Vertical electromagnetic profiling (VEMP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytle, R.J.
1984-08-01
Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less
A measurement system for vertical seawater profiles close to the air-sea interface
NASA Astrophysics Data System (ADS)
Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.
2017-09-01
This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.
Generation of optimum vertical profiles for an advanced flight management system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Waters, M. H.
1981-01-01
Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.
NASA Technical Reports Server (NTRS)
Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.
1987-01-01
A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.
Investigating Methods for Serving Visualizations of Vertical Profiles
NASA Astrophysics Data System (ADS)
Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.
2017-12-01
Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.
Computer programs for generation and evaluation of near-optimum vertical flight profiles
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Waters, M. H.; Patmore, L. C.
1983-01-01
Two extensive computer programs were developed. The first, called OPTIM, generates a reference near-optimum vertical profile, and it contains control options so that the effects of various flight constraints on cost performance can be examined. The second, called TRAGEN, is used to simulate an aircraft flying along an optimum or any other vertical reference profile. TRAGEN is used to verify OPTIM's output, examine the effects of uncertainty in the values of parameters (such as prevailing wind) which govern the optimum profile, or compare the cost performance of profiles generated by different techniques. A general description of these programs, the efforts to add special features to them, and sample results of their usage are presented.
Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...
2016-11-15
A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less
NASA Technical Reports Server (NTRS)
Schofield, J. T.; Mccleese, Daniel J.
1988-01-01
An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.
NASA Technical Reports Server (NTRS)
Brezgin, N. I.; Kuznetsov, G. I.; Chizhov, A. F.; Shtyrkov, O. V.
1979-01-01
The photometers used and methods of calculation of the vertical ozone concentration profile are described. The results obtained in several series of MR-12 and M-100 sounding rocket launchings are presented and discussed.
Ozone height profiles using laser heterodyne radiometer
NASA Technical Reports Server (NTRS)
Jain, S. L.
1994-01-01
The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.
A stability analysis of AVE-4 severe weather soundings
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1982-01-01
The stability and vertical structure of an average severe storm sounding, consisting of both thermodynamic and wind vertical profiles, were investigated to determine if they could be distinguished from an average lag sounding taken 3 to 6 hours prior to severe weather occurrence. The term average is defined here to indicate the arithmetic mean of a parameter, as a function of altitude, determined from a large number of available observations taken either close to severe weather occurrence, or else more than 3 hours before it occurs. The investigative computations were also done to help determine if a severe storm forecast or index could possibly be used or developed. These mean vertical profiles of thermodynamic and wind parameters as a function of severity of the weather, determined from manually digitized radar (MDR) categories are presented. Profile differences and stability index differences are presented along with the development of the Johnson Lag Index (JLI) which is determined entirely upon environmental vertical parameter differences between conditions 3 hours prior to severe weather, and severe weather itself.
NASA Technical Reports Server (NTRS)
Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.
2004-01-01
The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.
Determination of accurate vertical atmospheric profiles of extinction and turbulence
NASA Astrophysics Data System (ADS)
Hammel, Steve; Campbell, James; Hallenborg, Eric
2017-09-01
Our ability to generate an accurate vertical profile characterizing the atmosphere from the surface to a point above the boundary layer top is quite rudimentary. The region from a land or sea surface to an altitude of 3000 meters is dynamic and particularly important to the performance of many active optical systems. Accurate and agile instruments are necessary to provide measurements in various conditions, and models are needed to provide the framework and predictive capability necessary for system design and optimization. We introduce some of the path characterization instruments and describe the first work to calibrate and validate them. Along with a verification of measurement accuracy, the tests must also establish each instruments performance envelope. Measurement of these profiles in the field is a problem, and we will present a discussion of recent field test activity to address this issue. The Comprehensive Atmospheric Boundary Layer Extinction/Turbulence Resolution Analysis eXperiment (CABLE/TRAX) was conducted late June 2017. There were two distinct objectives for the experiment: 1) a comparison test of various scintillometers and transmissometers on a homogeneous horizontal path; 2) a vertical profile experiment. In this paper we discuss only the vertical profiling effort, and we describe the instruments that generated data for vertical profiles of absorption, scattering, and turbulence. These three profiles are the core requirements for an accurate assessment of laser beam propagation.
NASA Astrophysics Data System (ADS)
Garvelmann, J.; Külls, C.; Weiler, M.
2011-10-01
Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.
Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast
NASA Astrophysics Data System (ADS)
Masselink, Thomas; Schluessel, P.
1995-12-01
Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.
NASA Astrophysics Data System (ADS)
Bendtsen, Jørgen; Richardson, Katherine
2017-04-01
During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the distributions of nutrients. Results from the five transects and two time-series stations, where vertical profiles were made at hourly intervals, showed that vertical mixing processes above the slope increased the vertical transport of nutrients significantly and mixing above the slope can explain the hydrographic features and the distribution of the DCM in the area.
Intrinsic Remediation Engineering Evaluation/Cost Analysis for Site SS27/XYZ Dover AFB, Dover, DE
1996-01-01
and Output Files APPENDIX F Analytical Models APPENDIX G Costing Worksheets and Present Worth Calculations TABLES No. Title Page 2.1 CPT Activity and...8217 ............................................................... 4-38 _ 4.19 Redox Potential Map for Groundwater ......................................... 4-42 4.20 Vertical Profile of Redox Isopleths for...Groundwater Cross-Section C-C ’. ............................................................... 4-43 4.21 Vertical Profile of Redox Isopleths for
The effect of sediment thermal conductivity on vertical groundwater flux estimates
NASA Astrophysics Data System (ADS)
Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos
2015-04-01
The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.
NASA Astrophysics Data System (ADS)
Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio
2016-10-01
We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.
A porewater-based stable isotope approach for the investigation of subsurface hydrological processes
NASA Astrophysics Data System (ADS)
Garvelmann, J.; Külls, C.; Weiler, M.
2012-02-01
Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.
Vertical distribution of ozone at the terminator on Mars
NASA Astrophysics Data System (ADS)
Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck
2016-10-01
The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.
Intercomparison Between Microwave Radiometer and Radiosonding Data
NASA Astrophysics Data System (ADS)
Toanca, Florica; Stefan, Sabina
2014-05-01
The aim of this study is to compare relative humidity and temperature vertical profiles measured by ground based Microwave Radiometer (MWR) RPG HATPRO installed at the Romanian Atmospheric Observatory (Magurele, 44.35 N, 26.03 E) and by radio-sounding (RS) (Baneasa, 44.30 N, 26.04 E) provided by National Meteorological Administration. MWR uses passive microwave detection in the 22.335 to 31.4 GHz and 51to 58 GHz bands to obtain the vertical profiles of temperature and relative humidity up to 10km with a temporal resolution of several minutes. The reliability of atmospheric temperature and relative humidity profiles retrieved continuously by the MWR for the winter and summer of year 2013 was studied. The study was conducted, comparing the temperature and humidity profiles from the MWR with the ones from the radio soundings at 0:00 a.m. Two datasets of the humidity show a fairly good agreement for the interval between ground and 1.5 km in the January month for winter and up to 2 km in the July month for summer. Above 2 km, for the both seasons, the humidity profiles present in most of the selected cases the same trend evolution. The temperature vertical profiles agreed in 95% of the cases during summer and 85% during winter. It is very important for intercomparison that for both seasons almost all temperature vertical profiles highlight temperature inversions. Two cases have been analyzed in order to find possible explanations for the discrepancies between vertical profiles, focusing on advantages and disadvantages of MWR measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y., E-mail: liu.yang@nifs.ac.jp; Zhang, H. M.; Morita, S.
Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.
Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A
2016-04-27
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.
Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.
2018-01-01
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042
A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile
NASA Astrophysics Data System (ADS)
Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.
2016-06-01
We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.
Vertical distribution of microphysical properties in radiation fogs - A case study
NASA Astrophysics Data System (ADS)
Egli, S.; Maier, F.; Bendix, J.; Thies, B.
2015-01-01
The present study investigates the validity of a theoretical liquid water content (LWC) profile in fog layers currently used for satellite based ground fog detection, with a special focus on the temporal dynamics during fog life cycle. For this purpose, LWC profiles recorded during two different fog events by means of a tethered balloon borne measurement system are presented and discussed. The results indicate a good agreement in trend and gradient between measured and theoretical LWC profiles during the mature stage of the fog life cycle. The profile obtained during the dissipation stage shows less accordance with the theoretical profile. To improve the agreement between theoretical and measured LWC profiles, the evolutionary stages during the fog life cycle should be incorporated. However, the variability within the prenoted measurements points out that more LWC profiles during a great variety of different fog events have to be collected for a well-justified adaptation of the theoretical LWC profile, considering fog life cycle phases in the future. In general, this underlines the existing knowledge gap regarding the vertical distribution of microphysical properties in natural fogs.
Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Newman, Jennifer
Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
Determining the near-surface current profile from measurements of the wave dispersion relation
NASA Astrophysics Data System (ADS)
Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen
2017-11-01
The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.
NASA Astrophysics Data System (ADS)
Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.
2018-05-01
This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.
Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing
Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho
2009-01-01
The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531
Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.
Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho
2009-01-01
The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.
NASA Astrophysics Data System (ADS)
Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.
2016-03-01
A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions.
NASA Astrophysics Data System (ADS)
Ma, Xiaoyan; Yu, Fangqun
2014-04-01
In this study, we employed 5 years (2007-2011) of the CALIPSO level-3 monthly aerosol extinction product to compare with the GEOS-Chem/APM simulations for the same time period over two major industrial regions (east US and west Europe). The objective is to understand which aerosol types or species significantly determine the vertical profiles by comparing the seasonal variability between the simulations and observations. Our study shows that the model successfully produces the magnitude of aerosol extinction, profile shape, and their seasonal variability observed by CALIPSO over both east US (EUS) and west Europe (WEU). The extinctions below 1 km make up 44-79% to the total, from either the model simulations or satellite retrievals, with larger percentages in winter seasons (62-79%) and smaller percentages in summer seasons (44-57%) associated with the strength of vertical transport. The shape of the vertical profiles has, therefore, a distinct seasonal variability, with a more like quasi-exponential shape in DJF (December, January, and February) and SON (September, October, and November) than in MAM (March, April, and May) and JJA (June, July, and August), which have been discerned from both measurements and simulations. Analysis of modeled aerosol species indicates that secondary particles (SP), containing sulfate, ammonia, nitrate, and secondary organic aerosols (SOAs), predominantly determine the total aerosol vertical profiles while black carbon (BC), primary organic carbon (OC), and sea salt (SS), only account for a small fraction and are also limited near the surface. Mineral dust (DS) contributes more to the total extinction over WEU than over EUS, particularly in MAM, a result of being adjacent to the North Africa desert. Secondary inorganic aerosol (SIA, i.e. sulfate, ammonia, and nitrate) contributes most of the total SP mass in DJF and SON while SOA is particularly important in MAM and JJA when the emissions from leafed plants are active. Our study also indicates that, compared to aerosol extinction, the number concentration of particles larger than 10 nm (CN10) exhibits a different seasonal variation and vertical profile, but Cloud Condensation Nuclei (CCN) concentration at supersaturation of 0.4% (CCN0.4) presents a consistent seasonal variation and similar vertical profile. Therefore, aerosol extinction could be a good indicator for CCN0.4 with regard to seasonal variations of vertical profiles.
The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.
2005-01-01
A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.
Twenty-year follow-up study of radiocesium migration in soil.
Clouvas, A; Xanthos, S; Takoudis, G; Antonopoulos-Domis, M; Zinoviadis, G; Vidmar, T; Likar, A
2007-01-01
The profile of (137)Cs present in undisturbed soil due to the Chernobyl accident was measured repeatedly for approximately 20 y. The vertical migration of (137)Cs in soil is a very slow process. The mean vertical migration velocity is estimated at approximately 0.1-0.2 cm y(-1). A method based on in situ gamma spectrometry measurements and Monte Carlo computations, aimed at estimating the profile of (137)Cs without performing any soil sampling, is investigated.
2017-11-01
inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height
Retrieving vertical ozone profiles from measurements of global spectral irradiance
NASA Astrophysics Data System (ADS)
Bernhard, Germar; Petropavlovskikh, Irina; Mayer, Bernhard
2017-12-01
A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr
method.
Extending the Measurement Range of AN Optical Surface Profiler.
NASA Astrophysics Data System (ADS)
Cochran, Eugene Rowland, III
This dissertation investigates a method for extending the measurement range of an optical surface profiling instrument. The instrument examined in these experiments is a computer -controlled phase-modulated interference microscope. Because of its ability to measure surfaces with a high degree of vertical resolution as well as excellent lateral resolution, this instrument is one of the most favorable candidates for determining the microtopography of optical surfaces. However, the data acquired by the instrument are restricted to a finite lateral and vertical range. To overcome this restriction, the feasibility of a new testing technique is explored. By overlapping a series of collinear profiles the limited field of view of this instrument can be increased and profiles that contain longer surface wavelengths can be examined. This dissertation also presents a method to augment both the vertical and horizontal dynamic range of the surface profiler by combining multiple subapertures and two-wavelength techniques. The theory, algorithms, error sources, and limitations encountered when concatenating a number of profiles are presented. In particular, the effects of accumulated piston and tilt errors on a measurement are explored. Some practical considerations for implementation and integration into an existing system are presented. Experimental findings and results of Monte Carlo simulations are also studied to explain the effects of random noise, lateral position errors, and defocus across the CCD array on measurement results. These results indicate the extent to which the field of view of the profiler may be augmented. A review of current methods of measuring surface topography is included, to provide for a more coherent text, along with a summary of pertinent measurement parameters for surface characterization. This work concludes with recommendations for future work that would make subaperture -testing techniques more reliable for measuring the microsurface structure of a material over an extended region.
NASA Astrophysics Data System (ADS)
Olsen, Kevin S.; Strong, Kimberly; Walker, Kaley A.; Boone, Chris D.; Raspollini, Piera; Plieninger, Johannes; Bader, Whitney; Conway, Stephanie; Grutter, Michel; Hannigan, James W.; Hase, Frank; Jones, Nicholas; de Mazière, Martine; Notholt, Justus; Schneider, Matthias; Smale, Dan; Sussmann, Ralf; Saitoh, Naoko
2017-10-01
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS) on SCISAT (version 3.5) and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the variability within each data set. Partial columns are calculated from the VMR vertical profiles, and their correlations are examined. We find that the TANSO-FTS vertical profiles agree with the ACE-FTS and both MIPAS retrievals' vertical profiles within 4 % (± ˜ 40 ppbv) below 15 km when smoothing is applied to the profiles from instruments with finer vertical resolution but that the relative differences can increase to on the order of 25 % when no smoothing is applied. Computed partial columns are tightly correlated for each pair of data sets. We investigate whether the difference between TANSO-FTS and other CH4 VMR data products varies with latitude. Our study reveals a small dependence of around 0.1 % per 10 degrees latitude, with smaller differences over the tropics and greater differences towards the poles.
NASA Astrophysics Data System (ADS)
Drahotský, Jakub; Hanzelka, Pavel; Musilová, Věra; Macek, Michal; du Puits, Ronald; Urban, Pavel
2018-06-01
Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth's atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.
NASA Astrophysics Data System (ADS)
Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.
2015-11-01
Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an important ingredient of monsoon dynamics.
Performance and data analysis aspects of the new DIII-D monostatic profile reflectometer system
Zeng, Lei; Peebles, William A.; Doyle, Edward J.; ...
2014-08-07
A new frequency-modulated (FMCW) profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described in this paper, including the new monostatic arrangement, use of overmoded, broadband transmission waveguide, and dual-polarization combination/demultiplexing. Updated data processing and analysis, and in-service performance aspects of the new monostatic profile reflectometer system are also presented. By using a raytracing code (GENRAY) to determine the approximate trajectory of the probe beam,more » the electron density (n e) profile can be successfully reconstructed with L-mode plasmas vertically shifted by more than 10 cm off the vessel midplane. Specifically, it is demonstrated that the new system has a capability to measure n e profiles with plasma vertical offsets of up to ±17 cm. Furthermore, examples are also presented of accurate, high time and spatial resolution density profile measurements made over a wide range of DIII-D conditions, e.g. the measured temporal evolution of the density profile across an L-H transition.« less
NASA Technical Reports Server (NTRS)
1983-01-01
A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.
Tokamak plasma current disruption infrared control system
Kugel, Henry W.; Ulrickson, Michael
1987-01-01
In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.
Mathematical modelling of an electromagnetics automobile suspension
NASA Astrophysics Data System (ADS)
Amin, Ahmad Zaki Mohamad; Ahmad, Shamsuddin; Hoe, Yeak Su
2017-04-01
The mathematical modelling of the electromagnetic automobile suspension (EAS) is presented. The solution of the model is found using Runge-Kutta Method via MAPLE. The graphs of the vertical displacement, different vertical displacement and road profiles and acceleration of car body against time are investigated and validated using certain criteria.
NASA Astrophysics Data System (ADS)
Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.
2015-12-01
Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.
NASA Astrophysics Data System (ADS)
Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.
2015-01-01
Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.
A Vertical Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data
NASA Astrophysics Data System (ADS)
Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.
2017-12-01
Characterization of the vertical structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution vertical profiles of radar observations (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter profiles and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved profiles provide an excellent tool for characterization of the vertical profile structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the vertical structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized intercept parameter of the gamma drop size distribution.
Vertically Propagating Waves in the Upper Atmosphere of Saturn From Cassini Radio Occultations
NASA Astrophysics Data System (ADS)
Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.
2005-12-01
We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. We determine the properties and spectra of these waves, and speculate on their origins and their dynamical effects on the upper atmosphere.
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
NASA Astrophysics Data System (ADS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.
2012-11-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
NASA Astrophysics Data System (ADS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.
2013-03-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty
NASA Technical Reports Server (NTRS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.;
2013-01-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
Determination of precipitation profiles from airborne passive microwave radiometric measurements
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.
1991-01-01
This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.
NASA Astrophysics Data System (ADS)
Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa
2018-02-01
We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.
A Laboratory Study of Vortical Structures in Rotating Convection Plumes
NASA Astrophysics Data System (ADS)
Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team
2015-11-01
A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).
Balloon stratospheric research flights, April 1976 to December 1976
NASA Technical Reports Server (NTRS)
Allen, N. C.
1977-01-01
These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the chlorine photochemical system of the upper atmosphere, to measure the vertical concentration profiles of atomic oxygen, the hydroxyl radical and ozone in the stratosphere. An overview of the scientific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for four flights are presented.
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange
Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.
A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...
Tracer concentration profiles measured in central London as part of the REPARTEE campaign
NASA Astrophysics Data System (ADS)
Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.
2011-01-01
There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon) experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London.
NASA Astrophysics Data System (ADS)
Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex
2017-09-01
We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.
NASA Astrophysics Data System (ADS)
Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.
2016-12-01
Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.
Introducing and Validating the New Aura CO Product Derived from Joined TES and MLS Measurements
NASA Astrophysics Data System (ADS)
Luo, M.; Schwartz, M. J.; Read, W. G.; Herman, R. L.; Kulawik, S. S.; Worden, J.; Livesey, N. J.; Bowman, K. W.; Sweeney, C.
2014-12-01
The new Aura CO product consists of CO vertical profiles derived from TES and MLS measurements. This product has been released to the public. We describe the algorithms for generating the product and the evaluations of it using in-situ measurements. TES and MLS standalone CO profile retrievals are sensitive respectively to lower-mid troposphere and upper troposphere and above. We pair TES nadir and MLS limb tangent locations within 6-8 min and less than 220 km. The paired radiance measurements of the two instruments per location are optimally combined to retrieve a single CO profile along with other interfering species. This combined CO profile has improved vertical resolution and vertical range over the two standalone products, especially in the upper-troposphere/lower-stratosphere. For example, the degree of freedom for signal (DOFS) between surface and 50hPa for TES alone is < 2, and for the combined CO profiles is 2-4. We will present the comparison results between the Aura CO and AirCore, HIPPO, and MOZAIC observations. The new Aura CO product provides a unique data set to studies on tropospheric transport of air pollutants and troposphere-stratospheric exchange processes.
MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS
U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
Geopr...
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori
2016-07-01
The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.
NASA Astrophysics Data System (ADS)
Katich, J. M.; Schwarz, J. P.
2016-12-01
The NASA Atmospheric Tomography Mission (ATom) provides a first opportunity to obtain vertical profiles of refractory black carbon (rBC) mass mixing ratios over global scale ( 65S - 85 N latitude) in the remote atmosphere over both the Pacific and Atlantic basins. A NOAA single-particle soot photometer (SP2) will fly on the NASA DC-8 research aircraft over July/August of 2016, obtaining near- continuous vertical profiling ( 0.3 to 12 km) over most of the Earth's latitude range, akin to the NSF HIPPO campaign that occurred only over the Pacific basin during 2009-2011. HIPPO analysis suggested both that high altitude rBC mass mixing ratios (MMRs) were likely zonally well mixed, and that global model estimates of remote rBC MMR throughout the upper troposphere globally, and not just over the Pacific, were likely biased high. Here we will present an initial analysis of the new, more complete data set in which Atlantic rBC profiles will be used to assess these prior suppositions.
NASA Astrophysics Data System (ADS)
Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.
2015-05-01
Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H
Electrical sensing of the dynamical structure of the planetary boundary layer
NASA Astrophysics Data System (ADS)
Nicoll, K. A.; Harrison, R. G.; Silva, H. G.; Salgado, R.; Melgâo, M.; Bortoli, D.
2018-04-01
Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m- 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m- 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.
Updated Results for the Wake Vortex Inverse Model
NASA Technical Reports Server (NTRS)
Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.
2008-01-01
NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).
How shorter black carbon lifetime alters its climate effect.
Hodnebrog, Øivind; Myhre, Gunnar; Samset, Bjørn H
2014-09-25
Black carbon (BC), unlike most aerosol types, absorbs solar radiation. However, the quantification of its climate impact is uncertain and presently under debate. Recently, attention has been drawn both to a likely underestimation of global BC emissions in climate models, and an overestimation of BC at high altitudes. Here we show that doubling present day BC emissions in a model simulation, while reducing BC lifetime based on observational evidence, leaves the direct aerosol effect of BC virtually unchanged. Increased emissions, together with increased wet removal that reduces the lifetime, yields modelled BC vertical profiles that are in strongly improved agreement with recent aircraft observations. Furthermore, we explore the consequences of an altered BC profile in a global circulation model, and show that both the vertical profile of BC and rapid climate adjustments need to be taken into account in order to assess the total climate impact of BC.
Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform
NASA Astrophysics Data System (ADS)
Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.
2017-12-01
Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by <400 nm. The vertical profile in the afternoon showed elevated layer with higher number concentration (than ground) over >2000 masl which may indicate regional transport than local contribution. Also presented is the comparison between the measured vertical profile of aerosol properties and columnar measurement (using AERONET) and CALIPSO-derived vertical profile.
Vertical profiles of wind and temperature by remote acoustical sounding
NASA Technical Reports Server (NTRS)
Fox, H. L.
1969-01-01
An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the vertical variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the vertical variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.
NASA Astrophysics Data System (ADS)
Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo
2017-12-01
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.
UAS as a Support for Atmospheric Aerosols Research: Case Study
NASA Astrophysics Data System (ADS)
Chiliński, Michał T.; Markowicz, Krzysztof M.; Kubicki, Marek
2018-01-01
Small drones (multi-copters) have the potential to deliver valuable data for atmospheric research. They are especially useful for collecting vertical profiles of optical and microphysical properties of atmospheric aerosols. Miniaturization of sensors, such as aethalometers and particle counters, allows for collecting profiles of black carbon concentration, absorption coefficient, and particle size distribution. Vertical variability of single-scattering properties has a significant impact on radiative transfer and Earth's climate, but the base of global measurements is very limited. This results in high uncertainties of climate/radiation models. Vertical range of modern multi-copters is up to 2000 m, which is usually enough to study aerosols up to the top of planetary boundary layer on middle latitudes. In this study, we present the benefits coming from usage of small drones in atmospheric research. The experiment, described as a case study, was conducted at two stations (Swider and Warsaw) in Poland, from October 2014 to March 2015. For over 6 months, photoacoustic extinctiometers collected data at both stations. This enabled us to compare the stations and to establish ground reference of black carbon concentrations for vertical profiles collected by ceilometer and drone. At Swider station, we used Vaisala CL-31 ceilometer. It delivered vertical profiles of range corrected signal, which were analysed together with profiles acquired by micro-aethalometer AE-51 and Vaisala RS92-SGP radiosonde carried by a hexacopter drone. Near to the surface, black carbon gradient of ≈ 400 (\\upmu g/m^3 )/100 m was detected, which was below the ceilometer minimal altitude of detection. This confirmed the usefulness of drones and potential of their support for remote sensing techniques.
NASA Astrophysics Data System (ADS)
Papineau, N.; Camy-Peyret, C.; Ackerman, Marcel E.
1989-10-01
Measurements of atmospheric trace gases have been performed during the first Spacelab mission on board the Space Shuttle. The principle of the observations is infrared absorption spectroscopy using the solar occultation technique. Infrared absorption spectra of NO, CO, CO2, NO2, N20, CH4 and H2O have been recorded using the Grille spectrometer developped by ONERA and IASB. From the observed spectra, vertical profiles for these molecules have been derived. The present paper summarizes the main results and compares them with computed vertical profiles from a zonally averaged model of the middle atmosphere. The scientific objectives of the second mission, Atlas 1, planned for 1990 are also presented.
Combined orthodontic and surgical correction of adult skeletal class II with hyperdivergent jaws.
Abraham, Jiku; Bagchi, Paulami; Gupta, Swati; Gupta, Hemant; Autar, Ram
2012-01-01
A case of severe Class II skeletal malocclusion with anterior open bite having vertical growth pattern and matching soft tissue profile is presented. Considering age of the patient and the severity of the malocclusion, it was decided to combine orthodontic treatment with surgery. A 0.022 Roth Pre-adjusted Edgewise Appliance was chosen for the orthodontic correction and Le-Fort 1 differential vertical impaction of maxilla with mandibular autorotation and augmentation genioplasty was considered as the treatment plan. The main aim was to reduce the gummy smile and correct the class II profile.
Importance of interpolation and coincidence errors in data fusion
NASA Astrophysics Data System (ADS)
Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana
2018-02-01
The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.
Trace Element Cycling in Lithogenic Particles at Station ALOHA
NASA Astrophysics Data System (ADS)
Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.
2014-12-01
Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").
Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.; Moatamedi, M.
2014-12-01
The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.
NASA Astrophysics Data System (ADS)
Ko, C.; Sohn, G.; Remmel, T. K.
2012-07-01
We present a comparative study between two different approaches for tree genera classification using descriptors derived from tree geometry and those derived from the vertical profile analysis of LiDAR point data. The different methods provide two perspectives for processing LiDAR point clouds for tree genera identification. The geometric perspective analyzes individual tree crowns in relation to valuable information related to characteristics of clusters and line segments derived within crowns and overall tree shapes to highlight the spatial distribution of LiDAR points within the crown. Conversely, analyzing vertical profiles retrieves information about the point distributions with respect to height percentiles; this perspective emphasizes of the importance that point distributions at specific heights express, accommodating for the decreased point density with respect to depth of canopy penetration by LiDAR pulses. The targeted species include white birch, maple, oak, poplar, white pine and jack pine at a study site northeast of Sault Ste. Marie, Ontario, Canada.
Applicability of APT aided-inertial system to crustal movement monitoring
NASA Technical Reports Server (NTRS)
Soltz, J. A.
1978-01-01
The APT system, its stage of development, hardware, and operations are described. The algorithms required to perform the real-time functions of navigation and profiling are presented. The results of computer simulations demonstrate the feasibility of APT for its primary mission: topographic mapping with an accuracy of 15 cm in the vertical. Also discussed is the suitability of modifying APT for the purpose of making vertical crustal movement measurements accurate to 2 cm in the vertical, and at least marginal feasibility is indicated.
NASA Astrophysics Data System (ADS)
Denisenko, P. F.; Maltseva, O. A.; Sotsky, V. V.
2018-03-01
The method of correcting the daytime vertical profiles of electron plasma frequency in the low ionosphere from International Refererence Ionosphere (IRI) model in accordance with the measured data of the virtual heights and absorption of signal radiowaves (method A1) reflected from the bottom of E-region at vertical sounding (VS) is presented. The method is based on the replacement of the IRI model profile by an approximation of analytical dependence with parameters determined according to VS data and partially by the IRI model. The method is tested by the results of four joint ground-based and rocket experiments carried out in the 1970s at midlatitudes of the European part of Russia upon the launches of high-altitude geophysical rockets of the Vertical series. It is shown that the consideration of both virtual reflection heigths and absorption makes it possible to obtain electron density distributions that show the best agreement with the rocket measurements made at most height ranges in the D- and E-regions. In additional, the obtained distributions account more adequately than the IRI model for the contributions of D- and E-regions to absorption of signals reflected above these regions.
NASA Technical Reports Server (NTRS)
Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.;
2016-01-01
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.
Mercury in the Black Sea - results of the 2013 GEOTRACES MEDBlack cruise
NASA Astrophysics Data System (ADS)
Heimbürger, L. E.; Sonke, J.; Rijkenberg, M. J. A.; Gerringa, L. J.; De Baar, H. J. W.
2014-12-01
Inorganic mercury (Hg), whether of natural or anthropogenic origin, can be converted into the neurotoxin methylmercury (MeHg). Today we believe this conversion occurs during the bacterial remineralization of sinking organic matter in the oceanic water column. The Black Sea with its high organic matter inputs and anoxic deep waters is an excellent study site to investigate in more detail the processes yielding MeHg. To date only one vertical profile of Hg species near the Western shelf and one vertical profile in the Western Gyre are published (Lamborg et al. 2008). We will present new results of the 2013 Dutch-led GEOTRACES MEDBlack cruise in the Black Sea. Research vessel "Pelagia" occupied 12 full depth stations along an east-west transect from 13 to 25 July 2013. High resolution vertical profiles were sampled using a titanium ultraclean CTD frame (de Baar et al., 2008) equipped with 24 x 24L PVDF samplers. Samples were filtered (0.2µm, Sartobran 300), drawn into pre-cleaned 250mL Savillex PFA bottles and acidified to 0.4% (v:v) with double-distilled HCl. Dissolved MeHg, as the sum of monomethylHg and dimethylHg, was analyzed via isotope dilution gas chromatography sector field inductively coupled mass spectrometry. Total dissolved Hg was determined following the US EPA 1631 method. We will present high resolution vertical Hg species profiles, including one ultra-high resolution profile (1 sample every 5m-depth) to understand the dynamics along the chemocline (Luther et al., 1991). We will also present the results of the GEOTRACES international intercalibration exercise for dissolved MeHg and dissolved total Hg in surface seawater that we organized during the same cruise. References De Baar HJW, Timmermans KR, Laan P, De Porto HH, Ober S, Blom JJ, Bakker MC, Schilling J, Sarthou G, Smit MG, Klunder M. Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Mar. Chem. 2008, 111(1-2): 4-21. Lamborg CH, Yiğiterhan O, Fitzgerald WF, Balcom PH, Hammerschmidt CR, Murray J.Vertical distribution of mercury species at two sites in the Western Black Sea. Mar.Chem. 2008, 111(1-2): 77-89. Luther III GW, Church TM, Powell D. Sulfur speciation and sulfide oxidation in the water column of the Black Sea. DSR I 1991, 38:1121-1137.
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Jones, Simon; Wang, Tiejun; Heurich, Marco; Zhu, Xi; Shi, Yifang
2018-02-01
Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile) are important forest structural metrics. Accurate estimation of Pgap and vertical Pgap profile is therefore critical for many ecological applications, including leaf area index (LAI) mapping, LAI profile estimation and wildlife habitat modelling. Although many studies estimated Pgap and vertical Pgap profile from airborne LiDAR data, the scan angle was often overlooked and a nadir view assumed. However, the scan angle can be off-nadir and highly variable in the same flight strip or across different flight strips. In this research, the impact of off-nadir scan angle on Pgap and vertical Pgap profile was evaluated, for several forest types. Airborne LiDAR data from nadir (0°∼7°), small off-nadir (7°∼23°), and large off-nadir (23°∼38°) directions were used to calculate both Pgap and vertical Pgap profile. Digital hemispherical photographs (DHP) acquired during fieldwork were used as references for validation. Our results show that angular Pgap from airborne LiDAR correlates well with angular Pgap from DHP (R2 = 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir direction). But underestimation of Pgap from LiDAR amplifies at large off-nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved from different directions, it is shown that scan angle impact on Pgap and vertical Pgap profile differs amongst different forest types. The difference is likely to be caused by different leaf angle distribution and canopy architecture in these forest types. Statistical results demonstrate that the scan angle impact is more severe for plots with discontinuous or sparse canopies. These include coniferous plots, and deciduous or mixed plots with between-crown gaps. In these discontinuous plots, Pgap and vertical Pgap profiles are maximum when observed from nadir direction, and then rapidly decrease with increasing scan angle. The results of this research have many important practical implications. First, it is suggested that large off-nadir scan angle of airborne LiDAR should be avoided to ensure a more accurate Pgap and LAI estimation. Second, the angular dependence of vertical Pgap profiles observed from airborne LiDAR should be accounted for, in order to improve the retrieval of LAI profiles, and other quantitative canopy structural metrics. This is especially necessary when using multi-temporal datasets in discontinuous forest types. Third, the anisotropy of Pgap and vertical Pgap profile observed by airborne LiDAR, can potentially help to resolve the anisotropic behavior of canopy reflectance, and refine the inversion of biophysical and biochemical properties from passive multispectral or hyperspectral data.
NASA Astrophysics Data System (ADS)
Nasse, Jan-Marcus; Zielcke, Johannes; Buxmann, Joelle; Frieß, Udo; Platt, Ulrich
2014-05-01
During springtime in polar regions when the sunlight returns, bromine monoxide (BrO) is released from sea ice into the atmosphere from saline surfaces due to an autocatalytic reaction mechanism. BrO affects the oxidative properties of the troposphere and can lead to a virtually complete depletion of surface ozone within a few days or even hours. Furthermore, the oxidation of gaseous elemental mercury by BrO renders this toxic compound soluble and leads to a deposition and thus entry of mercury into the vulnerable biosphere. However, the exact nature of the bromine radical sources in polar regions, as well as the details of the mechanisms leading to bromine explosions and also the interactions between dynamics and chemistry are not yet completely understood. For a better understanding of these processes, an accurate determination of the spatio-temporal distribution of BrO is crucial. We present first measurements of BrO and aerosols performed onboard a helicopter using a compact Multi AXial Differential Absorption Spectroscopy (MAX-DOAS) instrument during a cruise of the German research vessel Polarstern in the Antarctic Weddell Sea between August and October 2013. Numerous flights were performed in the boundary layer as well as in the free troposphere up to 2300m. Due to its versatility, allowing measurements at multiple altitudes with small elevation angles and thus high air mass factors, a helicopter as a platform for MAX-DOAS measurements offers a considerably improved information content throughout the lower troposphere compared to MAX-DOAS measurements from the ground. Using our HEIPRO (HEIdelberg Profile) retrieval algorithm based on optimal estimation, vertical profiles of aerosols and trace gases can be retrieved with an unprecedented vertical resolution and a better sensitivity for higher altitudes. Furthermore, these measurements allow for a thorough characterization of the dynamical and chemical processes bromine radicals are involved in. We will present BrO and aerosol vertical profiles obtained from the helicopter-borne observations, discuss the vertical resolution, error budget and information content of the measurements, and compare the data with profiles from our co-located ship-borne MAX-DOAS instrument.
Presenting Your Best Self(ie): The Influence of Gender on Vertical Orientation of Selfies on Tinder.
Sedgewick, Jennifer R; Flath, Meghan E; Elias, Lorin J
2017-01-01
When taking a self-portrait or "selfie" to display in an online dating profile, individuals may intuitively manipulate the vertical camera angle to embody how they want to be perceived by the opposite sex. Concepts from evolutionary psychology and grounded cognition suggest that this manipulation can provide cues of physical height and impressions of power to the viewer which are qualities found to influence mate-selection. We predicted that men would orient selfies more often from below to appear taller (i.e., more powerful) than the viewer, and women, from an above perspective to appear shorter (i.e., less powerful). A content analysis was conducted which coded the vertical orientation of 557 selfies from profile pictures on the popular mobile dating application, Tinder. In general, selfies were commonly used by both men (54%) and women (90%). Consistent with our predictions, a gender difference emerged; men's selfies were angled significantly more often from below, whereas women's were angled more often from above. Our findings suggest that selfies presented in a mate-attraction context are intuitively or perhaps consciously selected to adhere to ideal mate qualities. Further discussion proposes that biological or individual differences may also facilitate vertical compositions of selfies.
NASA Astrophysics Data System (ADS)
Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.
2008-12-01
We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.
AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2
NASA Astrophysics Data System (ADS)
Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence
2017-06-01
An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles). The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collis, Scott; Protat, Alain; May, Peter T.
2013-08-01
Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less
Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement
NASA Astrophysics Data System (ADS)
Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries
2011-04-01
Single mode silicon photonic wire waveguides allow low-loss sharp micro-bends, which enables compact photonic devices and circuits. The circuit compactness is achieved at the cost of loss induced by micro-bends, which can seriously affect the device performance. The bend loss strongly depends on the bend radius, polarization, waveguide dimension and profile. In this paper, we present the effect of waveguide profile on the bend loss. We present waveguide profile improvement with optimized etch chemistry and the role of etch chemistry in adapting the etch profile of silicon is investigated. We experimentally demonstrate that by making the waveguide sidewalls vertical, the bend loss can be reduced up to 25% without affecting the propagation loss of the photonic wires. The bend loss of a 2 μm bend has been reduced from 0.039dB/90° bend to 0.028dB/90° bend by changing the sidewall angle from 81° to 90°, respectively. The propagation loss of 2.7 ± 0.1dB/cm and 3 ± 0.09dB/cm was observed for sloped and vertical photonic wires respectively was obtained.
NASA Astrophysics Data System (ADS)
Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo
2016-08-01
Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using radiosounding and Global Position Satellite (GPS) water vapor measurements. In general, the benefit of the sensor combination is especially strong in regions where Raman lidar data are not available (i.e., blind regions, regions characterized by low signal-to-noise ratio), whereas if both instruments are available, RL dominates the retrieval. In the future, the method will be extended to cloudy conditions, when the impact of the MWR becomes stronger.
Capability of the CALIPSO lidar observations to detect the dust source regions
NASA Astrophysics Data System (ADS)
Kaskaoutis, D. G.; Kharol, Shailesh Kumar; Kambezidis, H. D.; Nastos, P. T.; Rani Sharma, Anu; Kvs, Badarinath
Two dust events with high aerosol optical depth (AOD) values have been observed over Athens on 4 and 6-7 February 2009. These dust events were well captured by the satellite obser-vations and are investigated in the present study by means of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations, ceilometer vertical profiles and DREAM model predictions. The CALIPSO provides new insight to study the role of clouds and atmospheric aerosols in regulating Earth's weather, climate, and air quality. CALIPSO has a 98o-inclination orbit and flies at an altitude of 705 km providing daily global maps of the ver-tical distribution of aerosols and clouds. The CALIPSO satellite carries a polarization-sensitive lidar, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which provides profiles of backscatter coefficient at 532 and 1064 nm. The ceilometer used in the present study is a Vaisala CL31 model. It is equipped with an InGaAs MOCVD pulsed laser, emitting at 930 nm and having an energy per pulse of 1.2 J. The emission frequency is 10 kHz while the pulse duration is 100 ns. The vertical profiles of the aerosol backscatter coefficient were obtained from 5 m up to 7.5 km at 930 nm. The CL31 is installed at the Actinometric station of the National Observatory of Athens. The CALIPSO-derived total attenuated backscatter at 532 and 1064 nm is used to identify the position of dust along the overpass trajectory. A typical example of the vertical distribution of the dust plume over the study region during nighttime on 5 Febru-ary 2009 is provided. Limiting the analysis over Libya, eastern Mediterranean and Greece (24o -37o N, 15o-19o E), the dust aerosol layer exhibits a high total attenuated backscatter at 532 nm, reaching to 0.05-0.06 km-1sr-1. CALIPSO observations clearly show that the dust plume was generated over the Sahara desert at about 24oN, 15oE near the borders of Libya, Chad and Niger. After its exposure it was uplifted to about 3-km in depth and moved northwards. As the dust layer moved towards Greece its intensity seems to decrease while its vertical extent was limited to lower altitudes within the first 2 km. The ceilometer also detected an elevated aerosol layer due to dust transport within the first 3 km, while the vertical profiles of dust predicted by DREAM were in close agreement with those of the ceilometer. The main goal of this study is the investigation via satellite vertical-profiling instrumentation not only the vertical extent and the transport of dust, but also its source region. Keywords: Dust, CALIPSO, DREAM model and AOD
CO2 profile retrievals from TCCON spectra
NASA Astrophysics Data System (ADS)
Dohe, Susanne; Hase, Frank; Sepúlveda, Eliezer; García, Omaira; Wunch, Debra; Wennberg, Paul; Gómez-Peláez, Angel; Abshire, James B.; Wofsy, Steven C.; Schneider, Matthias; Blumenstock, Thomas
2014-05-01
The Total Carbon Column Observing Network (TCCON) is a global network of ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared spectral region. With stringent requirements on the instrumentation, data processing and calibration, accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved being an essential contribution for the validation of satellite data (e.g. GOSAT, OCO-2) and carbon cycle research (Olsen and Randerson, 2004). However, the determined column-averaged dry air mole fraction (DMF) contains no information about the vertical CO2 profile, due to the use of a simple scaling retrieval within the common TCCON analysis, where the fitting algorithm GFIT (e.g. Yang et al., 2005) is used. In this presentation we will apply a different procedure for calculating trace gas abundances from the measured spectra, the fitting algorithm PROFFIT (Hase et. al., 2004) which has been shown to be in very good accordance with GFIT. PROFFIT additionally offers the ability to perform profile retrievals in which the pressure broadening effect of absorption lines is used to retrieve vertical gas profiles, being of great interest especially for the CO2 modelling community. A new analyzing procedure will be shown and retrieved vertical CO2 profiles of the TCCON sites Izaña (Tenerife, Canary Islands, Spain) and Lamont (Oklahoma, USA) will be presented and compared with simultaneously performed surface in-situ measurements and CO2 profiles from different aircraft campaigns. References: - Hase, F. et al., J.Q.S.R.T. 87, 25-52, 2004. - Olsen, S.C. and Randerson, J.T., J.G.Res., 109, D023012, 2004. - Yang, Z. et al., J.Q.S.R.T., 90, 309-321, 2005.
An investigation of the environment surrounding supercell thunderstorms using wind profiler data
NASA Astrophysics Data System (ADS)
Thornhill, Kenneth Lee, II
1998-12-01
One of the cornerstones of severe thunderstorm research has been quantifying the relationship between the ambient vertical wind profile and the environment of a supercell thunderstorm. Continual refinement of that understanding will lead to the ability to distinguish between tornadic and non-tornadic supercells. Recently, studies have begun to show the importance of the mid-level winds (about 3-6 km), in addition to the normally analyzed 0-3 km inflow layer winds. The 32 wind profilers of the NOAA Profiler Network provide a new source of wind field data that is of higher temporal and spatial resolution that the normally used radiosonde soundings. Continuous raw wind field data (u, v, and w) is now available every 6 minutes, with a quality controlled hourly averaged wind field data set also available. In this work, a 6-minute quality control algorithm is presented and utilized. This 6-minute quality controlled wind data can be used to calculate predictive parameters such as storm relative environmental helicity, Bulk Richardson Number shear, and positive mean shear, indices that are normally calculated only for the inflow layer. In addition, the time series evolution of the mean midlevel winds and the mean vertical winds can also be examined. This present work concentrates on the 1994 and 1995 spring tornado seasons in the central plains of the United States. Combining the data from the NOAA Profiler Network with the data collected from the Verification of the Origins of Rotation in Tornadoes Experiment, the time series evolution of the several indices mentioned above are examined for the winds above the inflow layer in an attempt to add to the current understanding of the relationship between the vertical wind profile and the environment of tornadic and non-tornadic supercell thunderstorms.
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1988-01-01
The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.
Kinematic and Hydrometer Data Products from Scanning Radars during MC3E
matthews, Alyssa; Dolan, Brenda; Rutledge, Steven
2016-02-29
Recently the Radar Meteorology Group at Colorado State University has completed major case studies of some top cases from MC3E including 25 April, 20 May and 23 May 2011. A discussion on the analysis methods as well as radar quality control methods is included. For each case, a brief overview is first provided. Then, multiple Doppler (using available X-SAPR and C-SAPR data) analyses are presented including statistics on vertical air motions, sub-divided by convective and stratiform precipitation. Mean profiles and CFAD's of vertical motion are included to facilitate comparison with ASR model simulations. Retrieved vertical motion has also been verified with vertically pointing profiler data. Finally for each case, hydrometeor types are included derived from polarimetric radar observations. The latter can be used to provide comparisons to model-generated hydrometeor fields. Instructions for accessing all the data fields are also included. The web page can be found at: http://radarmet.atmos.colostate.edu/mc3e/research/
Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, William P.; Hoskins, H.; Stephen, R.A.
2003-01-01
We present results from an analysis of anisotropy in marine sediments using walkaway vertical seismic profiles from the Blake Ridge, offshore South Carolina. We encountered transverse isotropy (TI) with a vertical symmetry axis in a gas-hydrate-bearing unit of clay and claystone with Thomsen parameters ?? = 0.05 ?? 0.02 and ?? = 0.04 ?? 0.06. TI increased to ?? = 0.16 ?? 0.04 and ?? = 0.19 ?? 0.12 in the underlying gas zone. Rock physics modeling suggests that the observed TI is caused by a partial alignment of clay particles rather than high-velocity gas-hydrate veins. Similarly, the increase of TI in the gas zone is not caused by thin low-velocity gas layers but rather, we speculate, by the sharp contrast between seismic properties of an anisotropic sediment frame and elongated gas-bearing pore voids. Our results underscore the significance of anisotropy for integrating near-vertical and wide-angle seismic data.
NASA Technical Reports Server (NTRS)
Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.
2012-01-01
Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.
Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites
NASA Astrophysics Data System (ADS)
Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.
2013-12-01
Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint retrievals, as compared with either spectral region alone, are estimated using the ozonesonde measurements.
NASA Astrophysics Data System (ADS)
Luce, Hubert; Kantha, Lakshmi; Hashiguchi, Hiroyuki; Lawrence, Dale; Mixa, Tyler; Yabuki, Masanori; Tsuda, Toshitaka
2018-12-01
The ShUREX (Shigaraki UAV Radar Experiment) 2015 campaign carried out at the Shigaraki Middle and Upper atmosphere (MU) observatory (Japan) in June 2015 provided a unique opportunity to compare vertical profiles of atmospheric parameters estimated from unmanned aerial vehicle (UAV), balloon, and radar data in the lower troposphere. The present work is intended primarily as a demonstration of the potential offered by combination of these three instruments for studying the small-scale structure and dynamics in the lower troposphere. Here, we focus on data collected almost simultaneously by two instrumented UAVs and two meteorological balloons, near the MU radar operated continuously during the campaign. The UAVs flew along helical ascending and descending paths at a nearly constant horizontal distance from the radar ( 1.0 km), while the balloons launched from the MU radar site drifted up to 3-5 km in the altitude range of comparisons ( 0.5 to 4.0 km) due to wind advection. Vertical profiles of squared Brünt-Väisälä frequency N 2 and squared vertical gradient of generalized potential refractive index M 2 were estimated at a vertical resolution of 20 m from pressure, temperature, and humidity data collected by UAVs and radiosondes. Profiles of M 2 were also estimated from MU radar echo power at vertical incidence at a vertical sampling of 20 m and various time resolutions (1-4 min). The balloons and the MU radar provided vertical profiles of wind and wind shear S so that two independent estimates of the gradient Richardson number ( Ri = N 2/ S 2) could be obtained at a range resolution of 150 m. The two estimates of Ri profiles also showed remarkable agreement at all altitudes. We show that all three instruments detected the same prominent temperature and humidity gradients, down to decameter scales in stratified conditions. These gradients extended horizontally over a few kilometers at least and persisted for hours without significant changes, indicating that the turbulent diffusion was weak . Large discrepancies between N 2and M 2 profiles derived from the balloon, UAV, and radar data were found in a turbulent layer generated by a Kelvin-Helmholtz (KH) shear flow instability in the height range from 1.80 to 2.15 km. The cause of these discrepancies appears to depend on the stage of the KH billows.
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 1: aerosols
NASA Astrophysics Data System (ADS)
Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on the retrieval of aerosol extinction profiles, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available ancillary aerosol observations, including sun photometer, nephelometer and LIDAR. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange.
Voytek, Emily B; Drenkelfuss, Anja; Day-Lewis, Frederick D; Healy, Richard; Lane, John W; Werkema, Dale
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Peterson, Harold
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
Kipling, Zak; Stier, Philip; Johnson, Colin E.; ...
2016-02-26
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficientlymore » coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. Here, we also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.« less
The vertical variability of hyporheic fluxes inferred from riverbed temperature data
NASA Astrophysics Data System (ADS)
Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien
2014-05-01
We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Raut, J.-C.; Chazette, P.
2007-07-01
A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.
NASA Astrophysics Data System (ADS)
Raut, J.-C.; Chazette, P.
2008-02-01
A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.
Twining, Brian V.; Fisher, Jason C.
2012-01-01
During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles provide evidence for stratification and mixing of water types along the southern boundary of the Idaho National Laboratory. Vertical head and temperature change were quantified for each of the nine multilevel monitoring systems. The vertical head gradients were defined for the major inflections in the head profiles and were as high as 2.1 feet per foot. Low vertical head gradients indicated potential vertical connectivity and flow, and large gradient inflections indicated zones of relatively low vertical connectivity. Generally, zones that primarily are composed of fractured basalt displayed relatively small vertical head differences. Large head differences were attributed to poor vertical connectivity between fracture units because of sediment layering and/or dense basalt. Groundwater temperatures in all boreholes ranged from 10.2 to 16.3˚C. Normalized mean hydraulic head values were analyzed for all nine multilevel monitoring wells for the period of record (2007-10). The mean head values suggest a moderately positive correlation among all boreholes, which reflects regional fluctuations in water levels in response to seasonality. However, the temporal trend is slightly different when the location is considered; wells located along the southern boundary, within the axial volcanic high, show a strongly positive correlation.
Verification of the naval oceanic vertical aerosol model during FIRE
NASA Technical Reports Server (NTRS)
Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.
1990-01-01
The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).
Vertical and Lateral Electron Content in the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.
2016-12-01
The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.
NASA Technical Reports Server (NTRS)
Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.
2017-01-01
Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release
Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples
NASA Astrophysics Data System (ADS)
Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.
2012-12-01
Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.
Vertical distributions of fluorescent aerosol over the Eastern U.S.
NASA Astrophysics Data System (ADS)
Perring, A. E.; Robinson, E. S.; Schwarz, J. P.; Gao, R. S.
2016-12-01
The prevalence of bioaerosol in the atmosphere is relevant to atmospheric chemistry, microbial ecology and climate. These particles can act as effective cloud condensation nuclei (CCN) and ice nuclei (IN), representing a potential feedback between vegetation and precipitation. As bioaerosol frequently account for a substantial fraction of coarse mode aerosol in the boundary layer, they may have significant impacts on mixed-phase and/or cirrus cloud formation and climate. Very few measurements are available, however, to constrain loadings of bioaerosol in the free troposphere. Here we present vertical profiles of fluorescent aerosol concentration as a proxy for bioaerosol. The data were obtained over the eastern U.S. during the summer of 2016 using a Wide Band Integrated Bioaerosol Sensor (WIBS) installed aboard a NOAA Twin Otter research aircraft. The airspeed and inlet configuration were chosen to permit efficient sampling of aerosol with diameters of up to 10 μm. Vertical profiles extend from 1000 to 17,500 feet AGL, spanning a temperature range relevant to ice formation. 100 hours of data cover a latitude range from 30N to 46N and target a variety of potential bioaerosol source regions including forests, croplands, the Gulf of Mexico, and Lake Michigan. Observed vertical profiles are compared to expected loadings based on current model parameterizations and implications are discussed.
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki
2013-01-01
The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 2: trace gases
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Friess, Udo; Tirpitz, Lukas; Apituley, Arnoud; Van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sunphotometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on NO2 and HCHO, the aerosol retrievals being presented in a companion abstract led by U. Frieß. The performance of the different algorithms is investigated with respect to the various sky and weather conditions and aerosol loadings encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available NO2 and HCHO ancillary observations. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
NASA Astrophysics Data System (ADS)
Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.
2017-11-01
The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.
NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder
NASA Astrophysics Data System (ADS)
Barnet, C.; Gu, D.; Nalli, N. R.
2009-12-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.
H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.
NASA Astrophysics Data System (ADS)
Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team
Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William
2003-01-01
On January 12, 2003 NASA launched the first satellite-based lidar, the Geoscience Laser -Altimeter System (GLAS), onboard the ICESat spacecraft. The GLAS atmospheric measurements introduce a fundamentally new and important tool for understanding the atmosphere and climate. In the past, aerosols have only been studied from space using images gathered by passive sensors. Analysis of this passive data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth's climate. However, these images do not show the aerosol's vertical distribution. As a result, a key piece of information has been missing. The measurements now obtained by GLAS will provide information on the vertical distribution of aerosols and clouds, and improve our ability to study their transport processes and aerosol-cloud interactions. Here we show an overview of GLAS, provide an update of its current status, and present initial observations of dust profiles. In particular, a strategy of characterizing the height profile of dust plumes over source regions will be presented.
Low-latitude Temperatures, Pressures, and Winds on Saturn from Cassini Radio Occultations
NASA Astrophysics Data System (ADS)
Flasar, F. M.; Schinder, P. J.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.
2005-12-01
We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. Below the 200-mbar level, in the upper troposphere, the vertical profiles are smoother, and the overall trend of temperatures is to increase away from the equator. This implies a decay of the zonal winds with altitude. The zonal winds can actually be inferred directly from the meridional gradient in pressure, without the need of a boundary condition on the winds. We summarize results of these calculations. This is of interest because recent cloud tracking studies have indicated lower equatorial winds than found earlier, but whether this indicates a real change in the winds at a given altitude or a change in the altitudes of the features tracked is controversial.
Measuring vertical oxygen profiles in the hyporheic zone using planar optodes
NASA Astrophysics Data System (ADS)
Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.
2012-04-01
On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.
Vertical cup-to-disc ratio measurement for diagnosis of glaucoma on fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Noudo, Atsushi; Muramatsu, Chisako; Sawada, Akira; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi
2010-03-01
Glaucoma is a leading cause of permanent blindness. Retinal fundus image examination is useful for early detection of glaucoma. In order to evaluate the presence of glaucoma, the ophthalmologists determine the cup and disc areas and they diagnose glaucoma using a vertical cup-to-disc ratio. However, determination of the cup area is very difficult, thus we propose a method to measure the cup-to-disc ratio using a vertical profile on the optic disc. First, the blood vessels were erased from the image and then the edge of optic disc was then detected by use of a canny edge detection filter. Twenty profiles were then obtained around the center of the optic disc in the vertical direction on blue channel of the color image, and the profile was smoothed by averaging these profiles. After that, the edge of the cup area on the vertical profile was determined by thresholding technique. Lastly, the vertical cup-to-disc ratio was calculated. Using seventy nine images, including twenty five glaucoma images, the sensitivity of 80% and a specificity of 85% were achieved with this method. These results indicated that this method can be useful for the analysis of the optic disc in glaucoma examinations.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1989-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1987-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
Presenting Your Best Self(ie): The Influence of Gender on Vertical Orientation of Selfies on Tinder
Sedgewick, Jennifer R.; Flath, Meghan E.; Elias, Lorin J.
2017-01-01
When taking a self-portrait or “selfie” to display in an online dating profile, individuals may intuitively manipulate the vertical camera angle to embody how they want to be perceived by the opposite sex. Concepts from evolutionary psychology and grounded cognition suggest that this manipulation can provide cues of physical height and impressions of power to the viewer which are qualities found to influence mate-selection. We predicted that men would orient selfies more often from below to appear taller (i.e., more powerful) than the viewer, and women, from an above perspective to appear shorter (i.e., less powerful). A content analysis was conducted which coded the vertical orientation of 557 selfies from profile pictures on the popular mobile dating application, Tinder. In general, selfies were commonly used by both men (54%) and women (90%). Consistent with our predictions, a gender difference emerged; men's selfies were angled significantly more often from below, whereas women's were angled more often from above. Our findings suggest that selfies presented in a mate-attraction context are intuitively or perhaps consciously selected to adhere to ideal mate qualities. Further discussion proposes that biological or individual differences may also facilitate vertical compositions of selfies. PMID:28484408
NASA Technical Reports Server (NTRS)
Mapes, Brian; Houze, Robert A., Jr.
1993-01-01
The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.
NASA Astrophysics Data System (ADS)
McConnochie, T. H.; Smith, M. D.; McDonald, G. D.
2016-12-01
The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES water vapor profile results that we obtain by: 1) investigating simplified parameterizations of the profile; 2) addressing Nyquist-frequency correlated-noise in the TES spectra; 3) combining nadir and limb sounding to better resolve the bottom scale height.
Tunable laser heterodyne spectrometer measurements of atmospheric species
NASA Technical Reports Server (NTRS)
Allario, F.; Katzberg, S. J.; Hoell, J. M.
1983-01-01
It is pointed out that spectroscopic measurements conducted with the aid of tunable laser heterodyne spectrometers in the 3-30 micron range of the electromagnetic spectrum have the potential to measure the vertical profiles of tenuous gas molecules in the atmosphere with ultra high spectral resolution and great sensitivity. Programs related to the realization of this potential have been conducted for some time, and a Laser Heterodyne Spectrometer (LHS) experiment was developed. The present investigation has the objective to provide an overview of the LHS concept for measuring the vertical profiles of tenuous gas molecules in the upper atmosphere from space and airborne platforms, and to discuss the sensitivity ranges for this technique.
Composition and structure of the martian upper atmosphere: analysis of results from viking.
McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O
1976-12-11
Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.
Coastal Wind Profiles In The Mediterranean Area From A Wind Lidar During A Two Year Period
NASA Astrophysics Data System (ADS)
Gullì, Daniel; Avolio, Elenio; Calidonna, Claudia Roberta; Lo Feudo, Teresa; Torcasio, Rosa Claudia; Sempreviva, Anna Maria
2017-04-01
Reliable measurements of vertical profiles of wind speed and direction are the basis for testing models and methodologies of use for wind energy assessment. Modelling coastal areas further introduce the challenge of the coastal discontinuity, which is often not accurately resolved in meso-scale numerical model. Here, we present the analysis of two year of 10-minute averaged wind speed and direction vertical profiles collected during a two-year period from a Wind- lidar ZEPHIR 300® at a coastal suburban area. The lidar is located at the SUPER SITE of CNR-ISAC section of Lamezia Terme, Italy and both dataset and site are unique in the Mediterranean area. The instrument monitors at 10 vertical levels, from 10 m up to 300 m. The analysis is classified according to season, and wind directions for offshore and offshore flow. For onshore flow, we note an atmospheric layer at around 100 m that likely represents the effect an internal boundary layer caused by the sharp coastal discontinuity of the surface characteristics. For offshore flows, the profiles show a layer ranging between 80m and 100m, which might be ascribed to the land night time boundary layer combined to the impact of the building around the mast.
Vertical profile of tritium concentration in air during a chronic atmospheric HT release.
Noguchi, Hiroshi; Yokoyama, Sumi
2003-03-01
The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.
The biological pump: Profiles of plankton production and consumption in the upper ocean
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.; Glen Harrison, W.
The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.
Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland
NASA Astrophysics Data System (ADS)
Schlatter, Andreas; Schneider, Dieter; Geiger, Alain; Kahle, Hans-Gert
2005-09-01
The southern end of the Upper Rhine Graben is one of the zones in Switzerland where recent crustal movements can be expected because of ongoing seismotectonic processes as witnessed by seismicity clusters occurring in this region. Therefore, in 1973 a control network with levelling profiles across the eastern Rhine Graben fault was installed and measured in the vicinity of the city of Basel in order to measure relative vertical movements and investigate their relationship with seismic events. As a contribution to EUCOR-URGENT, the profiles were observed a third time in the years 2002 and 2003 and connected to the Swiss national levelling network. The results of these local measurements are discussed in terms of accuracy and significance. Furthermore, they are combined and interpreted together with the extensive data set of recent vertical movements in Switzerland (Jura Mountains, Central Plateau and the Alps). In order to be able to prove height changes with precise levelling, their values should amount to at least 3 4 mm (1σ). The present investigations, however, have not shown any significant vertical movements over the past 30 years.
NASA Technical Reports Server (NTRS)
Chu, W. P.
1977-01-01
Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.
Profiling of Atmospheric Water Vapor with MIR and LASE
NASA Technical Reports Server (NTRS)
Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.
Application of strong vertical magnetic fields to growth of II-VI pseudo-binary alloys - HgMnTe
NASA Astrophysics Data System (ADS)
Becla, Piotr; Han, Jian-Chiu; Motakef, Shahryar
1992-07-01
HgMnTe crystals are grown by the vertical Bridgman method in the presence of an applied vertical magnetic field of 30 kG. Reduction of convective intensity in the melt through application of the magnetic field is found to decrease radial macro-segregation and eliminate small-scale compositional undulations in the grown material; the axial compositional profile is found not to be influenced by the magnetic field. These observations are shown to be consistent with a previously proposed model for the residual convection present during growth of this and other similar materials.
Evaluation of vertical profiles to design continuous descent approach procedure
NASA Astrophysics Data System (ADS)
Pradeep, Priyank
The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of uncertainties in external factors. Analysis from operational feasibility perspective suggests that two key features of the performance based Flight Management System (FMS) i.e. required time of arrival (RTA) and geometric descent path would help in reduction of unpredictability associated with arrival time and vertical profile of aircraft guided by the FMS coupled with auto-pilot (AP) and auto-throttle (AT). The statistical analysis of the vertical profiles of CDA also suggests that for procedure design window type, 'AT or above' and 'AT or below' altitude and FPA constraints are more realistic and useful compared to obsolete 'AT' type altitude constraint.
Abundance Profiles for C3 Hydrocarbons in Titan's Atmosphere
NASA Astrophysics Data System (ADS)
Lombardo, Nicholas; Nixon, Conor A.; Achterberg, Richard; Jolly, Antoine; Sung, Keeyoon; Irwin, Patrick; Flasar, F. Michael
2017-10-01
The atmosphere of Titan is of astrobiological importance. Its highly reducing composition and prebiotic chemistry make it analogous to that of the early Earth. Since the Voyager era, several complex hydrocarbons and nitriles have been detected, in some cases making Titan the only known planetary body where these gasses occur naturally. In this work, we report abundance profiles of four major C3 gasses expected to occur in Titan’s atmosphere, derived from Cassini/Composite Infrared Spectrometer (CIRS) data.Using the NEMESIS iterative radiative transfer module, we retrieved vertical abundance profiles for propane (C3H8) and propyne (CHCCH3), both initially detected by the Voyager IRIS instrument. Using newly available line data, we were also able to determine the first vertical abundance profiles for propene (C3H6), initially detected in 2013. We present profiles for several latitudes and times and compare to photochemical model predictions and previous observations. We also discuss our efforts to further the search for allene (CH2CCH2), an isomer of propyne. The abundances we retrieved will help to further our understanding of the chemical pathways that occur in Titan's atmosphere.
NASA Technical Reports Server (NTRS)
Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.
2005-01-01
For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.
Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods
NASA Technical Reports Server (NTRS)
Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo
2004-01-01
In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee
2004-01-01
We present the formation of a new global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long- term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation goals. Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET sites produce not only vertical profile data, but also column-averaged products already available from AERONET (aerosol optical depth, sky radiance, size distributions). Algorithms are presented for each MPLNET data product. Real-time Level 1 data products (next-day) include daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction profiles at times co-incident with AERONET observations. Quality assured Level 2 aerosol extinction profiles are generated after screening the Level 1.5 results and removing bad data. Level 3 products include continuous day/night aerosol extinction profiles, and are produced using Level 2 calibration data. Rigorous uncertainty calculations are presented for all data products. Analysis of MPLNET data show the MPL and our analysis routines are capable of successfully retrieving aerosol profiles, with the strenuous accounting of uncertainty necessary for accurate interpretation of the results.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.
2016-12-01
A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.
Evaluation of Rock Joint Coefficients
NASA Astrophysics Data System (ADS)
Audy, Ondřej; Ficker, Tomáš
2017-10-01
A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.
Microstructure of Turbulence in the Stably Stratified Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Zbigniew; Balsley, Ben B.
2008-11-01
The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.
NASA Technical Reports Server (NTRS)
Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.
1980-01-01
Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.
An overview af SAGE I and II ozone measurements
NASA Technical Reports Server (NTRS)
Mccormick, M. P.; Zawodny, J. M.; Veiga, R. E.; Larsen, J. C.; Wang, P. H.
1989-01-01
The stratospheric Aerosol and Gas Experiments (SAGE) I and II measure Mie, Rayleigh, and gaseous extinction profiles using the solar occultation technique. These global measurements yield ozone profiles with a vertical resolution of 1 km which have been routinely obtained for the periods from February 1979 to November 1981 (SAGE I) and October 1984 to the present (SAGE II). The long-term periodic behavior of the measured ozone is presented as well as case studies of the observed short-term spatial and temporal variability. A linear regression shows annual, semiannual, and quasi-biennial oscillation features at various altitudes and latitudes which, in general, agree with past work. Also, ozone, aerosol, and water vapor data are described for the Antarctic springtime, showing large variation relative to the vortex. Cross-sections in latitude and altitude and polar plots at various altitudes clearly delineate the ozone hole vertically and areally.
NASA Astrophysics Data System (ADS)
Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.
2016-12-01
Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.
NASA Astrophysics Data System (ADS)
Uitz, Julia; Claustre, Hervé; Morel, André; Hooker, Stanford B.
2006-08-01
The present study examines the potential of using the near-surface chlorophyll a concentration ([Chla]surf), as it can be derived from ocean color observation, to infer the column-integrated phytoplankton biomass, its vertical distribution, and ultimately the community composition. Within this context, a large High-Performance Liquid Chromatography (HPLC) pigment database was analyzed. It includes 2419 vertical pigment profiles, sampled in case 1 waters with various trophic states (0.03-6 mg Chla m-3). The relationships between [Chla]surf and the chlorophyll a vertical distribution, as previously derived by Morel and Berthon (1989), are fully confirmed. This agreement makes it possible to go further and to examine if similar relationships between [Chla]surf and the phytoplankton assemblage composition along the vertical can be derived. Thanks to the detailed pigment composition, and use of specific pigment biomarkers, the contribution to the local chlorophyll a concentration of three phytoplankton groups can be assessed. With some cautions, these groups coincide with three size classes, i.e., microplankton, nanoplankton and picoplankton. Corroborating previous regional findings (e.g., large species dominate in eutrophic environments, whereas tiny phytoplankton prevail in oligotrophic zones), the present results lead to an empirical parameterization applicable to most oceanic waters. The predictive skill of this parameterization is satisfactorily tested on a separate data set. With such a tool, the vertical chlorophyll a profiles of each group can be inferred solely from the knowledge of [Chla]surf. By combining this tool with satellite ocean color data, it becomes possible to quantify on a global scale the phytoplankton biomass associated with each of the three algal assemblages.
González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
Investigating gravity waves evidences in the Venus upper atmosphere
NASA Astrophysics Data System (ADS)
Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide
2014-05-01
We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2014-05-01
Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004
High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar
NASA Astrophysics Data System (ADS)
Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin
2010-05-01
Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.
NASA Astrophysics Data System (ADS)
Baranski, L. A.; Rozemski, K.
TOVS/TIP digital data transmitted at the VHF-BEACON range from NOAA satellites are receiving and processing at the SDRPC. Receiving station is connected with the microcomputer IBM-PC/AT which process TOVS/TIP data via two states: initial data processing and retrieval of vertical profiles of the temperature, water vapour and ozone mixing ratio in the atmosphere. Receiving and processing equipment, retrieval methods, results and error discussion are presented.
NASA Astrophysics Data System (ADS)
Tsai, J.; Pikelnaya, O.; Hurlock, S. C.; Wong, K.; Cheung, R.; Haman, C. L.; Lefer, B. L.; Stutz, J.
2010-12-01
Nocturnal chemistry, through the conversion and removal of air pollutants, plays an important role in determining the initial condition for photochemistry during the following day. In the stable nocturnal boundary layer (NBL) the interplay between suppressed vertical mixing and surface emissions of NOx and VOCs can result in pronounced vertical trace gas profiles. The resulting altitude dependence of nocturnal chemistry makes the interpretation of ground observations challenging. In particular, the quantification of the nocturnal loss of NOx, due to NO3 and N2O5 chemistry, requires observations throughout the entire vertical extent of the NBL. The formation of daytime radical precursors, such as HONO, is also altitude dependent. An accurate assessment of their impact on daytime chemistry requires measurements of their profiles during the night and morning. Here we present observations from the CalNex-LA experiment, which took place from May 15 to June 15, 2010 on the east side of the Los Angeles Basin, CA. A Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) was set up on the roof of the Millikan library (265 m asl, 35m agl) on the campus of the California Institute of Technology. Four retroreflector arrays were mounted about 5 -7 km North-East of the instrument at 310m, 353m, 487m and 788 m asl. The vertical profiles of NO3, HONO, NO2, O3, HCHO, and SO2 were retrieved at altitude intervals of 35-78m, 78-121m, 121-255m and 255-556m above the ground. During many nights vertical gradients were observed, with elevated NO2 and HONO concentrations near the surface and larger ozone and NO3 concentrations aloft. Simultaneous ceilometer observations of the NBL structure show the impact of meteorology on the vertical trace gas distributions. We will discuss the consequences of trace gases gradients on the nocturnal NOx budget.
NASA Astrophysics Data System (ADS)
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.
What does reflection from cloud sides tell us about vertical distribution of cloud droplets?
NASA Technical Reports Server (NTRS)
Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor
2006-01-01
In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Derived Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
Profiles of turbulence dissipation rate for 15-minute intervals, time-stamped at the beginning of the 15-minute period, during the final 30 minutes of each hour. During that time, the 915-MHz wind profiling radar was in an optimized configuration with a vertically pointing beam only for measuring accurate spectral widths of vertical velocity. A bias-corrected dissipation rate also was profiled (described in McCaffrey et al. 2017). Hourly files contain two 15-minute profiles.
A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers
NASA Technical Reports Server (NTRS)
Carlson, Catherine A.; Forbes, Gregory S.
1989-01-01
Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.
Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer
NASA Astrophysics Data System (ADS)
Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.
2013-05-01
We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.
Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.
Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F
2011-11-01
In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Simulations of the Richtmyer-Meshkov Instability in a two-shock vertical shock tube
NASA Astrophysics Data System (ADS)
Ferguson, Kevin; Olson, Britton; Jacobs, Jeffrey
2017-11-01
Simulations of the Richtmyer-Meshkov Instability (RMI) in a new two-shock vertical shock tube configuration are presented. The simulations are performed using the ARES code at Lawrence-Livermore National Laboratory (LLNL). Two M=1.2 shock waves travel in opposing directions and impact an initially stationary interface formed by sulfur hexaflouride (SF6) and air. The delay between the two shocks is controlled to achieve a prescribed temporal separation in shock wave arrival time. Initial interface perturbations and diffusion profiles are generated in keeping with previously gathered experimental data. The effect of varying the inter-shock delay and initial perturbation structure on instability growth and mixing parameters is examined. Information on the design, construction, and testing of a new two-shock vertical shock tube are also presented.
Surface tension profiles in vertical soap films
NASA Astrophysics Data System (ADS)
Adami, N.; Caps, H.
2015-01-01
Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William
2003-01-01
In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,
NASA Technical Reports Server (NTRS)
Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.
2004-01-01
In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.
The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.
Lasagna, Manuela; De Luca, Domenico Antonio
2016-10-01
Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.
Monitoring water phase dynamics in winter clouds
NASA Astrophysics Data System (ADS)
Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.
Monitoring water phase dynamics in winter clouds
Campos, Edwin F.; Ware, Randolph; Joe, Paul; ...
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener–Bergeron–Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central Highmore » Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and now casting the evolution of supercooled droplets in winter clouds.« less
What are the associated parameters and temporal coverage?
Atmospheric Science Data Center
2014-12-08
... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...
NASA Astrophysics Data System (ADS)
Patsis, P. A.; Harsoula, M.
2018-05-01
Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.
Integration of ALS and TLS for calibration and validation of LAI profiles from large footprint lidar
NASA Astrophysics Data System (ADS)
Armston, J.; Tang, H.; Hancock, S.; Hofton, M. A.; Dubayah, R.; Duncanson, L.; Fatoyinbo, T. E.; Blair, J. B.; Disney, M.
2016-12-01
The Global Ecosystem Dynamics Investigation (GEDI) is designed to provide measurements of forest vertical structure and above-ground biomass density (AGBD) over tropical and temperate regions. The GEDI is a multi-beam waveform lidar that will acquire transects of forest canopy vertical profiles in conditions of up to 99% canopy cover. These are used to produce a number of canopy height and profile metrics to model habitat suitability and AGBD. These metrics include vertical leaf area index (LAI) profiles, which require some pre-launch refinement of large-footprint waveform processing methods for separating canopy and ground returns and estimation of their reflectance. Previous research developments in modelling canopy gap probability to derive canopy and ground reflectance from waveforms have primarily used data from small-footprint instruments, however development of a generalized spatial model with uncertainty will be useful for interpreting and modelling waveforms from large-footprint instruments such as the NASA Land Vegetation and Ice Sensor (LVIS) with a view to implementation for GEDI. Here we present an analysis of waveform lidar data from the NASA Land Vegetation and Ice Sensor (LVIS), which were acquired in Gabon in February 2016 to support the NASA/ESA AfriSAR campaign. AfriSAR presents a unique opportunity to test refined methods for retrieval of LAI profiles in high above-ground biomass rainforests (up to 600 Mg/ha) with dense canopies (>90% cover), where the greatest uncertainty exists. Airborne and Terrestrial Laser Scanning data (TLS) were also collected, enabling quantification of algorithm performance in plots of dense canopy cover. Refinement of canopy gap probability and LAI profile modelling from large-footprint lidar was based on solving for canopy and ground reflectance parameters spatially by penalized least-squares. The sensitivities of retrieved cover and LAI profiles to variation in canopy and ground reflectance showed improvement compared to assuming a constant ratio. We evaluated the use of spatially proximate simple waveforms to interpret more complex waveforms with poor separation of canopy and ground returns. This work has direct implications for GEDI algorithm refinement.
Modeling the CAPTEX Vertical Tracer Concentration Profiles.
NASA Astrophysics Data System (ADS)
Draxler, Roland R.; Stunder, Barbara J. B.
1988-05-01
Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.
Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.
2012-01-01
The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528
Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence
Gunawan, Budi
2014-06-11
The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.
NASA Astrophysics Data System (ADS)
Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.
2016-12-01
Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.
NASA Astrophysics Data System (ADS)
Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.
2012-12-01
During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.
NASA Technical Reports Server (NTRS)
Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.
1998-01-01
We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.
NASA Astrophysics Data System (ADS)
Costa Surós, Montserrat; Stachlewska, Iwona S.
2016-04-01
A long-term study, assessing ground-based remote Raman lidar versus in-situ radiosounding has been conducted with the aim of improving the knowledge on the water content vertical profile through the atmosphere, and thus the conditions for cloud formation processes. Water vapor mixing ratio (WVMR) and relative humidity (RH) profiles were retrieved from ADR Lidar (PollyXT-type, EARLINET site in Warsaw). So far, more than 100 nighttime profiles averaged over 1h around midnight from July 2013 to December 2015 have been investigated. Data were evaluated with molecular extinctions calculated using two approximations: the US62 standard atmosphere and the radiosounding launched in Legionowo (12374). The calibration factor CH2O for lidar retrievals was obtained for each profile using the regression method and the profile method to determine the best calibration factor approximation to be used in the final WVMR and RH calculation. Thus, statistically representative results for comparisons between lidar WVMR median profiles obtained by calibrating using radiosounding profiles and using atmospheric synthetic profiles, all of them with the best calibration factor, will be presented. Finally, in order to constrain the conditions of cloud formation in function of the RH profile, the COS14 algorithm, capable of deriving cloud bases and tops by applying thresholds to the RH profiles, was applied to find the cloud vertical structure (CVS). The algorithm was former applied to radiosounding profiles at SGP-ARM site and tested against the CVS obtained from the Active Remote Sensing of Clouds (ARSCL) data. Similarly, it was applied for lidar measurements at the Warsaw measurement site.
Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations
NASA Astrophysics Data System (ADS)
Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.
2015-12-01
Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.
Numerical study of effects of atmosphere temperature profile on wildfire behavior
Chunmei Xia; M. Yousuff Hussaini; Philip Cunningham; Rodman R. Linn; Scott L. Goodrick
2003-01-01
The vertical temperature profile and hence the stability in the atmosphere near the ground vanes significantly between day and night. Typically, the potential temperature at the surface is higher than that above the ground during the day and lower than that above the ground during the night. Such differences in the vertical temperature profile might act to accelerate...
Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524
NASA Astrophysics Data System (ADS)
Maltagliati, Luca; Montmessin, Franck; Fedorova, Anna; Bertaux, Jean-Loup; Korablev, Oleg
In pre-Mars Express era only very sparse measurements of the vertical profile of water vapor existed, with limited temporal and spatial coverage. Thus, knowledge of the H2 O distribution along the atmosphere relied almost exclusively on General Circulation Models. The vertical distribution of water vapor nonetheless allows to get otherwise unobtainable information on important characteristics of the Martian water cycle, such as the role of sources and sinks, phase changes, and the influence of clouds. Several other potentially significant phenomena, as the presence of supersaturation, the deposition of water vapor in the layer just below the saturation height, the formation of ice particles and water ice clouds, can be observed and studied in detail for the first time. The infrared channel of the SPICAM spectrometer onboard Mars Express, used in solar oc-cultation mode, allows to retrieve simultaneously the vertical profile of H2 O, CO2 , and aerosol properties. This dataset is thus perfectly suited to enhance our vertical knowledge of the at-mosphere of Mars, covering more than three full Martian years with good temporal and spatial distribution. We present the main results from the analysis of water vapor profiles, and their implication for the behavior of the water cycle on Mars. A comparison with the output from the state-of-the-art General Circulation Model developed at the Laboratoire de Météorologie Dynamique ee in Paris (LMD-GCM), is performed, in order to understand the consequences of this dataset on the current knowledge of physics and microphysics of water on Martian atmosphere. In particular, the currently accepted assumption that the distribution of water in the atmosphere is controlled by saturation physics is tested, and the consequences of the departure from this assumption are analysed in detail.
NASA Astrophysics Data System (ADS)
Nölscher, A.; Yanez-Serrano, A. M.; Kesselmeier, J.; Artaxo, P. P.; Wolff, S.; Trebs, I.; Williams, J.
2013-12-01
The Amazon rainforest forest is the world's largest contiguous ecosystem. Being about 6 million km2 it is around two thirds the area of the United States. The Amazon forest plays an important part of the Earth's hydrological, energy and carbon cycles. Photosynthetic uptake of CO2 by the rainforest affects the global radiative budget and concomitant release of reactive biogenic volatile organic compounds (BVOCs) can directly impact the atmosphere's primary oxidant, the hydroxyl (OH) radical as well as aerosol production and growth. Direct measurement of the total atmospheric OH reactivity (or inverse OH lifetime), in parallel with the individual BVOC can reveal insights into the coupling between biogenic emissions, atmospheric oxidation processes, canopy transport, and the OH budget. In this study we present for the first time, vertical profiles of total OH reactivity and biogenic VOCs that were monitored simultaneously throughout dry season, wet season and transition periods, from a remote tropical rainforest site in the Amazon (Amazonian Tall Tower Observatory (ATTO), S 02°08'38.8'', W 58°59'59.5'', 120 m above sea level, 150 km NE of the city of Manaus, Brazil). The profiles consisted of sequential measurements at 0.05m, 0.5m, 4 m, 12m, 24m, 38m, 53m and 79m, a single profile taking 16 minutes to complete. The measurements were made using Proton Transfer Reaction Mass Spectrometry (PTR-MS), directly in the case of BVOC and using the Comparative Reactivity Method pre-reactor for total OH reactivity. The vertical, diel and seasonal variations in total OH reactivity will be discussed. Total OH reactivity and isoprene profiles were observed to vary strongly between the seasons. Biogenic emissions from the canopy impacted the measurements as well as photo-oxidation, turbulent mixing, and deposition. Tower in the Amazon rainforest for measurements of vertical profiles of BVOCs and total OH reactivity from the forest floor, through the canopy, up to 80m.
Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming
McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.
2004-01-01
As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.
The OMPS Limb Profiler instrument
NASA Astrophysics Data System (ADS)
Rault, D. F.; Xu, P.
2011-12-01
The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.
On vertical profile of ozone at Syowa
NASA Technical Reports Server (NTRS)
Chubachi, Shigeru
1994-01-01
The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.
NASA Astrophysics Data System (ADS)
Berthet, Gwenael; Renard, Jean-Baptiste; Catoire, Valery; Huret, Nathalie; Lefevre, Franck; Hauchecorne, Alain; Chartier, Michel; Robert, Claude
Remote-sensing balloon observations have recurrently revealed high concentrations of polar stratospheric NO2 in particular in the lower stratosphere as can be seen in various published vertical profiles. A balloon campaign dedicated to the investigation of this problem through comparisons between remote-sensing (SALOMON) and in situ (SPIRALE) measurements of NO2 inside the polar vortex was conducted in January 2006. The published results show unexpected strong enhancements in the slant column densities of NO2 with respect to the elevation angle and displacement of the balloon. These fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude resulting from mid-latitude air intrusion as revealed by Potential Vorticity (PV) maps. The retrieval of the NO2 vertical profile is subsequently biased in the form of artificial excesses of NO2 concentrations. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in presence of either perturbed dynamical conditions or when mesospheric production events occur as recently highlighted from ENVISAT data. Through the occurrence of such events, we propose to re-examine formerly published high-latitude profiles from the remote-sensing instruments AMON and SALOMON using in parallel PV maps from the MIMOSA advection contour model and the REPROBUS CTM outputs. Mid-latitude profiles of NO2 will also be investigated since they are likely to be biased if presence of air from other latitudes was present at the time of the observations.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Simpson, J.; Sui, C.-H.; Ferrier, B.; Lang, S.; Scala, J.; Chou, M.-D.; Pickering, K.
1993-01-01
A 2D time-dependent and nonhydrostatic numerical cloud model is presently used to estimate the heating, moisture, and water budgets in the convective and stratiform regions for both a tropical and a midlatitude squall line. The model encompasses a parameterized, three-class ice phase microphysical scheme and longwave radiative transfer process. It is noted that the convective region plays an important role in the generation of stratiform rainfall for both cases. While a midlevel minimum in the moisture profile for the tropical case is due to vertical eddy transport in the convective region, the contribution to the heating budget by the cloud-scale fluxes is minor; by contrast, the vertical eddy heat-flux is relatively important for the midlatitude case due to the stronger vertical velocities present in the convective cells.
Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying
2017-11-23
Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers, while the optimized SR-like index was recommended for the bottom Chl estimation due to its simple and universal form. We suggest that it is necessary to take into account the penetration characteristic of the light inside the canopy for different Chl absorption regions of the spectrum and the formula used to derive spectral index when estimating the vertical profile of leaf Chl content using off-nadir hyperspectral data.
Analysis of ETMS Data Quality for Traffic Flow Management Decisions
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.; Sridhar, Banavar; Kim, Douglas
2003-01-01
The data needed for air traffic flow management decision support tools is provided by the Enhanced Traffic Management System (ETMS). This includes both the tools that are in current use and the ones being developed for future deployment. Since the quality of decision support provided by all these tools will be influenced by the quality of the input ETMS data, an assessment of ETMS data quality is needed. Motivated by this desire, ETMS data quality is examined in this paper in terms of the unavailability of flight plans, deviation from the filed flight plans, departure delays, altitude errors and track data drops. Although many of these data quality issues are not new, little is known about their extent. A goal of this paper is to document the magnitude of data quality issues supported by numerical analysis of ETMS data. Guided by this goal, ETMS data for a 24-hour period were processed to determine the number of aircraft with missing flight plan messages at any given instant of time. Results are presented for aircraft above 18,000 feet altitude and also at all altitudes. Since deviation from filed flight plan is also a major cause of trajectory-modeling errors, statistics of deviations are presented. Errors in proposed departure times and ETMS-generated vertical profiles are also shown. A method for conditioning the vertical profiles for improving demand prediction accuracy is described. Graphs of actual sector counts obtained using these vertical profiles are compared with those obtained using the Host data for sectors in the Fort Worth Center to demonstrate the benefit of preprocessing. Finally, results are presented to quantify the extent of data drops. A method for propagating track positions during ETMS data drops is also described.
NASA Astrophysics Data System (ADS)
Abdelkhalek, M. M.
2009-05-01
Numerical results are presented for heat and mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. An analysis is performed to study the momentum, heat and mass transfer characteristics of MHD natural convection flow over a moving permeable surface. The surface is maintained at linear temperature and concentration variations. The non-linear coupled boundary layer equations were transformed and the resulting ordinary differential equations were solved by perturbation technique [Aziz A, Na TY. Perturbation methods in heat transfer. Berlin: Springer-Verlag; 1984. p. 1-184; Kennet Cramer R, Shih-I Pai. Magneto fluid dynamics for engineers and applied physicists 1973;166-7]. The solution is found to be dependent on several governing parameter, including the magnetic field strength parameter, Prandtl number, Schmidt number, buoyancy ratio and suction/blowing parameter, a parametric study of all the governing parameters is carried out and representative results are illustrated to reveal a typical tendency of the solutions. Numerical results for the dimensionless velocity profiles, the temperature profiles, the concentration profiles, the local friction coefficient and the local Nusselt number are presented for various combinations of parameters.
Evaluation of the in-service safety performance of safety-shape and vertical concrete barriers.
DOT National Transportation Integrated Search
2011-12-16
Roadside concrete barriers have been widely used to protect errant motorists from hitting : roadside hazards or obstacles. Two concrete barrier profiles, vertical and safety-shape, have been used : for this purpose. The safety-shape profile has been ...
NASA Astrophysics Data System (ADS)
Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping
2017-10-01
We alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ˜8-50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.
Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates
NASA Astrophysics Data System (ADS)
Amin, Mazyar; Dabiri, Dana; Navaz, Homayun
2006-11-01
Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.
Wind Characteristics of Coastal and Inland Surface Flows
NASA Astrophysics Data System (ADS)
Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya
2015-11-01
Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.
NASA Technical Reports Server (NTRS)
Iraci, Laura T.
2016-01-01
The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approximately 8 km to near surface), boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. Our largest data collection includes 55 vertical profiles at Railroad Valley, NV, approximately 100 miles southwest of Great Basin National Park, and many of those flights include comparisons to surface monitors in the Nevada Rural Ozone Initiative network. We have also collected a smaller set of measurements northwest of Joshua Tree National Park, and are looking to develop partnerships that can put this data to use to assess or improve air quality in nearby Parks. AJAX also studies the plumes emitted by wildfires in California, as most emissions inventories are based on prescribed fires. We have sampled a dozen fires, and results will be presented from several, including the Rim (2013), Soberanes and Cedar (2016) Fires.
Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations
NASA Astrophysics Data System (ADS)
Song, C.; Maksyutov, S.; Belikov, D.; Takagi, H.; Shu, J.
2015-03-01
We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10 s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0° E to -84.0° W, and 87.0° N to -67.2° S. The simulation results were compared with CO2 observations made in January and November 2009, and March and April 2010. The analysis attests that the model is good enough to simulate vertical profiles with errors generally within 1-2 ppmv, except for the lower stratosphere in the Northern Hemisphere high latitudes.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)
2001-01-01
The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.
NASA Technical Reports Server (NTRS)
Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens
2003-01-01
Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.
NASA Astrophysics Data System (ADS)
Dean, Cayla; Soloviev, Alexander; Hirons, Amy; Frank, Tamara; Wood, Jon
2015-04-01
Recent studies suggest that diel vertical migrations of zooplankton may have an impact on ocean mixing, though details are not completely clear. A strong sound scattering layer of zooplankton undergoing diel vertical migrations was observed in Saanich Inlet, British Colombia, Canada by Kunze et al. (2006). In this study, a shipboard 200-kHz echosounder was used to track vertical motion of the sound scattering layer, and microstructure profiles were collected to observe turbulence. An increase of dissipation rate of turbulent kinetic energy by four to five orders of magnitude was measured during diel vertical migrations of zooplankton in one case (but not observed during other cases). A strong sound scattering layer undergoing diel vertical migration was also observed in the Straits of Florida via a bottom mounted acoustic Doppler current profiler at 244 m isobath. A 3-D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating zooplankton) via a discrete phase model was used to simulate the effect of diel vertical migrations on the turbulence for both Saanich Inlet and the Straits of Florida. The model was initialized with idealized (but based on observation) density and velocity profiles. Particles, with buoyancy adjusted to serve as a proxy for vertically swimming zooplankton, were injected to simulate diel vertical migration cycles. Results of models run with extreme concentrations of particles showed an increase in dissipation rate of turbulent kinetic energy of approximately five orders of magnitude over background turbulence during migration of particles in both Saanich Inlet and the Straits of Florida cases (though direct relation of the turbulence produced by buoyant particles and swimming organisms isn't straightforward). This increase was quantitatively consistent, with turbulence measurements by Kunze et al. (2006). When 10 times fewer particles were injected into the model, the effect on dissipation rate of turbulent kinetic energy was an order of magnitude smaller than that from the extreme concentration. At a concentration of particles 100 times smaller than the extreme concentration, there was no longer an observable effect. In the Straits of Florida, direct turbulence measurements were not available to make a quantitative comparison. However, a small, but statistically significant decrease in northward current velocity profiles during migration times were observed after averaging these profiles over 11 months. A small decrease of current velocity connected to the vertical migrations of particles was reproduced in the Straits of Florida model case. The deviations in the velocity profiles can be explained by the increase in turbulent mixing during vertical migration periods.
Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model
2006-08-14
brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the
NASA Astrophysics Data System (ADS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2010-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2013-06-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
Asnicar, Francesco; Manara, Serena; Zolfo, Moreno; Truong, Duy Tin; Scholz, Matthias; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna; Tett, Adrian; Segata, Nicola
2017-01-01
The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum , Coprococcus comes , and Ruminococcus bromii , were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se , does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome.
Manara, Serena; Truong, Duy Tin; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna
2017-01-01
ABSTRACT The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum, Coprococcus comes, and Ruminococcus bromii, were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome. PMID:28144631
Aerosol profiling during the large scale field campaign CINDI-2
NASA Astrophysics Data System (ADS)
Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas
2018-04-01
For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. To ensure proper traceability of the MAXDOAS observations, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS observation and retrieval techniques enable inferring vertical structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent observations are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, and essential are in particular the vertical profiles of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.
75 FR 3784 - Safety Advisory 2009-03
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... prevalence of crossings with substandard vertical profiles, FRA intends to address this issue during the... that utilizes LIDAR (light detection and ranging) mounted on a track inspection vehicle to determine if... transportation officials to identify crossings with substandard vertical profiles and close or take appropriate...
Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak
NASA Astrophysics Data System (ADS)
Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team
2017-10-01
A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.
From Surface Chlorophyll a to Phytoplankton Community Composition in Oceanic Waters
NASA Technical Reports Server (NTRS)
Uitz, Julia; Claustre, Herve; Morel, Andre; Hooker, Stanford B.
2004-01-01
The objective of the present study is to examine the potential of using the near-surface total chlorophyll a concentration (C(sub surf)), as it can be derived from ocean color observation, to infer the column-integrated and the vertical distribution of the phytoplanktonic biomass, both in a quantitative way and in a qualitative way (z.e., in terms of community structure). Within this context, a large HPLC (High Performance Liquid Chromatography) pigment database has been analyzed. It includes 2419 vertical pigment profiles, all sampled in Case-1 waters with various trophic states. The relationshps between C(sub surf) and the total chlorophyll alpha vertical distribution, as previously derived by Morel and Berthon, are fully confirmed, as the present results coincide with the previous ones. This agreement allows to go further, namely to examine the possibility of extracting relationships between C(sub surf) and the vertical composition of the algal assemblages. Thanks to the detailed pigment composition available from HPLC measurements, the contribution of three size classes (micro-, nano-, and pico-phytoplankton) to the local total chlorophyll a concentration can be assessed. Corroborating previous findings (e.g., large species dominate in eutrophc environments, whereas tiny phytoplankton prevail in oligotrophic zones), the results lead to a statistically based parameterization. The predictive skill of this parameterization is successfully tested on a separate data set. With such a tool, the vertical total chlorophyll a profiles associated with each size class can be inferred from the sole knowledge of C(sub surf). By combining this tool with satellite ocean color data, it becomes conceivable to quantify on a global scale the phytoplankton biomass associated with each of the three size classes.
A~compact receiver system for simultaneous measurements of mesospheric CO and O3
NASA Astrophysics Data System (ADS)
Forkman, P.; Christensen, O. M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V. M.
2015-09-01
During the last decades, ground-based microwave radiometry has matured to an established remote sensing technique for measuring vertical profiles of a number of gases in the stratosphere and the mesosphere. Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the upper stratosphere and mesosphere both day and night, and even during cloudy conditions. Except for microwave instruments placed at high altitude sites, or at sites with dry atmospheric conditions, only molecules with significant emission lines below 150 GHz, such as CO, H2O and O3 can be observed. Vertical profiles of these molecules can give important information about chemistry and dynamics in the middle atmosphere. Today these measurements are performed at relatively few sites, more simple and reliable instrument solutions are required to make the measurement technique more widely spread. This need is today urgent as the number of satellite sensors observing the middle atmosphere is about to decrease drastically. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO at 115.27 GHz and O3 at 110.84 GHz is presented The radiometer, its calibration scheme and observation method are presented. The retrieval procedure, including compensation of the different tropospheric attenuation at the two frequencies, and error characterization are also described. The first measurement series from October 2014 until April 2015 taken at the Onsala Space Observatory, OSO, (57° N, 12° E) is analysed. The retrieved vertical profiles are compared with co-located CO and O3 data from the MLS instrument on the Aura satellite. The datasets from the instruments agree well to each other. The main differences are the higher OSO volume mixing ratios of O3 in the upper mesosphere during the winter nights and the higher OSO volume mixing ratios of CO in the mesosphere during the winter. The low bias of mesospheric winter values of CO from MLS compared to ground-based instruments has been reported earlier.
A compact receiver system for simultaneous measurements of mesospheric CO and O3
NASA Astrophysics Data System (ADS)
Forkman, P.; Christensen, O. M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V. M.
2016-02-01
During the last decades, ground-based microwave radiometry has matured into an established remote sensing technique for measuring vertical profiles of a number of gases in the stratosphere and the mesosphere. Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the upper stratosphere and mesosphere both day and night, and even during cloudy conditions. Except for microwave instruments placed at high-altitude sites, or at sites with dry atmospheric conditions, only molecules with significant emission lines below 150 GHz, such as CO, H2O, and O3, can be observed. Vertical profiles of these molecules can give important information about chemistry and dynamics in the middle atmosphere. Today these measurements are performed at relatively few sites; more simple and reliable instrument solutions are required to make the measurement technique more widely spread. This need is urgent today as the number of satellite sensors observing the middle atmosphere is about to decrease drastically. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO at 115.27 GHz and O3 at 110.84 GHz is presented. The radiometer, its calibration scheme, and its observation method are presented. The retrieval procedure, including compensation of the different tropospheric attenuations at the two frequencies and error characterization, are also described. The first measurement series from October 2014 until April 2015 taken at the Onsala Space Observatory, OSO (57° N, 12° E), is analysed. The retrieved vertical profiles are compared with co-located CO and O3 data from the MLS instrument on the Aura satellite. The data sets from the instruments agree well with each other. The main differences are the higher OSO volume mixing ratios of O3 in the upper mesosphere during the winter nights and the higher OSO volume mixing ratios of CO in the mesosphere during the winter. The low bias of mesospheric winter values of CO from MLS compared to ground-based instruments was reported earlier.
1.6μm DIAL System for Measurements of CO2 Concentration Profiles in the Atmosphere
NASA Astrophysics Data System (ADS)
Nagasawa, C.; Abo, M.; Shibata, Y.
2013-12-01
We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system has a 60 cm telescope for vertical measurement and a 25 cm scanning telescope for horizontal measurement. This 1.6 μm DIAL system is also available to measure CO2 concentration profiles for daytime by using narrow-band interference filters. The 1.6 μm DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 30 minutes and vertical resolution of 300 - 600 m. The CO2 DIAL was also operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. The vertical distribution of CO2 concentration from 2 km to 7 km altitude has been observed using two telescopes with different apertures. We hope to get the data of the CO2 concentration from lower altitude to 7 km at the same time. Since the change of signal intensity is larger near the ground, it is also important to the install the photon counter with the faster count rate to expand the dynamic range. The high speed counter and the telescope system make the dynamic range expand more than 10 times and the vertical distribution observation of CO2 concentration from 0.5 km to 7 km altitude is performed. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp. 748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp. 1732-1735, 2007.
NASA Astrophysics Data System (ADS)
Ran, L.; Deng, Z.
2013-12-01
The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.
NASA Astrophysics Data System (ADS)
Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.
1997-08-01
As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd
Mandato, S; Cuq, B; Ruiz, T
2012-07-01
In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.
Investigation of shortcomings in simulated aerosol vertical profiles
NASA Astrophysics Data System (ADS)
Park, S.; Allen, R.
2017-12-01
The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.
Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg
1995-01-01
A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.
NASA Technical Reports Server (NTRS)
Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa
2016-01-01
This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.
Williams, Christopher; Jensen, Mike
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.
NASA Astrophysics Data System (ADS)
Schilperoort, B.; Coenders, M.; Savenije, H. H. G.
2017-12-01
In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.
Optimal integration of gravity in trajectory planning of vertical pointing movements.
Crevecoeur, Frédéric; Thonnard, Jean-Louis; Lefèvre, Philippe
2009-08-01
The planning and control of motor actions requires knowledge of the dynamics of the controlled limb to generate the appropriate muscular commands and achieve the desired goal. Such planning and control imply that the CNS must be able to deal with forces and constraints acting on the limb, such as the omnipresent force of gravity. The present study investigates the effect of hypergravity induced by parabolic flights on the trajectory of vertical pointing movements to test the hypothesis that motor commands are optimized with respect to the effect of gravity on the limb. Subjects performed vertical pointing movements in normal gravity and hypergravity. We use a model based on optimal control to identify the role played by gravity in the optimal arm trajectory with minimal motor costs. First, the simulations in normal gravity reproduce the asymmetry in the velocity profiles (the velocity reaches its maximum before half of the movement duration), which typically characterizes the vertical pointing movements performed on Earth, whereas the horizontal movements present symmetrical velocity profiles. Second, according to the simulations, the optimal trajectory in hypergravity should present an increase in the peak acceleration and peak velocity despite the increase in the arm weight. In agreement with these predictions, the subjects performed faster movements in hypergravity with significant increases in the peak acceleration and peak velocity, which were accompanied by a significant decrease in the movement duration. This suggests that movement kinematics change in response to an increase in gravity, which is consistent with the hypothesis that motor commands are optimized and the action of gravity on the limb is taken into account. The results provide evidence for an internal representation of gravity in the central planning process and further suggest that an adaptation to altered dynamics can be understood as a reoptimization process.
This poster compares air quality modeling simulations under current climate and a future (approximately 2050) climate scenario. Differences in predicted ozone episodes and daily average PM2.5 concentrations are presented, along with vertical ozone profiles. Modeling ...
CLIMATIC DATA ON ESTIMATED EFFECTIVE CHIMNEY HEIGHTS IN THE UNITED STATES
Plume rise calculations are based on the equations of Briggs (1975) for use with variable vertical profiles of temperature and wind speed. Results are presented for small and large chimneys, based on five years of twice-daily rawinsondes throughout the contiguous United States. I...
Tethered balloon-based measurements of meteorological variables and aerosols
NASA Technical Reports Server (NTRS)
Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.
1976-01-01
Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.
Exploring the nearshore marine wind profile from field measurements and numerical hindcast
NASA Astrophysics Data System (ADS)
del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.
2012-12-01
Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind profile are evaluated and, based on this work, a particular parameterization of the wind profile is proposed.
The 60 GHz radiometric local vertical sensor experiment
NASA Technical Reports Server (NTRS)
Grauling, C. H., Jr.
1973-01-01
The experiment concept involves the use of millimeter wave radiation the atmospheric oxygen to provide vertical sensing information to a satellite-borne radiometer. The radiance profile studies require the calculation of ray brightness temperature as a function of tangential altitude and atmosphere model, and the computer program developed for this purpose is discussed. Detailed calculations have been made for a total of 12 atmosphere models, including some showing severe warning conditions. The experiment system analysis investigates the effect of various design choices on system behavior. Calculated temperature profiles are presented for a wide variety of frequencies, bandwidths, and atmosphere models. System performance is determined by the convolution of the brightness temperature and an assumed antenna pattern. A compensation scheme to account for different plateau temperatures is developed and demonstrated. The millimeter wave components developed for the local vertical sensor are discussed, with emphasis on the antenna, low noise mixer, and solid state local oscillator. It was concluded that a viable sensing technique exists, useful over a wide range of altitude with an accuracy generally on the order of 0.01 degree or better.
NASA Astrophysics Data System (ADS)
Rieprich, J.; Winterfeldt, M.; Tomm, J.; Kernke, R.; Crump, P.
2017-02-01
The lateral beam parameter product, BPPlat, and resulting lateral brightness of GaAs-based high-power broad-area diode lasers is strongly influenced by the thermal lens profile. We present latest progress in efforts using FEM simulation to interpret how variation in chip construction influences the thermal lens profile, itself determined experimentally using thermography (thermal camera). Important factors are shown to include the vertical (epitaxial) structure, the properties of the submount and the transition between chip and submount, whose behavior is shown to be consistent with the presence of a significant thermal barrier.
NASA Astrophysics Data System (ADS)
Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.
2015-12-01
Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.
NASA Technical Reports Server (NTRS)
Iraci, Laura
2016-01-01
The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approx. 8 km to near surface),boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. This talk will present an overview of our flights flown to date, with particular focus on methane observations in the San Francisco Bay Area, Sacramento, and the delta region.
Radiosonde pressure sensor performance - Evaluation using tracking radars
NASA Technical Reports Server (NTRS)
Parsons, C. L.; Norcross, G. A.; Brooks, R. L.
1984-01-01
The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.
MINERAL PARAGENESIS OF FINE-GRAINED PRECIPITATES IN PERMEABLE REACTIVE BARRIERS OF ZERO-VALENT IRON
U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
Geopr...
Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles
NASA Astrophysics Data System (ADS)
Montmessin, F.
2005-12-01
The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.
User's guide for SBUV/TOMS ozone derivative products
NASA Technical Reports Server (NTRS)
Fleig, A. J.; Wellemeyer, C.; Oslik, N.; Lee, D.; Miller, J.; Magatani, R.
1984-01-01
A series of products are available derived from the total-ozone and ozone vertical profile results for the Solar Backscattered Ultraviolet/Total-Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus-7 operation. Products available are (1) orbital height-latitude cross sections of the SBUV profile data, (2) daily global total ozone contours in polar coordinates, (3) daily averages of total ozone in global 5x5 degree latitude-longitude grid, (4) daily, monthly and quarterly averages of total ozone and profile data in 10 degree latitude zones, (5) tabular presentation of zonal means, (6) daily global total ozone and profile contours in polar coordinates. The ""Derivative Products User's Guide'' describes each of these products in detail, including their derivation and presentation format. Information is provided on how to order the tapes and microfilm from the National Space Science Data Center.
NASA Astrophysics Data System (ADS)
Graf, A.; Ney, P.
2017-12-01
A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.
NASA Astrophysics Data System (ADS)
Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David
2016-04-01
Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was observed below the MH. The radiative power density absorbed into each atmospheric layer was normalized by the layer height to compare measurements taken at different sites with different vertical resolutions. The atmospheric absorption of radiative power below the MH ranged from +45.2±5.1 mW/m3 up to +103.3±16.2 mW/m3 and was ~2-3 times higher than above MH. The resulting heating rate was characterized by a vertical negative gradient with increasing height, from -2.6±0.2 K/(day km) up to -8.3±1.2 K/(day km), exerting a negative feedback on the atmospheric stability over basin valleys, weakening the ground-based thermal inversions and increasing the dispersal conditions.
The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)
NASA Astrophysics Data System (ADS)
Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.
2010-01-01
This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de Météorologie Dynamique) because the latter only provide information on the uppermost cloud layer.
One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy
NASA Astrophysics Data System (ADS)
Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria
2015-04-01
In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.
Young, Cora J; Washenfelder, Rebecca A; Roberts, James M; Mielke, Levi H; Osthoff, Hans D; Tsai, Catalina; Pikelnaya, Olga; Stutz, Jochen; Veres, Patrick R; Cochran, Anthony K; VandenBoer, Trevor C; Flynn, James; Grossberg, Nicole; Haman, Christine L; Lefer, Barry; Stark, Harald; Graus, Martin; de Gouw, Joost; Gilman, Jessica B; Kuster, William C; Brown, Steven S
2012-10-16
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
Lidar characterizations of atmospheric aerosols and clouds
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.
2017-12-01
Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and cloud properties for addressing both direct and indirect radiative forcing.
NASA Technical Reports Server (NTRS)
Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo
2009-01-01
A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.
Retrievals of heavy ozone with MIPAS
NASA Astrophysics Data System (ADS)
Jonkheid, Bastiaan; Röckmann, Thomas; Glatthor, Norbert; Janssen, Christof; Stiller, Gabriele; von Clarmann, Thomas
2016-12-01
A method for retrieval of 18O-substituted isotopomers of O3 in the stratosphere with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is presented. Using a smoothing regularisation constraint, volume mixing ratio profiles are retrieved for the main isotopologue and the symmetric and asymmetric isotopomers of singly substituted O3. For the retrieval of the heavy isotopologues, two microwindows in the MIPAS A band (685-970 cm-1) and six in the AB band (1020-1170 cm-1) are used. As the retrievals are performed as perturbations on the previously retrieved a priori profiles, the vertical resolution of the individual isotopomer profiles is very similar, which is important when calculating the ratio between two isotopomers. The performance of the method is evaluated using 1044 vertical profiles recorded with MIPAS on 1 July 2003. The mean values are separated by latitude bands, along with estimates of their uncertainties. The asymmetric isotopomer shows a mean enrichment of ˜ 8 %, with a vertical profile that increases up to 33 km and decreases at higher altitudes. This decrease with altitude is a robust result that does not depend on retrieval settings, and it has not been reported clearly in previously published datasets. The symmetric isotopomer is considerably less enriched, with mean values around 3 % and with a large spread. In individual retrievals the uncertainty of the enrichment is dominated by the measurement noise (2-4 %), which can be reduced by averaging multiple retrievals; systematic uncertainties linked to the retrieval are generally small at ˜ 0.5 %, but this is likely underestimated because the uncertainties in key spectroscopic parameters are unknown. The variabilities in the retrieval results are largest for the Southern Hemisphere.
Huang, Wenjiang; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying
2017-01-01
Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R2 of 0.84–0.69, and RMSE of 5.37–5.56 µg/cm2 from the top to the bottom layers, while the optimized SR-like index was recommended for the bottom Chl estimation due to its simple and universal form. We suggest that it is necessary to take into account the penetration characteristic of the light inside the canopy for different Chl absorption regions of the spectrum and the formula used to derive spectral index when estimating the vertical profile of leaf Chl content using off-nadir hyperspectral data. PMID:29168757
NASA Astrophysics Data System (ADS)
Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina
2016-04-01
The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2. The potentiality of the new EARLINET data products and first examples of integrated studies with models will be presented at the conference. Acknowledgments: ACTRIS2 Research Infrastructure Project is funded by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169 and previously under FP7 grant agreement n. 262254.
NASA Astrophysics Data System (ADS)
Mishra, V.; Cruise, J. F.; Mecikalski, J. R.
2015-12-01
Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.
TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.
2015-12-01
Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations,more » and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.« less
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
Frequency characteristics of geomagnetic induction anomalies in Saurashtra region
NASA Astrophysics Data System (ADS)
Kumar, P. V. Vijaya; Rao, P. B. V. Subba; Rao, C. K.; Singh, A. K.; Rao, P. Rama
2017-10-01
Magnetovariational studies were carried out along four different EW profiles in Saurashtra region in different phases, during January 2007-March 2012. Transient geomagnetic field variations (X, Y horizontal field and Z vertical field components) recorded along these profiles are analyzed to infer the electrical conductivity distribution of the region. The vertical field transfer functions which depict the characteristics of electrical conductivity distribution are presented in the form of induction arrows. From the spatial distribution of these arrows, it is inferred that the sediments filling the offshore basins have more conductivity than those basins in Saurashtra region. Z/ H pseudo sections along the four profiles in conjunction with tectonics and other geophysical methods permit to infer that the conductivity anomaly in the eastern part of the profiles is associated with the crustal/lithosphere thinning. The possible cause for these anomalies may be explained in terms of partial melts associated with mafic intrusions, related to Deccan and pre-Deccan volcanism. High resistive block related to underplating mantle material has been reflected in 1D models of long period magnetotelluric data and its thickness reduces from west to east. Lithosphere-asthenosphere boundary varies from 80 to 100 km.
Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds.
Vieweg, Michael; Trauth, Nico; Fleckenstein, Jan H; Schmidt, Christian
2013-09-03
One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.
Global distribution of ozone for various seasons
NASA Technical Reports Server (NTRS)
Koprova, L. I.
1979-01-01
A technique which was used to obtain a catalog of the seasonal global distribution of ozone is presented. The technique is based on the simultaneous use of 1964-1975 data on the total ozone content from a worldwide network of ozonometric stations and on the vertical ozone profile from ozone sounding stations.
NASA Astrophysics Data System (ADS)
Nakajima, H.; Irie, H.; Sugita, T.; Yokota, T.; Sasano, Y.
2003-12-01
Improved Limb Atmospheric Spectrometer (ILAS) was a solar-occultation sensor onboard the ADEOS satellite. ILAS measured vertical profiles of O3, HNO3, NO2, N2O, CH4, H2O, and aerosol extinction coefficients at high latitude stratosphere from November 1996 to June 1997 [JGR, ILAS Special Section, Vol. 107, No. D24, 2002]. The latest retrieval algorithm of ILAS (Version 6.0) enabled us to retrieve vertical profiles of ClONO2 and N2O5 with typical vertical resolution of 1.6-2.0 km in addition to these species. The advantage of ILAS ClONO2 measurements is that it continuously measured this gas species at high latitude stratosphere with high vertical resolution. ILAS ClONO2 profiles were compared with correlative balloon-borne measurements by MIPAS-B2 [Fischer and Oelhaf, 1996], FIRS-2 [Johnson et al., 1995], and MkIV [Toon, 1991]. In all comparisons, it was found that ILAS ClONO2 values were systematically lower by around 30% between 15 and 32 km altitudes. Also, the precision and accuracy of ILAS ClONO2 for altitude of 15-35 km were estimated to be around 20-40% and 30%, respectively. The Arctic winter/spring in 1996/1997 was characterized its relatively low temperature and its long lasting polar vortex. Many PSC activities were observed by ILAS in January-March 1997 [Hayashida et al., 2000]. ILAS succeeded to measure vertical profiles of ClONO2 for whole period of this Arctic winter/spring. After the PSC activity in February, enhancement of ClONO2 reaching 1.5 ppbv at around 20 km was observed for the data inside the polar vortex in March. In April 1997, enhanced ClONO2 amount decreased towards 1.0 ppbv at more than 10 days prior to the polar vortex breakup. This suggest the change of partitioning of chlorine species from ClONO2 into HCl at this period. Initial measurements of ClONO2 resumed by ILAS-II onboard the ADEOS-II satellite from April 2003 will also be presented at the meeting.
NASA Astrophysics Data System (ADS)
Avduevskii, V. S.; Godnev, A. G.; Semenchenko, V. V.; Uspenskii, G. R.; Cheremukhina, Z. P.
1983-03-01
Acceleration measurements in the preparachute segment of descent during the aerodynamics braking of Venera-13 and Venera-14 were made in order to study the characteristics of the Venus stratosphere and mesosphere. Results of axial-acceleration measurements are presented, and attention is given to atmospheric density and pressure profiles obtained from the accelerometer data and vertical temperature profiles acquired from Venera and Pioneer-Venus acceleration data.
NASA Technical Reports Server (NTRS)
Collins, Donald J.; Tran, An Van
1990-01-01
Time series measurements of the incident surface downwelling irradiance and vertical profiles of the bio-optical properties of the ocean were studied during the 29th cruise of the Southern California Bight Study (SCBS) during the period of August 20-25, 1988. A summary of these data is presented to permit investigators an overview of the data collected. The data are available in digital form for scientific investigators.
Radar - ANL Wind Profiler with RASS, Yakima - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Condon - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
Effects of pressing schedule on formation of vertical density profile for MDF panels
Zhiyong Cai; James H. Muehl; Jerrold E. Winandy
2006-01-01
A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...
This study utilizes simulations for the North American domain from four modeling groups that participated in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) to evaluate seasonal ozone vertical profiles simulated for the year 2010 against ozo...
NASA Technical Reports Server (NTRS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2009-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.
NASA Astrophysics Data System (ADS)
Massam, A.; Mulvaney, R.; McConnell, J.; Abram, N.; Arienzo, M. M.; Whitehouse, P. L.
2016-12-01
The James Ross Island ice core, drilled to 364 m on the northern tip of the Antarctic Peninsula, preserves a climate record that spans beyond the Holocene period to the end of the last glacial maximum (LGM). Reanalysis of the ice core using high-resolution continuous flow analysis (CFA) highlighted errors in the identification of events of known age that had been used to constrain the earlier chronology. The new JRI2 chronology is annual layer counted to 300 years, with the remaining profile reconstructed using a new age-depth model that is tied to age horizons identified in the annual-layer counted WAIS Divide ice core record. An accurate age-depth profile requires reliable known-age horizons along the ice core profile. In addition, these allow us to determine a solution for the accumulation history and rate of compaction due to vertical strain. The accuracy of the known-age constraints used in JRI2 allows only a small uncertainty in the reconstruction of the most recent 2000 years of accumulation variability. Independently, the surface temperature profile has been estimated from the stable water isotope profile and calibrated to borehole temperature observations. We present the accumulation, vertical thinning and temperature history interpreted from the James Ross Island ice core for the most recent 2000 years. JRI2 reconstructions show accumulation variability on a decadal to centennial timescale up to 20% from the present-day mean annual accumulation rate of 0.63 m yr-1. Analysis of the accumulation profile for James Ross Island offers insight into the sensitivity of accumulation to a change in surface temperature, as well as the reliability of the assumed relationship between accumulation and surface temperature in climate reconstructions using stable water isotope proxies.
H3+ Measurements in the Jovian Atmosphere with JIRAM/Juno
NASA Astrophysics Data System (ADS)
Mura, A.; Migliorini, A.; Dinelli, B. M.; Moriconi, M. L.; Altieri, F.; Adriani, A.; Fabiano, F.; Piccioni, G.; Tosi, F.; Filacchione, G.; Sindoni, G.; Grassi, D.; Noschese, R.; Cicchetti, A.; Sordini, R.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Levin, S.; Lunine, J. I.; Gerard, J. C. M. C.; Turrini, D.; Stefani, S.; Olivieri, A.; Plainaki, C.
2017-12-01
The NASA Juno mission has been investigating Jupiter's atmosphere since August 2016, providing unprecedented insights into the giant planet. The Jupiter Infrared Auroral Mapper (JIRAM) experiment, on board Juno, performed spectroscopic observations of the H3+ emissions both in the auroral regions (Dinelli et al., 2017; Adriani et al., 2017; Mura et al., 2017) and at mid latitudes. In the present work, we analyse the observations acquired by the JIRAM spectrometer during the first perijove passage on 26-27 August 2016, when the spacecraft was at about 500,000-1,200,000 km (7-17 RJ) from the planet. During a portion of the observations, the slit of the spectrometer sampled Jupiter's limb in the latitude range from 30° to 60° in both hemispheres. The limb spectra show the typical features of the H3+ emission in the 3-4 μm spectral range, which are generally used to retrieve the H3+ concentration and temperature in the auroral region. In this work we employ above spectral region to provide new insight into the H3+ vertical distribution. The spatial resolution of the limb observations of Jupiter, ranging between 50 and 130 km, is favorable for investigating the vertical distribution of H3+. The vertical profiles of the H3+ limb intensity will be presented along with the preliminary results of the retrieval on H3+ vertical volume mixing ratio (VMR) height profiles, and comparison with predictions from the available atmospheric models of the planet. Possible variability of the altitude of the peak emission with respect to latitude and longitude will also be discussed.
NASA Astrophysics Data System (ADS)
Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.
2012-12-01
We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp.1732-1735, 2007.
The Vertical Dust Profile Over Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.
2017-12-01
We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.
Integrated geophysical survey in defining subsidence features on a golf course
Xia, J.; Miller, R.D.
2007-01-01
Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Heurich, Marco; Wang, Tiejun
2017-10-01
As an important metric for describing vertical forest structure, the plant area index (PAI) profile is used for many applications including biomass estimation and wildlife habitat assessment. PAI profiles can be estimated with the vertically resolved gap fraction from airborne LiDAR data. Most research utilizes a height normalization algorithm to retrieve local or relative height by assuming the terrain to be flat. However, for many forests this assumption is not valid. In this research, the effect of topographic normalization of airborne LiDAR data on the retrieval of PAI profile was studied in a mountainous forest area in Germany. Results show that, although individual tree height may be retained after topographic normalization, the spatial arrangement of trees is changed. Specifically, topographic normalization vertically condenses and distorts the PAI profile, which consequently alters the distribution pattern of plant area density in space. This effect becomes more evident as the slope increases. Furthermore, topographic normalization may also undermine the complexity (i.e., canopy layer number and entropy) of the PAI profile. The decrease in PAI profile complexity is not solely determined by local topography, but is determined by the interaction between local topography and the spatial distribution of each tree. This research demonstrates that when calculating the PAI profile from airborne LiDAR data, local topography needs to be taken into account. We therefore suggest that for ecological applications, such as vertical forest structure analysis and modeling of biodiversity, topographic normalization should not be applied in non-flat areas when using LiDAR data.
Observations and a model of undertow over the inner continental shelf
Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent
2008-01-01
Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Koshak, W. J.
2014-12-01
Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.
K-band observations of boxy bulges - I. Morphology and surface brightness profiles
NASA Astrophysics Data System (ADS)
Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.
2006-08-01
In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself contained within a thin outer disc. The inner disc likely formed secularly through bar-driven processes and is responsible for the steep inner region of the surface brightness profiles, traditionally associated with a classic bulge, while the bar is responsible for the flat intermediate region of the surface brightness profiles and the thick complex morphological structures observed. Those components are strongly coupled dynamically and are formed mostly of the same (disc) material, shaped by the weak but relentless action of the bar resonances. Any competing formation scenario for galaxies with a B/PS bulge, which represent at least 45 per cent of the local disc galaxy population, must explain equally well and self-consistently the above morphological and photometric properties, the complex gas and stellar kinematics observed, and the correlations between them.
NASA Astrophysics Data System (ADS)
Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid
2017-05-01
This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1993-01-01
A simulation experiment was conducted on Ames Research Center's Vertical Motion Simulator to evaluate the thrust margin for vertical landing required for the YAV-8B Harrier. Two different levels of ground effect were employed, representing the aircraft with or without lift improvement devices installed. In addition, two different inlet temperature profiles were included to cover a wide range of hot gas ingestion. For each ground effect and hot gas ingestion variant, vertical landings were performed at successively heavier weights, with the pilot assessing the acceptability of the operation in each case. Results are presented as a function of hover weight ratio and a metric of the mean ground effect and ingestion that reflect the increase in thrust margin required to provide acceptable control of sink rate during the descent to touchdown with increasing suck down and hot gas ingestion.
Circulation in the eastern North Pacific: results from a current meter array along 152°W
NASA Astrophysics Data System (ADS)
Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.
1997-07-01
Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period (< 200 days) and long period ( > 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.
Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less
Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; ...
2017-09-13
Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less
NASA Astrophysics Data System (ADS)
Krishnamoorthy, C.; Balaji, C.
2016-05-01
In the present study, the effect of horizontal and vertical localization scales on the assimilation of direct SAPHIR radiances is studied. An Artificial Neural Network (ANN) has been used as a surrogate for the forward radiative calculations. The training input dataset for ANN consists of vertical layers of atmospheric pressure, temperature, relative humidity and other hydrometeor profiles with 6 channel Brightness Temperatures (BTs) as output. The best neural network architecture has been arrived at, by a neuron independence study. Since vertical localization of radiance data requires weighting functions, a ANN has been trained for this purpose. The radiances were ingested into the NWP using the Ensemble Kalman Filter (EnKF) technique. The horizontal localization has been taken care of, by using a Gaussian localization function centered around the observed coordinates. Similarly, the vertical localization is accomplished by assuming a function which depends on the weighting function of the channel to be assimilated. The effect of both horizontal and vertical localizations has been studied in terms of ensemble spread in the precipitation. Aditionally, improvements in 24 hr forecast from assimilation are also reported.
Convective transport of electric charge within the planetary boundary layer
NASA Astrophysics Data System (ADS)
Nicoll, Keri; Harrison, Giles; Silva, Hugo; Silgado, Rui; Melgao, Marta
2017-04-01
Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also of major importance in determining the electrical charge structure of the lower atmosphere. This paper presents rare experimental measurements of vertical profiles of charge measured during fair weather conditions by specially instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. Space charge was measured directly using a sensitive electrometer, rather than the conventional method of deriving it from electric field measurements. The high frequency of balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller levels of charge (up to 20pC m-3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was much more complex, showing a dependence on lofting of surface aerosol due to daytime convection. This produced charge up to 92pC m-3 up to 500m above the surface. The diurnal variation in the integrated column of charge above the measurement site was also found to track closely with the diurnal variation in near surface charge as measured by an electric field mill at the same site, confirming the importance of the link between surface charge generation processes and aloft. Co-located lidar backscatter measurements were also made during the measurement campaign and will be discussed here in the context of the effect of aerosol on the vertical charge profile.
Land use and hydromechanical heterogeneities in marshland soils.
NASA Astrophysics Data System (ADS)
Tojo Radimy, Raymond; Dupont, Jean-Paul; Dudoignon, Patrick
2017-04-01
In the interpretation of soil moisture profiles, mechanical properties were most often considered homogeneous. The structural heterogeneities of the soil are knows to be at the origin of the distribution and the availability of water in the vadose zone. The soils study is located in the French Atlantic coastal marshlands, characterized by the succession polderization/desiccation/consolidation and maturation. The work is carried out within the framework of the farming of old salt marshes with two concerns in the farmers: the salinity of the soil and the distribution of the available water capacity of the soils according to the crop growth. The present work shows the knowledge of the soil storage transfers during seasonal cycles on drained corn field and undrained grassland. We analyze the vertical water profiles observed to reveal the hydromechanical heterogeneities in the soils depending the porosity and gravity water parameter. This approach is based on mechanical tests between the compaction pathways carried out in the laboratory using materials taken in situ. Comparing to grasslands profiles, we highlight the influence of agricultural practices and the establishment of drainage in the marshland. However, the vertical homogenization of hydromechanical structures, desalination has been taken into account for the estimation of water in crop. The concept of a homogeneous structure is not adapted to real vertical profile. Finally, the authors conclude by discussing the notion of the mechanical availability of water in terms of porosity and gravity water. These parameters are good tools to the sustainable management of marshland soils. Keywords: hydromechanics, vadose zone, soil structure, land use, available water capacity
KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report
NASA Technical Reports Server (NTRS)
Barbre, Robert E.
2015-01-01
This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.
NASA Astrophysics Data System (ADS)
Voytek, E. B.; Drenkelfuss, A.; Day-Lewis, F. D.; Healy, R. W.; Lane, J. W.; Werkema, D. D.
2012-12-01
Temperature is a naturally occurring tracer, which can be exploited to infer the movement of water through the vadose and saturated zones, as well as the exchange of water between aquifers and surface-water bodies, such as estuaries, lakes, and streams. One-dimensional (1D) vertical temperature profiles commonly show thermal amplitude attenuation and increasing phase lag of diurnal or seasonal temperature variations with propagation into the subsurface. This behavior is described by the heat-transport equation (i.e., the convection-conduction-dispersion equation), which can be solved analytically in 1D under certain simplifying assumptions (e.g., sinusoidal or steady-state boundary conditions and homogeneous hydraulic and thermal properties). Analysis of 1D temperature profiles using analytical models provides estimates of vertical groundwater/surface-water exchange. The utility of these estimates can be diminished when the model assumptions are violated, as is common in field applications. Alternatively, analysis of 1D temperature profiles using numerical models allows for consideration of more complex and realistic boundary conditions. However, such analyses commonly require model calibration and the development of input files for finite-difference or finite-element codes. To address the calibration and input file requirements, a new computer program, 1DTempPro, is presented that facilitates numerical analysis of vertical 1D temperature profiles. 1DTempPro is a graphical user interface (GUI) to the USGS code VS2DH, which numerically solves the flow- and heat-transport equations. Pre- and post-processor features within 1DTempPro allow the user to calibrate VS2DH models to estimate groundwater/surface-water exchange and hydraulic conductivity in cases where hydraulic head is known. This approach improves groundwater/ surface-water exchange-rate estimates for real-world data with complexities ill-suited for examination with analytical methods. Additionally, the code allows for time-varying temperature and hydraulic boundary conditions. Here, we present the approach and include examples for several datasets from stream/aquifer systems.
Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.
2017-12-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
Sanada, Yukihisa; Katata, Genki; Kaneyasu, Naoki; Nakanishi, Chika; Urabe, Yoshimi; Nishizawa, Yukiyasu
2018-03-15
To understand the formation process of radiologically contaminated areas in eastern Japan caused by the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, the deposition mechanisms over complex topography are the key factors to be investigated. To characterize the atmospheric deposition processes of radionuclides over complex mountainous topography, we investigated the altitudinal distributions of the radiocesium deposited during the accident. In five selected areas, altitudinal characteristics of the air dose rates observed using airborne surveys were analyzed. To examine the deposition mechanisms, we supplementarily used vertical profiles of radiocesium deposition in each area calculated in the latest atmospheric dispersion model. In southern Iwate, the vertical profile of the observed air dose rate was uniform regardless of altitude. In western Tochigi, the areas with the highest levels of contamination were characteristically distributed in the middle of the mountains, while in southern Fukushima, the areas with the highest contamination levels were enhanced near the summits of mountains. In central Fukushima, high air dose rates were limited to the bottoms of basin-like valley. In the region northwest of FDNPS, the air dose rate was the highest at the bottom of valley topography and decreased gradually with altitude. The simulation results showed that calculated wet deposition and observed vertical profiles of total deposition were similar in areas of southern Iwate and northwest of FDNPS qualitatively, suggesting that the dominant deposition mechanism was wet deposition. In contrast, the atmospheric dispersion model failed to reproduce either the timing of precipitation events or vertical profiles of radiocesium deposition in three other areas. Although it was difficult to elucidate the deposition mechanisms in these areas due to uncertainties of the present model results, potential mechanisms such as cloud water deposition were still proposed based on circumstantial evidences of limited meteorological data during the early stage of the accident. Copyright © 2017 Elsevier B.V. All rights reserved.
Morphology and variability of the Titan ringlet and Huygens ringlet edges
NASA Astrophysics Data System (ADS)
Jerousek, Richard G.; Colwell, Joshua E.; Esposito, Larry W.
2011-11-01
We present a forward modeling approach for determining, in part, the ring particle spatial distribution in the vicinity of sharp ring or ringlet edges. Synthetic edge occultation profiles are computed based on a two-parameter particle spatial distribution model. One parameter, h, characterizes the vertical extent of the ring and the other, δ, characterizes the radial scale over which the ring optical depth transitions from the background ring value to zero. We compare our synthetic occultation profiles to high resolution stellar occultation light curves observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) for occultations by the Titan ringlet and Huygens ringlet edges. More than 100 stellar occultations of the Huygens ringlet and Titan ringlet edges were studied, comprising 343 independent occultation cuts of the edges of these two ringlets. In 237 of these profiles the measured light-curve was fit well with our two-parameter edge model. Of the remaining edge occultations, 69 contained structure that could only be fit with extremely large values of the ring-plane vertical thickness ( h > 1 km) or by adopting a different model for the radial profile of the ring optical depth. An additional 37 could not be fit by our two-parameter model. Certain occultations at low ring-plane incidence angles as well as occultations nearly tangent to the ring edge allow the direct measurement of the radial scale over which the particle packing varies at the edge of the ringlet. In 24 occultations with these particular viewing geometries, we find a wide variation in the radial scale of the edge. We are able to constrain the vertical extent of the rings at the edge to less than ˜300 m in the 70% of the occultations with appropriate viewing geometry, however tighter constraints could not be placed on h due to the weaker sensitivity of the occultation profile to vertical thickness compared to its sensitivity to δ. Many occultations of a single edge could not be fit to a single value of δ, indicating large temporal or azimuthal variability, although the azimuthal variation in δ with respect to the longitudes of various moons in the system did not show any discernible pattern.
The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua
2011-01-01
Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.
Harte, Philip T.; Flanagan, Sarah M.
2011-01-01
A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.
Harte, P.T.; Flanagan, S.M.
2011-01-01
A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-08-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-04-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument
NASA Astrophysics Data System (ADS)
Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.
2016-12-01
The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James
2002-01-01
Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002
NASA Astrophysics Data System (ADS)
Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.
2002-12-01
We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.
Accessing Suomi NPP OMPS Products Through the GES DISC Online Data Services
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Wei, J. C.; Garasimov, I.; Vollmer, B.
2017-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the primary archive of the latest versions of atmospheric composition data from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping Profiler Suite (OMPS) mission. OMPS consists of three spectrometers: a Nadir Mapper (300-420 nm) with 50×50 km2 resolution and 2600 km wide swath, a Nadir Profiler (250-310 nm) with 250×250 km2 footprint, and a three-slit Limb Profiler (290-1000 nm) making 3 vertical profiles spaced about 250 km apart with 1-2 km vertical resolution up to 65 km altitude. OMPS measures primarily ozone, both total column and vertical profiles, but also includes measurements of NO2 and SO2 total and tropospheric columns, aerosol extinction profiles. Also available from OMPS are the Level-1B calibrated and geolocated radiances. All data products are generated at the OMPS Science Investigator Processing System (SIPS) at NASA/GSFC. This presentation will provide an overview of the OMPS products available at the GES DISC archive, as well as demonstrate the various data services provided by the GES DISC. Traditionally users have accessed data by downloading data files using anonymous FTP. Although one may still download the full OMPS data products from the archive (using HTTPS instead), the GES DISC now also offers online data services that allow users to not have to physically download the full data files to their desktop computer. Users can access the data through a desktop client tool (such as IDL, Matlab or Panoply) using OPeNDAP. Other data services include file subsetters (spatially, temporally, and/or by variable), as well as data visualization and exploration services for users to preview or quickly analyze the data. Since TOMS and EOS Aura data products are also available from the GES DISC archive, these can be easily accessed and compared with the OMPS data.
Wind measurements by electromagnetic probes
NASA Technical Reports Server (NTRS)
Susko, Michael
1989-01-01
The operation and performance characteristics of the Marshall Space Flight Center's Radar Wind Profiler, designed to provide measurement of the wind in the troposphere, are discussed. The Radar Wind Profiler uses a technology similar to that used in conventional Doppler radar systems, except the frequency is generally lower, antenna is larger, and dwell time is much longer. Its primary function is to monitor the vertical wind profile prior to launch of the Space Shuttle at more frequency intervals and nearer to launch time than is presently possible with the conventional balloon systems. A new wind profile will be obtained on the order of every 15 min based on an average of five wind profiles measured every 3 min at a height interval of 150 m to 20 km. The most significant features of the Radar Wind Profiler are the continuity in time and reliability.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.
2017-10-19
Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
Profiling of poorly stratified smoky atmospheres with scanning lidar
Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao
2012-01-01
The multiangle data processing technique is considered based on using the signal measured in zenith (or close to zenith) as a core source for extracting the information about the vertical atmospheric aerosol loading. The multiangle signals are used as the auxiliary data to extract the vertical transmittance profile from the zenith signal. Simulated and experimental...
More vertical etch profile using a Faraday cage in plasma etching
NASA Astrophysics Data System (ADS)
Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup
1999-05-01
Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
Anatomy of small-scale mixing along a Northeast Atlantic transect
NASA Astrophysics Data System (ADS)
Jurado, Elena; Dijkstra, Henk A.; van der Woerd, Hans; Brussaard, Corina
2010-05-01
The study of turbulence occurring at the smallest scales, in the energy dissipation range, is required when evaluating interrelations between turbulent mixing and phytoplankton distribution. To derive microturbulent parameters, microstructure profiler surveys, consisting in high resolution temperature, salinity or velocity vertical profiles have been performed in localized regions of the open ocean. However, they are very localized and based on few datasets, difficult to extrapolate to other regions due to the dependence on the local background conditions. During the STRATIPHYT-I cruise (July-August 2009) from Las Palmas (Gran Canaria) to Reykjavik (Iceland), high resolution measurements of both turbulent mixing (with a Self Contained Autonomous Micro Profiler, SCAMP) and phytoplankton have been carried out in the top 100 m of the ocean. With these data, the gradient from a more stratified, warmer surface water tropical environment to a less stratified subpolar ocean environment is covered. Adding up a total of 15 stations and 148 profiles, it constitutes the most extensive dataset of directly derived vertical mixing coefficients in a latitudinal transect of the Northeast Atlantic. In the presentation, the focus is on the explanation of the changes in turbulent mixing along the cruise section, recalling in its latitudinal gradient and presenting parameters that can further help to evaluate effects in the phytoplankton distribution. Side issues such as the encountered disagreement between heat and density eddy diffusivities and an analysis of the main source of instabilities through GOTM model and an internal wave analysis, are also treated in detail.
C3 Hydrocarbon Abundance in Titan's Atmosphere with Cassini Infrared Spectra
NASA Astrophysics Data System (ADS)
Lombardo, Nicholas; Nixon, Conor; Achterberg, Richard; Jolly, Antoine; Sung, Keeyoon; Irwin, Patrick; Flasar, F. M.
2018-01-01
Titan, the largest moon of the Saturn system, has an astrobiologically important atmosphere. The anoxic nature and high N2 abundance make it a strong analog to the early Earth. The secondary species, CH4, is easily photodissociated, and reactions between its dissociated products give rise to highly complex hydrocarbons and nitriles. The Voyager flyby and 14 year Cassini campaign allowed for the intense study of several of these molecules, enabling scientists to increase our understanding of the chemical pathways present above Titan. In this work, we report abundance profiles of four major C3 gasses expected to occur in Titan’s atmosphere, derived from Cassini/Composite Infrared Spectrometer (CIRS) data, allowing us to fill the gaps in the photochemical zoo that is Titan’s atmosphere.Using the NEMESIS iterative radiative transfer module, we retrieved vertical abundance profiles for propane (C3H8) and propyne (CHCCH3) both initially detected by the Voyager IRIS instrument. Using newly available line data, we were also able to determine the first vertical abundance profiles for propene (C3H6), initially detected in 2013. We present profiles for several latitudes and times and compare to photochemical model predictions and previous observations. We also discuss our ongoing search for allene (CH2CCH2), an isomer of propyne, which has yet to be definitively detected. The abundances we determined will help to further our understanding of the chemical pathways that occur in Titan's atmosphere.
NASA Technical Reports Server (NTRS)
Shirley, J. H.; McConnochie, T. H.; Kleinbohl, A.; Schofield, J. T.; Kass, D.; Heavens, N. G.; Benson, J.; McCleese, D. J.
2011-01-01
Dust and ice play important roles in Martian atmospheric dynamics on all time scales. Dust loading in particular exerts an important control on atmospheric temperatures and thereby on the strength of the atmospheric circulation in any given year. We present the first comparisons of MGS-TES aerosol opacity profiles with MRO-MCS aerosol opacity profiles. While the differences in vertical resolution are significant (a factor of 2), we find good agreement at particular seasons between nightside zonal average dust opacity profiles from the two instruments. Derived water ice opacities are likewise similar but show greater variability.
NASA Technical Reports Server (NTRS)
Chiou, Er-Woon; McCormick, M. P.
1994-01-01
The purpose of this paper is to present a vertically-resolved global climatology of water vapor in the upper troposphere and lower stratosphere based on multi-year SAGE 2 observations. Seasonally averaged zonal mean profiles are illustrated in terms of both mixing ration and relative humidity.
Vertical profile of fog microphysics : a case study
NASA Astrophysics Data System (ADS)
Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan
2016-04-01
The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.
The structure of the stably stratified internal boundary layer in offshore flow over the sea
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Ryan, B. F.
1989-04-01
Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).
NASA Astrophysics Data System (ADS)
Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly
2016-03-01
Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the mesosphere. When compared to COSMIC, we do not observe a warm/cool bias and mean differences are between -4 and +1 K. COSMIC comparisons are restricted to below 40 km, where our retrievals have the best agreement with ACE-FTS v3.5. When comparing ACE-FTS v3.5 to COSMIC we observe a cold bias in COSMIC of 0.5 K, and mean differences are between -0.9 and +0.6 K.
NASA Astrophysics Data System (ADS)
Sundarabalan, B.; Shanmugam, P.
2014-09-01
A reliable radiative transfer model is an essential and indispensable tool for understanding of the radiative transfer processes in homogenous and layered waters, analyzing measurements made by radiance sensors and developing remote sensing algorithms to derive meaningful physical quantities and biogeochemical variables in turbid and productive coastal waters. Existing radiative transfer models have been designed to be applicable to either homogenous waters or inhomogeneous waters. To overcome such constraints associated with these models, this study presents a radiative transfer model that treats a homogenous layer as a diffuse part and an inhomogeneous layer as a direct part in the water column and combines these two parts appropriately in order to generate more reliable underwater light field data such as upwelling radiance (Lu), downwelling irradiance (Ed) and upwelling irradiance (Eu). The diffuse model assumes the inherent optical properties (IOPs) to be vertically continuous and the light fields to exponentially decrease with the depth, whereas the direct part considers the water column to be vertically inhomogeneous (layer-by-layer phenomena) with the vertically varying phase function. The surface and bottom boundary conditions, source function due to chlorophyll and solar incident geometry are also included in the present RT model. The performance of this model is assessed in a variety of waters (clear, turbid and eutrophic) using the measured radiometric data. The present model shows an advantage in terms of producing accurate Lu, Ed and Eu profiles (in spatial domain) in different waters determined by both homogenous and inhomogeneous conditions. The feasibility of predicting these underwater light fields based on the remotely estimated IOP data is also examined using the present RT model. For this application, vertical profiles of the water constituents and IOPs are estimated by empirical models based on our in-situ data. The present RT model generates Lu, Ed and Eu spectra closely consistent with the measured data. These results lead to a conclusion that the present RT model is a viable alternative to existing RT models and has an important implication for remote sensing of optically complex waters.
NASA Astrophysics Data System (ADS)
Sundarabalan, B.; Shanmugam, P.
2015-01-01
A reliable radiative transfer (RT) model is an essential and indispensable tool for understanding the radiative transfer processes in homogenous and layered waters, analyzing measurements made by radiance sensors and developing remote-sensing algorithms to derive meaningful physical quantities and biogeochemical variables in turbid and productive coastal waters. Existing radiative transfer models have been designed to be applicable to either homogenous waters or inhomogeneous waters. To overcome such constraints associated with these models, this study presents a radiative transfer model that treats a homogenous layer as a diffuse part and an inhomogeneous layer as a direct part in the water column and combines these two parts appropriately in order to generate more reliable underwater light-field data such as upwelling radiance (Lu), downwelling irradiance (Ed) and upwelling irradiance (Eu). The diffuse model assumes the inherent optical properties (IOPs) to be vertically continuous and the light fields to exponentially decrease with depth, whereas the direct part considers the water column to be vertically inhomogeneous (layer-by-layer phenomena) with the vertically varying phase function. The surface and bottom boundary conditions, source function due to chlorophyll and solar incident geometry are also included in the present RT model. The performance of this model is assessed in a variety of waters (clear, turbid and eutrophic) using the measured radiometric data. The present model shows an advantage in terms of producing accurate Lu, Ed and Eu profiles (in spatial domain) in different waters determined by both homogenous and inhomogeneous conditions. The feasibility of predicting these underwater light fields based on the remotely estimated IOP data is also examined using the present RT model. For this application, vertical profiles of the water constituents and IOPs are estimated by empirical models based on our in situ data. The present RT model generates Lu, Ed and Eu spectra closely consistent with the measured data. These results lead to a conclusion that the present RT model is a viable alternative to existing RT models and has an important implication for remote sensing of optically complex waters.
The vertical structure of the F ring of Saturn from ring-plane crossings
NASA Astrophysics Data System (ADS)
Scharringhausen, Britt R.; Nicholson, Philip D.
2013-11-01
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.
NASA Astrophysics Data System (ADS)
Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich
2018-05-01
Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.
NASA Astrophysics Data System (ADS)
Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias
2015-04-01
It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already been presented and its validity has been tested against satellite-based retrievals. A detailed spectral radiative transfer model (RTM), already used in a number of planetary and regional studies, has been used in the present study to calculate the vertically distributed aerosol direct radiative effects (DREs) and the associated aerosol heating/cooling profiles within the troposphere. Specific emphasis is given to assessment of the crucial issue of the differences between modeling the aerosol DREs using either columnar aerosol optical properties, as usually done, or vertically layered information on those properties, which is the state of the art and ideal practice. To address this problem, the following experiment has been performed: the same RTM has been used twice with the same meteorological conditions but in the first run (set1) columnar values for aerosol optical depth (AOD) have been used while using vertically distributed AOD in the second run (set2). In the second run vertically layered information for AOD is considered for 20 layers extending from the surface to 20 km a.m.s.l.. The vertical profile of AOD has been mainly based on ECHAM model. The aerosol DREs are computed at the Earth's surface, at TOA and at various levels in the atmosphere. Apart from AOD, the model also requires single-scattering albedo (SSA) and asymmetry parameter (ASY) in 18 different wavelengths, which are obtained by linear interpolation from the available wavelengths in HAC. The comparison between the obtained two sets of DRE (set1 and set2) reveal small, but notable differences which vary from one place to another. Within the atmosphere, the difference -averaged over the four seasons - ranges from -0.3 to 1.7 Wm-2 with a mean value of 0.32 Wm-2. Given the fact that the average column-integrated DREAtm values for the entire Mediterranean region based on columnar aerosol optical properties is 11.44 Wm-2, there is an average variance of 3.7 %, which locally could get to 14.9 %. Differences between the columnar and the vertically layered versions of the model also exist for DRE(TOA) and DRE(NetSurface) calculations.
NASA Astrophysics Data System (ADS)
Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John
2018-02-01
Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.
The power of vertical geolocation of atmospheric profiles from GNSS radio occultation.
Scherllin-Pirscher, Barbara; Steiner, Andrea K; Kirchengast, Gottfried; Schwärz, Marc; Leroy, Stephen S
2017-02-16
High-resolution measurements from Global Navigation Satellite System (GNSS) radio occultation (RO) provide atmospheric profiles with independent information on altitude and pressure. This unique property is of crucial advantage when analyzing atmospheric characteristics that require joint knowledge of altitude and pressure or other thermodynamic atmospheric variables. Here we introduce and demonstrate the utility of this independent information from RO and discuss the computation, uncertainty, and use of RO atmospheric profiles on isohypsic coordinates-mean sea level altitude and geopotential height-as well as on thermodynamic coordinates (pressure and potential temperature). Using geopotential height as vertical grid, we give information on errors of RO-derived temperature, pressure, and potential temperature profiles and provide an empirical error model which accounts for seasonal and latitudinal variations. The observational uncertainty of individual temperature/pressure/potential temperature profiles is about 0.7 K/0.15%/1.4 K in the tropopause region. It gradually increases into the stratosphere and decreases toward the lower troposphere. This decrease is due to the increasing influence of background information. The total climatological error of mean atmospheric fields is, in general, dominated by the systematic error component. We use sampling error-corrected climatological fields to demonstrate the power of having different and accurate vertical coordinates available. As examples we analyze characteristics of the location of the tropopause for geopotential height, pressure, and potential temperature coordinates as well as seasonal variations of the midlatitude jet stream core. This highlights the broad applicability of RO and the utility of its versatile vertical geolocation for investigating the vertical structure of the troposphere and stratosphere.
NASA Astrophysics Data System (ADS)
Day, B. M.; Clements, C. B.; Rappenglueck, B.
2007-12-01
High-temporal resolution tethersonde profiles taken during the TexAQS II field campaign in Houston were used to study the overnight development and progression of the nocturnal boundary layer (NBL) and the evolution of the convective boundary layer after sunrise. The measurements were made at the University of Houston campus, located approximately 4 km southeast of the downtown Houston central business district, and consisted of vertical profiles of potential temperature, water vapor mixing ratio, wind speed, wind direction, and ozone concentration. Profile heights averaged 250 m AGL with a few reaching 400 m AGL. Profiles were taken at approximately 30 min intervals throughout 4 nights during Intensive Observational Periods (IOPs), including both the evening and morning transitional periods. Tethersonde experiments also were performed during several additional morning break-up periods during the campaign. Preliminary results from the overnight experiments of Sept 7-8 and Sept 14-15, 2006 showed different NBL evolutions. Sept 7-8 exhibited a stronger and deeper inversion compared with Sept 14-15 when the inversion was weak with a fairly constant height throughout the night. The Sept 7-8 profiles showed elevated bluff-like structures in the virtual potential temperature profiles between 0300-0400 CDT, indicating neutral stability within the 40-90 m AGL level. And, just before sunrise a neutral layer with constant potential temperature developed between the surface and 75 m AGL reflecting horizontal cold air advection. Further analyses will be presented for other vertical profiles taken during the campaign, including the additional overnight profiles as well as the profiles taken during the morning transition to the convective boundary layer.
NASA Astrophysics Data System (ADS)
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water, which occurred preferentially at the pipe centre. For upward inclined multiphase flows RT#1 was found to give rise to water velocity profiles which are more consistent with results in the previous literature than was the case for RT#2—which leads to the tentative conclusion that the upward inclined multiphase flows investigated in the present study did not contain significant axisymmetric velocity components.
NASA Astrophysics Data System (ADS)
Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.
2010-12-01
When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.
Study: Ozone Layer's Future Linked Strongly to Changes in Climate
balloon to measure of the vertical profile of the ozone layer. NOAA scientists launch an ozonesonde via balloon to measure of the vertical profile of the ozone layer. NOAA releases ozonesondes at eight sites worldwide, including the Amundsen-Scott South Pole Station. It also uses satellite and ground-based systems
John F. Hunt; Weiqi Leng; Mehdi Tajvidi
2017-01-01
In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...
A method for retrieving vertical ozone profiles from limb scattered measurements
NASA Astrophysics Data System (ADS)
Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua
2011-10-01
A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.
2016-06-01
Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.
Sangiorgi, G; Ferrero, L; Perrone, M G; Bolzacchini, E; Duane, M; Larsen, B R
2011-12-01
A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George
2018-05-01
In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.
Velocity profile, water-surface slope, and bed-material size for selected streams in Colorado
Marchand, J.P.; Jarrett, R.D.; Jones, L.L.
1984-01-01
Existing methods for determining the mean velocity in a vertical sampling section do not address the conditions present in high-gradient, shallow-depth streams common to mountainous regions such as Colorado. The report presents velocity-profile data that were collected for 11 streamflow-gaging stations in Colorado using both a standard Price type AA current meter and a prototype Price Model PAA current meter. Computational results are compiled that will enable mean velocities calculated from measurements by the two current meters to be compared with each other and with existing methods for determining mean velocity. Water-surface slope, bed-material size, and flow-characteristic data for the 11 sites studied also are presented. (USGS)
Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
Park, Hae-Won; Kim, Sangbae
2015-03-25
This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground height and model parameter variations.
Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability
NASA Astrophysics Data System (ADS)
Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.
2017-10-01
Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.
NASA Astrophysics Data System (ADS)
Romanovskii, Oleg A.; Nevzorov, Alexey A.; Nevzorov, Alexey V.; Kharchenko, Olga V.
2018-04-01
The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. The recovered ozone profiles were compared with IASI satellite data and Kruger model.
NIMBUS-5 sounder data processing system. Part 2: Results
NASA Technical Reports Server (NTRS)
Smith, W. L.; Woolf, H. M.; Hayden, C. M.; Shen, W. C.
1975-01-01
The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented.
Shear-wave velocity profiling according to three alternative approaches: A comparative case study
NASA Astrophysics Data System (ADS)
Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.
2016-11-01
The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.
Information content of ozone retrieval algorithms
NASA Technical Reports Server (NTRS)
Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.
1989-01-01
The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.
NASA Astrophysics Data System (ADS)
Arabas, S.; Baehr, C.; Boquet, M.; Dufournet, Y.; Pawlowska, H.; Siebert, H.; Unal, C.
2009-04-01
The poster presents a comparison of selected methods for determination of the vertical wind in the boundary layer used during the EUCAARI IMPACT campaign that took place in May 2008 in The Netherlands. The campaign covered a monthlong intensified ground-based and airborne measurements in the vicinity of the CESAR observatory in Cabauw. Ground-based vertical wind remote sensing was carried out using the Leosphere WindCube WLS70 IR Doppler lidar, Vaisala LAP3000 radar wind-profiler and the TUDelft TARA S-band radar. In-situ airborne measurements were performed using an ultrasonic anemometer (on the ACTOS helicopter underhung platform) and a 5-hole pressure probe (on the SAFIRE ATR-42 airplane radome). Several in-situ anemometers were deployed on the 200-meter high tower of the CESAR observatory. A summary of the characteristics and principles of the considered techniques is presented. A comparison of the results obtained from different platforms depicts the capabilities of each technique and highlights the time, space and velocity resolutions.
NASA Astrophysics Data System (ADS)
Cortés, L.; Curé, M.
2011-11-01
This research presents an evaluation of three meteorological models, the Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) and the mesoscale model WRF (Weather Research and Forecasting) for three sites located in north of Chile. Cerro Moreno Airport, the Paranal Observatory and Llano de Chajnantor are located at 25, 130 and 283 km from the city of Antofagasta, respectively. Results for the three sites show that the lowest correlation and the highest errors occur at the surface. ECMWF model presents the best results at these levels for the two hours analyzed. This could be due to the fact that the ECMWF model has 91 vertical levels, compared to the 64 and 27 vertical levels of GFS and WRF models, respectively. Therefore, it can represent better the processes in the Planetary Boundary Layer (PBL). In relation to the middle and upper troposphere, the three models show good agreement.
Hvr-Gs at MT. Graham:. Optical Turbulence Vertical Distribution with Standard and High Resolution
NASA Astrophysics Data System (ADS)
Masciadri, E.; Stoesz, J.; Lascaux, F.; Hagelin, S.
2009-09-01
Since a few years measurements of the optical turbulence vertical distribution have been done at Mt. Graham with a Generalized Scidar (GS) located at the focus of the 1.75 m Vatican Advance Technological Telescope (VATT). Such a telescope is placed on the summit of Mt. Graham (Arizona) at around 250 m far away from the Large Binocular Telescope (LBT). Thanks to a new technique1 that we recently proposed based on the GS observations of wide-binaries (30-35 arcsec), measurements of CN2 profiles characterized by a vertical resolution as high as 20-30 m in the first 600 m have been also collected. The statistic sample of measurements consists, at present, of 43 nights distributed in different periods of the year. In this contribution we present the main scientific motivations as well as the analysis of this extended survey and new insights into the turbulence characterization achieved so far by this on-going activity.
Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach
Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel
2014-01-01
Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135
NASA Astrophysics Data System (ADS)
Inclán, M. G.; Forkel, R.; Dlugi, R.; Stull, R. B.
1996-06-01
The new Forest-Land-Atmosphere ModEl called FLAME is presented. The first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993) is applied to study the interactions between a forested land-surface and the atmospheric boundary layer (ABL). The transilient scheme is used for unequal vertical grid spacing and includes the effects of drag, wake turbulence, and interference to vertical mixing by plant elements. Radiation transfer within the vegetation and the equations for the energy balance at the leaf surface have been taken from Norman (1979). Among others, the model predicts profiles of air temperature, humidity and wind velocity within the ABL, sensible and latent heat fluxes from the soil and the vegetation, the stomata and aerodynamic resistances, as well as profiles of temperature and water content in the soil. Preliminary studies carried out for a cloud free day and idealized initial conditions are presented. The canopy height is 30 m within a vertical domain of 3 km. The model is able to capture some of the effects usually observed within and above forested areas, including the relative wind speed maximum in the trunk space and the counter gradient-fluxes in the lower part of the plant stand. Of special interest is the determination of the location and magnitude of the turbulent mixing between model layers, which permits one to identify the effects of large eddies transporting momentum and scalar quantities into the canopy. A comparison between model simulations and field measurements will be presented in a future paper.
Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes
NASA Astrophysics Data System (ADS)
Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard K.
2018-03-01
We have developed a seasonal radiative-dynamical model of Titan's stratosphere to investigate the temporal variation of temperatures in the 0.2-4 mbar range observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS and Huygens/DISR data to calculate the radiative heating and cooling rate profiles as a function of time and latitude. At 20°S in 2007, the heating rate is larger than the cooling rate at all altitudes, and more specifically by 20-35% in the 0.1-5 mbar range. A new calculation of the radiative relaxation time as a function of pressure level is presented, leading to time constants significantly lower than previous estimates. At 6°N around spring equinox, the radiative equilibrium profile is warmer than the observed one at all levels. Adding adiabatic cooling in the energy equation, with a vertical upward velocity profile approximately constant in pressure coordinates below the 0.02-mbar level (corresponding to 0.03-0.05 cm s-1 at 1 mbar), allows us to reproduce the observed profile quite well. The velocity profile above the ∼0.5-mbar level is however affected by uncertainties in the haze density profile. The model shows that the change in insolation due to Saturn's orbital eccentricity is large enough to explain the observed 4-K decrease in equatorial temperatures around 1 mbar between 2009 and 2016. At 30°N and S, the radiative model predicts seasonal variations of temperature much larger than observed. A seasonal modulation of adiabatic cooling/heating is needed to reproduce the temperature variations observed from 2005 to 2016 between 0.2 and 4 mbar. At 1 mbar, the derived vertical velocities vary in the range -0.05 (winter solstice) to 0.16 (summer solstice) cm s-1 at 30°S, -0.01 (winter solstice) to 0.14 (summer solstice) cm s-1 at 30°N, and 0.03-0.07 cm s-1 at the equator.
Vertical Mixing In Western Lake Constance Due To Long Internal Waves
NASA Astrophysics Data System (ADS)
Boehrer, B.
Current profiles in the pelagic waters of western Lake Constance have been broken up into modes of the internal wave equation [1,2]. All current profiles can be well represented by a combination of the first and second mode wave. The temporal vari- ation of the modal composition with the interaction of the first and second mode im- plies current shear at varying depths. From current and density profiles, the gradient Richardson number can be evaluated in its spatial and temporal pattern with occa- tional occurence of supercritical values at all depths, also in the deep hypolimnion. An empiric connection between gradient Richardson number and diapycnical mixing [3] is applied to yield a profile of vertical transport coefficients, which can be com- pared with transport coefficients from gradient flux calculations of temperature and electrical conductivity profiles [4]. [1] B. Boehrer, J. Ilmberger and K.O. Münnich (2000): Vertical Structure of Current in Western Lake Constance, JGR-Oceans, 105 (12), 28823-28835 [2] B. Boehrer (2000): Modal Response of a Deep Stratified Lake: Western Lake Con- stance, JGR-Oceans, 105 (12), 28837-28845 [3] H. Peeters, M.C. Gregg and J.M. Toole (1988): On the parameterization of equa- torial turbulence, JGR, 93, 1199-1218 [4] G. Heinz, J. Ilmberger and M. Schimmele (1990): Vertical Mixing in Überlinger See, western part of Lake Constance, Aquat. Sci., 52(3), 256-268
Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E
2011-06-15
Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing and climatic studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
The Effect of Aerosols on Pluto's C2 Hydrocarbon Chemistry
NASA Astrophysics Data System (ADS)
Luspay-Kuti, Adrienn; Mandt, Kathleen; Jessup, Kandis-Lea; Hue, Vincent; Kammer, Joshua; Filwett, Rachael; Hamel, Mark
2017-10-01
On July 14, 2015 the New Horizons spacecraft flew through the Pluto system, providing critical details about Pluto’s atmosphere. The vertical profiles of N2 and CH4, C2H2, C2H4, and C2H6 derived from New Horizons Alice transmission data allow the more accurate modeling of Pluto’s atmosphere than in the pre-New Horizons era, and help better understand the physical and photochemical processes in Pluto’s atmosphere. All the measured C2 hydrocarbon densities showed an unexpected inversion between ~100 and 400 km, which suggests that processes other than chemistry play an important role in shaping their vertical profiles. We present here a state-of-the-art Pluto Ion-Neutral-Photochemistry (Pluto INP) model that includes the condensation onto and incorporation into aerosol particles, and evaluate the dominant production and loss processes of C2 hydrocarbons with a special emphasis on the role of aerosol interaction. We found that in order to reproduce the C2 profiles measured by New Horizons, they must stick to and be permanently removed by aerosols - a process different from condensation. We determined through empirical fits to the New Horizons data that the sticking efficiency of C2 hydrocarbons and the stickiness of the aerosol particles are inversely related to the available aerosol surface area, which has been inferred from observation to increase as altitude decreases. This counterintuitive relationship between sticking efficiency and available aerosol surfaces indicates that similarly to Titan, Pluto’s aerosols must harden and become less sticky as they age. Such hardening with ageing is both necessary and sufficient to explain the vertical profiles of C2 hydrocarbons in Pluto’s atmosphere.
Stratospheric water vapor measurements at Thule, Greenland, by means of a new 22 GHz spectrometer
NASA Astrophysics Data System (ADS)
Mevi, Gabriele; Muscari, Giovanni; Mari, Massimo; Meloni, Daniela; Di Iorio, Tatiana; Pace, Giandomenico; di Sarra, Alcide; Cacciani, Marco
2017-04-01
A new 22 GHz water vapor spectrometer, VESPA-22 (water Vapour Emission Spectrometer for Polar Atmosphere), was installed in July 2016 at the Thule High Arctic Atmospheric Observatory (THAAO) located at Thule Air Base (76.5° N, 68.8° W), Greenland, and participated in the intensive measurement campaign of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. After the campaign VESPA-22 has continued to carry out measurements in an autonomous mode and has now obtained more than 6 months of data. VESPA-22 was designed and built at the Istituto Nazionale di Geofisica and Vulcanologia (INGV) and measures the 22.235 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The collected spectra are inverted using an optimal estimation algorithm in order to retrieve water vapour vertical profiles from about 26 to 72 km with a vertical resolution varying from 4 to 7.5 km. The spectrometer can produce 2 to 4 vertical profiles a day, depending on season and weather conditions. VESPA-22 also measures the atmospheric optical depth at 22 GHz and can therefore provide an estimate of precipitable water vapor (PWV) with a temporal resolution of few minutes. The instrument is calibrated every 30 minutes using noise diodes and tipping curves, and requires a calibration with liquid nitrogen (LN2) only once every few months. We will present water vapor stratospheric profiles over Thule obtained during an almost complete yearly cycle. The retrieved profiles have been compared with the Aura/MLS H2O dataset. During autumn 2016 the two datasets show a mean difference of less than 5% and a correlation coefficient of about 0.9 at all altitudes between 26 to 60 km.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.
2015-04-01
The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near field signals to be more appropriately smoothed. With these revisions, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt has reduced the mean profile bias by 3.5% and large reductions in bias (near 15 %) were apparent above 4.5 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes agree well with the retrieval and are mostly within the TROPOZopt retrieval uncertainty bars (which implies that this exercise was quite successful). A final mean percent difference plot is shown between the TROPOZopt and ozonesondes, which indicates that the new operational retrieval is mostly within 10% of the ozonesonde measurement and no systematic biases are present. The authors believe that this analysis has significantly added to the confidence in the TROPOZ instrument and provides a standard for current and future TOLNet algorithms.
NASA Astrophysics Data System (ADS)
Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.
2016-06-01
Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.
Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles
NASA Astrophysics Data System (ADS)
van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.
2016-08-01
A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.
Retrieval of CHOCHO from MAX-DOAS measurements in the Beijing area
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Lerot, Christophe; Stavrakou, Trissevgeni; De Smedt, Isabelle; Fayt, Caroline; Gielen, Clio; Hermans, Christian; Müller, Jean-Francois; Pinardi, Gaia; Van Roozendael, Michel
2015-04-01
Glyoxal (CHOCHO) is one of the most important carbonyl compounds in the atmosphere. It is produced mainly by the oxidation of biogenic and anthropogenic non-methane volatile organic compounds (NMVOCs) which participate to the formation of tropospheric ozone and secondary organic aerosols. CHOCHO is also directly released by biomass burning and fossil fuel combustion. Measuring this species is therefore of major importance for air quality monitoring, especially given the scarcity of available CHOCHO observational data sets. In this presentation, CHOCHO vertical profiles and corresponding column densities are retrieved from MAX-DOAS measurements in the Beijing city center and at the suburban site of Xianghe located at 60km East of Beijing. The periods covered by the observations are June 2008-April 2009 in Beijing and March 2010-December 2014 in Xianghe. We first investigate the capability of the MAX-DOAS technique to measure this species in such highly-polluted environment. Then the diurnal and seasonal cycles of CHOCHO near-surface concentrations and vertical column densities as well as the corresponding CHOCHO/HCHO ratios are examined on a long-term basis at both locations. The CHOCHO/HCHO ratios are derived from MAX-DOAS HCHO vertical profiles retrieved in parallel to the CHOCHO profiles. These diurnal and seasonal cycles are further assessed using simulations from the 3D-CTM IMAGES and observations from the OMI and GOME-2 satellite nadir instruments. The impact of these results on our knowledge about the CHOCHO budget is discussed.
MIRA: review of inputs from updated results of the phobos mission
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Korablev, O. I.; Rodin, A. V.; Titov, D. V.
1999-01-01
The future Mars International Reference Atmosphere (MIRA) is intended to replace the present COSPAR Mars Reference Model compiled in 1979 on the basis of Mariner 9 and Viking 1,2 missions results. At the moment, several sources of the post-Viking data potentially useful for MIRA are available. Among them is a data set obtained during Phobos mission in 1989. The interpretation of these data has undergone thorough refinement, so final recommendations for MIRA can be made. The principal points are: 1) vertical profile of water vapor with a ``knee'' at the height about 25 km retrieved in the spring equinox season near equator; 2) variations of water vapor column density including peculiarities on the slopes of high mountains; 3) vertical profiles of ozone; 4) new estimates of CO abundance; 5) surface pressure/height mapping (CO2 altimetry) in selected regions; 6) optical depths of aerosols; 7) vertical profiles of aerosol between surface and 40 km; 8) properties of high altitude ice layers and clouds above mountains; 9) microphysical properties of aerosol particles (size, composition, and number density estimates). The data have been obtained by means of instruments AUGUSTE (UV and NIR spectrometers for limb sounding of the atmosphere using solar occultations), ISM (NIR scanning spectrometer), TERMOSKAN (thermal IR scanning radiometer), KRFM (near-UV and visible multi-band photometer). The observations were performed in equatorial regions during northern spring (solar aerocentric longitudes 8° < Ls < 18°).
Application of Lidar Data to the Performance Evaluations of ...
The Tropospheric Ozone (O3) Lidar Network (TOLNet) provides time/height O3 measurements from near the surface to the top of the troposphere to describe in high-fidelity spatial-temporal distributions, which is uniquely useful to evaluate the temporal evolution of O3 profiles in air quality models. This presentation describes the application of the Lidar data to the performance evaluation of CMAQ simulated O3 vertical profiles during the summer, 2014. Two-way coupled WRF-CMAQ simulations with 12km and 4km domains centered over Boulder, Colorado were performed during this time period. The analysis on the time series of observed and modeled O3 mixing ratios at different vertical layers indicates that the model frequently underestimated the observed values, and the underestimation was amplified in the middle model layers (~1km above the ground). When the lightning strikes detected by the National Lightning Detection Network (NLDN) were analyzed along with the observed O3 time series, it was found that the daily maximum O3 mixing ratios correlated well with the lightning strikes in the vicinity of the Lidar station. The analysis on temporal vertical profiles of both observed and modeled O3 mixing ratios on episodic days suggests that the model resolutions (12km and 4km) do not make any significant difference for this analysis (at this specific location and simulation period), but high O3 levels in the middle layers were linked to lightning activity that occurred in t
Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center
NASA Technical Reports Server (NTRS)
Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary
2009-01-01
This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.
NASA Astrophysics Data System (ADS)
Wang, S.; Sobel, A. H.; Nie, J.
2015-12-01
Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and cloud-radiative feedback to the dynamics of the MJO, as well as to accurate simulation and prediction of it in models.
Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng
2013-06-01
The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.
Balloon measurements of stratospheric HCl and HF by far infrared emission spectroscopy
NASA Technical Reports Server (NTRS)
Shibasaki, Kazuo; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Traub, Wesley A.
1994-01-01
We have analyzed atmospheric thermal emission spectra obtained with the balloon-borne FIRS-2 far infrared Fourier transform spectrometer during balloon flights from Palestine, Texas on May 12-13, 1988 and from Fort Sumner, New Mexico on September 26-27, 1989 and on July 4-5, 1990. Seven and two pure rotational transition lines in 100-205 cm(exp -1) range are analyzed for deriving vertical profiles of stratospheric HCl and HF, respectively. We obtain both the daytime and nighttime average vertical profiles from 15 to 50 km. We compare these profiles with the ones obtained in June, 1983 with the first version of FIRS spectrometer during the Balloon Intercomparison Campaign (BIC-2). BIC-2 results were revised to be consistent with the present analysis which uses the latest spectral parameters. According to our comparison results no increase is recognized for HCl but about 3 percent per year increase for HF from 1983 to 1990, assuming a linear trend. These annual increase rates are smaller than those reported by other groups. Recently Rinsland et al. (1991) and Wallace and Livingston (1991) reported long term behavior of total HCl and HF observed on Kit Peak between 1977 and 1990. As Kit Peak is located near both balloon launching sites, Palestine and Fort Sumner, we think our results are favorably comparable with theirs. Comparison results with ours and ground-based measurements will be presented and discussed.
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2015-04-01
Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.
Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model
NASA Technical Reports Server (NTRS)
Molod, Andrea
2012-01-01
Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.
Exploring and Visualizing A-Train Instrument Data
NASA Technical Reports Server (NTRS)
Kempler, S.; Leptoukh, G.; Berrick, S.; Stephens, G.; Winker, D.; Reinke, D.
2007-01-01
The succession of US and international satellites that follow each other in close succession, known as the A-Train, affords an opportunity to atmospheric researchers that no single platform could provide: Increasing the number of observations at any given geographic location.. . a more complete "virtual science platform". However, vertically and horizontally, co-registering and regridding datasets from independently developed missions, Aqua, Calipso, Cloudsat, Parasol, and Aura, so that they can be inter-compared can be daunting to some, and may be repeated by many. Scientists will individually spend much of their time and resources acquiring A-Train datasets of interest residing at various locations, developing algorithms to match up and graph datasets along the A-Train track, and search through large amounts of data for areas and/or phenomena of interest. The aggregate amount of effort that can be expended on repeating pre-science tasks could climb into the tens of millions of dollars. The goal of the A-Train Data Depot (ATDD) is to enable free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) is accomplished by through the ATDDs Giovanni data analysis and visualization tool. Giovanni brings together data from Aqua (MODIS, AIRS, AMSR-E), Cloudsat (cloud profiling radar) and Calipso (CALIOP, IIR), as well as the Aura (OMI, MLS, HIRDLS, TES) to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. This easy to learn and use exploration tool will allow users to create vertical profiles of any desired A-Train dataset, for any given time of choice. This presentation shows the power of Giovanni by describing and illustrating how this tool facilitates and aids A-Train science and research. A web based display system Giovanni provides users with the capability of creating co-located profile images of temperature and humidity data from the MODIS, MLS and AIRS instruments for a user specified time and spatial area. In addition, Cloud and Aerosol profiles may also be displayed for the Cloudsat and Caliop instruments. The ability to modify horizontal and vertical axis range, data range and dynamic color range is also provided. Two dimensional strip plots of MODIS, AIRS, OM1 and POLDER parameters, co-located along the Cloudsat reference track, can also be plotted along with the Cloudsat cloud profiling data. Center swath pixels for the same parameters can also be shown as line plots overlaying the Cloudsat or Calipso profile images. Images and subsetted data produced in each analysis run may be downloaded. Users truly can explore and discover data specific to their needs prior to ever transferring data to their analysis tools.
Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H
2016-01-01
Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Upper ocean moored current and density profiler applied to winter conditions near Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.
1982-09-20
A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less
Vertical structure of radar reflectivity in deep intense convective clouds over the tropics
NASA Astrophysics Data System (ADS)
Kumar, Shailendra; Bhat, G. S.
2015-04-01
This study is based on 10 years of radar reflectivity factor (Z) data derived from the TRMM Precipitation Radar (PR) measurements. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective clouds (ICCs), essentially following the methodology used in deriving the vertical profiles of radar reflectivity (VPRR). CbT contains Z≥ 20 dBZ at 12 km height with its base height below 3 km. ICCs belong to the top 5% reflectivity population at 3 km and 8 km altitude. Regional differences in the vertical structure of convective cells have been explored for two periods, namely, JJAS (June, July, August and September) and JFM (January, February and March) months. Frequency of occurrences of CbTs and ICCs depend on the region. Africa and Latin America are the most productive regions for the CbTs while the foothills of Western Himalaya contain the most intense profiles. Among the oceanic areas, the Bay of Bengal has the strongest vertical profile, whereas Atlantic Ocean has the weakest profile during JJAS. During JFM months, maritime continent has the strongest vertical profile whereas western equatorial Indian Ocean has the weakest. Monsoon clouds lie between the continental and oceanic cases. The maximum heights of 30 and 40 dBZ reflectivities (denoted by MH30 and MH40, respectively) are also studied. MH40 shows a single mode and peaks around 5.5 km during both JJAS and JFM months. MH30 shows two modes, around 5 km and between 8 km and 10 km, respectively. It is also shown that certain conclusions such as the area/region with the most intense convective cells, depend of the reference height used in defining a convective cell.
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
PHYSICAL MODELING OF CONTRACTED FLOW.
Lee, Jonathan K.
1987-01-01
Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.
A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.
2001-01-01
The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.
Simultaneous profiling of the Arctic Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M.; Reuder, J.
2009-09-01
The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with respect to the measured SUMO profiles are presented.
NASA Astrophysics Data System (ADS)
Sahoo, Swaroop
2011-12-01
The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.
A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight
NASA Astrophysics Data System (ADS)
Haustein, Herman D.; Harnik, Ron S.; Rohlfs, Wilko
2017-08-01
A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet's impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity's viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction's gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5-8, Re = 350-520, We = 2.8-6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200-1800, short pipes (Z = L/d . Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.
Gravity wave momentum flux estimation from CRISTA satellite data
NASA Astrophysics Data System (ADS)
Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.
2003-04-01
Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.
Convection Induced by Traveling Magnetic Fields in Semiconductor Melts
NASA Technical Reports Server (NTRS)
Konstantin, Mazuruk
2000-01-01
Axisymmetric traveling magnetic fields (TMF) can be beneficial for crystal growth applications. such as the vertical Bridgman, float zone or traveling heater methods. TMF induces a basic flow in the form of a single roll. This type of flow can enhance mass and heat transfer to the growing crystal. More importantly, the TMF Lorentz body force induced in the system can counterbalance the buoyancy forces, so the resulting convection can be much smaller and even the direction of it can be changed. In this presentation, we display basic features of this novel technique. In particular, numerical calculations of the Lorentz force for arbitrary frequencies will be presented along with induced steady-state fluid flow profiles. Also, numerical modeling of the TMF counter-balancing natural convection in vertical Bridgman systems will be demonstrated.
Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry
2017-01-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
NASA Astrophysics Data System (ADS)
Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick
2016-04-01
The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total aerosol and black carbon mass mixing ratio with altitude than found in the observations. In contrast, measured profiles from the HIPPO project are qualitatively captured well. Similar conclusions hold for the comparison of simulated and measured aerosol particle number concentrations. On the one hand, these results exemplify the difficulty in evaluating the representativeness of the simulated global climatological state of the aerosol by means of comparison with individually measured vertical profiles. On the other hand, it highlights the value of aircraft campaigns with large spatial and temporal coverage for model evaluation.
Surface Wind Field Analyses of Tropical Cyclones in the Western Pacific
2012-09-01
Averaged vertical profiles of actual wind speeds (m s-1) from all dropwindsondes in three ITOP storms . (b) Averaged vertical profiles of wind speeds...for the entire set of winds from the three ITOP 2010 typhoons. .............................1 Figure 27. a) Storm -relative motion flight track for...1 Figure 28. a) Storm -relative motion flight track for flight 0420 in TY Fanapi
NASA Astrophysics Data System (ADS)
Mukhartova, Yu. V.; Krupenko, A. S.; Mangura, P. A.; Levashova, N. T.
2018-01-01
A two-dimensional hydrodynamic model was developed and applied to describe turbulent fluxes of CO2 and H2O within the atmospheric surface layer over a heterogeneous land surface featuring mosaic vegetation and complex topography. Numerical experiments were carried out with a 4.5-km profile that crosses a hilly region in the central part of European Russia, with the diverse land-use patterns (bare soil, crop areas, grasslands, and forests). The results showed very strong variability of the vertical and horizontal turbulent CO2 and H2O fluxes. The standard deviations of the vertical fluxes were estimated for separate profile sections with uniform vegetation cover for daylight conditions in summer, and they were comparable with the mean vertical fluxes for corresponding sections. The highest horizontal turbulent fluxes occurred at the boundaries between different plant communities and at irregularities in surface profile. In some cases, these fluxes reached 10-20% of the absolute values of the mean vertical fluxes for corresponding profile sections. Significant errors in estimating the local and integrated fluxes e.g. when using the eddy covariance technique, can result from ignoring the surface topography, even in the case of relatively large plots with uniform vegetation cover.
Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.
2010-12-01
Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.
Velocity and sediment surge: What do we see at times of very shallow water on intertidal mudflats?
NASA Astrophysics Data System (ADS)
Zhang, Qian; Gong, Zheng; Zhang, Changkuan; Townend, Ian; Jin, Chuang; Li, Huan
2016-02-01
A self-designed "bottom boundary layer hydrodynamic and suspended sediment concentration (SSC) measuring system" was built to observe the hydrodynamic and the SSC processes over the intertidal mudflats at the middle part of the Jiangsu coast during August 8-10, 2013. Velocity profiles within 10 cm of the mudflat surface were obtained with a vertical resolution as fine as 1 mm. An ADCP was used to extend the profile over the full water depth with a resolution of 10 cm and the vertical SSC profile was measured at intervals using Optical Backscatter Sensors (OBS). At the same time, water levels and wave conditions were measured with a Tide and Wave Recorder. Measured data suggested that the vertical structure of velocity profiles within 10 cm above the bed maintains a logarithmic distribution during the whole tidal cycle except the slack-water periods. Shallow flows during both the early-flood period and the later-ebb period are characterized by a relatively large vertical velocity gradient and a "surge" feature. We conclude that the very shallow water stages are transient and may not contribute much to the whole water and sediment transport, while they can play a significant role in the formation and evolution of micro-topographies on tidal flats.
NASA Astrophysics Data System (ADS)
Bilal, S.; Rehman, Khalil Ur; Jamil, Hamayun; Malik, M. Y.; Salahuddin, T.
2016-12-01
An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour) and thermo-diffusion (Soret) effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.
A dimensional comparison between embedded 3D-printed and silicon microchannels
NASA Astrophysics Data System (ADS)
O'Connor, J.; Punch, J.; Jeffers, N.; Stafford, J.
2014-07-01
The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.
NASA Astrophysics Data System (ADS)
Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich
2017-04-01
An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.
Stratospheric nitrous oxide distribution in the Southern Hemisphere
NASA Technical Reports Server (NTRS)
Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. R.
1989-01-01
Nitrous oxide measurements were made in the Southern Hemisphere as part of the Airborne Antarctic Ozone Experiment in late winter and early spring 1987, covering the altitude range 14-21 km. This paper reports on N2O measurements made by the airborne tunable laser absorption spectrometer, which was flown onboard the NASA ER-2 aircraft. Average vertical N2O profiles at latitudes 72 deg S, 54 deg S, and 42 deg S are presented and compared, when possible, with equivalent summer profiles. Latitudinal gradients of N2O on isentropic surfaces are presented and discussed in terms of their implications about the inhibition of horizontal mixing near the polar vortex. Finally, a large-scale distribution of N2O for the region 72 deg S to 42 deg S latitude is presented.
An Empirical Cumulus Parameterization Scheme for a Global Spectral Model
NASA Technical Reports Server (NTRS)
Rajendran, K.; Krishnamurti, T. N.; Misra, V.; Tao, W.-K.
2004-01-01
Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This also suggests that in the absence of explicit models for convection, the proposed statistical scheme improves the modeling of the vertical distribution of heating and moistening in areas of deep convection.
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Formisano, V.; Grassi, D.; Igantiev, N. I.; Moroz, V. I.
This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm-1 and a high spectral resolution of about 2 cm-1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.
Design and Application of New Low-Cost Instruments for Marine Environmental Research
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-01-01
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594
NASA Astrophysics Data System (ADS)
Skinner, P. S.; Basu, S.
2009-12-01
Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.
Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study
NASA Technical Reports Server (NTRS)
Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.
2011-01-01
The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.
Tracer concentration profiles measured in central London as part of the REPARTEE campaign
NASA Astrophysics Data System (ADS)
Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.
2009-11-01
There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from cyclic perfluorocarbon tracer experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study dispersion over a large vertical gradient. These gradients are then compared with classical Gaussian profiles of the relevant stability classes over a range of distances as well as interpretation of data with reference to both anemometry and LIDAR measurements made. Data are then compared with an operational model and contrasted with data taken in central London as part of the DAPPLE campaign looking at dosage compared with non-dimensionalised distance from source. Such analysis illustrates the feasibility of the use of these empirical correlations over these prescribed distances in central London.
Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals
NASA Astrophysics Data System (ADS)
Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.
2016-12-01
The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.
Design and application of new low-cost instruments for marine environmental research.
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-12-05
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea.
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Prather, Michael J.; Rossow, William B.
1987-01-01
Chemical equilibrium models used currently to interpret observations of Jupiter are reexamined using new data defining thermal profiles, which are substantially different from those used in the previous models. A model is developed for the chemical reactions controlling the composition of the upper troposphere on Jupiter, specifically the cloud-forming region from 10 bar to 0.1 bar, which includes, for the first time, the effects of aqueous chemistry on the composition and the vertical distribution of many measurable species in the atmosphere, identifying the factors influencing their abundances above the H2O cloud. The thermodynamic data for potential condensates on Jupiter, i.e., NH3(s), NH4SH(s), (NH4)2S(s), and H2S(s), are reexamined, recognizing the lack of data on sulfides for the temperature range of interest on Jupiter. Vertical profiles of mixing ratios for CO2, H2S, NH3, and H2, obtained for several assumed bulk abundances with respect to solar, are presented.
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Dubé, William P.; Osthoff, Hans D.; Stutz, Jochen; Ryerson, Thomas B.; Wollny, Adam G.; Brock, Charles A.; Warneke, Carsten; de Gouw, Joost A.; Atlas, Eliot; Neuman, J. Andrew; Holloway, John S.; Lerner, Brian M.; Williams, Eric J.; Kuster, William C.; Goldan, Paul D.; Angevine, Wayne M.; Trainer, Michael; Fehsenfeld, Frederick C.; Ravishankara, A. R.
2007-11-01
The nocturnal nitrogen oxides, NO3 and N2O5, are important to the chemical transformation and transport of NOx, O3 and VOC. Their concentrations, sources and sinks are known to be vertically stratified in the nighttime atmosphere. In this paper, we report vertical profiles for NO3 and N2O5 measured from an aircraft (the NOAA P-3) as part of the New England Air Quality Study in July and August 2004. The aircraft data are compared to surface measurements made in situ from a ship and by long-path DOAS. Consistent with previous, vertically resolved studies of NO3 and N2O5, the aircraft measurements show that these species occur at larger concentrations and are longer lived aloft than they are at the surface. The array of in situ measurements available on the P-3 allows for investigation of the mechanisms that give rise to the observed vertical gradients. Selected vertical profiles from this campaign illustrate the role of biogenic VOC, particularly isoprene and dimethyl sulfide, both within and above the nocturnal and/or marine boundary layer. Gradients in relative humidity and aerosol surface may also create a vertical gradient in the rate of N2O5 hydrolysis. Low-altitude intercepts of power plant plumes showed strong vertical stratification, with plume depths of 80 m. The efficiency of N2O5 hydrolysis within these plumes was an important factor determining the low-level NOx and O3 transport or loss at night. Averages of nocturnal O3, NO2, NO3 and N2O5 binned according to altitude were consistent with the trends from individual profiles. While production rates of NO3 peaked near the surface, lifetimes of NO3 and N2O5 were maximum aloft, particularly in the free troposphere. Variability in NO3 and N2O5 was large and exceeded that of NO2 or O3 because of inhomogeneous distribution of NOx emissions and NO3 and N2O5 sinks.
NASA Astrophysics Data System (ADS)
Fita, L.; Romero, R.; Luque, A.; Ramis, C.
2009-08-01
The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and spatial resolution of the assimilated data also presents a case dependence. It also shows a significant sensitivity of the results of the observation nudging to the specific choice of the values of coefficient weight and vertical ratio of the ingested observations.
NASA Astrophysics Data System (ADS)
Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.
2015-12-01
One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic Cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, vertical profile information of BC is critical in reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the Department of Energy (DOE) Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Lastly, these aerosol and gas measurements provide an important dataset to assess the representativeness of ground sites at regional scales. Comparisons between observations and a global climate model (CAM5) simulations will be agumented with a discussion on the capability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the ability of the SP2 to partition rBC-containing particles into nascent or aged species allows an evaluation of how well the CAM5 model captures aging of long distant transported carbonaceous aerosols. Finally model sensitivity studies will be aso be presented that investigated the relative importance of the different emission sectors to the summer Arctic BC loadings at different altitudes and the implications of these emissions on the radiation budget.
Marsh canopy leaf area and orientation calculated for improved marsh structure mapping
Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri
2015-01-01
An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.
Managing Geological Profiles in Databases for 3D Visualisation
NASA Astrophysics Data System (ADS)
Jarna, A.; Grøtan, B. O.; Henderson, I. H. C.; Iversen, S.; Khloussy, E.; Nordahl, B.; Rindstad, B. I.
2016-10-01
Geology and all geological structures are three-dimensional in space. GIS and databases are common tools used by geologists to interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. 3D geology is usually described by geological profiles, or vertical sections through a map, where you can look at the rock structure below the surface. The goal is to gradually expand the usability of existing and new geological profiles to make them more available in the retail applications as well as build easier entry and registration of profiles. The project target is to develop the methodology for acquisition of data, modification and use of data and its further presentation on the web by creating a user-interface directly linked to NGU's webpage. This will allow users to visualise profiles in a 3D model.
NASA Technical Reports Server (NTRS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-01-01
MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.
2015-12-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-09-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-10-01
MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
An Orbital "Virtual Radar" from TRMM Passive Microwave and Lightning Observations
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
2004-01-01
The retrieval of vertical structure from joint passive microwave and lightning observations is demonstrated. Three years of data from the TRMM (Tropical Rainfall Measuring Mission) are used as a training dataset for regression and classification neural networks; the TMI (TRMM Microwave Imager) and LIS (Lightning Imaging Sensor) provide the inputs, the PR (Precipitation Radar) provides the training targets. Both vertical reflectivity profile categorization (into 9 convective, 7 stratiform, 2 mixed and 6 anvil types) and geophysical parameters (surface rainfall, vertically integrated liquid (VIL), ice water content (IWC) and echo tops) are retrieved. Retrievals are successful over both land and ocean surfaces. The benefit of using lightning observations as inputs to these retrievals is quantitatively demonstrated; lightning essentially provides an additional convective/stratiform discriminator, and is most important for isolation of midlevel (tops in the mixed phase region) convective profile types (this is because high frequency passive microwave observations already provide good convective/stratiform discrimination for deep convective profiles). This is highly relevant as midlevel convective profiles account for an extremely large fraction of tropical rainfall, and yet are most difficult to discriminate from comparable-depth stratiform profile types using passive microwave observations alone.
Inertial instrument system for aerial surveying
Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.
1985-01-01
An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)
OMPS Limb Profiler: Extending SAGE and CALIPSO Stratospheric Aerosol Records
NASA Astrophysics Data System (ADS)
Taha, G.; Bhartia, P. K.; Chen, Z.; Xu, P.; Loughman, R. P.; Jaross, G.
2017-12-01
The OMPS LP instrument is designed to provide high vertical resolution ozone and aerosol profiles from measurements of the scattered solar radiation in the 290-1000 nm spectral range. It collected its first Earth limb measurement in January 10, 2012, and continues to provide daily global measurements of ozone and aerosol profiles from the cloud top up to 60 km and 40 km respectively. The relatively high vertical and spatial sampling allow detection and tracking periodic events when aerosol particles are injected into the stratosphere, such as volcanic eruptions or meteor explosions. OMPS LP can extend the long-term records of stratospheric aerosol at high vertical resolution produced by variety of sensors, such as SAGEII, GOMOS, OSIRIS and CALIPSO. Most of these instruments ceased to operate or well beyond their designed lifetime. After an absence of over a decade, SAGE III/ISS was launched earlier this year and expected to resume the high quality aerosol data record. OMPS LP is also schedule to fly on JPSS-2 and 3. In this study we will examine the suitability of using LP profiles to continue the stratospheric aerosol records beyond SAGE, OSIRIS, and CALIPSO. We will compare OMPS LP released V1.0 aerosol extinction measurements to OSIRIS and CALIPSO. Initial results shows good agreement with OSIRIS measurements to within 20%, with larger bias in the southern hemisphere. To test the effect of the assumed aerosol size model (ASD) and phase function, we compare measurements taken at similar location and time with different viewing geometry. Comparison of ascending and descending aerosol extinction daily zonal means at high latitudes shows systematic bias that is well correlated with the solar scattering angle, indicating ASD uncertainties up to 30%. In addition, results showing latitudinal, and temporal variability of stratospheric aerosol extinction and optical depth for the three instruments will also be presented and compared. We will also present OMPS LP aerosol observations of the dispersal of volcanic aerosols in the stratosphere following the eruptions of Kelut and Calbuco in 2014 and 2015 respectively.
Funk, Christopher C.; Michaelsen, Joel C.
2004-01-01
An extension of Sinclair's diagnostic model of orographic precipitation (“VDEL”) is developed for use in data-poor regions to enhance rainfall estimates. This extension (VDELB) combines a 2D linearized internal gravity wave calculation with the dot product of the terrain gradient and surface wind to approximate terrain-induced vertical velocity profiles. Slope, wind speed, and stability determine the velocity profile, with either sinusoidal or vertically decaying (evanescent) solutions possible. These velocity profiles replace the parameterized functions in the original VDEL, creating VDELB, a diagnostic accounting for buoyancy effects. A further extension (VDELB*) uses an on/off constraint derived from reanalysis precipitation fields. A validation study over 365 days in the Pacific Northwest suggests that VDELB* can best capture seasonal and geographic variations. A new statistical data-fusion technique is presented and is used to combine VDELB*, reanalysis, and satellite rainfall estimates in southern Africa. The technique, matched filter regression (MFR), sets the variance of the predictors equal to their squared correlation with observed gauge data and predicts rainfall based on the first principal component of the combined data. In the test presented here, mean absolute errors from the MFR technique were 35% lower than the satellite estimates alone. VDELB assumes a linear solution to the wave equations and a Boussinesq atmosphere, and it may give unrealistic responses under extreme conditions. Nonetheless, the results presented here suggest that diagnostic models, driven by reanalysis data, can be used to improve satellite rainfall estimates in data-sparse regions.
NASA Astrophysics Data System (ADS)
Neubert, M.; Jurisch, M.
2015-06-01
The paper analyzes experimental compositional profiles in Vertical Bridgman (VB, VGF) grown (Cd,Zn)Te crystals, found in the literature. The origin of the observed axial ZnTe-distribution profiles is attributed to dendritic growth after initial nucleation from supercooled melts. The analysis was done by utilizing a boundary layer model providing a very good approximation of the experimental data. Besides the discussion of the qualitative results also a quantitative analysis of the fitted model parameters is presented as far as it is possible by the utilized model.
Systematic stratospheric observations on the Antarctic continent at Dumont d'Urville
NASA Technical Reports Server (NTRS)
Godin, S.; Sarkissian, A.; David, C.; Megie, G.; Pommereau, J. P.; Goutail, F.; Aimedieu, P.; Piquard, J.; Lebouar, E.; Stefanutti, L.
1994-01-01
Results of different routine measurements performed in Dumont d'Urville (66 deg S, 140 deg E) since 1988 are presented. They include the seasonal variation of total ozone and NO2 as measured by a SAOZ UV-Visible spectrometer, Polar Stratospheric Cloud observations by a backscatter lidar and more recently, vertical ozone profiles by ECC sondes and ozone and aerosols stratospheric profiles by a DIAL lidar. The particular results of 1991 in relation with the volcanic events of Mount Pinatubo and Mount Hudson, and the position of the polar vortex over Dumont d'Urville are discussed.
Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks
NASA Astrophysics Data System (ADS)
Svet, V. D.; Tsysar', S. A.
2018-01-01
Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.
NASA Astrophysics Data System (ADS)
Jakab, Gergely; Hegyi, István; Fullen, Michael; Szalai, Zoltán
2017-04-01
In addition to the serious environmental hazard soil erosion forms and reforms the soil surface. The intensity of these degrading and burial processes is highly variable, it fluctuates in time. One can only get a single view of the current status by the spatial analysis of soil depth and properties. Present study aims to estimate the dynamics of the former driving processes in detail those resulted the recent form of the landscape. Soil samples were taken along two intensively cultivated catenas from the surface to the parent material in vertical and from the ridge to the toe in horizontal direction. A non disturbed soil profile under continuous forest was also sampled as the initial, control status. Soil organic carbon (SOC), total nitrogen (TN), carbon nitrogen ratio (C/N), 13C and 15N stable isotope ratios were measured. Soil redistribution was supposed to be started right after the forest clearance 300 years before. Results indicated that the whole amount of solum (1 m) was taken by erosion in some local spots. Most of the soil loss was deposited at the toe, while vertical SOC and δ13C distributions (peaks) in the deposited profiles indicated the original soil surface at various depth. SOC peak in the profile indicated deeper in situ solum compared to the vertical peaks of the C/N and δ13C values. Presumably the layer of the highest SOC values in the sedimentation profiles is also formed by the deposition of initial soil loss from the upper parts of the catena. At this initial phase the selectivity of erosion was supposed to be quite effective for SOC that resulted the highest value. Therefore C/N and δ13C peaks fingerprint the original, in situ soil surface more adequately. The most effective erosion and deposition period was immediately after forest clearance. This emphasized that continuous tillage erosion had subordinate role compared to that of relief. Moreover, SOC erosion and burial in the present case was a sink in terms of mitigation of the atmospheric carbon content. G. Jakab was supported by the János Bolyai scholarship of the HAS, which is kindly acknowledged.
The effect of particle properties on the depth profile of buoyant plastics in the ocean
NASA Astrophysics Data System (ADS)
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.
2016-10-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
The effect of particle properties on the depth profile of buoyant plastics in the ocean
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.
2016-01-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460
The effect of particle properties on the depth profile of buoyant plastics in the ocean.
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A
2016-10-10
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins
2017-05-01
collect vertical profiles of ocean temperature, salinity and horizontal velocity at few- hour interval as well as sample for specified time periods...deployed for the MIZ program - specifically, vertical temperature, salinity and velocity profiles were collected every 3 hours in the upper 250m of the...the system), this ITP-V returned 5+ months of upper ocean temperature, salinity , velocity and turbulence data from the Makarov Basin, a region of
Ozone vertical profile changes over South Pole
NASA Technical Reports Server (NTRS)
Oltmans, S. J.; Hofmann, D. J.; Komhyr, W. D.; Lathrop, J. A.
1994-01-01
Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region.
Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data
NASA Technical Reports Server (NTRS)
Zaron, Edward D.; Ray, Richard D.
2017-01-01
Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.
Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean P.; Grasser, Thomas W.
We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less
Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire
Kearney, Sean P.; Grasser, Thomas W.
2017-08-10
We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less
Ozone Observations using Ozonesonde over the Himalaya from Pokhara, Nepal.
NASA Astrophysics Data System (ADS)
Dhungel, S.; Cullis, P.; Johnson, B.; Thompson, A. M.; Witte, J. C.; Panday, A. K.
2016-12-01
In recent years, transport of emissions from the Indo-Gangetic Plains (IGP), which covers parts of Pakistan, Nepal, India, Bangladesh has increased. Ozone pre-cursors like methane, nitrogen oxides, volatile organic carbons, and carbon monoxide from diesel based vehicular emission, biofuel and biomass burning, agricultural activities dominate the total emissions from the IGP. Synoptic circulation patterns along with local weather systems transport pollutants from the IGP up the Himalayan valleys to the Tibetan plateau. After being emitted, these pollutants are photochemically converted into tropospheric ozone - a short-lived climate pollutant that can increase atmospheric warming, alter processes of cloud formation, and in turn, influence precipitation levels and reduce carbon absorptivity in plants leading to decline in crop yields. However, little is known about vertical profiles of ozone concentration on the southern slopes of the Himalaya. Vertical ozone profiles were sampled from December 18th, 2015 to January 8th, 2016 from Pokhara (28.23°N, 83.99°E, 827m asl), Nepal using ozonesondes. Pokhara is located about 30km south of the Annapurna Himalaya, thus providing an ideal location to profile vertical ozone concentration south of the Himalaya. We launched one, two or four ozonesondes per day to examine the vertical resolution of ozone south of the Himalaya for the first time, and to understand the contribution of tropospheric and stratospheric sources. Here we present results from the 37 ozonesonde launches from Pokhara to examine: (i) how emissions from the IGP contribute to the vertical resolution of ozone, and (ii) if Himalayan orography provides an efficient path for stratosphere-troposphere air mass exchange under dry conditions. Our results show no signals of stratospheric air mass exchange. The results indicate higher levels of ozone within the boundary layer and lower troposphere. These higher values in the lower troposphere during winter seasons may be a result of longer residence times of the air mass resulting in photochemical build-up despite reduced insolation. Our observations are also essential to help infer ozone trends near the Himalaya, where there is currently inadequate spatial and temporal data coverage.
GOME-2A retrievals of tropospheric NO2 in different spectral ranges - influence of penetration depth
NASA Astrophysics Data System (ADS)
Behrens, Lisa K.; Hilboll, Andreas; Richter, Andreas; Peters, Enno; Eskes, Henk; Burrows, John P.
2018-05-01
In this study, we present a novel nitrogen dioxide (NO2) differential optical absorption spectroscopy (DOAS) retrieval in the ultraviolet (UV) spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere. As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution. We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of ˜ 60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only ˜ 36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV. While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analysed together with simulated NO2 fields, can help to better interpret the model output.
NASA Astrophysics Data System (ADS)
Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris
2015-04-01
Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2017-08-01
Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.
Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations
NASA Technical Reports Server (NTRS)
Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.
2013-01-01
[1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.
First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)
NASA Astrophysics Data System (ADS)
Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.
2018-05-01
Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.
TOLNet Data Format for Lidar Ozone Profile & Surface Observations
NASA Astrophysics Data System (ADS)
Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.
2015-12-01
The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.
High Spectral Resolution LIDAR as a Tool for Air Quality Research
NASA Astrophysics Data System (ADS)
Eloranta, E. W.; Spuler, S.; Hayman, M. M.
2017-12-01
Many aspects of air quality research require information on the vertical distribution of pollution. Traditional measurements, obtained from surface based samplers, or passive satellite remote sensing, do not provide vertical profiles. Lidar can provide profiles of aerosol properties. However traditional backscatter lidar suffers from uncertain calibrations with poorly constrained algorithms. These problems are avoided using High Spectral Resolution Lidar (HSRL) which provides absolutely calibrated vertical profiles of aerosol properties. The University of Wisconsin HSRL systems measure 532 nm wavelength aerosol backscatter cross-sections, extinction cross-sections, depolarization, and attenuated 1064 nm backscatter. These instruments are designed for long-term deployment at remote sites with minimal local support. Processed data is provided for public viewing and download in real-time on our web site "http://hsrl.ssec.wisc.edu". Air pollution applications of HSRL data will be illustrated with examples acquired during air quality field programs including; KORUS-AQ, DISCOVER-AQ, LAMOS and FRAPPE. Observations include 1) long range transport of dust, air pollution and smoke. 2) Fumigation episodes where elevated pollution is mixed down to the surface. 3) visibility restrictions by aerosols and 4) diurnal variations in atmospheric optical depth. While HSRL is powerful air quality research tool, its application in routine measurement networks is hindered by the high cost of current systems. Recent technical advances promise a next generation HSRL using telcom components to greatly reduce system cost. This paper will present data generated by a prototype low cost system constructed at NCAR. In addition to lower cost, operation at a non-visible near 780 nm infrared wavelength removes all FAA restrictions on the operation.
Development status of the EarthCARE Mission and its atmospheric Lidar
NASA Astrophysics Data System (ADS)
Hélière, A.; Wallace, K.; Pereira Do Carmo, J.; Lefebvre, A.; Eisinger, M.; Wehr, T.
2016-09-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution up to 100 m from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are also separated and measured on dedicated channels. This paper gives an overview of the mission science objective, the satellite configuration with its four instruments and details more specifically the implementation and development status of the Atmospheric Lidar. Manufacturing status and first equipment qualification test results, in particular for what concerns the laser transmitter development are presented.
NASA Technical Reports Server (NTRS)
Chu, W. P.; Chiou, E. W.; Larsen, J. C.; Thomason, L. W.; Rind, D.; Buglia, J. J.; Oltmans, S.; Mccormick, M. P.; Mcmaster, L. M.
1993-01-01
The operational inversion algorithm used for the retrieval of the water-vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data is presented. Unlike the algorithm used for the retrieval of aerosol, O3, and NO2, the water-vapor retrieval algorithm accounts for the nonlinear relationship between the concentration versus the broad-band absorption characteristics of water vapor. Problems related to the accuracy of the computational scheme, the accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile are examined. Results are presented on the error analysis of the SAGE II water vapor retrieval, indicating that the SAGE II instrument produced good quality water vapor data.
Selker, Frank; Selker, John S.
2018-01-01
There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen. PMID:29596339
Selker, Frank; Selker, John S
2018-03-29
There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.
Winds in the meteor zone over Trivandrum
NASA Astrophysics Data System (ADS)
Reddi, C. R.; Rajeev, K.; Ramakumar, Geetha
1991-04-01
The height profiles of the zonal and meridional wind obtained from the meteor wind radar data recorded at Trivandrum (8 deg 36 min N, 77 deg E) are presented. Large wind shears were found to exist in the meteor zone over Trivandrum. The profiles showed quasi-sinusoidal variations with altitude and vertical wavelength of the oscillation in the range 15-25 km. Further, there was a large day-to-day variability in the profiles obtained for the same local time on consecutive days. The results are discussed in the light of the winds due to tides and equatorial waves in the low latitudes. The implications of the large wind shears with reference to the local wind effects on the equatorial electrojet are outlined.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin
2000-01-01
The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.
Effects of multiple scattering and surface albedo on the photochemistry of the troposphere
NASA Technical Reports Server (NTRS)
Augustsson, T. R.; Tiwari, S. N.
1981-01-01
The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included
Vertical Profiling of Air Pollution at RAPCD
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John
2004-01-01
The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustsson, T.R.; Tiwari, S.N.
The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfermore » code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included« less
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Weinman, J. A.; Lau, William K. M. (Technical Monitor)
2001-01-01
Observations of brightness temperature, Tb made over land regions by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer have been analyzed along with the nearly simultaneous measurements of the vertical profiles of reflectivity factor, Z, made by the Precipitation Radar (PR) onboard the TRMM satellite. This analysis is performed to explore the interrelationship between the TMI and PR data in areas that are covered predominantly by convective or stratiform rain. In particular, we have compared on a scale of 20 km, average vertical profiles of Z with the averages of Tbs in the 19, 37 and 85 GHz channels. Generally, we find from these data that as Z increases, Tbs in the three channels decrease due to extinction. In order to explain physically the relationship between the Tb and Z observations, we have performed radiative transfer simulations utilizing vertical profiles of hydrometeors applicable to convective and stratiform rain regions. These profiles are constructed taking guidance from the Z observations of PR and recent LDR and ZDR measurements made by land-based polarimetric radars.
NASA Astrophysics Data System (ADS)
Meloni, D.; Junkermann, W.; di Sarra, A.; Cacciani, M.; De Silvestri, L.; Di Iorio, T.; Estellés, V.; Gómez-Amo, J. L.; Pace, G.; Sferlazzo, D. M.
2015-04-01
Desert dust interacts with shortwave (SW) and longwave (LW) radiation, influencing the Earth radiation budget and the atmospheric vertical structure. Uncertainties on the dust role are large in the LW spectral range, where few measurements are available and the dust optical properties are not well constrained. The first airborne measurements of LW irradiance vertical profiles over the Mediterranean were carried out during the Ground-based and Airborne Measurements of Aerosol Radiative Forcing (GAMARF) campaign, which took place in spring 2008 at the island of Lampedusa. The experiment was aimed at estimating the vertical profiles of the SW and LW aerosol direct radiative forcing (ADRF) and heating rates (AHR), taking advantage of vertically resolved measurements of irradiances, meteorological parameters, and aerosol microphysical and optical properties. Two cases, characterized respectively by the presence of a homogeneous dust layer (3 May, with aerosol optical depth, AOD, at 500 nm of 0.59) and by a low aerosol burden (5 May, with AOD of 0.14), are discussed. A radiative transfer model was initialized with the measured vertical profiles and with different aerosol properties, derived from measurements or from the literature. The simulation of the irradiance vertical profiles, in particular, provides the opportunity to constrain model-derived estimates of the AHR. The measured SW and LW irradiances were reproduced when the model was initialized with the measured aerosol size distributions and refractive indices. For the dust case, the instantaneous (solar zenith angle, SZA, of 55.1°) LW-to-SW ADRF ratio was 23% at the surface and 11% at the top of the atmosphere (TOA), with a more significant LW contribution on a daily basis (52% at the surface and 26% at TOA), indicating a relevant reduction of the SW radiative effects. The AHR profiles followed the aerosol extinction profile, with comparable peaks in the SW (0.72 ± 0.11 K d-1) and in the LW (-0.52 ± 0.12 K d-1) for the considered SZA. On a daily basis, the absolute value of the heating rate was larger in the LW than in the SW, producing a net cooling effect at specific levels. These are quite unexpected results, emphasizing the important role of LW radiation.
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.
2017-09-01
This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.
Liquid water content variation with altitude in clouds over Europe
NASA Astrophysics Data System (ADS)
Andreea, Boscornea; Sabina, Stefan
2013-04-01
Cloud water content is one of the most fundamental measurements in cloud physics. Knowledge of the vertical variability of cloud microphysical characteristics is important for a variety of reasons. The profile of liquid water content (LWC) partially governs the radiative transfer for cloudy atmospheres, LWC profiles improves our understanding of processes acting to form and maintain cloud systems and may lead to improvements in the representation of clouds in numerical models. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote sensing techniques. The aim of this paper was to analyze the liquid water content (LWC) measurements in clouds, in time of the aircraft flights. The aircraft and its platform ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research is property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania. The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 m). The processed and analyzed measurements are acquired during 4 flights from Romania (Bucharest, 44°25'57″N 26°06'14″E) to Germany (Berlin 52°30'2″N 13°23'56″E) above the same region of Europe. The flight path was starting from Bucharest to the western part of Romania above Hungary, Austria at a cruse altitude between 6000-8500 m, and after 5 hours reaching Berlin. In total we acquired data during approximately 20 flight hours and we presented the vertical and horizontal LWC variations for different cloud types. The LWC values are similar for each type of cloud to values from literature. The vertical LWC profiles in the atmosphere measured during takeoff and landing of the aircraft have shown their dependence of the meteorological parameters.
NASA Technical Reports Server (NTRS)
Chapman, R. S.
1977-01-01
An explicit two-dimensional finite difference model, designed to investigate the influence of suspended sediment on the pollutant transport process, is presented. Specific attention is directed toward examining the role of suspended sediment in: (1) the turbulent vertical transport mechanism in a stratified flow, and (2) pollutant uptake due to sorption. Results presented indicate that suspended sediment plays a major role in the pollutant transport process, and subsequently, any meaningful attempt to model the fate of a pollutant in an alluvial channel must account for the presence of a suspended sediment concentration profile. Similarly, the vertical and longitudinal pollutant concentration distributions provided by the model may be utilized to improve upon the predictive capacities of existing water quality models.
Underwater lidar system: design challenges and application in pollution detection
NASA Astrophysics Data System (ADS)
Gupta, Pradip; Sankolli, Swati; Chakraborty, A.
2016-05-01
The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.
NASA Astrophysics Data System (ADS)
Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.
2009-09-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-03-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
Measuring mixing efficiency in experiments of strongly stratified turbulence
NASA Astrophysics Data System (ADS)
Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.
2017-12-01
Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.
Analysis of mean velocity and turbulence measurements with ADCPs
NASA Astrophysics Data System (ADS)
De Serio, Francesca; Mossa, Michele
2015-07-01
The present study examines the vertical structure of the coastal current in the inner part of the Gulf of Taranto, located in the Ionian Sea (Southern Italy), including both the Mar Grande and Mar Piccolo basins. To this aim, different measuring stations investigated by both a Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) and a bottom fixed ADCP were taken into consideration. Two surveys were carried out in the target area on 29.12.2006 and on 11.06.2007 by the research unit of the Technical University of Bari (DICATECh Department), using a VM-ADCP to acquire the three velocity components along the water column in selected stationing points. The measurements were taken in shallow waters, under non-breaking wave conditions, offshore the surf zone. Due to the recording frequency of the instrument time-averaged vertical velocity profiles could be evaluated in these measuring stations. Water temperature and salinity were also measured at the same time and locations by means of a CTD recorder. A rigidly mounted ADCP, located on the seabed in the North-Eastern area of the Mar Grande basin, provided current data relative to the period 10-20 February 2014. Set to acquire the three velocity components with higher frequency with respect to the VM-ADCP, it allowed us to estimate the turbulent quantities such as Reynolds stresses and turbulent kinetic energy by means of the variance method. Therefore, the present research is made up of two parts. The first part examines the current pattern measured by the VM-ADCP and verifies that, for each station, the classical log law reproduces well the vertical profile of the experimental streamwise velocities extending beyond its typical limit of validity up to the surface i.e. reaching great heights above the sea bed. This behavior is quite new and not always to be expected, being generally limited to boundary layers. It has been convincingly observed in only few limited experimental works. In the present study this occurred when two conditions were met: (i) the flow was mainly unidirectional along the vertical; (ii) the interested layer was non-stratified. The second part of the research studies the turbulent statistics derived from the beam signals of the fixed ADCP by means of the variance method. This technique had the advantage of being able to measure the time evolution of the turbulent mixing throughout the entire water column, thus making it possible to perform a detailed study on momentum transfer and turbulence. The deduced vertical profiles of the Reynolds stresses and of the turbulent kinetic energy TKE showed an increasing trend toward the surface, in agreement with previous results in literature. New data-sets of mean velocities and shear stresses, coming from field measurements, are always needed. In fact they represent the first step to derive reliable reference values of coefficients and parameters for the implementation and calibration of the used mathematical hydrodynamic models. Consequently, an effort was made to evaluate consistent bottom drag and wind drag coefficients, on the basis of the calculated bottom and surface shear stresses, respectively.
NASA Technical Reports Server (NTRS)
Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.
1979-01-01
Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.
An experiment concept to measure stratospheric trace constituents by laser heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Allario, F.; Hoell, J. M., Jr.; Katzberg, S. J.; Larsen, J. C.
1980-01-01
Laser heterodyne spectroscopy (LHS) techniques were used to measure radical gases from Spacelab. Major emphasis was placed on the measurement of ClO, ClOnO2, HO2, H2O2, N2O5, and HOCl in solar occultation with vertical resolution less than or equal to 2-km and vertical range from 1O to 70-km. Sensitivity analyses were performed on ClO and O3 to determine design criteria for the LHS instrument. Results indicate that O3 and ClO vertical profiles can be measured with an accuracy more than or equal to 95% and more than or equal to 80%, respectively, over the total profile.
NASA Astrophysics Data System (ADS)
Ostrovskii, Alexander; Zatsepin, Andrey
2011-06-01
This presentation introduces a new ocean autonomous profiler for multiparametric surveys at fixed geographical locations. The profiler moves down and up along a mooring line, which is taut vertically between a subsurface flotation and an anchor. This observational platform carries such modern oceanographic equipment as the Nortek Aquadopp-3D current meter and the Teledyne RDI Citadel CTD-ES probe. The profiler was successfully tested in the northeastern Black Sea during 2007-2009. By using the profiler, new data on the layered organization of the marine environment in the waters over the upper part of the continental slope were obtained. The temporal variability of the fine-scale structure of the acoustic backscatter at 2 MHz was interpreted along with biooptical and chemical data. The patchy patterns of the acoustic backscatter were associated with physical and biological processes such as the advection, propagation of submesoscale eddy, thermocline displacement, and diel migration of zooplankton. Further applications of the multidisciplinary moored profiler technology are discussed.
Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.
2009-01-01
In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956
Validation campaigns of a coherent Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Cariou, Jean-Pierre; Boquet, Matthieu; Parmentier, Remy
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2018-05-01
For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.
NASA Astrophysics Data System (ADS)
Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.
2013-11-01
Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter category serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7 ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1 ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Some profiles may have been influenced by biomass burning sources as well, making quantitative attribution of organic aerosol sources difficult. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.
Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J
2016-01-01
This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of flame radiosity in shrubland fires
Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro
2011-01-01
The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...
NASA Technical Reports Server (NTRS)
Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.
2011-01-01
An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS
NASA Technical Reports Server (NTRS)
Emmons, Louisa K.; Reeves, John M.; Shindell, Drew T.; Dezafra, Robert L.
1994-01-01
Using a ground-based mm-wave spectrometer, we have observed stratospheric N2O over Thule, Greenland (76.3 N, 68.4 W) during late February and March, 1992. Vertical profiles of mixing ratio ranging from 16 to 50 km were recovered from molecular emission spectra. The profiles of early March show an abrupt increase in the lower-stratosphere N2O mixing ratio similar to the spring-to-summer change associated with the break up of the Antarctic polar vortex. This increase is correlated with changes in potential vorticity, air temperature, and ozone mixing ratio.
Ozone profile intercomparison based on simultaneous observations between 20 and 40 km
NASA Technical Reports Server (NTRS)
Aimedieu, P.; Krueger, A. J.; Robbins, D. E.; Simon, P. C.
1983-01-01
The vertical distribution of stratospheric ozone has been simultaneously measured by means of five different instruments carried on the same balloon payload. The launches were performed from Gap during the intercomparison campaign conducted in June 1981 in southern France. Data obtained between altitudes of 20 and 40 km are compared and discussed. Vertical profiles deduced from Electrochemical Concentration Cell sondes launched from the same location by small balloons and from short Umkehr measurements made at Mt Chiran (France) are also included in this comparison. Systematic differences of the order of 20 percent between ozone profiles deduced from solar u.v. absorption and in situ techniques are found.
NASA Astrophysics Data System (ADS)
Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.
2006-12-01
The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.
Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres
NASA Astrophysics Data System (ADS)
Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander
Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.
Characterization of vertical mixing in oscillatory vegetated flows
NASA Astrophysics Data System (ADS)
Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.
2016-02-01
Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.
New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi
A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in “de-flattening”more » of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm{sup 2} beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm.« less
NASA Astrophysics Data System (ADS)
Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.
2015-12-01
Studies have shown that satellite NO2 columns are closely related to ground level NO2 concentrations, particularly over polluted areas. This provides a means to assess surface level NO2 spatial variability over a broader area than what can be monitored from ground stations. The characterization of surface level NO2 variability is important to understand air quality in urban areas, emissions, health impacts, photochemistry, and to evaluate the performance of chemical transport models. Using data from the NASA DISCOVER-AQ campaign in Baltimore/Washington we calculate NO2 mixing ratios from the Airborne Compact Atmospheric Mapper (ACAM), through four different methods to derive surface concentration from column measurements. High spectral resolution lidar (HSRL) mixed layer heights, vertical P3B profiles, and CMAQ vertical profiles are used to scale ACAM vertical column densities. The derived NO2 mixing ratios are compared to EPA ground measurements taken at Padonia and Edgewood. We find similar results from scaling with HSRL mixed layer heights and normalized P3B vertical profiles. The HSRL mixed layer heights are then used to scale ACAM vertical column densities across the DISCOVER-AQ flight pattern to assess spatial variability of NO2 over the area. This work will help define the measurement requirements for future satellite instruments.
Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, Charles D.; Eisenbach, Stefan; Pospichal, Bernhard
2004-11-01
Tethered balloon soundings from two sites on the floor of a 1-km diameter limestone sinkhole in the Eastern Alps are compared with pseudo-vertical temperature ‘soundings’ from three lines of temperature data loggers on the basin’s northwest, southwest and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudo-vertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air thatmore » spills out of the basin through the lowest altitude saddle. On a windy night, standard deviations increased to 1 - 2°C. After sunrise, the varying exposures of the data loggers to sunlight made the pseudo-vertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high static stability conditions suggests that sidewall soundings will prove useful in monitoring temperatures and vertical temperature gradients in the sinkhole. The sidewall soundings can produce more frequent profiles at less cost than tethersondes or rawinsondes, and provide valuable advantages for some types of meteorological analyses.« less
Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data
Gottas, Daniel
2017-10-23
**Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.
How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?
NASA Technical Reports Server (NTRS)
Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.
2005-01-01
The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in the UV and near-infrared.
Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki
2015-01-01
Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387
Mini MAX-DOAS Measurements of Air Pollutants over China
NASA Astrophysics Data System (ADS)
Staadt, Steffen; Hao, Nan; Trautmann, Thomas
2016-08-01
This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.
Shifts of radiocesium vertical profiles in sediments and their modelling in Japanese lakes.
Fukushima, Takehiko; Komatsu, Eiji; Arai, Hiroyuki; Kamiya, Koichi; Onda, Yuichi
2018-02-15
Vertical profiles of radiocesium concentrations were measured in sediment cores collected at various times after the 2011 Fukushima nuclear accident in five Japanese lakes (Hinuma, Kasumigaura, Kitaura, Onogawa and Sohara) with different morphological and trophic characteristics in order to investigate the sedimentation-diffusion processes. In lakes where sediments had high porosities and experienced considerable wave action due to shallowness, we observed rapid penetration of radiocesium to a certain depth just after the accident, followed by downward movement of the peak depths. In contrast, gradual downward transfers of distinct peaks were found in other types of lakes. A one-dimensional differential sediment model with water-sediments interaction processes was constructed to describe the vertical shift of radiocesium profiles. Our proposed submodels relating to the length scales of the mixing using wind-induced stress and porosity of sediments were constructed based on one measurement of the vertical distribution of radiocesium in three lakes (Hinuma, Kasumigaura and Sohara). This model was then validated using samples from those lakes in different years, as well as from two other lakes. Good agreement was obtained. We discuss our findings, the limits of model application, and future research targets. Copyright © 2017 Elsevier B.V. All rights reserved.
Vertical Distribution of Black and Brown Carbon over Shanghai during Winter
NASA Astrophysics Data System (ADS)
Zheng, M.; Yan, C.; Wang, D.; Fu, Q.
2016-12-01
Carbonaceous aerosols (i.e., black carbon, BC, and organic aerosol, OA) have significant impact on Earth's energy budget by scattering and absorbing solar radiation. Extensive carbonaceous aerosols have been emitted in mainland China. It is essential to study the column burden of carbonaceous aerosol and associated light absorption to better understand its radiative forcing. In this study, a tethered balloon-based field campaign was conducted over a Chinese megacity, Shanghai, in December of 2015, with the primary goal to investigate the vertical profile of air pollutants within the lower troposphere, especially during the polluted days. A 7-wavelength Aethalometer (AE-31) were adopted in the observation to obtain vertical profiles of atmospheric carbonaceous aerosols within the lower troposphere. Light absorption by black and brown carbon, the light absorbing organic components, were distinguished and separated based on difference between light absorption at 450 nm versus 880 nm. Light absorption of brown carbon relative to black carbon were also estimated to pose the importance of brown carbon. Besides, diurnal variation of black and brown carbon vertical profiles would also be discussed, with consideration of variation of height of planetary boundary layer.
A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer
NASA Astrophysics Data System (ADS)
Liu, Yuli; Buehler, Stefan; Liu, Heguang
2017-04-01
Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.
Multisensor Retrieval of Atmospheric Properties.
NASA Astrophysics Data System (ADS)
Boba Stankov, B.
1998-09-01
A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of -0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Janz, Scott J.; Hilsenrath, Ernest; Brown, Tammy L.; Flittner, David E.; Heath, Donald F.
1999-01-01
Two instruments were flown on shuttle flight STS-87 to test a new technique for inferring the ozone vertical profile using measurements of scattered sunlight from the Earth's limb. The instruments were an ultraviolet imaging spectrometer designed to measure ozone between 30 and 50 km, and a multi-filter imaging photometer that uses 600 nm radiances to measure ozone between 15 km and 35 km. Two orbits of limb data were obtained on December 2, 1997. For the scans analyzed the ozone profile was measured from 15 km to 50 km with approximately 3 km vertical resolution. Comparisons with a profile from an ozonesonde launched from Ascension Island showed agreement mostly within +/- 5%. The tropopause at 15 km was clearly detected.
Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.
Clarke, Antony; Kapustin, Vladimir
2010-09-17
Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.
Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile
NASA Technical Reports Server (NTRS)
Moreau, G.; Robert, C.
1994-01-01
A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.
Kalman Filter Chemical Data Assimilation: A Case Study in January 1992
NASA Technical Reports Server (NTRS)
Lary, D. J.; Khattatov, B.; Atlas, Robert; Mussa, H.
2002-01-01
This paper describes a Kalman filter chemical data assimilation system and its use for analysing a vertical atmospheric profile during January 1992. The vertical profile was at an equivalent PV latitude (phi(sub e)) of 55 deg S and consisted of 21 potential temperature (theta) levels spaced equally in log(theta) between 400 K and 2000 K. This equivalent latitude was chosen as it was well observed during January 1992 by instruments on board the Upper Atmosphere Research Satellite (UARS).
The sulfur budget of the troposphere
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Augustsson, T. R.
1981-01-01
A one dimensional photochemical tropospheric model was used to calculate the vertical profiles of tropospheric species. Particular attention is focused on the recent inclusion of the chemistry of the sulfur group, which consists of 13 species involving a total of 45 chemical reactions. It is found that the chemistry of the sulfur species, because it is largely anthropogenic, plays an increasingly important role in the distribution of tropospheric gases. The calculated vertical profiles were compared to available measurements and generally found to be in good agreement.
NASA Astrophysics Data System (ADS)
Jensen, A.; Gowing, I.; Martin, R. S.
2013-12-01
During the 2013 wintertime Uintah Basin Ozone Study (UBOS13), an autonomous unmanned aerial vehicle (UAV) platform, coupled with an on-board UV ozone monitor, flew several spatial profiles near the location (Horse Pool) of other concentrated measurements by other co-investigators. The airframe, part of the Utah Water Research Laboratory's (UWRL) AggieAir UAV program, consisted of a custom-built, battery-operated plane with and 2.4 m (8 ft) wing span and a 12.7 cm x 12.7 cm x 30.5 cm payload bay with a carrying capacity of approximately 2.0 kg. With the current power system, the fully-loaded AggieAir UAV can fly for approximately 45 minutes at a nominal airspeed of 13.4 m/s (30 mph). The system can be operated either in manual control or be flown autonomously following preprogrammed waypoints via a built in GPS system. The AggieAir UAV systems were primarily designed for photographic and telemetry tracking projects. For the UBOS13 flights, a 2B Technologies Model 205 Ozone (O3) monitor was modified for minimal weight optimization, wrapped with lightweight insulation and secured into the UAV payload bay. Additionally, HOBO Model H08-001-02 shielded temperature/datalogger was secured to the exterior of the UAV from parallel thermal profile determination. During the study period, three demonstration flight profiles were obtained on February 17 and 18, 2013: two vertical 'curtain' profiles and a pair of 'stacked' horizontal profiles. As recorded by numerous ground-based monitoring sites, the ozone during the UAV test periods was characterized by initial trends of daytime O3 maximums over 130 ppb, followed by a meteorological front partially ventilating the Basin on the evening of Feb. 17th leading to decreased O3 minimums around 40 ppb. However, the ground level O3 rebuilt quickly to ground level maximums approaching 100 ppb. The vertical 'curtain' flown on the evening of Feb. 17th only reached a maximum elevation of about 2160 m ASL (600 m AGL) due to encountering upper level excessive winds as the low pressure front approached. However the flight was still able to capture a temperature profile indicating a well-mixed atmosphere below about 300 m AGL, sealed by a definitive inversion layer extending to the top of the measurement profile. The measured O3 profile went from about 140 ppb near the ground to around 60 ppb at the start of the inversion layer, and then remained essentially constant until the top of the elevation profile. The vertical profile late in the morning of the following day (after the front had passed), showed nearly straight vertical profiles of temperature (≈2°C) and ozone (35-50 ppb) up to approximately 2400 m ASL (820 m AGL). The stacked horizontal profiles (1650 and 1750 m ASL) flown immediately after the vertical flight of Feb. 17th showed some differences on the horizontal scale, but it was unclear if these differences were associated with terrain differences (topography dropped rapidly to the south) or locational differences in precursor sources. The UAV measured ozone compared favorably to nearby co-investigators (NOAA/ESRL CSD TOPAZ Lidar and CU/INSTAAR tethered balloon).
NASA Astrophysics Data System (ADS)
Sarazin, Marc S.; Osborn, James; Chacon-Oelckers, Arlette; Dérie, Frédéric J.; Le Louarn, Miska; Milli, Julien; Navarrete, Julio; Wilson, Richard R. W.
2017-09-01
The Stereo-SCIDAR (Scintillation Detection and Ranging) atmospheric turbulence profiler, built for ESO by Durham University, observes the scintillation patterns of binary elements with one of the four VLT-Interferometer 1.8m auxiliary telescopes at the ESO Paranal Observatory. The primary products are the vertical profiles of the index of refraction structure coefficient and of the wind velocity which allow to compute the wavefront coherence time and the isoplanatic angle with a vertical resolution of 250m. The several thousands of profiles collected during more than 30 nights of operation are grouped following criteria based on the altitude distribution or on principal component analysis. A set of reference profiles representative of the site is proposed as input for the various simulation models developed by the E-ELT (European Extremely Large Telescope) instruments Consortia.
Predicting ozone profile shape from satellite UV spectra
NASA Astrophysics Data System (ADS)
Xu, Jian; Loyola, Diego; Romahn, Fabian; Doicu, Adrian
2017-04-01
Identifying ozone profile shape is a critical yet challenging job for the accurate reconstruction of vertical distributions of atmospheric ozone that is relevant to climate change and air quality. Motivated by the need to develop an approach to reliably and efficiently estimate vertical information of ozone and inspired by the success of machine learning techniques, this work proposes a new algorithm for deriving ozone profile shapes from ultraviolet (UV) absorption spectra that are recorded by satellite instruments, e.g. GOME series and the future Sentinel missions. The proposed algorithm formulates this particular inverse problem in a classification framework rather than a conventional inversion one and places an emphasis on effectively characterizing various profile shapes based on machine learning techniques. Furthermore, a comparison of the ozone profiles from real GOME-2 data estimated by our algorithm and the classical retrieval algorithm (Optimal Estimation Method) is performed.
Analysis of the mixing processes in the subtropical Advancetown Lake, Australia
NASA Astrophysics Data System (ADS)
Bertone, Edoardo; Stewart, Rodney A.; Zhang, Hong; O'Halloran, Kelvin
2015-03-01
This paper presents an extensive investigation of the mixing processes occurring in the subtropical monomictic Advancetown Lake, which is the main water body supplying the Gold Coast City in Australia. Meteorological, chemical and physical data were collected from weather stations, laboratory analysis of grab samples and an in-situ Vertical Profiling System (VPS), for the period 2008-2012. This comprehensive, high frequency dataset was utilised to develop a one-dimensional model of the vertical transport and mixing processes occurring along the water column. Multivariate analysis revealed that air temperature and rain forecasts enabled a reliable prediction of the strength of the lake stratification. Vertical diffusion is the main process driving vertical mixing, particularly during winter circulation. However, a high reservoir volume and warm winters can limit the degree of winter mixing, causing only partial circulation to occur, as was the case in 2013. This research study provides a comprehensive approach for understanding and predicting mixing processes for similar lakes, whenever high-frequency data are available from VPS or other autonomous water monitoring systems.
Multiscale estimation of excess mass from gravity data
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Fedi, Maurizio; Florio, Giovanni
2014-06-01
We describe a multiscale method to estimate the excess mass of gravity anomaly sources, based on the theory of source moments. Using a multipole expansion of the potential field and considering only the data along the vertical direction, a system of linear equations is obtained. The choice of inverting data along a vertical profile can help us to reduce the interference effects due to nearby anomalies and will allow a local estimate of the source parameters. A criterion is established allowing the selection of the optimal highest altitude of the vertical profile data and truncation order of the series expansion. The inversion provides an estimate of the total anomalous mass and of the depth to the centre of mass. The method has several advantages with respect to classical methods, such as the Gauss' method: (i) we need just a 1-D inversion to obtain our estimates, being the inverted data sampled along a single vertical profile; (ii) the resolution may be straightforward enhanced by using vertical derivatives; (iii) the centre of mass is also estimated, besides the excess mass; (iv) the method is very robust versus noise; (v) the profile may be chosen in such a way to minimize the effects from interfering anomalies or from side effects due to the a limited area extension. The multiscale estimation of excess mass method can be successfully used in various fields of application. Here, we analyse the gravity anomaly generated by a sulphide body in the Skelleftea ore district, North Sweden, obtaining source mass and volume estimates in agreement with the known information. We show also that these estimates are substantially improved with respect to those obtained with the classical approach.
Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects
NASA Technical Reports Server (NTRS)
Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.
2010-01-01
A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.
Validating Variance Similarity Functions in the Entrainment Zone
NASA Astrophysics Data System (ADS)
Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.
2017-12-01
In previous work, the water vapor variance in the entrainment zone was proposed to be proportional to the convective velocity scale, gradient water vapor mixing ratio and the Brunt-Vaisala frequency in the interfacial layer, while the variance of the vertical wind at in the entrainment zone was defined in terms of the convective velocity scale. The variances in the entrainment zone have been hypothesized to depend on two distinct functions, which also depend on the Richardson number. To the best of our knowledge, these hypotheses have never been tested observationally. Simultaneous measurements of the Eddy correlation surface flux, wind shear profiles from wind profilers, and variance profile measurements of vertical motions and water vapor by Doppler and Raman lidars, respectively, provide a unique opportunity to thoroughly examine the functions used in defining the variances and validate them. These observations were made over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. We have identified about 30 cases from 2016 during which the convective boundary layer (CBL) is quasi-stationary and well mixed for at least 2 hours. The vertical profiles of turbulent fluctuations of the vertical wind and water vapor have been derived using an auto covariance technique to separate out the instrument random error to a set of 2-h period time series. The error analysis of the lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence around the entrainment zone. Therefore, utilizing this unique combination of observations, this study focuses on extensively testing the hypotheses that the second-order moments are indeed proportional to the functions which also depend on Richardson number. The coefficients that are used in defining the functions will also be determined observationally and compared against with the values suggested by Large eddy simulation (LES) studies.
Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.
2015-07-01
We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.
Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J
2001-02-01
Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.
Analysis of temperature profiles for investigating stream losses beneath ephemeral channels
Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa
2002-01-01
Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.
GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS
Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...
NASA Astrophysics Data System (ADS)
Held, Gerhard; Cruz, Felipe
2014-05-01
Continuous Sodar observations from Bauru, located in the central State of São Paulo, are presented in this paper for a 4-year period (January 2010 - December 2013). The data were collected at the Meteorological Research Institute (IPMet) of the Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Bauru, which is situated at the southeastern outskirts of the town, in a pristine environment with mostly indigenous vegetation. The medium-sized Sodar was programmed to record 60-minute averages of the vertical wind profiles (u, v, w) between 30 and 800 m above ground level (AGL, station height 624 m above mean sea level) at 30-minute intervals with a vertical resolution of 10 m. The data recovery was almost 100% in the first 160 m, subsequently diminishing gradually to 50% at 370 m, 20% at 500 m and then tailing off to only 1% at 800 m AGL. Since the Sodar is an acoustic sensor, the reception of the backscattered signals is strongly dependent on meteorological conditions. The maximum height of 800 m was maintained, despite the low recovery rate, because it is important for individual case studies. However, mean wind roses will only be presented up to 500 m AGL, to avoid a possible bias in sampling wind directions. In this paper wind roses at selected heights are presented to document the variation of the wind direction and speed with height, as well as their seasonal variation. Besides the standard primary data of the 3 wind components, the scalar hourly mean wind speed and the mean vector direction, the Sodar also generates their standard deviations. Furthermore, a variety of derived parameters, such as shear, shear direction, sigma speed, sigma Phi, sigma Theta, turbulence intensity, Pasquill-Gifford (PG) stability class, turbulent kinetic energy and eddy dissipation rate are generated as hourly means at each height level and recorded as sliding means every 30 min. The Software also offers the facility to generate a separate daily file with so called Non-Profile Variables, providing a single value for every vertical profile of the following variables: PG stability, surface heat flux, Monin Obukov Length and friction velocity. These are important input data for dispersion modeling, but only being calculated under convective conditions (mostly mid-day & early afternoon). Furthermore, the maximum range of the backscatter signal, as well as estimates of the lowest inversion height and the mixing height, if detected, are also being recorded for every profile. However, the last two variables mentioned are only estimated from the backscatter profile and thus not very reliable. Nevertheless, since there is no RASS attached to this Sodar, the statistics of all these parameters do provide a good record of the diurnal variation of the nocturnal stable Planetary Boundary Layer and daytime instability. Finally, the seasonal variation and characteristics of the nocturnal Low-Level-Jets (LLJs), developing on top of the surface radiation inversion, will be presented. These LLJs generally form during late evening at altitudes ranging from 200-500 m AGL, with maximum speeds of 12-25 m/s from east-south-east. They usually last until 08:00-09:00 LT (Local Time), when the inversion has been eroded by the solar radiation. LLJs could be identified on about 30-70 % of the days per month throughout the year. The practical importance of the LLJ lies in the rapid transport of moisture and pollutants in a narrow vertical band above the radiation inversion.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1990-01-01
Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.
NASA Technical Reports Server (NTRS)
Collins, Donald J.; Rhea, W. Joseph; Tran, An Van
1990-01-01
Time-series measurements of the incident surface downwelling irradiance and vertical profiles of the Bio-optical properties of the ocean have been measured during the third cruise of the Hawaii Ocean Time-Series to the ALOHA site, 22 degrees 56.4 minutes N, 157 degrees 54.6 minutes W, north of the island of Oahu, Hawaii, during the period January 6 to 10, 1989. A summary of these data is presented to permit investigators an overview of the data collected. The data are available in digital form for scientific investigators.
Shape and Composition Map of a Prepyramid Quantum Dot
NASA Astrophysics Data System (ADS)
Spencer, Brian
2006-03-01
We present a theory for the shape, size, and nonuniform composition profile of a small prepyramid island in an alloy epitaxial film when surface diffusion is much faster than deposition and bulk diffusion. The predicted composition profile has segregation of the larger misfit component to the island peak, with segregation enhanced by misfit strain and solute strain but retarded by alloy solution thermodynamics. Vertical composition gradients through the center of the island due to this mechanism are on the order of 2%/nm for GeXSi1-X/Si and 10 - 15%/nm for InXGaAs1-X/GaAs [PRL 95, 206101 (2005)].
Variation of the shower lateral spread with air temperature at the ground
NASA Astrophysics Data System (ADS)
Wilczyńska, B.; Engel, R.; Homola, P.; Keilhauer, B.; Klages, H.; Pękala, J.; Wilczyński, H.
The vertical profile of air density at a given site varies considerably with time. Well understood seasonal differences are present, but sizeable effects on shorter time scales, like day to night or day to day variations, are also observed. In consequence, the Moliere radius changes, influencing the lateral distribution of particles in the air showers and therefore may influence the shower detection in surface detector arrays. In air shower reconstruction, usually seasonal average profiles of the atmosphere are used, because local daily measurements of the profile are rarely available. Therefore, the daily fluctuations of the atmosphere are not accounted for. This simplification increases the inaccuracies of shower reconstruction. We show that a universal correlation exists between the ground temperature and the shape of the atmospheric profile, up to altitudes of several kilometers, hence providing a method to reduce inaccuracies in shower reconstruction due to weather variation.
Evaluation of Inversion Methods Applied to Ionospheric ro Observations
NASA Astrophysics Data System (ADS)
Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia
The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.
NASA Astrophysics Data System (ADS)
Rabe, Benjamin; Janout, Markus; Graupner, Rainer; Hoelemann, Jens; Hampe, Hendrik; Hoppmann, Mario; Horn, Myriel; Juhls, Bennet; Korhonen, Meri; Nikolopoulos, Anna; Pisarev, Sergey; Randelhoff, Achim; Savy, Jean-Philippe; Villacieros Robineau, Nicolas
2017-04-01
The Arctic Ocean is generally assumed to be fairly quiescent when compared to many other oceans. The sea-ice cover, a strong halocline and a shallow, cold mixed-layer prevents much of the ocean to be affected by atmospheric conditions and properties of the ocean mixed-layer. In turn, the mixed-layer and the sea-ice is largely isolated from the warm layer of Atlantic origin below by the lower halocline. Yet, the content of heat, freshwater and biologically important nutrients differs strongly between these different layers. Hence, it is crucial to be able to estimate vertical fluxes of salt, heat and nutrients to understand variability in the upper Arctic Ocean and the sea-ice, including the ecosystem. Yet, it is difficult to obtain direct flux measurements, and estimates are sparse. We present several sets of under-ice turbulent microstructure profiles in the Eurasian and Makarov Basin of the Arctic Ocean from two expeditions, in 2015. These cover melt during late spring north of Svalbard and freeze-up during late summer / autumn across the Eurasian and Makarov basins. Our results are presented against a background of the anomalously warm atmospheric conditions during summer 2015 followed by unusually low temperatures in September. 4 - 24 h averages of the measurements generally show elevated dissipation rates at the base of the mixed-layer. We found highest levels of dissipation near the Eurasian continental slope and smaller peaks in the profiles where Bering Sea Summer Water (sBSW) lead to additional stratification within the upper halocline in the Makarov Basin. The elevated levels of dissipation associated with sBSW and the base of the mixed-layer were associated with the relatively low levels of vertical eddy diffusivity. We discuss these findings in the light of the anomalous conditions in the upper ocean, sea-ice and the atmosphere during 2015 and present estimates of vertical fluxes of heat, salt and other dissolved substances measured in water samples.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1988-01-01
Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.
Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements.
Liu, Zhi-Shen; Bi, De-Cang; Song, Xiao-Quan; Xia, Jin-Bao; Li, Rong-Zhong; Wang, Zhang-Jun; She, Chiao-Yao
2009-09-15
This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.35 Wm(2)). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...
2017-02-06
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less
NASA Astrophysics Data System (ADS)
Bense, V. F.; Kurylyk, B. L.
2017-12-01
Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.
Inventory and vertical migration of ¹³⁷Cs in Spanish mainland soils.
Legarda, F; Romero, L M; Herranz, M; Barrera, M; Idoeta, R; Valiño, F; Olondo, C; Caro, A
2011-06-01
In this study the total activity of (137)Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 × 150 km(2) mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m(2). A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited (137)Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of (137)Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of (137)Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.
John Yarie; Bert R. Mead
1988-01-01
Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of...
Ozone reference models for the middle atmosphere
NASA Technical Reports Server (NTRS)
Keating, G. M.; Pitts, M. C.; Young, D. F.
1990-01-01
Data on monthly latitudinal variations in middle-atmosphere vertical ozone profiles are presented, based on extensive Nimbus-7, AE-2, and SME satellite measurements from the period 1978-1982. The coverage of the data sets, the characteristics of the sensors, and the analysis techniques applied are described, and the results are compiled in tables and graphs. These ozone data are intended to supplement the models of the 1986 COSPAR International Reference Atmosphere.
Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method
NASA Astrophysics Data System (ADS)
Lv, Xin; Zou, Qingping; Reeve, Dominic
2011-10-01
This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.
NASA Astrophysics Data System (ADS)
Olajuwon, B. I.; Oyelakin, I. S.
2012-12-01
The paper investigates convection heat and mass transfer in power law fluid flow with non relaxation time past a vertical porous plate in presence of a chemical reaction, heat generation, thermo diffu- sion and thermal diffusion. The non - linear partial differential equations governing the flow are transformed into ordinary differential equations using the usual similarity method. The resulting similarity equations are solved numerically using Runge-Kutta shooting method. The results are presented as velocity, temperature and concentration profiles for pseudo plastic fluids and for different values of parameters governing the prob- lem. The skin friction, heat transfer and mass transfer rates are presented numerically in tabular form. The results show that these parameters have significant effects on the flow, heat transfer and mass transfer.
The NASA landing gear test airplane
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.
1995-01-01
A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.
POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2016-12-10
For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.
2013-09-01
This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.
Williams, Christopher; Jensen, Mike
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.