and commonly 5 feet from the May 1980 levels. (USGS)
Gray QB-sing-faced version 2 (SF2) open environment test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, J.; Immel, D.; Bobbitt, J.
This report details the design upgrades incorporated into the new version of the GrayQbTM SF2 device and the characterization testing of this upgraded device. Results from controlled characterization testing in the Savannah River National Laboratory (SRNL) R&D Engineering Imaging and Radiation Lab (IRL) and the Savannah River Site (SRS) Health Physics Instrument Calibration Laboratory (HPICL) is presented, as well as results from the open environment field testing performed in the E-Area Low Level Waste Storage Area. Resultant images presented in this report were generated using the SRNL developed Radiation Analyzer (RAzerTM) software program which overlays the radiation contour images ontomore » the visual image of the location being surveyed.« less
Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS
Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros
2015-01-01
Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models. PMID:26759830
Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS.
Djurovic, Nevenka; Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros
2015-01-01
Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.
Nemova, Nina N; Murzina, Svetlana A; Nefedova, Zinaida A; Veselov, Alexey E
2015-07-30
The present research focused on determining the lipid status of salmon fingerlings (0+) in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+) living in different biotopes of the Arenga River (a tributary of the Varzuga River) may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime). The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.
River Basin Scale Management and Governance: Competing Interests for Western Water
NASA Astrophysics Data System (ADS)
Lindquist, Eric
2015-04-01
One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is regarded as a highly desirable amenity and ecosystem service provider for the region. It is also a very polarizing construct as diverse interests engaged in basin decision making do not share the same values, perceptions, and constituents. Although regulatory and jurisdictional decision making is in the hands of a few agencies (US Army Corps of Engineers and US Bureau of Reclamation, for example), it is estimated that up to 300 different interests and groups are engaged in using, supporting, and attempting to influence the decisions associated with the Boise River and its myriad uses. Building on previous river basin governance research in the US and Europe, the work presented here is framed on a policy network approach, and focuses on four main factors of the BRB: the type of stakeholder and their perceptions of the BRB as a resource or amenity, role(s) of the stakeholder in the network, interactions between network members and the public, and the role of science, uncertainty and the impact of climate change. This contribution addresses many of the question raised in the HS5.7 call for abstracts and will be of interest to a wide audience.
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon.
Silva, Bruno S de O; Coutinho, Felipe H; Gregoracci, Gustavo B; Leomil, Luciana; de Oliveira, Louisi S; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S; Ward, Nicholas D; Richey, Jeffrey E; Krusche, Alex V; Yager, Patricia L; de Rezende, Carlos Eduardo; Thompson, Cristiane C; Thompson, Fabiano L
2017-01-01
The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river's lower reach ( n = 5) and plume ( n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms ( Prochlorococcus , Synechococcus ) and heterotrophic bacteria ( Pelagibacter ). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.
Identification of Renewable Energy Potential in Ciberang River, Cisarua Village, Bogor, West Java
NASA Astrophysics Data System (ADS)
Sari Damayanthi Sebayang, Ika; Hidayat, Acep; Indah, Nur
2018-03-01
This paper presented the analysis of potential energy in Ciberang River, Cisarua Village, Bogor West Java. The objective of this work is to ascertain the availability of water due to rainfall (discharge simulation). The simulation required data in the form of rainfall intensity, climate, evapotranspiration and water discharge. The rainfall station is determined by Thiessen Method and located in Cisalak-Baru Station. Rainfall data from 1997-2012 was used. The area of Ciberang River basin is about 46.19 km2 and not influenced by the change of land area used per year. The height of waterfall allowed was 160 meters due to its topography. The result of water availability was analysed using NRECA method and calibration was done using water data recording (Automatic Water Level Recorder) in downstream of Ciberang-Sabagi station. Calibrated result analysis was then plotted to show the Flow Duration Curve (FDC). Potential capacity of power was obtained from the amount of discharge with the reliability level of 50-60%. At 60% reliability level, calculation of discharge equal to 5.8 m3/s and then was used for design parameter. The generated power capacity is 45,813,400.21 kWh/year with the assumptions of net head 159 meters, generator’s efficiency of 0.95 and turbine’s efficiency of 0.85. The result shows that Ciberang River has a potential to be developed as a hydro power plant.
Liu, Yajing; Peng, Z.; Wei, G.; Chen, T.; Sun, W.; He, J.; Liu, Gaisheng; Chou, C.-L.; Shen, C.-C.
2011-01-01
Here we present interannual rare earth element (REE) records spanning the last two decades of the 20th century in two living Porites corals, collected from Longwan Bay, close to the estuarine zones off Wanquan River of Hainan Island and Hong Kong off the Pearl River Delta of Guangdong Province in the northern South China Sea. The results show that both coral REE contents (0.5-40 ng g-1 in Longwan Bay and 2-250 ng g-1 in Hong Kong for La-Lu) are characterized with a declining trend, which are significantly negative correlated with regional sea-level rise (9.4 mm a-1 from 1981 to 1996 in Longwan Bay, 13.7 mm a-1 from 1991 to 2001 in Hong Kong). The REE features are proposed to be resulted from seawater intrusion into the estuaries in response to contemporary sea-level rise. However, the tendency for the coral Er/Nd time series at Hong Kong site is absent and there is no significant relation between Er/Nd and total REEs as found for the coral at Longwan Bay site. The observations are likely attributed to changes of the water discharge and sediment load of Pearl River, which have been significantly affected by intense human activities, such as the construction of dams/reservoirs and riverbed sediment mining, in past decades. The riverine sediment load/discharge ratio of the Pearl River decreased sharply with a rate of 0.02 kg m-3 a-1, which could make significant contribution to the declining trend of coral REE. We propose that coastal corals in Longwan Bay and similar unexplored sites with little influences of river discharge and anthropogenic disruption are ideal candidates to investigate the influence of sea-level change on seawater/coral REE. ?? 2010 Elsevier Ltd.
Do larval fishes exhibit diel drift patterns in a large, turbid river?
Reeves, K.S.; Galat, D.L.
2010-01-01
Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.
Al-Shami, Salman A; Md Rawi, Che Salmah; Ahmad, Abu Hassan; Abdul Hamid, Suhaila; Mohd Nor, Siti Azizah
2011-07-01
Abundance and diversity of benthic macroinvertebrates as well as physico-chemical parameters were investigated in five rivers of the Juru River Basin in northern Peninsula Malaysia: Ceruk Tok Kun River (CTKR), Pasir River (PR), Permatang Rawa River (PRR), Kilang Ubi River (KUR), and Juru River (JR). The physico-chemical parameters and calculated water quality index (WQI) were significantly different among the investigated rivers (ANOVA, P<0.05). The WQI classified CTKR, PR, and JR into class III (slightly polluted). However, PRR and KUR fell into class IV (polluted). High diversity and abundance of macroinvertebrates, especially the intolerant taxa, Ephemeroptera, Plecoptera, and Trichoptera, were observed in the least polluted river, CTKR. Decreasing abundance of macroinvertebrates followed the deterioration of river water quality with the least number of the most tolerant taxa collected from PR. On the basis of composition and sensitivity of macroinvertebrates to pollutants in each river, the highest Biological Monitoring Working Party (BMWP) index score of 93 was reported in CTKR (good water quality). BMWP scores in PRR and JR were 38.7 and 20.1, respectively, classifying both of them into "moderate water quality" category. Poor water quality was reported in PR and KUR. The outcome of the multivariate analysis (CCA) was highly satisfactory, explaining 43.32% of the variance for the assemblages of macroinvertebrates as influenced by 19 physical and chemical variables. According to the CCA model, we assert that there were three levels of stresses on macroinvertebrate communities in the investigated rivers: Level 1, characterized of undisturbed or slightly polluted as in the case of CTKR; Level 2, characterized by a lower habitat quality (the JR) compared to the CTKR; and Level 3 showed severe environmental stresses (PRR, PR, and KUR) primarily contributed by agricultural, industrial, and municipal discharges. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lavers, David A.; Hannah, David M.; Bradley, Chris
2015-04-01
Groundwater is an important water resource and globally it represents the largest distributed store of freshwater. In southern England, groundwater is a major source for public water supply, and many aquifers have recently experienced both extreme low and high groundwater levels. In this paper, we use observations of precipitation, river discharge and groundwater levels (1964-2010) and an atmospheric reanalysis to explore the large-scale climate patterns preceding the nine highest and lowest March river discharge and groundwater levels in the chalk catchment of the River Lambourn (Berkshire Downs, southern England). Peak monthly precipitation is shown to occur from October to January, while the highest river discharge and groundwater levels are found from February to April. For high discharge/groundwater levels, composite anomaly patterns of the mean sea level pressure show a stronger than average pressure gradient across the North Atlantic Ocean, with enhanced water vapour transport across southern England. For the lowest discharge/groundwater levels, a blocking high pressure system is found across the British Isles deflecting storms and precipitation to the north. Significantly, the intra-composite variability suggests that different sequences of atmospheric states may lead to high and low discharge/groundwater events.
Bridge Failure Due to Inadequate Design of Bed Protection
NASA Astrophysics Data System (ADS)
Gupta, Yogita; Kaur, Suneet; Dindorkar, Nitin
2017-12-01
The shallow foundation is generally provided on non-erodible strata or where scour depth is less. It is also preferable for low perennial flow or standing water condition. In the present case study shallow foundation is adopted for box type bridge. The total length of the bridge is 132.98 m, consisting of eight unit of RCC box. Each unit is composed of three cell box. The bottom slab of box unit is acted as raft foundation, founded 500 mm below ground level. River bed protection work is provided on both upstream and downstream side along the whole length of the bridge as it is founded above scour level. The bridge collapsed during the monsoon just after two years of service. The present paper explains the cause of failure. This study on failure of the bridge illustrates the importance of bridge inspection before and after monsoon period and importance of the timely maintenance. Standard specifications of Indian Road Congress for the river bed protection work are also included.
The role of remotely sensed and relayed data in the Delaware River Basin
NASA Technical Reports Server (NTRS)
Paulson, R. W.
1970-01-01
A discussion is presented of the planned integration of the existing Delaware River Basin water quality monitoring and data processing systems with a data relay experiment proposed for the Earth Resources Technology Satellite (ERTS)-A, which will be launched in 1972. The experiment is designed to use ERTS-A as a data relay link for a maximum of 20 hydrologic stations in the basin, including streamgaging, reservoir level, ground water level,and water quality monitoring stations. This experiment has the potential for reducing the timelag between data collection and dissemination to less than 12 hours. At present there is a significant timelag between the time when the data are recorded at a monitoring site and the water resources agencies receive the data. The timelag exists because most of these instruments operate in remote locations without telementry, and the data records are removed manually, generally at a weekly frequency. For most water quality monitoring, the data do not reach water resources agencies for a period of 2 weeks to 2 months.
Satellite Altimetry based River Forecasting of Transboundary Flow
NASA Astrophysics Data System (ADS)
Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.
2012-12-01
Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.
NASA Astrophysics Data System (ADS)
Brodie, R. S.; Lawrie, K.; Somerville, P.; Hostetler, S.; Magee, J.; Tan, K. P.; Clarke, J.
2013-12-01
Multiple lines of evidence were used to develop a conceptual model for interaction between the Darling River and associated floodplain aquifers in western New South Wales, Australia. Hydrostratigraphy and groundwater salinities were mapped using airborne electromagnetics (AEM), validated by sonic-core drilling. The AEM was highly effective in mapping groundwater freshening due to river leakage in discrete zones along the river corridor. These fresh resources occurred in both the unconfined Quaternary aquifers and the underlying, largely semi-confined Pliocene aquifers. The AEM was also fundamental to mapping the Blanchetown Clay aquitard which separates these two aquifer systems. Major-ion chemistry highlighted a mixing signature between river waters and groundwaters in both the Quaternary and Pliocene aquifers. Stable isotope data indicates that recharge to the key Pliocene aquifers is episodic and linked to high-flow flood events rather than river leakage being continuous. This was also evident when groundwater chemistry was compared with river chemistry under different flow conditions. Mapping of borehole levels showed groundwater mounding near the river, emphasising the regional significance of losing river conditions for both aquifer systems. Critically, rapid and significant groundwater level responses were measured during large flood events. In the Pliocene aquifers, continuation of rising trends after the flood peak receded confirms that this is an actual recharge response rather than hydraulic loading. The flow dependency of river leakage can be explained by the presence of mud veneers and mineral precipitates along the Darling River channel bank when river flows are low. During low flow conditions these act as impediments to river leakage. During floods, high flow velocities scour these deposits, revealing lateral-accretion surfaces in the shallow scroll plain sediments. This scouring allows lateral bank recharge to the shallow aquifer. During flood recession, mud veneers are re-deposited while transient return flows from bank storage results in carbonate precipitation in river banks. Active recharge of the Pliocene aquifers requires leakage pathways through the overlying Blanchetown Clay. Neogene-to-Present tectonic modification of the alluvial sequence, including discrete fault offsets in the Blanchetown Clay, was identified in the AEM data. Mapped faults are coincident with structures mapped in LiDAR, airborne magnetics, regional gravity, and seismic data.The study highlighted the utility of AEM in mapping the critical geological controls on groundwater-surface interaction, including the previously unrecognised tectonic influences on the largely unconsolidated alluvial sequence. Flow-dependent recharge due to changing river bed conductance has implications for groundwater assessment and management. An analysis of historic river flows suggests that active recharge would only occur for about 17% of the time when flow exceeds about 9,000 ML/d. Recharge would be negligible with groundwater extraction during low-flow conditions.
Yamamoto, F Y; Pereira, M V M; Lottermann, E; Santos, G S; Stremel, T R O; Doria, H B; Gusso-Choueri, P; Campos, S X; Ortolani-Machado, C F; Cestari, M M; Neto, F Filipak; Azevedo, J C R; Ribeiro, C A Oliveira
2016-09-01
The Iguaçu River, located at the Southern part of Brazil, has a great socioeconomic and environmental importance due to its high endemic fish fauna and its potential to generate hydroelectric power. However, Iguaçu River suffers intense discharge of pollutants in the origin of the river. In a previous report, the local environmental agency described water quality to improve along the river course. However, no study with integrated evaluation of chemical analysis and biological responses has been reported so far for the Iguaçu River. In the current study, three different Brazilian fish species (Astyanax bifasciatus, Chrenicicla iguassuensis, and Geophagus brasiliensis) were captured in the five cascading reservoirs of Iguaçu River for a multi-biomarker study. Chemical analysis in water, sediment, and muscle indicated high levels of bioavailable metals in all reservoirs. Polycyclic aromatic hydrocarbons (PAHs) were detected in the bile of the three fish species. Integration of the data through a FA/PCA analysis demonstrated the poorest environmental quality of the reservoir farthest from river's source, which is the opposite of what has been reported by the environmental agency. The presence of hazardous chemicals in the five reservoirs of Iguaçu River, their bioaccumulation in the muscle of fish, and the biological responses showed the impacts of human activities to this area and did not confirm a gradient of pollution between the five reservoirs, from the source toward Iguaçu River's mouth. Therefore, diffuse source of pollutants present along the river course are increasing the risk of exposure to biota and human populations.
Satellite-based estimates of surface water dynamics in the Congo River Basin
NASA Astrophysics Data System (ADS)
Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.
2018-04-01
In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.
Pereira, W.E.; Domagalski, Joseph L.; Hostettler, F.D.; Brown, L.R.; Rapp, J.B.
1996-01-01
A study was conducted in 1992 to assess the effects of anthropogenic activities and land use on the water quality of the San Joaquin River and its major tributaries. This study focused on pesticides and organic contaminants, looking at distributions of contaminants in water, bed and suspended sediment, and the bivalve Corbicula fluminea. Results indicated that this river system is affected by agricultural practices and urban runoff. Sediments from Dry Creek contained elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), possibly derived from urban runoff from the city of Modesto; suspended sediments contained elevated amounts of chlordane. Trace levels of triazine herbicides atrazine and simazine were present in water at most sites. Sediments, water, and bivalves from Orestimba Creek, a westside tributary draining agricultural areas, contained the greatest levels of DDT (1,1,1-trichloro-2-2-bis[p-chlorophenyl]ethane), and its degradates DDD (1,1-dichloro-2,2-bis[p-chlorophenyl]ethane), and DDE (1,1-dichloro-2,2- bis[p-chlorophenyl]ethylene). Sediment adsorption co efficients (K(oc)), and bioconcentration factors (BCF) in Corbicula of DDT, DDD, and DDE at Orestimba Creek were greater than predicted values. Streams of the western San Joaquin Valley can potentially transport significant amounts of chlorinated pesticides to the San Joaquin River, the delta, and San Francisco Bay. Organochlorine compounds accumulate in bivalves and sediment and may pose a problem to other biotic species in this watershed.
NASA Astrophysics Data System (ADS)
Yao, Y.; Yang, S.; Chen, Y.; Chang, L.; Chiang, C.; Huang, C.; Chen, J.
2012-12-01
Many groundwater simulation models have been developed for Chou-Shui River alluvial fan which is one of the most important groundwater areas in Taiwan. However, the exchange quantity between Chou-Shui River, the major river in this area, and the groundwater system itself is seldom studied. In this study, the exchange is evaluated using a river package (RIV) in the groundwater simulation model, MODFLOW 2000. Several critical parameters and variables used in RIV such as wet area and river level for each cell below the Chou-Shui River are respectively determined by satellite image identification and HEC-RAS simulation. The monthly average of river levels obtained from four stations include Chang-Yun Bridge, Xi-Bin Bridge, Chi-Chiang Bridge and Si-Jou Bridge during 2008 and the river cross-section measured on December 2007 are used in the construction of HEC-RAS model. Four FORMOSAT multispectral satellite images respectively obtained on January 2008, April 2008, July 2008, and November 2008 are used to identify the wet area of Chou-Shui River during different seasons. Integrating the simulation level provided by HEC-RAS and the identification result are used as the assignment of RIV. First, based on the simulation results of HEC-RAS, the water level differences between flooding period and draught period are 1.4 (m) and 2.0 (m) for Xi-Bin Bridge station (downstream) and Chang-Yun Bridge station (upstream) respectively. Second, based on the identified results, the wet areas for four seasons are 24, 24, 40 and 12 (km2) respectively. The variation range of areas in 2008 is huge that the area for winter is just 30% of the area for summer. Third, based on the simulation of MODFLOW 2000 and RIV, the exchange between the river and the groundwater system is 414 million cubic meters which contains 526 for recharge to river and 112 for discharging from river during 2008. The total recharge includes river exchange and recharge from non-river area is 2023 million cubic meters. The pumping quantity is 1930 million cubic meters.
Intermittent ephemeral river-breaching
NASA Astrophysics Data System (ADS)
Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.
2012-12-01
In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the conference examining the processes responsible for the development of the river breaching from the initial stages to a wide-open river flow and subsequent closure.
Metals in riparian wildlife of the lead mining district of southeastern Missouri
Niethammer, K.R.; Atkinson, R.D.; Baskett, T.S.; Samson, F.B.
1985-01-01
Five species of riparian vertebrates (425 individuals) primarily representing upper trophic levels were collected from the Big River and Black River drainages in two lead mining districts of southeastern Missouri, 1981?82. Big River is subject to metal pollution via erosion and seepage from large tailings piles from inactive lead mines. Black River drains part of a currently mined area. Bullfrogs (Rana catesbeiana), muskrats (Ondatra zibethicus), and green-backed herons (Butorides striatus) collected downstream from the source of metal contamination to Big River had significantly (ANOVA, P<0.05) higher lead and cadmium levels than specimens collected at either an uncontaminated upstream site or on Black River. Northern water snakes (Nerodia sipedon) had elevated lead levels below the tailings source, but did not seem to accumulate cadmium. Levels of lead, cadmium, or zinc in northern rough-winged swallows (Stelgidopteryx serripennis) were not related to collecting locality. Carcasses of ten bank swallows (Riparia riparia) collected from a colony nesting in a tailings pile along the Big River had lead concentrations of 2.0?39 ppm wet weight. Differences between zinc concentrations in vertebrates collected from contaminated and uncontaminated sites were less apparent than differences in lead and cadmium. There was little relationship between metal concentrations in the animals studied and their trophic levels. Bullfrogs are the most promising species examined for monitoring environmental levels of lead, cadmium, and zinc. Downstream from the source of tailings, bullfrogs had markedly higher levels of these metals in most of their tissues. The species is also widely distributed in North America, easily caught, and relatively sedentary.
Superstorm Sandy and the Verdant Power RITE Project
NASA Astrophysics Data System (ADS)
Corren, D.; Colby, J.; Adonizio, M.
2013-12-01
On October 29, 2012 Superstorm Sandy (formerly Hurricane Sandy) made landfall in New Jersey. One of the deadliest, and second-costliest hurricane in US history, Sandy was the largest Atlantic hurricane on record, with a diameter of 1,800 km. It was this unprecedented size, extreme central low pressure, and full-moon timing that created a storm surge which inundated New York City with record-breaking water levels, resulting in tremendous destruction of buildings and infrastructure. At its RITE (Roosevelt Island Tidal Energy) Project in New York City's East River, Verdant Power has been installing demonstration and commercial turbine systems since 2005, along with performing related environmental monitoring and measurements. The RITE site is located in the East Channel of the East River, on the east side of Roosevelt Island. All along the East River, large areas of the adjacent boroughs were impacted by Sandy, including flooding of the subway tunnels under the river. When Sandy struck, Verdant had recently concluded a two-week in-water test at RITE of a new rotor for its Gen5 KHPS (Kinetic Hydropower System) turbine, with funding assistance by partners NYSERDA and the US Department of Energy. While the turbine had already been removed from its mounting in the river bottom in September, Verdant continued to operate two water measurement instruments in the river. These acoustic Doppler current profilers (ADCPs) measure the 3-D water velocity at various heights in the water column, and are also equipped to provide water level data. Verdant is interested in the effects such an extreme storm could have on turbines and other equipment installed in this river reach, as is planned by Verdant under a 10-year commercial pilot project licensed by the Federal Energy Regulatory Commission (FERC) for up to 30 turbines. Associated equipment includes navigational aids (buoys and signage), which Verdant is required to maintain to exclude vessels from the project boundaries. The East River water speed and level data acquired during Sandy is revelatory, not only indicating the extent and timing of the extraordinarily high levels, but also significant changes to the very sense of the tidal flows. This unique observational data provides an invaluable insight for Verdant Power, the marine and hydrokinetic (MHK) industry, and researchers studying the potential effects of extreme storms on New York City and potential countermeasures. In this paper, Verdant first presents the East River data collected during Superstorm Sandy, indicating what actually happened during the storm. Verdant provides further analyses and estimates of the potential for yet more extreme water levels due to different storm timing relative to the astronomical tides. These results should also provide additional insights for measures to prepare for extreme storms in the New York City area. Specific to Verdant Power, as a renewable energy developer, we also analyze the data to estimate how a different storm timing could affect the water velocity through the river. We relate these findings to the design criteria for our turbines and associated equipment, and draw conclusions about the potential impact of an extreme storm such as Sandy on a commercial array of kinetic hydropower turbines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.
This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels aremore » increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.« less
Fuller, C.C.; Davis, J.A.; Cain, D.J.; Lamothe, P.J.; Fries Fernandez, T.L.G.; Vargas, J.A.; Murillo, M.M.
1990-01-01
A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediment from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediments from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.
Havlíková, Petra; Chuman, Tomáš; Janský, Bohumír
2017-11-17
The aim of the thesis was to specify key differences in chemistry and biota (zooplankton communities) among fluvial lakes in three regions of the Czech Republic: the central part of the Elbe River, the upper part of the Lužnice River and the upper part of the Svratka River. The ten studied lakes of the three regions differ in size, geology, shading, connection with the river and the level of anthropogenic impact. The following hypotheses were tested: (1) The water chemistry of fluvial lakes significantly differs in different floodplains. In the central Elbe River floodplain, there are the highest values of conductivity and concentrations of organic matter and nutrients. Fluvial lakes of the Svratka River floodplain show the lowest level of these parameters, and fluvial lakes of the upper Lužnice River have levels intermediate between the two previous regions. (2) The chemistry of fluvial lakes that have contact with the river through surface connection is significantly influenced by the river. (3) The structure of zooplankton differs in different lakes due to the geographical distance between locations, their different altitude and water chemistry. The PCA analysis of selected parameters of the water chemistry revealed a close relationship of locations in the central Elbe River floodplain on the one side and close relationship of the locations in the upper Lužnice River and Svratka River on the other. However, the amount of organic matter, nitrogen (with the exception of nitrates) and phosphorus was independent of the region. The relationship between the extent of the lake-river connection and the water chemistry was not significant. The hypothesis that the zooplankton differ in different lakes was not proved-the species composition was similar in all the lakes.
NASA Astrophysics Data System (ADS)
Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.
2013-12-01
In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.
AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
PETERSEN SW; EDRINGTON RS; MAHOOD RO
2011-01-14
Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining andmore » losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.« less
Combined sewer overflows impact on water quality and environmental ecosystem in the Harlem River
NASA Astrophysics Data System (ADS)
Wang, J.
2017-12-01
Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during wet weather conditions, and it elevated nutrients and pathogen levels. It is not safe for swimming, fishing or boating especially in rainstorms. The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable again in near future.
Late quaternary evolution of the Orinoco Delta, Venezuela
Warne, A.G.; Guevara, E.H.; Aslan, A.
2002-01-01
The modern Orinoco Delta is the latest of a series of stacked deltas that have infilled the Eastern Venezuelan Basin (EVB) since the Oligocene. During the late Pleistocene sea-level lowstand (20,000 to 16,000 yrs BP), bedrock control points at the position of the present delta apex prevented the river channel from incising as deeply as many other major river systems. Shallow seismic data indicate that the late Pleistocene Orinoco incised into the present continental shelf, where it formed a braided-river complex that transported sediment to a series of shelf-edge deltas. As sea level rose from 16,000 to 9,500 yrs BP, the Orinoco shoreline shifted rapidly landward, causing shallow-marine waves and currents to form a widespread transgressive sand unit. Decelerating sea-level rise and a warmer, wetter climate during the early Holocene (9,500 to 6,000 yrs BP) induced delta development within the relatively quiet-water environment of the EVB embayment. Sea level approached its present stand in the middle Holocene (6,000 to 3,000 yrs BP), and the Orinoco coast prograded, broadening the delta plain and infilling the EVB embayment. Significant quantities of Amazon sediment began to be transported to the Orinoco coast by littoral currents. Continued progradation in the late Holocene caused the constriction at Boca de Serpientes to alter nearshore and shelf hydrodynamics and subdivide the submarine delta into two distinct areas: the Atlantic shelf and the Gulf of Paria. The increased influence of littoral currents along the coast promoted mudcape development. Because most of the water and sediment were transported across the delta plain through the Rio Grande distributary in the southern delta, much of the central and northwestern delta plain became sediment starved, promoting widespread accumulation of peat deposits. Human impacts on the delta are mostly associated with the Volca??n Dam on Can??o Manamo. However, human activities have had relatively little effect on the delta processes and environments.
NASA Astrophysics Data System (ADS)
Bhatt, C. M.; Rao, G. S.; Patro, B.
2014-12-01
Conventional method of identifying areas to be inundated for issuing flood alert require inputs like discharge data, fine resolution digital elevation model (DEM), software for modelling and technically trained manpower to interpret the results meaningfully. Due to poor availability of these inputs, including good network of historical hydrological observations and limitation of time, quick flood early warning becomes a difficult task. Presently, based on the daily river water level and forecasted water level for major river systems in India, flood alerts are provided which are non-spatial in nature and does not help in understanding the inundation (spatial dimension) which may be caused at various water levels. In the present paper a concept for developing a series of flood-inundation map libraries two approaches are adopted one by correlating inundation extent derived from historical satellite data analysis with the corresponding water level recorded by the gauge station and the other simulation of inundation using digital elevation model (DEM's) is demonstrated for a part of Godavari Basin. The approach explained can be one of quick and cost-effective method for building a library of flood inundation extents, which can be utilized during flood disaster for alerting population and taking the relief and rescue operations. This layer can be visualized from a spatial dimension together with other spatial information like administrative boundaries, transport network, land use and land cover, digital elevation data and satellite images for better understanding and visualization of areas to be inundated spatially on free web based earth visualization portals like ISRO's Bhuvan portal (http://bhuvan.nrsc.gov.in). This can help decision makers in taking quick appropriate measures for warning, planning relief and rescue operations for the population to get affected under that river stage.
Evolution of the Kιzιlιrmak river and its interaction with the North Anatolian Fault, Turkey
NASA Astrophysics Data System (ADS)
Drab, L.; Hubert Ferrari, A.; Benedetti, L.; van der Woerd, J.
2010-12-01
The North Anatolian Fault (NAF) is a 1500km long dextral strike-slip fault, which accommodates the extrusion of the Anatolian Plate away from the Arabia/Eurasia collision zone at a rate of 20-25mm/yr. The fault strongly affects the whole drainage network and, especially, the Kιzιlιrmak River. The Kιzιlιrmak River is the longest river in Turkey (1350km); it formed during the Pliocene and rose in eastern Anatolia. The river drains a part of the Anatolian Plateau, crosses the North Anatolian Fault and the Pontides mountains before reaching the Black Sea. Whereas wide terraces are preserved along the Kιzιlιrmak River in the Anatolian Plateau, where a recent study (Dogan 2009) determines an incision rate of 0.08 mm/yr according to 40Ar/39Ar datations on basalts, no clear terraces can be mapped further North where the river incises through the Pontides Mountains. Our study focuses on the central part of the fault affected by the 280 km long 1943 Tosya earthquake rupture. In this area the NAF makes a wide convex arc about 100km south to the Black Sea coast, and offset by 30 km the Kιzιlιrmak River. Indeed, south of the NAF the Kιzιlιrmak River flows to North/East. Then it is deviated along the NAF in the Kargι pull-apart and flows to the East parallel to the fault for 30km before bending again to the North/East in the Kamil pull-apart. Around the two bends of the River three alluvial terraces can be mapped. The lowest one (10m high above the present river level) is preserved in the Kargι pull-apart. The two other ones (60 and 100m above the Kιzιlιrmak River) are situated further east in the Kamil pull-apart. The highest terrace is offset by at least 300m offset along the NAF. The ages of sampled terraces are constrained using 10Be and 36Cl cosmogenic dating methods. The in situ cosmogenic 36Cl exposure ages calculated apply from 22ka for the lowest terrace, to 100 ka for the highest terrace in the erosion preserved area. The highest terrace shows a contribution of younger ages (the same time interval of 50ka of the intermediate terrace) certainly coming from the catchement just above. The proximity of ages may be due to the short time-interval between the both highest terraces incision by the Kιzιlιrmak river. 10Be measurements on sand coming from river beds will provide past to actual erosion rates along the Kιzιlιrmak River as well as present erosion rate from small rivers flowing to the river. The goals of this study are to constrain, 1/ the origin of the terraces (climatic or tectonic), 2/ the slip rate of the NAF integrated over more than 20 000 years, 3/ the evolution of the Kιzιlιrmak River incision rate, 4/ the influence of the vertical motion in the NAF convex arc region on the present incision rate of small rivers flowing toward the Kιzιlιrmak.
NASA Astrophysics Data System (ADS)
Rojali, Aditia; Budiaji, Abdul Somat; Pribadi, Yudhistira Satya; Fatria, Dita; Hadi, Tri Wahyu
2017-07-01
This paper addresses on the numerical modeling approaches for flood inundation in urban areas. Decisive strategy to choose between 1D, 2D or even a hybrid 1D-2D model is more than important to optimize flood inundation analyses. To find cost effective yet robust and accurate model has been our priority and motivation in the absence of available High Performance Computing facilities. The application of 1D, 1D/2D and full 2D modeling approach to river flood study in Jakarta Ciliwung river basin, and a comparison of approaches benchmarked for the inundation study are presented. This study demonstrate the successful use of 1D/2D and 2D system to model Jakarta Ciliwung river basin in terms of inundation results and computational aspect. The findings of the study provide an interesting comparison between modeling approaches, HEC-RAS 1D, 1D-2D, 2D, and ANUGA when benchmarked to the Manggarai water level measurement.
Dias, Amanda Cristina Vieira; Gomes, Frederico Wegenast; Bila, Daniele Maia; Sant'Anna, Geraldo Lippel; Dezotti, Marcia
2015-10-01
The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants. Copyright © 2015 Elsevier Inc. All rights reserved.
Fernández-Gómez, Cristal; López-López, José Antonio; Matamoros, Victor; Díez, Sergi; García-Vargas, Manuel; Moreno, Carlos
2013-04-01
In the lower Guadalquivir river basin, a system stressed by a wide variety of anthropogenic activities, eight pesticides (four triazines, two chloroacetanilide herbicides, one organochlorine, and one organophosphorus insecticide); and four emerging pollutants (two personal care products, one organophosphorous flame retardant, and one xanthine alkaloid) were analyzed in river water during a 2-year monitoring program, and after rain episodes. Samples were extracted using the solid phase extraction (SPE) technique prior to determination of compounds using gas chromatograph coupled to a mass spectrometer detector. Except for caffeine, recoveries were mostly above 80 %, while limits of detection and quantification were in the low nanograms per liter level (except for dimethoate). Terbuthylazine, simazine (triazine herbicides), and dimethoate (organophosphorus insecticide), present in agrochemicals, were predominant in the river water, although concentrations were below the quality standards established by the EU Water-Framework-Directive. A general trend to increase concentration was observed after rain events, in particular for pesticides, possibly as a consequence of surface runoff.
33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level. 207.170 Section 207.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River...
33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level. 207.170 Section 207.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River...
33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level. 207.170 Section 207.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River...
NASA Astrophysics Data System (ADS)
Jidin, Razali; Othman, Bahari
2013-06-01
The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.
Duka, Sonila; Pepa, Bledar; Keci, Erjola; Paparisto, Anila; Lazo, Pranvera
2017-04-16
Environmental monitoring of river water quality in Albania, using biological and chemical parameters, is a fast and effective way to assess the quality of water bodies.The aim of this study was to investigate Ephemeroptera, Plecoptera and Trichoptera (EPT), Biotic index-Richness using macroinvertebrates to assess the water quality, with special reference to nutrient (phosphorus and nitrogen) levels in the Devolli, Shkumbini and Osumi rivers. Our objective was to investigate the relationships between the measures of benthic macroinvertebrate communities and nutrient concentrations to assess water quality. The rivers' benthic macroinvertebrates were collected during different seasons in 2012. The biological and chemical parameters used in the current study identified them as quick indicators of water quality assessment. The total number of macroinvertebrate individuals (n = 15,006) (Osumi river: n = 5,546 organisms; Devolli river: n = 3,469 organisms; and Shkumbini river: n = 5,991 organisms), together with the EPT group (Ephemeroptera, Plecoptera, and Trichoptera), showed that the water quality at the river stations during the above-mentioned period belonged to Classes II and III (fair water quality and good water quality, respectively). The classification of the water quality was also based on the nitrogen and total phosphorus contents. The pollution tolerance levels of macroinvertebrate taxa varied from the non-tolerating forms encountered in environments with low pollution levels to the tolerating forms that are typical of environments with considerable pollution levels.
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.
ABSTRACT The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n= 5) and plume (n= 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viralmore » proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus,Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral familiesMicroviridaeandMyoviridaewere the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCEThe Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.« less
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon
Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.; Leomil, Luciana; de Oliveira, Louisi S.; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S.; Ward, Nicholas D.; Richey, Jeffrey E.; Krusche, Alex V.; Yager, Patricia L.; de Rezende, Carlos Eduardo; Thompson, Cristiane C.
2017-01-01
ABSTRACT The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume. PMID:28989970
Rumisha, Cyrus; Mdegela, Robinson H; Kochzius, Marc; Leermakers, Martine; Elskens, Marc
2016-10-01
Mangroves ecosystems support livelihood and economic activities of coastal communities in the tropics and subtropics. Previous reports have documented the inefficiency of waste treatment facilities in Tanzania to contain trace metals. Therefore, the rapidly expanding coastal population and industrial sector is likely to threaten mangrove ecosystems with metal pollution. This study analysed trace metals in 60 sediment samples and 160 giant tiger prawns from the Tanzanian coast in order to document the distribution of trace metals and to establish if measured levels present a threat to mangrove fauna and are of public health importance. High levels of Cr, Co, Cu, Fe, Mn, Ni, and V was observed in mangroves of river Pangani, Wami, and Rufiji. Multivariate analysis showed that they originate mainly from weathering and erosion in the river catchments. Extreme enrichment of Cd was observed in a mangrove affected by municipal sewage. The distribution of Hg, Pb, and Zn was related with urbanisation and industrial activities along the coast. The metal pollution index was high at Pangani, Saadani, and Rufiji, suggesting that these estuarine mangroves are also affected by human activities in the catchment. Moderate to considerable ecological risks were observed in all sampled mangroves, except for Kilwa Masoko. It was revealed that As, Cd, and Hg present moderate risks to fauna. High levels of Cu, Fe and Zn were observed in prawns but the level of the non-essential Cd, Hg, and Pb did not exceed the maximum allowed levels for human consumption. However, based on the trends of fish consumption in the country, weekly intake of Hg is likely to exceed provisional tolerable weekly intake level, especially in fishing communities. This calls for measures to control Hg emissions and to strengthen sewage and waste treatment in coastal cities and urban centres in the basin of major rivers. Copyright © 2016 Elsevier Inc. All rights reserved.
Rachol, Cynthia M.; Button, Daniel T.
2006-01-01
As part of the Lake St. Clair Regional Monitoring Project, the U.S. Geological Survey evaluated data collected from surficial streambed and lakebed sediments in the Lake Erie-Lake St. Clair drainages. This study incorporates data collected from 1990 through 2003 and focuses primarily on the U.S. part of the Lake St. Clair Basin, including Lake St. Clair, the St. Clair River, and tributaries to Lake St. Clair. Comparable data from the Canadian part of the study area are included where available. The data are compiled into 4 chemical classes and consist of 21 compounds. The data are compared to effects-based sediment-quality guidelines, where the Threshold Effect Level and Lowest Effect Level represent concentrations below which adverse effects on biota are not expected and the Probable Effect Level and Severe Effect Level represent concentrations above which adverse effects on biota are expected to be frequent.Maps in the report show the spatial distribution of the sampling locations and illustrate the concentrations relative to the selected sediment-quality guidelines. These maps indicate that sediment samples from certain areas routinely had contaminant concentrations greater than the Threshold Effect Concentration or Lowest Effect Level. These locations are the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Big Beaver Creek, Red Run, and Paint Creek. Maps also indicated areas that routinely contained sediment contaminant concentrations that were greater than the Probable Effect Concentration or Severe Effect Level. These locations include the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Red Run, within direct tributaries along Lake St. Clair and in marinas within the lake, and within the Clinton River headwaters in Oakland County.Although most samples collected within Lake St. Clair were from sites adjacent to the mouths of its tributaries, samples analyzed for trace-element concentrations were collected throughout the lake. The distribution of trace-element concentrations corresponded well with the results of a two-dimensional hydrodynamic model of flow patterns from the Clinton River into Lake St. Clair. The model was developed independent from the bed sediment analysis described in this report; yet it showed a zone of deposition for outflow from the Clinton River into Lake St. Clair that corresponded well with the spatial distribution of trace-element concentrations. This zone runs along the western shoreline of Lake St. Clair from L'Anse Creuse Bay to St. Clair Shores, Michigan and is reflected in the samples analyzed for mercury and cadmium.Statistical summaries of the concentration data are presented for most contaminants, and selected statistics are compared to effects-based sediment-quality guidelines. Summaries were not computed for dieldrin, chlordane, hexachlorocyclohexane, lindane, and mirex because insufficient data are available for these contaminants. A statistical comparison showed that the median concentration for hexachlorobenzene, anthracene, benz[a]anthracene, chrysene, and pyrene are greater than the Threshold Effect Concentration or Lowest Effect Level.Probable Effect Concentration Quotients provide a mechanism for comparing the concentrations of contaminant mixtures against effects-based biota data. Probable Effect Concentration Quotients were calculated for individual samples and compared to effects-based toxicity ranges. The toxicity-range categories used in this study were nontoxic (quotients < 0.5) and toxic (quotients > 0.5). Of the 546 individual samples for which Probable Effect Concentration Quotients were calculated, 469 (86 percent) were categorized as being nontoxic and 77 (14 percent) were categorized as being toxic. Bed-sediment samples with toxic Probable Effect Concentration Quotients were collected from Paint Creek, Galloway Creek, the main stem of the Clinton River, Big Beaver Creek, Red Run, Clinton River towards the mouth, Lake St. Clair along the western shore, and the St. Clair River near Sarnia.
de Solla, Shane R; Fernie, Kimberly J
2004-11-01
PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.
Yakima River Spring Chinook Enhancement Study, 1991 Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, David E.
1991-05-01
The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indianmore » Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.« less
Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, David E.
1991-05-01
This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 tomore » 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.« less
Mathematical model simulation of a diesel spill in the Potomac River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, S.S.; Nicolette, J.P.; Markarian, R.K.
1995-12-31
A mathematical modeling technique was used to simulate the transport and fate of approximately 400,000 gallons of spilled diesel fuel and its impact on the aquatic biota in the Potomac River and Sugarland Run. Sugarland Run is a tributary about 21 miles upstream from Washington, DC. The mass balance model predicted the dynamic (spatial and temporal) distribution of spilled oil. The distributions were presented in terms of surface oil slick and sheen, dissolved and undissolved total petroleum hydrocarbons (TPH) in the water surface, water column, river sediments, shoreline and atmosphere. The processes simulated included advective movement, dispersion, dissolution, evaporation, volatilization,more » sedimentation, shoreline deposition, biodegradation, and removal of oil from cleanup operations. The model predicted that the spill resulted in a water column dissolved TPH concentration range of 0.05 to 18.6 ppm in Sugarland Run. The spilled oil traveled 10 miles along Sugarland Run before it reached the Potomac River. At the Potomac River, the water column TPH concentration was predicted to have decreased to the range of 0.0 to 0.43 ppm. These levels were consistent with field samples. To assess biological injury, the model used 4, 8, 24, 48, and 96-hr LC values in computing the fish injury caused by the fuel oil. The model used the maximum running average of dissolved TPH and exposure time to predict levels of fish mortality in the range of 38 to 40% in Sugarland Run. This prediction was consistent with field fisheries surveys. The model also computed the amount of spilled oil that adsorbed and settled into the river sediments.« less
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
NASA Astrophysics Data System (ADS)
Li, Shoubo; Zhao, Yan; Wei, Yongping; Zheng, Hang
2017-08-01
The response of vegetation systems to the long-term changes in climate, hydrology, and social-economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB) over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1) both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China), a rapid development stage (Republic of China - 2000), and a post-development stage (after 2000). Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2) there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3) the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social-economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.
Elliott, J.E.; Henny, Charles J.; Harris, M.L.; Wilson, L.K.; Norstrom, R.J.
1999-01-01
We investigated chlorinated hydrocarbon contaminants in aquatic mustelid species on the Fraser and Columbia Rivers of northwestern North America. Carcasses of river otter (Lutra canadensis) (N=24) and mink (Mustela vison) (N=34) were obtained from commercial trappers during the winters of 1990-91 and 1991a??92. Pooled liver samples were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), including non-ortho congeners, polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Most samples contained detectable concentrations of DDE, PCBs, although there was substantial variability in patterns and trends among neighboring samples. Concentrations of DDE were in some mink and several otter samples from the lower Columbia River elevated (to 4700 g/kg wet weight); excluding one mink sample from the Wenatchee area, mean DDE levels generally decreased between 1978a??79 and 1990a??92. PCBs were present in all samples. PCB concentrations in otter livers collected from the lower Columbia were ten-fold lower than measured a decade previously; nevertheless, a sample taken near Portland had a mean concentration of 1500 g/kg, within a range of concentrations associated with reproductive effects in captive mink. Concentrations of 2,3,7,8-TCDD and TCDF were generally below detection limits, except for one otter collected near a pulp mill at Castlegar, on the upper Columbia, with 11 ng TCDD/kg in liver. Elevated concentrations of higher chlorinated PCDD/Fs, probably resulting from use of chlorophenolic wood preservatives, were found in both species; one otter sample from the lower Columbia had 2200 ng OCDD/kg. International TCDD toxic equivalent levels in mink (31 ng/kg) and otter (93 ng/kg) from the lower Columbia River approached toxicity thresholds for effects on reproduction in ranch mink.
Huang, Danlian; Xu, Juanjuan; Zeng, Guangming; Lai, Cui; Yuan, Xingzhong; Luo, Xiangying; Wang, Cong; Xu, Piao; Huang, Chao
2015-08-01
As lead is one of the most hazardous heavy metals in river ecosystem, the influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment with high moisture content were studied at laboratory scale. The dynamic changes of urease, catalase, protease activities, organic matter content, and exchangeable or ethylenediaminetetraacetic acid (EDTA)-extractable Pb concentration in sediment were monitored during different levels of exogenous lead infiltrating into sediment. At the early stage of incubation, the activities of catalase and protease were inhibited, whereas the urease activities were enhanced with different levels of exogenous lead. Organic matter content in polluted sediment with exogenous lead was lower than control and correlated with enzyme activities. In addition, the effects of lead on the three enzyme activities were strongly time-dependent and catalase activities showed lower significant difference (P < 0.05) than urease and protease. Correlations between catalase activities and EDTA-extractable Pb in the experiment were significantly negative. The present findings will improve the understandings about the ecotoxicological mechanisms in sediment.
Spencer, J.E.; Pearthree, P.A.; House, P.K.
2008-01-01
The upper Miocene to lower Pliocene Bouse Formation in the lower Colorado River trough of the American Southwest was deposited in three basins - from north to south, the Mohave, Havasu, and Blythe Basins - that were formed by extensional fault ing in the early to middle Miocene. Fossils of marine, brackish, and freshwater organ isms in the Bouse Formation have been interpreted to indicate an estuarine environment associated with early opening of the nearby Gulf of California. Regional uplift since 5 Ma is required to position the estuarine Bouse Formation at present elevations as high as 555 m, where greater uplift is required in the north. We present a compilation of Bouse Formation elevations that is consistent with Bouse deposition in lakes, with an abrupt 225 m northward increase in maximum Bouse elevations at Topock gorge north of Lake Havasu. Within Blythe and Havasu Basins, maximum Bouse elevations are 330 m above sea level in three widely spaced areas and reveal no evidence of regional tilting. To the north in Mohave Basin, numerous Bouse outcrops above 480 m elevation include three widely spaced sites where the Bouse Formation is exposed at 536-555 m. Numerical simulations of initial Colorado River inflow to a sequence of closed basins along the lower Colorado River corridor model a history of lake filling, spilling, evaporation and salt concentration, and outflow-channel incision. The simulations support the plausibility of evaporative concentration of Colorado River water to seawater-level salinities in Blythe Basin and indicate that such salinities could have remained stable for as long as 20-30 k.y. We infer that fossil marine organ isms in the Bouse Formation, restricted to the southern (Blythe) basin, reflect coloniza tion of a salty lake by a small number of species that were transported by birds.
Reconnaissance-level assessment of water quality near Flandreau, South Dakota
Schaap, Bryan D.
2002-01-01
This report presents water-quality data that have been compiled and collected for a reconnaissance-level assessment of water quality near Flandreau, South Dakota. The investigation was initiated as a cooperative effort between the U.S. Geological Survey and the Flandreau Santee Sioux Tribe. Members of the Flandreau Santee Sioux Tribe have expressed concern that Tribal members residing in the city of Flandreau experience more health problems than the general population in the surrounding area. Prior to December 2000, water for the city of Flandreau was supplied by wells completed in the Big Sioux aquifer within the city of Flandreau. After December 2000, water for the city of Flandreau was supplied by the Big Sioux Community Water System from wells completed in the Big Sioux aquifer along the Big Sioux River near Egan, about 8 river miles downstream of Flandreau. There is some concern that the public and private water supplies provided by wells completed in the Big Sioux aquifer near the Big Sioux River may contain chemicals that contribute to the health problems. Data compiled from other investigations provide information about the water quality of the Big Sioux River and the Big Sioux aquifer in the Flandreau area from 1978 through 2001. The median, minimum, and maximum values are presented for fecal bacteria, nitrate, arsenic, and atrazine. Nitrate concentrations of water from Flandreau public-supply wells occasionally exceeded the Maximum Contaminant Level of 10 milligrams per liter for public drinking water. For this study, untreated-water samples were collected from the Big Sioux River in Flandreau and from five wells completed in the Big Sioux aquifer in and near Flandreau. Treated-water samples from the Big Sioux Community Water System were collected at a site about midway between the treatment facility near Egan and the city of Flandreau. The first round of sampling occurred during July 9-12, 2001, and the second round of sampling occurred during August 20-27, 2001. Samples were analyzed for a broad range of compounds, including major ions, nutrients, trace elements, pesticides, antibiotics, and organic wastewater compounds, some of which might cause adverse health effects after long-term exposure. Samples collected on August 27, 2001, from the Big Sioux River also were analyzed for human pharmaceutical compounds. The quality of the water in the Big Sioux River and the Big Sioux aquifer in the Flandreau area cannot be thoroughly characterized with the limited number of samples collected within a 2-month period, and for many analytes, neither drinking-water standards nor associations with adverse health effects have been established. Concentrations of some selected analytes were less than U.S. Environmental Protection Agency drinking-water standards at the time of the sampling, and concentrations of most organic compounds were less than the respective method reporting levels for most of the samples.
Life in the fast lane: fish and foodweb structure in the main channel of large rivers
Dettmers, J.M.; Wahl, David H.; Soluk, D.A.; Gutreuter, S.
2001-01-01
We studied the main channel of the lower Illinois River and of the Mississippi River just upstream and downstream of its confluence with the Illinois River to describe the abundance, composition, and/or seasonal appearance of components of the main-channel community. Abundance of fishes in the main channel was high, especially adults. Most adult fishes were present in the main channel for either 3 or 4 seasons/y, indicating that fishes regularly reside in the main channel. We documented abundant zooplankton and benthic invertebrates in the main channel, and the presence of these food types in the diets of channel catfish and freshwater drum. All trophic levels were well represented in the main channel, indicating that the main channel supports a unique food web. The main channel also serves as an important energetic link with other riverine habitats (e.g., floodplains, secondary channels, backwater lakes) because of the mobility of resident fishes and because of the varied energy sources supplying this food web. It may be more realistic to view energy flow in large-river systems as a combination of 3 existing concepts, the river continuum concept (downstream transport), the flood pulse concept (lateral transport to the floodplain), and the riverine productivity model (autochthonous production). We urge additional research to quantify the links between the main channel and other habitat types in large rivers because of the apparent importance of main-channel processes in the overall structure and function of large-river ecosystems.
Hu, Jin Long; Zhou, Zhi Xiang; Teng, Ming Jun; Luo, Nan
2017-06-18
Taking Lijiang River basin as study area, and based on the remote sensing images of 1973, 1986, 2000 and 2013, the land-use data were extracted, the ecological risk index was constructed, and the characteristics of spatiotemporal variation of ecological risk were analyzed by "3S" technique. The results showed that land use structure of Lijiang River basin was under relatively reasonable state and it was constantly optimizing during 1973-2013. Overall, the ecological risk of Lijiang River basin was maintained at a low level. Lowest and lower ecological risk region was dominant in Lijiang River basin, but the area of highest ecological risk expanded quickly. The spatial distribution of ecological risk was basically stable and showed an obvious ring structure, which gra-dually decreased from the axis of Xingan County Town-Lingchuan County Town-Guilin City-Yangshuo County Town to other regions. Region with lowest ecological risk mainly distributed in natural mountain forest area of the north and mid-eastern parts of Lijiang River basin, and region with highe-st ecological risk concentrated in Guilin City. The ecological risk distribution of Lijiang River basin presented significant slope and altitude differences, and it decreased with increasing slope and altitude. During the study period, the area of low ecological risk converted to high ecological risk gra-dually decreased and vice versa. On the whole, the ecological risk tended to decline rapidly in the Lijiang River basin.
de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva E Sousa, Louridânya; de Moura Holanda, Mércia; de Macedo Vieira Lima, Ataíde; de Oliveira, Vitor Alves; da Silva, Felipe Cavalcanti Carneiro; de Morais Lima, Leonardo Henrique Guedes; Matos, Leomá Albuquerque; de Moura Dantas, Sandra Maria Mendes; de Aguiar, Raí Pablo Sousa; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Junior, Horácio Ferreira Júlio
2017-06-01
In general, tropical rivers have a great impact on human activities. Bioaccumulation of toxins is a worldwide problem nowadays and has been, historically, overlooked by the supervisory authorities. This study evaluated cytogenotoxic effects of Guaribas river (a Brazilian river) water during dry and rainy seasons of 2014 by using the Allium cepa test system. The toxicogenetic variables, including root growth, mitotic index, and chromosomal aberrations, were analyzed in meristematic cells of A. cepa exposed to water samples taken from the up-, within, and downstream of the city Picos (state: Piauí). The physical-chemical parameters were also analyzed to explain water quality and possible anthropogenic action. Additionally, the presence of heavy metals was also analyzed to explain water quality and possible damaging effects on eukaryotic cells. The results suggest that the river water exerted cytotoxic, mutagenic, and genotoxic effects, regardless of the seasons. In addition, Guaribas river presented physico-chemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage, industrial, and local agriculture). The genetic damage was positively correlated with higher levels of heavy metals. The pollution of the Guaribas river water may link to the chemical contamination, including the action of heavy metals and their impacts on genetic instability in the aquatic ecosystem. In conclusion, necessary steps should be taken into account for further toxicogenetic studies of the Guaribas river water, as it has an influence in human health of the same region of Brazil.
NASA Astrophysics Data System (ADS)
Imsong, Watinaro; Choudhury, Swapnamita; Phukan, Sarat; Duarah, Bhagawat Pran
2018-02-01
The present study is undertaken in the Kulsi River valley, a tributary of the Brahmaputra River that drains through the tectonically active Shillong Plateau in northeast India. Based on the fluvial geomorphic parameters and Landsat satellite images, it has been observed that the Kulsi River migrated 0.7-2 km westward in its middle course in the past 30 years. Geomorphic parameters such as longitudinal profile analysis, stream length gradient index ( SL), ratio of valley floor width to valley height ( Vf), steepness index (ks) indicate that the upstream segment of the Kulsi River is tectonically more active than the downstream segment which is ascribed to the tectonic activities along the Guwahati Fault. ^{14}C ages obtained from the submerged tree trunks of the Chandubi Lake, which is located in the central part of the Kulsi River catchment suggests inundation (high lake levels) during 160 ± 50 AD, 970 ± 50 AD, 1190 ± 80 AD and 1520 ± 30 AD, respectively. These periods broadly coincide with the late Holocene strengthened Indian Summer Monsoon (ISM), Medieval Warm Period (MWP) and the early part of the Little Ice Age (LIA). The debris which clogged the course of the river in the vicinity of the Chandubi Lake is attributed to tectonically induced increase in sediment supply during high magnitude flooding events.
NASA Astrophysics Data System (ADS)
Fernandes, A. M.; Smith, V.
2017-12-01
A downstream reduction in bed material flux is associated with the backwater zone, where rivers in their terminal reaches deepen to respond to the sea-level in the receiving basin. This downstream change in sediment transport is reflected in: a) lateral channel mobility, and b) sedimentology and stratigraphic architecture of composite depositional bodies that are left behind. Here we draw comparisons between the Mississippi River and the Trinity River (TX), in terms of bar morphologies and composition, and lateral mobility of these rivers. Across the backwater transition, both rivers display a slight increase in lateral migration rates, followed by substantial decrease lateral migration in the terminal reaches. Both rivers also display predominantly symmetrical channel cross-sections, coincident with very small migration rates in the terminal reaches. We will discuss how the divergence in sediment transport flux across the backwater zone relates to the volume and shape of bank-attached bars, which in turn relates to the cross-sectional shapes of the channels as well as their lateral migrations rates, and ultimately defines the internal architecture of the composite channel deposits that result. Furthermore, we draw comparisons between the morphologies of bank-attached bars and channels in rivers and submarine channels to present insights into how the dominant mode of sediment transport in these different environments ultimately controls the morphologies and kinematics of these channels.
Water quality of North Carolina streams
Harned, Douglas; Meyer, Dann
1983-01-01
Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing concentration of most dissolved constituents over time, with a leveling off and decline in the middle to late 1970's.
Wilson, Richard P.; Owen-Joyce, Sandra J.
1994-01-01
Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. A method was developed to identify wells outside the f1ood plain of the lower Colorado River that yield water that will be replaced by water from the river. The method provides a uniform criterion of identification for all users pumping water from wells. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the river. Wells that have a static water-level elevation above the accounting surface are presumed to yield water that will be replaced by water from precipitation and inflow from tributary valleys. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable, partly saturated sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain and reservoirs that would exist if the river were the only source of water to the river aquifer. Maps at a scale of 1:100,000 show the extent and elevation of the accounting surface from the area surrounding Lake Mead to Laguna Dam near Yuma, Arizona.
Distribution and assessment of heavy metals in the surface sediment of Yellow River, China.
Yan, Nan; Liu, Wenbin; Xie, Huiting; Gao, Lirong; Han, Ying; Wang, Mengjing; Li, Haifeng
2016-01-01
Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn>Cr>Cu>Ni>Pb>As>Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River, and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk. Copyright © 2015. Published by Elsevier B.V.
Jones, Perry M.
2005-01-01
The extent of aquifer water-level changes resulting from these river, wetland, and lake water-level changes varied because of the complex hydrogeology of the study area. A 1.00-foot decline in reservoir/river water levels caused a maximum simulated ground-water-level decline in the middle aquifer near Jay Gould and Little Jay Gould Lakes of 1.09 feet and a maximum simulated ground-water-level decline of 1.00 foot in the lower aquifer near Cut-off and Blackwater Lakes. The amount and extent of ground-water-level changes in the middle and lower aquifers can be explained by the thickness, extent, and connectivity of the aquifers. Surface-water/ground-water interactions near wetlands and lakes with water levels unchanged from the calibrated model resulted in small water-table altitude differences among the simulations. Results of the ground-water modeling indicate that lowering of the reservoir and river water levels by 1.00 foot likely will not substantially affect water levels in the middle and lower aquifers.
NASA Astrophysics Data System (ADS)
Costa, D.; Burlando, P.; Liong, S. Y.
2015-12-01
Recent observations in the shallow aquifer of Jakarta show a rise in nitrate (NO3-) levels. Groundwater is extensively used in the city to compensate for the limited public water supply network and therefore the risk to public health from a rise in NO3- concentration is high. NO3- has been identified as a cofactor for methemoglobinemia in infants, a disease which can lead to death in extreme cases. The NO3- levels detected are still below regulatory limits for drinking purposes but strategies are necessary to contain the growing problem. To this end, the main sources and pathways of inorganic compounds containing nitrogen (N) - i.e. nitrate, nitrite (NO2-) and ammonium (NH4+) - were investigated. We combined 3 years of field measurements in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterize the N-cycle in both systems and quantify the contribution of river infiltration in the overall groundwater N budget. The computed infiltration fluxes were compared to estimates of leaks from poorly maintained septic tanks, which are extensively used in the city, to identify the main source of groundwater contamination. Observations show a strong and interdependent spatial and seasonal variability in the levels of NO3-, NO2- and NH4+ in the river, which is caused by changes in nitrification/denitrification rates due to variations in dissolved oxygen concentrations. Simulation results suggest that such dynamics in the river cause river to aquifer contamination patterns to likewise change over space and time, which leads to heterogeneous vulnerability distributions. The estimated contribution of river-N infiltration to the observed NO3- groundwater levels is small if compared to that originating from all leaking septic tanks inside Jakarta. However, in the vicinity of the Ciliwung, river to groundwater N-loading can play an important role in the local NO3- groundwater levels because it is highly concentrated.
Perry, J A
1979-01-01
The Teton Dam in Southeastern Idaho collapsed on June 5, 1976. The resulting flood damaged a large area and caused the release of toxicants into the Snake River. A pesticide recovery team in a helicopter worked the flooded area for three weeks and collected 1,104 containers, about 35% of which contained toxicants. It was estimated that less than 60% of the lost pesticide containers were recovered. This paper addresses the results of a one-time sampling effort designed to determine the magnitude of the chemical contamination. Over 300 samples of fish, plankton, waterfowl, sediments, water, stream drift, aquatic plants, and soil were taken. Pesticide residues were measured as microgram/kg (ppb) wet weight, whole animal basis. Rainbow trout had as much as 1432 micrograms/kg total DDT plus analogs, 66 micrograms/kg dieldrin, and 1010 micrograms/kg PCBs. Utah suckers had up to 1420 micrograms/kg total DDT plus analogs, 32 micrograms/kg dieldrin, and 1800 micrograms/kg PCB. Rocky Mountain whitefish had as much as 2650 micrograms/kg total DDT and analogs, 30 micrograms/kg dieldrin and 1400 micrograms/kg PCBs. These PCB and DDT levels were high, approaching the 2,000 micrograms/kg FDA proposed tolerance, but were below the 5,000 micrograms/kg present tolerance. Dieldrin levels were low and organophosphates were undetectable. An undeveloped area (the Fort Hall Bottoms) showed higher levels of contaminants than did an industrialized area (the lower Portneuf River). This apparent discrepancy remains unexplained. Very little pre-flood data on a whole fish basis were available for comparison (Johnson et al 1977). However, it does not appear that any human health hazard due to pesticide levels exists in this portion of the Snake River.
Fractionation of rare earth elements in the Mississippi River estuary and river sediments
NASA Astrophysics Data System (ADS)
Adebayo, S. B.; Johannesson, K. H.
2017-12-01
This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.
NASA Astrophysics Data System (ADS)
Hubble, Thomas; De Carli, Elyssa; Airey, David; Breakfree 2012-2013, Scientific Parties MV
2014-05-01
The peak of the recent prolonged 'Millennium Drought' (1997-2011) triggered an episode of widespread mass failure in the alluvial river-banks of the Lower Murray River in South Australia. Multi-beam surveying of the channel and submerged river-banks between Mannum and Murray Bridge and coring of the bank sediments has been undertaken in sections of the river where large bank failures threatened private housing or public infrastructure. This data demonstrates that the bank materials are soft, horizontally-layered muds and that translational, planar slab-slides have frequently occurred in permanently submerged portions of the Murray's river banks. Despite these riverine features being several orders of magnitude smaller than the translational submarine landslides of the continental margins, the submerged river-bank slides are strikingly similar in their morphology to their submarine equivalents. Intriguingly, the Murray River translational slide failure-surfaces are usually developed as river-floor-parallel features in a manner similar to many submarine landslides which present failure-surfaces that are developed on seafloor-parallel, bedding planes. In contrast however, the Murray's river-bank slides occur on steep slopes (>20o) and their failure surfaces must cut across the horizontal laminations and layering of the muds at a relative high angle which removes the possibility of a weak sediment layer being responsible for the occurrence of these failures. Modelling of the river-bank failures with classical soil mechanics methods and the measured physical properties of the river-bank materials indicates that the failures are probably a consequence of flood-flow scour removing the bank-slope toe in combination with pore-pressure effects related to river-level fluctuation (ie. drawdown). Nevertheless, the Murray's translational slab-slides provide a reliable example of slope-parallel planar failure in muds that does not require a stratigraphic weak layer to explain the occurrence of those failures.
Loos, Robert; Locoro, Giovanni; Huber, Tania; Wollgast, Jan; Christoph, Eugen H; de Jager, Alfred; Manfred Gawlik, Bernd; Hanke, Georg; Umlauf, Gunther; Zaldívar, José-Manuel
2008-03-01
C7-C11 perfluorinated carboxylates (PFACs) and perfluorooctansulfonate (PFOS) were analysed in selected stretches of the River Po and its major tributaries. Analyses were performed by solid-phase extraction (SPE) with Oasis HLB cartridges and methanol elution followed by LC-MS-MS detection using 13C-labelled internal standards. High concentration levels ( approximately 1.3 microg l(-1)) of perfluorooctanoate (PFOA) were detected in the Tánaro River close to the city Alessandria. After this tributary, levels between 60 and 337 ng l(-1) were measured in the Po River on several occasions. The PFOA concentration close to the river mouth in Ferrara was between 60 and 174 ng l(-1). Using the river discharge flow data in m3 s(-1) at this point (average approximately 920 m3 s(-1) for the year 2006), a mass load of approximately 0.3 kg PFOA per hour or approximately 2.6 tons per year discharged in the Adriatic Sea has been calculated. PFOS concentration levels in the Po River at Ferrara were approximately 10 ng l(-1).
Guo, Wei; He, Mengchang; Yang, Zhifeng; Lin, Chunye; Quan, Xiangchun
2011-02-28
The characteristics of petroleum hydrocarbons and the risks they pose to the ecosystem were studied in the Xihe River, which is an urban river located in Shenyang, China. High levels of aliphatic hydrocarbons (AHc) and polycyclic aromatic hydrocarbons (PAHs) were observed in the river due to the discharge of wastewater from industrial and municipal facilities for a long period of time. High-molecular-weight hydrocarbons, including unresolved complex mixtures (UCM) of n-alkanes between n-C16 and n-C32 and of PAHs with four to six rings, were the dominant hydrocarbons in the river, particularly in suspended particulate matter (SPM) and sediments. The AHc was mainly from petrogenic sources, whereas PAHs was from both pyrolytic and petrogenic source inputs. Our results suggest that there is a high risk of toxicity for the soils and groundwater of the study area. The overall toxicity in the sediments can be described using the toxic equivalent (TEQ) of dibenzo[a,h]anthracene (DBA) based on benzo(a)pyrene (TEQ(BaP)) and dioxins (TEQ(TCDD)) toxic equivalent concentrations. The TEQ values for benzo(a)pyrene (TEQ(BaP)) and dioxins (TEQ(TCDD)) presented a consistent assessment of sediment PAHs. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
The Water Level and Transport Regimes of the Lower Columbia River
NASA Astrophysics Data System (ADS)
Jay, D. A.
2011-12-01
Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.
Baltussen, E; Snijders, H; Janssen, H G; Sandra, P; Cramers, C A
1998-04-10
A recently developed method for the extraction of organic micropollutants from aqueous samples based on sorptive enrichment in columns packed with 100% polydimethylsiloxane (PDMS) particles was coupled on-line with HPLC analysis. The sorptive enrichment procedure originally developed for relatively nonpolar analytes was used to preconcentrate polar phenylurea herbicides from aqueous samples. PDMS extraction columns of 5, 10 and 25 cm were used to extract the herbicides from distilled, tap and river water samples. A model that allows prediction of retention and breakthrough volumes is presented. Despite the essentially apolar nature of the PDMS material, it is possible to concentrate sample volumes up to 10 ml on PDMS cartridges without losses of the most polar analyte under investigation, fenuron. For less polar analytes significantly larger sample volumes can be applied. Since standard UV detection does not provide adequate selectivity for river water samples, an electrospray (ES)-MS instrument was used to determine phenylurea herbicides in a water sample from the river Dommel. Methoxuron was present at a level of 80 ng/l. The detection limit of the current set-up, using 10 ml water samples and ES-MS detection is 10 ng/l in river water samples. Strategies for further improvement of the detection limits are identified.
NASA Astrophysics Data System (ADS)
Garcier, R. J.
2007-11-01
As products of both natural and social systems, rivers are highly complex historical objects. We show in this paper that historical analysis works on two different levels: one level, which we call "structural", shows the materiality of the riverine environment as the spatial-temporal product of natural factors and human impacts (bed and course alterations, pollution, etc.). On a second level -"semiotic" - we show that river systems are also social constructs and the subjects of ancient and diverse management practices. The quality of a river will be a function of the dialectical interaction between both levels. Historical analysis can uncover the inherited constraints that bear upon current management practices. To help substantiate this analytical framework, we analyse the case of the Moselle river in eastern France by using archival sources and statistical data. Severely impaired by industrial discharges from iron, coal and salt industries between the 1875s and the early 1980s, the waters of the Moselle became the subject of a social consensus between stakeholders that prevented the implementation of efficient pollution management policies until the 1990s. The example urges caution on the pervasiveness of participatory approaches to river management: social consensus does not necessarily benefit the environment.
NASA Astrophysics Data System (ADS)
Garcier, R. J.
2007-06-01
As products of both natural and social systems, rivers are highly complex historical objects. We show in this paper that historical analysis works on two different levels: one level, which we call "structural", shows the materiality of the riverine environment as the spatial-temporal product of natural factors and human impacts (bed and course alterations, pollution, etc.). On a second level - "semiotic" - we show that river systems are also social constructs and the subjects of ancient and diverse management practices. The quality of a river will be a function of the dialectical interaction between both levels. Historical analysis can uncover the inherited constraints that bear upon current management practices. To help substantiate this analytical framework, we analyse the case of the Moselle river in eastern France by using archival sources and statistical data. Severely impaired by industrial discharges from iron, coal and salt industries between the 1875s and the early 1980s, the waters of the Moselle became the subject of a social consensus between stakeholders that prevented the implementation of efficient pollution management policies until the 1990s. The example urges caution on the pervasiveness of participatory approaches to river management: social consensus does not necessarily benefit the environment.
Short- and long-term monitoring of underwater sound levels in the Hudson River (New York, USA).
Martin, S Bruce; Popper, Arthur N
2016-04-01
There is a growing body of research on natural and man-made sounds that create aquatic soundscapes. Less is known about the soundscapes of shallow waters, such as in harbors, rivers, and lakes. Knowledge of soundscapes is needed as a baseline against which to determine the changes in noise levels resulting from human activities. To provide baseline data for the Hudson River at the site of the Tappan Zee Bridge, 12 acoustic data loggers were deployed for a 24-h period at ranges of 0-3000 m from the bridge, and four of the data loggers were re-deployed for three months of continuous recording. Results demonstrate that this region of the river is relatively quiet compared to open ocean conditions and other large river systems. Moreover, the soundscape had temporal and spatial diversity. The temporal patterns of underwater noise from the bridge change with the cadence of human activity. Bridge noise (e.g., road traffic) was only detected within 300 m; farther from the bridge, boating activity increased sound levels during the day, and especially on the weekend. Results also suggest that recording near the river bottom produced lower pseudo-noise levels than previous studies that recorded in the river water column.
Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River
Miranda, L.E.
2005-01-01
The alluvial valley of the lower Mississippi River contains hundreds of fluvial lakes that are periodically connected to the river during high water, although the frequency, duration, and timing of the connections vary. To help design plans to restore and preserve fish assemblages in these alluvial lakes, this investigation tested whether predictable patterns in lake fish assemblages were linked to the level of connectivity with the river. Results suggested that connectivity played an important role in structuring fish assemblages and that it was correlated with variables such as lake size, depth, distance from the river, and age, which exhibit a continuum of predictable features as the river migrates away from abandoned channels. Annual floods homogenize the floodplain and promote connectivity to various degrees, allowing for fish exchanges between river and floodplain that directly affect fish assemblages. The major physical changes linked to reduced connectivity are loss of depth and area, which in turn affect a multiplicity of abiotic and biotic features that indirectly affect community structure. In advanced stages of disconnection, fish assemblages in oxbow lakes are expected to include largely species that thrive in turbid, shallow systems with few predators and low oxygen content. When the river flowed without artificial restraint, oxbow lakes were created at the rate of 13-15 per century. At present, no or few oxbow lakes are being formed, and as existing lakes age, they are becoming shallower, smaller, and progressively more disconnected from the river. Given that modifications to the Mississippi River appear to be irreversible, conservation of this resource requires maintenance of existing lakes at a wide range of aging phases that provide diverse habitats and harbor distinct species assemblages.
Qing, Xu-yao; Ren, Yu-fen; Lü, Zhi-qiang; Wang, Xiao-ke; Pang, Rong; Deng, Rui; Meng, Ling; Ma, Hui-ya
2015-07-01
To understand the secondary river quality in Chongqing urban area, six typical secondary rivers were chosen to investigate the pollution characteristics of total nitrogen and total phosphorus and to evaluate the water eutrophication level according to the monitoring data of water physicochemical characteristics and chlorophyll content from April 2013 to March 2014. The study results showed that: the six rivers mentioned above have been seriously polluted by TN and TP, with the monthly mean values of TN and TP far exceeding the universally accepted threshold values of water eutrophication. Water eutrophicaton appraisal result indicated that all rivers in each season were in a state of eutrophication, and the eutrophication level could be arranged in the order of Panxi River > Qingshui River > Tiaodeng River > Huaxi River > Funiu River > Chaoyang River. The seasonal changes in TN and TP of secondary rivers were significant, with high concentrations of TN and TP in spring and winter, and lower concentrations in summer and autumn. TN and TP of the rivers showed a trend of increasing from the upstream to the downstream in each season. Pollutant concentration accumulated gradually along rivers and the maximum accumulation rate reached 1. 25 mg . (L . km) -1. Therefore, further study on urban secondary river pollution characteristics is of great significance to urban water pollution control.
NASA Astrophysics Data System (ADS)
Podimata, M. V.; Bekri, E. S.; Yannopoulos, P. C.
2012-04-01
Alfeios River Basin (ARB) constitutes one of the major hydrologic basins (≈3650km2) of Peloponnisos peninsula in Southern Greece. It is drained by Alfeios River and its tributaries, such as Lousios, Ladhon, Erymanthos, Kladheos, Selinous etc. The present manuscript takes a closer look at the importance of tributary basins and focuses on Erymanthos sub-basin that covers about 360 km2. Erymanthos River springs from Erymanthos Mountain that reaches altitudes of 2200 m and discharges 10 m3/sec, approximately, during the winter period, presenting a sound decrease from half to about an order of magnitude during summertime. Two factors stand out as reasons to select Erymanthos sub-basin as a case study. First, the sub-basin presents a significant variety of ecosystems and comprises a very important river system, since Erymanthos Tributary satisfies, among other uses, drinking water supply for a great majority of citizens in the region. Second, authors' experience of the study area in Research Program Pythagoras II, funded by the European Social Fund (ESF) and the Operational Program for Educational and Vocational Training II (EPEAEK II) of Greece, offers a basis for better understanding of the real problems in the area. Erymanthos watershed, in fact, faces a lot of pressures, in several levels, provoked by human activities and Erymanthos Tributary is vulnerable to pollution. Recognizing the importance of clean water for healthy people, a developing economy, and a sustainable environment, the challenge of the present paper is elaborating human-induced pressures in the study area, analyzing their effects, estimating pollution factors and proposing integrated solutions/tools and a number of methodologies/initiatives used to overcome the problem of contaminating water supply in a catchment that lacks of wastewater treatment and disposal systems. The preservation of a good ecological status in Erymanthos River is not only a necessity for achieving the goals of EU Water Framework Directive (WFD) 2000/60, but a practical necessity for the safeguarding of public health and ecosystem health, in general. The present study aims at developing a simple methodology for assessing spatial distribution characteristics of pollution in Erymanthos catchment. Pollution loads at various sites in Erymanthos watershed were illustrated with Geographical Information System (GIS). Flow rates of Erymanthos River were also taken into consideration. Based on previous studies, in situ river discharges have been compared to simulated discharges in order to calibrate the rainfall-runoff model ENNS which can then predict future scenarios regarding the river flow rates with consideration of climate change effects. The goal of this study is to detect the pertinent points and suggest a) suitable buffer zones in areas with high pollution risk and b) simple technical works in order to prevent the main channel of Erymanthos River from direct polluting discharges. The above systems could also act supportively in groundwater enrichment, forest protection and soil erosion prevention. Authors believe that the results of the study could assist authorities and engineers to design and develop strategies of improving river water quality and safeguarding public health. The proposed measures may be applicable to other catchments as well.
Holtschlag, David J.; Hoard, C.J.
2009-01-01
St. Clair River is a connecting channel that transports water from Lake Huron to the St. Clair River Delta and Lake St. Clair. A negative trend has been detected in differences between water levels on Lake Huron and Lake St. Clair. This trend may indicate a combination of flow and conveyance changes within St. Clair River. To identify where conveyance change may be taking place, eight water-level gaging stations along St. Clair River were selected to delimit seven reaches. Positive trends in water-level fall were detected in two reaches, and negative trends were detected in two other reaches. The presence of both positive and negative trends in water-level fall indicates that changes in conveyance are likely occurring among some reaches because all reaches transmit essentially the same flow. Annual water-level fall in reaches and reach lengths was used to compute conveyance ratios for all pairs of reaches by use of water-level data from 1962 to 2007. Positive and negative trends in conveyance ratios indicate that relative conveyance is changing among some reaches. Inverse one-dimensional (1-D) hydrodynamic modeling was used to estimate a partial annual series of effective channel-roughness parameters in reaches forming the St. Clair River for 21 years when flow measurements were sufficient to support parameter estimation. Monotonic, persistent but non-monotonic, and irregular changes in estimated effective channel roughness with time were interpreted as systematic changes in conveyances in five reaches. Time-varying parameter estimates were used to simulate flow throughout the St. Clair River and compute changes in conveyance with time. Based on the partial annual series of parameters, conveyance in the St. Clair River increased about 10 percent from 1962 to 2002. Conveyance decreased, however, about 4.1 percent from 2003 to 2007, so that conveyance was about 5.9 percent higher in 2007 than in 1962.
Light, Helen M.; Vincent, Kirk R.; Darst, Melanie R.; Price, Franklin D.
2006-01-01
From 1954 to 2004, water levels declined in the nontidal reach of the Apalachicola River, Florida, as a result of long-term changes in stage-discharge relations. Channel widening and deepening, which occurred throughout much of the river, apparently caused the declines. The period of most rapid channel enlargement began in 1954 and occurred primarily as a gradual erosional process over two to three decades, probably in response to the combined effect of a dam located at the head of the study reach (106 miles upstream from the mouth of the river), river straightening, dredging, and other activities along the river. Widespread recovery has not occurred, but channel conditions in the last decade (1995-2004) have been relatively stable. Future channel changes, if they occur, are expected to be minor. The magnitude and extent of water-level decline attributable to channel changes was determined by comparing pre-dam stage (prior to 1954) and recent stage (1995-2004) in relation to discharge. Long-term stage data for the pre-dam period and recent period from five streamflow gaging stations were related to discharge data from a single gage just downstream from the dam, by using a procedure involving streamflow lag times. The resulting pre-dam and recent stage-discharge relations at the gaging stations were used in combination with low-flow water-surface profile data from the U.S. Army Corps of Engineers to estimate magnitude of water-level decline at closely spaced locations (every 0.1 mile) along the river. The largest water-level declines occurred at the lowest discharges and varied with location along the river. The largest water-level decline, 4.8 feet, which occurred when sediments were scoured from the streambed just downstream from the dam, has been generally known and described previously. This large decline progressively decreased downstream to a magnitude of 1 foot about 40 river miles downstream from the dam, which is the location that probably marks the downstream limit of the influence of the dam on bed scour. Downstream from that location, previously unreported water-level declines progressively increased to 3 feet at a location 68 miles downstream from the dam, probably as a result of various channel modifications conducted in that part of the river. Water-level declines in the river have substantially changed long-term hydrologic conditions in more than 200 miles of off-channel floodplain sloughs, streams, and lakes and in most of the 82,200 acres of floodplain forests in the nontidal reach of the Apalachicola River. Decreases in duration of floodplain inundation at low discharges were large in the upstream-most 10 miles of the river (20-45 percent) and throughout most of the remaining 75 miles of the nontidal reach (10-25 percent). As a consequence of this decreased inundation, the quantity and quality of floodplain habitats for fish, mussels, and other aquatic organisms have declined, and wetland forests of the floodplain are changing in response to drier conditions. Water-level decline caused by channel change is probably the most serious anthropogenic impact that has occurred so far in the Apalachicola River and floodplain. This decline has been exacerbated by long-term reductions in spring and summer flow, especially during drought periods. Although no trends in total annual flow volumes were detected, long-term decreases in discharge for April, May, July, and August were apparent, and water-level declines during drought conditions resulting from decreased discharge in those 4 months were similar in magnitude to the water-level declines caused by channel changes. The observed changes in seasonal discharge are probably caused by a combination of natural climatic changes and anthropogenic activities in the Apalachicola-Chattahoochee-Flint River Basin. Continued research is needed for geomorphic studies to assist in the design of future floodplain restoration efforts and for hydrologic studies to monitor change
Vu, D T; Yamada, T; Ishidaira, H
2018-03-01
In the context of climate change, salinity intrusion into rivers has been, and will be, one of the most important issues for coastal water resources management. A combination of changes, including increased temperature, change in regional rainfall, especially sea level rise (SLR) related to climate change, will have significant impacts on this phenomenon. This paper presents the outcomes of a study conducted in the Mekong Delta of Vietnam (MKD) for evaluating the effect of sea water intrusion under a new SLR scenario. Salinity intrusion was simulated by one-dimensional (1D) modeling. The relative sea level projection was constructed corresponding to the RCP 6.0 emission scenario for MKD based on the statistical downscaling method. The sea level in 2050 is projected to increase from 25 cm to 30 cm compared to the baseline period (in 2000). Furthermore, the simulated results suggested that salinity greater than 4 g/l, which affects rice yield, will intrude up to 50-60 km into the river. Approximately 30,000 ha of agricultural area will be affected if the sea level rise is 30 cm.
Molecular characterization of dissolved organic matter during the Arctic spring melt period
NASA Astrophysics Data System (ADS)
Gueguen, C.; Mangal, V.; Shi, Y. X.
2016-02-01
The application of high resolution electrospray ionization mass spectrometry has advanced our understanding of dissolved organic matter (DOM) at molecular level. The arctic spring melt period has been largely undersampled owing to logistical and safety issues, yet this period is extremely important to the overall flux of DOM and related contaminants including metals from high latitude rivers. In this study, we present high resolution molecular composition of 35 DOM samples collected in the Churchill River (Manitoba) during the 2015 spring melt period. As spring melt progresses, a significant change in the two most dominant carbon pools, protein and lignin, was observed. For example, the relative abundance of proteins detected in the river DOM samples increased from 19 to 44% during the spring flush, likely reflecting a change in DOM source. Similar patterns were found using fluorescence spectroscopy.
Modelling metaldehyde in catchments: a River Thames case-study.
Lu, Q; Whitehead, P G; Bussi, G; Futter, M N; Nizzetto, L
2017-04-19
The application of metaldehyde to agricultural catchment areas to control slugs and snails has caused severe problems for drinking water supply in recent years. In the River Thames catchment, metaldehyde has been detected at levels well above the EU and UK drinking water standards of 0.1 μg l -1 at many sites across the catchment between 2008 and 2015. Metaldehyde is applied in autumn and winter, leading to its increased concentrations in surface waters. It is shown that a process-based hydro-biogeochemical transport model (INCA-contaminants) can be used to simulate metaldehyde transport in catchments from areas of application to the aquatic environment. Simulations indicate that high concentrations in the river system are a direct consequence of excessive application rates. A simple application control strategy for metaldehyde in the Thames catchment based on model results is presented.
Field Projects with Rivers for Introductory Physical-Geology Laboratories.
ERIC Educational Resources Information Center
Cordua, William S.
1983-01-01
Discusses exercises using a river for the study of river processes and landforms. Although developed for college, they can be adapted for other levels. Exercises involve discharge measurement, flood prediction, and application of the Hjulstrom diagram to river sediments. (JN)
Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.
2007-01-01
This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly discharge for July through February and April from 1975 to 2005. Comparisons of partial-development (ground-water conditions from 1952 to 1986) and 2006 ground-water resources in the Wood River Valley using a geographic information system indicate that most ground-water levels for the unconfined aquifer in the study area are either stable or declining. Declines are predominant in the southern part of the study area south of Hailey, and some areas exceed what is expected of natural fluctuations in ground-water levels. Some ground-water levels rose in the northern part of the study area; however, these increases are approximated due to a lack of water-level data in the area. Ground-water level declines in the confined aquifer exceed the range of expected natural fluctuations in large areas of the confined aquifer in the southern part of the study area in the Bellevue fan. However, the results in this area are approximated due to limited available water-level data.
NASA Astrophysics Data System (ADS)
Miyamoto, Hitoshi
2015-04-01
Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting-down levels, timings and scales of the thinning, etc., by the Monte Carlo simulation of the model.
Zhang, Zhaoyong; Juying, Li; Mamat, Zulpiya; QingFu, Ye
2016-04-01
The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697 µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EF(S)), the Geo-accumulation index (I(geo)), and the potential ecological risk coefficient (E(r)(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world. Copyright © 2015 Elsevier Inc. All rights reserved.
Using Technology and Inquiry to Improve Student Understanding of Watershed Concepts
ERIC Educational Resources Information Center
Smith, Julie M.; Edwards, Patrick M.; Raschke, Jason
2006-01-01
This paper presents the design, implementation and assessment of the Columbia River Basin Environmental Research Project (CERP) curriculum. CERP is an online inquiry-based, regional geographic curriculum designed to improve technology skills and content knowledge about water quality and watershed-level processes. Student attitudes and knowledge…
Mills, Patrick C.
2014-01-01
Exploratory studies were conducted at sites bordering the Fox River in Waukesha, Wisconsin, during 2010 and McHenry, Illinois, during 2011–13. The objectives of the studies were to assess strategies for the study of and insights into the potential for directly connected groundwater and surface-water systems with natural groundwater discharge to streams diverted and (or) streamflow induced (captured) by nearby production-well withdrawals. Several collection efforts of about 2 weeks or less provided information and data on site geology, groundwater and surface-water levels, hydraulic gradients, water-temperature and stream-seepage patterns, and water chemistry including stables isotopes. Overview information is presented for the Waukesha study, and selected data and preliminary findings are presented for the McHenry study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan
2006-10-31
Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level ofmore » the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.« less
Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Lee, C.
2013-12-01
The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.
Evaluation of the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) methods.
NASA Astrophysics Data System (ADS)
Benveniste, J.; Garcia-Mondéjar, A.; Bercher, N.; Fabry, P. L.; Roca, M.; Varona, E.; Fernandes, J.; Lazaro, C.; Vieira, T.; David, G.; Restano, M.; Ambrózio, A.
2017-12-01
Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. The SHAPE Processor implements all of the steps necessary to derive rivers and lakes water levels and discharge from Delay-Doppler Altimetry and perform their validation against in situ data. The processor uses FBR CryoSat-2 and L1A Sentinel-3A data as input and also various ancillary data (proc. param., water masks, L2 corrections, etc.), to produce surface water levels. At a later stage, water level data are assimilated into hydrological models to derive river discharge. This poster presents the improvements obtained with the new methods and algorithms over the regions of interest (Amazon and Danube rivers, Vanern and Titicaca lakes).
Waszak, Ilona; Dabrowska, Henryka; Komar-Szymczak, Katarzyna
2014-04-15
Groups of flounder (Platichthys flesus) females were collected in 2011 from the Vistula River and the Duoro River estuaries and corresponding reference sites in the southern Baltic Sea and Portuguese coast of the Atlantic Ocean to measure and compare the levels and profiles of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). The estuaries' sediments were also investigated. Several differences were found in the POPs between the estuaries and between the two marine regions, which were highlighted by PCA. The Vistula River estuary POPs, significantly higher than in the Douro River estuary, were dominated by DDTs followed by PCBs. PBDEs levels, indifferent between the estuaries, were relatively low. The POP levels in flounder and sediment evaluated against environmental assessment criteria (EACs) indicated that none of the measured contaminants for which EAC had been established exceeded the criterion, except for CB-118 in flounder from the Vistula River estuary. Copyright © 2014 Elsevier Ltd. All rights reserved.
Partitioning and transport of total and methyl mercury in the Lower Fox River, Wisconsin
Hurley, J.P.; Cowell, S.E.; Shafer, M.M.; Hughes, P.E.
1998-01-01
To investigate transport and partitioning processes of Hg(T) in the Fox River, we coupled detailed time series data of total mercury (Hg(T)) at the river mouth with transect sampling in the Lower Fox River. Unfiltered Hg(T) concentrations in the Fox River during the study period (April 1994-October 1995) ranged from 1.8 to 182 ng L(-1) with a median of 24.8 ng L-1, predominantly (93.6%) in the particulate phase. These levels were significantly elevated compared with other large tributaries to Lake Michigan (Hurley, J. P.; Shafer, M. M.; Cowell, S. E.; Overdier, J. T.; Hughes, P. E.; Armstrong, D. E. Environ. Sci. Technol. 1996, 30, 20932098). Transect sampling revealed progressively increasing water column Hg(T) concentrations and Hg(T) particulate enrichment downstream, which were consistent with trends in sediment Hg(T) levels in the river. Resuspended sediments are likely the predominant source of Hg from the Fox River into Green Bay. Despite elevated Hg(T) concentrations, methyl mercury (MeHg) concentrations were relatively low, suggesting limited bioavailability of Hg(T) associated with sediments.To investigate transport and partitioning processes of HgT in the Fox River, we coupled detailed time series data of total mercury (HgT) at the river mouth with transect sampling in the Lower Fox River. Unfiltered HgT concentrations in the Fox River during the study period (April 1994-October 1995) ranged from 1.8 to 182 ng L-1 with a median of 24.8 ng L-1, predominantly (93.6%) in the particulate phase. These levels were significantly elevated compared with other large tributaries to Lake Michigan. Transect sampling revealed progressively increasing water column HgT concentrations and HgT particulate enrichment downstream, which were consistent with trends in sediment HgT levels in the river. Resuspended sediments are likely the predominant source of Hg from the Fox River into Green Bay. Despite elevated HgT concentrations, methyl mercury (MeHg) concentrations were relatively low, suggesting limited bioavailability of HgT associated with sediments.
Investigating Typhoon Induced River-Surge Interactions in the Tamsui Estuary, Taiwan.
NASA Astrophysics Data System (ADS)
Maskell; J. H.; Grieser, J.; Rodney, J.; Howe, N. J.
2016-02-01
It is increasingly important to understand the combined influence of the main drivers of coastal risk due to sea level rise and the potential increase in extreme weather events. An Asian Basin stochastic typhoon set was used to force a storm surge model of Taiwan to investigate the interaction between storm surge and high river discharges (50, 100 and 200 year return period discharges) in the Tamsui River. Taiwan is a mountainous country leading to the combined risk of surge and high river discharge occurring simultaneously in estuary regions. The typhoon tracks were selected using a Hurricane Surge Index (Kantha, 2006) and cross the northern tip of Taiwan with maximum sustained winds (Vmax) between 51 m/s and 75 m/s (Cat 3-5). Peak surge elevations in the Tamsui River range from 5.7 m to 10.3 m. The surge interacts with the river flow to induce changes in the water elevation between -8 m and 4 m depending on the surge elevation and river discharge and increases the inundated area in the range 37 km to 204 km. Significant positive interactions occur in the Tamsui Estuary (Fig. 1a) but do not have implications for increased inundation and occur at the start of the flood phase and the end of the ebb phase as previously shown in idealized test cases (Maskell et al., 2013). Current vectors in the estuary show that at the time leading up to high water the river outflow starts to become dominant in the mid-channel reducing maximum water levels by up to 10% in the combined surge and river solution. However, surge inhibits downstream propagation of the flood wave in the upper river channels increasing water levels by up to 2 m. The maximum inundated area (1330 km2) is caused by the combination of defence overflow due to the maximum surge (10.27 m) and increased river levels (RP100) in the upper channels leading to significant inundation either side of the Keelung River (Fig. 1b). The Erchung floodway is effective in diverting some of the flow (up to 10,443 m3/s) reducing inundation elsewhere in the river network.
Salinity of the Delaware Estuary
Cohen, Bernard; McCarthy, Leo T.
1962-01-01
The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.
One-dimensional flow model of the river-hyporheic zone system
NASA Astrophysics Data System (ADS)
Pokrajac, D.
2016-12-01
The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus", Water Resources Research 51: 3601-3616 Cardenas, M. B., and J. L. Wilson (2007) "Dunes, turbulent eddies, and interfacial exchange with permeable sediments", Water Resour. Res. 43:W08412
Assessing river-groundwater exchange fluxes of the Wairau River, New Zealand
NASA Astrophysics Data System (ADS)
Wilson, Scott; Woehling, Thomas; Davidson, Peter
2014-05-01
Allocation limits in river-recharged aquifers have traditionally been based on static observations of river gains and losses undertaken when river flow is low. This approach to setting allocation limits does not consider the dynamic relationship between river flows and groundwater levels. Predicting groundwater availability based on a better understanding of coupled river - aquifer systems opens the possibility for dynamic groundwater allocation approaches. Numerical groundwater models are most commonly used for regional scale allocation assessments. Using these models for predicting future system states is challenging, particularly under changing management and climate scenarios. The large degree of uncertainty associated with these predictions is caused by insufficient knowledge about the heterogeneity of subsurface flow characteristics, ineffective monitoring designs, and the inability to confidently predict the spatially and temporally varying river - groundwater exchange fluxes. These uncertainties are characteristic to many coupled surface water - groundwater systems worldwide. Braided river systems, however, create additional challenges due to their highly dynamic morphological character and mobile beds which also make river flow measurements extremely difficult. This study focuses on the characterization of river - groundwater exchange fluxes along a section of the Wairau River in the Northwest of the South Island of New Zealand. The braided river recharges the Wairau Aquifer which is an important source for irrigation and municipal water requirements of the city of Blenheim. The Wairau Aquifer is hosted by the highly permeable Rapaura Formation gravels that extend to a depth of about 20 to 30 m. However, the overall thickness of the alluvial sequence forming the Wairau Plain may be up to 500 m. The landuse in the area is mainly grapes but landsurface recharge to the aquifer is considered to be considerably smaller than the recharge from the Wairau river. This study aims at the assessment of river-groundwater exchange fluxes and presents first results from data mining and analysis of river flow records, stage gaugings, groundwater head data, pumping test, and the sampling of spring flows. In addition, a methodology is presented that will allow the prediction of transient river exchange fluxes by using a Modflow model, global optimisation techniques, and techniques for quantifying predictive uncertainty which have been recently developed (Wöhling et al 2013). A long-term goal of the study is the reduction of predictive uncertainty of model predictions by optimal design of sensor networks as well as the assessment of this utility by different observation types. Preliminary results indicate that about 7 cumec from the Wairau River is recharged to the aquifer under low flow conditions. A similar volume of groundwater re-emerges as springs where groundwater is forced upwards by the confining Dillons Point Formation. References Wöhling, Th., Gosses, M.J., Leyes Pérez, M., Geiges, A., Moore, C.R., Osenbrück, K., Scott, D.M. (2013). Optimizing monitoring design to increase predictive reliability of groundwater flow models at different scales. Geophysical Research Abstracts Vol. 15, EGU2013-3981, EGU General Assembly 2013.
Woodward, Daniel F.; Farag, Aïda M.; Bergman, Harold L.; Delonay, Aaron J.; Little, Edward E.; Smiths, Charlie E.; Barrows, Frederic T.
1995-01-01
Benthic organisms in the upper Clark Fork River have recently been implicated as a dietary source of metals that may be a chronic problem for young-of-the-year rainbow trout (Oncorhynchus mykiss). In this present study, early life stage brown trout (Salmo trutta) and rainbow trout were exposed for 88 d to simulated Clark Fork River water and a diet of benthic invertebrates collected from the river. These exposures resulted in reduced growth and elevated levels of metals in the whole body of both species. Concentrations of As, Cd, Cu, and Pb increased in whole brown trout; in rainbow trout, As and Cd increased in whole fish, and As also increased in liver. Brown trout on the metals-contaminated diets exhibited constipation, gut impaction, increased cell membrane damage (lipid peroxidation), decreased digestive enzyme production (zymogen), and a sloughing of intestinal mucosal epithelial cells. Rainbow trout fed the contaminated diets exhibited constipation and reduced feeding activity. We believe that the reduced standing crop of trout in the Clark Fork River results partly from chronic effects of metals contamination in benthic invertebrates that are important as food for young-of-the-year fish.
Westenbroek, Stephen M.
2006-01-01
Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.
Kashyap, Shalini; Dibike, Yonas; Shakibaeinia, Ahmad; Prowse, Terry; Droppo, Ian
2017-01-01
Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.
Law, George S.
2002-01-01
Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.
Stith, David A.
1981-01-01
The chemical composition and stratigraphy of the Black River Group in southwestern Ohio were studied. Chemical analyses were done on two cores of the Black River from Adams and Brown Counties, Ohio. These studies show that substantial reserves of high-carbonate rock are present in the Black River at depths of less than 800 ft, in proximity to Cincinnati and the Ohio River. Stratigraphic studies show that the Black River Group has eight marker beds in its middle and upper portions and three distinct lithologic units in its lower portion; these marker beds and units are present throughout southwestern Ohio. The Black River Group correlates well with the High Bridge Group of Kentucky. Depositional environments of the Black River are similar to those of the High Bridge and to present-day tidal flats in the Bahamas.-Author
The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas
NASA Astrophysics Data System (ADS)
Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.
2015-12-01
Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.
NASA Astrophysics Data System (ADS)
Sassi, M. G.; Hoitink, A. J. F.; Vermeulen, B.; Hidayat, null
2011-06-01
Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by sidewall effects that decrease with the width to depth ratio of a channel. A boundary layer model is introduced to convert single-depth velocity data from the H-ADCP to specific discharge. The parameters of the model include the local roughness length and a dip correction factor, which accounts for the sidewall effects. A regression model is employed to translate specific discharge to total discharge. The method was tested in the River Mahakam, representing a large river of complex bathymetry, where part of the flow is intrinsically three-dimensional and discharge rates exceed 8000 m3 s-1. Results from five moving boat ADCP campaigns covering separate semidiurnal tidal cycles are presented, three of which are used for calibration purposes, whereas the remaining two served for validation of the method. The dip correction factor showed a significant correlation with distance to the wall and bears a strong relation to secondary currents. The sidewall effects appeared to remain relatively constant throughout the tidal cycles under study. Bed roughness length is estimated at periods of maximum velocity, showing more variation at subtidal than at intratidal time scales. Intratidal variations were particularly obvious during bidirectional flow conditions, which occurred only during conditions of low river discharge. The new method was shown to outperform the widely used index velocity method by systematically reducing the relative error in the discharge estimates.
NASA Astrophysics Data System (ADS)
McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.
2013-12-01
Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present results demonstrating the heterogeneity of these individual measures and discuss the influence of topography, network design, household behaviors and water governance on the overall performance of these water projects. This work is the foundation for an agent-based model of these water projects that investigates the impact of climate change and population pressure on sustained agricultural production in the region. Additionally, the study highlights the utility of pairing distinct fields of scholarship by utilizing both survey responses and hydrological data to study complex social-ecological systems. This pairing allows for insights regarding governance structures that are effectively managing river water in the present and helps to understand the structures that may be suitable for future water management.
NASA Astrophysics Data System (ADS)
Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.
2012-12-01
Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of organic matter due to natural or anthropogenically stimulated respiration processes within river basin may impact the coastal ocean. Furthermore, the upwelling of corrosive subsurface waters might also undersaturate coastal waters with respect to aragonite. In addition, by using a mesocosm system to simulate different pH and CO2 levels we have evaluate under controlled conditions the effect of ocean acidification on the larval stage of an economically-important gastropod species (Concholepas concholepas). In this presentation, we show some preliminary results using multi-source data from different research projects dealing with the carbon cycle and OA processes along Chilean coast. Funded by Project RIVOM (Fondecyt 1095069), Project TOA-SPACE (Fondecyt 1090624), and Project Anillo ACT132 (CONICYT).
Interaction between Floods Occurrence and Gender and Age Structure of Population in Belarus
NASA Astrophysics Data System (ADS)
Partasenok, Irina; Kvach, Alena
2017-04-01
The high spring snow-melting or rainfall flooding is the most important and actual event in hydrological cycle for the territory of Belarus. It caused an inundation that means exceeding of water level in the river above safe line and water floods to the adjacent territories. Inundations led to significant destruction of adjoining territories, huge financial damage and threat for human being. The frequencies of spring flooding in Belarus is defined by intensity of river network, its morphometric characteristics and hydrometeorological conditions during the season before floods. The aim of the present study is to estimate the spatial distribution of flood inundation frequency and gender and age structure of national population which might be suffer under extreme phenomena on the rivers. We analysed dangerous thresholds in the river water levels and the frequency of floods of various severity within different river basins, quantity of men and women and their ratio, the quantity of people in the age upper 70 years old as a most sensitive to the flood risk group of population and ratio of rural houses to the entire housing resources as a most vulnerable infrastructure in the different regions of the country. During floods the dangerous levels which cause the inundation have been recorded in the 4 largest river basins passes the territory of Belarus. The most frequent inundations (every two years) occur in the south of the country in the Prypyat` river basin, and in the Dnepr river basin (every 4-5 years) on the majority of the rivers. The hypothesis of our study is that quantity of women population is higher in the flood risk regions (we defined 30 regions with highly frequent inundations) and their ratio high with the age. The majority of them live in potential flood dangerous regions. The strong connections between size of the river basin, its potential flood risk and quantity of population in the region was established. The ratio of men and women over country varied within 6-7 %. But in the flood risk regions (mentioned above) the quantity of women rapidly increase up to 7-18%. And the largest ratio (15-18%) have been obtained for the regions with highest floods inundation frequency (low stream of the Dnepr, Berezina, Sozh and Neman rivers). The most sensitive group of population to flood risk is rural population who live in private houses in the large river valleys. And their average number for entire territory of Belarus lies within 37-47%. Another point of potential risk group concerns people in the age of 70 years and elder. According to the last census of enumeration the ratio of elderly people equal 11-12%. These people are the most open to injury from extreme phenomena on the rivers. In general, 772 thousands (8% of national population) women lives in the flood risk regions, almost 80 thousand among them are women elder 70 years who need extra care in the period of flood occurrence. This must be considered by stakeholders in support of making design in social policy of the country.
VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo
2013-01-01
Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the abundances and size structures present before golden alga. Received August 26, 2011; accepted November 25, 2012
Management of a river recreation resource: the Lower Kananaskis River--a case study
Kimberley Rae; Paul F.J. Eagles
2008-01-01
This study examined recreational use of the Lower Kananaskis River in Southwestern Alberta, Canada. Surveys and participant observations helped develop a better understanding of current use levels and interviews with key policy leaders explored management issues and concerns. Users suggested the need for improvements to river infrastructure both on and off the river....
Yamamoto, F Y; Garcia, J R E; Kupsco, A; Oliveira Ribeiro, C A
2017-11-01
The adverse effects of endocrine disrupting chemicals (EDCs) on aquatic wildlife and human health represent a current issue of high public concern. Even so, they are still poorly studied in aquatic environments of South America. The aim of the present study was to investigate the impact of EDCs in five cascading reservoirs from the Iguaçu River, evaluating reproductive endpoints in three native fish species (Astyanax bifasciatus, Chrenicicla iguassuensis and Geophagus brasiliensis). Additionally, a polyclonal antiserum anti-vitellogenin from G. brasiliensis and a capture ELISA assay were developed for detection of estrogenic or anti-estrogenic activities in male and female fish, respectively. Vitellogenin (VTG) levels in male fish from the Iguacu River was observed, as well as decreased levels of vitellogenin and estradiol in the plasma of female fish. These findings were associated with immature gonads and lower gonadosomatic index in G. brasiliensis adult females from the Foz do Areia (FA) Reservoir. Additionally, both endemic species (Astyanax bifasciatus and Chrenicicla iguassuensis) displayed immature gonads and histological changes, such as degeneration of germ cells, in other studied reservoirs. The current results suggest that these reproductive responses may be associated with the bioavailability of EDCs in the Iguaçu River. These impacts are likely related to chemicals released by human activities, especially from sewage and industrial sources and agricultural production, detected in previous studies. Overall, the FA reservoir was potentially the most affected by chemicals with endocrine properties, and further studies are necessary to identify and quantify these chemicals. Copyright © 2017. Published by Elsevier Ltd.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Mississippi River, Twin City... § 207.320 Mississippi River, Twin City Locks and Dam, St. Paul and Minneapolis, Minn.; pool level. In... the Twin City Locks and Dam, Minneapolis, in the interest of navigation, and supersedes rules and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Mississippi River, Twin City... § 207.320 Mississippi River, Twin City Locks and Dam, St. Paul and Minneapolis, Minn.; pool level. In... the Twin City Locks and Dam, Minneapolis, in the interest of navigation, and supersedes rules and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Mississippi River, Twin City... § 207.320 Mississippi River, Twin City Locks and Dam, St. Paul and Minneapolis, Minn.; pool level. In... the Twin City Locks and Dam, Minneapolis, in the interest of navigation, and supersedes rules and...
Teachers' Level of Awareness of 21st Century Occupational Roles in Rivers State Secondary Schools
ERIC Educational Resources Information Center
Uche, Chineze M.; Kaegon, Leesi E. S. P.; Okata, Fanny Chiemezie
2016-01-01
This study investigated the teachers' level of awareness of 21st century occupational roles in Rivers state secondary schools. Three research questions and three hypotheses guided the study. The population of study comprised of 247 public secondary schools and 57 private secondary schools in Port Harcourt metropolis of Rivers state which gave a…
33 CFR 207.60 - Federal Dam, Hudson River, Troy, N.Y.; pool level.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Federal Dam, Hudson River, Troy..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.60 Federal Dam, Hudson River, Troy, N.Y.; pool level. (a) Whenever the elevation of the pool created by the Federal dam at Troy, N.Y...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Mississippi River, Twin City... § 207.320 Mississippi River, Twin City Locks and Dam, St. Paul and Minneapolis, Minn.; pool level. In... the Twin City Locks and Dam, Minneapolis, in the interest of navigation, and supersedes rules and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Mississippi River, Twin City... § 207.320 Mississippi River, Twin City Locks and Dam, St. Paul and Minneapolis, Minn.; pool level. In... the Twin City Locks and Dam, Minneapolis, in the interest of navigation, and supersedes rules and...
NASA Astrophysics Data System (ADS)
Huang, Q.; Long, D.; Du, M.; Hong, Y.
2017-12-01
River discharge is among the most important hydrological variables of hydrologists' concern, as it links drinking water supply, irrigation, and flood forecast together. Despite its importance, there are extremely limited gauging stations across most of alpine regions such as the Tibetan Plateau (TP) known as Asia's water towers. Use of remote sensing combined with partial in situ discharge measurements is a promising way of retrieving river discharge over ungauged or poorly gauged basins. Successful discharge estimation depends largely on accurate water width (area) and water level, but it is challenging to obtain these variables for alpine regions from a single satellite platform due to narrow river channels, complex terrain, and limited observations. Here, we used high-spatial-resolution images from Landsat series to derive water area, and satellite altimetry (Jason 2) to derive water level for the Upper Brahmaputra River (UBR) in the TP with narrow river width (less than 400 m in most occasions). We performed waveform retracking using a 50% Threshold and Ice-1 Combined algorithm (TIC) developed in this study to obtain accurate water level measurements. The discharge was estimated well using a range of derived formulas including the power function between water level and discharge, and that between water area and discharge suitable for the triangular cross-section around the Nuxia gauging station in the UBR. Results showed that the power function using Jason 2-derived water levels after performing waveform retracking performed best, showing an overall NSE value of 0.92. The proposed approach for remotely sensed river discharge is effective in the UBR and possibly other alpine rivers globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1994-01-01
Water resources data for the 1993 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River Basins. Specifically, Volume 2 contains (1) discharge records for 97 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 13 lakes and reservoirs; and (3) water-level records for 25 observation wells. The location of these sites is shown in figures 6-8. Additional waste data collected at various sitesmore » not involved in the systematic data-collection program are also presented.« less
Sedimentation in Goose Pasture Tarn, 1965-2005, Breckenridge, Colorado
Elliott, John G.; Char, Stephen J.; Linhart, Samuel M.; Stephens, V. Cory; O'Neill, Gregory B.
2006-01-01
Goose Pasture Tarn, a 771-acre-foot reservoir in Summit County, Colorado, is the principal domestic water-storage facility for the Town of Breckenridge and collects runoff from approximately 42 square miles of the upper Blue River watershed. In the 40 years since the reservoir was constructed, deltaic deposits have accumulated at the mouths of two perennial streams that provide most of the inflow and sediment to the reservoir. The Blue River is a low-gradient braided channel and transports gravel- to silt-size sediment. Indiana Creek is a steep-gradient channel that transports boulder- to silt-size sediment. Both deltas are composed predominantly of gravel, sand, and silt, but silt has been deposited throughout the reservoir. In 2004, the U.S. Geological Survey, in cooperation with the Town of Breckenridge, began a study to determine the volume of accumulated sediment in Goose Pasture Tarn, the long-term sedimentation rate for the reservoir, and the particle-size and chemical characteristics of the sediment. Exposed delta deposits occupied 0.91 acre and had an estimated volume of 0.6 acre-foot in 2005. Aerial photographic analysis indicated both the Blue River and Indiana Creek deltas grew rapidly during time intervals that included larger-than-average annual flood peaks on the Blue River. Sediment-transport relations could not be developed for the Blue River or Indiana Creek because of minimal streamflow and infrequently observed sediment transport during the study; however, suspended-sediment loads ranged from 0.02 to 1.60 tons per day in the Blue River and from 0.06 to 1.55 tons per day in Indiana Creek. Bedload as a percentage of total load ranged from 9 to 27 percent. New reservoir stage-area and stage-capacity relations were developed from bathymetric and topographic surveys of the reservoir bed. The original 1965 reservoir bed topography and the accumulated sediment thickness were estimated from a seismic survey and manual probing. The surface area of Goose Pasture Tarn in 2005 was 66.4 acres, and the reservoir capacity was 771.1 acre-feet at a full-pool elevation of 9,886.4 feet. The 1965 surface area was 67.1 acres, and the reservoir capacity was 818.0 acre-feet, indicating that the reservoir surface area has decreased by 0.7 acre, or about 1.1 percent, and the reservoir capacity has decreased by 46.9 acre-feet, or about 5.7 percent over a 40-year period. Sediment thickness determined with seismic profiling ranged from 0 to 4.0 feet and averaged 0.7 foot, with lesser thicknesses in the deeper parts of the reservoir and greater thicknesses near the deltas. Probe-determined sediment thickness ranged from 1.0 to 4.4 feet and averaged 2.8 feet near the Blue River delta and ranged from 0.3 to 6.0 feet and averaged 3.6 feet near the Indiana Creek delta. Approximately 47.5 acre-feet of sediment has accumulated in Goose Pasture Tarn and in the Blue River and Indiana Creek deltas, or an average of 1.19 acre-feet per year. Sediment cores from several locations in the reservoir showed stratification, which is indicative of different depositional dates or mechanisms. Metal and trace-constituent levels from the cores were compared with three standards. Silver, cadmium, europium, lead, and zinc were present in greater concentrations than Southern Rocky Mountain background levels in four sediment cores, and cadmium, lead, and zinc levels also were equal to or exceeded the Threshold Effect Concentration standards. Lead exceeded the Probable Effect Concentration standard in silt from the Blue River delta and deep water near the north shore. Tin was present in greater concentrations than Southern Rocky Mountain background levels in deep water near the east shore, and chromium and copper levels were equal to or exceeded the Threshold Effect Concentration standards in these cores.
Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks.
Alves, Renato I S; Sampaio, Carolina F; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Segura-Muñoz, Susana I
2014-08-01
Pardo River (Brazil) is suffering from an important anthropogenic impact due to the pressure of highly populated areas and the influence of sugarcane cultivation. The objective of the present study was to determine the levels of 13 trace elements (As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V and Zn) in samples of surface water and sediments from the Pardo River. Furthermore, the human health risks associated with exposure to those metals through oral intake and dermal absorption were also evaluated. Spatial and seasonal trends of the data were closely analyzed from a probabilistic approach. Manganese showed the highest mean concentrations in both water and sediments, remarking the incidence of the agricultural activity and the geological characteristics within the basin. Thallium and arsenic were identified as two priority pollutants, being the most important contributors to the Hazard Index (HI). Since non-carcinogenic risks due to thallium exposure slightly exceeded international guidelines (HI>1), a special effort should be made on this trace element. However, the current concentrations of arsenic, a carcinogenic element, were in accordance to acceptable lifetime risks. Nowadays, there is a clear increasing growth in human population and economic activities in the Pardo River, whose waters have become a serious strategic alternative for the potential supply of drinking water. Therefore, environmental monitoring studies are required not only to assure that the current state of pollution of Pardo River does not mean a risk for the riverside population, but also to assess the potential trends in the environmental levels of those elements. Copyright © 2014 Elsevier Inc. All rights reserved.
Application of Jason-2/3 Altimetry for Virtual Gauging and Flood Forecasting in Mekong Basin
NASA Astrophysics Data System (ADS)
Lee, H.; Hossain, F.; Okeowo, M. A.; Nguyen, L. D.; Bui, D. D.; Chang, C. H.
2016-12-01
Vietnam suffers from both flood and drought during the rainy and dry seasons, respectively, due to its highly varying surface water resources. However, the National Center for Water Resources Planning and Investigation (NAWAPI) states that only 7 surface water monitoring stations have been constructed in Central and Highland Central regions with 100 station planned to be constructed by 2030 throughout Vietnam. For the Mekong Delta (MD), the Mekong River Commission (MRC) provides 7-day river level forecasting, but only at the two gauge stations located near the border between Cambodia and Vietnam (http://ffw.mrcmekong.org/south.htm). In order to help stakeholder agencies monitor upstream processes in the rivers and manage their impacts on the agricultural sector and densely populated delta cities, we, first of all, construct the so-called virtual stations throughout the entire Mekong River using the fully automated river level extraction tool with Jason-2/3 Geophysical Research Record (GDR) data. Then, we discuss the potentials and challenges of river level forecasting using Jason-2/3 Interim GDR (IGDR) data, which has 1 - 2 days of latency, over the Mekong River. Finally, based on our analyses, we propose a forecasting system for the Mekong River by drawing from our experience in operationalizing Jason-2 altimetry for Bangladesh flood forecasting.
Tsaboula, Aggeliki; Papadakis, Emmanouil-Nikolaos; Vryzas, Zisis; Kotopoulou, Athina; Kintzikoglou, Katerina; Papadopoulou-Mourkidou, Euphemia
2016-05-01
A pesticide prioritization approach was developed and implemented in the Pinios River Basin of Central Greece. It takes under consideration the Level of Environmental Risk containing information on the frequency of occurrence of pesticides above environmental thresholds, the intensity of this occurrence and the spatial distribution as well as information about the fate and behavior of pesticides in the environment and the potential to have adverse impact on humans' health. Original 3-year monitoring data from 102 Stationary Sampling Sites located on rivers and their tributaries, reservoirs, streams and irrigation/drainage canals giving rise to a collection of 2382 water samples resulting in 7088 data sets, were included in this integrated prioritization study. Among 302 monitored active ingredients, 119 were detected at least once and the concentrations found in the aquatic systems for 41% of compounds were higher than the respective lowest Predicted Non-Effect Concentration (PNEC) values. Sixteen and 5 pesticides were found with risk ratios (MECmax/PNEC) above 10 (high concern) and 100 (very high concern), respectively. However, pesticides with maximum Measured Environmental Concentration (MECmax) values exceeding by 1000 times the respective lowest PNEC values were also found which were considered of extremely high concern; in the latter group were included prometryn, chlorpyrifos, diazinon, λ-cyhalothrin, cypermethrin, α-cypermethrin deltamethrin, ethalfluralin and phosmet. The sensitivity of the analytical methods used in the monitoring study was considered inadequate to meet the toxicological endpoints for 32 pesticides. The widest distribution of occurrence in the Stationary Sampling Sites of the monitoring program was found for the pesticides, prometryn, fluometuron, terbuthylazine, S-metolachlor, chlorpyrifos, diphenylamine, acetochlor, alachlor, 2,4-D, etridiazole, imidacloprid and lindane (γ-ΗCH). Among the 27 priority pesticides included in the Directive 2013/39/EU, in the present study 13 pesticides were considered as candidates for River Basin Specific Pollutants (RBSP) for the River Basin of Pinios. Among the 30 pesticide specific pollutants that were established by the Greek authorities, in the present study only 6 were considered as candidates for RBSP for the river basin of Pinios. As a result of the implementation of the prioritization approach developed in this study a total of 71 pesticides were identified as being RBSP for the river basin of Pinios. The higher Level of Environmental Risk was found to be exerted by the organophosphorus insecticide chlorpyrifos, followed by lindane and prometryn. The present study provides background information for important decisions to be made concerning the selection of pesticides which should be included in the target analyte list of new monitoring and screening programs of surface water quality in the Pinios River Basin. In addition, the prioritization approach proposed here can be useful for the development of River Basin Management Plans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ecosystem Models as Support to Eutrophication Management in the North Atlantic Ocean (EMoSEM)
NASA Astrophysics Data System (ADS)
Lacroix, Geneviève; Billen, Gilles; Desmit, Xavier; Garnier, Josette; Gypens, Nathalie; Lancelot, Christiane; Lenhart, Hermann; Los, Hans; Mateus, Marcos; Ménesguen, Alain; Neves, Ramiro; Troost, Tineke; van der Molen, Johan
2013-04-01
One of the leading challenges in marine science and governance is to improve scientific guidance of management measures to mitigate eutrophication nuisances in the EU seas. Existing approaches do not integrate the eutrophication process in space (continuum river-ocean) and in time (past, present and future status). A strong need remains for (i) knowledge/identification of all the processes that control eutrophication and its consequences, (ii) consistent and harmonized reference levels assigned to each eutrophication-related indicator, (iii) identification of the main rivers directly or indirectly responsible for eutrophication nuisances in specific areas, (iv) an integrated transboundary approach and (v) realistic and scientific-based nutrient reduction scenarios. The SEAS-ERA project EMoSEM aims to develop and combine the state-of-the-art modelling tools describing the river-ocean continuum in the North-East Atlantic (NEA) continental seas. This will allow to link the eutrophication nuisances in specific marine regions to anthropogenic inputs, trace back their sources up to the watersheds, then test nutrient reduction options that might be implemented in these watersheds, and propose consistent indicators and reference levels to assess the Good Environmental Status (GES). At the end, EMoSEM will deliver coupled river-coastal-sea mathematical models and will provide guidance to end-users (policy- and decision makers) for assessing and combating eutrophication problems in the NEA continental waters.
Mataba, Gordian Rocky; Verhaert, Vera; Blust, Ronny; Bervoets, Lieven
2016-03-15
The aim of the present study was to assess the distribution of trace elements in the aquatic ecosystem of the Thigithe river. Samples of surface water, sediment and fish were collected up- and downstream of the North Mara Gold Mine (Tanzania) and following trace elements were analysed: As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Trace element concentrations in surface water were below or near the detection limit. Regarding the sediments, relative high concentrations of arsenic at all sites and high levels of mercury at a site downstream of the mine where artisanal mining is performed were observed. Trace element concentrations in Ningu fish tissues (Labeo victorianus) were comparable to slightly higher than levels in fishes from unpolluted environments. For none of the measured human health risk by consumption of fish from the Thigithe river is expected when the Tanzanian average amount of 17 g/day is consumed. However, for Hg and As the advised maximum daily consumption of Ningu fish was lower than 100g. As a result fishermen and people living along the shores of the river consuming more fish than the average Tanzanian fish consumption set by the FAO (2005) are possibly at risk. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigating the sources and sinks of water of Congo's wetlands
NASA Astrophysics Data System (ADS)
Paiva, R. C. D.; O'Loughlin, F.; Alsdorf, D. E.; Durand, M. T.; Beighley, E., II; Calmant, S.; Lee, H.; Santos Da Silva, J.
2014-12-01
The Congo is the second largest river basin in the world and indeed there is still a lot to be investigated about the hydrology of this system. This region presents extensive wetlands that may play an important role on the hydrology, carbon and ecological dynamics of the Congo. However, previous studies indicate that these wetlands behave differently from the Amazon, other major rainforest basin, and how water enters and leaves the Cuvette Centrale wetland is still to be quantified. We investigate the sources and sinks of water to the Congo's wetlands. Our analyses range from simple examinations of precipitation and evaporation historical data to remote sensing datasets and 2 D hydrodynamic modelling of Congo wetlands. Early results show that water levels at wetlands are usually higher than adjacent Congo River water levels and amplitude of variation is considerably smaller. Also, floodplain channels are not observed in this region indicating that surface flows are diffusive. Mean annual precipitation range from 1600 to 2000 mm/year, evapotranspiration estimates are approximately 1100 mm/year while some estimates of groundwater recharge indicate values larger than 300 mm/year. These assessments suggest that volumes coming from local water balance could flood the wetlands to depths of only a few centimeters. Preliminary 2D hydrodynamic simulations show that water coming from main rivers produces at upstream areas can flood only a small part of wetland, mainly alongside these rivers.
NASA Astrophysics Data System (ADS)
Bountry, J.; Godaire, J.; Bradley, D. N.
2017-12-01
At the terminus of the Truckee River into Pyramid Lake (Nevada, USA), upstream river management actions have dramatically reshaped the river landscape, posing significant challenges for the management of endangered aquatic species and maintenance of existing infrastructure. Within the last 100 years, upstream water withdrawal for human uses has resulted in a rapid lowering of Pyramid Lake which initiated up to 90 ft of channel incision. In 1976 Marble Bluff Dam was constructed to halt the upstream progression of channel incision and protect upstream agricultural lands, tribal resources, and infrastructure. Since construction an additional 40 ft of lake lowering and subsequent channel lowering now poses a potential risk to the structural integrity of the dam. The dynamic downstream river combined with ongoing reservoir sedimentation pose challenges to fish passage facilities that enable migration of numerous endangered cui-ui and threatened Lahontan Cutthroat Trout (LCT) to upstream spawning areas each year. These facilities include a fish lock at the dam, a fish bypass channel which allows fish to avoid the shallow delta area during low lake levels, and a meandering channel constructed by the Nature Conservancy to connect the bypass channel to the receding Pyramid Lake. The reservoir formed by Marble Bluff Dam has completely filled with sediment which impacts fish passage facilities. The original operating manual for the dam recommends year-round flushing of sediment through radial gates, but this can no longer be accomplished. During critical fish migration periods in the spring operators must ensure fish entrance channels downstream of the dam are not buried with released sediment and fish are not trapped in a portion of the reservoir full of sediment that would risk sending them back over the dam. To help inform future reservoir sediment and infrastructure management strategies, we bracket a range of potential river responses to lake level lowering and floods using historical trends, current field data, and hydraulic and sediment transport models. We present options for adaptive management for dam and reservoir sediment operations that incorporates monitoring of river processes to inform annual implementation strategies along with long-term planning.
Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang
2017-12-07
To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.
Water contamination and environmental ecosystem in the Harlem River
NASA Astrophysics Data System (ADS)
Wang, J.
2013-12-01
Nutrients, bacteria, polychlorinated biphenyls (PCBs) and other contaminates have degraded water quality of the Harlem River. The Harlem River is a natural straight connected to the Hudson River and the East River, and it has been used for navigation and boating. Water samples have been collected and analyzed from 2011 to 2013. Phosphorus, ammonia, turbidity, fecal coliform, E.Coli., and enterococcus all exceed regulated levels for New York City waters. There is only one wastewater treatment plant (Wards Island WWTP) that serves this river. Combined sewer overflows (CSOs) discharge raw sewage into the river during storms in spring and summer. Commercial fishing is banned, .however, individuals still fish. While some fishermen catch and release, it is likely some fish are consumed, creating concern for the environmental health of the community along the river. Storm water runoff, CSOs, and wastewater effluents are major pollutant sources of PCB 11 (3,3' dichlorobiphenyl), nutrient and bacteria. Nutrients, bacteria levels and their spatial/temporal variations were analyzed, and PCB analysis is underway. This data is a critical first step towards improving the water quality and environmental ecosystem in the Harlem River.
Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s
NASA Astrophysics Data System (ADS)
Sauquet, Eric
2015-04-01
The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions. A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.
NASA Astrophysics Data System (ADS)
Riddick, Thomas; Brovkin, Victor; Hagemann, Stefan; Mikolajewicz, Uwe
2017-04-01
The continually evolving large ice sheets present in the Northern Hemisphere during the last glacial cycle caused significant changes to river pathways both through directly blocking rivers and through glacial isostatic adjustment. These river pathway changes are believed to of had a significant impact on the evolution of ocean circulation through changing the pattern of fresh water discharge into the oceans. A fully coupled ESM simulation of the last glacial cycle thus requires a hydrological discharge model that uses a set of river pathways that evolve with the earth's changing orography while being able to reproduce the known present-day river network given the present-day orography. Here we present a method for dynamically modelling hydrological discharge that meets such requirements by applying relative manual corrections to an evolving fine scale orography (accounting for the changing ice sheets and isostatic rebound) each time the river directions are recalculated. The corrected orography thus produced is then used to create a set of fine scale river pathways and these are then upscaled to a course scale. An existing present-day hydrological discharge model within the JSBACH3 land surface model is run using the course scale river pathways generated. This method will be used in fully coupled paleoclimate runs made using MPI-ESM1 as part of the PalMod project. Tests show this procedure reproduces the known present-day river network to a sufficient degree of accuracy.
NASA Astrophysics Data System (ADS)
Faulkner, Douglas J.; Larson, Phillip H.; Jol, Harry M.; Running, Garry L.; Loope, Henry M.; Goble, Ronald J.
2016-08-01
A paucity of research exists regarding the millennial-scale response of inland alluvial streams to abrupt base-level fall. Studies of modern systems indicate that, over short time scales, the response is a diffusion-like process of upstream-propagating incision. In contrast, evidence from the lower Chippewa River (LCR), located in the upper Midwest of the USA, suggests that autogenic controls operating over time scales of several millennia can overwhelm diffusion, resulting in incision that is prolonged and episodic. During the Last Glacial Maximum, the LCR drained the Chippewa Lobe of the Laurentide Ice Sheet to the glacial upper Mississippi River (UMR). As a meltwater stream, it aggraded and filled its valley with glacial outwash, as did its largest tributaries, which were also meltwater streams. Its nonglacial tributaries aggraded, too, filling their valleys with locally derived sediment. During deglaciation, the UMR incised at least twice, abruptly lowering the LCR's base level - 15 m at 16 ka or earlier and an additional 40 m at ca. 13.4 ka. Each of these base-level falls initiated incision of the LCR, led by upstream migrating knickpoints. The propagation of incision has, however, been a lengthy process. The optically stimulated luminescence (OSL) ages of terrace alluvium indicate that, by 13.5 ka, incision had advanced up the LCR only 15 km, and by 9 ka, only 55 km. The process has also been episodic, resulting in the formation of fill-cut terraces (inferred from GPR surveys and exposures of terrace alluvium) that are younger and more numerous in the upstream direction. Autogenic increases in sediment load and autogenic bed armoring, the result of periodic tributary-stream rejuvenation and preferential winnowing of fines by the incising river, may have periodically caused knickpoint migration and incision to slow and possibly stop, allowing lateral erosion and floodplain formation to dominate. A decline in sediment flux from stabilizing incised tributary stream systems would have led to renewed knickpoint migration and incision when floods of sufficient magnitude to breach the channel armor occurred. Minimal floodplain development along the upper section of the present-day LCR, along with the channel morphology of an unstable wandering gravel-bed river immediately downstream from it, suggest that the river is still responding to the base-level falls that happened many millennia ago. The autogenic controls on the LCR's response to UMR incision are a direct consequence of the thick fills of noncohesive sediment that accumulated in its valley and the valleys of its tributary streams during the Late Wisconsinan, making the LCR a prime example of a former proglacial river that remains a paraglacial fluvial system.
Development of a flood-warning system and flood-inundation mapping in Licking County, Ohio
Ostheimer, Chad J.
2012-01-01
Digital flood-inundation maps for selected reaches of South Fork Licking River, Raccoon Creek, North Fork Licking River, and the Licking River in Licking County, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with the Ohio Department of Transportation; U.S. Department of Transportation, Federal Highway Administration; Muskingum Watershed Conservancy District; U.S. Department of Agriculture, Natural Resources Conservation Service; and the City of Newark and Village of Granville, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the following USGS streamgages: South Fork Licking River at Heath, Ohio (03145173); Raccoon Creek below Wilson Street at Newark, Ohio (03145534); North Fork Licking River at East Main Street at Newark, Ohio (03146402); and Licking River near Newark, Ohio (03146500). The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. As part of the flood-warning streamflow network, the USGS re-installed one streamgage on North Fork Licking River, and added three new streamgages, one each on North Fork Licking River, South Fork Licking River, and Raccoon Creek. Additionally, the USGS upgraded a lake-level gage on Buckeye Lake. Data from the streamgages and lake-level gage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected, established streamgage rating curves. The step-backwater models then were used to determine water-surface-elevation profiles for up to 10 flood stages at a streamgage with corresponding streamflows ranging from approximately the 50 to 0.2-percent chance annual-exceedance probabilities for each of the 4 streamgages that correspond to the flood-inundation maps. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of Licking County showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. The USGS also developed an unsteady-flow model for a reach of South Fork Licking River for use by the NWS to enhance their ability to provide advanced flood warning in the region north of Buckeye Lake, Ohio. The unsteady-flow model was calibrated based on data from four flooding events that occurred from June 2008 to December 2011. Model calibration was approximate due to the fact that there were unmeasured inflows to the river that were not able to be considered during the calibration. Information on unmeasured inflow derived from NWS hydrologic models and additional flood-event data could enable the NWS to further refine the unsteady-flow model.
Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.
2008-01-01
The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.
NASA Astrophysics Data System (ADS)
Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro
2017-08-01
Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
Evidence for Tectonic Activity During the Mature Harappan Civilization, 2600-1800 BCE
NASA Astrophysics Data System (ADS)
Grijalva, K. A.; Kovach, R. L.; Nur, A. M.
2006-12-01
The mature Harappan civilization located in Pakistan and India dates from 2600 to 1800 BCE. By combining seismic data, three-dimensional elastic dislocation modeling, and archaeological findings we examined the role that earthquakes played in the demise of Harappan settlements. The study focuses on three different geographical regions: Gujarat, the Sarasvati-Ghaggar-Hakra River valley, and the Makran coast of Pakistan. In Gujarat, the fluvial system of the Rann of Kachchh has undergone significant changes. The Rann of Kachchh formed as a delta for three rivers, becoming an inland sea during the time of Alexander the Great, and ultimately a salty marsh. These changes were brought about by a combination of sea level changes, the truncation of the three rivers by tectonic uplift and the deepening of the Rann by earthquake induced subsidence. Events analogous to the 1819 Allah Bund earthquake, which dammed the Puran River for seven years, would have significantly altered the water source for downstream settlements. Data from the recent 2001 Bhuj event shows that Harappan settlements would have suffered considerable shaking damage from an analogous historical event. Archaeological studies to date have found direct evidence for of at least one large earthquake at Dholavira in 2200 BCE. A number of the mature Harappan settlements are located along the dry Sarasvati-Ghaggar-Hakra river system. The decline of these sites coincides with the divergence of the Sarasvati-Ghaggar-Hakra system to the Indus and Ganga river systems. A succession of earthquakes, along with a period of aridity, likely led to the disappearance of the Sarasvati-Ghaggar-Hakra system. Although this region has not had any large earthquakes in historic times, there is archaeological evidence of two large events at the Harappan site of Kalibangan, at 2900 and 2700 BCE. Along the Makran coast two settlements, believed to have been Harappan seaports, are now located tens of kilometers inland. Changes in sea level, along with tectonic uplift from great Makran subduction zone earthquakes, can explain the conundrum of why these sites are now tens of kilometers inland. Dislocation modeling demonstrates that several great subduction earthquakes in the historical past could easily have raised the Harappan settlements to their current inland positions above sea level. The examples presented demonstrate that earthquakes affected the demise of several Harappan sites either by direct shaking damage, altering the water supply, or by changing the relative sea level.
Pfeifle, Bryce D.; Stamm, John F.; Stone, James J.
2018-01-01
Gold mining operations in the northern Black Hills of South Dakota resulted in the discharge of arsenopyrite-bearing mine tailings into Whitewood Creek from 1876 to 1977. Those tailings were transported further downstream along the Belle Fourche River, the Cheyenne River, and the Missouri River. An estimated 110 million metric tons of tailings remain stored in alluvial deposits of the Belle Fourche and Cheyenne Rivers. Pore-water dialysis samplers were deployed in the channel and backwaters of the Belle Fourche and Cheyenne Rivers to determine temporal and seasonal changes in the geochemistry of groundwater in alluvial sediments. Alluvial sediment adjacent to the dialysis samplers were cored for geochemical analysis. In comparison to US Environmental Protection Agency drinking water standards and reference concentrations of alluvial sediment not containing mine tailings, the Belle Fourche River sites had elevated concentrations of arsenic in pore water (2570 μg/L compared to 10 μg/L) and sediment (1010 ppm compared to < 34 ppm), respectively. Pore water arsenic concentration was affected by dissolution of iron oxyhydroxides under reducing conditions. Sequential extraction of iron and arsenic from sediment cores indicates that substantial quantities of soluble metals were present. Dissolution of arsenic sorbed to alluvial sediment particles appears to be affected by changing groundwater levels that cause shifts in redox conditions. Bioreductive processes did not appear to be a substantial transport pathway but could affect speciation of arsenic, especially at the Cheyenne River sampling sites where microbial activity was determined to be greater than at Belle Fourche sampling sites.
Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.
2009-01-01
In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1997-02-01
This report, Volume, 2, includes record from the Susquehanna and Potomac River Basins. Specifically, it contains: (1) discharge records for 90 continuous-record streamflow-gaging stations and 41 partial-record stations; (2) elevation and contents record for 12 lakes and reservoirs; (3) water-quality records for 13 streamflow-gaging stations and 189 partial-record and project stations; and (4) water-level records for 25 network observation wells. Site locations are shown in figures throughout the report. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.
2017-08-01
Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.
Hua, Wen Yi; Bennett, Erin R; Maio, Xui-Sheng; Metcalfe, Chris D; Letcher, Robert J
2006-09-01
The influence of seasonal changes in water conditions and parameters on several major pharmacologically active compounds (PhACs) and s-triazine herbicides was assessed in the wastewater and sewage treatment plant (WSTP) effluent as well as the downstream surface water from sites on the Canadian side of the upper Detroit River, between the Little River WSTP and near the water intake of a major drinking water treatment facility for the City of Windsor (ON, Canada). The assessed PhACs were of neutral (carbamazepine, cotinine, caffeine, cyclophosphamide, fluoxetine, norfluoxetine, pentoxifylline, and trimethoprim) and acidic (ibuprofen, bezafibrate, clofibric acid, diclofenac, fenoprofen, gemfibrozil, indomethacin, naproxen, and ketoprofen) varieties. The major assessed s-triazine herbicides were atrazine, simazine, propazine, prometon, ametryn, prometryn, and terbutryn. At sampling times from September 2002 to June 2003, 15 PhACs were detected in the WSTP effluent at concentrations ranging from 1.7 to 1244 ng/L. The PhAC concentrations decreased by as much 92 to 100% at the Little River/Detroit River confluence because of the river dilution effect, with further continual decreases at sites downstream from the WSTP. The only quantifiable s-triazine in WSTP effluent, atrazine, ranged from 6.7 to 200 ng/L and was higher in Detroit River surface waters than in WSTP effluent. Only carbamazepine, cotinine, and atrazine were detectable at the low-nanogram and subnanogram levels in surface waters near a drinking water intake site. Unlike the PhACs, atrazine in the Detroit River is not attributable to point sources, and it is heavily influenced by seasonal agricultural usage and runoff. Detroit River surface water concentrations of carbamazepine, cotinine, and atrazine may present a health concern to aquatic wildlife and to humans via the consumption of drinking water.
Harris, Julianne E.; Hightower, Joseph E.
2011-01-01
American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.
Harris, Julianne E.; Hightower, J.E.
2011-01-01
American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.
Gao, Lirong; Huang, Huiting; Liu, Lidan; Li, Cheng; Zhou, Xin; Xia, Dan
2015-12-01
Polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are toxic environmental pollutants that are often found in sediments. The Yangtze and Yellow rivers in China are two of the largest rivers in Asia and are therefore important aquatic ecosystems; however, few studies have investigated the PCDD/F and PCB content in the sediments of these rivers. Accordingly, this study was conducted to generate baseline data for future environmental risk assessments. In the present study, 26 surface sediments from the middle reaches of the Yellow and Yangtze rivers were analyzed for PCDD/Fs and dioxin-like (dl) PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yellow River were 2.1-19.8, 1.11-9.9, and 0.08-0.57 pg/g (dry weight), respectively. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yangtze River were 6.1-84.9, 1.8-24.1, and 0.13-0.29 pg/g (dry weight), respectively. Total organic carbon and dl-PCB contents in the Yellow River were significantly correlated (Spearman's correlation coefficient, r = 0.64, P < 0.05). It is well known that total organic carbon plays a role in the transport and redistribution of dl-PCB. Principal component analysis indicated that PCDD/Fs may arise from pentachlorophenol, sodium pentachlorophenate, and atmospheric deposition, while dl-PCBs likely originate from burning of coal and wood for domestic heating. The dioxin levels in the river sediments examined in this study were relatively low. These findings advance our knowledge regarding eco-toxicity and provide useful information regarding contamination sources.
Yang, Ji-Feng; Ying, Guang-Guo; Zhao, Jian-Liang; Tao, Ran; Su, Hao-Chang; Liu, You-Sheng
2011-01-01
The distribution and occurrence of 15 antibiotics in surface water of the Pearl River System (Liuxi River, Shijing River and Zhujiang River) and effluents of four wastewater treatment plants (WWTPs) were investigated in two sampling events representing wet season and dry season by using rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode. Only eight antibiotics (sulfadiazine, sulfapyridine, sulfamethazine, sulfamethoxazole, trimethoprim, roxithromycin, erythromycin-H₂O and norfloxacin) were detected in the water samples of the three rivers and the effluents. The detection frequencies and levels of antibiotics in the dry season were higher than those in the wet season. This could be attributed to the dilution effects in the wet season and relatively lower temperature in the dry season under which antibiotics could persist for a longer period. The levels of the detected antibiotics in different sites are generally in a decreasing order as follows: Shijing River ≥WWTP effluent ≥Zhujiang River ≥ Liuxi River. Risk assessment based on the calculated risk quotients showed that only erythromycin-H₂O and roxithromycin detected in the Pearl Rivers might have adverse effects on aquatic organisms.
Sedimentation problems in a lateral dock on the Paraná River
NASA Astrophysics Data System (ADS)
Latessa, Gaston; Sabarots Gerbec, Martin; Arecco, Pablo
2017-04-01
The Paraná River is one of the largest water courses in the world and along its reach in the Argentine territory, it receives a large load of sediments from the Pilcomayo and Bermejo Rivers, through the Paraguay River, in the upper basin at the North of Argentina and South of Bolivia. The suspended sediment load is estimated in 100 Million ton/year. This unique characteristic drives the Paraná River morphology downstream, as well as the Paraná delta morphodynamics. On top of its natural behaviour, the Paraná-Paraguay river system is an important inland waterway transport corridor, with a significant amount of sea going vessels and inland barges navigating throughout stretches of more than 3000 Km. Consequently, there are numerous port complexes and terminals along the river banks. The typical wet infrastructure of these terminals is usually composed by jetties and quay walls, and occasionally with side or lateral docks. Whereas, the case included within this study presents all these components. This study presents a hydrodynamic and sedimentology 3D model to predict the velocity fields and the associated shear stresses that will drive morphological processes in the lateral dock. The terminal layout, side dock configuration, and sedimentation issues will be analyzed from multidisciplinary point of view, under different hydrological events and considering the correlated sediment loads. Recent bathymetry studies had been carried out and this set of data will be implemented to build the domain geometry. The flow series is as well extended with the up to date gauged flows and levels, to carry out statistical analysis and identify the design flows for different probabilities. The main objective of this analysis will be to understand and identify the scour and deposition processes and the possible problems to the structures safety and the operation of the docks, and introduce variations to the baseline design, if necessary. Results will be contrasted and validated with empirical formulae and criteria.
Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M
2016-03-15
Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tessler, Z. D.; Vorosmarty, C. J.; Overeem, I.; Syvitski, J. P.
2017-12-01
Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning, and affect the long-term sustainability of these landscapes for both human and natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea-level rise across 46 global deltas. We model ongoing development and scenarios of future water resource management and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea-level in coastal delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea-level rise result in relative sea-level rise rates in deltas that average 6.8 mm/year. Currently planned or under-construction dams can be expected to increase rates of relative sea-level rise on the order of 1 mm/year. Some deltas systems, including the Magdalena, Orinoco, and Indus, are highly sensitive to future impoundment of river basins, with RSLR rates increasing up to 4 mm/year in a high-hydropower-utilization scenario. Sediment fluxes may be reduced by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Megnha if all currently planned dams are constructed. Reduced sediment retention on deltas due to increased river channelization and local flood controls increases RSLR on average by nearly 2 mm/year. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea-level rise.
Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)
NASA Astrophysics Data System (ADS)
Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe
2018-01-01
The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.
Ground-Water Conditions and Studies in the Albany Area of Dougherty County, Georgia, 2007
Gordon, Debbie W.
2008-01-01
The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents an overview of ground-water conditions and studies in the Albany area of Dougherty County, Georgia, during 2007. Historical data are also presented for comparison with 2007 data. Ongoing monitoring activities include continuous water-level recording in 24 wells and monthly water-level measurements in 5 wells. During 2007, water levels in 21 of the continuous-recording wells were below normal, corresponding to lower than average rainfall. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have decreased or remained about the same since 2006. Water samples were collected from the Flint River and wells at the Albany wellfield, and data were plotted on a trilinear diagram to show the percent composition of selected major cations and anions. Ground-water constituents (major cations and anions) of the Upper Floridan aquifer at the Albany wellfield are distinctly different from those in the water of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwestern Albany area of Georgia. The model is being calibrated to simulate periods of dry (October 1999) and relatively wet (March 2001) hydrologic conditions. Preliminary water-level simulations indicate a generally good fit to measured water levels.
NASA Astrophysics Data System (ADS)
McLachlan, R. L.; Ogston, A. S.; Allison, M. A.; Hilmo, R. S.
2016-12-01
Widely varying ratios of marine to freshwater influence within near-mouth distributaries have impacts on sedimentary processes within the lower river that have yet to be thoroughly characterized. These impacts are of particular interest because river gauging stations are often above the river-estuary interface and, therefore, may not accurately characterize sediment flux through the lower river. Flow velocity, salinity, and suspended sediment properties (concentration, particle size, and settling velocity) were measured within the tidal Sông Hu distributary of the lower Mekong River, Vietnam during both high and low river discharge seasons. Seasonal variations in river discharge and estuarine regime resulted in export of fine sediment when discharge was high ( 1.7 t s-1) and import when discharge was low ( 0.25 t s-1). Generally, the estuary moved in and out of 40 km of the lower distributary with discharge and tidal phase, and the estuary exhibited salt wedge to partially-mixed conditions. High river discharge and neap tides increased stratification of salinity and suspended sediment. Suspended sediment was influenced by seasonal and tidal fluctuations in near-bed shear stress and the intermittent presence of a protective salt wedge and associated estuary turbidity maximum. This fluctuating flow and salinity regime induced variations in flocculation, settling, and trapping of sediment within the river channel. Above the estuary, particles were pre-flocculated, and within and near the estuary, increased flocculation promoted particle settling. The degree of aggregation and settling velocity of suspended particles were largest during ebb tides of high river discharge and during flood tides of low river discharge. Sediment deposited on the river bed was protected from resuspension by lowered bed stress within and near the salt wedge. These patterns promote retention of mud in the lower river when estuarine processes exist and mud export when fluvial processes dominate. The spectrum of present conditions analyzed collaboratively with field studies, remotely sensed observations, and modeling has shed light on how this environment, and other large tropical deltas, will react to changing magnitudes of fluvial and marine influences due to sea-level rise and anthropogenic alterations to the delta.
Reimann, Clemens; Banks, David
2004-10-01
Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.
Detection of Human Sewage in Urban Stormwater Using DNA Based Methods and Stable Isotope Analysis
NASA Astrophysics Data System (ADS)
McLellan, S. L.; Malet, N.; Sauer, E.; Mueller-Spitz, S.; Borchardt, M.
2008-12-01
Urban stormwater is a major source of fecal indicator bacteria in the Milwaukee River Basin, a major watershed draining to Lake Michigan. Much of the watershed is in highly urbanized areas and Escherichia coli (E. coli) levels have been found to be 20,000 CFU per 100 ml in the estuary leading to Lake Michigan. Aging infrastructure and illicit cross connections may allow sewage to infiltrate the stormwater system and could contribute both fecal indicator bacteria and human pathogens to these waters. We conducted extensive sampling of stormwater outfalls in the lower reaches of three major tributaries. Three outfalls along the heavily urbanized Kinnickinnick (KK) were found to have geometric mean E. coli and enterococci levels of 16,200 and 28,700 CFU/100 ml, respectively. Four outfalls along the Menomonee River, draining both suburban and urban areas, had geometric mean E. coli and enterococci levels of 14,700 and 12,800 CFU/100 ml, respectively. These seven outfalls had more than 60% of the samples positive for human specific Bacteroides genetic marker (n=46), suggesting the presence of human sources. In addition, two outfalls on Lincoln Creek, a smaller tributary of the Milwaukee River, had geometric mean E. coli and enterococci levels of 16,700 and 14,900 CFU per 100 ml, respectively. The human specific Bacteroides marker was positive in nearly 90% of the samples (n=24). Subsequent virus testing at one of these outfalls confirmed human pathogens were present with adenovirus detected at 1.3 x 10E3 genomic equivalents (ge)/L, enterovirus at 1.9 x 10E4 ge/L and G1 norovirus at 1.5 x 10E3 ge/L; these values are similar to concentrations found in sewage. Stable isotope studies were conducted in the three tributaries to investigate the relationship between delta C and delta N isotopic composition and microbiological quality of this urban freshwater system. This work is based on the premise that the organic matter of the stormwater will have a stable isotopic signature related to the mixed organic matter sources in polluted stormwater runoff, and that this signal will distinct from untreated sanitary sewage. Stable isotope signatures of stormwater and untreated sewage were determined and compared with the rivers. Isotopic values of stormwater was delta 15N = 1.1 ± 2 %; delta 13C = -25.5 ± 3 % and sewage was delta 15N = -1.9 ± 0.2 %; delta 13C = -23.6 ± 0.3. Suspended particular organic matter (SPOM) of Milwaukee River showed depleted delta 13C (-28.6 ± 1.6 %) and enriched delta 15N (7.7 ± 1.9 %) values. SPOM of the KK River exhibited the most depleted delta 15N (0.2 ± 1.6 %) and enriched delta 13C (-24.8 ± 1.8 %) isotopic values. Menomonee River SPOM showed intermediate isotopic values. The delta 13C values of each river and the estuary enriched significantly throughout the summer storm periods. The isotope signals in the KK and Menomonee were indicative of stormwater runoff and sewage contamination. These results suggest that unrecognized sewage inputs are chronically present and may be delivered through urban stormwater systems. DNA based methods combined with isotope analysis may provide a useful tool for urban watershed assessments and to identify sewage inputs. Delineating the relative contribution of stormwater and sewage to overall degraded water quality might give the first indication of the impact of these sources on the Michigan Lake waters.
Present and Future Water Supply for Mammoth Cave National Park, Kentucky
Cushman, R.V.; Krieger, R.A.; McCabe, John A.
1965-01-01
The increase in the number of visitors during the past several years at Mammoth Cave National Park has rendered the present water supply inadequate. Emergency measures were necessary during August 1962 to supplement the available supply. The Green River is the largest potential source of water supply for Mammoth Cave. The 30-year minimum daily discharge is 40 mgd (million gallons per day) . The chemical quality is now good, but in the past the river has been contaminated by oil-field-brine wastes. By mixing it with water from the existing supply, Green River water could be diluted to provide water of satisfactory quality in the event of future brine pollution. The Nolin River is the next largest potential source of water (minimum releases from Nolin Reservoir, 97-129 mgd). The quality is satisfactory, but use of this source would require a 8-mile pipeline. The present water supply comes from springs draining a perched aquifer in the Haney Limestone Member of the Golconda Formation on Flint Ridge. Chemical quality is excellent but the minimum observed flow of all the springs on Flint Ridge plus Bransford well was only 121,700 gpd (gallons per day). This supply is adequate for present needs but not for future requirements; it could be augmented with water from the Green River. Wet Prong Buffalo Creek is the best of several small-stream supplies in the vicinity of Mammoth Cave. Minimum flow of the creek is probably about 300,000 gpd and the quality is good. The supply is about 5 miles from Mammoth Cave. This supply also may be utilized for a future separate development in the northern part of the park. The maximum recorded yield of wells drilled into the basal ground water in the Ste. Genevieve and St. Louis Limestone is 36 gpm (gallons per minute). Larger supplies may be developed if a large underground stream is struck. Quality can be expected to be good unless the well is drilled too far below the basal water table and intercepts poorer quality water at a lower level. This source of supply might be used to augment the present supply, but locating the trunk conduits might be difficult. Water in alluvium adjacent to the Green River and perched water in the Big Clifty Sandstone Member of the Golconda Formation and Girkin Formation have little potential as a water supply.
Ruelas-Inzunza, J; Green-Ruiz, C; Zavala-Nevárez, M; Soto-Jiménez, M
2011-08-15
With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g ⁻¹ dry weight) and Cr (0.01 μg g⁻¹) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g⁻¹) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g⁻¹) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g⁻¹) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g⁻¹) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g⁻¹) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g⁻¹) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p<0.025), Cr (p<0.10) and Hg (p<0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Solt, Mike; Sneed, Michelle
2014-01-01
Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including a basic description of the mechanics of land subsidence and InSAR, as well as a description of the study area, is presented within the Mojave Water Resources Interactive Map and report.
Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cegelski, Christine C.; Campbell, Matthew R.
2006-05-30
Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 majormore » river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.« less
Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.
2007-01-30
At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.« less
A subsynoptic-scale kinetic energy study of the Red River Valley tornado outbreak (AVE-SESAME 1)
NASA Technical Reports Server (NTRS)
Jedlovec, G. J.; Fuelberg, H. E.
1981-01-01
The subsynoptis-scale kinetic energy balance during the Red River Valley tornado outbreak is presented in order to diagnose storm environment interactions. Area-time averaged energetics indicate that horizontal flux convergence provides the major energy source to the region, while cross contour flow provides the greatest sink. Maximum energy variability is found in the upper levels in association with jet stream activity. Area averaged energetics at individual observation times show that the energy balance near times of maximum storm activity differs considerably from that of the remaining periods. The local kinetic energy balance over Oklahoma during the formation of a limited jet streak receives special attention. Cross contour production of energy is the dominant local source for jet development. Intense convection producing the Red River Valley tornadoes may have contributed to this local development by modifying the surrounding environment.
Halvorson, Sarah J; Williams, Ashley L; Ba, Sidy; Dunkel, Florence V
2011-03-01
This paper presents the findings of a study to assess patterns in local knowledge of and response to water quality and waterborne diseases in relation to seasonal changes in the Niger River Inland Delta. The study draws on field data collected in four villages along the Niger River in the Mopti region of Mali during September 2008. The major findings suggest: (1) water use behaviors and diarrheal disease management are influenced by the tremendous seasonal fluctuations in the riverine environment; (2) local awareness of the relationship between poor water quality, oral-fecal disease transmission, and waterborne disease is low; (3) interventions to mitigate the high incidence of childhood diarrhea and degraded water quality are limited by ongoing socio-economic, cultural, and environmental factors; and (4) women's level of health knowledge is socially and culturally dependent. Published by Elsevier Ltd.
The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins
2018-06-01
The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.
Analyzing key ecological functions for transboundary subbasin assessments.
B.G Marcot; T.A. O' Neil; J.B. Nyberg; A. MacKinnon; P.J. Paquet; D.H. Johnson
2007-01-01
We present an evaluation of the ecological roles ("key ecological functions" or KEFs) of 618 wildlife species as one facet of subbasin assessment in the Columbia River basin (CRB) of the United States and Canada. Using a wildlife-habitat relationships database (IBIS) and geographic information system, we have mapped KEFs as levels of functional redundancy (...
We present a novel approach to quantifying estuarine habitat use by fish using stable isotopes. In brief, we further developed and evaluated an existing stable isotope turnover model to estimate the time American shad, an anadromous clupeid, spend in various river habitats durin...
Effects of elevated temperatures and rising sea level on Arctic Coast
Barnes, Peter W.
1990-01-01
Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.
Biodegradation of o-Benzyl-p-Chlorophenol
Swisher, R. D.; Gledhill, W. E.
1973-01-01
The extent of biodegradation of o-benzyl-p-chlorophenol, marketed as a germicide under the name Santophen® 1 (Monsanto Co.), in river water, sewage, and activated sludge was determined. Biodegradation was assessed by use of a colorimetric procedure for phenolic materials, carbon analysis, and CO2 evolution. In unacclimated river water, 0.1 mg of Santophen 1 per liter was degraded within 6 days. In sewage, 0.5 and 1.0 mg/liter levels of Santophen 1 were degraded in 1 day. Acclimated activated sludge achieved 80% biodegradation of 1.0 mg/liter Santophen 1 in 8 h and 100% in 24 h. When effluent from a semicontinuous activated sludge unit, acclimated to 20 mg of Santophen 1 per liter was used as the inoculum for the CO2 evolution procedure, 60% of the total theoretical CO2 was evolved from Santophen 1. Based on the results of these studies, indicating Santophen 1 to be readily biodegraded in at least four biological systems, the continued use of present levels of Santophen 1 should present no significant environmental problems. PMID:4356462
Ethnic differences in risk from mercury among Savannah River fishermen.
Burger, J; Gaines, K F; Gochfeld, M
2001-06-01
Fishing plays an important role in people's lives and contaminant levels in fish are a public health concern. Many states have issued consumption advisories; South Carolina and Georgia have issued them for the Savannah River based on mercury and radionuclide levels. This study examined ethnic differences in risk from mercury exposure among people consuming fish from the Savannah River, based on site-specific consumption patterns and analysis of mercury in fish. Among fish, there were significant interspecies differences in mercury levels, and there were ethnic differences in consumption patterns. Two methods of examining risk are presented: (1) Hazard Index (HI), and (2) estimates of how much and how often people of different body mass can consume different species of fish. Blacks consumed more fish and had higher HIs than Whites. Even at the median consumption, the HI for Blacks exceeded 1.0 for bass and bowfin, and, at the 75th percentile of consumption, the HI exceeded 1.0 for almost all species. At the White male median consumption, noHI exceeded 1, but for the 95th percentile consumer, the HI exceeded 1.0 almost regardless of which species were eaten. Although females consumed about two thirds the quantity of males, HIs exceeded 1 for most Black females and for White females at or above the 75th percentile of consumption. Thus, close to half of the Black fishermen were eating enough Savannah River fish to exceed HI = 1. Caution must be used in evaluating an HI because the RfDs were developed to protect the most vulnerable individuals. The percentage of each fish species tested that exceeded the maximum permitted limits of mercury in fish was also examined. Over 80% of bowfin, 38% of bass, and 21% of pickerel sampled exceeded 0.5 ppm. The risk methodology is applicable anywhere that comparable data can be obtained. The risk estimates are representative for fishermen along the Savannah River, and are not necessarily for the general populations.
What would happen if the Mississippi River changed its course to the Atchafalaya?
NASA Astrophysics Data System (ADS)
Xu, Y. J.
2017-12-01
The Mississippi River Delta faces an uncertain future as sea level keeps rising while the land continues to subside. In its latest Master Plan draft of 2017, the Louisiana Coastal Protection and Restoration Authority has outlined a $50 billion investment for 120 projects designed to build and maintain coastal Louisiana. These projects are all developed under the assumption that the Mississippi River (MR) would remain on its current course, which is artificially maintained through a control structure built in 1963 (also known as the Old River Control Structure, or ORCS) after it was realized that the river attempted to change its course back to its old river channel - the Atchafalaya River (AR). Since the ORCS is in operation of controlling only about 25% of the MR flow into the AR, little attention has been paid to the importance of possible riverbed changes downstream the avulsion node on the MR course switch. As one of the largest alluvial river in the world, the MR avulsed every 1,000-1,500 years in the past. Alluvial rivers avulse when two conditions are met: a sufficient in-channel aggradation and a major flood. In our ongoing study on sediment transport and channel morphology of the lower Mississippi River, we found that the first 30-mile reach downstream the ORCS has been experiencing rapid bed aggradation and channel narrowing in the past three decades. A mega flood could be a triggering point to overpower the man-made ORCS and allow the river abandon its current channel - the MR main stem. This is not a desirable path; however, nature has its own mechanism of choosing river flows, which do not bow to our expectation. The Missisippi River's flow is projected to increase in the future as global temperature continues to rise and hydrologic cycle intensifies. Additionally, rapid urbanization in the river basin will create conditions that foster the emergence of mega floods. It would be impractical to spend considerable resources for a river delta without assessing the future avulsion risk of the river upstream. My presentation will discuss the possibility of a Mississippi River avulsion, its consequences, as well as what assessment data we need to develop rational strategies.
Bales, Jerad D.; Walters, Douglas A.
2004-01-01
The lower Roanoke River corridor in North Carolina contains a floodplain of national significance. Data from a network of 1 streamflow-measurement site, 13 river-stage sites, 13 floodplain water-level sites located along 4 transects, and 5 in situ water-quality monitoring sites were used to characterize temporal and spatial variations of floodplain and river water levels during 1997-2000 and to describe dissolved-oxygen conditions in the lower Roanoke River for the period 1998-2001. Major differences in the relation of floodplain inundation to flow occurred both among sites at a given transect and among transects. Several floodplain sites were inundated for the full range of flow conditions measured during the study. These included one site on the Big Swash transect (at about river kilometer 119); one site on the Broadneck Swamp transect (river kilometer 97), which was inundated 91 percent of the time during the study; one site on the Devils Gut transect (river kilometer 44), which was inundated throughout the study; and three sites on the Cow Swamp transect (near river kilometer 10). The relation of floodplain inundation depth to Roanoke River flow was highly variable among sites. There was no relation between flow and inundation depth at one of the Big Swash sites or at any of the four Cow Swamp sites. At two of the Big Swash transect sites, there was some relation between inundation depth and 10-day mean flow for flows greater than 700 cubic meters per second. A relatively strong relation between inundation depth and 10-day mean flow occurred at two of the Broadneck Swamp sites and, to a lesser degree, at two of the Devils Gut transect sites. There was much greater interannual variability in floodplain water levels, as represented by the difference between the maximum and minimum daily water level for a given calendar date during January-May and September-October than during the summer and late fall months. If data from this study are representative of long-term conditions, then this means that there is less uncertainty about what future floodplain water levels will be during June-August and November-December than during other months. Rates of ground-water decline, primarily due to evapotranspiration, were fairly similar at all sites, ranging from about 3 to 4 centimeters per day. For a 10-day mean flow of 300 cubic meters per second, an evaporative loss of 2 centimeters per day is equal to about 56 cubic meters per second. Evapotranspiration rates are much lower during the fall and winter months, so losses of river flow to floodplain processes likely are much lower during those months. The ground-water gradient at most sites was from the floodplain to the river, indicating a potential for ground-water movement into the river from the floodplain. At two of the Devils Gut sites, however, the water level often was higher in the river than in the floodplain when floodplain sites were not inundated. This indicates that there is a potential for river water to move as ground water from the river into the floodplain. It seems likely that this feature observed at the Devils Gut transect occurs elsewhere in the lower Roanoke River corridor. Dissolved-oxygen concentrations typically decrease with increasing distance from Roanoke Rapids Dam. During the 1998-2001 study period, the median dissolved-oxygen concentration at Halifax (river kilometer 187), the upstream-most station, was 8.4 milligrams per liter, and the median concentration at the downstream-most station (NC-45, bottom sensor; river kilometer 2.6) was 6.6 milligrams per liter. Several synoptic measurements of dissolved-oxygen concentration down the river identified the presence of a dissolved-oxygen sag in the vicinity of Halifax, with some recovery of concentrations between Halifax and about Scotland Neck at river kilometer 156. Data from the synoptic measurements also indicated that the greatest rate of dissolved-oxygen change with distance along the riv
3. VIEW OF EAST SOUTHEAST, GROUND LEVEL VIEW OF ...
3. VIEW OF EAST - SOUTHEAST, GROUND LEVEL VIEW OF APPROACH SPANS, NORTH END OF BRIDGE, MAIN SPANS IN BACKGROUND - Buffalo River Bridge, Spanning Buffalo River on U.S. Highway 65, Marshall, Searcy County, AR
Hutchins, M G; Johnson, A C; Deflandre-Vlandas, A; Comber, S; Posen, P; Boorman, D
2010-10-01
River flow and quality data, including chlorophyll-a as a surrogate for river phytoplankton biomass, were collated for the River Ouse catchment in NE England, which according to established criteria is a largely unpolluted network. Against these data, a daily river quality model (QUESTOR) was setup and successfully tested. Following a review, a river quality classification scheme based on phytoplankton biomass was proposed. Based on climate change predictions the model indicated that a shift from present day oligotrophic/mesotrophic conditions to a mesotrophic/eutrophic system could occur by 2080. Management options were evaluated to mitigate against this predicted decline in quality. Reducing nutrient pollution was found to be less effective at suppressing phytoplankton growth than the less costly option of establishing riparian shading. In the Swale tributary, ongoing efforts to reduce phosphorus loads in sewage treatment works will only reduce peak (95th percentile) phytoplankton by 11%, whereas a reduction of 44% is possible if riparian tree cover is also implemented. Likewise, in the Ure, whilst reducing nitrate loads by curtailing agriculture in the headwaters may bring about a 10% reduction, riparian shading would instead reduce levels by 47%. Such modelling studies are somewhat limited by insufficient field data but offer a potentially very valuable tool to assess the most cost-effective methods of tackling effects of eutrophication. Copyright 2010 Elsevier B.V. All rights reserved.
Uncertainties in simulating river/groundwater exchanges over the Upper Rhine Graben hydrosystem
NASA Astrophysics Data System (ADS)
Vergnes, Jean-Pierre; Habets, Florence
2014-05-01
The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for an effective management of water resources. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on choices made to represent the river water stage in the model as well as on the hydrogeological parameters. Recently, a coupled surface-subsurface model has been applied to the whole aquifer basin (Thierion et al., 2012). The present study aims at improving the estimation of the river/groundwater exchange, and thus, of the hydrodynamic of the alluvial aquifer, and at getting an idea of the associated uncertainty by performing a set of simulations that best take advantage of the different kinds of observed data. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources quantity and quality in small to regional scale river basins. In this study, Eau-Dyssée includes the ISBA surface scheme that estimates the water balance, the RAPID river routing model and the SAM hydrogeological model. In addition, the QtoZ module (Saleh et al., 2011) is used to calculate the river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river, according to three different approaches that are compared: a control experiment with constant river water stage, a rating curves approach derived from observed river discharges and river stages, and the Manning's formula, for which Manning's parameters are defined according to geomorphological parameterizations and topographic data based on Digital Elevation Model (DEM). Supplementary sensitivity tests are also performed by using different hydrogeological parameter datasets (porosity and transmissivity). Two sources of DEM were used for this part. Additionally, sensitivity to the time step of the estimation (daily versus monthly) was studied. The evaluation is made against observed water levels and river discharges collected both from the french and german riversides of the alluvial plain. A heavy network of water table depth observations is also available to evaluate the simulated piezometric heads. Preliminary results show that the primary source of errors when simulating river stage - and hence groundwater-river interactions - is the uncertainties associated with the topographic data used to define the riverbed elevation. It confirms the need to access to more accurate DEM for estimating riverbed elevation and studying groundwater-river interactions, at least at regional scale. References Saleh, F., Flipo, N., Habets, F., Ducharne, A., Oudin, L., Viennot, P., Ledoux, E. Modeling the impact of in-stream water level fluctuations on stream-aquifer interactions at the regional scale (2011)Journal of Hydrology, 400 (3-4) pp 490-500 Thierion C., Longuevergne L., Habets F. Ledoux E., Ackerer P., Majdalani S., Leblois E., Lecluse S., Martin E, Queguiner S., Viennot P., Assessing the water balance of the Upper Rhine Graben hydrosystem, Journal of Hydrology 424-425 , pp. 68-83
Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test
NASA Astrophysics Data System (ADS)
Ofman, Piotr; Puchlik, Monika; Simson, Grzegorz; Krasowska, Małgorzata; Struk-Sokołowska, Joanna
2017-11-01
Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3-4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.
Koumantakis, Emmanouil; Kalliopi, Anastasiadou; Dimitrios, Kalderis; Gidarakos, Evangelos
2009-08-15
An inactive asbestos mine in Northern Greece, known as MABE, had been operational for 18 years, showing an annual chrysotile production of approximately 100,000 tons. It is estimated that a total of 68 million tons of the mineral serpentine were excavated from the mine, of which 881,000 tons of chrysotile asbestos were produced. The mine deposits are located very near to the river Aliakmonas. The water of the river is extensively used as drinking water, as well as for irrigation. This study estimated the amount of asbestos currently present in the deposits, to at least 1.33 million tons. This is a 10-fold increase since the start of mine operation in 1982. Water samples obtained throughout the river had high chrysotile concentrations, in most cases far exceeding EPA's standard value (7 x 10(6)f/l). Therefore, the mine and the deposits urgently require remediation works, such as removal of large contaminated objects from the mine buildings and re-vegetation of the deposit areas, in order to reduce the asbestos levels in the river water.
Reactor-released radionuclides in Susquehanna River sediments
Olsen, C.R.; Larsen, I.L.; Cutshall, N.H.; Donoghue, J.F.; Bricker, O.P.; Simpson, H.J.
1981-01-01
Three Mile Island (TMI) and Peach Bottom (PB) reactors have introduced 137Cs, 134Cs, 60Co, 58Co and several other anthropogenic radionuclides into the lower Susquehanna River. Here we present the release history for these nuclides (Table 1) and radionuclide concentration data (Table 2) for sediment samples collected in the river and upper portions of the Chesapeake Bay (Fig. 1) within a few months after the 28 March 1979 loss-of-coolant-water problem at TMI. Although we found no evidence for nuclides characteristic of a ruptured fuel element, we did find nuclides characteristic of routine operations. Despite the TMI incident, more than 95% of the total 134Cs input to the Susquehanna has been a result of controlled low-level releases from the PB site. 134Cs activity released into the river is effectively trapped by sediments with the major zones of reactor-nuclide accumulation behind Conowingo Dam and in the upper portions of Chesapeake Bay. The reported distributions document the fate of reactor-released radionuclides and their extent of environmental contamination in the Susquehanna-Upper Chesapeake Bay System. ?? 1981 Nature Publishing Group.
Anthropogenic impacts on water pollution and water quality in the Harlem River
NASA Astrophysics Data System (ADS)
Wang, J.
2016-12-01
The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. Combined sewer overflows (CSOs) discharge rainwater mixed with untreated sewage during or following rainfall and can contain illness-causing bacteria. It is not safe for swimming, fishing or boating especially in rainstorms. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable again in near future.
Hughes, Curt A.
2003-01-01
Instantaneous arsenic loads calculated for August 1999 were similar to mean monthly loads determined in August 1989 at two intensive fixed sites located on the Yakima main stem. In August 1999, arsenic loads increased twofold between the Yakima River at river mile 72 above Satus and the Yakima River at Kiona at river mile 29.9. The dissolved arsenic loads for the Yakima River at Euclid Bridge at river mile 55 near Grandview and Yakima River at Kiona were within 13 percent of the August 1989 levels.
Assessing tidal marsh vulnerability to sea-level rise in the Skagit Delta
Hood, W. Gregory; Grossman, Eric E.; Curt Veldhuisen,
2016-01-01
Historical aerial photographs, from 1937 to the present, show Skagit Delta tidal marshes prograding into Skagit Bay for most of the record, but the progradation rates have been steadily declining and the marshes have begun to erode in recent decades despite the large suspended sediment load provided by the Skagit River. In an area of the delta isolated from direct riverine sediment supply by anthropogenic blockage of historical distributaries, 0.5-m tall marsh cliffs along with concave marsh profiles indicate wave erosion is contributing to marsh retreat. This is further supported by a “natural experiment” provided by rocky outcrops that shelter high marsh in their lee, while being bounded by 0.5-m lower eroded marsh to windward and on either side. Coastal wetlands with high sediment supply are thought to be resilient to sea level rise, but the case of the Skagit Delta shows this is not necessarily true. A combination of sea level rise and wave-generated erosion may overwhelm sediment supply. Additionally, anthropogenic obstruction of historical distributaries and levee construction along the remaining distributaries likely increase the jet momentum of river discharge, forcing much suspended sediment to bypass the tidal marshes and be exported from Skagit Bay. Adaptive response to the threat of climate change related sea level rise and increased wave frequency or intensity should consider the efficacy of restoring historical distributaries and managed retreat of constrictive river levees to maximize sediment delivery to delta marshes.
Sabol, Thomas A.; Springer, Abraham E.
2013-01-01
Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater level at the onshore end of the sandbar face is essential for both physical and numerical modeling efforts focusing on the erosion and mass failure of eddy sandbars downstream of Glen Canyon Dam along the Colorado River.
NASA Astrophysics Data System (ADS)
Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian
2014-05-01
Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia experienced a prolonged summer drought. A significant increase in EC was observed in the bores towards the end of the summer, which suggest that the lack of bank recharge from the river resulted in draining of the banks and connection between the regional groundwater and the river. The long-term river salinity dataset showed that when flow events are infrequent and of low magnitude (i.e. drought conditions), salinities increase significantly. Similarly this is thought to be due to draining of the banks and connection with the regional groundwater system. Thus an increase in extended dry periods is expected to result in higher salinities in Australian waterways as the climate changes.
A global deltas typology of environmental stress and its relation to terrestrial hydrology
NASA Astrophysics Data System (ADS)
Tessler, Z. D.; Vorosmarty, C. J.; McDonald, K. C.; Schroeder, R.; Grossberg, M.; Gladkova, I.; Aizenman, H.
2013-12-01
River delta systems around the world are under varying degrees of environmental stress stemming from a variety of human impacts, both from upstream basin based activities and local impacts on the deltas themselves, as well as sea level rise. These stresses are known to affect rates of relative sea level rise by disrupting the delivery or deposition of sediment on the delta. We present a global database of several of these stresses, and investigate patterns of stress across delta systems. Several methods of aggregating the environmental stressors into an index score are also investigated. A statistical clustering analysis, which we refer to as a "global delta fingerprinting system", across the environmental stresses identifies systems under similar states of threat. Several deltas, including the Nile, are in unique clusters, while regional patterns are evident among deltas in Southeast Asia. These patterns are compared with observed surface inundation derived from SAR, NDVI from MODIS, river discharge estimates from the WBMplus numerical model, and ocean wave activity from WAVEWATCH III. Delta inundation sensitivity to river and coastal forcings are observed to vary with environmental stress and social indicators including population density and GDP.
Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.
Rabbani, Unaib; Mahar, Gohar; Siddique, Azhar; Fatmi, Zafar
2017-02-01
The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.
Wilding, Andrew; Liu, Ruixia; Zhou, John L
2005-07-01
Through cross-flow filtration (CFF) with a 1-kDa regenerated cellulose Pellicon 2 module, the ultrafiltration characteristics of river organic matter from Longford Stream, UK, were investigated. The concentration of organic carbon (OC) in the retentate in the Longford Stream samples increased substantially with the concentration factor (cf), reaching approximately 40 mg/L at cf 15. The results of dissolved organic carbon (DOC) and colloidal organic carbon (COC) analysis, tracking the isolation of colloids from river waters, show that 2 mg/L of COC was present in those samples and good OC mass balance (77-101%) was achieved. Fluorescence measurements were carried out for the investigation of retentate and permeate behaviour of coloured dissolved organic materials (CDOM). The concentrations of CDOM in both the retentate and permeate increased with increasing cf, although CDOM were significantly more concentrated in the retentate. The permeation model expressing the correlation between log[CDOM] in the permeate and logcf was able to describe the permeation behaviour of CDOM in the river water with regression coefficients (r(2)) of 0.94 and 0.98. Dry weight analysis indicated that the levels of organic colloidal particles were from 49 to 71%, and between 29 and 51% of colloidal particles present were inorganic. COC as a percentage of DOC was found to be 10-16% for Longford Stream samples.
Late Pleistocene drainage systems beneath Delaware Bay
Knebel, H.J.; Circe, R.C.
1988-01-01
Analyses of an extensive grid of seismic-reflection profiles, along with previously published sedimentary data and geologic information from surrounding coastal areas, outline the ancestral drainage systems of the Delaware River beneath lower Delaware Bay. Major paleovalleys within these systems have southeast trends, relief of 10-35 m, widths of 1-8 km, and axial depths of 31-57 m below present sea level. The oldest drainage system was carved into Miocene sands, probably during the late Illinoian lowstand of sea level. It followed a course under the northern half of the bay, continued beneath the Cape May peninsula, and extended onto the present continental shelf. This system was buried by a transgressive sequence of fluvial, estuarine, and shallow-marine sediments during Sangamonian time. At the height of the Sangamonian sea-level transgression, littoral and nearshore processes built the Cape May peninsula southward over the northern drainage system and formed a contiguous submarine sedimentary ridge that extended partway across the present entrance to the bay. When sea level fell during late Wisconsinan time, a second drainage system was eroded beneath the southern half of the bay in response to the southerly shift of the bay mouth. This system, which continued across the shelf, was cut into Coastal Plain deposits of Miocene and younger age and included not only the trunk valley of the Delaware River but a large tributary valley formed by the convergence of secondary streams that drained the Delaware coastal area. During the Holocene rise of sea level, the southern drainage system was covered by a transgressive sequence of fluvial, estuarine, and paralic deposits that accumulated due to the passage of the estuarine circulation cell and to the landward and upward migration of coastal sedimentary environments. Some Holocene deposits have been scoured subsequently by strong tidal currents. The southward migration of the ancestral drainage systems beneath Delaware Bay is analogous to that found under nearby Chesapeake Bay. In both areas, shifts in the bay mouths and river courses have preserved the morphologies and sedimentary fill of former drainage systems and provided a clear record of major sea-level fluctuations. Data from this study demonstrate that important information concerning ancient estuarine environments can be derived from the locations and characteristics of former fluvial systems. ?? 1988.
Rice, Karen C; Hong, Bo; Shen, Jian
2012-11-30
Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity greater than 0.1 ppt increases with increasing sea-level rise; during a dry year, 0.1 ppt would be exceeded for more than 100 days with as small a rise as 30 cm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rice, Karen; Bo Hong,; Jian Shen,
2012-01-01
Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity greater than 0.1 ppt increases with increasing sea-level rise; during a dry year, 0.1 ppt would be exceeded for more than 100 days with as small a rise as 30 cm.
NASA Astrophysics Data System (ADS)
Wolfe, B. B.; Brock, B. E.; Yi, Y.; Turner, K. W.; Dobson, E. M.; Farquharson, N. M.; Edwards, T. W.; Hall, R. I.
2010-12-01
The impact of climate change and variability on water resources is a pressing issue for northern boreal freshwater landscapes in Canada. Water in this region plays a central role in maintaining the ecological integrity of ecosystems, economic development and prosperity, and traditional use of the land and its resources by indigenous communities. In the Peace-Athabasca-Slave River Corridor in western Canada, shrinking headwater glaciers, decreasing alpine snowmelt runoff, and declining river discharges impact sustainability of hydroelectric and oil sands production and the vitality of floodplain ecosystems of the Peace-Athabasca and Slave river deltas. In the Old Crow Flats of northern Yukon Territory, declining lake and river water levels threaten wildlife populations and cultural activities of the Vuntut Gwitchin First Nation. In Wapusk National Park in northeastern Manitoba, over 10,000 lakes provide key habitat for large populations of wildlife, but their hydrological fate under conditions of continued warming is uncertain. Inadequate short- and long-term understanding of hydrological variability and its relationship to climate change hamper informed stewardship of water resources in these remote landscapes and presents a significant challenge to managers and policy-makers. Over the past decade, our research has targeted these critical water-related issues. Investigations have focused on integrating contemporary hydroecological studies with long-term (past centuries to millennia) records of hydroecological changes derived from analyses of lake sediment cores using multi-proxy techniques. Spearheaded by the use of water isotope tracers, these leading-edge approaches to water science have provided critical new knowledge to inform stewardship of these important landscapes to contemporary conditions and in light of projected future scenarios. For example, water isotope tracers were used to map the spatial extent of river flooding in the Slave River Delta over a three-year period. Analyses identifed that a positive relationship exists between the spatial extent of spring flooding in the delta and discharge on the Slave River and upstream tributaries, suggesting that upstream flow generation plays a key role in spring flooding and water replenishment of the delta. Results are particularly timely for the Government of the Northwest Territories as they prepare to negotiate with upstream jurisdictions over appropriate water resource allocation. In a milestone study, isotope-based paleohydrological reconstructions from the Peace-Athabasca Delta contributed to defining the effects of climate change over the past ~1000 years on the quantity and seasonality of river discharge in the upper Mackenzie River system. For water resource managers, a key feature that emerged from these results is that the river hydrograph of the 21st century in this region is likely evolving towards low-flow conditions that are unprecedented over the past millennium. These and other examples will be highlighted in this presentation.
69. TURBINE BUILDING (LOCATION N), THIRD LEVEL LOOKING NORTHWEST SHOWING ...
69. TURBINE BUILDING (LOCATION N), THIRD LEVEL LOOKING NORTHWEST SHOWING BASE OF CONDENSOR AND RIVER WATER OUTLET PIPE - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA
Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry
Lu, Zhong; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.
2009-01-01
The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.
Monitoring groundwater and river interaction along the Hanford reach of the Columbia River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, M.D.
1994-04-01
As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing.more » This report describes the equipment, procedures, and results from measurements done in 1993.« less
Simulation of 1998-Big Flood in Changjiang River Catchment, China
NASA Astrophysics Data System (ADS)
Nakayama, T.; Watanabe, M.
2006-05-01
Almost every year, China is affected by severe flooding, which causes considerable economic loss and serious damage to towns and farms. Big floods are mainly concentrated in the middle and lower reaches of the "seven big rivers", which include the Changjiang (Yangtze) River, the Yellow (Huanghe) River, and the Huaihe River. The Changjiang River is the fourth largest water resource to the oceans after the Amazon, Zaire, and Orinoco Rivers. In addition to abnormal weather, artificial effects were considered as main causes of the big flood disaster in the Changjiang River catchment by the previous researches; (i) extreme deforestation and soil erosion in the upper reaches, (ii) shrinking of lake water volumes and their reduced connection with the Changjiang River due to reclamation of lakes that retarded water in the middle reaches, and (iii) restriction of channel capacity following levee construction. Because there is an urgent need to quantify these relations on the spatial scale of the whole catchment in order to prevent flood damage as small as possible, it is very important to evaluate the complicated phenomena of water/heat dynamics in the Changjiang River catchment by using process-based models. The present research focuses on simulating the water/heat dynamics for 1998 big-flood with 60-year recurrent period in the Changjiang River catchment. We compared the flood period of 1998 with the normal period of 1987-1988. We expanded the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004; Nakayama et al., 2006) for the application to broader catchments in order to evaluate large- scale flooding in the Changjiang River (NICE-FLD). We simulated the water/heat dynamics in the entire catchment (3,000 km wide by 1,000 km long) with a resolution of 10 km mesh by using the NICE-FLD. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, et al. Furthermore, we evaluated the role of flood storage capacity in the lakes and farms in relation to the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.
Simulation of irrigation effect on water cycle in Yellow River catchment, China
NASA Astrophysics Data System (ADS)
Nakayama, T.; Watanabe, M.
2006-12-01
The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.
Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico
Owen-Joyce, Sandra J.
1987-01-01
Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)
Ayotte, Joseph D.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Boehmler, Erick M.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Boehmler, Erick M.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Olson, Scott A.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Ayotte, Joseph D.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
Ayotte, Joseph D.
1996-01-01
Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.
9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS ...
9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS BRIDGE FROM WATER LEVEL, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
Ogunkunle, Clement Oluseye; Ziyath, Abdul M; Adewumi, Faderera Esther; Fatoba, Paul Ojo
2015-05-01
Dietary uptake of heavy metals through the consumption of vegetables grown on polluted soil can have serious human health implications. Thus, the study presented in this paper investigated the bioaccumulation and associated dietary risks of Pb, Zn, and Cd present in vegetables widely consumed in Nigeria, namely amaranth and jute mallow, grown on soil irrigated with polluted water from Asa River. The study found that the soil was polluted with Zn, Pb, and Cd with Pb and Cd being contributed by polluted river, while Zn was from geogenic sources. The metal concentration in amaranth and jute mallow varied in the order of Zn > Pb > Cd and Zn > Pb ≈ Cd, respectively. Jute mallow acts as an excluder plant for Pb, Cd, and Zn. Consequently, the metal concentrations in jute mallow were below the toxic threshold levels. Furthermore, non-cancer human health risk of consuming jute mallow from the study site was not significant. In contrast, the concentrations of Pb and Cd in amaranth were found to be above the recommended safe levels and to be posing human health risks. Therefore, further investigation was undertaken to identify the pathways of heavy metals to amaranth. The study found that the primary uptake pathway of Pb and Cd by amaranth is foliar route, while root uptake is the predominant pathway of Zn in amaranth.
Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana
2016-06-01
The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.
Standring, W J F; Stepanets, O; Brown, J E; Dowdall, M; Borisov, A; Nikitin, A
2008-04-01
The Ob and Yenisey rivers are major contributors to total riverine discharge to the Arctic Ocean. Several large nuclear facilities discharge into these rivers, which could affect actual and potential discharges of radionuclides to the Arctic region. This article presents new radionuclide concentration and grain-size data resulting from analyses of several sediment samples collected during research cruises in the Ob and Yenisey estuaries and adjacent areas during 2000 and 2001. Results indicate that discharges from the main nuclear facilities do not constitute a major contribution to the level of radioactive contamination in the marine areas studied, though Co-60 was detected at low concentrations in some sediment horizons. However, the aggregate contamination from different sources is not radioecologically significant in sediments within the study area, maximum Cs-137 levels being approximately 80 Bq kg(-1) dry weight.
Tappa, Daniel J.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.
2015-01-01
This fact sheet describes baseline water quality of the Equus Beds aquifer and Little Arkansas River and water-quality effects of artificial recharge by the city of Wichita associated with Phase I (2007–present) of the Aquifer Storage and Recovery project. During 1995 through 2012, more than 8,800 surface water and groundwater water-quality samples were collected and analyzed for more than 400 compounds, including most of the compounds on the U.S. Environmental Protection Agency’s primary drinking-water standards maximum contaminant level list and secondary drinkingwater regulations secondary maximum contaminant level list. Water-quality constituents of concern discussed in detail in this fact sheet are chloride, arsenic, total coliform bacteria, and atrazine. Sulfate, nitrate, iron, manganese, oxidation-reduction potential, and specific conductance also are constituents of concern and are discussed to a lesser extent.
The Clinch River study--An investigation of the fate of radionuclides released to a surface stream
Pickering, R.J.; Carrigan, P.H.; Parker, F.L.
1965-01-01
The Clinch River Study is a multiagency effort to evaluate the physical, chemical, and biological effects of the release to de Clinch River of low-level radioactive wastes from the Oak Ridge National Laboratory. The major radionuclides released are ruthenium-106, cesium-137, cobalt-60, and strontium-90. Hydrologic and biologic studies have indicated that the radiation doses in the river are well below maximum acceptable levels. Radionuclide concentrations in river water have been measured at seven sampling stations on the Clinch and Tennessee Rivers. Mass-balance calculations for 44 weeks of sampling indicate that losses of radionuclides from the water phase to the river-bottom sediments represent only a very small part of the total radioactivity released to the river. A study of the Clinch River bottom-sediment cores collected in 1962 has disclosed a recurring pattern of variation in radioactivity with depth which may reflect past events in waste-disposal operations at the laboratory. Current investigations are expected to provide information about the chemical forms in which the major radionuclides exist and the mechanisms by which they were incorporated in the sediments.
Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei
2008-07-01
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.
NASA Astrophysics Data System (ADS)
Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Moncoulon, David; Pons, Frédéric
2017-11-01
Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods - at selected river cross sections. The approach presented here goes one step further by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach, i.e. the number of inundated buildings versus discharge. These curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the south of France, where well-documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.
Singh, Ajit; Thomsen, Kristina J; Sinha, Rajiv; Buylaert, Jan-Pieter; Carter, Andrew; Mark, Darren F; Mason, Philippa J; Densmore, Alexander L; Murray, Andrew S; Jain, Mayank; Paul, Debajyoti; Gupta, Sanjeev
2017-11-28
Urbanism in the Bronze-age Indus Civilisation (~4.6-3.9 thousand years before the present, ka) has been linked to water resources provided by large Himalayan river systems, although the largest concentrations of urban-scale Indus settlements are located far from extant Himalayan rivers. Here we analyse the sedimentary architecture, chronology and provenance of a major palaeochannel associated with many of these settlements. We show that the palaeochannel is a former course of the Sutlej River, the third largest of the present-day Himalayan rivers. Using optically stimulated luminescence dating of sand grains, we demonstrate that flow of the Sutlej in this course terminated considerably earlier than Indus occupation, with diversion to its present course complete shortly after ~8 ka. Indus urban settlements thus developed along an abandoned river valley rather than an active Himalayan river. Confinement of the Sutlej to its present incised course after ~8 ka likely reduced its propensity to re-route frequently thus enabling long-term stability for Indus settlements sited along the relict palaeochannel.
Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada
Lopes, Thomas J.; Allander, Kip K.
2009-01-01
The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline. Depth to bedrock in the lower Walker River basin ranges from about 900 to 2,000 feet. The average hydraulic conductivity of the alluvial aquifer in the lower Walker River basin is 10-30 feet per day, except where comprised of fluvial sediments. Fluvial sediments along the Walker River have an average hydraulic conductivity of 70 feet per day. Subsurface flow was estimated to be 2,700 acre-feet per year through Double Spring. Subsurface discharge to Walker Lake was estimated to be 4,400 acre-feet per year from the south and 10,400 acre-feet per year from the north. Groundwater levels and groundwater storage have declined steadily in most of Smith and Mason Valleys since 1960. Groundwater levels around Schurz, Nevada, have changed little during the past 50 years. In the Whisky Flat area south of Hawthorne, Nevada, agricultural and municipal pumpage has lowered groundwater levels since 1956. The water-level decline in Walker Lake since 1882 has caused the surrounding alluvial aquifer to drain and groundwater levels to decline. The Wabuska streamflow-gaging station in northern Mason Valley demarcates the upper and lower Walker River basin. The hydrology of the lower Walker River basin is considerably different than the upper basin. The upper basin consists of valleys separated by consolidated-rock mountains. The alluvial aquifer in each valley thins or pinches out at the downstream end, forcing most groundwater to discharge along the river near where the river is gaged. The lower Walker River basin is one surface-water/groundwater system of losing and gaining reaches from Wabuska to Walker Lake, which makes determining stream losses and the direction and amount of subsurface flow difficult. Isotopic data indicate surface water and groundwater in the lower Walker River basin are from two sources of precipitation that have evaporated. The Walker River, groundwater along the Wassuk Range, and Walker Lake plot along one evaporation line. Groundwater along th
Sulak, Kenneth J.; Parauka, F; Slack, W. Todd; Ruth, T; Randall, Michael T.; Luke, K; Mette, M. F; Price, M. E
2016-01-01
The Gulf Sturgeon, Acipenser oxyrinchus desotoi, is an anadromous species of Acipenseridae and native to North America. It currently inhabits and spawns in the upper reaches of seven natal rivers along the northern coast of the Gulf of Mexico from the Suwannee River, Florida, to the Pearl River, Louisiana, during spring to autumn. Next to the Alligator Gar (Atractosteus spatula), the Gulf Sturgeon is currently the largest fish species occurring in U.S. Gulf Coast rivers, attaining a length of 2.35 m and weights exceeding 135 kg, but historically attained a substantially larger size. Historically, the spawning populations existed in additional rivers from which the species has been wholly or nearly extirpated, such as the Mobile and Ochlockonee rivers, and possibly the Rio Grande River. Most Gulf Sturgeon populations were decimated by unrestricted commercial fishing between 1895–1910. Subsequently most populations remained unrecovered or extirpated due to continued harvest until the 1970s–1980s, and the construction of dams blocking access to ancestral upriver spawning grounds. Late 20th Century harvest bans and net bans enacted by the several Gulf Coast states have stabilized several populations and enabled the Suwannee River population to rebound substantially and naturally. Hatchery supplementation has not been necessary in this regard to date. Sturgeon are resilient and adaptable fishes with a geological history of 150 million years. Research undertaken since the 1970s has addressed many aspects of Gulf Sturgeon life history, reproduction, migration, population biology, habitat requirements, and other aspects of species biology. However, many knowledge gaps remain, prominently including the life history of early developmental stages in the first year of life. Natural population recovery is evident for the Suwannee River population, but seems promising as well for at least four other populations. The Pascagoula and Pearl River populations face a challenging future due a combination of natural and anthropogenic factors. These two populations, and perhaps the Escambia River population, are particularly vulnerable to periodic mass mortality due to major stochastic events including hurricanes, flooding, hypoxia, and toxic spills. The present manuscript provides a comprehensive synthesis of knowledge regarding the Gulf Sturgeon at the organismal and population levels, identifying knowledge gaps as priorities for future research. Topics not treated in the present synthesis include morphology, internal biology, physiology, and endocrinology. Topics only briefly treated include parasites and diseases, contaminants, and sturgeon aquaculture.